

Data Analysis with Python

A Modern Approach

David Taieb

BIRMINGHAM - MUMBAI

Data Analysis with Python

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Acquisition Editors: Frank Pohlmann, Suresh M Jain
Project Editors: Savvy Sequeira, Kishor Rit
Content Development Editor: Alex Sorrentino
Technical Editor: Bhagyashree Rai
Proofreader: Safis Editing
Indexers: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Sandip Tadge

First published: December 2018

Production reference: 1241218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78995-006-9
www.packtpub.com

http://www.packtpub.com

To Alexandra, Solomon, Zachary, Victoria and Charlotte:

Thank you for your support, unbounded love, and infinite patience. I would
not have been able to complete this work without all of you.

To Fernand and Gisele:

Without whom I wouldn't be where I am today. Thank you
for your continued guidance all these years.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Mapt is fully searchable
• Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

https://mapt.io/
http://www.packtpub.com/
http://www.packtpub.com/
http://www.packtpub.com/

Contributors

About the author
David Taieb is the Distinguished Engineer for the Watson and Cloud Platform
Developer Advocacy team at IBM, leading a team of avid technologists on a mission
to educate developers on the art of the possible with data science, AI and cloud
technologies. He's passionate about building open source tools, such as the PixieDust
Python Library for Jupyter Notebooks, which help improve developer productivity
and democratize data science. David enjoys sharing his experience by speaking
at conferences and meetups, where he likes to meet as many people as possible.

I want to give special thanks to all of the following dear friends
at IBM who contributed to the development of PixieDust and/
or provided invaluable support during the writing of this book:
Brad Noble, Jose Barbosa, Mark Watson, Raj Singh, Mike Broberg,
Jessica Mantaro, Margriet Groenendijk, Patrick Titzler, Glynn Bird,
Teri Chadbourne, Bradley Holt, Adam Cox, Jamie Jennings, Terry
Antony, Stephen Badolato, Terri Gerber, Peter May, Brady Paterson,
Kathleen Francis, Dan O'Connor, Muhtar (Burak) Akbulut, Navneet
Rao, Panos Karagiannis, Allen Dean, and Jim Young.

About the reviewers
Margriet Groenendijk is a data scientist and developer advocate for IBM.
She has a background in climate research, where, at the University of Exeter, she
explored large observational datasets and the output of global scale weather and
climate models to understand the impact of land use on climate. Prior to that,
she explored the effect of climate on the uptake of carbon from the atmosphere
by forests during her PhD research at the Vrije Universiteit in Amsterdam.

Now adays, she explores ways to simplify working with diverse data using open
source tools, IBM Cloud, and Watson Studio. She has experience with cloud services,
databases, and APIs to access, combine, clean, and store different types of data.
Margriet uses time series analysis, statistical data analysis, modeling and parameter
optimisation, machine learning, and complex data visualization. She writes blogs
and speaks about these topics at conferences and meetups.

va barbosa is a developer advocate for the Center for Open-Source Data &
AI Technologies, where he helps developers discover and make use of data
and machine learning technologies. This is fueled by his passion to help others,
and guided by his enthusiasm for open source technology.

Always looking to embrace new challenges and fulfill his appetite for learning,
va immerses himself in a wide range of technologies and activities. He has been an
electronic technician, support engineer, software engineer, and developer advocate.

When not focusing on the developer experience, va enjoys dabbling in photography.
If you can't find him in front of a computer, try looking behind a camera.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

[i]

Table of Contents
Preface V
Chapter 1: Programming and Data Science – A New Toolset 1

What is data science 1
Is data science here to stay? 2
Why is data science on the rise? 3
What does that have to do with developers? 4
Putting these concepts into practice 6
Deep diving into a concrete example 7
Data pipeline blueprint 8
What kind of skills are required to become a data scientist? 10
IBM Watson DeepQA 12
Back to our sentiment analysis of Twitter hashtags project 15
Lessons learned from building our first enterprise-ready data pipeline 19
Data science strategy 20
Jupyter Notebooks at the center of our strategy 22

Why are Notebooks so popular? 23
Summary 25

Chapter 2: Python and Jupyter Notebooks to Power your
Data Analysis 27

Why choose Python? 28
Introducing PixieDust 32
SampleData – a simple API for loading data 36
Wrangling data with pixiedust_rosie 42
Display – a simple interactive API for data visualization 49
Filtering 60
Bridging the gap between developers and data scientists
with PixieApps 63
Architecture for operationalizing data science analytics 67
Summary 72

Chapter 3: Accelerate your Data Analysis with Python Libraries 73
Anatomy of a PixieApp 74

Routes 76
Generating requests to routes 79
A GitHub project tracking sample application 80
Displaying the search results in a table 84
Invoking the PixieDust display() API using pd_entity attribute 92

Table of Contents

[ii]

Invoking arbitrary Python code with pd_script 100
Making the application more responsive with pd_refresh 105
Creating reusable widgets 107

Summary 108
Chapter 4: Publish your Data Analysis to the
Web - the PixieApp Tool 109

Overview of Kubernetes 110
Installing and configuring the PixieGateway server 112

PixieGateway server configuration 116
PixieGateway architecture 120
Publishing an application 124
Encoding state in the PixieApp URL 128
Sharing charts by publishing them as web pages 129
PixieGateway admin console 134
Python Console 137
Displaying warmup and run code for a PixieApp 138

Summary 139
Chapter 5: Python and PixieDust Best Practices and
Advanced Concepts 141

Use @captureOutput decorator to integrate the output
of third-party Python libraries 142

Create a word cloud image with @captureOutput 142
Increase modularity and code reuse 145

Creating a widget with pd_widget 148
PixieDust support of streaming data 150

Adding streaming capabilities to your PixieApp 153
Adding dashboard drill-downs with PixieApp events 156
Extending PixieDust visualizations 161
Debugging 169

Debugging on the Jupyter Notebook using pdb 169
Visual debugging with PixieDebugger 173
Debugging PixieApp routes with PixieDebugger 176
Troubleshooting issues using PixieDust logging 178
Client-side debugging 181

Run Node.js inside a Python Notebook 183
Summary 188

Chapter 6: Analytics Study: AI and Image Recognition
with TensorFlow 189

What is machine learning? 190
What is deep learning? 192
Getting started with TensorFlow 195

Table of Contents

[iii]

Simple classification with DNNClassifier 199
Image recognition sample application 211

Part 1 – Load the pretrained MobileNet model 212
Part 2 – Create a PixieApp for our image recognition sample application 220
Part 3 – Integrate the TensorBoard graph visualization 224
Part 4 – Retrain the model with custom training data 230

Summary 242
Chapter 7: Analytics Study: NLP and Big Data with Twitter
Sentiment Analysis 243

Getting started with Apache Spark 244
Apache Spark architecture 244
Configuring Notebooks to work with Spark 246

Twitter sentiment analysis application 248
Part 1 – Acquiring the data with Spark Structured Streaming 249

Architecture diagram for the data pipeline 249
Authentication with Twitter 250
Creating the Twitter stream 251
Creating a Spark Streaming DataFrame 255
Creating and running a structured query 258
Monitoring active streaming queries 260
Creating a batch DataFrame from the Parquet files 262

Part 2 – Enriching the data with sentiment and most relevant
extracted entity 265

Getting started with the IBM Watson Natural Language Understanding
service 265

Part 3 – Creating a real-time dashboard PixieApp 273
Refactoring the analytics into their own methods 274
Creating the PixieApp 276

Part 4 – Adding scalability with Apache Kafka and IBM Streams
Designer 286

Streaming the raw tweets to Kafka 288
Enriching the tweets data with the Streaming Analytics service 291
Creating a Spark Streaming DataFrame with a Kafka input source 298

Summary 302
Chapter 8: Analytics Study: Prediction - Financial Time Series
Analysis and Forecasting 303

Getting started with NumPy 304
Creating a NumPy array 307
Operations on ndarray 310
Selections on NumPy arrays 312

Table of Contents

[iv]

Broadcasting 313
Statistical exploration of time series 315

Hypothetical investment 323
Autocorrelation function (ACF) and partial autocorrelation function (PACF) 324

Putting it all together with the StockExplorer PixieApp 328
BaseSubApp – base class for all the child PixieApps 333
StockExploreSubApp – first child PixieApp 335
MovingAverageSubApp – second child PixieApp 337
AutoCorrelationSubApp – third child PixieApp 341

Time series forecasting using the ARIMA model 343
Build an ARIMA model for the MSFT stock time series 346
StockExplorer PixieApp Part 2 – add time series forecasting using
the ARIMA model 355

Summary 371
Chapter 9: Analytics Study: Graph Algorithms -
US Domestic Flight Data Analysis 373

Introduction to graphs 374
Graph representations 375
Graph algorithms 377
Graph and big data 380

Getting started with the networkx graph library 381
Creating a graph 382
Visualizing a graph 384

Part 1 – Loading the US domestic flight data into a graph 385
Graph centrality 394

Part 2 – Creating the USFlightsAnalysis PixieApp 404
Part 3 – Adding data exploration to the USFlightsAnalysis PixieApp 415
Part 4 – Creating an ARIMA model for predicting flight delays 425
Summary 440

Chapter 10: The Future of Data Analysis and Where to
Develop your Skills 441

Forward thinking – what to expect for AI and data science 442
References 445

PixieApp Quick-Reference 447
Annotations 447
Custom HTML attributes 450
Methods 455

Other Books You May Enjoy 457
Leave a review – let other readers know what you think 459

Index 461

[v]

Preface
"Developers are the most-important, most-valuable constituency in business
today, regardless of industry."

 – Stephen O'Grady, author of The New Kingmakers

First, let me thank you and congratulate you, the reader, for the decision to invest
some of your valuable time to read this book. Throughout the chapters to come, I will
take you on a journey of discovering or even re-discovering data science from the
perspective of a developer and will develop the theme of this book which is that data
science is a team sport and that if it is to be successful, developers will have to play
a bigger role in the near future and better collaborate with data scientists. However,
to make data science more inclusive to people of all backgrounds and trades, we first
need to democratize it by making data simple and accessible—this is in essence what this
book is about.

Why am I writing this book?
As I'll explain in more detail in Chapter 1, Programming and Data Science – A New
Toolset, I am first and foremost a developer with over 20 years, experience of building
software components of a diverse nature; frontend, backend, middleware, and so on.
Reflecting back on this time, I realize how much getting the algorithms right always
came first in my mind; data was always somebody else's problem. I rarely had to
analyze it or extract insight from it. At best, I was designing the right data structure
to load it in a way that would make my algorithm run more efficiently and the code
more elegant and reusable.

Preface

[vi]

However, as the Artificial Intelligence and data science revolution got under way,
it became obvious to me that developers like myself needed to get involved, and
so 7 years ago in 2011, I jumped at the opportunity to become the lead architect
for the IBM Watson core platform UI & Tooling. Of course, I don't pretend to have
become an expert in machine learning or NLP, far from it. Learning through practice
is not a substitute for getting a formal academic background.

However, a big part of what I want to demonstrate in this book is that, with the right
tools and approach, someone equipped with the right mathematical foundations
(I'm only talking about high-school level calculus concepts really) can quickly
become a good practitioner in the field. A key ingredient to being successful
is to simplify as much as possible the different steps of building a data pipeline;
from acquiring, loading, and cleaning the data, to visualizing and exploring it,
all the way to building and deploying machine learning models.

It was with an eye to furthering this idea of making data simple and accessible
to a community beyond data scientists that, 3 years ago, I took on a leading role at
the IBM Watson Data Platform team with the mission of expanding the community
of developers working with data with a special focus on education and activism
on their behalf. During that time as the lead developer advocate, I started to talk
openly about the need for developers and data scientists to better collaborate in
solving complex data problems.

Note: During discussions at conferences and meetups, I would
sometimes get in to trouble with data scientists who would get upset
because they interpreted my narrative as me saying that data scientists
are not good software developers. I want to set the record straight,
including with you, the data scientist reader, that this is far from the case.
The majority of data scientists are excellent software developers with
a comprehensive knowledge of computer science concepts. However,
their main objective is to solve complex data problems which require
rapid, iterative experimentations to try new things, not to write elegant,
reusable components.

But I didn't want to only talk the talk; I also wanted to walk the walk and started
the PixieDust open source project as my humble contribution to solving this
important problem. As the PixieDust work progressed nicely, the narrative
became crisper and easier to understand with concrete example applications
that developers and data scientists alike could become excited about.

Preface

[vii]

When I was presented with the opportunity to write a book about this story,
I hesitated for a long time before embarking on this adventure for mainly
two reasons:

• I have written extensively in blogs, articles, and tutorials about my
experience as a data science practitioner with Jupyter Notebooks. I also
have extensive experience as a speaker and workshop moderator at a
variety of conferences. One good example is the keynote speech I gave at
ODSC London in 2017 titled, The Future of Data Science: Less Game of Thrones,
More Alliances (https://odsc.com/training/portfolio/future-data-
science-less-game-thrones-alliances). However, I had never written
a book before and had no idea of how big a commitment it would be, even
though I was warned many times by friends that had authored books before.

• I wanted this book to be inclusive and target equally the developer, the data
scientist, and the line of business user, but I was struggling to find the right
content and tone to achieve that goal.

In the end, the decision to embark on this adventure came pretty easily. Having
worked on the PixieDust project for 2 years, I felt we had made terrific progress
with very interesting innovations that generated lots of interest in the open-source
community and that writing a book would complement nicely our advocacy work
on helping developers get involved in data science.

As a side note, for the reader who is thinking about writing a book and who has
similar concerns, I can only advise on the first one with a big, "Yes, go for it." For sure,
it is a big commitment that requires a substantial amount of sacrifice but provided
that you have a good story to tell with solid content, it is really worth the effort.

Who this book is for
This book will serve the budding data scientist and developer with an interest in
developing their skills or anyone wishing to become a professional data scientist.
With the introduction of PixieDust from its creator, the book will also be a great
desk companion for the already accomplished Data Scientist.

No matter the individual's level of interest, the clear, easy-to-read text and real-life
scenarios would suit those with a general interest in the area, since they get to play
with Python code running in Jupyter Notebooks.

To produce a functioning PixieDust dashboard, only a modicum of HTML and
CSS is required. Fluency in data interpretation and visualization is also necessary
since this book addresses data professionals such as business and general data
analysts. The later chapters also have much to offer.

https://odsc.com/training/portfolio/future-data-science-less-game-thrones-alliances
https://odsc.com/training/portfolio/future-data-science-less-game-thrones-alliances

Preface

[viii]

What this book covers
The book contains two logical parts of roughly equal length. In the first half, I lay
down the theme of the book which is the need to bridge the gap between data
science and engineering, including in-depth details about the Jupyter + PixieDust
solution I'm proposing. The second half is dedicated to applying what we learned
in the first half, to four industry cases.

Chapter 1, Programming and Data Science – A New Toolset, I attempt to provide
a definition of data science through the prism of my own experience, building
a data pipeline that performs sentiment analysis on Twitter posts. I defend the idea
that it is a team sport and that most often, silos exist between the data science and
engineering teams that cause unnecessary friction, inefficiencies and, ultimately,
a failure to realize its full potential. I also argue the point of view that data science
is here to stay and that eventually, it will become an integral part of what is known
today as computer science (I like to think that someday new terms will emerge, such
as computer data science that better capture this duality).

Chapter 2, Python and Jupyter Notebooks to Power your Data Analysis, I start diving into
popular data science tools such as Python and its ecosystem of open-source libraries
dedicated to data science, and of course Jupyter Notebooks. I explain why I think
Jupyter Notebooks will become the big winner in the next few years. I also introduce
the PixieDust open-source library capabilities starting from the simple display()
method that lets the user visually explore data in an interactive user interface
by building compelling charts. With this API, the user can choose from multiple
rendering engines such as Matplotlib, Bokeh, Seaborn, and Mapbox. The display()
capability was the only feature in the PixieDust MVP (minimum viable product) but,
over time, as I was interacting with a lot of data science practitioners, I added new
features to what would quickly become the PixieDust toolbox:

• sampleData(): A simple API for easily loading data into pandas and Apache
Spark DataFrames

• wrangle_data(): A simple API for cleaning and massaging datasets. This
capability includes the ability to destructure columns into new columns
using regular expressions to extract content from unstructured text. The
wrangle_data() API can also make recommendations based on predefined
patterns.

• PackageManager: Lets the user install third-party Apache Spark packages
inside a Python Notebook.

• Scala Bridge: Enables the user to run the Scala code inside a Python
Notebook. Variables defined in the Python side are accessible in Scala
and vice-versa.

Preface

[ix]

• Spark Job Progress Monitor: Lets you track the status of your Spark Job
with a real-time progress bar that displays directly in the output cell of the
code being executed.

• PixieApp: Provides a programming model centered around HTML/CSS that
lets developers build sophisticated dashboards to operationalize the analytics
built in the Notebook. PixieApps can run directly in the Jupyter Notebook
or be deployed as analytic web applications using the PixieGateway
microservice. PixieGateway is an open-source companion project to
PixieDust.

The following diagram summarizes the PixieDust development journey, including
recent additions such as the PixieGateway and the PixieDebugger which is the first
visual Python debugger for Jupyter Notebooks:

PixieDust journey

One key message to take away from this chapter is that PixieDust is first and
foremost an open-source project that lives and breathes through the contributions
of the developer community. As is the case for countless open-source projects, we
can expect many more breakthrough features to be added to PixieDust over time.

Chapter 3, Accelerate your Data Analysis with Python Libraries, I take the reader through
a deep dive of the PixieApp programming model, illustrating each concept along the
way with a sample application that analyzes GitHub data. I start with a high-level
description of the anatomy of a PixieApp including its life cycle and the execution flow
with the concept of routes. I then go over the details of how developers can use regular
HTML and CSS snippets to build the UI of the dashboard, seamlessly interacting with
the analytics and leveraging the PixieDust display() API to add sophisticated charts.

The PixieApp programming model is the cornerstone of the tooling strategy for
bridging the gap between data science and engineering, as it streamlines the process
of operationalizing the analytics, thereby increasing collaboration between data
scientists and developers and reducing the time-to-market of the application.

Preface

[x]

Chapter 4, Publish your Data Analysis to the Web - the PixieApp Tool, I discuss the
PixieGateway microservice which enables developers to publish PixieApps
as analytical web applications. I start by showing how to quickly deploy a
PixieGateway microservice instance both locally and on the cloud as a Kubernetes
container. I then go over the PixieGateway admin console capabilities, including
the various configuration profiles and how to live-monitor the deployed PixieApps
instances and the associated backend Python kernels. I also feature the chart sharing
capability of the PixieGateway that lets the user turn a chart created with the
PixieDust display() API into a web page accessible by anyone on the team.

The PixieGateway is a ground-breaking innovation with the potential of seriously
speeding up the operationalization of analytics—which is sorely needed today—
to fully capitalize on the promise of data science. It represents an open-source
alternative to similar products that already exist on the market, such as the Shiny
Server from R-Studio (https://shiny.rstudio.com/deploy) and Dash from
Plotly (https://dash.plot.ly)

Chapter 5, Python and PixieDust Best Practices and Advanced Concepts, I complete
the deep-dive of the PixieDust toolbox by going over advanced concepts of the
PixieApp programming model:

• @captureOutput decorator: By default, PixieApp routes require developers
to provide an HTML fragment that will be injected in the application UI.
This is a problem when we want to call a third-party Python library that
is not aware of the PixieApp architecture and directly generate the output
to the Notebook. @captureOutput solves this problem by automatically
redirecting the content generated by the third-party Python library and
encapsulating it into a proper HTML fragment.

• Leveraging Python class inheritance for greater modularity and code reuse:
Breaks down the PixieApp code into logical classes that can be composed
together using the Python class inheritance capability. I also show how
to call an external PixieApp using the pd_app custom attribute.

• PixieDust support for streaming data: Shows how PixieDust display()
and PixieApp can also handle streaming data.

• Implementing Dashboard drill-down with PixieApp events: Provides
a mechanism for letting PixieApp components publish and subscribe to
events generated when the user interacts with the UI (for example, charts,
and buttons).

• Building a custom display renderer for the PixieDust display() API:
Walks through the code of a simple renderer that extends the PixieDust
menus. This renderer displays a custom HTML table showing the selected
data.

https://shiny.rstudio.com/deploy
https://dash.plot.ly

Preface

[xi]

• Debugging techniques: Go over the various debugging techniques that
PixieDust offers including the visual Python debugger called PixieDebugger
and the %%PixiedustLog magic for displaying Python logging messages.

• Ability to run Node.js code: We discuss the pixiedust_node extension
that manages the life cycle of a Node.js process responsible for executing
arbitrary Node.js scripts directly from within the Python Notebook.

Thanks to the open-source model with its transparent development process and
a growing community of users who provided some valuable feedback, we were
able to prioritize and implement a lot of these advanced features over time. The
key point I'm trying to make is that following an open-source model with an
appropriate license (PixieDust uses the Apache 2.0 license available here https://
www.apache.org/licenses/LICENSE-2.0) does work very well. It helped us grow
the community of users, which in turn provided us with the necessary feedback
to prioritize new features that we knew were high value, and in some instances
contributed code in the form of GitHub pull requests.

Chapter 6, Analytics Study: AI and Image Recognition with TensorFlow, I dive into the
first of four industry cases. I start with a high-level introduction to machine learning,
followed by an introduction to deep learning—a subfield of machine learning—and
the TensorFlow framework that makes it easier to build neural network models.
I then proceed to build an image recognition sample application including the
associated PixieApp in four parts:

• Part 1: Builds an image recognition TensorFlow model by using the
pretrain ImageNet model. Using the TensorFlow for poets tutorial, I
show how to build analytics to load and score a neural network model.

• Part 2: Creates a PixieApp that operationalizes the analytics created in Part
1. This PixieApp scrapes the images from a web page URL provided by the
user, scores them against the TensorFlow model and then graphically shows
the results.

• Part 3: I show how to integrate the TensorBoard Graph Visualization
component directly in the Notebook, providing the ability to debug
the neural network model.

• Part 4: I show how to retrain the model with custom training data
and update the PixieApp to show the results from both models.

I decided to start the series of sample applications with deep learning image
recognition with TensorFlow because it's an important use case that is growing
in popularity and demonstrating how we can build the models and deploy them
in an application in the same Notebook represents a powerful statement toward
the theme of bridging the gap between data science and engineering.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

Preface

[xii]

Chapter 7, Analytics Study: NLP and Big Data with Twitter Sentiment Analysis, I talk
about doing natural language processing at Twitter scale. In this chapter, I show
how to use the IBM Watson Natural Language Understanding cloud-based service
to perform a sentiment analysis of the tweets. This is very important because it
reminds the reader that reusing managed hosted services rather building the
capability in-house can sometimes be an attractive option.

I start with an introduction to the Apache Spark parallel computing framework,
and then move on to building the application in four parts:

• Part 1: Acquiring the Twitter data with Spark Structured Streaming
• Part 2: Enriching the data with sentiment and most relevant entity extracted

from the text
• Part 3: Operationalizing the analytics by creating a real-time dashboard

PixieApp.
• Part 4: An optional section that re-implements the application with

Apache Kafka and IBM Streaming Designer hosted service to demonstrate
how to add greater scalability.

I think the reader, especially those who are not familiar with Apache Spark, will
enjoy this chapter as it is a little easier to follow than the previous one. The key
takeaway is how to build analytics that scale with Jupyter Notebooks that are
connected to a Spark cluster.

Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis and Forecasting,
I talk about time series analysis which is a very important field of data science
with lots of practical applications in the industry. I start the chapter with a deep
dive into the NumPy library which is foundational to so many other libraries, such
as pandas and SciPy. I then proceed with the building of the sample application,
which analyzes a time series comprised of historical stock data, in two parts:

• Part 1: Provides a statistical exploration of the time series including various
charts such as autocorrelation function (ACF) and partial autocorrelation
function (PACF)

• Part 2: Builds a predictive model based on the ARIMA algorithms using
the statsmodels Python library

Time series analysis is such an important field of data science that I consider to
be underrated. I personally learned a lot while writing this chapter. I certainly hope
that the reader will enjoy it as well and that reading it will spur an interest to know
more about this great topic. If that's the case, I also hope that you'll be convinced
to try out Jupyter and PixieDust on your next learnings about time series analysis.

Preface

[xiii]

Chapter 9, Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis,
I complete this series of industry use cases with the study of Graphs. I chose a
sample application that analyzes flight delays because the data is readily available,
and it's a good fit for using graph algorithms (well, for full disclosure, I may
also have chosen it because I had already written a similar application to predict
flight delays based on weather data where I used Apache Spark MLlib: https://
developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-
with-apache-spark-mllib-flightstats-and-weather-data).

I start with an introduction to graphs and associated graph algorithms including
several of the most popular graph algorithms such as Breadth First Search and
Depth First Search. I then proceed with an introduction to the networkx Python
library that is used to build the sample application.

The application is made of four parts:

• Part 1: Shows how to load the US domestic flight data into a graph.
• Part 2: Creates the USFlightsAnalysis PixieApp that lets the user select an

origin and destination airport and then display a Mapbox map of the shortest
path between the two airports according to a selected centrality

• Part 3: Adds data exploration to the PixieApp that includes various statistics
for each airline that flies out of the selected origin airport

• Part 4: Use the techniques learned in Chapter 8, Analytics Study: Prediction -
Financial Time Series Analysis and Forecasting to build an ARIMA model for
predicting flight delays

Graph theory is also another important and growing field of data science and
this chapter nicely rounds up the series, which I hope provides a diverse and
representative set of industry use cases. For readers who are particularly interested
in using graph algorithms with big data, I recommend looking at Apache Spark
GraphX (https://spark.apache.org/graphx) which implements many of the
graph algorithms using a very flexible API.

Chapter 10, The Future of Data Analysis and Where to Develop your Skills, I end the
book by giving a brief summary and explaining my take on Drew's Conway Venn
Diagram. Then I talk about the future of AI and data science and how companies
could prepare themselves for the AI and data science revolution. Also, I have listed
some great references for further learning.

Appendix, PixieApp Quick-Reference, is a developer quick-reference guide that provides
a summary of all the PixieApp attributes. This explains the various annotations,
custom HTML attributes, and methods with the help of appropriate examples.

But enough about the introduction: let's get started on our journey with the first
chapter titled Programming and Data Science – A New Toolset.

https://developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-with-apache-spark-mllib-flightstats-and-weather-data
https://developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-with-apache-spark-mllib-flightstats-and-weather-data
https://developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-with-apache-spark-mllib-flightstats-and-weather-data
https://spark.apache.org/graphx

Preface

[xiv]

To get the most out of this book
• Most of the software needed to follow the example is open source and

therefore free to download. Instructions are provided throughout the book,
starting with installing anaconda which includes the Jupyter Notebook server.

• In Chapter 7, Analytics Study: NLP and Big Data with Twitter Sentiment
Analysis, the sample application requires the use of IBM Watson cloud
services including NLU and Streams Designer. These services come
with a free tier plan, which is sufficient to follow the example along.

Download the example code files
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files emailed
directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Data-Analysis-with-Python. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/DataAnalysiswithPython_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Data-Analysis-with-Python
https://github.com/PacktPublishing/Data-Analysis-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ThoughtfulDataScience_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ThoughtfulDataScience_ColorImages.pdf

Preface

[xv]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "You can use the {%if ...%}...{%elif ...%}...{%else%}…
{%endif%} notation to conditionally output text."

A block of code is set as follows:

import pandas
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_df = pandas.read_csv(data_url)
building_df

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

import pandas
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_df = pandas.read_csv(data_url)
building_df

Any command-line input or output is written as follows:

jupyter notebook --generate-config

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
" The next step is to create a new route that takes the user value and returns the
results. This route will be invoked by the Submit Query button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[xvi]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com

[1]

Programming and Data
Science – A New Toolset

"Data is a precious thing and will last longer than the systems themselves."

– Tim Berners-Lee, inventor of the World Wide Web

(https://en.wikipedia.org/wiki/Tim_Berners-Lee)

In this introductory chapter, I'll start the conversation by attempting to answer a few
fundamental questions that will hopefully provide context and clarity for the rest of
this book:

• What is data science and why it's on the rise
• Why is data science here to stay
• Why do developers need to get involved in data science

Using my experience as a developer and recent data science practitioner, I'll then
discuss a concrete data pipeline project that I worked on and a data science strategy
that derived from this work, which is comprised of three pillars: data, services, and
tools. I'll end the chapter by introducing Jupyter Notebooks which are at the center
of the solution I'm proposing in this book.

What is data science
If you search the web for a definition of data science, you will certainly find
many. This reflects the reality that data science means different things to different
people. There is no real consensus on what data scientists exactly do and what
training they must have; it all depends on the task they're trying to accomplish,
for example, data collection and cleaning, data visualization, and so on.

https://en.wikipedia.org/wiki/Tim_Berners-Lee

Programming and Data Science – A New Toolset

[2]

For now, I'll try to use a universal and, hopefully, consensual definition: data science
refers to the activity of analyzing a large amount of data in order to extract knowledge and
insight leading to actionable decisions. It's still pretty vague though; one can ask what
kind of knowledge, insight, and actionable decision are we talking about?

To orient the conversation, let's reduce the scope to three fields of data science:

• Descriptive analytics: Data science is associated with information retrieval
and data collection techniques with the goal of reconstituting past events
to identify patterns and find insights that help understand what happened
and what caused it to happen. An example of this is looking at sales figures
and demographics by region to categorize customer preferences. This part
requires being familiar with statistics and data visualization techniques.

• Predictive analytics: Data science is a way to predict the likelihood that
some events are currently happening or will happen in the future. In this
scenario, the data scientist looks at past data to find explanatory variables
and build statistical models that can be applied to other data points for which
we're trying to predict the outcome, for example, predicting the likelihood
that a credit card transaction is fraudulent in real-time. This part is usually
associated with the field of machine learning.

• Prescriptive analytics: In this scenario, data science is seen as a way to make
better decisions, or perhaps I should say data-driven decisions. The idea is
to look at multiple options and using simulation techniques, quantify, and
maximize the outcome, for example, optimizing the supply chain by looking
at minimizing operating costs.

In essence, descriptive data science answers the question of what (does the
data tells me), predictive data science answers the question of why (is the data
behaving a certain way), and prescriptive data science answers the questions
of how (do we optimize the data toward a specific goal).

Is data science here to stay?
Let's get straight to the point from the start: I strongly think that the answer is yes.

However, that was not always the case. A few years back, when I first started
hearing about data science as a concept, I initially thought that it was yet another
marketing buzzword to describe an activity that already existed in the industry:
Business Intelligence (BI). As a developer and architect working mostly on solving
complex system integration problems, it was easy to convince myself that I didn't
need to get directly involved in data science projects, even though it was obvious
that their numbers were on the rise, the reason being that developers traditionally
deal with data pipelines as black boxes that are accessible with well-defined APIs.

Chapter 1

[3]

However, in the last decade, we've seen exponential growth in data science interest
both in academia and in the industry, to the point it became clear that this model
would not be sustainable.

As data analytics are playing a bigger and bigger role in a company's operational
processes, the developer's role was expanded to get closer to the algorithms and
build the infrastructure that would run them in production. Another piece of
evidence that data science has become the new gold rush is the extraordinary growth
of data scientist jobs, which have been ranked number one for 2 years in a row on
Glassdoor (https://www.prnewswire.com/news-releases/glassdoor-reveals-
the-50-best-jobs-in-america-for-2017-300395188.html) and are consistently
posted the most by employers on Indeed. Headhunters are also on the prowl on
LinkedIn and other social media platforms, sending tons of recruiting messages
to whoever has a profile showing any data science skills.

One of the main reasons behind all the investment being made into these
new technologies is the hope that it will yield major improvements and greater
efficiencies in the business. However, even though it is a growing field, data
science in the enterprise today is still confined to experimentation instead of being
a core activity as one would expect given all the hype. This has lead a lot of people
to wonder if data science is a passing fad that will eventually subside and yet
another technology bubble that will eventually pop, leaving a lot of people behind.

These are all good points, but I quickly realized that it was more than just
a passing fad; more and more of the projects I was leading included the integration
of data analytics into the core product features. Finally, it is when the IBM Watson
Question Answering system won at a game of Jeopardy! against two experienced
champions, that I became convinced that data science, along with the cloud, big data,
and Artificial Intelligence (AI), was here to stay and would eventually change the
way we think about computer science.

Why is data science on the rise?
There are multiple factors involved in the meteoric rise of data science.

First, the amount of data being collected keeps growing at an exponential rate.
According to recent market research from the IBM Marketing Cloud (https://www-
01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345GBEN) something
like 2.5 quintillion bytes are created every day (to give you an idea of how big that
is, that's 2.5 billion of billion bytes), but yet only a tiny fraction of this data is ever
analyzed, leaving tons of missed opportunities on the table.

https://www.prnewswire.com/news-releases/glassdoor-reveals-the-50-best-jobs-in-america-for-2017-300395188.html
https://www.prnewswire.com/news-releases/glassdoor-reveals-the-50-best-jobs-in-america-for-2017-300395188.html
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345GBEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345GBEN

Programming and Data Science – A New Toolset

[4]

Second, we're in the midst of a cognitive revolution that started a few years ago;
almost every industry is jumping on the AI bandwagon, which includes natural
language processing (NLP) and machine learning. Even though these fields existed
for a long time, they have recently enjoyed the renewed attention to the point that
they are now among the most popular courses in colleges as well as getting the lion's
share of open source activities. It is clear that, if they are to survive, companies need
to become more agile, move faster, and transform into digital businesses, and as the
time available for decision-making is shrinking to near real-time, they must become
fully data-driven. If you also include the fact that AI algorithms need high-quality
data (and a lot of it) to work properly, we can start to understand the critical role
played by data scientists.

Third, with advances in cloud technologies and the development of Platform
as a Service (PaaS), access to massive compute engines and storage has never
been easier or cheaper. Running big data workloads, once the purview of large
corporations, is now available to smaller organizations or any individuals with
a credit card; this, in turn, is fueling the growth of innovation across the board.

For these reasons, I have no doubt that, similar to the AI revolution, data science
is here to stay and that its growth will continue for a long time. But we also can't
ignore the fact that data science hasn't yet realized its full potential and produced
the expected results, in particular helping companies in their transformation into
data-driven organizations. Most often, the challenge is achieving that next step,
which is to transform data science and analytics into a core business activity
that ultimately enables clear-sighted, intelligent, bet-the-business decisions.

What does that have to do with
developers?
This is a very important question that we'll spend a lot of time developing in the
coming chapters. Let me start by looking back at my professional journey; I spent
most of my career as a developer, dating back over 20 years ago, working on many
aspects of computer science.

Chapter 1

[5]

I started by building various tools that helped with software internationalization
by automating the process of translating the user interface into multiple languages.
I then worked on a LotusScript (scripting language for Lotus Notes) editor for
Eclipse that would interface directly with the underlying compiler. This editor
provided first-class development features, such as content assist, which provides
suggestions, real-time syntax error reporting, and so on. I then spent a few years
building middleware components based on Java EE and OSGI (https://www.osgi.
org) for the Lotus Domino server. During that time, I led a team that modernized the
Lotus Domino programming model by bringing it to the latest technologies available
at the time. I was comfortable with all aspects of software development, frontend,
middleware, backend data layer, tooling, and so on; I was what some would call
a full-stack developer.

That was until I saw a demo of the IBM Watson Question Answering system that
beat longtime champions Brad Rutter and Ken Jennings at a game of Jeopardy! in
2011. Wow! This was groundbreaking, a computer program capable of answering
natural language questions. I was very intrigued and, after doing some research,
meeting with a few researchers involved in the project, and learning about the
techniques used to build this system, such as NLP, machine learning, and general
data science, I realized how much potential this technology would have if applied
to other parts of the business.

A few months later, I got an opportunity to join the newly formed Watson Division
at IBM, leading a tooling team with the mission to build data ingestion and accuracy
analysis capabilities for the Watson system. One of our most important requirements
was to make sure the tools were easy to use by our customers, which is why, in
retrospect, giving this responsibility to a team of developers was the right move.
From my perspective, stepping into that job was both challenging and enriching.
I was leaving a familiar world where I excelled at designing architectures based
on well-known patterns and implementing frontend, middleware, or backend
software components to a world focused mostly on working with a large amount
of data; acquiring it, cleansing it, analyzing it, visualizing it, and building models.
I spent the first six months drinking from the firehose, reading, and learning about
NLP, machine learning, information retrieval, and statistical data science, at least
enough to be able to work on the capabilities I was building.

https://www.osgi.org
https://www.osgi.org

Programming and Data Science – A New Toolset

[6]

It was at that time, interacting with the research team to bring these algorithms
to market, that I realized how important developers and data scientists needed to
collaborate better. The traditional approach of having data scientists solve complex
data problems in isolation and then throw the results "over the wall" to developers
for them to operationalize them is not sustainable and doesn't scale, considering that
the amount of data to process keeps growing exponentially and the required time
to market keeps shrinking.

Instead, their role needs to be shifting toward working as one team, which means
that data scientists must work and think like software developers and vice versa.
Indeed, this looks very good on paper: on the one hand, data scientists will benefit
from tried-and-true software development methodologies such as Agile—with
its rapid iterations and frequent feedback approach—but also from a rigorous
software development life cycle that brings compliance with enterprise needs, such
as security, code reviews, source control, and so on. On the other hand, developers
will start thinking about data in a new way: as analytics meant to discover insights
instead of just a persistence layer with queries and CRUD (short for, create, read,
update, delete) APIs.

Putting these concepts into practice
After 4 years as the Watson Core Tooling lead architect building self-service
tooling for the Watson Question Answering system, I joined the Developer
Advocacy team of the Watson Data Platform organization which has the expanded
mission of creating a platform that brings the portfolio of data and cognitive services
to the IBM public cloud. Our mission was rather simple: win the hearts and minds
of developers and help them be successful with their data and AI projects.

The work had multiple dimensions: education, evangelism, and activism. The
first two are pretty straightforward, but the concept of activism is relevant to this
discussion and worth explaining in more details. As the name implies, activism
is about bringing change where change is needed. For our team of 15 developer
advocates, this meant walking in the shoes of developers as they try to work with
data—whether they're only getting started or already operationalizing advanced
algorithms—feel their pain and identify the gaps that should be addressed.
To that end, we built and made open source numerous sample data pipelines
with real-life use cases.

Chapter 1

[7]

At a minimum, each of these projects needed to satisfy three requirements:

• The raw data used as input must be publicly available
• Provide clear instructions for deploying the data pipeline on the cloud

in a reasonable amount of time
• Developers should be able to use the project as a starting point for similar

scenarios, that is, the code must be highly customizable and reusable

The experience and insights we gained from these exercises were invaluable:

• Understanding which data science tools are best suited for each task
• Best practice frameworks and languages
• Best practice architectures for deploying and operationalizing analytics

The metrics that guided our choices were multiple: accuracy, scalability, code
reusability, but most importantly, improved collaboration between data scientists
and developers.

Deep diving into a concrete example
Early on, we wanted to build a data pipeline that extracted insights from Twitter
by doing sentiment analysis of tweets containing specific hashtags and to deploy
the results to a real-time dashboard. This application was a perfect starting point
for us, because the data science analytics were not too complex, and the application
covered many aspects of a real-life scenario:

• High volume, high throughput streaming data
• Data enrichment with sentiment analysis NLP
• Basic data aggregation
• Data visualization
• Deployment into a real-time dashboard

Programming and Data Science – A New Toolset

[8]

To try things out, the first implementation was a simple Python application that
used the tweepy library (the official Twitter library for Python: https://pypi.
python.org/pypi/tweepy) to connect to Twitter and get a stream of tweets and
textblob (the simple Python library for basic NLP: https://pypi.python.org/
pypi/textblob) for sentiment analysis enrichment.

The results were then saved into a JSON file for analysis. This prototype was a great
way to getting things started and experiment quickly, but after a few iterations we
quickly realized that we needed to get serious and build an architecture that satisfied
our enterprise requirements.

Data pipeline blueprint
At a high level, data pipelines can be described using the following generic blueprint:

Data pipeline workflow

The main objective of a data pipeline is to operationalize (that is, provide direct
business value) the data science analytics outcome in a scalable, repeatable
process, and with a high degree of automation. Examples of analytics could be
a recommendation engine to entice consumers to buy more products, for example,
the Amazon recommended list, or a dashboard showing Key Performance
Indicators (KPIs) that can help a CEO make future decisions for the company.

https://pypi.python.org/pypi/tweepy
https://pypi.python.org/pypi/tweepy
https://pypi.python.org/pypi/textblob
https://pypi.python.org/pypi/textblob

Chapter 1

[9]

There are multiple persons involved in the building of a data pipeline:

• Data engineers: They are responsible for designing and operating
information systems. In other words, data engineers are responsible for
interfacing with data sources to acquire the data in its raw form and then
massage it (some call this data wrangling) until it is ready to be analyzed.
In the Amazon recommender system example, they would implement
a streaming processing pipeline that captures and aggregates specific
consumer transaction events from the e-commerce system of records
and stores them into a data warehouse.

• Data scientists: They analyze the data and build the analytics that extract
insight. In our Amazon recommender system example, they could use a
Jupyter Notebook that connects to the data warehouse to load the dataset
and build a recommendation engine using, for example, collaborative
filtering algorithm (https://en.wikipedia.org/wiki/Collaborative_
filtering).

• Developers: They are responsible for operationalizing the analytics into an
application targeted at line of business users (business analysts, C-Suite, end
users, and so on). Again, in the Amazon recommender system, the developer
will present the list of recommended products after the user has completed
a purchase or via a periodic email.

• Line of business users: This encompasses all users that consume the
output of data science analytics, for example, business analysts analyzing
dashboards to monitor the health of a business or the end user using
an application that provides a recommendation as to what to buy next.

In real-life, it is not uncommon that the same person plays more than one
of the roles described here; this may mean that one person has multiple,
different needs when interacting with a data pipeline.

As the preceding diagram suggests, building a data science pipeline is iterative
in nature and adheres to a well-defined process:

1. Acquire Data: This step includes acquiring the data in its raw form from
a variety of sources: structured (RDBMS, system of records, and so on)
or unstructured (web pages, reports, and so on):

 ° Data cleansing: Check for integrity, fill missing data, fix incorrect
data, and data munging

 ° Data prep: Enrich, detect/remove outliers, and apply business rules

https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering

Programming and Data Science – A New Toolset

[10]

2. Analyze: This step combines descriptive (understand the data) and
prescriptive (build models) activities:

 ° Explore: Find statistical properties, for example, central tendency,
standard deviation, distribution, and variable identification, such
as univariate and bivariate analysis, the correlation between
variables, and so on.

 ° Visualization: This step is extremely important to properly analyze
the data and form hypotheses. Visualization tools should provide
a reasonable level of interactivity to facilitate understanding of the
data.

 ° Build model: Apply inferential statistics to form hypotheses, such
as selecting features for the models. This step usually requires expert
domain knowledge and is subject to a lot of interpretation.

3. Deploy: Operationalize the output of the analysis phase:
 ° Communicate: Generate reports and dashboards that communicate

the analytic output clearly for consumption by the line of business
user (C-Suite, business analyst, and so on)

 ° Discover: Set a business outcome objective that focuses on
discovering new insights and business opportunities that can
lead to a new source of revenue

 ° Implement: Create applications for end-users

4. Test: This activity should really be included in every step, but here
we're talking about creating a feedback loop from field usage:

 ° Create metrics that measure the accuracy of the models
 ° Optimize the models, for example, get more data, find new features,

and so on

What kind of skills are required
to become a data scientist?
In the industry, the reality is that data science is so new that companies do not
yet have a well-defined career path for it. How do you get hired for a data scientist
position? How many years of experience is required? What skills do you need
to bring to the table? Math, statistics, machine learning, information technology,
computer science, and what else?

Chapter 1

[11]

Well, the answer is probably a little bit of everything plus one more critical skill:
domain-specific expertise.

There is a debate going on around whether applying generic data science techniques
to any dataset without an intimate understanding of its meaning, leads to the desired
business outcome. Many companies are leaning toward making sure data scientists
have substantial amount of domain expertise, the rationale being that without it
you may unknowingly introduce bias at any steps, such as when filling the gaps
in the data cleansing phase or during the feature selection process, and ultimately
build models that may well fit a given dataset but still end up being worthless.
Imagine a data scientist working with no chemistry background, studying unwanted
molecule interactions for a pharmaceutical company developing new drugs. This is
also probably why we're seeing a multiplication of statistics courses specialized in
a particular domain, such as biostatistics for biology, or supply chain analytics for
analyzing operation management related to supply chains, and so on.

To summarize, a data scientist should be in theory somewhat proficient in the
following areas:

• Data engineering / information retrieval
• Computer science
• Math and statistics
• Machine learning
• Data visualization
• Business intelligence
• Domain-specific expertise

If you are thinking about acquiring these skills but don't have the time
to attend traditional classes, I strongly recommend using online courses.
I particularly recommend this course: https://www.coursera.org/:
https://www.coursera.org/learn/data-science-course.

https://www.coursera.org/
https://www.coursera.org/learn/data-science-course

Programming and Data Science – A New Toolset

[12]

The classic Drew's Conway Venn Diagram provides an excellent visualization
of what is data science and why data scientists are a bit of a unicorn:

Drew's Conway Data Science Venn Diagram

By now, I hope it becomes pretty clear that the perfect data scientist that fits the
preceding description is more an exception than the norm and that, most often,
the role involves multiple personas. Yes, that's right, the point I'm trying to make
is that data science is a team sport and this idea will be a recurring theme throughout
this book.

IBM Watson DeepQA
One project that exemplifies the idea that data science is a team sport is the
IBM DeepQA research project which originated as an IBM grand challenge
to build an artificial intelligence system capable of answering natural language
questions against predetermined domain knowledge. The Question Answering
(QA) system should be good enough to be able to compete with human contestants
at the Jeopardy! popular television game show.

Chapter 1

[13]

As is widely known, this system dubbed IBM Watson went on to win the
competition in 2011 against two of the most seasoned Jeopardy! champions:
Ken Jennings and Brad Rutter. The following photo was taken from the actual
game that aired on February 2011:

IBM Watson battling Ken Jennings and Brad Rutter at Jeopardy!

Source: https://upload.wikimedia.org/wikipedia/en/9/9b/Watson_Jeopardy.jpg

It was during the time that I was interacting with the research team that built
the IBM Watson QA computer system that I got to take a closer look at the
DeepQA project architecture and realized first-hand how many data science fields
were actually put to use.

The following diagram depicts a high-level architecture of the DeepQA data
pipeline:

Watson DeepQA architecture diagram

Source: https://researcher.watson.ibm.com/researcher/files/us-mike.barborak/DeepQA-Arch.PNG

Programming and Data Science – A New Toolset

[14]

As the preceding diagram shows, the data pipeline for answering a question
is composed of the following high-level steps:

1. Question & Topic Analysis (natural language processing): This step
uses a deep parsing component which detects dependency and hierarchy
between the words that compose the question. The goal is to have a deeper
understanding of the question and extracts fundamental properties, such
as the following:

 ° Focus: What is the question about?
 ° Lexical Answer Type (LAT): What is the type of the expected

answer, for example, a person, a place, and so on. This information
is very important during the scoring of candidate answers as
it provides an early filter for answers that don't match the LAT.

 ° Named-entity resolution: This resolves an entity into a standardized
name, for example, "Big Apple" to "New York".

 ° Anaphora resolution: This links pronouns to previous terms in the
question, for example, in the sentence "On Sept. 1, 1715 Louis XIV
died in this city, site of a fabulous palace he built," the pronoun
"he" refers to Louis XIV.

 ° Relations detection: This detects relations within the question,
for example, "She divorced Joe DiMaggio in 1954" where the
relation is "Joe DiMaggio Married X." These type of relations
(Subject->Predicate->Object) can be used to query triple stores
and yield high-quality candidate answers.

 ° Question class: This maps the question to one of the predefined
types used in Jeopardy!, for example, factoid, multiple-choice,
puzzle, and so on.

Chapter 1

[15]

2. Primary search and Hypothesis Generation (information retrieval): This
step relies heavily on the results of the question analysis step to assemble
a set of queries adapted to the different answer sources available. Some
example of answer sources include a variety of full-text search engines,
such as Indri (https://www.lemurproject.org/indri.php) and Apache
Lucene/Solr (http://lucene.apache.org/solr), document-oriented and
title-oriented search (Wikipedia), triple stores, and so on. The search results
are then used to generate candidate answers. For example, title-oriented
results will be directly used as candidates while document searches will
require more detailed analysis of the passages (again using NLP techniques)
to extract possible candidate answers.

3. Hypothesis and Evidence scoring (NLP and information retrieval): For each
candidate answer, another round of search is performed to find additional
supporting evidence using different scoring techniques. This step also acts
as a prescreening test where some of the candidate answers are eliminated,
such as the answers that do not match the LAT computed from step 1. The
output of this step is a set of machine learning features corresponding to the
supporting evidence found. These features will be used as input to a set of
machine learning models for scoring the candidate answers.

4. Final merging and scoring (machine learning): During this final step,
the system identifies variants of the same answer and merges them together.
It also uses machine learning models to select the best answers ranked by
their respective scores, using the features generated in step 3. These machine
learning models have been trained on a set of representative questions with
the correct answers against a corpus of documents that has been
pre-ingested.

As we continue the discussion on how data science and AI are changing the
field of computer science, I thought it was important to look at the state of the art.
IBM Watson is one of these flagship projects that has paved the way to more advances
we've seen since it beats Ken Jennings and Brad Rutter at the game of Jeopardy!.

Back to our sentiment analysis of Twitter
hashtags project
The quick data pipeline prototype we built gave us a good understanding of
the data, but then we needed to design a more robust architecture and make
our application enterprise ready. Our primary goal was still to gain experience
in building data analytics, and not spend too much time on the data engineering
part. This is why we tried to leverage open source tools and frameworks as much
as possible:

https://www.lemurproject.org/indri.php
http://lucene.apache.org/solr

Programming and Data Science – A New Toolset

[16]

• Apache Kafka (https://kafka.apache.org): This is a scalable streaming
platform for processing the high volume of tweets in a reliable and fault-
tolerant way.

• Apache Spark (https://spark.apache.org): This is an in-memory
cluster-computing framework. Spark provides a programming interface
that abstracts a complexity of parallel computing.

• Jupyter Notebooks (http://jupyter.org): These interactive web-
based documents (Notebooks) let users remotely connect to a computing
environment (Kernel) to create advanced data analytics. Jupyter Kernels
support a variety of programming languages (Python, R, Java/Scala, and
so on) as well as multiple computing frameworks (Apache Spark, Hadoop,
and so on).

For the sentiment analysis part, we decided to replace the code we wrote using the
textblob Python library with the Watson Tone Analyzer service (https://www.ibm.
com/watson/services/tone-analyzer), which is a cloud-based rest service that
provides advanced sentiment analysis including detection of emotional, language,
and social tone. Even though the Tone Analyzer is not open source, a free version
that can be used for development and trial is available on IBM Cloud (https://www.
ibm.com/cloud).

https://kafka.apache.org
https://spark.apache.org
http://jupyter.org
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/cloud
https://www.ibm.com/cloud

Chapter 1

[17]

Our architecture now looks like this:

Twitter sentiment analysis data pipeline architecture

In the preceding diagram, we can break down the workflow in to the following steps:

1. Produce a stream of tweets and publish them into a Kafka topic, which
can be thought of as a channel that groups events together. In turn, a receiver
component can subscribe to this topic/channel to consume these events.

2. Enrich the tweets with emotional, language, and social tone scores: use Spark
Streaming to subscribe to Kafka topics from component 1 and send the text to
the Watson Tone Analyzer service. The resulting tone scores are added to the
data for further downstream processing. This component was implemented
using Scala and, for convenience, was run using a Jupyter Scala Notebook.

3. Data analysis and exploration: For this part, we decided to go with a Python
Notebook simply because Python offer a more attractive ecosystem of
libraries, especially around data visualizations.

4. Publish results back to Kafka.
5. Implement a real-time dashboard as a Node.js application.

Programming and Data Science – A New Toolset

[18]

With a team of three people, it took us about 8 weeks to get the dashboard working
with real-time Twitter sentiment data. There are multiple reasons for this seemingly
long time:

• Some of the frameworks and services, such as Kafka and Spark Streaming,
were new to us and we had to learn how to use their APIs.

• The dashboard frontend was built as a standalone Node.js application
using the Mozaïk framework (https://github.com/plouc/mozaik),
which made it easy to build powerful live dashboards. However, we
found a few limitations with the code, which forced us to dive into the
implementation and write patches, hence adding delays to the overall
schedule.

The results are shown in the following screenshot:

Twitter sentiment analysis real-time dashboard

https://github.com/plouc/mozaik

Chapter 1

[19]

Lessons learned from building our
first enterprise-ready data pipeline
Leveraging open source frameworks, libraries, and tools definitely helped us be
more efficient in implementing our data pipeline. For example, Kafka and Spark
were pretty straightforward to deploy and easy to use, and when we were stuck,
we could always rely on the developer community for help by using, for example,
question and answer sites, such as https://stackoverflow.com.

Using a cloud-based managed service for the sentiment analysis step, such as the
IBM Watson Tone Analyzer (https://www.ibm.com/watson/services/tone-
analyzer) was another positive. It allowed us to abstract out the complexity of
training and deploying a model, making the whole step more reliable and certainly
more accurate than if we had implemented it ourselves.

It was also super easy to integrate as we only needed to make a REST request
(also known as an HTTP request, see https://en.wikipedia.org/wiki/
Representational_state_transfer for more information on REST architecture)
to get our answers. Most of the modern web services now conform to the REST
architecture, however, we still need to know the specification for each of the APIs,
which can take a long time to get right. This step is usually made simpler by using an
SDK library, which is often provided for free and in most popular languages, such as
Python, R, Java, and Node.js. SDK libraries provide higher level programmatic access
to the service by abstracting out the code that generates the REST requests. The SDK
would typically provide a class to represent the service, where each method would
encapsulate a REST API while taking care of user authentication and other headers.

On the tooling side, we were very impressed with Jupyter Notebooks, which
provided excellent features, such as collaboration and full interactivity (we'll cover
Notebooks in more detail later on).

Not everything was smooth though, as we struggled in a few key areas:

• Which programming language to choose for some of the key tasks, such as
data enrichment and data analysis. We ended up using Scala and Python,
even though there was little experience on the team, mostly because they
are very popular among data scientists and also because we wanted to
learn them.

https://stackoverflow.com
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

Programming and Data Science – A New Toolset

[20]

• Creating visualizations for data exploration was taking too much time.
Writing a simple chart with a visualization library, such as Matplotlib
or Bokeh required writing too much code. This, in turn, slowed down
our need for fast experimentation.

• Operationalizing the analytics into a real-time dashboard was way too
hard to be scalable. As mentioned before, we needed to write a full-fledged
standalone Node.js application that consumes data from Kafka and needed to
be deployed as a cloud-foundry application (https://www.cloudfoundry.
org) on the IBM Cloud. Understandably, this task required quite a long time
to complete the first time, but we also found that it was difficult to update
as well. Changes in the analytics that write data to Kafka needed to be
synchronized with the changes on the dashboard application as well.

Data science strategy
If data science is to continue to grow and graduate into a core business activity,
companies must find a way to scale it across all layers of the organization and
overcome all the difficult challenges we discussed earlier. To get there, we identified
three important pillars that architects planning a data science strategy should focus
on, namely, data, services, and tools:

Three pillars of data science at scale

https://www.cloudfoundry.org
https://www.cloudfoundry.org

Chapter 1

[21]

• Data is your most valuable resource: You need a proper data strategy to
make sure data scientists have easy access to the curated contents they need.
Properly classifying the data, set appropriate governance policies, and make
the metadata searchable will reduce the time data scientists spend acquiring
the data and then asking for permission to use it. This will not only increase
their productivity, it will also improve their job satisfaction as they will
spend more time working on doing actual data science.
Setting a data strategy that enables data scientists to easily access high-quality data
that's relevant to them increases productivity and morale and ultimately leads to
a higher rate of successful outcomes.

• Services: Every architect planning for data science should be thinking
about a service-oriented architecture (SOA). Contrary to traditional
monolithic applications where all the features are bundled together into
a single deployment, a service-oriented system breaks down functionalities
into services which are designed to do a few things but to do it very well,
with high performance and scalability. These systems are then deployed
and maintained independently from each other giving scalability and
reliability to the whole application infrastructure. For example, you could
have a service that runs algorithms to create a deep learning model, another
one would persist the models and let applications run it to make predictions
on customer data, and so on.
The advantages are obvious: high reusability, easier maintenance, reduced
time to market, scalability, and much more. In addition, this approach would
fit nicely into a cloud strategy giving you a growth path as the size of your
workload increases beyond existing capacities. You also want to prioritize
open source technologies and standardize on open protocols as much as
possible.
Breaking processes into smaller functions infuses scalability, reliability,
and repeatability into the system.

Programming and Data Science – A New Toolset

[22]

• Tools do matter! Without the proper tools, some tasks become extremely
difficult to complete (at least that's the rationale I use to explain why I fail
at fixing stuff around the house). However, you also want to keep the tools
simple, standardized, and reasonably integrated so they can be used by less
skilled users (even if I was given the right tool, I'm not sure I would have
been able to complete the house fixing task unless it's simple enough to use).
Once you decrease the learning curve to use these tools, non-data scientist
users will feel more comfortable using them.

Making the tools simpler to use contributes to breaking the silos and increases
collaboration between data science, engineering, and business teams.

Jupyter Notebooks at the center
of our strategy
In essence, Notebooks are web documents composed of editable cells that let you
run commands interactively against a backend engine. As their name indicates, we
can think of them as the digital version of a paper scratch pad used to write notes
and results about experiments. The concept is very powerful and simple at the same
time: a user enters code in the language of his/her choice (most implementations
of Notebooks support multiple languages, such as Python, Scala, R, and many
more), runs the cell and gets the results interactively in an output area below the cell
that becomes part of the document. Results could be of any type: text, HTML, and
images, which is great for graphing data. It's like working with a traditional REPL
(short for, Read-Eval-Print-Loop) program on steroids since the Notebook can be
connected to powerful compute engines (such as Apache Spark (https://spark.
apache.org) or Python Dask (https://dask.pydata.org) clusters) allowing
you to experiment with big data if needed.

Within Notebooks, any classes, functions, or variables created in a cell are visible
in the cells below, enabling you to write complex analytics piece by piece, iteratively
testing your hypotheses and fixing problems before moving on to the next phase.
In addition, users can also write rich text using the popular Markdown language
or mathematical expressions using LaTeX (https://www.latex-project.org/),
to describe their experiments for others to read.

https://spark.apache.org
https://spark.apache.org
https://dask.pydata.org
https://www.latex-project.org/

Chapter 1

[23]

The following figure shows parts of a sample Jupyter Notebook with a Markdown
cell explaining what the experiment is about, a code cell written in Python to create
3D plots, and the actual 3D charts results:

Sample Jupyter Notebook

Why are Notebooks so popular?
In the last few years, Notebooks have seen a meteoric growth in popularity as
the tool of choice for data science-related activities. There are multiple reasons that
can explain it, but I believe the main one is its versatility, making it an indispensable
tool not just for data scientists but also for most of the personas involved in building
data pipelines, including business analysts and developers.

For data scientists, Notebooks are ideal for iterative experimentation because
it enables them to quickly load, explore, and visualize data. Notebooks are also
an excellent collaboration tool; they can be exported as JSON files and easily shared
across the team, allowing experiments to be identically repeated and debugged when
needed. In addition, because Notebooks are also web applications, they can be easily
integrated into a multi-users cloud-based environment providing an even better
collaborative experience.

Programming and Data Science – A New Toolset

[24]

These environments can also provide on-demand access to large compute resources
by connecting the Notebooks with clusters of machines using frameworks such as
Apache Spark. Demand for these cloud-based Notebook servers is rapidly growing
and as a result, we're seeing an increasing number of SaaS (short for, Software
as a Service) solutions, both commercial with, for example, IBM Data Science
Experience (https://datascience.ibm.com) or DataBricks (https://databricks.
com/try-databricks) and open source with JupyterHub (https://jupyterhub.
readthedocs.io/en/latest).

For business analysts, Notebooks can be used as presentation tools that in most
cases provide enough capabilities with its Markdown support to replace traditional
PowerPoints. Charts and tables generated can be directly used to effectively
communicate results of complex analytics; there's no need to copy and paste
anymore, plus changes in the algorithms are automatically reflected in the final
presentation. For example, some Notebook implementations, such as Jupyter,
provide an automated conversion of the cell layout to the slideshow, making
the whole experience even more seamless.

For reference, here are the steps to produce these slides in Jupyter
Notebooks:

• Using the View | Cell Toolbar | Slideshow, first annotate
each cell by choosing between Slide, Sub-Slide, Fragment,
Skip, or Notes.

• Use the nbconvert jupyter command to convert the Notebook
into a Reveal.js-powered HTML slideshow:

 jupyter nbconvert <pathtonotebook.ipynb> --to slides

• Optionally, you can fire up a web application server to access
these slides online:

 jupyter nbconvert <pathtonotebook.ipynb> --to
slides –post serve

For developers, the situation is much less clear-cut. On the one hand, developers love
REPL programming, and Notebooks offer all the advantages of an interactive REPL
with the added bonuses that it can be connected to a remote backend. By virtue
of running in a browser, results can contain graphics and, since they can be saved,
all or part of the Notebook can be reused in different scenarios. So, for a developer,
provided that your language of choice is available, Notebooks offer a great way
to try and test things out, such as fine-tuning an algorithm or integrating a new API.
On the other hand, there is little Notebook adoption by developers for data science
activities that can complement the work being done by data scientists, even though
they are ultimately responsible for operationalizing the analytics into applications
that address customer needs.

https://datascience.ibm.com
https://databricks.com/try-databricks
https://databricks.com/try-databricks
https://jupyterhub.readthedocs.io/en/latest
https://jupyterhub.readthedocs.io/en/latest

Chapter 1

[25]

To improve the software development life cycle and reduce time to value, they
need to start using the same tools, programming languages, and frameworks as
data scientists, including Python with its rich ecosystem of libraries and Notebooks,
which have become such an important data science tool. Granted that developers
have to meet the data scientist in the middle and get up to speed on the theory and
concept behind data science. Based on my experience, I highly recommend using
MOOCs (short for, Massive Open Online Courses) such as Coursera (https://
www.coursera.org) or EdX (http://www.edx.org), which provide a wide variety
of courses for every level.

However, having used Notebooks quite extensively, it is clear that, while being very
powerful, they are primarily designed for data scientists, leaving developers with
a steep learning curve. They also lack application development capabilities that are
so critical for developers. As we've seen in the Sentiment analysis of Twitter Hashtags
project, building an application or a dashboard based on the analytics created in a
Notebook can be very difficult and require an architecture that can be difficult to
implement and that has a heavy footprint on the infrastructure.

It is to address these gaps that I decided to create the PixieDust (https://github.
com/ibm-watson-data-lab/pixiedust) library and open source it. As we'll see
in the next chapters, the main goal of PixieDust is to lower the cost of entry for new
users (whether it be data scientists or developers) by providing simple APIs for
loading and visualizing data. PixieDust also provides a developer framework with
APIs for easily building applications, tools, and dashboards that can run directly
in the Notebook and also be deployed as web applications.

Summary
In this chapter, I gave my perspective on data science as a developer, discussing the
reasons why I think that data science along with AI and Cloud has the potential to
define the next era of computing. I also discussed the many problems that must be
addressed before it can fully realize its potential. While this book doesn't pretend
to provide a magic recipe that solves all these problems, it does try to answer the
difficult but critical question of democratizing data science and more specifically
bridging the gap between data scientists and developers.

https://www.coursera.org
https://www.coursera.org
http://www.edx.org
https://github.com/ibm-watson-data-lab/pixiedust
https://github.com/ibm-watson-data-lab/pixiedust

Programming and Data Science – A New Toolset

[26]

In the next few chapters, we'll dive into the PixieDust open source library and learn
how it can help Jupyter Notebooks users be more efficient when working with
data. We'll also deep dive on the PixieApp application development framework
that enables developers to leverage the analytics implemented in the Notebook
to build application and dashboards.

In the remaining chapters, we will deep dive into many examples that show how
data scientists and developers can collaborate effectively to build end-to-end data
pipelines, iterate on the analytics, and deploy them to end users at a fraction of the
time. The sample applications will cover many industry use-cases, such as image
recognition, social media, and financial data analysis which include data science
use cases like descriptive analytics, machine learning, natural language processing,
and streaming data.

We will not discuss deeply the theory behind all the algorithms covered in the
sample applications (which is beyond the scope of this book and would take
more than one book to cover), but we will instead emphasize how to leverage
the open source ecosystem to rapidly complete the task at hand (model building,
visualization, and so on) and operationalize the results into applications and
dashboards.

The provided sample applications are written mostly in Python
and come with complete source code. The code has been extensively
tested and is ready to be re-used and customized in your own projects.

[27]

Python and Jupyter
Notebooks to Power your

Data Analysis
"The Best Line of Code is the One You Didn't Have to Write!"

– Unknown

In the previous chapter, I gave a developer's perspective on data science based
on real experience and discussed three strategic pillars required for successful
deployment with in the enterprise: data, services, and tools. I also discussed the
idea that data science is not only the sole purview of data scientists, but rather
a team sport with a special role for developers.

In this chapter, I'll introduce a solution—based on Jupyter Notebooks, Python,
and the PixieDust open source library—that focuses on three simple goals:

• Democratizing data science by lowering the barrier to entry for non-data
scientists

• Increasing collaboration between developers and data scientists
• Making it easier to operationalize data science analytics

This solution only focuses on the tools pillar and not on data and
services, which should be implemented independently, although we'll cover
some of it when discussing the sample applications starting in Chapter 6,
Analytics Study: AI and Image Recognition with TensorFlow.

Python and Jupyter Notebooks to Power your Data Analysis

[28]

Why choose Python?
Like many developers, when it came to building data-intensive projects, using
Python wasn't my first choice. To be honest, having worked with Java for so many
years, Scala seemed much more attractive to me at first, even though the learning
curve was pretty steep. Scala is a very powerful language that elegantly combines
object-oriented and functional programming, which is sorely lacking in Java
(at least until Java 8 started to introduce lambda expressions).

Scala also provides a very concise syntax that translates into fewer lines of code,
higher productivity, and ultimately fewer bugs. This comes in very handy, especially
when a large part of your work is to manipulate data. Another reason for liking Scala
is the better API coverage when using big data frameworks such as Apache Spark,
which are themselves written in Scala. There are also plenty of other good reasons
to prefer Scala, such as it's a strong typed system and its interoperability with Java,
online documentation, and high performance.

So, for a developer like myself who is starting to get involved in data science, Scala
would seem like a more natural choice, but yet, spoiler alert, we ended up focusing
on Python instead. There are multiple reasons for this choice:

• Python, as a language, has a lot going on for itself too. It is a dynamic
programming language with similar benefits to Scala, such as functional
programming, and concise syntax, among others.

• Python has seen, over the last few years, a meteoric rise among data
scientists, overtaking longtime rival R as the overall preferred language for
data science, as demonstrated by a quick search for the terms Python Data
Science, Python Machine Learning, R Data Science, and R Machine
Learning on Google Trends:

Chapter 2

[29]

Interest trends for 2017

In a virtuous circle, Python's rising popularity fuels a vast and growing ecosystem
of wide-ranging libraries that can be easily imported into your projects using
the pip Python package installer. Data scientists now have access to many
powerful open source Python libraries for data manipulation, data visualization,
statistics, mathematics, machine learning, and natural language processing.

Even beginners can quickly build a machine learning classifier using the popular
scikit-learn package (http://scikit-learn.org) without being a machine learning
expert, or quickly plot rich charts using Matplotlib (https://matplotlib.org)
or Bokeh (https://bokeh.pydata.org).

http://scikit-learn.org
https://matplotlib.org
https://bokeh.pydata.org

Python and Jupyter Notebooks to Power your Data Analysis

[30]

In addition, Python has also emerged as one of the top languages for developers
as shown in this IEEE Spectrum 2017 survey (https://spectrum.ieee.org/
computing/software/the-2017-top-programming-languages):

Usage statistics by programming languages

This trend is also confirmed on GitHub where Python is now number three in the
total number of repositories, just behind Java and JavaScript:

GitHub repositories statistics by programming language

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages

Chapter 2

[31]

The preceding chart shows some interesting statistics, demonstrating how active
the Python developer community is. Python - related repositories that are active
on GitHub are the third biggest in size, with similarly healthy total code pushes
and opened issues per repository.

Python has also become ubiquitous on the web, powering numerous high-profile
websites with web development frameworks, such as Django (https://www.
djangoproject.com), Tornado (http://www.tornadoweb.org) and TurboGears
(http://turbogears.org). More recently, there are signs that Python is also
making its way into the field of cloud services with all major Cloud providers
including it in some capacity in their offerings.

Python obviously has a bright future in the field of data science, especially when
used in conjunction with powerful tools such as Jupyter Notebooks, which have
become very popular in the data scientist community. The value proposition of
Notebooks is that they are very easy to create and perfect for quickly running
experiments. In addition, Notebooks support multiple high-fidelity serialization
formats that can capture instructions, code, and results, which can then very easily
be shared with other data scientists on the team or as open source for everyone
to use. For example, we're seeing an explosion of Jupyter Notebooks being shared
on GitHub, numbering in excess of 2.5 million and counting.

The following screenshot shows the result of a GitHub search for any file with
the extension .ipynb, which is the most popular format for serialized Jupyter
Notebooks (JSON format):

Search results for Jupyter Notebooks on GitHub

https://www.djangoproject.com
https://www.djangoproject.com
http://www.tornadoweb.org
http://turbogears.org

Python and Jupyter Notebooks to Power your Data Analysis

[32]

This is great, but Jupyter Notebooks are too often thought of as data scientist tools
only. We'll see in the coming chapters that they can be much more and that they
can also help all types of teams solve data problems. For example, they can help
business analysts quickly load and visualize a dataset, enable developers to work
with data scientists directly within a Notebook to leverage their analytics and build
powerful dashboards, or allow DevOps to effortlessly deploy these dashboards into
scalable, enterprise-ready microservices that can run as standalone web applications
or embeddable components. It is based on this vision of bringing the tools of data
science to non-data scientists that the PixieDust open source project was created.

Introducing PixieDust
Fun fact

I am often asked how I came up with the name PixieDust, for which
I answer that I simply wanted to make Notebook simple, as in magical,
for non-data scientists.

PixieDust (https://github.com/ibm-watson-data-lab/pixiedust) is an
open-source project composed primarily of three components designed to
address the three goals stated at the beginning of this chapter:

• A helper Python library for Jupyter Notebooks that provides simple APIs
to load data from various sources into popular frameworks, such as pandas
and Apache Spark DataFrame, and then to visualize and explore the dataset
interactively.

• A simple Python-based programming model that enables developers to
"productize" the analytics directly into the Notebook by creating powerful
dashboards called PixieApps. As we'll see in the next chapters, PixieApps
are different from traditional BI (short for, Business Intelligence)
dashboards because developers can directly use HTML and CSS to create
an arbitrary complex layout. In addition, they can embed in their business
logic access to any variable, class, or function created in the Notebook.

• A secure microservice web server called PixieGateway that can run
PixieApps as standalone web applications or as components that can be
embedded into any website. PixieApps can easily be deployed from the
Jupyter Notebook using a graphical wizard and without requiring any
code changes. In addition, PixieGateway supports the sharing of any charts
created by PixieDust as embeddable web pages, allowing data scientists
to easily communicate results outside of the Notebook.

https://github.com/ibm-watson-data-lab/pixiedust

Chapter 2

[33]

It is important to note that the PixieDust display() API primarily supports two
popular data processing frameworks:

• pandas (https://pandas.pydata.org): By far the most popular
Python data analysis package, pandas provides two main data structures:
DataFrame for manipulating two-dimensional table-like datasets, and Series
for one-dimensional column-like datasets.

Currently, only pandas DataFrames are supported by PixieDust
display().

• Apache Spark DataFrame (https://spark.apache.org/docs/latest/
sql-programming-guide.html): This is a high-level data structure for
manipulating distributed datasets across a Spark Cluster. Spark DataFrames
are built on top of the lower-level RDD (short for, Resilient Distributed
Dataset) with the added functionality that it supports SQL queries.

Another less commonly used format supported by PixieDust display() is an array
of JSON objects. In this case, PixieDust will use the values to build the rows and keys
are used as columns, for example, as follows:

my_data = [
{"name": "Joe", "age": 24},
{"name": "Harry", "age": 35},
{"name": "Liz", "age": 18},
...
]

In addition, PixieDust is highly extensible both at the data handling and rendering
level. For example, you can add new data types to be rendered by the visualization
framework or if you want to leverage a plotting library you particularly like, you
can easily add it to the list of renderers supported by PixieDust (see the next chapters
for more details).

You will also find that PixieDust contains a few extra utilities related to Apache
Spark, such as the following:

• PackageManager: This lets you install Spark packages inside a Python
Notebook.

• Scala Bridge: This lets you use Scala directly in a Python Notebook using
the %%scala magic. Variables are automatically transferred from Python to
Scala and vice versa.

• Spark Job Progress Monitor: Track the status of any Spark job by showing
a progress bar directly in the cell output.

https://pandas.pydata.org
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html

Python and Jupyter Notebooks to Power your Data Analysis

[34]

Before we dive into each of the three PixieDust components, it would be a good idea
to get access to a Jupyter Notebook, either by signing up to a hosted solution on the
cloud (for example, Watson Studio at https://datascience.ibm.com) or installing
a development version on your local machine.

You can install the Notebook server locally by following the instructions
here: http://jupyter.readthedocs.io/en/latest/install.
html.

To start the Notebook server locally, simply run the following command from
a Terminal:

jupyter notebook --notebook-dir=<<directory path where notebooks are
stored>>

The Notebook home page will automatically open in a browser. There are many
configuration options to control how the Notebook server is launched. These options
can be added to the command line or persisted in the Notebook configuration file.
If you want to experiment with all the possible configuration options, you can
generate a configuration file using the --generate-config option as follows:

jupyter notebook --generate-config

This will generate the following Python file, <home_directory>/.jupyter/
jupyter_notebook_config.py, which contains a set of auto-documented options
that have been disabled. For example, if you don't want to have the browser
automatically opened when the Jupyter Notebook starts, locate the line that contains
the sc.NotebookApp.open_browser variable, uncomment it, and set it to False:

Whether to open in a browser after starting. The specific browser
used is
platform dependent and determined by the python standard library
'web browser'
module, unless it is overridden using the --browser (NotebookApp.
browser)
configuration option.
c.NotebookApp.open_browser = False

After making that change, simply save the jupyter_notebook_config.py file and
restart the Notebook server.

https://datascience.ibm.com
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html

Chapter 2

[35]

The next step is to install the PixieDust library using the pip tool:

1. From the Notebook itself, enter the following command in a cell:
!pip install pixiedust

Note: The exclamation point syntax is specific to Jupyter Notebook
and denotes that the rest of the command will be executed as a system
command. For example, you could use !ls to list all the files and
directories that are under the current working directory.

2. Run the cell using the Cell | Run Cells menu or the Run icon on the toolbar.
You can also use the following keyboard shortcuts to run a cell:

 ° Ctrl + Enter: Run and keep the current cell selected
 ° Shift + Enter: Run and select the next cell
 ° Alt + Enter: Run and create new empty cell just below

3. Restart the kernel to make sure the pixiedust library is correctly loaded
into the kernel.

The following screenshot shows the results after installing pixiedust for the
first time:

Installing the PixieDust library on a Jupyter Notebook

Python and Jupyter Notebooks to Power your Data Analysis

[36]

I strongly recommend using Anaconda (https://anaconda.org),
which provides excellent Python package management capabilities. If,
like me, you like to experiment with different versions of Python and
libraries dependencies, I suggest you use Anaconda virtual environments.
They are lightweight Python sandboxes that are very easy to create
and activate (see https://conda.io/docs/user-guide/tasks/
manage-environments.html):

• Create a new environment: conda create --name env_name
• List all environments: conda env list
• Activate an environment: source activate env_name

I also recommend that, optionally, you get familiar with the source code,
which is available at https://github.com/ibm-watson-data-lab/
pixiedust and https://github.com/ibm-watson-data-lab/
pixiegateway.

We are now ready to explore the PixieDust APIs starting with sampleData() in the
next section.

SampleData – a simple API for loading
data
Loading data into a Notebook is one of the most repetitive tasks a data scientist
can do, yet depending on the framework or data source being used, writing
the code can be difficult and time-consuming.

Let's take a concrete example of trying to load a CSV file from an open data site
(say https://data.cityofnewyork.us) into both a pandas and Apache Spark
DataFrame.

Note: Going forward, all the code is assumed to run in a Jupyter
Notebook.

For pandas, the code is pretty straightforward as it provides an API to directly load
from URL:

import pandas
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_df = pandas.read_csv(data_url)
building_df

https://anaconda.org
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/ibm-watson-data-lab/pixiedust
https://github.com/ibm-watson-data-lab/pixiedust
https://github.com/ibm-watson-data-lab/pixiegateway
https://github.com/ibm-watson-data-lab/pixiegateway
https://opendata.cityofnewyork.us/

Chapter 2

[37]

The last statement, calling building_df, will print its contents in the output cell.
This is possible without a print because Jupyter is interpreting the last statement
of a cell calling a variable as a directive to print it:

The default output of a pandas DataFrame

However, for Apache Spark, we need to first download the data into a file then
use the Spark CSV connector to load it into a DataFrame:

#Spark CSV Loading
from pyspark.sql import SparkSession
try:
 from urllib import urlretrieve
except ImportError:
 #urlretrieve package has been refactored in Python 3
 from urllib.request import urlretrieve

data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
urlretrieve (data_url, "building.csv")

spark = SparkSession.builder.getOrCreate()
building_df = spark.read\
 .format('org.apache.spark.sql.execution.datasources.csv.
CSVFileFormat')\
 .option('header', True)\
 .load("building.csv")
building_df

Python and Jupyter Notebooks to Power your Data Analysis

[38]

The output is slightly different since building_df is now a Spark DataFrame:

Default output of a Spark DataFrame

Even though this code is not that big, it has to be repeated every time and, most
likely, will require spending the time to do a Google search to remember the correct
syntax. The data may also be in a different format, for example, JSON, which will
require calling different APIs both for pandas and Spark. The data may also not
be well-formed and can contain a bad line in a CSV file or have a wrong JSON
syntax. All these issues are unfortunately not rare and contribute to the 80/20 rule
of data science, which states that data scientists spends on average 80% of their time
acquiring, cleaning, and loading data and only 20% doing the actual analysis.

PixieDust provides a simple sampleData API to help improve the situation. When
called with no parameters, it displays a list of pre-curated datasets ready for analysis:

import pixiedust
pixiedust.sampleData()

The results are shown as follows:

PixieDust built-in datasets

The list of prebuilt curated datasets can be customized to fit the organization,
which is a good step toward our data pillar, as described in the previous chapter.

The user can then simply call the sampleData API again with the ID of the prebuilt
dataset and get a Spark DataFrame if the Spark framework in the Jupyter Kernel
is available or fall back to a pandas DataFrame if not.

In the following example, we call sampleData() on a Notebook connected with
Spark. We also call enableSparkJobProgressMonitor() to display real-time
information about the Spark jobs involved in the operation.

Chapter 2

[39]

Note: Spark jobs are processes that run on a particular node in the Spark
cluster with a specific subset of the data. In the case of loading a large
amount data from a data source, each Spark job is given a specific subset
to work on (the actual size depends on the number of nodes in the cluster
and the size of the overall data), running in parallel with the other jobs.

In a separate cell, we run the following code to enable the Spark Job Progress Monitor:

pixiedust.enableSparkJobProgressMonitor()

The results are as follows:

Successfully enabled Spark Job Progress Monitor

We then invoke sampleData to load the cars dataset:

cars = pixiedust.sampleData(1)

The results are shown as follows:

Loading a built-in dataset with PixieDust sampleData API

The user can also pass an arbitrary URL that points to a downloadable file; PixieDust
currently supports JSON and CSV files. In this case, PixieDust will automatically
download the file, cache it in a temporary area, detect the format, and load it into
a Spark or pandas DataFrame depending on whether Spark is available in the
Notebook. Note that the user can also force loading into pandas even if Spark
is available using the forcePandas keyword argument:

import pixiedust
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_dataframe = pixiedust.sampleData(data_url, forcePandas=True)

The results are as follows:

Downloading 'https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD' from https://data.cityofnewyork.us/api/views/

Python and Jupyter Notebooks to Power your Data Analysis

[40]

e98g-f8hy/rows.csv?accessType=DOWNLOAD
Downloaded 13672351 bytes
Creating pandas DataFrame for 'https://data.cityofnewyork.us/api/
views/e98g-f8hy/rows.csv?accessType=DOWNLOAD'. Please wait...
Loading file using 'pandas'
Successfully created pandas DataFrame for 'https://data.cityofnewyork.
us/api/views/e98g-f8hy/rows.csv?accessType=DOWNLOAD'

The sampleData() API is also smart enough to recognize URLs that point to
compressed files of the ZIP and GZ types. In this case, it will automatically unpack
the raw binary data and load the file included in the archive. For ZIP files, it looks
at the first file in the archive and, for GZ files, it simply decompresses the content
as GZ files are not archives and do not contain multiple files. The sampleData()
API will then load the DataFrame from the decompressed file.

For example, we can directly load borough information from a ZIP file provided
by the London open data website and display the results as a pie chart using the
display() API, as follows:

import pixiedust
london_info = pixiedust.sampleData("https://files.datapress.com/
london/dataset/london-borough-profiles/2015-09-24T15:50:01/London-
borough-profiles.zip")

The results are as follows (assuming that your Notebook is connected to Spark,
otherwise a pandas DataFrame will be loaded):

Downloading 'https://files.datapress.com/london/dataset/london-
borough-profiles/2015-09-24T15:50:01/London-borough-profiles.zip'
from https://files.datapress.com/london/dataset/london-borough-
profiles/2015-09-24T15:50:01/London-borough-profiles.zip
Extracting first item in zip file...
File extracted: london-borough-profiles.csv
Downloaded 948147 bytes
Creating pySpark DataFrame for 'https://files.datapress.com/london/
dataset/london-borough-profiles/2015-09-24T15:50:01/London-borough-
profiles.zip'. Please wait...
Loading file using 'com.databricks.spark.csv'
Successfully created pySpark DataFrame for 'https://files.datapress.
com/london/dataset/london-borough-profiles/2015-09-24T15:50:01/London-
borough-profiles.zip'

Chapter 2

[41]

We can then call display() on the london_info DataFrame, as shown here:

display(london_info)

We select Pie Chart in the Chart menu and in the Options dialog, we drag and
drop the Area name column in the Keys area and the Crime rates per thousand
population 2014/15 in the Values area, as shown in the following screenshot:

Chart options for visualizing the london_info DataFrame

Python and Jupyter Notebooks to Power your Data Analysis

[42]

After clicking on the OK button in the Options dialog, we get the following results:

Pie chart created from a URL pointing at a compressed file

Many times, you have found a great dataset, but the file contains errors or the
data that's important to you is in the wrong format or buried in some unstructured
text that needs to be extracted into its own column. This process is also known as
data wrangling and can be very time-consuming. In the next section, we will look
at an extension to PixieDust called pixiedust_rosie that provides a wrangle_data
method, which helps with this process.

Wrangling data with pixiedust_rosie
Working in a controlled experiment is, most of the time, not the same as working
in the real world. By this I mean that, during development, we usually pick (or I
should say manufacture) a sample dataset that is designed to behave; it has the right
format, it complies with the schema specification, no data is missing, and so on. The
goal is to focus on verifying the hypotheses and build the algorithms, and not so
much on data cleansing, which can be very painful and time-consuming. However,
there is an undeniable benefit to get data that is as close to the real thing as early as
possible in the development process. To help with this task, I worked with two IBM
colleagues, Jamie Jennings and Terry Antony, who volunteered to build an extension
to PixieDust called pixiedust_rosie.

Chapter 2

[43]

This Python package implements a simple wrangle_data() method to automate the
cleansing of raw data. The pixiedust_rosie package currently supports CSV and
JSON, but more formats will be added in the future. The underlying data processing
engine uses the Rosie Pattern Language (RPL) open source component, which
is a regular expressions engine designed to be simpler to use for developers, more
performant, and scalable to big data. You can find more information about Rosie
here: http://rosie-lang.org.

To get started, you need to install the pixiedust_rosie package using the following
command:

!pip install pixiedust_rosie

The pixiedust_rosie package has a dependency on pixiedust and rosie,
which will be automatically downloaded if not already installed on the system.

The wrangle_data() method is very similar to the sampleData() API. When called
with no parameters, it will show you the list of pre-curated datasets, as shown here:

import pixiedust_rosie
pixiedust_rosie.wrangle_data()

This produces the following results:

List of pre-curated datasets available for wrangle_data()

http://rosie-lang.org

Python and Jupyter Notebooks to Power your Data Analysis

[44]

You can also invoke it with the ID of a pre-curated dataset or a URL link,
for example, as follows:

url = "https://github.com/ibm-watson-data-lab/pixiedust_rosie/raw/
master/sample-data/Healthcare_Cost_and_Utilization_Project__HCUP__-_
National_Inpatient_Sample.csv"
pixiedust_rosie.wrangle_data(url)

In the preceding code, we invoke wrangle_data() on a CSV file referenced by the
url variable. The function starts by downloading the file in the local filesystem and
performs an automated data classification on a subset of the data, to infer the data
schema. A schema editor PixieApp is then launched, which provides a set of wizard
screens to let the user configure the schema. For example, the user will be able to
drop and rename columns and, more importantly, destructure existing columns
into new columns by providing Rosie patterns.

The workflow is illustrated in the following diagram:

wrangle_data() workflow

The first screen of the wrangle_data() wizard shows the schema that has
been inferred by the Rosie data classifier as shown in the following screenshot:

Chapter 2

[45]

The wrangle_data() schema editor

The preceding schema widget shows the column names, Rosie Type (advanced type
representation specific to Rosie) and Column Type (map to the supported pandas
types). Each row also contains three action buttons:

• Delete column: This removes the columns from the schema. This column
will not appear in the final pandas DataFrame.

• Rename column: This changes the name of the column.
• Transform column: This transforms a column by destructuring it into new

columns.

At any time, the user is able to preview the data (shown in the preceding
SampleData widget) to validate that the schema configuration is behaving
as intended.

Python and Jupyter Notebooks to Power your Data Analysis

[46]

When the user clicks on the transform column button, a new screen is shown that lets
the user specify patterns for building new columns. In some cases, the data classifier
will be able to automatically detect the patterns, in which case, a button will be
added to ask the user whether the suggestions should be applied.

The following screenshot shows the Transform Selected Column screen with
automated suggestions:

Transform column screen

This screen shows four widgets with the following information:

• Rosie Pattern input is where you can enter a custom Rosie Pattern that
represents the data for this column. You then use the Extract Variables
button to tell the schema editor which part of the pattern should be
extracted into a new column (more on that is explained soon).

Chapter 2

[47]

• There's a help widget that provides a link to the RPL documentation.
• There's a preview of the data for the current column.
• There's a preview of the data with the Rosie Pattern applied.

When the user clicks on the Extract Variables button, the widget is updated
as follow:

Extracting Rosie variables into columns

At this point, the user has the option to edit the definition and then click on the
Create Columns button to add the new columns to the schema. The Sample of New
Column(s) widget is then updated to show a preview of what the data would look
like. An error is shown in this widget if the pattern definition contains bad syntax:

Preview of new columns after applying pattern definitions

Python and Jupyter Notebooks to Power your Data Analysis

[48]

When the user clicks on the Commit Columns button, the main schema editor
screen is displayed again with the new columns added, as shown in the following
screenshot:

Schema editor with new columns

The final step is to click on the Finish button to apply the schema definition to
the raw file and create a pandas DataFrame that will be available as a variable in
the Notebook. At this point, the user is presented with a dialog box that contains
a default variable name that can be edited, as shown in the following screenshot:

Chapter 2

[49]

Edit the variable name for the Result Pandas DataFrame

After clicking on the Finish button, pixiedust_rosie goes over the entire dataset,
applying the schema definition. When done, it creates a new cell just below the
current one with a generated code that invokes the display() API on the newly
generated pandas DataFrame, as shown here:

#Code generated by pixiedust_rosie
display(wrangled_df)

Running the preceding cell will let you explore and visualize the new dataset.

The wrangle_data() capability we've explored in this section is a first step toward
helping data scientists spend less time cleaning the data and more time analyzing it.
In the next section, we will discuss how to help data scientists with data exploration
and visualization.

Display – a simple interactive API for data
visualization
Data visualization is another very important data science task that is indispensable
for exploring and forming hypotheses. Fortunately, the Python ecosystem has a lot
of powerful libraries dedicated to data visualization, such as these popular examples:

• Matplotlib: http://matplotlib.org
• Seaborn: https://seaborn.pydata.org
• Bokeh: http://bokeh.pydata.org
• Brunel: https://brunelvis.org

However, similar to data loading and cleaning, using these libraries in a Notebook
can be difficult and time-consuming. Each of these libraries come with their own
programming model and APIs are not always easy to learn and use, especially if
you are not an experienced developer. Another issue is that these libraries do not
have a high-level interface to commonly used data processing frameworks such as
pandas (except maybe Matplotlib) or Apache Spark and, as a result, a lot of data
preparation is needed before plotting the data.

http://matplotlib.org
https://seaborn.pydata.org
http://bokeh.pydata.org
https://brunelvis.org

Python and Jupyter Notebooks to Power your Data Analysis

[50]

To help with this problem, PixieDust provides a simple display() API that enables
Jupyter Notebook users to plot data using an interactive graphical interface and
without any required coding. This API doesn't actually create charts but does all
the heavy lifting of preparing the data before delegating to a renderer by calling
its APIs according to the user selection.

The display() API supports multiple data structures (pandas, Spark, and JSON)
as well as multiple renderers (Matplotlib, Seaborn, Bokeh, and Brunel).

As an illustration, let's use the built-in car performance dataset and start visualizing
the data by calling the display() API:

import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True) #car performance data
display(cars)

The first time the command is called on the cell, a tabular view is displayed and,
as the user navigates through the menus, selected options are stored in the cell
metadata as JSON so they can be used again the next time the cell is running.
The output layout for all the visualizations follows the same pattern:

• There's an extensible top-level menu for switching between charts.
• There's a download menu for downloading the file in the local machine.
• There's a filter toggle button that lets users refine their exploration by

filtering the data. We'll discuss the filter capability in the Filtering section.
• There's a Expand/Collapse Pixiedust Output button for collapsing/

expanding the output content.
• There's an Options button that invokes a dialog box with configurations

specific to the current visualization.
• There's a Share button that lets you publish the visualization on the web.

Note: This button can only be used if you have deployed a PixieGateway,
which we'll discuss in detail in Chapter 4, Publish your Data Analysis to the
Web - the PixieApp Tool.

• There's a contextual set of options on the right-hand side of the visualization.
• There's the main visualization area.

Chapter 2

[51]

Visualization output layout for the table renderer

To start creating a chart, first select the appropriate type in the menu. Out of the box,
PixieDust supports six types of charts: Bar Chart, Line Chart, Scatter Plot, Pie Chart,
Map, and Histogram. As we'll see in Chapter 5, Python and PixieDust Best Practices and
Advanced Concepts, PixieDust also provides APIs to let you customize these menus by
adding new ones or adding options to existing ones:

PixieDust Charts menu

Python and Jupyter Notebooks to Power your Data Analysis

[52]

The first time a chart menu is called, an options dialog will be displayed to configure
a set of basic configuration options, such as what to use for the X and Y axes, the type
of aggregation, and many more. To save you time, the dialog will be prepopulated
with the data schema that PixieDust automatically introspected from the DataFrame.

In the following example, we will create a bar chart showing the average mileage
consumption by horsepower:

Bar chart dialog options

Chapter 2

[53]

Clicking OK will display the interactive interface in the cell output area:

Bar chart visualization

Python and Jupyter Notebooks to Power your Data Analysis

[54]

The canvas shows the chart in the center area and some contextual options on
the side relevant to the type of chart selected. For example, we can select the field
origin in the Cluster By combobox to show a breakdown by country of origin:

Clustered bar chart visualization

As mentioned before, PixieDust display() doesn't actually create the chart, rather
it prepares the data based on the selected options and does the heavy lifting of
calling the APIs of a renderer engine, with the correct parameters. The goal behind
this design is for each chart type to support multiple renderers without any extra
coding, providing as much freedom of exploration to the user as possible.

Chapter 2

[55]

Out of the box, PixieDust supports the following renderers provided that the
corresponding libraries are installed. For those that are not installed, a warning
will be generated in the PixieDust log and the corresponding renderer will not be
displayed in the menu. We'll cover in detail the PixieDust log in Chapter 5, Python
and PixieDust Best Practices and Advanced Concepts.

• Matplotlib (https://matplotlib.org)
• Seaborn (https://seaborn.pydata.org)

This library needs to be installed using: !pip install seaborn.

• Bokeh (https://bokeh.pydata.org)

This library needs to be installed using: !pip install bokeh.

• Brunel (https://brunelvis.org)

This library needs to be installed using: !pip install brunel.

• Google Map (https://developers.google.com/maps)
• Mapbox (https://www.mapbox.com)

Note: Google Map and Mapbox require an API key that you can obtain
on their respective sites.

https://matplotlib.org
https://seaborn.pydata.org
https://bokeh.pydata.org
https://brunelvis.org
https://developers.google.com/maps
https://www.mapbox.com

Python and Jupyter Notebooks to Power your Data Analysis

[56]

You can switch between renderers using the Renderer combobox. For example, if
we want more interactivity to explore the chart (such as zooming and panning), we
can use the Bokeh renderer instead of Matplotlib, which gives us only a static image:

Cluster bar chart using the Bokeh renderer

Another chart type worth mentioning is Map, which is interesting when your
data contains geospatial information, such as longitude, latitude, or country/state
information. PixieDust supports multiple types of geo-mapping rendering engines
including the popular Mapbox engine.

Before using the Mapbox renderer, it is recommended to get an API key
from the Mapbox site at this location: (https://www.mapbox.com/
help/how-access-tokens-work). However, if you don't have one,
a default key will be provided by PixieDust.

To create a Map chart, let's use the Million-dollar home sales in NE Mass dataset,
as follows:

import pixiedust
homes = pixiedust.sampleData(6, forcePandas=True) #Million dollar home
sales in NE Mass
display(homes)

https://www.mapbox.com/help/how-access-tokens-work
https://www.mapbox.com/help/how-access-tokens-work
https://www.mapbox.com/help/how-access-tokens-work
https://www.mapbox.com/help/how-access-tokens-work

Chapter 2

[57]

First, select Map in the chart drop-down button, then in the options dialog, select
LONGITUDE and LATITUDE as the keys and enter the Mapbox access token in the
provided input. You can add multiples fields in the Values area, and they will
be displayed as tooltips on the map:

Options dialog for Mapbox charts

Python and Jupyter Notebooks to Power your Data Analysis

[58]

When clicking the OK button, you'll get an interactive map that you can
customize using the style (simple, choropleth, or density map), color, and
basemap (light, satellite, dark, and outdoors) options:

Interactive Mapbox visualization

Each chart type has its own set of contextual options, which are self-explanatory,
and I encourage you at this point to play with each and every one of them. If you
find issues or have enhancement ideas, you can always create a new issue on GitHub
at https://github.com/ibm-watson-data-lab/pixiedust/issues or, better yet,
submit a pull request with your code changes (there's more information on how to
do that here: https://help.github.com/articles/creating-a-pull-request).

To avoid reconfiguring the chart every time the cell runs, PixieDust stores the
chart options as a JSON object in the cell metadata, which is eventually saved
in the Notebook. You can manually inspect this data by selecting the View |
Cell Toolbar | Edit Metadata menu, as shown in the following screenshot:

https://github.com/ibm-watson-data-lab/pixiedust/issues
https://github.com/ibm-watson-data-lab/pixiedust/issues
https://help.github.com/articles/creating-a-pull-request

Chapter 2

[59]

Show Edit Metadata button

An Edit Metadata button will be shown at the top of the cell, which, when clicked
on, displays the PixieDust configuration:

Edit Cell Metadata dialog

This JSON configuration will be important when we discuss PixieApps in the
next section.

Python and Jupyter Notebooks to Power your Data Analysis

[60]

Filtering
To better explore data, PixieDust also provides a built-in, simple graphical interface
that lets you quickly filter the data being visualized. You can quickly invoke the
filter by clicking on the filter toggle button in the top-level menu. To keep things
simple, the filter only supports building predicates based on one column only,
which is sufficient in most cases to validate simple hypotheses (based on feedback,
this feature may be enhanced in the future to support multiple predicates). The filter
UI will automatically let you select the column to filter on and, based on its type,
will show different options:

• Numerical type: The user can select a mathematical comparator and enter
a value for the operand. For convenience, the UI will also show statistical
values related to the chosen column, which can be used when picking the
operand value:

Filter on the mpg numerical column of the cars data set

Chapter 2

[61]

• String type: The user can enter an expression to match the column value,
which can be either a regular expression or a plain string. For convenience,
the UI also shows basic help on how to build a regular expression:

Filter on the name String type of the cars dataset

When clicking on the Apply button, the current visualization is updated to reflect
the filter configuration. It is important to note that the filter applies to the whole
cell and not only to the current visualization. Therefore, it will continue to apply
when switching between chart types. The filter configuration is also saved in the cell
metadata, so it will be preserved when saving the Notebook and rerunning the cell.

Python and Jupyter Notebooks to Power your Data Analysis

[62]

For example, the following screenshot visualizes the cars dataset as a bar chart
showing only the rows with mpg greater than 23, which, according to the statistics
box, is the mean for the dataset, and clustered by years. In the options dialog,
we select the mpg column as the key and origin as the value:

Filtered bar chart for the cars dataset

Chapter 2

[63]

To summarize, in this section, we've discussed how PixieDust can help with
three difficult and time-consuming data science tasks: data loading, data wrangling,
and data visualization. Next, we are going to see how PixieDust can help increase
collaboration between data scientists and developers.

Bridging the gap between developers
and data scientists with PixieApps
Solving hard data problems is only part of the mission given to data science teams.
They also need to make sure that data science results get properly operationalized
to deliver business value to the organization. Operationalizing data analytics is
very much use case - dependent. It could mean, for example, creating a dashboard
that synthesizes insights for decision makers or integrating a machine learning
model, such as a recommendation engine, into a web application.

In most cases, this is where data science meets software engineering (or as some
would say, where the rubber meets the road). Sustained collaboration between the
teams—instead of a one-time handoff—is key to a successful completion of the
task. More often than not, they also have to grapple with different languages and
platforms, leading to significant code rewrites by the software engineering team.

We experienced it firsthand in our Sentiment analysis of Twitter hashtags project when
we needed to build a real-time dashboard to visualize the results. The data analytics
was written in Python using pandas, Apache Spark, and a few plotting libraries such
as Matplotlib and Bokeh, while the dashboard was written in Node.js (https://
nodejs.org) and D3 (https://d3js.org).

We also needed to build a data interface between the analytics and the dashboard
and, since we needed the system to be real-time, we chose to use Apache Kafka
to stream events formatted with the analytics results.

https://nodejs.org
https://nodejs.org
https://d3js.org

Python and Jupyter Notebooks to Power your Data Analysis

[64]

The following diagram generalizes an approach that I call the hand-off pattern
where the data science team builds the analytics and deploys the results in a data
interface layer. The results are then consumed by the application. The data layer
is usually handled by the data engineer, which is one of the roles we discussed
in Chapter 1, Programming and Data Science – A New Toolset:

Hand-off between data science and engineering

The problem with this hand-off pattern is that it is not conducive to rapid iteration.
Any changes in the data layer need to be synchronized with the software engineering
team to avoid breaking the application. The idea behind PixieApps is to build the
application while staying as close as possible to the data science environment, which
is, in our case, the Jupyter Notebook. With this approach, the analytics are directly
called from the PixieApp, which runs embedded in the Jupyter Notebook, hence
making it easy for data scientists and developers to collaborate and iterate to make
rapid improvements.

PixieApp defines a simple programming model for building single-page
applications with direct access to the IPython Notebook Kernel (which is the Python
backend process running the Notebook code). In essence, a PixieApp is a Python
class that encapsulates both the presentation and business logic. The presentation
is composed of a set of special methods called routes that return an arbitrary HTML
fragment. Each PixieApp has a default route that returns the HTML fragment for
the starting page. Developers can use custom HTML attributes to invoke other
routes and dynamically update all or part of the page. A route may, for example,
invoke a machine learning algorithm created from within the Notebook or generate
a chart using the PixieDust display framework.

Chapter 2

[65]

The following diagram shows the high-level architecture of how PixieApps
interact with the Jupyter Notebook client frontend and the IPython Kernel:

PixieApp interaction with the Jupyter Kernel

As a preview of what a PixieApp looks like, here's a hello world sample application
that has one button showing a bar chart for the cars DataFrame we created in the
previous section:

#import the pixieapp decorators
from pixiedust.display.app import *

#Load the cars dataframe into the Notebook
cars = pixiedust.sampleData(1)

@PixieApp #decorator for making the class a PixieApp
class HelloWorldApp():
 #decorator for making a method a
 #route (no arguments means default route)
 @route()
 def main_screen(self):
 return """
 <button type="submit" pd_options="show_chart=true" pd_
target="chart">Show Chart</button>
 <!--Placeholder div to display the chart-->
 <div id="chart"></div>
 """

 @route(show_chart="true")
 def chart(self):
 #Return a div bound to the cars dataframe
 #using the pd_entity attribute
 #pd_entity can refer a class variable or

Python and Jupyter Notebooks to Power your Data Analysis

[66]

 #a global variable scoped to the notebook
 return """
 <div pd_render_onload pd_entity="cars">
 <pd_options>
 {
 "title": "Average Mileage by Horsepower",
 "aggregation": "AVG",
 "clusterby": "origin",
 "handlerId": "barChart",
 "valueFields": "mpg",
 "rendererId": "bokeh",
 "keyFields": "horsepower"
 }
 </pd_options>
 </div>
 """
#Instantiate the application and run it
app = HelloWorldApp()
app.run()

When the preceding code runs in a Notebook cell, we get the following results:

Hello World PixieApp

Chapter 2

[67]

You probably have a lot of questions about the preceding code, but don't worry.
In the next chapters, we'll cover all the PixieApp technical details, including how
to use them in end-to-end pipelines.

Architecture for operationalizing data
science analytics
In the previous section, we saw how PixieApps combined with the PixieDust display
framework offer an easy way to build powerful dashboards that connect directly
with your data analytics, allowing for rapid iterations between the algorithms
and the user interface. This is great for rapid prototyping, but Notebooks are not
suitable to be used in a production environment where the target persona is the
line of business user. One obvious solution would be to rewrite the PixieApp using
a traditional three tiers web application architecture, for example, as follows:

• React (https://reactjs.org) for the presentation layer
• Node.js for the web layer
• A data access library targeted at the web analytics layer for machine learning

scoring or running any other analytic jobs

However, this would provide only a marginal improvement over the existing
process, which would consist only, in this case, of the ability to do iterative
implementation with the PixieApp.

A much better solution would be to directly deploy and run PixieApps as
web applications, including the analytics in the surrounding Notebook and,
while we're at it, without any code change.

https://reactjs.org

Python and Jupyter Notebooks to Power your Data Analysis

[68]

Using this model, Jupyter Notebooks would become the central tool for a simplified
development life cycle, as shown in the following diagram:

Data science pipeline development life cycle

1. Data scientists use a Python Notebook to load, enrich, and analyze data
and create analytics (machine learning models, statistics, and so on)

2. From the same Notebook, developers create a PixieApp to operationalize
these analytics

3. Once ready, developers publish the PixieApp as a web application, where
it can be easily consumed interactively by line-of-business users without
the need to access Notebooks

PixieDust provides an implementation of this solution with the PixieGateway
component. PixieGateway is a web application server responsible for loading
and running PixieApps. It is built on top of the Jupyter Kernel Gateway (https://
github.com/jupyter/kernel_gateway), which itself is built on top of the Tornado
web framework, and therefore follows an architecture as shown in the following
diagram:

https://github.com/jupyter/kernel_gateway
https://github.com/jupyter/kernel_gateway

Chapter 2

[69]

PixieGateway architecture diagram

1. The PixieApp is published into the PixieGateway server directly from the
Notebook and a URL is generated. Behind the scene, PixieGateway allocates
a Jupyter Kernel to run the PixieApp. Based on configuration, the PixieApp
could share the kernel instance with other apps or have a dedicated kernel
based on needs. The PixieGateway middleware can scale horizontally
by managing the lifecycle of multiple kernels instances, which themselves
can either be local to the server or remote on a cluster.

Note: Remote kernels must be Jupyter Kernel Gateways.

Using the publishing wizard, the user can optionally define security
for the application. Multiple options are available including Basic
Authentication, OAuth 2.0, and Bearer Token.

2. The line of business users accesses the app from their browser using the
URL from step 1.

3. PixieGateway provides a comprehensive admin console for managing the
server including configuring the applications, configuring and monitoring
kernels, access to the logs for troubleshooting, and so on.

4. The PixieGateway manages sessions for each active user and dispatches
requests to the appropriate kernels for execution using the IPython
messaging protocol (http://jupyter-client.readthedocs.io/en/
latest/messaging.html) over WebSocket or ZeroMQ depending
on whether the Kernel is local or remote.

http://jupyter-client.readthedocs.io/en/latest/messaging.html
http://jupyter-client.readthedocs.io/en/latest/messaging.html

Python and Jupyter Notebooks to Power your Data Analysis

[70]

When productizing your analytics, this solution provides a major improvement
over the classic three-tier web application architecture because it collapses the web
and the data tier into one web analytics tiers, as shown in the following diagram:

Comparison between classic three tiers and PixieGateway web architecture

In the classic three-tier architecture, developers have to maintain multiple
REST endpoints that invoke the analytics in the data tier and massage the data
to comply with the presentation tier requirements for correctly displaying the data.
As a result, a lot of engineering has to be added to these endpoints, increasing the
cost of development and code maintenance. In contrast, in the PixieGateway two-
tier architecture, developers do not have to worry about creating endpoints because
the server is responsible for dispatching the requests to the appropriate kernel using
built-in generic endpoints. Explained another way, the PixieApp Python methods
automatically become endpoints for the presentation tier without any code change.
This model is conducive to rapid iterations since any change in the Python code is
directly reflected in the application after republishing.

PixieApps are great to rapidly build single-page applications and dashboards.
However, you may also want to generate simpler one-page reports and share them
with your users. To that end, PixieGateway also lets you share charts generated by
the display() API using the Share button, resulting in a URL linking to a web page
containing the chart. In turn, a user can embed the chart into a website or a blog post
by copying and pasting the code generated for the page.

Chapter 2

[71]

Note: We'll cover PixieGateway in details in Chapter 4, Publish your Data
Analysis to the Web - the PixieApp Tool, including how to install a new
instance both locally and on the cloud.

To demonstrate this capability, let's use the cars DataFrame created earlier:

Share Chart dialog

If sharing is successful, then the next page will show the generated URL and the
code snippet to embed into a web application or blog post:

Confirmation of a shared chart

Python and Jupyter Notebooks to Power your Data Analysis

[72]

Clicking on the link will take you to the page:

Display chart as a web page

Summary
In this chapter, we discussed the reasons why our data science tooling strategy was
centered around Python and Jupyter Notebook. We also introduced the PixieDust
capabilities that improve user productivity with features such as the following:

• Data loading and cleaning
• Data visualization and exploration without any coding
• A simple programming model based on HTML and CSS, called PixieApp,

for building tools and dashboards that interact directly with the Notebook
• A point and click mechanism to publish charts and PixieApp directly

to the web

In the next chapter, we'll do a deep dive on the PixieApp programming model,
discussing every aspect of the APIs with numerous code samples.

[73]

Accelerate your Data
Analysis with Python

Libraries
"Every vision is a joke until the first man accomplishes it; once realized,
it becomes commonplace."

 – Robert H Goddard

In this chapter, we will do a technical deep dive into the PixieApp framework.
You will be able to use the following information both as a Getting Started tutorial
and as reference documentation for the PixieApp programming model.

We will start with a high-level description of the anatomy of a PixieApp before
diving in to its foundational concepts, such as routes and requests. To help follow
along, we will incrementally build a GitHub Tracking sample application that applies
the capabilities and best practices as they are being introduced, starting from
building the data analytics to integrating them into the PixieApp.

By the end of this chapter, you should be able to apply the lessons learned to your
own use case, including writing your own PixieApp.

Note: The PixieApp programming model doesn't require any prior
experience with JavaScript, however, it is expected that the reader
is familiar with the following:

• Python (https://www.python.org)
• HTML5 (https://www.w3schools.com/html)
• CSS3 (https://www.w3schools.com/css)

https://www.python.org
https://www.w3schools.com/html
https://www.w3schools.com/css

Accelerate your Data Analysis with Python Libraries

[74]

Anatomy of a PixieApp
The term PixieApp stands for Pixie Application, and is meant to emphasize its tight
integration with the PixieDust capabilities, especially the display() API. Its main
goal is to make it easy for developers to build a user interface that can invoke the
data analytics implemented in the Jupyter Notebook.

A PixieApp follows the single-page application (SPA) design pattern (https://
en.wikipedia.org/wiki/Single-page_application), where the user is presented
with a welcome screen that is dynamically updated to respond to a user interaction.
An update can be a partial refresh, such as updating a graph after the user clicks on
a control or a full refresh, such as a new screen in a multistep process. In each case,
the update is controlled on the server side by a route that is triggered using a specific
mechanism that we'll discuss later. When triggered, the route executes code to
handle the request and then emits an HTML fragment, which is applied to the right
target DOM element (https://www.w3schools.com/js/js_htmldom.asp) on the
client side.

The following sequence diagram shows how the client side and server side interact
with each other when running a PixieApp:

Sequence diagram showing the information flow of a PixieApp

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://www.w3schools.com/js/js_htmldom.asp

Chapter 3

[75]

When the PixieApp is started (by calling the run method), the default route is
invoked, and the corresponding HTML fragment is returned. As the user interacts
with the application, more requests are executed, triggering the associated routes
which refresh the UI accordingly.

From an implementation perspective, a PixieApp is simply a regular Python
class that has been decorated with the @PixieApp decorator. Under the cover,
the PixieApp decorator instruments the class to add methods and fields required
to run the app, such as the run method.

More information on Python decorators can be found here:
https://wiki.python.org/moin/PythonDecorators

To get things started, the following code shows a simple Hello World PixieApp:

#import the pixieapp decorators
from pixiedust.display.app import *

@PixieApp #decorator for making the class a PixieApp
class HelloWorldApp():
 @route() #decorator for making a method a route (no arguments
means default route)
 def main_screen(self):
 return """<div>Hello World</div>"""

#Instantiate the application and run it
app = HelloWorldApp()
app.run()

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode1.py

The preceding code shows the structure of a PixieApp, how to define the routes,
and how to instantiate and run the app. Because PixieApps are regular Python
classes, they can inherit from other classes, including other PixieApps, which
is convenient for larger projects to make the code modular and reusable.

https://wiki.python.org/moin/PythonDecorators
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode1.py

Accelerate your Data Analysis with Python Libraries

[76]

Routes
Routes are used to dynamically update all or part of the client screen. They
can be easily defined by using the @route decorator on any class method,
based on the following rules:

• A route method is required to return a string that represents the
HTML fragment for the update.

Note: CSS and JavaScript are allowed to be used in the fragment.

• The @route decorator can have one or more keyword arguments, which
are required to be of the String type. These keyword arguments can
be thought of as request parameters, which are used internally by the
PixieApp framework to dispatch the request to the route that is the
best match according to the following rules:

 ° The routes with most arguments are always evaluated first.
 ° All arguments must match for a route to be selected.
 ° If the route is not found, then the default route is selected

as a fallback.
 ° Routes can be configured using a wildcard, that is, *, in which case,

any value for the state argument will be a match.

Following is an example:
 @route(state1="value1", state2="value2")

• A PixieApp is required to have one, and only one, default route, which
is a route with no argument, that is, @route().

It is very important to configure the routes in a way that doesn't cause conflict,
especially if your application has hierarchical states. For example, a route associated
with state1="load" could be responsible for loading data and then a second
route associated with (state1="load", state2="graph") could be responsible
for plotting the data. In this case, a request with both state1 and state2 specified
will match the second route because route evaluation happens from most specific
to least specific, stopping at the first matching route.

Chapter 3

[77]

To clarify, the following diagram shows how requests are matched with routes:

Matching requests to routes

The expected contract for a method defined as a route is to return an HTML
fragment, which can contain Jinja2 templating constructs. Jinja2 is a powerful
Python template engine that provides a rich set of features to dynamically generate
text, including access to Python variables, methods, and control structures, such as
if...else, the for loop, and so on. Covering all its features would be beyond
the scope of this book, but let's discuss a few important constructs that are used
frequently:

Note: If you want to know more about Jinja2, you can read the full
documentation here:
http://jinja.pocoo.org/docs/templates

• Variables: You can use the double-curly braces to access variables that are
in scope, for example, "<div>This is my variable {{my_var}}</div>".
During rendering, the my_var variable will be replaced with its actual value.
You can also use the . (dot) notation to access complex object, for example,
"<div>This is a nested value {{my_var.sub_value}}</div>".

• for loop: You can use the {%for ...%}...{%endfor%} notation
to dynamically generate text by iterating over a sequence of items
(list, tuple, dictionary, and so on), as in the example:
{%for message in messages%}
{{message}}
{%endfor%}

• if statement: You can use the {%if ...%}...{%elif ...%}...{%else%}…
{%endif%} notation to conditionally output text, as in the example:

{%if status.error%}
<div class="error">{{status.error}}</div>
{%elif status.warning%}

http://jinja.pocoo.org/docs/templates

Accelerate your Data Analysis with Python Libraries

[78]

<div class="warning">{{status.warning}}</div>
{%else%}
<div class="ok">{{status.message}}</div>
{%endif%}

It is also important to know how variables and methods come into the scope of the
JinJa2 template string returned by the route. PixieApp automatically provides access
to three types of variables and methods:

• Class variables and methods: These are accessible using the this keyword.

Note: The reason we're not using the more Pythonic self keyword
is that it is unfortunately already taken by Jinja2 itself.

• Method arguments: This is useful when the route arguments use the * value
and you want to have access to that value at runtime. In this case, you can
add arguments to the method itself using the same name as the one defined
in the route arguments and the PixieApp framework will automatically pass
the correct value.

Note: The order of the arguments actually doesn't matter. You also do not
have to use every argument defined in the route, which is convenient if
you are only interested in using a subset of the arguments.

The variable will also be in the scope of the Jinja2 template string, as shown
in the example:
@route(state1="*", state2="*")
def my_method(self, state1, state2):
 return "<div>State1 is {{state1}}. State2 is {{state2}}</div>"

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode2.py

• Local variables to the method: PixieApp will automatically put all
the local variables defined in the method in scope of the Jinja2 template
string, provided that you add the @templateArgs decorator to the method,
as shown in the example:

@route()
@templateArgs
def main_screen(self):
 var1 = self.compute_something()
 var2 = self.compute_something_else()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode2.py

Chapter 3

[79]

 return "<div>var1 is {{var1}}. var2 is {{var2}}</div>"

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode3.py

Generating requests to routes
As mentioned before, PixieApp follows the SPA design pattern. After the first
screen is loaded, all subsequent interactions with the server are done using
dynamic requests as opposed to URL links as is the case for multipage web
applications. There are three ways to generate a kernel request to a route:

• Use the pd_options custom attribute to define a list of states to be passed
to the server, as in the following example:
pd_options="state1=value1;state2=value2;..;staten=valuen"

• If you already have a JSON object that contains the pd_options value—
as in the case of invoking display()—you would have to transform it into
the format expected by the pd_options HTML attribute, which can be time-
consuming. In this case, it is more convenient to specify pd_options as a child
element, which allows the options to be passed directly as a JSON object (and
avoid the extra work of transforming the data), as in the following example:
<div>
 <pd_options>
 {"state1":"value1","state2":"value2",...,
 "staten":"valuen"}
 </pd_options>
</div>

• Programmatically by calling the invoke_route method, as in the following
example:

self.invoke_route(self.route_method, state1='value1',
state2='value2')

Note: Remember to use this, as opposed to self, if you are calling
this method from a Jinja2 template string, as self is already used
by Jinja2 itself.

When the state values passed in pd_options need to be dynamically computed
based on user selections, you need to use the $val(arg) special directive, which
acts as a macro that will be resolved at the time the kernel request is executed.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode3.py

Accelerate your Data Analysis with Python Libraries

[80]

The $val(arg) directive takes one argument that can be one of the following:

• The ID of an HTML element on the page, such as an input or a combobox,
as in the following example:
<div>
 <pd_options>
 {"state1":"$val(my_element_id)","state2":"value2"}
 <pd_options>
</div>

• A JavaScript function that must return the desired value, as in the following
example:

<script>
 function resValue(){
 return "my_query";
 }
</script>
...
<div pd_options="state1=$val(resValue)"></div>

Note: Dynamic value using the $val directive are supported by most
of the PixieDust custom attributes.

A GitHub project tracking sample application
Let's apply what we learned so far to implementing the sample application. To try
things out, we want to use the GitHub Rest APIs (https://developer.github.
com/v3) to search for projects and load the results into a pandas DataFrame for
analysis.

The initial code shows the welcome screen with a simple input box to enter
the GitHub query and a button to submit the request:

from pixiedust.display.app import *

@PixieApp
class GitHubTracking():
 @route()
 def main_screen(self):
 return """
<style>
 div.outer-wrapper {

https://developer.github.com/v3
https://developer.github.com/v3

Chapter 3

[81]

 display: table;width:100%;height:300px;
 }
 div.inner-wrapper {
 display: table-cell;vertical-align: middle;
 height: 100%;width: 100%;
 }
</style>
<div class="outer-wrapper">
 <div class="inner-wrapper">
 <div class="col-sm-3"></div>
 <div class="input-group col-sm-6">
 <input id="query{{prefix}}" type="text"
 class="form-control"
 placeholder="Search projects on GitHub">

 <button class="btn btn-default"
 type="button">Submit Query</button>

 </div>
 </div>
</div>
"""

app = GitHubTracking()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode4.py

A few things to note from the preceding code:

• The Bootstrap CSS framework (https://getbootstrap.com/docs/3.3) and
the jQuery JS framework (https://jquery.com) are provided by the Jupyter
Notebook. We can readily use them in our code without the need to install
them.

• Font Awesome icons (https://fontawesome.com) are also available
by default in the Notebook.

• The PixieApp code could be executed in multiple cells of the Notebook.
Since we're relying on DOM element IDs, it is important to make sure that
two elements do not have the same ID which would cause undesirable
side effects. To that end, it is recommended to always include the unique
identifier {{prefix}}, provided by the PixieDust framework, for example,
"query{{prefix}}".

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode4.py
https://getbootstrap.com/docs/3.3
https://jquery.com
https://fontawesome.com

Accelerate your Data Analysis with Python Libraries

[82]

The results are shown in the following screenshot:

Welcome screen of our GitHub Tracking application

The next step is to create a new route that takes the user value and returns the
results. This route will be invoked by the Submit Query button.

To keep things simple, the following code doesn't use a Python library to interface
with GitHub, such as PyGithub (http://pygithub.readthedocs.io/en/latest),
instead, we'll directly call the REST APIs as documented in the GitHub website:

Note: When you see the following notation [[GitHubTracking]],
this means that the code is meant to be added to the GitHubTracking
PixieApp class and, to avoid repeating the surrounding code over and
over again, it has been omitted. When in doubt, you can always refer
to the complete Notebook specified at the end of the section.

import requests
import pandas
[[GitHubTracking]]
@route(query="*")
@templateArgs
def do_search(self, query):
 response = requests.get("https://api.github.com/search/
repositories?q={}".format(query))
 frames = [pandas.DataFrame(response.json()['items'])]
 while response.ok and "next" in response.links:
 response = requests.get(response.links['next']['url'])
 frames.append(pandas.DataFrame(response.json()['items']))

 pdf = pandas.concat(frames)
 response = requests.get("https://api.github.com/search/
repositories?q={}".format(query))
 if not response.ok:

http://pygithub.readthedocs.io/en/latest

Chapter 3

[83]

 return "<div>An Error occurred: {{response.text}}</div>"
 return """<h1><center>{{pdf|length}} repositories were found</
center></h1>"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode5.py

In the preceding code, we created a route called do_search that takes one argument
called query, which we use to build an API URL to GitHub. Using the requests
Python module (http://docs.python-requests.org) to issue a GET request to
this URL, we get a JSON payload that we turn into a pandas DataFrame. According
to the GitHub documentation, the Search API paginates with the next page being
stored in the link's headers. The code uses a while loop to go over each link and load
the next page into a new DataFrame. We then concatenate all the DataFrames into
one called pdf. All we have left to do is build the HTML fragment that will display
the results. The fragment uses the Jinja2 notation {{...}} to access the pdf variable
defined as a local variable, which only works because we used the @templateArgs
decorator in the do_search method. Notice that we also use a Jinja2 filter called
length to display the number of repositories found: {{pdf|length}}.

For more information on filters, visit the following:
http://jinja.pocoo.org/docs/templates/#filters

We still need to invoke the do_search route when the user clicks on the
Submit Query button. For that, we add the pd_options attribute to the
<button> element, as highlighted here:

<div class="input-group col-sm-6">
 <input id="query{{prefix}}" type="text"
 class="form-control"
 placeholder="Search projects on GitHub">

 <button class="btn btn-default"
 type="button"
 pd_options="query=$val(query{{prefix}})">
 Submit Query
 </button>

</div>

We use the $val() directive in the pd_options attribute to dynamically retrieve
the value of the input box with ID equals to "query{{prefix}}" and store it in
the query argument.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode5.py
http://docs.python-requests.org
http://jinja.pocoo.org/docs/templates/#filters

Accelerate your Data Analysis with Python Libraries

[84]

Displaying the search results in a table
The preceding code loads all the data at once, which is not recommended since we
could have a huge number of hits. Similarly, displaying it all in one go would make
the UI sluggish and non-practical. Thankfully, we can easily build a paginated table
without too much effort, using the following steps:

1. Create a route called do_retrieve_page that takes a URL as an argument
and returns the HTML fragment for the table body

2. Maintain the first, previous, next, and last URLs as fields in the PixieApp
class

3. Create a pagination widget (we'll use Bootstrap since it's available)
with First, Prev, Next, and Last button

4. Create a table placeholder with the columns headers to be displayed

We'll now update the code for do_search, as follows:

Note: The following code is referencing the do_retrieve_page method
which we will define a little later. Please do not attempt to run this code
as is until you also add the do_retrieve_page method.

[[GitHubTracking]]
@route(query="*")
@templateArgs
def do_search(self, query):
 self.first_url = "https://api.github.com/search/
repositories?q={}".format(query)
 self.prev_url = None
 self.next_url = None
 self.last_url = None

 response = requests.get(self.first_url)
 if not response.ok:
 return "<div>An Error occurred: {{response.text}}</div>"

 total_count = response.json()['total_count']
 self.next_url = response.links.get('next', {}).get('url',
 None)
 self.last_url = response.links.get('last', {}).get('url',
 None)
 return """
<h1><center>{{total_count}} repositories were found</center></h1>
<ul class="pagination">
 <a href="#" pd_options="page=first_url"

Chapter 3

[85]

 pd_target="body{{prefix}}">First
 <a href="#" pd_options="page=prev_url"
 pd_target="body{{prefix}}">Prev
 <a href="#" pd_options="page=next_url"
 pd_target="body{{prefix}}">Next
 <a href="#" pd_options="page=last_url"
 pd_target="body{{prefix}}">Last

<table class="table">
 <thead>
 <tr>
 <th>Repo Name</th>
 <th>Lastname</th>
 <th>URL</th>
 <th>Stars</th>
 </tr>
 </thead>
 <tbody id="body{{prefix}}">
 {{this.invoke_route(this.do_retrieve_page,
 page='first_url')}}
 </tbody>
</table>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode6.py

The preceding code sample shows a very important property of PixieApps, which
is that you can maintain state throughout the life cycle of the application by simply
storing the data into class variables. In this case, we use self.first_url, self.
prev_url, self.next_url, and self.last_url. These variables use the pd_
options property for each button in the pagination widget and update each time
the do_retrieve_page route is invoked. The fragment returned by do_search now
returns a table with a placeholder for the body, identified by body{{prefix}},
which becomes the pd_target for each button. We also use the invoke_route
method to make sure that we get the first page when the table is first displayed.

We've seen before that the HTML fragment returned by a route is used to replace the
entire page, but in the preceding code, we use the pd_target="body{{prefix}}"
attribute to signify that the HTML fragment will be injected in the body element
of the table that has the body{{prefix}} ID. If needed, you can also define multiple
targets for a user action, by creating one or more <target> elements as children of
the clickable source element. Each <target> element can itself use all the PixieApp
custom attributes to configure kernel requests.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode6.py

Accelerate your Data Analysis with Python Libraries

[86]

Here is an example:

<button type="button">Multiple Targets
 <target pd_target="elementid1"
 pd_options="state1=value1"></target>
 <target pd_target="elementid2"
 pd_options="state2=value2"></target>
</button>

Back to our GitHub sample application, the do_retrieve_page method now looks
like this:

[[GitHubTracking]]
@route(page="*")
@templateArgs
def do_retrieve_page(self, page):
 url = getattr(self, page)
 if url is None:
 return "<div>No more rows</div>"
 response = requests.get(url)
 self.prev_url = response.links.get('prev', {}).get('url',
 None)
 self.next_url = response.links.get('next', {}).get('url',
 None)
 items = response.json()['items']
 return """
{%for row in items%}
<tr>
 <td>{{row['name']}}</td>
 <td>{{row.get('owner',{}).get('login', 'N/A')}}</td>
 <td><a href="{{row['html_url']}}"
 target="_blank">{{row['html_url']}}</td>
 <td>{{row['stargazers_count']}}</td>
</tr>
{%endfor%}
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode7.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode7.py

Chapter 3

[87]

The page argument is a string that contains the name of the url class variable
we want to display. We use the standard getattr Python function (https://docs.
python.org/2/library/functions.html#getattr) to get the url value from the
page. We then issue a GET request on the GitHub API url to retrieve the payload
as JSON format which we pass to the Jinja2 template to generate the set of rows
that will be injected in the table. For that, we use the {%for…%} loop control structure
available in Jinja2 (http://jinja.pocoo.org/docs/templates/#for) to generate
a sequence of <tr> and <td> HTML tags.

The following screenshot shows the search results for the query: pixiedust:

Screen showing the list of GitHub repo resulting from a query

In Part 1, we showed how to create the GitHubTracking PixieApp,
invoke the GitHub query REST API, and display the results in a table
using pagination. You can find the complete Notebook with the source
code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-%20
Part%201.ipynb

In the next section, we will explore more PixieApp features that will allow us to
improve the application by letting the user drill down into a particular repository
and visualize various statistics about the repository.

https://docs.python.org/2/library/functions.html#getattr
https://docs.python.org/2/library/functions.html#getattr
http://jinja.pocoo.org/docs/templates/#for
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb

Accelerate your Data Analysis with Python Libraries

[88]

The first step is to add a button to each row of the search results table that triggers
a new route for visualizing the selected repository statistics.

The following code is part of the do_search function and adds a new column in the
table header:

<thead>
 <tr>
 <th>Repo Name</th>
 <th>Lastname</th>
 <th>URL</th>
 <th>Stars</th>
 <th>Actions</th>
 </tr>
</thead>

To complete the table, we update the do_retrieve_page method to add a new
cell that contains a <button> element, with pd_options arguments that match
the new route: analyse_repo_owner and analyse_repo_name. The values of these
arguments are extracted from the row element used for iterating over the payload
received from the GitHub request:

{%for row in items%}
<tr>
 <td>{{row['name']}}</td>
 <td>{{row.get('owner',{}).get('login', 'N/A')}}</td>
 <td><a href="{{row['html_url']}}"
 target="_blank">{{row['html_url']}}</td>
 <td>{{row['stargazers_count']}}</td>
 <td>
 <button pd_options=
 "analyse_repo_owner={{row["owner"]["login"]}};
 analyse_repo_name={{row['name']}}"
 class="btn btn-default btn-sm" title="Analyze Repo">
 <i class="fa fa-line-chart"></i>
 </button>
 </td>
</tr>
{%endfor%}

With this simple code change in place, restart the PixieApp by running the cell
again and we can now see the button for each repo, even though we haven't yet
implemented the corresponding route, which we'll implement next. As a reminder,
when no matching route is found, the default route is triggered.

Chapter 3

[89]

The following screenshot shows the table with the added buttons:

Adding action buttons for each row

The next step is to create the route associated with the Repo Visualization page.
The design for this page is rather simple: from a combobox, the user chooses the type
of data they want to visualize on the page. The GitHub REST API provides access to
many types of data but, for this sample application, we will use the commit activity
data, which is part of the Statistics category (see https://developer.github.com/
v3/repos/statistics/#get-the-last-year-of-commit-activity-data for
a detailed description of this API).

As an exercise, feel free to improve this sample application by adding
visualizations for other types of APIs, such as the Traffic API (https://
developer.github.com/v3/repos/traffic).

It's also important to note that, even though most of the GitHub APIs work without
authentication, the server may throttle the responses if you don't provide credentials.
To authenticate the requests, you will need to use your GitHub password or generate
a personal access token by selecting the Developer settings menu on your GitHub
Settings page, then click on Personal access tokens menu, followed by the
Generate new token button.

In a separate Notebook cell, we will create two variables for the GitHub user
ID and token:

github_user = "dtaieb"
github_token = "XXXXXXXXXX"

https://developer.github.com/v3/repos/statistics/#get-the-last-year-of-commit-activity-data for a detailed description of this API
https://developer.github.com/v3/repos/statistics/#get-the-last-year-of-commit-activity-data for a detailed description of this API
https://developer.github.com/v3/repos/statistics/#get-the-last-year-of-commit-activity-data for a detailed description of this API
https://developer.github.com/v3/repos/traffic
https://developer.github.com/v3/repos/traffic

Accelerate your Data Analysis with Python Libraries

[90]

These variables will be used later on to authenticate the requests. Note that, even
though these variables are created in their own cell, they are visible to the entire
Notebook, including the PixieApp code.

To provide good code modularity and reuse, we'll implement the Repo
Visualization page in a new class and have our main PixieApp class inherit from
it and automatically reuse its routes. This is a pattern to keep in mind when you
start having large projects and want to break it down into multiple classes.

The main route for the Repo Visualization page returns an HTML fragment that
has a drop-down menu and a <div> placeholder for the visualizations. The drop-
down menu is created using Bootstrap dropdown class (https://www.w3schools.
com/bootstrap/bootstrap_dropdowns.asp). To make the code easier to maintain,
the menu items are generated using a Jinja2 {%for..%} loop over an array of tuples
(https://docs.python.org/3/tutorial/datastructures.html#tuples-and-
sequences) called analyses that contains a description and a function for loading
the data into a pandas DataFrame. Again here, we create this array in its own cell,
which will be referenced in the PixieApp class:

analyses = [("Commit Activity", load_commit_activity)]

Note: The load_commit_activity function will be discussed later
on in this section.
For the purpose of this sample application, the array only contains
one element related to the commit activity, but any element you may
add in the future will automatically be picked up by the UI.

The do_analyse_repo route has two arguments: analyse_repo_owner and
analyse_repo_name, which should be sufficient to access the GitHub APIs. We
also need to save these arguments as class variables because they will be needed
in the route that generates the visualizations:

@PixieApp
class RepoAnalysis():
 @route(analyse_repo_owner="*", analyse_repo_name="*")
 @templateArgs
 def do_analyse_repo(self, analyse_repo_owner, analyse_repo_name):
 self._analyse_repo_owner = analyse_repo_owner
 self._analyse_repo_name = analyse_repo_name
 return """
<div class="container-fluid">
 <div class="dropdown center-block col-sm-2">
 <button class="btn btn-primary dropdown-toggle"
 type="button" data-toggle="dropdown">
 Select Repo Data Set

https://www.w3schools.com/bootstrap/bootstrap_dropdowns.asp
https://www.w3schools.com/bootstrap/bootstrap_dropdowns.asp
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Chapter 3

[91]

 </button>
 <ul class="dropdown-menu"
 style="list-style:none;margin:0px;padding:0px">
 {%for analysis,_ in this.analyses%}

 <a href="#"
 pd_options="analyse_type={{analysis}}"
 pd_target="analyse_vis{{prefix}}"
 style="text-decoration: none;background-
color:transparent">
 {{analysis}}

 {%endfor%}

 </div>
 <div id="analyse_vis{{prefix}}" class="col-sm-10"></div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode8.py

Two things to note in the preceding code are the following:

• The Jinja2 template references the analyses array using
the this keyword, even though the analyses variable
is not defined as a class variable. This works because of
another important PixieApp feature: any variable defined
in the Notebook itself can be referenced as if they were
class variables of the PixieApp.

• I store analyse_repo_owner and analyse_repo_name
as class variables with a different name, for example, _analyse_
repo_owner and _analyse_repo_name. This is important
because using the same name would have a side effect on the
route matching algorithm, which also looks at class variables
to find arguments. Using the same name would then cause
this route to always be found, which is not the desired effect.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode8.py

Accelerate your Data Analysis with Python Libraries

[92]

The action button link is defined by the <a> tag and uses pd_options to access
a route that has one argument called analyse_type, as well as pd_target pointing
at the "analyse_vis{{prefix}}" placeholder, <div>, defined below in the same
HTML fragment.

Invoking the PixieDust display() API using
pd_entity attribute
When using the pd_options attribute to create a kernel request, the PixieApp
framework uses the current PixieApp class as the target. However, you can change
this target by specifying a pd_entity attribute. You could, for example, point
at another PixieApp or, more interestingly, point at a data structure supported
by the display() API, such as a pandas or Spark DataFrame. In this case, and
provided that you include the correct options as expected by the display() API,
the generated output will be the chart itself (an image in the case of Matplotlib,
Iframe in the case of Mapbox, or an SVG in the case of Bokeh). One simple way to get
the correct options is to invoke the display() API in its own cell, configure the chart
as desired using the menus and then copy the cell metadata JSON fragment available
by clicking on the Edit Metadata button. (You may first have to enable the button
by using the menu View | Cell Toolbar | Edit Metadata).

You can also specify pd_entity without any value. In this case, the PixieApp
framework will use the entity passed as the first argument to the run method
used to launch the PixieApp application. For example, my_pixieapp.run(cars)
with cars being a pandas or Spark DataFrame created by the pixiedust.
sampleData() method. The value of pd_entity can also be a function call
that returns the entity. This is useful when you want to dynamically compute
the entity before rendering it. As with other variables, the scope of pd_entity
can be either the PixieApp class or any variable declared in the Notebook.

For example, we can create a function in its own cell that takes a prefix as an
argument and returns a pandas DataFrame. We then use it as a pd_entity
value in my PixieApp, as shown in the following code:

def compute_pdf(key):
 return pandas.DataFrame([
 {"col{}".format(i): "{}{}-{}".format(key,i,j) for i in
range(4)} for j in range(10)
])

Chapter 3

[93]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode9.py

In the preceding code, we used Python list comprehensions (https://docs.python.
org/2/tutorial/datastructures.html#list-comprehensions) to quickly
generate mock data based on the key argument.

Python list comprehensions are one of my favorite features of the
Python language as they let you create, transform, and extract data
with an expressive and concise syntax.

I can then create a PixieApp that uses the compute_pdf function as a pd_entity
to render the data as a table:

from pixiedust.display.app import *
@PixieApp
class TestEntity():
 @route()
 def main_screen(self):
 return """
 <h1><center>
 Simple PixieApp with dynamically computed dataframe
 </center></h1>
 <div pd_entity="compute_pdf('prefix')"
 pd_options="handlerId=dataframe"
 pd_render_onload></div>
 """
test = TestEntity()
test.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode10.py

In the preceding code, for simplicity, I hardcoded the key to 'prefix' and I'll
leave it as an exercise to use an input control and the $val() directive to make
it user definable.

Another important thing to notice is the use of the pd_render_onload attribute
in the div that displays the chart. This attribute tells PixieApp to execute the kernel
request defined by the element immediately after it is loaded into the browser DOM.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode9.py
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode10.py

Accelerate your Data Analysis with Python Libraries

[94]

The results for the preceding PixieApp are shown in the following screenshot:

Dynamic DataFrame creation within a PixieApp

Back to our GitHub Tracking application, let's now apply the pd_entity value to
the DataFrame loaded from the GitHub Statistics API. We create a method called
load_commit_activity, responsible for loading the data into a pandas DataFrame
and returning it along with the pd_options needed to display the chart:

from datetime import datetime
import requests
import pandas
def load_commit_activity(owner, repo_name):
 response = requests.get(
 "https://api.github.com/repos/{}/{}/stats/commit_activity".
format(owner, repo_name),
 auth=(github_user, github_token)
).json()
 pdf = pandas.DataFrame([
 {"total": item["total"],
 "week":datetime.fromtimestamp(item["week"])} for item in
response
])

 return {
 "pdf":pdf,
 "chart_options": {

Chapter 3

[95]

 "handlerId": "lineChart",
 "keyFields": "week",
 "valueFields": "total",
 "aggregation": "SUM",
 "rendererId": "bokeh"
 }
 }

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode11.py

The preceding code sends a GET request to GitHub, authenticated with the github_
user and github_token variables set up at the beginning of the Notebook. The
response is a JSON payload that we'll use to create a pandas DataFrame. Before we
can create the DataFrame, we need to transform the JSON payload in to the right
format. Right now, the payload looks like this:

[
{"days":[0,0,0,0,0,0,0],"total":0,"week":1485046800},
{"days":[0,0,0,0,0,0,0],"total":0,"week":1485651600},
{"days":[0,0,0,0,0,0,0],"total":0,"week":1486256400},
{"days":[0,0,0,0,0,0,0],"total":0,"week":1486861200}
...
]

We need to drop the days key as it's not needed for displaying the chart and,
for proper chart display, we need to convert the value of the week key, which is
a Unix timestamp, into a Python datetime object. This transformation is done using
a Python list comprehension with a simple line of code:

[{"total": item["total"], "week":datetime.fromtimestamp(item["week"])}
for item in response]

In the current implementation, the load_commit_activity function is defined in
its own cell, but we could also have defined it as a member method of the PixieApp.
As a best practice, using its own cell is very convenient because we can unit test the
function and iterate rapidly on it without incurring the overhead of running the full
app every time.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode11.py

Accelerate your Data Analysis with Python Libraries

[96]

To get the pd_options value, we can simply run the function with a sample
repo information and then call the display() API in a separate cell:

Using display() in a separate cell to get the visualization configuration

To obtain the preceding chart, you need to select Line Chart and then, in the
Options dialog, drag and drop the week column to the Keys box and the total
column to the Values box. You also need to select Bokeh as the renderer. Once done,
notice that PixieDust will automatically detect that the x axis is a datetime and will
adjust the rendering accordingly.

Using the Edit Metadata button, we can now copy the chart options JSON fragment:

Chapter 3

[97]

Capturing the display() JSON configuration

And return it in the load_commit_activity payload:

return {
 "pdf":pdf,
 "chart_options": {
 "handlerId": "lineChart",
 "keyFields": "week",
 "valueFields": "total",
 "aggregation": "SUM",
 "rendererId": "bokeh"
 }
 }

We are now ready to implement the do_analyse_type route in the RepoAnalysis
class, as shown in the following code:

[[RepoAnalysis]]
@route(analyse_type="*")
@templateArgs
def do_analyse_type(self, analyse_type):
 fn = [analysis_fn for a_type,analysis_fn in analyses if a_type ==
analyse_type]
 if len(fn) == 0:
 return "No loader function found for {{analyse_type}}"
 vis_info = fn[0](self._analyse_repo_owner,
 self._analyse_repo_name)
 self.pdf = vis_info["pdf"]
 return """

Accelerate your Data Analysis with Python Libraries

[98]

 <div pd_entity="pdf" pd_render_onload>
 <pd_options>{{vis_info["chart_options"] | tojson}}</pd_
options>
 </div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode12.py

The route has one argument called analyse_type, which we use as a key to find
the load function in the analyses array (notice that I again use a list comprehension
to do the search quickly). We then call this function passing the repo owner and
name to get the vis_info JSON payload and store the pandas DataFrame into a
class variable called pdf. The returned HTML fragment will then use pdf as the
pd_entity value and vis_info["chart_options"] as pd_options. Here I use
the tojson Jinja2 filter (http://jinja.pocoo.org/docs/templates/#list-of-
builtin-filters) to ensure that it is properly escaped in the generated HTML.
I am also allowed to use the vis_info variable even though it's been declared
on the stack because I used the @templateArgs decorator for the function.

The last thing to do before testing our improved application is to make sure the
main GitHubTracking PixieApp class inherits from the RepoAnalysis PixieApp:

@PixieApp
class GitHubTracking(RepoAnalysis):
 @route()
 def main_screen(self):
 <<Code omitted here>>

 @route(query="*")
 @templateArgs
 def do_search(self, query):
 <<Code omitted here>>

 @route(page="*")
 @templateArgs
 def do_retrieve_page(self, page):
 <<Code omitted here>>

app = GitHubTracking()
app.run()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode12.py
http://jinja.pocoo.org/docs/templates/#list-of-builtin-filters
http://jinja.pocoo.org/docs/templates/#list-of-builtin-filters

Chapter 3

[99]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode13.py

A screenshot of the Repo Analysis page is shown here:

GitHub repo commit activity visualization

If you want to experiment further, you can find the complete
Notebook for the GitHub Tracking application Part 2 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-
%20Part%202.ipynb

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb

Accelerate your Data Analysis with Python Libraries

[100]

Invoking arbitrary Python code with pd_script
In this section, we look at the pd_script custom attribute which lets you run
arbitrary Python code whenever a kernel request is triggered. There are a few
rules that govern how the Python code is executed:

• The code has access to the PixieApp class using the self keyword, as well
as any variables, functions, and classes defined in the Notebook, as in the
following example:
<button type="submit" pd_script="self.state='value'">Click me</
button>

• If a pd_target is specified, then any statement using the print function
will be output in the target element. This is not the case if no pd_target is
present. In other words, you cannot use pd_script to do a full-page refresh
(you would have to use the pd_options attribute instead), as in the example:
from pixiedust.display.app import *

def call_me():
 print("Hello from call_me")

@PixieApp
class Test():
 @route()
 def main_screen(self):
 return """
 <button type="submit" pd_script="call_me()"
 pd_target="target{{prefix}}">Click me</button>

 <div id="target{{prefix}}"></div>
 """
Test().run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode14.py

• If the code contains more than one line, it is recommended to use the pd_
script child element, which lets you write the Python code using multiple
lines. When using this form, make sure that the code respects the Python
language rules for indentation, as in the example:

@PixieApp
class Test():

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode14.py

Chapter 3

[101]

 @route()
 def main_screen(self):
 return """
 <button type="submit"
 pd_script="call_me()"
 pd_target="target{{prefix}}">
 <pd_script>
 self.name="some value"
 print("This is a multi-line pd_script")
 </pd_script>
 Click me
 </button>

 <div id="target{{prefix}}"></div>
 """
Test().run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode15.py

One common use case for pd_script is to update some state on the server
before triggering a kernel request. Let's apply this technique to our GitHub Tracking
application by adding a checkbox to switch the visualization between a line chart
and a statistical summary of the data.

In the fragment HTML returned by do_analyse_repo, we add the checkbox element
used to switch between the chart and the statistics summary:

[[RepoAnalysis]]
...
return """
<div class="container-fluid">
 <div class="col-sm-2">
 <div class="dropdown center-block">
 <button class="btn btn-primary
 dropdown-toggle" type="button"
 data-toggle="dropdown">
 Select Repo Data Set

 </button>
 <ul class="dropdown-menu"
 style="list-style:none;margin:0px;padding:0px">
 {%for analysis,_ in this.analyses%}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode15.py

Accelerate your Data Analysis with Python Libraries

[102]

 <a href="#"
 pd_options="analyse_type={{analysis}}"
 pd_target="analyse_vis{{prefix}}"
 style="text-decoration: none;background-
color:transparent">
 {{analysis}}

 {%endfor%}

 </div>
 <div class="checkbox">
 <label>
 <input id="show_stats{{prefix}}" type="checkbox"
 pd_script="self.show_stats=('$val(show_
stats{{prefix}})' == 'true')">
 Show Statistics
 </label>
 </div>
 </div>
 <div id="analyse_vis{{prefix}}" class="col-sm-10"></div>
</div>
"""

In the checkbox element, we include a pd_script attribute that modifies a variable
state on the server based on the state of the checkbox element. We use the $val()
directive to retrieve the value of the show_stats_{{prefix}} element and
compare it with the true string. When the user clicks on the checkbox, the state
is immediately changed on the server and, the next time the user clicks on the menu,
the stats are showing instead of the charts.

We now need to change the do_analyse_type route to dynamically configure
pd_entity and chart_options:

[[RepoAnalysis]]
@route(analyse_type="*")
@templateArgs
def do_analyse_type(self, analyse_type):
 fn = [analysis_fn for a_type,analysis_fn in analyses if a_type ==
analyse_type]
 if len(fn) == 0:
 return "No loader function found for {{analyse_type}}"
 vis_info = fn[0](self._analyse_repo_owner,
 self._analyse_repo_name)

Chapter 3

[103]

 self.pdf = vis_info["pdf"]
 chart_options = {"handlerId":"dataframe"} if self.show_stats else
vis_info["chart_options"]
 return """
 <div pd_entity="get_pdf()" pd_render_onload>
 <pd_options>{{chart_options | tojson}}</pd_options>
 </div>
 """

You can find the file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode16.py

chart_options is now a local variable that contains options for displaying as a table
if show_stats is true and regular line chart options if not.

pd_entity is now set to the get_pdf() method, which is responsible
for returning the appropriate DataFrame based on the show_stats variable:

def get_pdf(self):
 if self.show_stats:
 summary = self.pdf.describe()
 summary.insert(0, "Stat", summary.index)
 return summary
 return self.pdf

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode17.py

We use the pandas describe() method (https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.describe.html) that returns
a DataFrame containing summary statistics, such as count, mean, standard deviation,
and so on. We also make sure that the first column of this DataFrame contains the
name of the statistic.

The last change we need to make is to initialize the show_stats variable because,
if we don't, then the first time we check it, we'll get an AttributeError exception.

Because of the internal mechanics of using the @PixieApp decorator, you can't use
the __init__ method to initialize variables; instead, the PixieApp programming
model requires you to use a method called setup, which is guaranteed to be called
when the application starts:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode17.py
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html

Accelerate your Data Analysis with Python Libraries

[104]

@PixieApp
class RepoAnalysis():
 def setup(self):
 self.show_stats = False
 ...

Note: If you have a class inheriting from other PixieApps, then
the PixieApp framework will automatically call all setup functions
from base classes using their order of appearance.

The following screenshot shows the summary statistics being displayed:

Summary statistics for a GitHub repo

You can find the complete Notebook for the GitHub Tracking application
Part 3 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-
%20Part%203.ipynb

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb

Chapter 3

[105]

Making the application more responsive with
pd_refresh
We want to improve the user experience by making the Show Statistics
button directly show the statistics table instead of having the user to click on the
menu again. Similar to the menu that loads the Commit Activity, we could add
a pd_options attribute to the checkbox with the pd_target attribute pointing
at the analyse_vis{{prefix}} element. Instead of duplicating pd_options in
each of the controls that triggers a new display, we could add it once to analyse_
vis{{prefix}} and have it update itself with the pd_refresh attribute.

The following diagram shows the differences between the two designs:

Sequence diagram with and without pd_refresh

In both cases, step 1 is to update some state on the server side. In the case of the route
being invoked by the Control shown in step 2, the request specification is stored
in the control itself, triggering step 3, which is to generate the HTML fragment and
inject it in the target element. With pd_refresh, the control doesn't know the pd_
options to invoke the route, instead, it simply uses pd_refresh to signal the target
element, which in turn will invoke the route. In this design, we only need to specify
the request once (in the target element) and user control needs only to update state
before triggering a refresh. This makes the implementation much easier to maintain.

To better understand the differences between the two designs, let's compare both
implementations in the RepoAnalysis class.

Accelerate your Data Analysis with Python Libraries

[106]

For the Analysis menu, the changes are as follows:

Before, the control triggered the analyse_type route, passing the {{analysis}}
selection as part of the kernel request, targeting analyse_vis{{prefix}}:

<a href="#" pd_options="analyse_type={{analysis}}"
 pd_target="analyse_vis{{prefix}}"
 style="text-decoration: none;background-
color:transparent">
 {{analysis}}

After, the control now stores the selection state as a class field and asks the analyse_
vis{{prefix}} element to refresh itself:

<a href="#" pd_script="self.analyse_type='{{analysis}}'"
 pd_refresh="analyse_vis{{prefix}}"
 style="text-decoration: none;background-color:transparent">
 {{analysis}}

Similarly, the changes for the Show Statistics checkbox are as follows:

Before the checkbox simply set the show_stats state in the class; the user had to click
on the menu again to get the visualization:

<div class="checkbox">
 <label>
 <input type="checkbox"
 id="show_stats{{prefix}}"
pd_script="self.show_stats='$val(show_stats{{prefix}})'=='true'">
 Show Statistics
 </label>
</div>

After, the visualization is updated as soon as the checkbox is selected, thanks to the
pd_refresh attribute:

<div class="checkbox">
 <label>
 <input type="checkbox"
 id="show_stats{{prefix}}"
 pd_script="self.show_stats='$val(show_stats{{prefix}})'=='true'"
 pd_refresh="analyse_vis{{prefix}}">
 Show Statistics
 </label>
</div>

Chapter 3

[107]

Finally, the changes for the analyse_vis{{prefix}} element are as follows:

Before, the element didn't know how to update itself, it relies on other controls
to direct a request to the appropriate route:

<div id="analyse_vis{{prefix}}" class="col-sm-10"></div>

After, the element carries the kernel configuration to update itself; any control
can now change state and call refresh:

<div id="analyse_vis{{prefix}}" class="col-sm-10"
 pd_options="display_analysis=true"
 pd_target="analyse_vis{{prefix}}">
</div>

You can find the complete Notebook for this section for the GitHub
Tracking application Part 4 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-%20
Part%204.ipynb

Creating reusable widgets
The PixieApp programming model provides a mechanism for packaging the
HTML and logic of a complex UI construct into a widget that can be easily
called from other PixieApps. The steps to create a widget are as follows:

1. Create a PixieApp class that will contain the widget.
2. Create a route with a special widget attribute, as in the example:

@route(widget="my_widget")

It will be the starting route for the widget.

3. Create a consumer PixieApp class that inherits from the widget
PixieApp class.

4. Invoke the widget from a <div> element by using the pd_widget attribute.

Here is an example of how to create a widget and consumer PixieApp class:

from pixiedust.display.app import *

@PixieApp

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb

Accelerate your Data Analysis with Python Libraries

[108]

class WidgetApp():
 @route(widget="my_widget")
 def widget_main_screen(self):
 return "<div>Hello World Widget</div>"

@PixieApp
class ConsumerApp(WidgetApp):
 @route()
 def main_screen(self):
 return """<div pd_widget="my_widget"></div>"""

ConsumerApp.run()

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode18.py

Summary
In this chapter, we've covered the foundational building blocks of the PixieApp
programming model that lets you create powerful tools and dashboards directly
in the Notebook.

We've also illustrated PixieApp concepts and techniques by showing how
to build a GitHub Tracking sample application, including detailed code examples.
Best practices and more advanced PixieApp concepts will be covered in Chapter 5,
Python and PixieDust Best Practices and Advanced Concepts, including events,
streaming, and debugging.

By now, you should hopefully have a good idea of how Jupyter Notebooks,
PixieDust, and PixieApps can help bridge the gap between data scientists and
developers by enabling them to collaborate from within a single tool, such as
Jupyter Notebook.

In the next chapter, we'll show how to free the PixieApp from the Notebook
and publish it as a web application using the PixieGateway microservice server.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode18.py

[109]

Publish your Data Analysis to
the Web - the PixieApp Tool

"Data, I think, is one of the most powerful mechanisms for telling stories.
I take a huge pile of data and I try to get it to tell stories."

 – Steven Levitt, co-author of Freakonomics

In the previous chapter, we discussed how Jupyter Notebooks, coupled with
PixieDust, accelerate your data science projects with simple APIs that let you load,
clean, and visualize data without the need to write extensive code, as well as enable
collaboration between data scientists and developers with PixieApps. In this chapter,
we'll show how to liberate your PixieApps and associated data analytics from the
Jupyter Notebook by publishing them as web applications using the PixieGateway
server. This operationalization of the Notebook is particularly attractive to the line
of business user persona (business analysts, C-Suite executives, and many more) who
would like to use the PixieApps but who, unlike data scientists or developers, may
not be comfortable using Jupyter Notebooks to do so. Instead, they would prefer
to access it as a classic web application or perhaps, similar to a YouTube video,
embed it into a blog post or a GitHub page. Using a website or a blog post, it will
be easier to communicate the valuable insights and other results extracted from the
data analytics from your data.

By the end of this chapter, you will be able to install and configure a PixieGateway
server instance both locally for testing or in a Kubernetes container on the cloud
for production. For those readers who are not familiar with Kubernetes, we'll cover
the basics in the next section.

Publish your Data Analysis to the Web - the PixieApp Tool

[110]

The other main capability of the PixieGateway server that we'll cover in this chapter,
is the ability to easily share a chart created with the PixieDust display() API. We'll
show how to publish it as a web page accessible by your team with a single click of
a button. Finally, we'll cover the PixieGateway admin console that lets you manage
your applications, charts, kernels, server logs, and a Python console executing
ad-hoc code requests against a kernel.

Note: The PixieGateway server is a subcomponent of PixieDust, its source
code can be found here:
https://github.com/pixiedust/pixiegateway

Overview of Kubernetes
Kubernetes (https://kubernetes.io) is a scalable open source system for
automating and orchestrating the deployment and management of containerized
applications, which are very popular among cloud service providers. It is most
often used with Docker containers (https://www.docker.com) although other
types of containers are supported. Before you start, you will need access to a set of
computers that have been configured as a Kubernetes cluster; you can find a tutorial
on how to create such a cluster here: https://kubernetes.io/docs/tutorials/
kubernetes-basics.

If you don't have the computer resources, a good solution would be to use
a public cloud vendor that provides a Kubernetes service, such as Amazon
AWS EKS (https://aws.amazon.com/eks), Microsoft Azure (https://azure.
microsoft.com/en-us/services/container-service/kubernetes), or IBM
Cloud Kubernetes Service (https://www.ibm.com/cloud/container-service).

To better understand how a Kubernetes cluster works, let's look at the high-level
architecture shown in the following diagram:

https://github.com/pixiedust/pixiegateway
https://kubernetes.io
https://www.docker.com
https://kubernetes.io/docs/tutorials/kubernetes-basics
https://kubernetes.io/docs/tutorials/kubernetes-basics
https://aws.amazon.com/eks
https://azure.microsoft.com/en-us/services/container-service/kubernetes
https://azure.microsoft.com/en-us/services/container-service/kubernetes
https://www.ibm.com/cloud/container-service

Chapter 4

[111]

Kubernetes high-level architecture

At the top of the stack, we have the kubectl command-line tool that enables users
to manage the Kubernetes cluster by sending commands to the Kubernetes Master
Node. The kubectl commands use the following syntax:

kubectl [command] [TYPE] [NAME] [flags]

Where:

• command: This specifies the operation, for example, create, get, describe,
and delete

• TYPE: This specifies the resource type, for example, pods, nodes, and
services

• NAME: This specifies the name of the resource
• flags: This specifies optional flags specific to the operation

For more information on how to use kubectl, visit the following:

https://kubernetes.io/docs/reference/kubectl/overview

Another important component present in the worker node is the kubelet, which
controls the pod's life cyle by reading the pod configuration from the kube API Server.
It also is responsible for communication with the master node. The kube-proxy
provides load balancing capabilities between all the pods according to the policy
specified in the master node, hence ensuring high-availability of the overall application.

https://kubernetes.io/docs/reference/kubectl/overview

Publish your Data Analysis to the Web - the PixieApp Tool

[112]

In the next section, we will discuss the different ways to install and configure
the PixieGateway server, including one method that uses a Kubernetes cluster.

Installing and configuring the
PixieGateway server
Before we dive into the technical details, it would be a good idea to deploy
a PixieGateway server instance to try things out.

There are mainly two types of installation you can try: local install and server install.

Local install: Use this method for testing and development.

For this part, I strongly recommend using Anaconda virtual environments
(https://conda.io/docs/user-guide/tasks/manage-environments.html)
because they provide good isolation between the environments, enabling you
to experiment with different versions and configurations of the Python package.

If you are managing multiple environments, you can get a list of all the available
environments by using the following command:

conda env list

First, select the environment of your choice by using the following command from
a Terminal:

source activate <<my_env>>

You should see the name of your environment in the Terminal, which is an
indication that you've correctly activated it.

Next, install the pixiegateway package from PyPi by running the following
command:

pip install pixiegateway

Note: You can find more information about the pixiegateway package
on PyPi here:
https://pypi.python.org/pypi/pixiegateway

Once all the dependencies have been installed, you're ready to start the server.
Assuming that you want to use the 8899 port, you can start the PixieGateway
server using the following command:

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://pypi.python.org/pypi/pixiegateway

Chapter 4

[113]

jupyter pixiegateway --port=8899

Example output should look like this:

(dashboard) davids-mbp-8:pixiegateway dtaieb$ jupyter pixiegateway
--port=8899

Pixiedust database opened successfully

Pixiedust version 1.1.10

[PixieGatewayApp] Jupyter Kernel Gateway at http://127.0.0.1:8899

Note: To stop the PixieGateway server, simply use Ctrl + C from
the Terminal.

You can now open the PixieGateway admin console at the following URL: http://
localhost:8899/admin.

Note: When challenged, use admin as the user and blank (no password)
as the password. We'll review how to configure security and other
properties in the PixieGateway server configuration section later in
this chapter.

Server install using Kubernetes and Docker: Use this install method if you need
to run PixieGateway in a production environment where you want to give access
to the deployed PixieApps to multiple users over the web.

The following instructions will use IBM Cloud Kubernetes Service, but they
can easily be adapted to other providers:

1. Create an IBM Cloud account if you don't already have one
and create a container service instance from the catalog.

Note: A lite version plan is available for testing at no cost.

2. Download and install the Kubernetes CLI (https://kubernetes.io/
docs/tasks/tools/install-kubectl) and the IBM Cloud CLI (https://
console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.
html#getting-started).

https://kubernetes.io/docs/tasks/tools/install-kubectl
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started

Publish your Data Analysis to the Web - the PixieApp Tool

[114]

Note: An additional get started article on Kubernetes containers can
be found here:
https://console.bluemix.net/docs/containers/container_
index.html#container_index

3. Log in to the IBM Cloud and then target the org and space where your
Kubernetes instance resides. Install and initialize the container-service
plugin:
bx login -a https://api.ng.bluemix.net

bx target -o <YOUR_ORG> -s <YOUR_SPACE></YOUR_SPACE>

bx plugin install container-service -r Bluemix

bx cs init

4. Check that your cluster is created and, if not, create one:
bx cs clusters

bx cs cluster-create --name my-cluster

5. Download the cluster configuration that will be used by the kubectl
command, which is executed on your local machine, later on:
bx cs cluster-config my-cluster

The preceding command will generate a temporary YML file that contains
the cluster information and an environment variable export statement
that you must run before starting to use the kubectl command, as in the
example:
 export KUBECONFIG=/Users/dtaieb/.bluemix/plugins/container-

 service/clusters/davidcluster/kube-config-hou02-davidcluster.
yml

Note: YAML is a very popular data serialization format commonly used
for system configuration. You can find more information here:
http://www.yaml.org/start.html

6. You can now use kubectl to create the deployment and services for your
PixieGateway server. For convenience, the PixieGateway GitHub repository
already has a generic version of deployment.yml and service.yml that
you can directly reference. We'll review how to configure these files for
Kubernetes in the PixieGateway server configuration section later in this
chapter:
kubectl create -f https://github.com/ibm-watson-data-lab/

https://console.bluemix.net/docs/containers/container_index.html#container_index
https://console.bluemix.net/docs/containers/container_index.html#container_index
http://www.yaml.org/start.html

Chapter 4

[115]

pixiegateway/raw/master/etc/deployment.yml

kubectl create -f https://github.com/ibm-watson-data-lab/
pixiegateway/raw/master/etc/service.yml

7. It would be a good idea to verify the state of your clusters using the kubectl
get command:
kubectl get pods

kubectl get nodes

kubectl get services

8. Finally, you'll need the public IP address of the server, which you can find by
looking at the Public IP column of the output returned using the following
command, in the Terminal:
bx cs workers my-cluster

9. If all goes well, you can now test your deployment by opening the admin
console at http://<server_ip>>:32222/admin. This time, the default
credentials for the admin console are admin/changeme and we'll show
how to change them in the next section.

The deployment.yml file used in the Kubernetes install instructions is referencing
a Docker image that has the PixieGateway binaries and all its dependencies
preinstalled and configured. The PixieGateway Docker image is available
at https://hub.docker.com/r/dtaieb/pixiegateway-python35.

When working locally, the recommended method is to follow the steps of the local
install described earlier. However, for readers who prefer to work with Docker
images, it is possible to try out the PixieGateway Docker image locally without
Kubernetes, by directly installing it on your local laptop with a simple Docker
command:

docker run -p 9999:8888 dtaieb/pixiegateway-python35

The preceding command assumes that you have already installed Docker and that
it is currently running on your local machine. If not, you can download an installer
from the following link: https://docs.docker.com/engine/installation.

The Docker image will automatically be pulled if not already present and the
container will start, starting the PixieGateway server at local port 8888. The -p
switch in the command maps the 8888 port local to the container, to the 9999 port
local to the host machine. With the given configuration, you would access the Docker
instance of the PixieGateway server at the following URL: http://localhost:9999/
admin.

https://hub.docker.com/r/dtaieb/pixiegateway-python35
https://docs.docker.com/engine/installation

Publish your Data Analysis to the Web - the PixieApp Tool

[116]

You can find more information about the Docker command line here:
https://docs.docker.com/engine/reference/
commandline/cli

Note: Another reason why you would use this method is to provide your
own custom Docker image for the PixieGateway server. This can be useful
if you have built an extension to PixieGateway and want to provide it to
your users as an already configured Docker image. Discussion around
how to build a Docker image from a base image is beyond the scope of
this book, but you can find detailed information here:
https://docs.docker.com/engine/reference/commandline/
image_build

PixieGateway server configuration
Configuring the PixieGateway server is very similar to configuring the Jupyter
Kernel Gateway. Most options are configured using a Python configuration file;
to start things off, you can generate a template configuration file using the following
command:

jupyter kernelgateway --generate-config

The jupyter_kernel_gateway_config.py template file will be generated under
the ~/.jupyter directory (~ indicates the user home directory). You can find more
information about the standard Jupyter Kernel Gateway options here: http://
jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html.

Using the jupyter_kernel_gateway_config.py file is fine when you are working
locally and have easy access to the filesystem. When using the Kubernetes install,
it is recommended to configure the options as environment variables, which you
can set directly in the deployment.yml file by using the predefined env category.

Let's now look at each configuration options for the PixieGateway server. A list is
provided here using both the Python and Environment method:

Note: As a reminder, Python method means setting the parameter in
the jupyter_kernel_gateway_config.py Python config file, while
the Environment method means setting the parameters in the Kubernetes
deployment.yml file.

https://docs.docker.com/engine/reference/
commandline/cli
https://docs.docker.com/engine/reference/
commandline/cli
https://docs.docker.com/engine/reference/commandline/image_build
https://docs.docker.com/engine/reference/commandline/image_build
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html

Chapter 4

[117]

• Admin console credentials: Configure the user ID/password for the admin
console:

 ° Python: PixieGatewayApp.admin_user_id, PixieGatewayApp.
admin_password

 ° Environment: ADMIN_USERID and ADMIN_PASSWORD

• Storage connector: Configure a persistent storage for various resources,
such as charts, and Notebooks. By default, PixieGateway uses the local
filesystem; for example, it will store the published Notebooks under the ~/
pixiedust/gateway directory. Using the local filesystem is probably fine
for a local test environment, but when using a Kubernetes install, you will
need to explicitly use persistent volumes (https://kubernetes.io/docs/
concepts/storage/persistent-volumes), which can be difficult to use.
If no persistence strategy is put in place, the persisted files will be deleted
when the container is restarted and all your published chart and PixieApps
will disappear. PixieGateway provides another option, which is to configure
a storage connector that lets you persist the data using the mechanism and
backend of your choice.
To configure a storage connector for charts, you must specify a fully
qualified class name in either one of the following configuration variables:

 ° Python: SingletonChartStorage.chart_storage_class
 ° Environment: PG_CHART_STORAGE

The referenced connector class must inherit from the ChartStorage
abstract class defined in the pixiegateway.chartsManager package
(implementation can be found here: https://github.com/ibm-watson-
data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.
py).
PixieGateway provides an out of the box connector to the Cloudant/
CouchDB NoSQL database (http://couchdb.apache.org). To use
this connector, you'll need to set the connector class to pixiegateway.
chartsManager.CloudantChartStorage. You'll also need to specify
secondary configuration variables to specify the server and credential
information (we show the Python/Environment form):

 ° CloudantConfig.host / PG_CLOUDANT_HOST

 ° CloudantConfig.port / PG_CLOUDANT_PORT

 ° CloudantConfig.protocol / PG_CLOUDANT_PROTOCOL

 ° CloudantConfig.username / PG_CLOUDANT_USERNAME

 ° CloudantConfig.password / PG_CLOUDANT_PASSWORD

https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.py
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.py
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.py
http://couchdb.apache.org

Publish your Data Analysis to the Web - the PixieApp Tool

[118]

• Remote Kernels: Specify the configuration for a remote Jupyter Kernel
Gateway.
At the moment, this configuration option is only supported in Python
mode. The variable name you need to use is ManagedClientPool.remote_
gateway_config. The expected value is a JSON object that contains the
server information, which can be specified in two ways:

 ° protocol, host, and port
 ° notebook_gateway specifies fully qualified URL to the server

Depending on the kernel configuration, security can also be provided using
two ways:

 ° auth_token

 ° user and password

This can be seen in the following example:

c.ManagedClientPool.remote_gateway_config={
 'protocol': 'http',
 'host': 'localhost',
 'port': 9000,
 'auth_token':'XXXXXXXXXX'
}

c.ManagedClientPool.remote_gateway_config={
 'notebook_gateway': 'https://YYYYY.us-south.bluemix.net:8443/
gateway/default/jkg/',
 'user': 'clsadmin',
 'password': 'XXXXXXXXXXX'
}

Notice that, in the preceding example, you need to prefix the variable
with c.. This is a requirement coming from the underlying Jupyter/
IPython configuration mechanism.

For reference, here are the complete configuration example files using both Python
and Kubernetes Environment variables formats:

• The following are the contents of jupyter_kernel_gateway_config.py:
c.PixieGatewayApp.admin_password = "password"

c.SingletonChartStorage.chart_storage_class = "pixiegateway.
chartsManager.CloudantChartStorage"

Chapter 4

[119]

c.CloudantConfig.host="localhost"
c.CloudantConfig.port=5984
c.CloudantConfig.protocol="http"
c.CloudantConfig.username="admin"
c.CloudantConfig.password="password"

c.ManagedClientPool.remote_gateway_config={
 'protocol': 'http',
 'host': 'localhost',
 'port': 9000,
 'auth_token':'XXXXXXXXXX'
}

• The following are the contents of deployment.yml:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: pixiegateway-deployment
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: pixiegateway
 spec:
 containers:
 - name: pixiegateway
 image: dtaieb/pixiegateway-python35
 imagePullPolicy: Always
 env:
 - name: ADMIN_USERID
 value: admin
 - name: ADMIN_PASSWORD
 value: changeme
 - name: PG_CHART_STORAGE
 value: pixiegateway.chartsManager.
CloudantChartStorage
 - name: PG_CLOUDANT_HOST
 value: XXXXXXXX-bluemix.cloudant.com
 - name: PG_CLOUDANT_PORT
 value: "443"
 - name: PG_CLOUDANT_PROTOCOL
 value: https
 - name: PG_CLOUDANT_USERNAME

Publish your Data Analysis to the Web - the PixieApp Tool

[120]

 value: YYYYYYYYYYY-bluemix
 - name: PG_CLOUDANT_PASSWORD
 value: ZZZZZZZZZZZZZ

PixieGateway architecture
Now would be a good time to look again at the PixieGateway architecture diagram
presented in Chapter 2, Python and Jupyter Notebooks to Power your Data Analysis.
The server is implemented as a custom extension (called Personality) to the
Jupyter Kernel Gateway (https://github.com/jupyter/kernel_gateway).

In turn, the PixieGateway server provides extension points to customize some
behavior that we'll discuss later in this chapter.

The high-level architecture diagram for the PixieGateway server is shown here:

PixieGateway architecture diagram

As the diagram indicates, PixieGateway provides a REST interface for three types
of clients:

• Jupyter Notebook Server: This calls a dedicated set of REST APIs for sharing
charts and publishing PixieApps as web applications

• Browser client running a PixieApp: A special REST API manages the
execution of Python code in the associated kernel

• Browser client running the admin console: A dedicated set of REST
APIs for managing various server resources and stats, for example,
PixieApps and kernel instances

https://github.com/jupyter/kernel_gateway

Chapter 4

[121]

On the backend, the PixieGateway server manages the life cycle of one or more
Jupyter Kernel instances responsible for running the PixieApps. At runtime, each
PixieApp is deployed on a kernel instance using a specific set of steps. The following
diagram shows a typical topology of all the PixieApp user instances running on
the server:

The topology of running PixieApp instances

When a PixieApp is deployed on the server, the code contained in every
cell of the Jupyter Notebook is analyzed and broken into two parts:

• Warmup code: This is all the code defined in all the cells above the main
PixieApp definition. This code is run only once, when the PixieApp
application is first started on the kernel, and will not run again until the
kernel is restarted, or until it is called explicitly from the run code. This
is important because it will help you better optimize performances; for
example, you should always put in the warmup section, code that loads a
large amount of data that doesn't change much or that may require a long
time to initialize.

• Run code: This is code that will be run in its own instance for every user
session. The run code is typically extracted from the cell that contains the
PixieApp class declaration. The publisher automatically discovers this cell
by doing a static analysis of the Python code and specifically looking for the
following two criteria, which must both be met:

 ° The cell contains a class that has the @PixieApp annotation
 ° The cell instantiates the class and call its run() method

Publish your Data Analysis to the Web - the PixieApp Tool

[122]

For example, the following code must be in its own cell to qualify as the
run code:

@PixieApp
class MyApp():
 @route()
 def main_screen(self):
 return "<div>Hello World</div>"

app = MyApp()
app.run()

As we've seen in Chapter 3, Accelerate your Data Analysis with Python Libraries,
it is possible to declare multiple PixieApps in the same notebook that will be
used as child PixieApp or as base classes to the main PixieApp. In this case,
we need to make sure that they are defined in their own cell and that you
don't try to instantiate them and call their run() method.
The rule is that there can be only one main PixieApp class for which the
run() method will be called and the cell that contains this code is considered
the run code by the PixieGateway.

Note: Cells that are not marked as Code, such as Markdown, Raw
NBConvert, or Heading are ignored during the static analysis done by the
PixieGateway server. Therefore, it is safe to keep them in your Notebook.

For each client session, PixieGateway will instantiate an instance of the main
PixieApp class using the run code (represented as colored hexagons in the preceding
diagram). Depending on current load, PixieGateway will decide how many
PixieApps should run in a particular kernel instance and, if needed, automatically
spawn a new kernel to serve the extra users. For example, if five users are using the
same PixieApp, three instances may be running in a particular kernel instance and
the two others will be run in another kernel instance. PixieGateway is constantly
monitoring the usage patterns to optimize workload distribution by load balancing
the instances of PixieApps between multiple kernels.

To help understand how the Notebook code is broken down, the following
diagram reflects how the warmup and run code are extracted from the Notebook
and transformed to make sure that multiple instances coexist peacefully within the
same kernel:

As a reminder, the cell that contains the main PixieApp must
also have code that instantiates it and calls the run() method.

Chapter 4

[123]

PixieApp life cycle: Warmup and Run Code

Because a given kernel instance can host more than one Notebook with its main
PixieApp, we need to make sure that there is no accidental name collision when the
warmup code for two main PixieApps is executed. For example, the title variable
may be used in both PixieApps and, if left alone, the value for the second one would
override the value for the first one. To avoid this conflict, all the variable names
in the warmup code are made unique by injecting a namespace.

The title = 'some string' statement becomes ns1_title = 'some string'
after publication. The PixieGateway publisher will also update all references
to title throughout the code to reflect the new name. All of this renaming is
automatically done at runtime and there are no specific things that need to be
done by the developer.

We will show real code examples later on when we cover the PixieApp details page
of the admin console.

If you have packaged the code for your main PixieApp as a Python module
that is imported in the Notebook, you still need to declare the code for
a wrapper PixieApp that inherits from it. This is because the PixieGateway
does a static code analysis, looking for the @PixieApp notation, and if not
found, the main PixieApp will not be properly recognized.

For example, let's assume that you have a PixieApp named
AwesomePixieApp imported from the awesome package.
In this case, you would put the following code in its own cell:

Publish your Data Analysis to the Web - the PixieApp Tool

[124]

from awesome import AwesomePixieApp
@PixieApp
class WrapperAwesome(AwesomePixieApp):
 pass
app = WrapperAwesome()
app.run()

Publishing an application
In this section, we'll publish the GitHub Tracking application that we created in Chapter
3, Accelerate your Data Analysis with Python Libraries, into a PixieGateway instance.

You can use the completed notebook from this GitHub location:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-%20
Part%204.ipynb

From the Notebook, run the application as usual and use the publish button located
on the top-left of the cell output, to start the process:

Invoke the publish dialog

The publish dialog has multiple tab menus:

• Options:
 ° PixieGateway Server: For example, http://localhost:8899
 ° Page Title: A short description that will be used as the page title

when displayed in the browser

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb

Chapter 4

[125]

• Security: Configure the PixieApp security when accessed through the web:
 ° No security
 ° Token: A security token must be added as a query parameter to the

URL, for example, http://localhost:8899/GitHubTracking?toke
n=941b3990d5c0464586d67e48705b9deb.

Note: At this time, PixieGateway doesn't provide any authentication/
authorization mechanism. Third party authorization, such as OAuth
2.0 (https://oauth.net/2), JWT (https://jwt.io), and
others will be added in the future.

• Imports: Display the list of Python package dependencies automatically
detected by the PixieDust publisher. These imported packages will be
automatically installed, if not already present, on the kernel where the
application is running. When detecting a particular dependency, PixieDust
looks at the current system to get the version and install location, for
example, PyPi or a custom install URL such as a GitHub repo, for example.

• Kernel Spec: This is where you can choose a kernel spec for your PixieApp.
By default, PixieDust selects the default kernel available on the PixieGateway
server but if, for example, your Notebook relies on Apache Spark, you should
be able to pick a kernel that supports it. This option can also be changed after
the PixieApp has been deployed using the admin console.

Here's a sample screenshot of the PixieApp publish dialog:

PixieApp publish dialog

https://oauth.net/2
https://jwt.io

Publish your Data Analysis to the Web - the PixieApp Tool

[126]

Clicking the Publish button will start the publishing process. Upon completion
(which depending on the size of the Notebook is pretty fast), you'll see the
following screen:

Successful publish screen

You can then test the application by clicking on the provided link, which you can
copy and share with users on your team. The following screenshot shows the three
main screens of the GitHub Tracking application running as a web application on the
PixieGateway:

PixieApp running as a web application

Chapter 4

[127]

Now that you know how to publish a PixieApp, let's review a few developer best
practices and rules that will help you optimize PixieApps that are intended to be
published as web applications:

• A PixieApp instance is created for each user session, therefore to improve
performances, make sure that it doesn't include code that is long-running
or that loads a large amount of static data (data that doesn't change often).
Instead, place it in the warmup code section and reference it from the
PixieApp as needed.

• Don't forget to add the code that runs the PixieApp in the same cell. If not,
you'll end up with a blank page when running it on the web. As a good
practice, it is recommended to assign the PixieApp instance into its own
variable. For example, do this:
app = GitHubTracking()
app.run()

That's instead of the following
GitHubTracking().run()

• You can have multiple PixieApp classes declared in the same Notebook,
which is needed if you are using child PixieApp or PixieApp inheritance.
However, only one of them can be the main PixieApp, which the
PixieGateway will run. It is the one that has the extra code that instantiates
and runs the PixieApp.

• It's a good idea to add a Docstring (https://www.python.org/dev/peps/
pep-0257) to your PixieApp class that gives a short description of the
application. As we'll see in the PixieGateway admin Console section, later in
this chapter, this docstring will be displayed in the PixieGateway admin
console, as in the following example:

@PixieApp
class GitHubTracking(RepoAnalysis):
 """
 GitHub Tracking Sample Application
 """
 @route()
 def main_screen(self):
 return """
 ...

https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0257

Publish your Data Analysis to the Web - the PixieApp Tool

[128]

Encoding state in the PixieApp URL
In some cases, you may want to capture the state of a PixieApp in the URL as
query parameters so that it can be bookmarked and/or shared with other people.
The idea is that, when using query parameters, the PixieApp doesn't start from
the main screen but rather automatically activates the route corresponding to the
parameters. For example, in the GitHub Tracking application, you could use http://
localhost:8899/pixieapp/GitHubTracking?query=pixiedust to bypass the
initial screen and jump directly to the table showing the list of repositories that
match the given query.

You can have the query parameters automatically added to the URL when the route
is activated by adding the persist_args special argument to the route.

It would look like this for the do_search() route:

@route(query="*", persist_args='true')
@templateArgs
def do_search(self, query):
 self.first_url = "https://api.github.com/search/
repositories?q={}".format(query)
 self.prev_url = None
 self.next_url = None
 self.last_url = None
 ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%204/sampleCode1.py

The persist_args keyword argument does not affect how the route is activated.
It is only there to automatically add the proper query arguments to the URL when
activated. You can try to make this simple change in the Notebook, republish the
PixieApp to the PixieGateway server, and try it out. As soon as you hit the submit
button on the first screen, you'll notice that the URL is automatically updated to
include the query argument.

Note: The persist_args argument also works when running in the
Notebook although the implementation is different since we don't have
a URL. Instead, the parameters are added to the cell metadata using the
pixieapp key, as shown in the following screenshot:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode1.py

Chapter 4

[129]

Cell metadata showing the PixieApp parameters

If you are using the persist_args feature, you may find that, while doing iterative
development, it becomes cumbersome to always go to the cell metadata to remove
the parameters. As a shortcut, the PixieApp framework adds a home button in the
top-right toolbar to reset the arguments with a single click.

As an alternative, you could also avoid saving the route arguments in the cell
metadata altogether when running in the Notebook (but still save them while
running on the web). To do that, you would need to use web as the value for
the persist_args argument instead of true:

@route(query="*", persist_args='web')
…

Sharing charts by publishing them
as web pages
In this section, we show how to easily share a chart created by the display()
API and publish it as a web page.

Using the example from Chapter 2, Python and Jupyter Notebooks to Power your Data
Analysis, let's load the cars performance dataset and create a chart using display():

import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True) #car performance data
display(cars)

Publish your Data Analysis to the Web - the PixieApp Tool

[130]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%204/sampleCode2.py

In the PixieDust output interface, select the Bar Chart menu, then in the options
dialog, select horsepower for the Keys and mpg for the Values, as shown in the
following screenshot:

PixieDust Chart options

We then use the Share button to invoke the chart sharing dialog as shown in the
following screenshot, which uses Bokeh as the renderer:

Note: Chart sharing works with any renderer, and I encourage you
to try it with other renderers such as Matplotlib and Mapbox.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode2.py

Chapter 4

[131]

Invoke the Share Chart dialog

In the Share Chart dialog, you can specify the PixieGateway server and an optional
description for the chart:

Note that as a convenience, PixieDust will automatically remember
the last one used.

Share Chart dialog

Publish your Data Analysis to the Web - the PixieApp Tool

[132]

Clicking on the Share button will start the publishing process that takes the
chart content to the PixieGateway and then returns a unique URL to the web
page. Similar to the PixieApp, you can then share this URL with the team:

Chart sharing confirmation dialog

The confirmation dialog contains the unique URL for the chart and an HTML
fragment that lets you embed the chart in your own web page, such as a blog post,
and a dashboard.

Clicking on the link will show the following PixieGateway page:

Chart page

Chapter 4

[133]

The preceding page shows metadata about the chart, for example, Author,
Description, and Date, as well as the embedded HTML fragment. Notice that if
the chart has interactivity (as is the case for Bokeh, Brunel, or Mapbox), then it is
preserved in the PixieGateway page.

For example, in the preceding screenshot, the user can still wheel zoom, box zoom,
and pan to explore the chart or download the chart as a PNG file.

Embedding the chart in your own page is also very easy. Simply copy the embedded
HTML fragment anywhere in your HTML, as shown in the following example:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Example page with embedded chart</title>
 </head>
 <body>
 <h1> Embedded a PixieDust Chart in a custom HTML Page</h1>
 <div>
 <object type="text/html" width="600" height="400"
 data="http://localhost:8899/embed/04089782-7543-42a6-
8dd1-e4d1cb06596a/600/400">
 <a href="http://localhost:8899/embed/04089782-7543-
42a6-8dd1-e4d1cb06596a">View Chart
 </object>
 </div>
 </body>
</html>

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%204/sampleCode3.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode3.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode3.html

Publish your Data Analysis to the Web - the PixieApp Tool

[134]

Embedded chart objects must use the same level of security or higher
as the browser. If not, the browser will throw a Mixed Content error.
For example, if the host page is loaded over HTTPS, then the embedded
chart must also be loaded over HTTPS, which means that you'll need to
enable HTTPS in the PixieGateway server. You can also visit http://
jupyter-kernel-gateway.readthedocs.io/en/latest/
config-options.html to configure an SSL/TLS certificate for the
PixieGateway server. Another solution that is easier to maintain would
be to configure an Ingress service for the Kubernetes cluster that provides
TLS termination.

For convenience, we provide a template ingress YAML file for the
PixieGateway service here: https://github.com/ibm-watson-
data-lab/pixiegateway/blob/master/etc/ingress.yml. You
will need to update this file with the TLS host and the secret provided by
your provider. For example, if you are using the IBM Cloud Kubernetes
Service, you just have to enter the cluster name in the <your cluster
name> placeholder. You can find more information on how to redirect
HTTP to HTTPS here: https://console.bluemix.net/docs/
containers/cs_annotations.html#redirect-to-https. Ingress
services are a great way to improve security, reliability, and protect
against DDOS attacks. For example, you can set various limits, such as
the number of requests/connections per seconds allowed for each unique
IP address or maximum bandwidth allowed. For more information
please see https://kubernetes.io/docs/concepts/services-
networking/ingress.

PixieGateway admin console
The admin console is a great tool to manage your resources and troubleshoot them.
You can access it using the /admin URL. Notice that you will need to authenticate
with the user/password that you configured (see the PixieGateway server configuration
section for instructions on how to configure the user/password in this chapter;
by default the user is admin and the password is <blank>).

The user interface for the admin console is composed of multiple menus focused
on a specific task. Let's look at them one by one:

• PixieApps:
 ° Information about all the deployed PixieApps: URL, description,

and so on

http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/etc/ingress.yml
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/etc/ingress.yml
https://console.bluemix.net/docs/containers/cs_annotations.html#redirect-to-https
https://console.bluemix.net/docs/containers/cs_annotations.html#redirect-to-https
https://kubernetes.io/docs/concepts/services-networking/ingress
https://kubernetes.io/docs/concepts/services-networking/ingress

Chapter 4

[135]

 ° Security management
 ° Actions, for example, delete, and download

Admin console PixieApp management page

• Charts:
 ° Information about all the published charts: link, preview, and so on
 ° Actions, for example, delete, download, and embed fragment

Admin console chart management page

Publish your Data Analysis to the Web - the PixieApp Tool

[136]

• Kernel Stats:
The following screenshot shows the Kernel Stats screen:

Admin console Kernel Stats page

This screen shows a live table of all the kernels currently running in the
PixieGateway. Each row contains the following information:

 ° Kernel Name: This is the name of the kernel with a drill-down link,
which shows the Kernel Spec, Log, and Python Console.

 ° Status: This shows the status as idle or busy.
 ° Busy Ratio: This is a value between 0 and 100% that denotes the

kernel utilization since it was started.
 ° Running Apps: This is a list of running PixieApps. Each PixieApp is

a drill-down link that displays the warmup code and runs code
for the PixieApp. This is very useful for troubleshooting errors
since you can see what code is being run by the PixieGateway.

 ° Users Count: This is the number of users with open sessions in this
kernel.

• Server Logs:

Full access the tornado server log for troubleshooting

Chapter 4

[137]

Admin console server logs page

Python Console
The Python Console is invoked by clicking on the kernel link in the Kernel Stats
screen. The admin can use it to execute any code against the kernel, which can
be useful to troubleshoot issues.

For example, the following screenshot shows how to invoke the PixieDust log:

Display PixieDust log from the PixieGateway admin Python Console

Publish your Data Analysis to the Web - the PixieApp Tool

[138]

Displaying warmup and run code for
a PixieApp
When an execution error happens while loading a page, the PixieGateway will show
the full Python traceback in the browser. However, the error may be hard to find
because its root cause may be in the warmup code that is executed once when the
PixieApp starts. One important debugging technique is to look at the warmup and
run code executed by the PixieGateway to spot any anomalies.

If the error is still not obvious, you could, for example, copy the warmup and run
code in a temporary Notebook and try to run it from there, with the hope that you
can reproduce the error and spot the issue.

You can access the warmup and run code by clicking on the PixieApp link on the
Kernel Stats screen, which will take you to the following screen:

Display the warmup and run code

Note that the warmup and run code do not contain the original code formatting and
therefore can be harder to read. You can mitigate this issue by copying it and pasting
the code into a temporary Notebook and reformatting it again.

Chapter 4

[139]

Summary
After reading this chapter, you should be able to install, configure, and manage
a PixieGateway microservice server, publish charts as a web page, and deploy
a PixieApp from a Notebook to a web application. Whether you are a data scientist
working on analytics in a Jupyter Notebook or a developer writing and deploying
applications targeted at the line of a business user, we've shown, in this chapter,
how PixieDust can help accomplish your tasks more efficiently and reduce the
time it takes to operationalize your analytics.

In the next chapter, we'll look at advanced topics and best practices related to
PixieDust and the PixieApp programming model, which will be useful when we
go over the industry use cases and sample data pipelines in the remaining chapters.

[141]

Python and PixieDust Best
Practices and Advanced

Concepts
"In God we Trust, all others bring data."

 – W. Edwards Deming

In the remaining chapters of this book, we will do a deep dive into the architecture
of industry use cases, including the implementation of sample data pipelines, heavily
applying the techniques we've learned so far. Before we start looking at the code, let's
complete our toolbox with a few best practices and advanced PixieDust concepts that
will be useful in the implementation of our sample applications:

• Calling third-party Python libraries with @captureOutput decorator
• Increasing modularity and code reuse of your PixieApp
• PixieDust support of streaming data
• Adding dashboard drill-downs with PixieApp events
• Extending PixieDust with a custom display renderer
• Debugging:

 ° Line-by-line Python code debugging running on the Jupyter
Notebook using pdb

 ° Visual debugging with PixieDebugger
 ° Using the PixieDust logging framework to troubleshoot issues
 ° Tips for client-side JavaScript debugging

• Running Node.js inside a Python Notebook

Python and PixieDust Best Practices and Advanced Concepts

[142]

Use @captureOutput decorator to
integrate the output of third-party
Python libraries
Suppose that you want to reuse your PixieApp in a third-party library that you
have been using for a while in order to perform a certain task, such as, for example,
computing clusters with the scikit-learn machine learning library (http://scikit-
learn.org) and displaying them as a graph. The problem is that most of the time,
you are calling a high-level method that doesn't return data, but rather directly
draws something on the cell output area, such as a chart or a report table. Calling
this method from a PixieApp route will not work because the contract for routes is
to return an HTML fragment string that will be processed by the framework. In this
case, the method most likely doesn't return anything since it is writing the results
directly in the cell output. The solution is to use the @captureOutput decorator—
which is part of the PixieApp framework—in the route method.

Create a word cloud image with
@captureOutput
To better illustrate the @captureOutput scenario described earlier, let's take
a concrete example where we want to build a PixieApp that uses the wordcloud
Python library (https://pypi.python.org/pypi/wordcloud) to generate a word
cloud image from a text file provided by the user via a URL.

We first install the wordcloud library by running the following command
in its own cell:

!pip install wordcloud

Note: Make sure to restart the kernel when the installation of the
wordcloud library is complete.

The code for the PixieApp looks like this:

from pixiedust.display.app import *
import requests
from wordcloud import WordCloud
import matplotlib.pyplot as plt

@PixieApp

http://scikit-learn.org
http://scikit-learn.org
https://pypi.python.org/pypi/wordcloud

Chapter 5

[143]

class WordCloudApp():
 @route()
 def main_screen(self):
 return """
 <div style="text-align:center">
 <label>Enter a url: </label>
 <input type="text" size="80" id="url{{prefix}}">
 <button type="submit"
 pd_options="url=$val(url{{prefix}})"
 pd_target="wordcloud{{prefix}}">
 Go
 </button>
 </div>
 <center><div id="wordcloud{{prefix}}"></div></center>
 """

 @route(url="*")
 @captureOutput
 def generate_word_cloud(self, url):
 text = requests.get(url).text
 plt.axis("off")
 plt.imshow(
 WordCloud(max_font_size=40).generate(text),
 interpolation='bilinear'
)

app = WordCloudApp()
app.run()

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode1.py

Notice that by simply adding the @captureOutput decorator to the generate_word_
cloud route, we don't need to return an HTML fragment string any more. We can
simply invoke the Matplotlib imshow() function that sends the image to the system
output. The PixieApp framework will take care of capturing the output and package
it as an HTML fragment string that will be injected in the correct div placeholder.
The result is as follows:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode1.py

Python and PixieDust Best Practices and Advanced Concepts

[144]

Note: We use the following input URL coming from the wordcloud
repo on GitHub:
https://github.com/amueller/word_cloud/blob/master/
examples/constitution.txt

Another good link to use is:
https://raw.githubusercontent.com/amueller/word_cloud/
master/examples/a_new_hope.txt

Simple PixieApp that generates a word cloud from a text

Any function that draws directly to the cell output can be used with the @
captureOutput decorator. For example, you can use the Matplotlib show() method
or the IPython display() method with the HTML or JavaScript classes. You can
even use the display_markdown() method to output rich text using the Markdown
markup language (https://en.wikipedia.org/wiki/Markdown) as shown in the
following code:

from pixiedust.display.app import *
from IPython.display import display_markdown

@PixieApp
class TestMarkdown():
 @route()
 @captureOutput
 def main_screen(self):
 display_markdown("""
Main Header:
Secondary Header with bullet
1. item1
2. item2
3. item3

https://github.com/amueller/word_cloud/blob/master/examples/constitution.txt
https://github.com/amueller/word_cloud/blob/master/examples/constitution.txt
https://raw.githubusercontent.com/amueller/word_cloud/master/examples/a_new_hope.txt
https://raw.githubusercontent.com/amueller/word_cloud/master/examples/a_new_hope.txt
https://en.wikipedia.org/wiki/Markdown

Chapter 5

[145]

Showing image of the PixieDust logo
![alt text](https://github.com/pixiedust/pixiedust/raw/master/docs/_
static/PixieDust%202C%20\(256x256\).png "PixieDust Logo")
 """, raw=True)

TestMarkdown().run()

This produces the following result:

PixieApp using @captureOutput with Markdown

Increase modularity and code reuse
Breaking up your application into smaller, self-contained components is always
a good development practice because it makes the code reusable and easier to
maintain. The PixieApp framework provides two ways to create and run reusable
components:

• Dynamically invoking other PixieApps with the pd_app attribute
• Packaging part of an application as a reusable widget

Using the pd_app attribute, you can dynamically invoke another PixieApp (we'll
call it child PixieApp from here on) by its fully qualified class name. The output of
the child PixieApp is placed in the host HTML element (usually a div element) or
in a dialog by using the runInDialog=true option. You can also initialize the child
PixieApp using the pd_options attribute, in which case the framework will invoke
the corresponding route.

To better understand how pd_app works, let's rewrite our WordCloud application by
refactoring the code that generates the WordCloud image in its own PixieApp that
we'll call WCChildApp.

Python and PixieDust Best Practices and Advanced Concepts

[146]

The following code implements WCChildApp as a regular PixieApp, but notice that
it doesn't contain a default route. It only has a route called generate_word_cloud
that is supposed to be called by another PixieApp using a url argument:

from pixiedust.display.app import *
import requests
from wordcloud import WordCloud
import matplotlib.pyplot as plt

@PixieApp
class WCChildApp():
 @route(url='*')
 @captureOutput
 def generate_word_cloud(self, url):
 text = requests.get(url).text
 plt.axis("off")
 plt.imshow(
 WordCloud(max_font_size=40).generate(text),
 interpolation='bilinear'
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode2.py

We can now build the main PixieApp that will invoke the WCChildApp when the user
clicks on the Go button after specifying the URL:

@PixieApp
class WordCloudApp():
 @route()
 def main_screen(self):
 return """
 <div style="text-align:center">
 <label>Enter a url: </label>
 <input type="text" size="80" id="url{{prefix}}">
 <button type="submit"
 pd_options="url=$val(url{{prefix}})"
 pd_app="WCChildApp"
 pd_target="wordcloud{{prefix}}">
 Go
 </button>
 </div>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode2.py

Chapter 5

[147]

 <center><div id="wordcloud{{prefix}}"></div></center>
 """

app = WordCloudApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode3.py

In the preceding code, the Go button has the following attributes:

• pd_app="WCChildApp": Use the class name for the child PixieApp. Note that
if your child PixieApp lives in an imported Python module, then you'll need
to use the fully qualified name.

• pd_options="url=$val(url{{prefix}})": Store the URL entered
by the user as an initialization option to the child PixieApp.

• pd_target="wordcloud{{prefix}}": Tell PixieDust to place the output
of the child PixieApp in the div with the ID wordcloud{{prefix}}.

The pd_app attribute is a powerful way to modularize your code by encapsulating
the logic and presentation of a component. The pd_widget attribute provides
another way to achieve similar results, but this time the component is not invoked
externally, but rather by inheritance.

Each method has pros and cons:

• The pd_widget technique is implemented as a route and is certainly more
lightweight than pd_app, which requires the creation of an entirely new
PixieApp instance. Note that both pd_widget and pd_app (through the
parent_pixieapp variable) have access to all variables contained in the
host app.

• The pd_app attribute provides a cleaner separation between the components
and more flexibility than widgets. You could, for example, have a button that
dynamically invokes multiple PixieApps based on some user selection.

Note: As we'll see later in this chapter, this is actually what the PixieDust
display uses for the options dialog.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode3.py

Python and PixieDust Best Practices and Advanced Concepts

[148]

If you find yourself in need of having multiple copies of the same component
in a PixieApp, ask yourself whether the component requires its state to be
maintained in a class variable. If that's the case, it is preferable to use pd_app,
but, if not, then using pd_widget would work as well.

Creating a widget with pd_widget
To create a widget, you can use the following steps:

1. Create a PixieApp class that contains a route tagged with a special argument
called widget

2. Make the main class inherit from the PixieApp widget
3. Invoke the widget using the pd_widget attribute on a div element

Again, as an illustration, let's rewrite the WordCloud app with the widget:

from pixiedust.display.app import *
import requests
from word cloud import WordCloud
import matplotlib.pyplot as plt

@PixieApp
class WCChildApp():
 @route(widget='wordcloud')
 @captureOutput
 def generate_word_cloud(self):
 text = requests.get(self.url).text if self.url else ""
 plt.axis("off")
 plt.imshow(
 WordCloud(max_font_size=40).generate(text),
 interpolation='bilinear'
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode4.py

Notice in the preceding code that url is now referenced as a class variable because we
assume that the base class will provide it. The code has to test whether url is None,
which would be the case on startup. We implement it this way because pd_widget
is an attribute that cannot easily be dynamically generated (you would have to use
a secondary route that generates the div fragment with the pd_widget attribute).

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode4.py

Chapter 5

[149]

The main PixieApp class now looks like this:

@PixieApp
class WordCloudApp(WCChildApp):
 @route()
 def main_screen(self):
 self.url=None
 return """
 <div style="text-align:center">
 <label>Enter a url: </label>
 <input type="text" size="80" id="url{{prefix}}">
 <button type="submit"
 pd_script="self.url = '$val(url{{prefix}})'"
 pd_refresh="wordcloud{{prefix}}">
 Go
 </button>
 </div>
 <center><div pd_widget="wordcloud"
 id="wordcloud{{prefix}}"></div></center>
 """

app = WordCloudApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode5.py

The div that contains the pd_widget attribute is rendered on start, but since url
is still None, no word cloud is actually generated. The Go button has a pd_script
attribute that set the self.url to the value provided by the user. It also has a pd_
refresh attribute sets to the pd_widget div that will call the wordcloud widget
again, but this time with a URL initialized to the correct value.

In this section, we've seen two ways to modularize your code for reuse, as well as
the pros and cons for both. I strongly recommend that you play with the code to get
a feel of when to use each technique. Don't worry if you feel this is still a little fuzzy;
it will hopefully become clearer when we use these techniques in the sample code
of the chapters ahead.

In the next section, we change gears and look at streaming data support in PixieDust.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode5.py

Python and PixieDust Best Practices and Advanced Concepts

[150]

PixieDust support of streaming data
With the rise of IOT devices (Internet of Things), being able to analyze and
visualize live streams of data is becoming more and more important. For example,
you could have sensors such as thermometers in machines or portable medical
devices like pacemakers, continuously streaming data to a streaming service such
as Kafka. PixieDust makes it easier to work with live data inside Jupyter Notebooks
by providing simple integration APIs to both the PixieApp and the display()
framework.

On a visualization level, PixieDust uses Bokeh (https://bokeh.pydata.org)
support for efficient data source updates to plot streaming data into live charts
(note that at the moment, only line chart and scatter plot are supported, but more
will be added in the future). The display() framework also supports geospatial
visualization of streaming data using the Mapbox rendering engine.

To activate streaming visualizations, you need to use a class that inherits from
StreamingDataAdapter, which is an abstract class that is part of the PixieDust
API. This class acts as a generic bridge between the streaming data source and
the visualization framework.

Note: I recommend spending time looking at the code for
StreamingDataAdapter here:
https://github.com/pixiedust/pixiedust/blob/0c536b45
c9af681a4da160170d38879298aa87cb/pixiedust/display/
streaming/__init__.py

The following diagram shows how the StreamingDataAdapter data structure fits
into the display() framework:

StreamingDataAdapter architecture

https://bokeh.pydata.org
https://github.com/pixiedust/pixiedust/blob/0c536b45c9af681a4da160170d38879298aa87cb/pixiedust/display/streaming/__init__.py
https://github.com/pixiedust/pixiedust/blob/0c536b45c9af681a4da160170d38879298aa87cb/pixiedust/display/streaming/__init__.py
https://github.com/pixiedust/pixiedust/blob/0c536b45c9af681a4da160170d38879298aa87cb/pixiedust/display/streaming/__init__.py

Chapter 5

[151]

When implementing a subclass of StreamingDataAdapter, you must override
the doGetNextData() method provided by the base class, which will be called
repeatedly to fetch new data to update the visualization. You can also optionally
override the getMetadata() method to pass context to the rendering engine
(we'll use this method later to configure the Mapbox rendering).

The abstract implementation of doGetNextData() looks like this:

@abstractmethod
def doGetNextData(self):
 """Return the next batch of data from the underlying stream.
 Accepted return values are:
 1. (x,y): tuple of list/numpy arrays representing the x and y axis
 2. pandas dataframe
 3. y: list/numpy array representing the y axis. In this case,
the x axis is automatically created
 4. pandas serie: similar to #3
 5. json
 6. geojson
 7. url with supported payload (json/geojson)
 """
 Pass

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode6.py

The preceding docstring explains the different types of data that is allowed
to be returned from doGetNextData().

As an example, we want to visualize the location of a fictitious drone wandering
around the earth on a map and in real time. Its current location is provided
by a REST service at: https://wanderdrone.appspot.com.

The payload uses GeoJSON (http://geojson.org), for example:

{
 "geometry": {
 "type": "Point",
 "coordinates": [
 -93.824908715741202, 10.875051131034805
]
 },

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode6.py
https://wanderdrone.appspot.com
http://geojson.org

Python and PixieDust Best Practices and Advanced Concepts

[152]

 "type": "Feature",
 "properties": {}
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode7.json

To render our drone location in real time, we create a DroneStreamingAdapter class
that inherits from StreamingDataAdapter and simply return the drone location
service URL in the doGetNextData() method as shown in the following code:

from pixiedust.display.streaming import *

class DroneStreamingAdapter(StreamingDataAdapter):
 def getMetadata(self):
 iconImage = "rocket-15"
 return {
 "layout": {"icon-image": iconImage, "icon-size": 1.5},
 "type": "symbol"
 }
 def doGetNextData(self):
 return "https://wanderdrone.appspot.com/"
adapter = DroneStreamingAdapter()
display(adapter)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode8.py

In the getMetadata() method, we return the Mapbox specific style properties
(as documented here: https://www.mapbox.com/mapbox-gl-js/style-spec) that
uses a rocket Maki icon (https://www.mapbox.com/maki-icons) as a symbol for
the drone.

With a few lines of code, we were able to create a real-time geospatial visualization
of a drone location, with the following results:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode7.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode7.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode8.py
https://www.mapbox.com/mapbox-gl-js/style-spec
https://www.mapbox.com/maki-icons

Chapter 5

[153]

Real-time geospatial mapping of a drone

You can find the complete Notebook for this example in the PixieDust
repo at this location:
https://github.com/pixiedust/pixiedust/blob/master/
notebook/pixieapp-streaming/Mapbox%20Streaming.ipynb

Adding streaming capabilities to your PixieApp
In the next example, we show how to visualize streaming data coming from an
Apache Kafka data source, using the MessageHubStreamingApp PixieApp provided
out of the box by PixieDust: https://github.com/pixiedust/pixiedust/blob/
master/pixiedust/apps/messageHub/messageHubApp.py.

Note: MessageHubStreamingApp works with the IBM Cloud Kafka
service called Message Hub (https://console.bluemix.net/docs/
services/MessageHub/index.html#messagehub), but it can easily
be adapted to any other Kafka service.

https://github.com/ibm-watson-data-lab/pixiedust/blob/master/notebook/pixieapp-streaming/Mapbox%20Streaming.ipynb
https://github.com/ibm-watson-data-lab/pixiedust/blob/master/notebook/pixieapp-streaming/Mapbox%20Streaming.ipynb
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/apps/messageHub/messageHubApp.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/apps/messageHub/messageHubApp.py
https://console.bluemix.net/docs/services/MessageHub/index.html#messagehub
https://console.bluemix.net/docs/services/MessageHub/index.html#messagehub

Python and PixieDust Best Practices and Advanced Concepts

[154]

Don't worry if you are not familiar with Apache Kafka as we'll cover aspects of
this in Chapter 7, Analytics Study: NLP and Big Data with Twitter Sentiment Analysis.

This PixieApp lets the user choose a Kafka topic associated with a service instance
and display the events in real-time. Assuming that the events payload from the
selected topic uses a JSON format, it presents a schema inferred from sampling the
events data. The user can then choose a particular field (must be numerical) and a
real-time chart showing the average of the values for this field over time is displayed.

Real-time visualization of streaming data

The key PixieApp attribute needed to provide streaming capabilities is pd_refresh_
rate, which executes a particular kernel request at specified intervals (pull model).
In the preceding application, we use it to update the real-time chart, as shown in the
following HTML fragment returned by the showChart route:

 @route(topic="*",streampreview="*",schemaX="*")
 def showChart(self, schemaX):
 self.schemaX = schemaX
 self.avgChannelData = self.streamingData.
getStreamingChannel(self.computeAverages)
 return """
<div class="well" style="text-align:center">

Chapter 5

[155]

 <div style="font-size:x-large">Real-time chart for {{this.
schemaX}}(average).</div>
</div>

<div pd_refresh_rate="1000" pd_entity="avgChannelData"></div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode9.py

The preceding div is bound to the avgChannelData entity via the pd_entity
attribute and is responsible for creating the real-time chart that is updated
every second (pd_refresh_rate=1000 ms). In turn, the avgChannelData entity is
created via a call to getStreamingChannel(), which is passed to the self. The
computeAverage function is responsible for updating the average value for all
the data being streamed. It is important to note that avgChannelData is a class
that inherits from StreamingDataAdapter and, therefore, can be passed to the
display() framework for building real-time charts.

The last piece of the puzzle is for the PixieApp to return a displayHandler needed
by the display() framework. This is done by overriding the newDisplayHandler()
method as follows:

def newDisplayHandler(self, options, entity):
 if self.streamingDisplay is None:
 self.streamingDisplay = LineChartStreamingDisplay(options,
entity)
 else:
 self.streamingDisplay.options = options
 return self.streamingDisplay

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode10.py

In the preceding code, we use it to create an instance of
LineChartStreamingDisplay provided by PixieDust in the pixiedust.display.
streaming.bokeh package (https://github.com/pixiedust/pixiedust/blob/
master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.
py), passing the avgChannelData entity.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode10.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.py

Python and PixieDust Best Practices and Advanced Concepts

[156]

If you want to see this application in action, you need to create a Message Hub
service instance on IBM Cloud (https://console.bluemix.net/catalog/
services/message-hub) and, using its credentials, invoke this PixieApp
in a Notebook with the following code:

from pixiedust.apps.messageHub import *
MessageHubStreamingApp().run(
 credentials={
 "username": "XXXX",
 "password": "XXXX",
 "api_key" : "XXXX",
 "prod": True
 }
)

If you are interested in knowing more about PixieDust streaming, you can find other
streaming application examples here:

• A simple PixieApp that demonstrate how to create streaming visualizations
from randomly generated data: https://github.com/pixiedust/
pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20
Streaming-Random.ipynb

• PixieApp that shows how to build live visualization of stock tickers:
https://github.com/pixiedust/pixiedust/blob/master/notebook/
pixieapp-streaming/PixieApp%20Streaming-Stock%20Ticker.ipynb

The next topic will cover PixieApp events that let you add interactivity between
different components of your application.

Adding dashboard drill-downs with
PixieApp events
The PixieApp framework supports sending and receiving events between different
components using the publish-subscribe pattern available in browsers. The great
advantage of using this model, which borrows from the loose coupling pattern
(https://en.wikipedia.org/wiki/Loose_coupling), is that it allows the sending
and receiving components to remain agnostic of each other. Therefore, their
implementation can be executed independently from one another and will not be
sensitive to changes in requirements. This can be very useful when your PixieApp is
using components from different PixieApps built by different teams, or if the events
are coming from the user interacting with a chart (for instance, clicking on a map)
and you want to provide drill-down features.

https://console.bluemix.net/catalog/services/message-hub
https://console.bluemix.net/catalog/services/message-hub
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/ibm-watson-data-lab/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Stock%20Ticker.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Stock%20Ticker.ipynb
https://en.wikipedia.org/wiki/Loose_coupling

Chapter 5

[157]

Each event carries a JSON payload of arbitrary keys and values. The payload
must have at least one of the following keys (or both):

• targetDivId: A DOM ID identifying the element sending the event
• type: A string identifying the event type

Publishers can trigger events in two ways:

• Declarative: Use the pd_event_payload attribute to specify the payload
content. This attribute follows the same rules as pd_options:

 ° Each key/value pair must be encoded using the key=value notation
 ° The event will be triggered by a click or a change event
 ° Support must be provided for the $val() directive to dynamically

inject user-entered input
 ° Use the <pd_event_payload> child to enter raw JSON

Example:
<button type="submit" pd_event_payload="type=topicA;message=Button
clicked">
 Send event A
</button>

Alternatively, we can use this:
<button type="submit">
 <pd_event_payload>
 {
 "type":"topicA",
 "message":"Button Clicked"
 }
 </pd_event_payload>
 Send event A
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode11.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode11.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode11.html

Python and PixieDust Best Practices and Advanced Concepts

[158]

• Programmatic: In some cases, you may want to directly trigger an event
via JavaScript. In this case, you can use the sendEvent(payload, divId)
method of the pixiedust global object. The divId is an optional argument
that specifies the origin of the event. If the divId argument is omitted, then it
defaults to the divId of the element that is currently sending the event. As a
result, you should always use pixiedust.sendEvent without a divId from
a JavaScript handler of a user event such as click, and hover.

Example:
<table
onclick="pixiedust.sendEvent({type:'topicB',text:event.srcElement.
innerText})">
 <tr><td>Row 1</td></tr>
 <tr><td>Row 2</td></tr>
 <tr><td>Row 3</td></tr>
</table>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode12.html

Subscribers can listen to an event by declaring a <pd_event_handler> element that
can accept any of the PixieApp Kernel execution attributes, such as pd_options and
pd_script. It must also use the pd_source attribute to filter which events they want
to process. The pd_source attribute can contain one of the following values:

• targetDivId: Only events originating from the element with the specified
ID will be accepted

• type: Only events with the specified type will be accepted
• "*": Denotes that any event will be accepted

Example:

<div class="col-sm-6" id="listenerA{{prefix}}">
 Listening to button event
 <pd_event_handler
 pd_source="topicA"
 pd_script="print(eventInfo)"
 pd_target="listenerA{{prefix}}">
 </pd_event_handler>
</div>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode12.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode12.html

Chapter 5

[159]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode13.html

The following diagram shows how components interact with one another:

Sending/receiving events between components

In the following code sample, we illustrate the PixieDust eventing system
by building two publishers, a button element and a table, where each row
is an event source. We also have two listeners implemented as div elements:

from pixiedust.display.app import *
@PixieApp
class TestEvents():
 @route()
 def main_screen(self):
 return """
<div>
 <button type="submit">
 <pd_event_payload>
 {
 "type":"topicA",
 "message":"Button Clicked"
 }
 </pd_event_payload>
 Send event A
 </button>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode13.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode13.html

Python and PixieDust Best Practices and Advanced Concepts

[160]

 <table onclick="pixiedust.sendEvent({type:'topicB',text:event.
srcElement.innerText})">
 <tr><td>Row 1</td></tr>
 <tr><td>Row 2</td></tr>
 <tr><td>Row 3</td></tr>
 </table>
</div>
<div class="container" style="margin-top:30px">
 <div class="row">
 <div class="col-sm-6" id="listenerA{{prefix}}">
 Listening to button event
 <pd_event_handler pd_source="topicA" pd_
script="print(eventInfo)" pd_target="listenerA{{prefix}}">
 </pd_event_handler>
 </div>
 <div class="col-sm-6" id="listenerB{{prefix}}">
 Listening to table event
 <pd_event_handler pd_source="topicB" pd_
script="print(eventInfo)" pd_target="listenerB{{prefix}}">
 </pd_event_handler>
 </div>
 </div>
</div>
 """
app = TestEvents()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode14.py

The preceding code produces the following results:

User interaction flow for PixieApp events

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode14.py

Chapter 5

[161]

PixieApp events enable you to create sophisticated dashboards with drill-
down capabilities. It is also good to know that you can leverage events that
are automatically published for some of the charts generated by the display()
framework. For example, built-in renderers, such as Google Maps, Mapbox, and
Table, will automatically generate events when the user clicks somewhere on the
chart. This is very useful for rapidly building all kinds of interactive dashboards with
drill-down capabilities.

In the next topic, we'll discuss how to use the PixieDust extensibility APIs to create
custom visualizations.

Extending PixieDust visualizations
PixieDust is designed to be highly extensible. You can create your own visualization
and control when it can be invoked, based on the entity being displayed. There
are multiple extensibility layers provided by the PixieDust framework. The lowest
and most powerful one lets you create your own Display class. However, the
majority of visualizations have a lot of properties in common, such as standard
options (aggregation, max rows, title, and so on), or a caching mechanism to prevent
recomputing everything if the user only selected a minor option that doesn't require
reprocessing of the data.

To prevent users from reinventing the wheel every time, PixieDust offers a second
extensibility layer called renderer that includes all the facilities described here.

The following diagram illustrates the different layers:

PixieDust extension layers

Python and PixieDust Best Practices and Advanced Concepts

[162]

To start working with the Display Extension Layer, you'll need to get your
visualization presented in the menu by creating a class that inherits from
pixiedust.display.DisplayHandlerMeta. This class contains two methods
that need to be overridden:

• getMenuInfo(self,entity,dataHandler): Return an empty array if the
entity passed as an argument is not supported, otherwise an array containing
a set of JSON objects with information about the menu. Each JSON object
must contain the following information:

 ° id: A unique string that identifies your tool.
 ° categoryId: A unique string that identifies the menu category

or group. A full list of all the built-in categories is provided a little
later on.

 ° title: An arbitrary string that describes the menu.
 ° icon: The name of a font-awesome icon, or a URL for an image.

• newDisplayHandler(self,options,entity): When your menu is activated
by the user, the newDisplayHandler() method is called. This method must
return a class instance that inherits from pixiedust.display.Display.
The contract is for this class to implement the doRender() method, which
is responsible for creating the visualization.

Let's take the example of creating a custom table rendering for a pandas DataFrame.
We first create the DisplayHandlerMeta class that configures the menu and the
factory method:

from pixiedust.display.display import *
import pandas
@PixiedustDisplay()
class SimpleDisplayMeta(DisplayHandlerMeta):
 @addId
 def getMenuInfo(self,entity,dataHandler):
 if type(entity) is pandas.core.frame.DataFrame:
 return [
 {"categoryId": "Table", "title": "Simple Table",
"icon": "fa-table", "id": "simpleTest"}
]
 return []
 def newDisplayHandler(self,options,entity):
 return SimpleDisplay(options,entity)

Chapter 5

[163]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode15.py

Notice that the preceding SimpleDisplayMeta class needs to be decorated with
@PixiedustDisplay, which is required to add this class to the internal PixieDust
registry of plugins. In the getMenuInfo() method, we first check whether the entity
type is pandas DataFrame and, if not, return an empty array signifying that this plugin
doesn't support the current entity and will therefore not contribute anything to the
menu. If the type is correct, we return an array with one JSON object containing the
menu info.

The factory method newDisplayHandler() gets passed the options and entity
as parameters. The options argument is a dictionary of key/value pairs containing
the various choices made by the users. As we'll see later, the visualization can define
arbitrary key/value pairs reflecting its capabilities, and the PixieDust framework
will automatically persist them in the cell metadata.

For example, you could add an option for displaying HTTP links as clickable
in the UI. In our example, we return a SimpleDisplay instance as defined here:

class SimpleDisplay(Display):
 def doRender(self, handlerId):
 self._addHTMLTemplateString("""
<table class="table table-striped">
 <thead>
 {%for column in entity.columns.tolist()%}
 <th>{{column}}</th>
 {%endfor%}
 </thead>
 <tbody>
 {%for _, row in entity.iterrows()%}
 <tr>
 {%for value in row.tolist()%}
 <td>{{value}}</td>
 {%endfor%}
 </tr>
 {%endfor%}
 </tbody>
</table>
 """)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode15.py

Python and PixieDust Best Practices and Advanced Concepts

[164]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode16.py

As stated before, the SimpleDisplay class must inherit from the Display class
and implement the doRender() method. Within the implementation of this method,
you have access to the self.entity and self.options variables to adjust how
the information is rendered on screen. In the preceding sample, we use the self._
addHTMLTemplateString() method to create the HTML fragment that will render
the visualization. As is the case for PixieApp routes, the string being passed to
self._addHTMLTemplateString() can leverage the Jinja2 template engine and
have automatic access to variables such as entity. If you don't want to hardcode the
template string in the Python file, you can extract it into its own file that you must
place in a directory called templates that must be located in the same directory as
the calling Python file. You would then need to use the self._addHTMLTemplate()
method that takes the name of the file as an argument (without specifying the
templates directory).

The other advantage of externalizing the HTML fragment into its own file
is that you don't have to restart the kernel every time you make a change,
which can save you a lot of time. Because of the way Python works, the
same cannot be said if the HTML fragment is embedded in the source
code, in which case you would have to restart the kernel for any changes
made in the HTML fragment.

It is also important to note that self._addHTMLTemplate() and self._
addHTMLTemplateString() accept keyword arguments that will be passed
to the Jinja2 template. For example:

self._addHTMLTemplate('simpleTable.html', custom_arg = "Some value")

We can now run a cell that displays, for example, the cars dataset:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode16.py

Chapter 5

[165]

Note: The Simple Table extension only works with pandas, not Spark
DataFrame. Therefore, you would need to use forcePandas = True
when calling sampleData() if your Notebook is connected to Spark.

Running a custom visualization plugin on a pandas DataFrame

As shown in the PixieDust extension layer architecture diagram, you can also extend
PixieDust using the Renderer Extension Layer, which is more prescriptive than the
Display Extension Layer but provides many more capabilities out of the box, such as
options management and interim data computation caching. From the user interface
perspective, users can switch between renderers using a Renderer drop-down in the
upper right-hand corner of the chart area.

PixieDust comes with a few built-in renderers, such as Matplotlib, Seaborn, Bokeh,
Mapbox, Brunel, and Google Maps, but it doesn't declare any hard dependency
on the underlying visualization libraries, including Bokeh, Brunel, or Seaborn.
Therefore, it is incumbent on the user to manually install them, otherwise, they won't
show up in the menus.

Python and PixieDust Best Practices and Advanced Concepts

[166]

The following screenshot illustrates the mechanism to switch between renderers
for a given chart:

Switching between renderers

Adding a new renderer is similar to adding a display visualization (it's using
the same APIs), though it's actually simpler since you only have to build one
class (no need to build the metadata class). Here are the steps you need to follow:

1. Create a Display class that inherits from the specialized BaseChartDisplay
class. Implement the required doRenderChart() method.

2. Use the @PixiedustRenderer decorator to register the rendererId (which
must be unique across all renderers) and the type of chart being rendered.
Note that the same rendererId can be reused for all the charts included
in the renderer. PixieDust provides a set of core chart types:

 ° tableView

 ° barChart

 ° lineChart

 ° scatterPlot

 ° pieChart

 ° mapView

 ° histogram

Chapter 5

[167]

3. (Optional) Create a set of dynamic options using the @commonChartOptions
decorator.

4. (Optional) Customize the options dialog by overriding the get_options_
dialog_pixieapp() method to return the fully qualified name of a PixieApp
class inheriting from the BaseOptions class in the pixiedust.display.
chart.options.baseOptions package.

As an example, let's rewrite the preceding custom SimpleDisplay table visualization
using the renderer extension layer:

from pixiedust.display.chart.renderers import PixiedustRenderer
from pixiedust.display.chart.renderers.baseChartDisplay import
BaseChartDisplay

@PixiedustRenderer(rendererId="simpletable", id="tableView")
class SimpleDisplayWithRenderer(BaseChartDisplay):
 def get_options_dialog_pixieapp(self):
 return None #No options needed

 def doRenderChart(self):
 return self.renderTemplateString("""
<table class="table table-striped">
 <thead>
 {%for column in entity.columns.tolist()%}
 <th>{{column}}</th>
 {%endfor%}
 </thead>
 <tbody>
 {%for _, row in entity.iterrows()%}
 <tr>
 {%for value in row.tolist()%}
 <td>{{value}}</td>
 {%endfor%}
 </tr>
 {%endfor%}
 </tbody>
</table>
 """)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode17.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode17.py

Python and PixieDust Best Practices and Advanced Concepts

[168]

We decorate the class with the @PixiedustRenderer decorator, specifying a unique
rendererId called simpletable, and associating it with the tableView chart type
defined by the PixieDust framework. We return None for the get_options_dialog_
pixieapp() method to signify that this extension does not support custom options.
As a result, the Options button will not be shown. In the doRenderChart() method,
we return the HTML fragment. Since we want to use Jinja2, we need to render
it using the self.renderTemplateString method.

We can now test this new renderer using the cars dataset.

Again, when running the code, make sure that you're loading the
cars dataset as a pandas DataFrame. If you have already run the first
implementation of the Simple Table and are reusing the Notebook, it
is possible that you will still see the old Simple Table menu. If that's
the case, you will need to restart the kernel and try again.

The following screenshot shows the simple table visualization as a renderer:

Testing the renderer implementation of the Simple Table

You can find more material about this topic at: https://pixiedust.github.io/
pixiedust/develop.html. Hopefully, by now, you have a good idea about the type
of customization you can write to integrate your own visualization in the display()
framework.

In the next section, we'll discuss a very important topic for developers: debugging.

https://pixiedust.github.io/pixiedust/develop.html
https://pixiedust.github.io/pixiedust/develop.html

Chapter 5

[169]

Debugging
Being able to rapidly debug an application is critical to the success of your project.
If not, most—if not all—of the gains we've made in term of productivity and
collaboration, by breaking the silo between data science and engineering, will be lost.
It is also important to note that our code runs in different places, that is, Python on
the server side, and JavaScript on the client side, and that debugging must take place
in both places. For Python code, let's look at two ways to troubleshoot programming
errors.

Debugging on the Jupyter Notebook using pdb
pdb (https://docs.python.org/3/library/pdb.html) is an interactive command-
line Python debugger that comes as standard with every Python distribution.

There are multiple ways to invoke the debugger:

• At launch, from the command line:
python -m pdb <script_file>

• Programmatically, in the code:
import pdb
pdb.run("<insert a valid python statement here>")

• By setting an explicit breakpoint in the code with the set_trace() method:
import pdb
def my_function(arg1, arg2):
 pdb.set_trace()
 do_something_here()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode18.py

• Post-mortem, after an exception has occurred, by calling pdb.pm().

Once in the interactive debugger, you can invoke commands, inspect variables,
run statements, set breakpoints, and so on.

A complete list of commands can be found here:
https://docs.python.org/3/library/pdb.html

https://docs.python.org/3/library/pdb.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode18.py
https://docs.python.org/3/library/pdb.html

Python and PixieDust Best Practices and Advanced Concepts

[170]

The great news is that Jupyter Notebooks provide first-class support for the
interactive debugger. To invoke the debugger, simply use the %pdb cell magic
command to turn it on/off, and, if an exception is triggered, then the debugger
will automatically stop execution at the offending line.

Magic commands (http://ipython.readthedocs.io/en/stable/interactive/
magics.html) are constructs specific to the IPython kernel. They are language
agnostic and therefore can theoretically be available in any language supported
by the kernel (for example, Python, Scala, and R).

There are two types of magic commands:

• Line magics: The syntax is %<magic_command_name> [optional
arguments]for example, %matplotlib inline, which configures
Matplotlib to output the charts inline in the Notebook output cell.
They can be invoked anywhere in the cell code, and can even return
values that can be assigned to Python variables, for example:
#call the pwd line magic to get the current working directory
#and assign the result into a Python variable called pwd
pwd = %pwd
print(pwd)

You can find a list of all the line magics here:
http://ipython.readthedocs.io/en/stable/interactive/
magics.html#line-magics

• Cell magics: The syntax is %%<magic_command_name> [optional
arguments]. For example, we call the HTML cell magic to display HTML
on the output cell:

%%html
<div>Hello World</div>

Cell magics must be located at the top of the cell; any other location would
result in an execution error. Everything below the cell magic is passed as
an argument to the handler to be interpreted according to the cell magic
specification. For example, the HTML cell magic expects the rest of the cell
content to be HTML.

The following code example calls a function that raises a ZeroDivisionError
exception, with pdb automatic calling activated:

http://ipython.readthedocs.io/en/stable/interactive/magics.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics
http://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics

Chapter 5

[171]

Note: Once you turn pdb on, it stays on for the duration of the
Notebook session.

Interactive command-line debugging

Here are some important pdb commands that can be used to troubleshoot an issue:

• s(tep): Step into the function being called and stop at the next statement
line.

• n(ext): Continue to the next line, without entering into a nest function.
• l(list): List code surrounding the current line.
• c(ontinue): Keep running the program and stop at the next breakpoint,

or if another exception is raised.
• d(own): Move down the stack frame.
• u(p): Move up the stack frame.
• <any expression>: Evaluate and display an expression within the context

of the current frame. For example, you can use locals() to get a list of all
the local variables scoped to the current frame.

Python and PixieDust Best Practices and Advanced Concepts

[172]

If an exception occurred and you didn't set the automatic pdb calling, you can still
invoke the debugger after the fact by using %debug magic in another cell, as shown
in the following screenshot:

Doing a post-mortem debugging session with %debug

Similar to a regular Python script, you can also explicitly set a breakpoint
programmatically with the pdb.set_trace() method. However, it is recommended
using the enhanced version of set_trace() provided by the IPython core module
that provides syntax coloring:

Explicit breakpoint

In the next topic, we look at an enhanced version of the Python debugger provided
by PixieDust.

Chapter 5

[173]

Visual debugging with PixieDebugger
Using the standard command line-oriented Python pdb to debug your code
is a nice tool to have in our tool belt, but it has two major limitations:

• It's command line-oriented, which means that commands have to be entered
manually and results are sequentially appended to the cell output, making
it impractical when it comes to advanced debugging

• It doesn't work with PixieApps

The PixieDebugger capability addresses both issues. You can use it with any Python
code running in a Jupyter Notebook cell to visually debug the code. To invoke the
PixieDebugger in a cell, simply add the %%pixie_debugger cell magic at the top
of the cell.

Note: If you have not already done so, don't forget to always import
pixiedust in a separate cell before attempting to use %%pixie_
debugger.

As an example, the following code is trying to compute how many cars have the
name chevrolet in the cars dataset:

%%pixie_debugger
import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True)

def count_cars(name):
 count = 0
 for row in cars.itertuples():
 if name in row.name:
 count += 1
 return count

count_cars('chevrolet')

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode19.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode19.py

Python and PixieDust Best Practices and Advanced Concepts

[174]

Running the cell with the preceding code will trigger the visual debugger shown
in the following screenshot. The user interface lets you step into the code line by
line, with the ability to inspect local variables, evaluate Python expressions, and
set breakpoints. The code execution toolbar provides buttons for managing code
execution: resume execution, step over the current line, step into the code a particular
function, run to the end of the current function, and display the stack frame up and
down one level:

PixieDebugger in action

With no parameter, the pixie_debugger cell magic will stop at the first executable
statement in the code. However, you can easily configure it to stop at specific
locations using the -b switch, followed by a list of breakpoints that could be
either a line number or a method name.

Starting from the preceding example code, let's add breakpoints at the count_cars()
method and line 11:

%%pixie_debugger -b count_cars 11
import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True)

Chapter 5

[175]

def count_cars(name):
 count = 0
 for row in cars.itertuples():
 if name in row.name:
 count += 1
 return count

count_cars('chevrolet')

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode20.py

Running the preceding code will now trigger the PixieDebugger to stop at the first
executable statement of the count_cars() method. It also added a breakpoint at line
11, which will cause the execution flow to stop there if the user resumes, as can be
seen in the following screenshot:

PixieDebugger with predefined breakpoints

Note: To run to a specific line of code without setting an explicit
breakpoint, simply hover over the line number in the gutter in the left-
hand pane and click on the icon that appears.
Like the %debug line magic, you can also invoke the PixieDebugger to
do post-mortem debugging by using the %pixie_debugger line magic.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode20.py

Python and PixieDust Best Practices and Advanced Concepts

[176]

Debugging PixieApp routes with PixieDebugger
PixieDebugger is fully integrated into the PixieApp framework. Whenever an
exception happens while triggering a route, the resulting traceback is augmented
with two extra buttons:

• Post Mortem: Invoke the PixieDebugger to start a post-mortem
troubleshooting session that lets you inspect variables and analyses the stack
frames

• Debug Route: Replay the current route stopping at the first executable
statement in the PixieDebugger

As an example, let's consider the following code for implementing a PixieApp
that lets the user search the cars dataset by providing a column name and a search
query:

from pixiedust.display.app import *

import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True)

@PixieApp
class DisplayCars():
 @route()
 def main_screen(self):
 return """
 <div>
 <label>Column to search</label>
 <input id="column{{prefix}}" value="name">
 <label>Query</label>
 <input id="search{{prefix}}">
 <button type="submit" pd_options="col=$val(column{{prefix}
});query=$val(search{{prefix}})"
 pd_target="target{{prefix}}">
 Search
 </button>
 </div>
 <div id="target{{prefix}}"></div>
 """
 @route(col="*", query="*")
 def display_screen(self, col, query):
 self.pdf = cars.loc[cars[col].str.contains(query)]
 return """

Chapter 5

[177]

 <div pd_render_onload pd_entity="pdf">
 <pd_options>
 {
 "handlerId": "tableView",
 "table_noschema": "true",
 "table_nosearch": "true",
 "table_nocount": "true"
 }
 </pd_options>
 </div>
 """
app = DisplayCars()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode21.py

The default value for the search column is name, but if the user enters a column name
that doesn't exist, a traceback is generated as follows:

Enhanced traceback with buttons for invoking the PixieDebugger

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode21.py

Python and PixieDust Best Practices and Advanced Concepts

[178]

Clicking on the Debug Route will automatically start the PixieDebugger and stop
at the first executable statement of the route, as shown in the following screenshot:

Debugging a PixieApp route

You could also deliberately have the PixieDebugger stop at the display_screen()
route without waiting for a traceback to happen by using the debug_route keyword
argument to the run method:

...
app = DisplayCars()
app.run(debug_route="display_screen")

PixieDebugger is the first visual Python debugger for Jupyter Notebook, providing
a feature that has long been requested by the Jupyter user community. However,
using live debugging is not the only tool that developers use. In the next section,
we will look at debugging by inspecting logging messages.

Troubleshooting issues using PixieDust logging
It is always good practice to instrument your code with logging messages, and
the PixieDust framework provides an easy way to create and read back logging
messages directly from the Jupyter Notebook. To start off, you'll need to create
a logger by calling the getLogger() method as follows:

import pixiedust
my_logger = pixiedust.getLogger(__name__)

Chapter 5

[179]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode22.py

You can use anything as an argument to the getLogger() method. However,
to better identify where a particular message comes from, it is recommended using
the __name__ variable, which returns the name of the current module. The my_
logger variable is a standard Python logger object that provides logging methods
with various levels:

• debug(msg, *args, **kwargs): Logs a message with the DEBUG level.
• info(msg, *args, **kwargs): Logs a message with the INFO level.
• warning(msg, *args, **kwargs): Logs a message with the WARNING level.
• error(msg, *args, **kwargs): Logs a message with the ERROR level.
• critical(msg, *args, **kwargs): Logs a message with the CRITICAL

level.
• exception(msg, *args, **kwargs): Logs a message with the EXCEPTION

level. This method should only be called from within an exception handler.

Note: You can find more information about the Python logging
framework here:
https://docs.python.org/2/library/logging.html

You can then query the log messages directly from the Jupyter Notebook using
the %pixiedustLog cell magic, which takes the following parameters:

• -l: Filter by log level, for example, CRITICAL, FATAL, ERROR, WARNING,
INFO, and DEBUG

• -f: Filter a message that contains a given string, for example, Exception
• -m: Maximum number of log messages returned

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode22.py
https://docs.python.org/2/library/logging.html

Python and PixieDust Best Practices and Advanced Concepts

[180]

In the following example, we use the %pixiedustLog magic to display all the debug
messages, limiting these to the last five messages:

Display the last five log messages

For convenience, when working with Python classes, you can also use the @Logger
decorator, which automatically creates a logger using the class name as its identifier.

Here is a code example that uses the @Logger decorator:

from pixiedust.display.app import *
from pixiedust.utils import Logger

@PixieApp
@Logger()
class AppWithLogger():
 @route()
 def main_screen(self):
 self.info("Calling default route")
 return "<div>hello world</div>"

app = AppWithLogger()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode23.py

After running the preceding PixieApp in a cell, you can invoke the %pixiedustLog
magic to display the messages:

Querying the log with a specific term

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode23.py

Chapter 5

[181]

This completes our discussion on server-side debugging. In the next section, we look
at a technique for performing client-side debugging

Client-side debugging
One of the design principles of the PixieApp programming model is to minimize the
need for developers to write JavaScript. The framework will automatically trigger
kernel requests by listening to user input events, such as click or change events.
However, there will be cases where writing a little bit of JavaScript is inevitable.
These JavaScript snippets are usually part of a particular route HTML fragment and
are dynamically injected into the browser, which makes it very difficult to debug.

One popular technique is to sprinkle console.log calls in the JavaScript code
in order to print messages to the browser developer console.

Note: Each browser flavor has its own way of invoking the developer
console. For example, in Google Chrome, you would use View |
Developer | JavaScript Console, or the Command + Alt + J shortcut.

One other debugging technique that I particularly like is to programmatically insert
in a breakpoint in the JavaScript code using the debugger; statement. This statement
has no effect unless the browser developer tools are open and source debugging
is enabled, in which case, the execution will automatically break at the debugger;
statement.

The following PixieApp example uses a JavaScript function to resolve
a dynamic value referenced by the $val() directive:

from pixiedust.display.app import *

@PixieApp
class TestJSDebugger():
 @route()
 def main_screen(self):
 return """
<script>
function FooJS(){
 debugger;
 return "value"
}
</script>
<button type="submit" pd_options="state=$val(FooJS)">Call route</
button>
 """

Python and PixieDust Best Practices and Advanced Concepts

[182]

 @route(state="*")
 def my_route(self, state):
 return "<div>Route called with state {{state}}</div>"

app = TestJSDebugger()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode24.py

In the preceding code, the button is dynamically setting the value of a state using
the FooJS JavaScript function that contains a debugger statement. Executing the app
and clicking on the button while the developer tool is open will automatically start
a debugging session on the browser:

Debugging JavaScript code on the client side with a debugger; statement

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode24.py

Chapter 5

[183]

Run Node.js inside a Python Notebook
Even though I've clearly stated at the beginning of this book that Python has
emerged as a clear leader in the field of data science, it is still only marginally used
by the developer community where traditional languages, such as Node.js, are still
preferred. Recognizing that, for some developers, learning a new language, such
as Python, is a cost of entry to data science that may be too high, I partnered with
my IBM colleague, Glynn Bird, to build an extension library to PixieDust called
pixiedust_node (https://github.com/pixiedust/pixiedust_node) that would
let developers run Node.js/JavaScript code inside cells in a Python Notebook. The
goal of this library is to ease developers into the Python world by allowing them to
reuse their favourite Node.js libraries, for example, to load and process data from
existing data sources.

To install the pixiedust_node library, simply run the following command
in its own cell:

!pip install pixiedust_node

Note: Don't forget to restart the kernel once the installation is complete.
Important: You need to make sure that a Node.js runtime version 6 or
higher is installed on the same machine as the Jupyter Notebook Server.

Once the kernel has restarted, we import the pixiedust_node module:

import pixiedust_node

You should see information about both PixieDust and pixiedust_node in the output
as follows:

pixiedust_node welcome output

When pixiedust_node is imported, a Node subprocess is created from the Python
side along with a special thread that reads the output of the subprocess and passes
it to the Python side to be displayed in the cell currently executing in the Notebook.
This subprocess is responsible for starting an REPL session (Read-Eval-Print Loop:
https://en.wikipedia.org/wiki/Read-eval-print_loop) that will execute
all the scripts sent from the Notebook and make any created classes, functions,
and variables reusable across all executions.

https://github.com/pixiedust/pixiedust_node
https://en.wikipedia.org/wiki/Read-eval-print_loop

Python and PixieDust Best Practices and Advanced Concepts

[184]

It also defines a set of functions that are designed to interact with the Notebook and
the PixieDust display() API:

• print(data): Outputs the value of data in the cell currently executing in the
Notebook.

• display(data): Calls the PixieDust display() API with a pandas
DataFrame converted from data. If data cannot be converted into a pandas
DataFrame, then it defaults to the print method.

• html(data): Displays the data as HTML in the cell currently executing in the
Notebook.

• image(data): Expects data to be a URL to an image and displays it in the cell
currently executing in the Notebook.

• help(): Displays a list of all the preceding methods.

In addition, pixiedust_node makes two variables, called npm and node, globally
available in the Notebook:

• node.cancel(): Stops the current execution of code in the Node.js
subprocess.

• node.clear(): Resets the Node.js session; all existing variables will be
deleted.

• npm.install(package): Installs an npm package and makes it available
to the Node.js session. The package is persisted across sessions.

• npm.uninstall(package): Removes the npm package from the system
and the current Node.js session.

• npm.list(): Lists all npm packages currently installed.

pixiedust_node creates a cell magic that lets you run arbitrary JavaScript code.
Simply use the %%node magic at the top of the cell and run it as usual. The code
will then be executed in the Node.js subprocess REPL session.

The following code displays a string that includes the current datetime using the
JavaScript Date object (https://www.w3schools.com/Jsref/jsref_obj_date.
asp):

%%node
var date = new Date()
print("Today's date is " + date)

This outputs the following:

"Today's date is Sun May 27 2018 20:36:35 GMT-0400 (EDT)"

https://www.w3schools.com/Jsref/jsref_obj_date.asp
https://www.w3schools.com/Jsref/jsref_obj_date.asp

Chapter 5

[185]

The following diagram illustrates the execution flow of the preceding cell:

The life cycle of a Node.js script execution

The JavaScript code is processed by the pixiedust_node magic and sent to the
Node subprocess for execution. As the code is being executed, its output is read
by the special thread and displayed back in the cell currently executing in the
Notebook. Note that the JavaScript code may make an asynchronous call, in
which case the execution will return right away before the asynchronous calls
have finished. In this case, the Notebook will indicate that the cell code is done,
even though more output may be generated later by the asynchronous code. There
is no way to deterministically know when an asynchronous code is done. Therefore
it is incumbent upon the developer to manage this state carefully.

pixiedust_node also has the ability to share variables between the Python side
and the JavaScript side, and vice-versa. Therefore, you could declare a Python
variable (such as an array of integers, for example), apply a transformation in
JavaScript (perhaps using your favorite library), and have it processed back
in Python.

The following code is run in two cells, one in pure Python declaring an array
of integers, and one in JavaScript that multiplies each element by 2:

Python and PixieDust Best Practices and Advanced Concepts

[186]

The reverse direction also works the same. The following code starts by creating
a JSON variable in JavaScript in a node cell, and then creates and displays a pandas
DataFrame in the Python cell:

%%node
data = {
 "name": ["Bob","Alice","Joan","Christian"],
 "age": [20, 25, 19, 45]
}
print(data)

The results are as follows:

{"age": [20, 25, 19, 45], "name": ["Bob", "Alice", "Joan",
"Christian"]}

Then, in a Python cell, we use PixieDust display():

df = pandas.DataFrame(data)
display(df)

Using the following options:

display() options for data created from a node cell

Chapter 5

[187]

And we get the following results:

Bar chart from data created in a node cell

We could also have arrived at the same results directly from the Node cell
by using the display() method made available by pixiedust_node, as shown
in the following code:

%%node
data = {
 "name": ["Bob","Alice","Joan","Christian"],
 "age": [20, 25, 19, 45]
}
display(data)

If you are interested in knowing more about pixiedust_node, I strongly recommend
this blog post: https://medium.com/ibm-watson-data-lab/nodebooks-node-
js-data-science-notebooks-aa140bea21ba. As always, I encourage the reader
to get involved with improving these tools, either by contributing code or ideas for
enhancement.

https://medium.com/ibm-watson-data-lab/nodebooks-node-js-data-science-notebooks-aa140bea21ba
https://medium.com/ibm-watson-data-lab/nodebooks-node-js-data-science-notebooks-aa140bea21ba

Python and PixieDust Best Practices and Advanced Concepts

[188]

Summary
In this chapter, we've explored various advanced concepts, tools, and best
practices that added more tools to our toolbox, ranging from advanced techniques
for PixieApps (Streaming, how to implement a route by integrating third-party
libraries with @captureOutput, PixieApp events, and better modularity with
pd_app), to essential developer tools like the PixieDebugger. We've also covered
the details of how to create your own custom visualization using the PixieDust
display() API. We also discussed pixiedust_node, which is an extension of the
PixieDust framework that lets developers who are more comfortable with JavaScript
work with data in their favorite language.

Throughout the remainder of this book, we are going to put all these lessons learned
to good use by building industry use case data pipelines, starting with a Deep
Learning Visual Recognition application in Chapter 6, Analytics Study: AI and Image
Recognition with TensorFlow.

A developer quick-reference guide for the PixieApp programming model is provided
in Appendix, PixieApp Quick-Reference at the end of this book.

[189]

Analytics Study: AI and
Image Recognition with

TensorFlow
"Artificial Intelligence, deep learning, machine learning — whatever you're
doing if you don't understand it — learn it. Because otherwise, you're going
to be a dinosaur within 3 years."

 – Mark Cuban

This is the first chapter of a series of sample applications covering popular
industry use cases, and it is no coincidence that I start with a use case related
to machine learning and, more specifically, deep learning through a image
recognition sample application. We're seeing accelerated growth in the field
of Artificial Intelligence (AI) over the last few years, to the point where many
practical applications are becoming a reality, such as self-driving cars, and chatbots
with advanced automated speech recognition that, for some tasks, are perfectly
able to replace human operators, while more and more people, from academia to
industry, are starting to get involved. However, there is a perception that the cost
of entry is very high and that mastering the underlying mathematical concepts of
machine learning is a prerequisite. In this chapter, we try to demonstrate, through
the use of examples, that this is not the case.

We will start this chapter with a quick introduction to machine learning, and
a subset of it called deep learning. We will then introduce a very popular deep learning
framework called TensorFlow that we'll use to build an image recognition model.
In the second part of this chapter, we'll show how to operationalize the model we've
built by implementing a sample PixieApp that lets the user enter a link to a website,
have all the images scraped, and use as input to the model to categorize them.

Analytics Study: AI and Image Recognition with TensorFlow

[190]

At the end of this chapter, you should be convinced that it is possible to build
meaningful applications and operationalize them without a Ph.D. in machine
learning.

What is machine learning?
One definition that I think captures very well the intuition behind machine
learning comes from Andrew Ng, adjunct professor at Stanford University, in
his Machine Learning class on Coursera (https://www.coursera.org/learn/
machine-learning):

Machine learning is the science of getting computers to learn, without being
explicitly programmed.

The key word from the preceding definition is learn, which, in this context, has
a meaning that is very similar to how, we, humans learn. To continue with this
parallel, from a young age, we were taught how to accomplish a task either by
example, or on our own by trial and error. Broadly speaking, machine learning
algorithms can be categorized into two types that correspond to the two ways
in which humans learn:

• Supervised: The algorithm learns from example data that has been properly
labeled. This data is also called training data, or sometimes referred to as
ground truth.

• Unsupervised: The algorithm is able to learn on its own from data that has
not been labeled.

For each of the two categories described here, the following table gives a high-level
overview of the most commonly used machine learning algorithms and the type of
problem they solve:

List of machine learning algorithms

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning

Chapter 6

[191]

The output of these algorithms is called a model and is used to make predictions
on new input data that has not been seen before. The overall end-to-end process for
building and deploying these models is very consistent across the different types of
algorithms.

The following diagram shows a high-level workflow of this process:

Machine learning model workflow

As always, the workflow starts with data. In the case of supervised learning, the
data will be used as an example and therefore must be correctly labeled with the
correct answers. The input data is then processed to extract intrinsic properties
called features, which we can think of as numerical values representing the input
data. Subsequently, these features are fed into a machine learning algorithm that
builds a model. In typical settings, the original data is split between training, test,
and blind data. The test and blind data are used during the model building phase
to validate and optimize the model to make sure that it doesn't overfit the training
data. Overfitting happens when the model parameters are such that they follow
too closely the training data, leading to errors when unseen data is used. When the
model produces the desired accuracy level, it is then deployed in production and
used against new data as needed by the host application.

In this section, we will provide a very high-level introduction to machine learning
with a simplified data pipeline workflow, just enough to give the intuition of
how a model is built and deployed. Once again, if you are a beginner, I highly
recommend Andrew Ng's Machine Learning class on Coursera (which I still revisit
from time to time). In the next section, we will introduce a branch of machine
learning called deep learning, which we'll use to build the image recognition
sample application.

Analytics Study: AI and Image Recognition with TensorFlow

[192]

What is deep learning?
Getting computers to learn, reason, and think (make decisions) is a science that
is commonly called cognitive computing, of which machine learning and deep
learning are a big part. The following Venn diagram shows how these fields are
related to the overarching field of AI:

How deep learning fits in to AI

As the diagram suggests, deep learning is one type of machine learning algorithm.
What is perhaps not widely known is that the field of deep learning has existed
for quite some time, but hasn't really been widely used until very recently. The
rekindling in interest is due to the extraordinary advances in computer, cloud, and
storage technologies observed in the last few years that have fuelled exponential
growth in AI with the development of many new deep learning algorithms, each
best suited to solve a particular problem.

As we'll discuss later in this chapter, deep learning algorithms are especially good
at learning complex non-linear hypotheses. Their design is actually inspired by how
the human brain works, for example, the input data flows through multiple layers of
computation units in order to decompose complex model representations (such as an
image, for example) into simpler ones, before passing the results to the next layer,
and so on and so forth, until reaching the final layer that is responsible for outputting
the results. The assembly of these layers is also referred to as neural networks, and
the computation units that compose a layer are called neurons. In essence, a neuron
is responsible for taking multiple inputs and transforming them into a single output
that can then be fed into other neurons in the next layers.

The following diagram represents a multilayer neural network for image
classification:

Chapter 6

[193]

High-level representation of a neural network for image classification

The preceding neural network is also called feed-forward because the output
of each computation unit is used as input to the next layer, starting with the input
layer. The intermediary layers are called the hidden layers and contain intermediary
features that are automatically learned by the network. In our image example, certain
neurons could be responsible for detecting corners, while certain others might focus
on edges, and so on. The final output layer is responsible for assigning a confidence
level (score) to each of the output classes.

One important question is how does the neuron output get generated from its
input? Without diving too deeply in to the mathematics involved, each artificial
neuron applies an activation function ()g x on the weighted sum of its inputs
to decide whether it should fire or not.

The following formula calculates the weighted sum:

i
jj

A input biasθ= ∗ +∑

Where iθ is the matrix of weights between the layer i and i + 1. These weights
are computed during the training phase that we will discuss briefly a little later.

Note: The bias in the preceding formula represents the weight of the bias
neuron, which is an extra neuron added to each layer with an x value
of +1. The bias neuron is special because it contributes to the input for
the next layer, but it is not connected to the previous one. Its weight,
however, is still normally learned like any other neuron. The intuition
behind the bias neuron is that it provides the constant term b in the
linear regression equation:

Y = mx + b

Analytics Study: AI and Image Recognition with TensorFlow

[194]

Of course, applying the neuron activation function ()g x on A cannot simply
produce a binary (0 or 1) value, because we wouldn't be able to correctly rank
the final candidate answers if multiple classes are given the score of 1. Instead,
we use activation functions that provide a non-discrete score between 0 and 1 and set
a threshold value (for example, 0.5) to decide whether to activate the neuron or not.

One of the most popular activation functions is the sigmoid function:

() 1
1 xg x
e−

=
+

The following diagram shows how a neuron output is calculated from its input and
its weight using a sigmoid activation function:

Neuron output calculation using the sigmoid function

Other popular activation functions include the hyperbolic tangent ()tanh x and
the Rectified Linear Unit (ReLu): ()max 0, x . ReLu works better when there are
a lot of layers because it provides sparsity of firing neurons, thereby reducing noise
and resulting in faster learning.

Feed-forward propagation is used during scoring of the model, but when it comes
to training the weight matrix of the neural network, a popular method used is
called backpropagation (https://en.wikipedia.org/wiki/Backpropagation).

The following high-level steps describe how the training works:

1. Randomly initialize the weight matrix (preferably using small values,
for example, [],− +E E .

https://en.wikipedia.org/wiki/Backpropagation

Chapter 6

[195]

2. Use the forward propagation described earlier on all the training examples
to compute the outputs of each neuron using the activation function of your
choice.

3. Implement a cost function for your neural network. A cost function
quantifies the error with respect to the training examples. There are multiple
cost functions that can be used with the backpropagation algorithm, such as
a mean-square error (https://en.wikipedia.org/wiki/Mean_squared_
error) and cross-entropy (https://en.wikipedia.org/wiki/Cross_
entropy).

4. Use backpropagation to minimize your cost function and compute the weight
matrix. The idea behind backpropagation is to start with the activation values
of the output layer, compute the error with respect to the training data, and
pass their errors backward to the hidden layers. These errors are then
adjusted to minimize the cost function implemented in step 3.

Note: Explaining in detail these cost functions and how they are
being optimized is beyond the scope of this book. For a deeper dive,
I highly recommend looking at the Deep Learning book from MIT
press (Ian Goodfellow, Yoshua Bengio, and Aaron Courville)

In this section, we've discussed at a high level how neural networks work and
how they are trained. Of course, we've only touched the surface of this exciting
technology, but you hopefully should have an idea as to how they work. In the
next section, we start looking at TensorFlow, which is a programming framework
that helps abstract the underlying complexity of implementing a neural network.

Getting started with TensorFlow
There are multiple open source deep learning frameworks besides TensorFlow
(https://www.tensorflow.org) that I could have chosen for this sample
application.

Some of the most popular frameworks are as follows:

• PyTorch (http://pytorch.org)
• Caffee2 (https://caffe2.ai)
• MXNet (https://mxnet.apache.org)

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy
https://www.tensorflow.org
http://pytorch.org
https://caffe2.ai
https://mxnet.apache.org

Analytics Study: AI and Image Recognition with TensorFlow

[196]

• Keras (https://keras.io): A high-level neural network abstraction API
capable of running other deep learning frameworks such as TensorFlow,
CNTK (https://github.com/Microsoft/cntk), and Theano
(https://github.com/Theano/Theano)

TensorFlow APIs are available in multiple languages: Python, C++, Java, Go, and,
more recently, JavaScript. We can distinguish two categories of APIs: high level and
low level, represented by this diagram:

TensorFlow high-level API architecture

To get started with the TensorFlow API, let's build a simple neural network that
will learn the XOR transformation.

As a reminder, the XOR operator has only four training examples:

X Y Result

0 0 0
0 1 1
1 0 1
1 1 0

It's interesting to note that linear classifiers (https://en.wikipedia.org/wiki/
Linear_classifier) are not able to learn the XOR transformation. However, we
can solve this problem with a simple neural network with two neurons in the input
layer, one hidden layer with two neurons, and an output layer with one neuron
(binary classification), demonstrated as follows:

https://keras.io
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_classifier

Chapter 6

[197]

XOR neural network

Note: You can install TensorFlow directly from the Notebook by using
the following command:
!pip install tensorflow

As always, don't forget to restart the kernel after any successful install.

To create the input and output layer tensors, we use the tf.placeholder API,
as shown in the following code:

import tensorflow as tf
x_input = tf.placeholder(tf.float32)
y_output = tf.placeholder(tf.float32)

Then, we use the tf.Variable API (https://www.tensorflow.org/programmers_
guide/variables) to initialize the random value for the matrices θ1 and θ2,
corresponding to the hidden layer and the output layer:

eps = 0.01
W1 = tf.Variable(tf.random_uniform([2,2], -eps, eps))
W2 = tf.Variable(tf.random_uniform([2,1], -eps, eps))

For the activation function, we use the sigmoid function:

Note: For simplicity, we omit to introduce the bias.

layer1 = tf.sigmoid(tf.matmul(x_input, W1))
output_layer = tf.sigmoid(tf.matmul(layer1, W2))

https://www.tensorflow.org/programmers_guide/variables
https://www.tensorflow.org/programmers_guide/variables

Analytics Study: AI and Image Recognition with TensorFlow

[198]

For the cost function, we use the MSE (short for, mean square error):

cost = tf.reduce_mean(tf.square(y_output - output_layer))

With all the tensors in place in the graph, we can now proceed with the training
by using the tf.train.GradientDescentOptimizer with a learning rate of
0.05 to minimize our cost function:

train = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
training_data = ([[0,0],[0,1],[1,0],[1,1]], [[0],[1],[1],[0]])
with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 for i in range(5000):
 sess.run(train,
 feed_dict={x_input: training_data[0], y_output: training_
data[1]})

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode1.py

The preceding code introduces the concept of a TensorFlow Session for the first
time, which is a foundational part of the framework. In essence, any TensorFlow
operation must be executed within the context of Session by using its run method.
Sessions also maintain resources that need to be explicitly released using the close
method. For convenience, the Session class supports the context management
protocol by providing an __enter__ and __exit__ method. This allows the caller
to call TensorFlow operations using the with statement (https://docs.python.
org/3/whatsnew/2.6.html#pep-343-the-with-statement) and have the
resources automatically freed.

The following pseudo-code shows a typical structure of a TensorFlow execution:

with tf.Session() as sess:
 with-block statement with TensorFlow operations

In this section, we quickly explored the low-level TensorFlow APIs to build
a simple neural network that learned the XOR transformation. In the next section,
we'll explore the higher level estimator APIs that provide an abstraction layer on
top of the low-level API.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode1.py
https://docs.python.org/3/whatsnew/2.6.html#pep-343-the-with-statement
https://docs.python.org/3/whatsnew/2.6.html#pep-343-the-with-statement

Chapter 6

[199]

Simple classification with DNNClassifier
Note: This section discusses the source code for a sample PixieApp.
If you want to follow along, it might be easier to download the complete
Notebook at this location:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/TensorFlow%20classification.
ipynb

Before we look at using Tensors, Graphs, and Sessions from the low-level
TensorFlow APIs, it would be good to get familiar with the high-level API provided
in the Estimators package. In this section, we build a simple PixieApp that takes
a pandas DataFrame as input and trains a classification model with the categorical
output.

Note: There are essentially two types of classification output: categorical
and continuous. In a categorical classifier model, the output can only
be chosen from a list of finite predefined values with or without a logical
order. We commonly call binary classification a classification model with
only two classes. On the other hand, the continuous output can have any
numerical values.

The user is first asked to choose a numerical column to predict on, and
a classification model is trained on all the other numerical columns present
in the DataFrame.

Note: Some of the code of this sample app is adapted from https://
github.com/tensorflow/models/tree/master/samples/core/
get_started.

For this example, we'll use built-in sample dataset #7: Boston Crime data,
two-week sample, but you could use any other dataset as long it has sufficient
data and numerical columns.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/tensorflow/models/tree/master/samples/core/get_started
https://github.com/tensorflow/models/tree/master/samples/core/get_started
https://github.com/tensorflow/models/tree/master/samples/core/get_started

Analytics Study: AI and Image Recognition with TensorFlow

[200]

As a reminder, you can browse the PixieDust built-in datasets using the following code:

import pixiedust
pixiedust.sampleData()

List of built-in datasets in PixieDust

The following code loads the Boston Crime dataset using the sampleData() API:

import pixiedust
crimes = pixiedust.sampleData(7, forcePandas=True)

As always, we first start by exploring the data using the display() command.
The goal here is to look for a suitable column to predict on:

display(crimes)

Table view of the crime dataset

Chapter 6

[201]

It looks like nonviolent is a good candidate for binary classification. Let's now bring
up a bar chart to make sure we have a good data distribution in this column:

Select the nonviolent column in the option dialog

Analytics Study: AI and Image Recognition with TensorFlow

[202]

Clicking OK produces the following chart:

Distribution of nonviolent crimes

Unfortunately, the data is skewed toward nonviolent crimes, but we have close
to 2,000 data points for violent crimes, which, for the purpose of this sample
application, should be OK.

We are now ready to create the do_training method that will use a tf.estimator.
DNNClassifier to create a classification model.

Note: You can find more information on DNNClassifier and other
high-level TensorFlow estimators here:
https://www.tensorflow.org/api_docs/python/tf/
estimator

The DNNClassifier constructor takes a lot of optional parameters. In our sample
application, we'll only use three of them, but I encourage you to take a look at the
other parameters in the documentation:

• feature_columns: An iterable of feature_column._FeatureColumn model
inputs. In our case, we can just create an array from the numerical columns
of the pandas DataFrame using Python comprehension.

• hidden_units: An iterable of a number of hidden layers per unit. Here,
we'll use only two layers with 10 nodes each.

https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/estimator

Chapter 6

[203]

• n_classes: The number of label classes. We'll infer this number by grouping
the DataFrame on the predictor columns and count the rows.

Here's the code for the do_training method:

def do_training(train, train_labels, test, test_labels, num_classes):
 #set TensorFlow logging level to INFO
 tf.logging.set_verbosity(tf.logging.INFO)

 # Build 2 hidden layer DNN with 10, 10 units respectively.
 classifier = tf.estimator.DNNClassifier(
 # Compute feature_columns from dataframe keys using a list
comprehension
 feature_columns =
 [tf.feature_column.numeric_column(key=key) for key in
train.keys()],
 hidden_units=[10, 10],
 n_classes=num_classes)

 # Train the Model
 classifier.train(
 input_fn=lambda:train_input_fn(train, train_labels,100),
 steps=1000
)

 # Evaluate the model
 eval_result = classifier.evaluate(
 input_fn=lambda:eval_input_fn(test, test_labels,100)
)

 return (classifier, eval_result)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode2.py

The classifier.train method uses a train_input_fn method that is responsible
for providing training input data (a.k.a ground truth) as minibatches, returning
either a tf.data.Dataset or a tuple of (features, labels). Our code is also
performing a model evaluation using classifier.evaluate to validate the
accuracy by scoring the model against the test dataset and comparing the results
in the given label. The results are then returned as part of the function output.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode2.py

Analytics Study: AI and Image Recognition with TensorFlow

[204]

This method requires an eval_input_fn method that is similar to the train_input_
fn, with the exception that we do not make the dataset repeatable during evaluation.
Since the two methods share most of the same code, we use a helper method called
input_fn that is called by both methods with the appropriate flag:

def input_fn(features, labels, batch_size, train):
 # Convert the inputs to a Dataset and shuffle.
 dataset = tf.data.Dataset.from_tensor_slices((dict(features),
labels)).shuffle(1000)
 if train:
 #repeat only for training
 dataset = dataset.repeat()
 # Return the dataset in batch
 return dataset.batch(batch_size)

def train_input_fn(features, labels, batch_size):
 return input_fn(features, labels, batch_size, train=True)

def eval_input_fn(features, labels, batch_size):
 return input_fn(features, labels, batch_size, train=False)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode3.py

The next step is to build the PixieApp that will create the classifier from a pandas
DataFrame passed as input to the run method. The main screen builds a list of all
the numerical columns into a drop-down control and asks the user to select a column
that will be used as the classifier output. This is done in the following code using
a Jinja2 {%for ...%} loop iterating over the DataFrame passed as input that is
referenced using the pixieapp_entity variable.

Note: The following code uses the [[SimpleClassificationDNN]]
notation to denote that it is incomplete code from the specified class.
Do not try to run this code yet until the full implementation is provided.

[[SimpleClassificationDNN]]
from pixiedust.display.app import *
@PixieApp
class SimpleClassificationDNN():
 @route()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode3.py

Chapter 6

[205]

 def main_screen(self):
 return """
<h1 style="margin:40px">
 <center>The classificiation model will be trained on all the
numeric columns of the dataset</center>
</h1>
<style>
 div.outer-wrapper {
 display: table;width:100%;height:300px;
 }
 div.inner-wrapper {
 display: table-cell;vertical-align: middle;height: 100%;width:
100%;
 }
</style>
<div class="outer-wrapper">
 <div class="inner-wrapper">
 <div class="col-sm-3"></div>
 <div class="input-group col-sm-6">
 <select id="cols{{prefix}}" style="width:100%;height:30px"
pd_options="predictor=$val(cols{{prefix}})">
 <option value="0">Select a predictor column</option>
 {%for col in this.pixieapp_entity.columns.values.
tolist()%}
 <option value="{{col}}">{{col}}</option>
 {%endfor%}
 </select>
 </div>
 </div>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode4.py

Using the crimes dataset, we run the PixieApp with the following code:

app = SimpleClassificationDNN()
app.run(crimes)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode4.py

Analytics Study: AI and Image Recognition with TensorFlow

[206]

Note: The PixieApp code is incomplete at this time, but we can still see
the results of the welcome page, as shown in the following screenshot:

The main screen showing the list of columns in the input pandas DataFrame

When the user selects the prediction column (for example, nonviolent), a new
prepare_training route is triggered by the attribute: pd_options="predictor=$va
l(cols{{prefix}})". This route will show two bar charts showing the output class
distribution for both the training and test sets that are randomly selected using an
80/20 split from the original dataset.

Note: We use an 80/20 split between training and test sets, which, from
my experience, is quite common. Of course, this is not an absolute rule
and could be adjusted depending on the use case

The screen fragment also includes a button to start training the classifier.

The code for the prepare_training route is shown here:

[[SimpleClassificationDNN]]
@route(predictor="*")
@templateArgs
def prepare_training(self, predictor):
 #select only numerical columns
 self.dataset = self.pixieapp_entity.dropna(axis=1).select_
dtypes(
 include=['int16', 'int32', 'int64', 'float16', 'float32',
'float64']
)
 #Compute the number of classed by counting the groups
 self.num_classes = self.dataset.groupby(predictor).size().

Chapter 6

[207]

shape[0]
 #Create the train and test feature and labels
 self.train_x=self.dataset.sample(frac=0.8)
 self.full_train = self.train_x.copy()
 self.train_y = self.train_x.pop(predictor)
 self.test_x=self.dataset.drop(self.train_x.index)
 self.full_test = self.test_x.copy()
 self.test_y=self.test_x.pop(predictor)

 bar_chart_options = {
 "rowCount": "100",
 "keyFields": predictor,
 "handlerId": "barChart",
 "noChartCache": "true"
 }

 return """
<div class="container" style="margin-top:20px">
 <div class="row">
 <div class="col-sm-5">
 <h3><center>Train set class distribution</center></h3>
 <div pd_entity="full_train" pd_render_onload>
 <pd_options>{{bar_chart_options|tojson}}</pd_options>
 </div>
 </div>
 <div class="col-sm-5">
 <h3><center>Test set class distribution</center></h3>
 <div pd_entity="full_test" pd_render_onload>
 <pd_options>{{bar_chart_options|tojson}}</pd_options>
 </div>
 </div>
 </div>
</div>

<div style="text-align:center">
 <button class="btn btn-default" type="submit" pd_options="do_
training=true">
 Start Training
 </button>
</div>
"""

Analytics Study: AI and Image Recognition with TensorFlow

[208]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode5.py

Note: @templateArgs is used due to the fact that we compute the bar_
chart_options variable once and then use it in the Jinja2 template.

Selecting the nonviolent prediction column gives us the following screenshot result:

Pretraining screen

The Start Training button invokes the do_training route using the attribute
pd_options="do_training=true", which invokes the do_training method
we created earlier. Note that we use the @captureOutput decorator because, since
we set the TensorFlow log level to INFO, we want to capture the log messages and
display them to the user. These log messages are sent back to the browser using
the stream mode, and PixieDust will automatically display them as a specially
created <div> element that will append the data to it as it arrives. When the training
is done, the route returns an HTML fragment that generates a table with the
evaluation metrics returned by the do_training method, as shown
in the following code:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode5.py

Chapter 6

[209]

[[SimpleClassificationDNN]]
@route(do_training="*")
 @captureOutput
def do_training_screen(self):
 self.classifier, self.eval_results = \
 do_training(
self.train_x, self.train_y, self.test_x, self.test_y, self.num_classes
)
 return """
<h2>Training completed successfully</h2>
<table>
 <thead>
 <th>Metric</th>
 <th>Value</th>
 </thead>
 <tbody>
{%for key,value in this.eval_results.items()%}
<tr>
 <td>{{key}}</td>
 <td>{{value}}</td>
</tr>
{%endfor%}
 </tbody>
</table>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode6.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode6.py

Analytics Study: AI and Image Recognition with TensorFlow

[210]

The following screenshot shows the results after the model has been successfully
created and includes the evaluation metrics table for the classification model with
an accuracy of 87%:

Final screen showing the result of successful training

This PixieApp was run using the crimes dataset as an argument, as shown
in the following code:

app = SimpleClassificationDNN()
app.run(crimes)

Once the model is successfully trained, you can access it to classify new data by
calling the predict method on the app.classifier variable. Similar to the train
and evaluate method, predict also takes an input_fn that constructs the input
features.

Note: More details on the predict method are provided here:
https://www.tensorflow.org/api_docs/python/tf/
estimator/DNNClassifier#predict

https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier#predict
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier#predict

Chapter 6

[211]

This sample application provides a good starting point for getting familiar
with the TensorFlow framework by using the high-level estimator APIs.

Note: The complete Notebook for this sample application can be found
here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/TensorFlow%20classification.ipynb

In the next section, we'll start building our image recognition sample application
using the low-level TensorFlow APIs, including Tensors, Graphs, and Sessions.

Image recognition sample application
When it comes to building an open-ended application, you want to start by defining
the requirements for an MVP (short for, Minimum Viable Product) version that
contains just enough functionalities to make it usable and valuable to your users.
When it comes to making technical decisions for your implementation, making
sure that you get a working end-to-end implementation as quickly as possible,
without investing too much time, is a very important criteria. The idea is that you
want to start small so that you can quickly iterate and improve your application.

For the MVP of our image recognition sample application, we'll use the following
requirements:

• Don't build a model from scratch; instead, reuse one of the pretrained generic
convolutional neural network (CNN: https://en.wikipedia.org/wiki/
Convolutional_neural_network) models that are publicly available,
such as MobileNet. We can always retrain these models later with custom
training images using transfer learning (https://en.wikipedia.org/wiki/
Transfer_learning).

• For MVP, while we are focusing on scoring only and not training, we should
still make it interesting for the users. So let's build a PixieApp that allows the
user to input the URL of a web page and display all the images scraped from
the page, including the classification output inferred by our model.

• Since we are learning about deep learning neural networks and TensorFlow,
it would be great if we could display the TensorBoard Graph Visualization
(https://www.tensorflow.org/programmers_guide/graph_viz) in the
Jupyter Notebook directly without forcing the user to use another tool. This
will provide a better user experience and increase their engagement with
the application.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Transfer_learning
https://en.wikipedia.org/wiki/Transfer_learning
https://www.tensorflow.org/programmers_guide/graph_viz

Analytics Study: AI and Image Recognition with TensorFlow

[212]

Note: The implementation of the application in this section is adapted
from the tutorial:
https://codelabs.developers.google.com/codelabs/
tensorflow-for-poets

Part 1 – Load the pretrained MobileNet model
Note: You can download the completed Notebook to follow this section
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%201.ipynb

There are plenty of publicly available image classification models, using CNNs, that
are pretrained on large image databases such as ImageNet (http://www.image-
net.org). ImageNet has started multiple public challenges, such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) or the ImageNet Object
Localization Challenge on Kaggle (https://www.kaggle.com/c/imagenet-object-
localization-challenge), with very interesting results.

These challenges have produced multiple models, such as ResNet, Inception,
SqueezeNet, VGGNet, or Xception, each using a different neural network
architecture. Going over each of these architectures is beyond the scope of this book,
but even if you are not yet an expert in machine learning (which I am definitely not),
I encourage you to read about them online. The model I've selected for this sample
application is MobileNet because it is small, fast, and very accurate. It provides an
image classification model for 1,000 categories of images, which is sufficient for this
sample application.

To ensure the stability of the code, I've made a copy of the model in the GitHub
repo: https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/
chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224.

In this directory, you can find the following files:

• frozen_graph.pb: A serialized binary version of the TensorFlow graph
• labels.txt: A text file that includes a description of the 1,000 image

categories and their index
• quantized_graph.pb: A compressed form of the model graph that used

an 8-bit fixed point representation

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
http://www.image-net.org
http://www.image-net.org
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224

Chapter 6

[213]

Loading the model consists of building a tf.graph object and associated labels.
Since we may want to load multiple models in the future, we first define a dictionary
that provides metadata about the model:

models = {
 "mobilenet": {
 "base_url":"https://github.com/DTAIEB/Thoughtful-Data-Science/
raw/master/chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224",
 "model_file_url": "frozen_graph.pb",
 "label_file": "labels.txt",
 "output_layer": "MobilenetV1/Predictions/Softmax"
 }
}

You can find the file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode7.py

Each key in the preceding models dictionary represents the metadata of a particular
model:

• base_url: Points to the URL where the files are stored
• model_file_url: The name of the model file that is assumed to be relative

to base_url
• label_file: The name of the labels that are assumed to be relative to

base_url

• output_layer: The name of the output layer that provides final scoring for
each category

We implement a get_model_attribute helper method to facilitate reading from
the model metadata, which will be very useful throughout our application:

helper method for reading attributes from the model metadata
def get_model_attribute(model, key, default_value = None):
 if key not in model:
 if default_value is None:
 raise Exception("Require model attribute {} not found".
format(key))
 return default_value
 return model[key]

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode7.py

Analytics Study: AI and Image Recognition with TensorFlow

[214]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode8.py

To load the graph, we download the binary file, load it into a tf.GraphDef
object using the ParseFromString method, and we then invoke the tf.import_
graph_def method using the graph as the current content manager:

import tensorflow as tf
import requests
Helper method for resolving url relative to the selected model
def get_url(model, path):
 return model["base_url"] + "/" + path

Download the serialized model and create a TensorFlow graph
def load_graph(model):
 graph = tf.Graph()
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(
 requests.get(get_url(model, model["model_file_url"])
).content
)
 with graph.as_default():
 tf.import_graph_def(graph_def)
 return graph

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode9.py

The method that loads the labels returns either a JSON object or an array (we'll
see later that both are needed). The following code uses a Python list comprehension
to iterate over the lines returned by the requests.get call. It then uses the as_json
flag to format the data as appropriate:

Load the labels
def load_labels(model, as_json = False):
 labels = [line.rstrip() \
 for line in requests.get(get_url(model, model["label_file"])
).text.split("\n") if line != ""]
 if as_json:
 return [{"index": item.split(":")[0],"label":item.split(":")
[1]} for item in labels]
 return labels

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode9.py

Chapter 6

[215]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode10.py

The next step is to invoke the model to classify images. To make it simpler and
perhaps more valuable, we ask the user to provide a URL to an HTML page that
contains the images to be classified. We'll use the BeautifulSoup4 library to help
parsing the page. To install BeautifulSoup4, simply run the following command:

!pip install beautifulsoup4

Note: As always, don't forget to restart the kernel once installation
is complete.

The following get_image_urls method takes a URL as an input, downloads the
HTML, instantiates a BeautifulSoup parser and extracts all the images found in any
 elements and background-image styles. BeautifulSoup has a very elegant
and easy-to-use API for parsing HTML. Here, we simply use the find_all method
to find all elements and the select method to select all elements with an
inline style. The reader will be quick to notice that there are many other ways to
create images using HTML that we are not discovering, such as, for example, images
declared as CSS classes. As always, if you have the interest and time to improve it, I
strongly welcome pull requests in the GitHub repo (see here for instructions on how
to create a pull request: https://help.github.com/articles/creating-a-pull-
request).

The code for get_image_urls looks like this:

from bs4 import BeautifulSoup as BS
import re

return an array of all the images scraped from an html page
def get_image_urls(url):
 # Instantiate a BeautifulSoup parser
 soup = BS(requests.get(url).text, "html.parser")

 # Local helper method for extracting url
 def extract_url(val):
 m = re.match(r"url\((.*)\)", val)
 val = m.group(1) if m is not None else val
 return "http:" + val if val.startswith("//") else val

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode10.py
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/creating-a-pull-request

Analytics Study: AI and Image Recognition with TensorFlow

[216]

 # List comprehension that look for elements and backgroud-
image styles
 return [extract_url(imgtag['src']) for imgtag in soup.find_
all('img')] + [\
 extract_url(val.strip()) for key,val in \
 [tuple(selector.split(":")) for elt in soup.select("[style]")
\
 for selector in elt["style"].strip(" ;").split(";")] \
 if key.strip().lower()=='background-image' \
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode11.py

For each of the images discovered, we'll also need a helper function to download
the images that will be passed as input to the model for classification.

The following download_image method downloads the image into a temporary file:

import tempfile
def download_image(url):
 response = requests.get(url, stream=True)
 if response.status_code == 200:
 with tempfile.NamedTemporaryFile(delete=False) as f:
 for chunk in response.iter_content(2048):
 f.write(chunk)
 return f.name
 else:
 raise Exception("Unable to download image: {}".format(response.
status_code))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode12.py

Given a local path to an image, we now need to decode it into a tensor by calling the
right decode method from the tf.image package, that is, the decode_png for .png
files.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode12.py

Chapter 6

[217]

Note: In mathematics, a tensor is a generalization of a vector, which
is defined by a direction and a size, to support higher dimensionality.
Vectors are tensors of order 1, similarly, scalars are tensors of order 0.
Intuitively, we can think of order 2 tensors as a two-dimensional array
with values defined as a result of multiplying two vectors. In TensorFlow,
tensors are arrays of n-dimensions.

After a few transformations on the image reader tensor (casting to the right
decimal representation, resizing, and normalization), we call tf.Session.run
on the normalizer tensor to execute the steps defined earlier, as shown in the
following code:

decode a given image into a tensor
def read_tensor_from_image_file(model, file_name):
 file_reader = tf.read_file(file_name, "file_reader")
 if file_name.endswith(".png"):
 image_reader = tf.image.decode_png(file_reader, channels =
3,name='png_reader')
 elif file_name.endswith(".gif"):
 image_reader = tf.squeeze(tf.image.decode_gif(file_
reader,name='gif_reader'))
 elif file_name.endswith(".bmp"):
 image_reader = tf.image.decode_bmp(file_reader, name='bmp_
reader')
 else:
 image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
 float_caster = tf.cast(image_reader, tf.float32)
 dims_expander = tf.expand_dims(float_caster, 0);

 # Read some info from the model metadata, providing default values
 input_height = get_model_attribute(model, "input_height", 224)
 input_width = get_model_attribute(model, "input_width", 224)
 input_mean = get_model_attribute(model, "input_mean", 0)
 input_std = get_model_attribute(model, "input_std", 255)

 resized = tf.image.resize_bilinear(dims_expander, [input_height,
input_width])
 normalized = tf.divide(tf.subtract(resized, [input_mean]),
[input_std])
 sess = tf.Session()
 result = sess.run(normalized)
 return result

Analytics Study: AI and Image Recognition with TensorFlow

[218]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode13.py

With all the pieces in place, we are now ready to implement the score_image
method that takes a tf.graph, a model metadata, and a URL to an image as
input parameters, and returns the top five candidate classifications based on their
confidence score, including their labels:

import numpy as np

classify an image given its url
def score_image(graph, model, url):
 # Get the input and output layer from the model
 input_layer = get_model_attribute(model, "input_layer", "input")
 output_layer = get_model_attribute(model, "output_layer")

 # Download the image and build a tensor from its data
 t = read_tensor_from_image_file(model, download_image(url))

 # Retrieve the tensors corresponding to the input and output
layers
 input_tensor = graph.get_tensor_by_name("import/" + input_layer +
":0");
 output_tensor = graph.get_tensor_by_name("import/" + output_layer
+ ":0");

 with tf.Session(graph=graph) as sess:
 results = sess.run(output_tensor, {input_tensor: t})
 results = np.squeeze(results)
 # select the top 5 candidate and match them to the labels
 top_k = results.argsort()[-5:][::-1]
 labels = load_labels(model)
 return [(labels[i].split(":")[1], results[i]) for i in top_k]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode14.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode14.py

Chapter 6

[219]

We can now test the code using the following steps:

1. Pick the mobilenet model and load the corresponding graph
2. Get a list of image URLs scraped from the Flickr website
3. Call the score_image method for each image URL and print the result

The code is shown here:

model = models['mobilenet']
graph = load_graph(model)
image_urls = get_image_urls("https://www.flickr.com/
search/?text=cats")
for url in image_urls:
 results = score_image(graph, model, url)
 print("Result for {}: \n\t{}".format(url, results))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode15.py

The results are pretty accurate (except for the first image that is a blank image)
as shown in the following screenshot:

Classification of the images found on a Flickr page related to cats

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode15.py

Analytics Study: AI and Image Recognition with TensorFlow

[220]

Part 1 of our image recognition sample application is now complete; you can find the
full Notebook at the following location: https://github.com/DTAIEB/Thoughtful-
Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb.

In the next section, we will build a more user-friendly experience by building
a user interface with a PixieApp.

Part 2 – Create a PixieApp for our
image recognition sample application

Note: You can download the completed Notebook to follow this section
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%202.ipynb

As a reminder, the setup method of a PixieApp, if defined, is executed before
the app starts running. We use it to select our model and initialize the graph:

from pixiedust.display.app import *

@PixieApp
class ScoreImageApp():
 def setup(self):
 self.model = models["mobilenet"]
 self.graph = load_graph(self.model)
 ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode16.py

In the main screen of the PixieApp, we use an input box to let the user enter the URL
to the web page, as shown in the following code snippet:

[[ScoreImageApp]]
@route()
def main_screen(self):
 return """
<style>
 div.outer-wrapper {
 display: table;width:100%;height:300px;

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode16.py

Chapter 6

[221]

 }
 div.inner-wrapper {
 display: table-cell;vertical-align: middle;height: 100%;width:
100%;
 }
</style>
<div class="outer-wrapper">
 <div class="inner-wrapper">
 <div class="col-sm-3"></div>
 <div class="input-group col-sm-6">
 <input id="url{{prefix}}" type="text" class="form-control"
 value="https://www.flickr.com/search/?text=cats"
 placeholder="Enter a url that contains images">

 <button class="btn btn-default" type="button" pd_
options="image_url=$val(url{{prefix}})">Go</button>

 </div>
 </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode17.py

For convenience, we initialize the input text with a default value of https:
//www.flickr.com/search/?text=cats.

We can already run the code to test the main screen by using the following code:

app = ScoreImageApp()
app.run()

The main screen looks like this:

The main screen for the image recognition PixieApp

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode17.py

Analytics Study: AI and Image Recognition with TensorFlow

[222]

Note: This is good for testing, but we should keep in mind that the
do_process_url route has not yet been implemented and, therefore,
clicking on the Go button will fall back to the default route again.

Let's now implement the do_process_url route, which is triggered when the user
clicks on the Go button. This route first calls the get_image_urls method to get
the list of image URLs. Using Jinja2, we then build an HTML fragment that displays
all the images. For each image, we asynchronously invoke the do_score_url route
that runs the model and displays the results.

The following code shows the implementation of the do_process_url route:

[[ScoreImageApp]]
@route(image_url="*")
@templateArgs
def do_process_url(self, image_url):
 image_urls = get_image_urls(image_url)
 return """
<div>
{%for url in image_urls%}
<div style="float: left; font-size: 9pt; text-align: center; width:
30%; margin-right: 1%; margin-bottom: 0.5em;">

 <div style="display:inline-block" pd_render_onload pd_
options="score_url={{url}}">
 </div>
</div>
{%endfor%}
<p style="clear: both;">
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode18.py

Notice the use of the @templateArgs decorator, which allows the Jinja2
fragment to reference the local image_urls variable.

Finally, in the do_score_url route, we call the score_image and display the results
as a list:

[[ScoreImageApp]]
@route(score_url="*")

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode18.py

Chapter 6

[223]

@templateArgs
def do_score_url(self, score_url):
 results = score_image(self.graph, self.model, score_url)
 return """
<ul style="text-align:left">
{%for label, confidence in results%}
{{label}}: {{confidence}}
{%endfor%}

"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode19.py

The following screenshot shows the results for the Flickr page that contains images
of cats:

Results of the image classification for cats

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode19.py

Analytics Study: AI and Image Recognition with TensorFlow

[224]

As a reminder, you can find the complete Notebook at this location:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/Tensorflow%20VR%20Part%202.
ipynb

Our MVP application is almost complete. In the next section, we will integrate
the TensorBoard graph visualization directly in the Notebook.

Part 3 – Integrate the TensorBoard graph
visualization

Note: Part of the code described in this section is adapted from the
deepdream notebook located here:
https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/examples/tutorials/deepdream/deepdream.ipynb

You can download the completed Notebook to follow this section
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%203.ipynb

TensorFlow comes with a very powerful suite of visualizations that help with
debugging and performance optimization of your application. Please take a
moment to explore the TensorBoard capabilities here: https://www.tensorflow.
org/programmers_guide/summaries_and_tensorboard.

One issue here is that configuring the TensorBoard server to work with your
Notebook could be difficult, especially if your Notebooks are hosted on the cloud,
and you have little to no access to the underlying operating systems. In this case,
configuring and starting the TensorBoard server could prove to be an impossible
task. In this section, we show how to work around this problem by integrating
the model graph visualization directly in your Notebook with zero configuration
required. To provide a better user experience, we want to add the TensorBoard
visualization to our PixieApp. We do that by changing the main layout to a tab
layout and assign the TensorBoard visualization to its own tab. Conveniently,
PixieDust provides a base PixieApp called TemplateTabbedApp that takes care of
building a tabbed layout. When using TemplateTabbedApp as the base class, we
need to configure the tab in the setup method as follows:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

Chapter 6

[225]

[[ImageRecoApp]]
from pixiedust.apps.template import TemplateTabbedApp
@PixieApp
class ImageRecoApp(TemplateTabbedApp):
 def setup(self):
 self.apps = [
 {"title": "Score", "app_class": "ScoreImageApp"},
 {"title": "Model", "app_class": "TensorGraphApp"},
 {"title": "Labels", "app_class": "LabelsApp"}
]
 self.model = models["mobilenet"]
 self.graph = self.load_graph(self.model)

app = ImageRecoApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode20.py

It should be noted that in the preceding code, we have added the LabelsApp child
PixieApp to the list of tabs even though it hasn't yet been implemented. Therefore,
as expected, if you run the code as is, the Labels tab will fail.

self.apps contains an array of objects that define the tabs:

• title: Tab title
• app_class: PixieApp to run when the tab is selected

In ImageRecoApp, we configure three tabs associated with three child PixieApps:
the ScoreImageApp that we've already created in Part 2 – Create a PixieApp for our
image recognition sample application, the TensorGraphApp for displaying the model
graph, and the LabelsApp to display a table of all the labeled categories used in
the model.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode20.py

Analytics Study: AI and Image Recognition with TensorFlow

[226]

The results are shown in the following screenshot:

Tabbed layout that includes Score, Model, and Labels

What's also nice about using TemplateTabbedApp superclass is that the
sub-PixieApps are defined separately, which makes the code more maintainable
and reusable.

Let's first look at the TensorGraphApp PixieApp. Its main route returns an
HTML fragment that loads the tf-graph-basic.build.html into an Iframe from
https://tensorboard.appspot.com, and using a JavaScript load listener applies
the serialized graph definition that was computed using the tf.Graph.as_graph_
def method. To make sure the graph definition remains at a reasonable size, and
to avoid unnecessary performance degradation on the browser client, we call the
strip_consts method to remove tensors with constant values that have a large size.

The code for TensorGraphApp is shown here:

@PixieApp
class TensorGraphApp():
 """Visualize TensorFlow graph."""
 def setup(self):
 self.graph = self.parent_pixieapp.graph

 @route()
 @templateArgs
 def main_screen(self):
 strip_def = self.strip_consts(self.graph.as_graph_def())
 code = """
 <script>
 function load() {{

Chapter 6

[227]

 document.getElementById("{id}").pbtxt = {data};
 }}
 </script>
 <link rel="import" href="https://tensorboard.appspot.com/
tf-graph-basic.build.html" onload=load()>
 <div style="height:600px">
 <tf-graph-basic id="{id}"></tf-graph-basic>
 </div>
 """.format(data=repr(str(strip_def)), id='graph'+ self.
getPrefix()).replace('"', '"')

 return """
<iframe seamless style="width:1200px;height:620px;border:0"
srcdoc="{{code}}"></iframe>
"""

 def strip_consts(self, graph_def, max_const_size=32):
 """Strip large constant values from graph_def."""
 strip_def = tf.GraphDef()
 for n0 in graph_def.node:
 n = strip_def.node.add()
 n.MergeFrom(n0)
 if n.op == 'Const':
 tensor = n.attr['value'].tensor
 size = len(tensor.tensor_content)
 if size > max_const_size:
 tensor.tensor_content = "<stripped {} bytes>".
format(size).encode("UTF-8")
 return strip_def

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode21.py

Note: Child PixieApps have access to their parent PixieApp through the
self.parent_pixieapp variables.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode21.py

Analytics Study: AI and Image Recognition with TensorFlow

[228]

The resulting screen for the TensorGraphApp child PixieApp is shown in the
following screenshot. It provides an interactive visualization of the TensorFlow
graph for the selected model, allowing the user to navigate through the different
nodes and to drill down deeper into the model. However, it is important to note that
the visualization runs entirely within the browser, without the TensorBoard server.
Therefore, some of the functions available in the full TensorBoard, such as runtime
statistics, are disabled.

Displaying the model graph for MobileNet V1

In the LabelsApp PixieApp, we simply load the labels as JSON format,
and display it in a PixieDust table, using the handlerId=tableView option:

[[LabelsApp]]
@PixieApp
class LabelsApp():
 def setup(self):
 self.labels = self.parent_pixieapp.load_labels(
 self.parent_pixieapp.model, as_json=True
)

 @route()
 def main_screen(self):
 return """

Chapter 6

[229]

<div pd_render_onload pd_entity="labels">
 <pd_options>
 {
 "table_noschema": "true",
 "handlerId": "tableView",
 "rowCount": "10000"
 }
 </pd_options>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode22.py

Note: We configure the table to not show the schema by setting table_
noschema to true, but we keep the search bar for convenience.

The results are shown in the following screenshot:

Searchable table for the model categories

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode22.py

Analytics Study: AI and Image Recognition with TensorFlow

[230]

Our MVP image recognition sample application is now complete; you can find the
full Notebook here: https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb.

In the next section, we will improve the application by allowing the user to retrain
the model using custom images.

Part 4 – Retrain the model with custom
training data

Note: You can download the completed Notebook to follow this section
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%204.ipynb

The code in this section is quite extensive, and some helper functions
that are not directly related to the topic will be omitted. However, as
always, refer to the complete Notebook on GitHub for more information
on the code.

In this section, we want to retrain the MobileNet model with custom training data
and use it to classify images that would have had a low score on the generic model
otherwise.

Note: The code in this section is adapted from the TensorFlow for poets
tutorial:
https://github.com/googlecodelabs/tensorflow-for-
poets-2/blob/master/scripts/retrain.py

As is the case most of the time, getting quality training data can be one of the
most daunting and time-consuming tasks. In our example, we need images in
large quantities for each of the classes we want to train. For the sake of simplicity
and reproducibility, we are using the ImageNet databases that conveniently
provide APIs for getting URLs and associated labels. We also limit the downloaded
files to .jpg files. Of course, feel free to acquire your own training data if needed.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb
https://github.com/googlecodelabs/tensorflow-for-poets-2/blob/master/scripts/retrain.py
https://github.com/googlecodelabs/tensorflow-for-poets-2/blob/master/scripts/retrain.py

Chapter 6

[231]

We first download the list of all the image URLs from the Fall 2011 release that is
available here: http://image-net.org/imagenet_data/urls/imagenet_fall11_
urls.tgz, and unpack the file into a local directory of your choice (for example, I
chose /Users/dtaieb/Downloads/fall11_urls.txt).We also need to download
the mapping between WordNet ID and words for all synsets available at http://
image-net.org/archive/words.txt, which we'll use to find the WordNet IDs
containing the URLs that we need to download.

The following code will load both files into a pandas DataFrame respectively:

import pandas
wnid_to_urls = pandas.read_csv('/Users/dtaieb/Downloads/fall11_urls.
txt',
 sep='\t', names=["wnid", "url"],
 header=0, error_bad_lines=False,
 warn_bad_lines=False, encoding="ISO-8859-1")
wnid_to_urls['wnid'] = wnid_to_urls['wnid'].apply(lambda x:
x.split("_")[0])
wnid_to_urls = wnid_to_urls.dropna()

wnid_to_words = pandas.read_csv('/Users/dtaieb/Downloads/words.txt',
 sep='\t', names=["wnid", "description"],
 header=0, error_bad_lines=False,
 warn_bad_lines=False, encoding="ISO-8859-1")
wnid_to_words = wnid_to_words.dropna()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode23.py

Notice that we needed to clean the wnid column in the wnid_to_urls
dataset because it contains a suffix corresponding to the index of the
image in the category.

We can then define a method get_url_for_keywords that returns a dictionary
containing the categories as keys and an array of URLs as values:

def get_url_for_keywords(keywords):
 results = {}
 for keyword in keywords:
 df = wnid_to_words.loc[wnid_to_words['description'] ==
keyword]
 row_list = df['wnid'].values.tolist()
 descriptions = df['description'].values.tolist()
 if len(row_list) > 0:

http://image-net.org/imagenet_data/urls/imagenet_fall11_urls.tgz
http://image-net.org/imagenet_data/urls/imagenet_fall11_urls.tgz
http://image-net.org/archive/words.txt
http://image-net.org/archive/words.txt
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode23.py

Analytics Study: AI and Image Recognition with TensorFlow

[232]

 results[descriptions[0]] = \
 wnid_to_urls.loc[wnid_to_urls['wnid'] == \
 row_list[0]]["url"].values.tolist()
 return results

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode24.py

We can easily glance at the data distribution by using PixieDust display.
As always, feel free to do more exploration on your own:

Distribution of images by categories

We can now build the code that will download the images corresponding to a
list of categories of our choice. In our case, we chose fruits: ["apple", "orange",
"pear", "banana"]. The images will be downloaded in a subdirectory of the
PixieDust home directory (using the PixieDust Environment helper class from
the pixiedust.utils package), limiting the number of images to 500 for speed:

Note: The following code uses methods and imports defined earlier in the
Notebook. Make sure to run the corresponding cell before attempting to
run the following code.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode24.py

Chapter 6

[233]

from pixiedust.utils.environment import Environment
root_dir = ensure_dir_exists(os.path.join(Environment.pixiedustHome,
"imageRecoApp")
image_dir = root_dir
image_dict = get_url_for_keywords(["apple", "orange", "pear",
"banana"])
with open(os.path.join(image_dir, "retrained_label.txt"), "w")
as f_label:
 for key in image_dict:
 f_label.write(key + "\n")
 path = ensure_dir_exists(os.path.join(image_dir, key))
 count = 0
 for url in image_dict[key]:
 download_image_into_dir(url, path)
 count += 1
 if count > 500:
 break;

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode25.py

The next part of the code processes each of the images in the training set using the
following steps:

Note: As mentioned before, the code is quite extensive, and part of
it is omitted; only the important parts are explained here. Please do
not attempt to run the following code as is and refer to the complete
Notebook for full implementation.

1. Decode the .jpeg file using the following code:
def add_jpeg_decoding(model):
 input_height = get_model_attribute(model,
 "input_height")
 input_width = get_model_attribute(model, "input_width")
 input_depth = get_model_attribute(model, "input_depth")
 input_mean = get_model_attribute(model, "input_mean",
 0)
 input_std = get_model_attribute(model, "input_std",
 255)

 jpeg_data = tf.placeholder(tf.string,

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode25.py

Analytics Study: AI and Image Recognition with TensorFlow

[234]

 name='DecodeJPGInput')
 decoded_image = tf.image.decode_jpeg(jpeg_data,
 channels=input_depth)
 decoded_image_as_float = tf.cast(decoded_image,
 dtype=tf.float32)
 decoded_image_4d = tf.expand_dims(
 decoded_image_as_float,
 0)
 resize_shape = tf.stack([input_height, input_width])
 resize_shape_as_int = tf.cast(resize_shape,
 dtype=tf.int32)
 resized_image = tf.image.resize_bilinear(
 decoded_image_4d,
 resize_shape_as_int)
 offset_image = tf.subtract(resized_image, input_mean)
 mul_image = tf.multiply(offset_image, 1.0 / input_std)
 return jpeg_data, mul_image

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode26.py

2. Create the bottleneck values (caching them as appropriate) that normalize the
image by resizing and rescaling it. This is done in the following code:
def run_bottleneck_on_image(sess, image_data,
 image_data_tensor,decoded_image_tensor,
 resized_input_tensor,bottleneck_tensor):
 # First decode the JPEG image, resize it, and rescale the
pixel values.
 resized_input_values = sess.run(decoded_image_tensor,
 {image_data_tensor: image_data})
 # Then run it through the recognition network.
 bottleneck_values = sess.run(
 bottleneck_tensor,
 {resized_input_tensor: resized_input_values})
 bottleneck_values = np.squeeze(bottleneck_values)
 return bottleneck_values

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode26.py

Chapter 6

[235]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode27.py

3. Add the final training operations using the add_final_training_ops
method, under a common namespace, so that it's easier to manipulate when
visualizing the graph. The training steps are as follows:

1. Generate random weight with the tf.truncated_normal API:
 initial_value = tf.truncated_normal(
 [bottleneck_tensor_size, class_count],
 stddev=0.001)
 layer_weights = tf.Variable(
 initial_value, name='final_weights')

2. Add the biases, initialized to zero:
 layer_biases = tf.Variable(tf.zeros([class_count]),
 name='final_biases')

3. Compute the weighted sum:
 logits = tf.matmul(bottleneck_input, layer_weights) +
 layer_biases

4. Add the cross_entropy cost function:
 cross_entropy =
 tf.nn.softmax_cross_entropy_with_logits(
 labels=ground_truth_input, logits=logits)
 with tf.name_scope('total'):
 cross_entropy_mean = tf.reduce_mean(
 cross_entropy)

5. Minimize the cost function:

 optimizer = tf.train.GradientDescentOptimizer(
 learning_rate)
 train_step = optimizer.minimize(cross_entropy_mean)

To visualize the retrained graph, we first need to update the TensorGraphApp
PixieApp to let the user select which model to visualize: generic MobileNet or
custom. This is done by adding a <select> drop-down in the main route and
attaching a pd_script element to update the state:

[[TensorGraphApp]]
return """
{%if this.custom_graph%}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode27.py

Analytics Study: AI and Image Recognition with TensorFlow

[236]

<div style="margin-top:10px" pd_refresh>
 <pd_script>
self.graph = self.custom_graph if self.graph is not self.custom_graph
else self.parent_pixieapp.graph
 </pd_script>
 Select a model to display:
 <select>
 <option {%if this.graph!=this.custom_graph%}selected{%endif%}
value="main">MobileNet</option>
 <option {%if this.graph==this.custom_graph%}selected{%endif%}
value="custom">Custom</options>
 </select>
{%endif%}
<iframe seamless style="width:1200px;height:620px;border:0"
srcdoc="{{code}}"></iframe>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode28.py

Rerunning our ImageReco PixieApp produces the following screenshot:

Visualization of the retrained graph

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode28.py

Chapter 6

[237]

Clicking on the train node will reveal the nested operations that run the
backpropagation algorithms to minimize the cross_entropy_mean cost
functions specified in the preceding add_final_training_ops:

with tf.name_scope('cross_entropy'):
 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
 labels=ground_truth_input, logits=logits)
 with tf.name_scope('total'):
 cross_entropy_mean = tf.reduce_mean(cross_entropy)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode29.py

The following screenshot shows the details of the train namespace:

Backpropagation during training

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode29.py

Analytics Study: AI and Image Recognition with TensorFlow

[238]

Similarly, we can add the drop-down toggle in the LabelsApp to switch
the visualization between the generic MobileNet and custom model:

[[LabelsApp]]
@PixieApp
class LabelsApp():
 def setup(self):
 ...

 @route()
 def main_screen(self):
 return """
{%if this.custom_labels%}
<div style="margin-top:10px" pd_refresh>
 <pd_script>
self.current_labels = self.custom_labels if self.current_labels is not
self.custom_labels else self.labels
 </pd_script>

 Select a model to display:
 <select>
 <option {%if this.current_labels!=this.labels%}
selected{%endif%} value="main">MobileNet</option>
 <option {%if this.current_labels==this.custom_labels%}
selected{%endif%} value="custom">Custom</options>
 </select>
{%endif%}
<div pd_render_onload pd_entity="current_labels">
 <pd_options>
 {
 "table_noschema": "true",
 "handlerId": "tableView",
 "rowCount": "10000",
 "noChartCache": "true"

 }
 </pd_options>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode30.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode30.py

Chapter 6

[239]

The results are displayed in the following screenshot:

Display labels information for each model

The last step for our Part 4 MVP is to update the score_image method to classify
the image with both models and add the results in a dictionary with an entry
for each model. We define a local method do_score_image that returns the top
5 candidates answers.

This method is called for each model, and the results populate a dictionary with
the model name as the key:

classify an image given its url
def score_image(graph, model, url):
 # Download the image and build a tensor from its data
 t = read_tensor_from_image_file(model, download_image(url))

 def do_score_image(graph, output_layer, labels):
 # Retrieve the tensors corresponding to the input and output
layers
 input_tensor = graph.get_tensor_by_name("import/" +
 input_layer + ":0");
 output_tensor = graph.get_tensor_by_name(output_layer +
 ":0");

 with tf.Session(graph=graph) as sess:
 # Initialize the variables
 sess.run(tf.global_variables_initializer())
 results = sess.run(output_tensor, {input_tensor: t})
 results = np.squeeze(results)
 # select the top 5 candidates and match them to the labels
 top_k = results.argsort()[-5:][::-1]
 return [(labels[i].split(":")[1], results[i]) for i in top_k]

Analytics Study: AI and Image Recognition with TensorFlow

[240]

 results = {}
 input_layer = get_model_attribute(model, "input_layer",
 "input")
 labels = load_labels(model)
 results["mobilenet"] = do_score_image(graph, "import/" +
 get_model_attribute(model, "output_layer"), labels)
 if "custom_graph" in model and "custom_labels" in model:
 with open(model["custom_labels"]) as f:
 labels = [line.rstrip() for line in f.readlines() if line
!= ""]
 custom_labels = ["{}:{}".format(i, label) for i,label in
zip(range(len(labels)), labels)]
 results["custom"] = do_score_image(model["custom_graph"],
 "final_result", custom_labels)
 return results

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode31.py

Since we modified the returned values for the score_image method, we need to
adjust the HTML fragment returned in ScoreImageApp to loop over all the model
entries of the results dictionary:

@route(score_url="*")
@templateArgs
def do_score_url(self, score_url):
 scores_dict = score_image(self.graph, self.model, score_url)
 return """
{%for model, results in scores_dict.items()%}
<div style="font-weight:bold">{{model}}</div>
<ul style="text-align:left">
{%for label, confidence in results%}
{{label}}: {{confidence}}
{%endfor%}

{%endfor%}
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode32.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode32.py

Chapter 6

[241]

With these changes in place, the PixieApp will automatically invoke the custom
models if available and, if that's the case, display the results for both models.

The following screenshot shows the results for images related to banana:

Score with generic MobileNet and custom-trained model

The reader will notice that the scores for the custom models are pretty low. One
possible explanation is that the training data acquisition is fully automated and
used without human curation. One possible enhancement to this sample application
would be to move the training data acquisition and retraining steps into its own tab
PixieApp. We should also give the user the opportunity to validate the images and
reject the one that is of poor quality. It would also be great to let the user relabel the
images that have been wrongly categorized.

Analytics Study: AI and Image Recognition with TensorFlow

[242]

The completed Notebook for Part 4 can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%204.ipynb

In this section, we've discussed the incremental approach of building an image
recognition sample application in a Jupyter Notebook using TensorFlow, with
a special focus on operationalizating the algorithms using PixieApps. We started
with building a simple classification model from a pandas DataFrame using the
TensorFlow DNNClassifier estimator. We then built an MVP version of the
image recognition sample application in four parts:

1. We loaded the pretrained MobileNet model
2. We created a PixieApp for our image recognition sample application
3. We integrated the TensorBoard graph visualization into the PixieApp
4. We enabled users to retrain the model with custom training data from

ImageNet

Summary
Machine learning is a vast topic that enjoys tremendous growth, both in research
and development. In this chapter, we've explored only a tiny fraction of the state
of the art in connection with machine learning algorithms, namely, using a deep
learning neural network to perform image recognition. For some readers who are
just beginning to get familiar with machine learning, the sample PixieApps and
associated algorithms code may be too deep to digest at one time. However, the
underlying aim was to demonstrate how to iteratively build an application that
leverages a machine learning model. We happened to use a convolutional neural
network model for image recognition, but any other model would do.

Hopefully, you got a good idea of how PixieDust and the PixieApp programming
model can help you with your own project, and I strongly encourage you to use this
sample application as a starting point to build your own custom application using
the machine learning of your choice. I also recommend deploying your PixieApp
as a web application with the PixieGateway microservice and exploring whether
it's a viable solution.

In the next chapter, we will cover another important industry use case related to
big data and natural language processing. We'll build a sample application that
analyzes social media trends using a natural language understanding service.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb

[243]

Analytics Study: NLP and Big
Data with Twitter Sentiment

Analysis
"Data is the new oil."

 – Unknown

In this chapter we are going to look at two important fields of AI and data science:
natural language processing (NLP) and big data analysis. For the supporting
sample application, we re-implement the Sentiment analysis of Twitter hashtags
project described in Chapter 1, Programming and Data Science – A New Toolset, but
this time we leverage Jupyter Notebooks and PixieDust to build live dashboards that
analyze data from a stream of tweets related to a particular entity, such as a product
offered by a company, for example, to provide sentiment information as well as
information about other trending entities extracted from the same tweets. At the
end of this chapter, the reader will learn how to integrate cloud-based NLP services
such as IBM Watson Natural Language Understanding into their application as well
as perform data analysis at (Twitter) scale with frameworks such as Apache Spark.

As always, we'll show how to operationalize the analytics by implementing a live
dashboard as a PixieApp that runs directly in the Jupyter Notebook.

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[244]

Getting started with Apache Spark
The term big data can rightly feel vague and imprecise. What is the cut-off for
considering any dataset big data? Is it 10 GB, 100 GB, 1 TB or more? One definition
that I like is: big data is when the data cannot fit into the memory available in
a single machine. For years, data scientists have been forced to sample large
datasets, so they could fit into a single machine, but that started to change as parallel
computing frameworks that are able to distribute the data into a cluster of machines
made it possible to work with the dataset in its entirety, provided of course that the
cluster had enough machines. At the same time, advances in cloud technologies
made it possible to provision on demand a cluster of machines that are adapted
to the size of the dataset.

Today, there are multiple frameworks (most of the time available as open source)
that can provide robust, flexible parallel computing capabilities. Some of the most
popular include Apache Hadoop (http://hadoop.apache.org), Apache Spark
(https://spark.apache.org) and Dask (https://dask.pydata.org). For our
Twitter Sentiment Analysis application, we'll use Apache Spark, which provides
excellent performances in the area of scalability, programmability, and speed.
In addition, many cloud providers offer some flavor of Spark as a Service giving
the ability to create on demand an appropriately sized Spark cluster in minutes.

Some Spark as a Service cloud providers include:

• Microsoft Azure: https://azure.microsoft.com/en-us/services/
hdinsight/apache-spark

• Amazon Web Services: https://aws.amazon.com/emr/details/spark
• Google Cloud: https://cloud.google.com/dataproc
• Databricks: https://databricks.com
• IBM Cloud: https://www.ibm.com/cloud/analytics-engine

Note: Apache Spark can also be easily installed on a local machine
for testing purposes, in which case, the cluster nodes are simulated
using threads.

Apache Spark architecture
The following diagram shows the main components of the Apache Spark framework:

http://hadoop.apache.org
https://spark.apache.org
https://dask.pydata.org
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark
https://aws.amazon.com/emr/details/spark
https://cloud.google.com/dataproc
https://databricks.com
https://www.ibm.com/cloud/analytics-engine

Chapter 7

[245]

Spark high level architecture

• Spark SQL: The core data structure of this component is the Spark
DataFrame, which enables users who know the SQL language, to
effortlessly work with structured data.

• Spark Streaming: Module used to work with streaming data. As we'll see
later on, we'll use this module and more specifically Structured Streaming
(which was introduced in Spark 2.0) in our sample application.

• MLlib: Module that provides a feature-rich machine learning library that
works on a Spark scale.

• GraphX: Module used for performing the graph-parallel computation.

There are mainly two ways of working with a Spark cluster as illustrated in the
following diagram:

Two ways to work with a Spark cluster

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[246]

• spark-submit: Shell script used to launch Spark applications on a cluster
• Notebooks: Interactively execute code statements against a Spark cluster

Covering the spark-submit shell script is beyond the scope of this book, but official
documentation can be found at: https://spark.apache.org/docs/latest/
submitting-applications.html. For the rest of this chapter, we'll focus on
interacting with the Spark cluster via Jupyter Notebooks.

Configuring Notebooks to work with Spark
The instructions in this section only cover installing Spark locally for development
and testing. Manually installing Spark in a cluster is beyond the scope of this book.
If a real cluster is needed, it is highly recommended to use a cloud-based service.

By default, local Jupyter Notebooks are installed with plain Python Kernels. To work
with Spark, users must use the following steps:

1. Install Spark locally by downloading a binary distribution from https://
spark.apache.org/downloads.html.

2. Generate a kernel specification in a temporary directory using the following
command:
ipython kernel install --prefix /tmp

Note: The preceding command may generate a warning message
that can be safely ignored as long as the following message is stated:
Installed kernelspec python3 in /tmp/share/jupyter/
kernels/python3

3. Go to /tmp/share/jupyter/kernels/python3, and edit the kernel.json
file to add the following key to the JSON object (replace <<spark_root_
path>> with the directory path where you installed Spark and <<py4j_
version>> with the version installed on your system):
"env": {
 "PYTHONPATH": "<<spark_root_path>>/python/:<<spark_root_
path>>/python/lib/py4j-<<py4j_version>>-src.zip",
 "SPARK_HOME": "<<spark_root_path>>",
 "PYSPARK_SUBMIT_ARGS": "--master local[10] pyspark-shell",
 "SPARK_DRIVER_MEMORY": "10G",
 "SPARK_LOCAL_IP": "127.0.0.1",
 "PYTHONSTARTUP": "<<spark_root_path>>/python/pyspark/shell.py"
}

https://spark.apache.org/docs/latest/submitting-applications.html
https://spark.apache.org/docs/latest/submitting-applications.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html

Chapter 7

[247]

4. You may also want to customize the display_name key to make it unique
and easily recognizable from the Juptyer UI. If you need to know the list
of existing kernels, you can use the following command:
jupyter kernelspec list

The preceding command will give you a list of kernel names and associated
paths on the local filesystem. From the path, you can open the kernel.json
file to access the display_name value. For example:
 Available kernels:

 pixiedustspark16

 /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark16

 pixiedustspark21

 /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark21

 pixiedustspark22

 /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark22

 pixiedustspark23

 /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark23

5. Install the kernel with the edited files using the following command:
jupyter kernelspec install /tmp/share/jupyter/kernels/python3

Note: Depending on the environment, you may receive a "permission
denied" error when running the preceding command. In this case, you
may want to run the command with the admin privileges using sudo
or use the --user switch as follows:
jupyter kernelspec install --user /tmp/share/jupyter/
kernels/python3

For more information about install ation options, you can use the -h switch.
For example:
 jupyter kernelspec install -h

6. Restart the Notebook server and start using the new PySpark kernel.

Fortunately, PixieDust provides an install script to automate the preceding
manual steps.

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[248]

You can find detailed documentation for this script here:
https://pixiedust.github.io/pixiedust/install.html

In short, using the automated PixieDust install script requires the following
command to be issued and the on-screen instructions to be followed:

jupyter pixiedust install

We'll dive deeper into the Spark programming model later in this chapter, but for
now, let's define in the next section, the MVP requirements for our Twitter Sentiment
Analysis application.

Twitter sentiment analysis application
As always, we start by defining the requirements for our MVP version:

• Connect to Twitter to get a stream of real-time tweets filtered by a query
string provided by the user

• Enrich the tweets to add sentiment information and relevant entities
extracted from the text

• Display a dashboard with various statistics about the data using live
charts that are updated at specified intervals

• The system should be able to scale up to Twitter data size

The following diagram shows the first version of our application architecture:

Twitter sentiment architecture version 1

https://pixiedust.github.io/pixiedust/install.html

Chapter 7

[249]

For version 1, the application will be entirely implemented in a single Python
Notebook and will call out to an external service for the NLP part. To be able to
scale, we will certainly have to externalize some of the processing outside of the
Notebook, but for development and testing, I found that being able to contain
the whole application in a single Notebook significantly increases productivity.

As for libraries and frameworks, we'll use Tweepy (http://www.tweepy.org)
for connecting to Twitter, Apache Spark Structured Streaming (https://spark.
apache.org/streaming) for processing the streaming data in a distributed cluster
and the Watson Developer Cloud Python SDK (https://github.com/watson-
developer-cloud/python-sdk) to access the IBM Watson Natural Language
Understanding (https://www.ibm.com/watson/services/natural-language-
understanding) service.

Part 1 – Acquiring the data with Spark
Structured Streaming
To acquire the data, we use Tweepy which provides an elegant Python client
library to access the Twitter APIs. The APIs covered by Tweepy are very extensive
and covering them in detail is beyond the scope of this book, but you can find
the complete API reference at the Tweepy official website: http://tweepy.
readthedocs.io/en/v3.6.0/cursor_tutorial.html.

You can install the Tweepy library directly from PyPi using the pip install
command. The following command shows how to install it from a Notebook
using the ! directive:

!pip install tweepy

Note: The current Tweepy version used is 3.6.0. Do not forget to restart
the kernel after installing the library.

Architecture diagram for the data pipeline
Before we start diving into each component of the data pipeline, it would be good
to take a look at its overall architecture and understand the computation flow.

http://www.tweepy.org
https://spark.apache.org/streaming
https://spark.apache.org/streaming
https://github.com/watson-developer-cloud/python-sdk
https://github.com/watson-developer-cloud/python-sdk
https://www.ibm.com/watson/services/natural-language-understanding
https://www.ibm.com/watson/services/natural-language-understanding
http://tweepy.readthedocs.io/en/v3.6.0/cursor_tutorial.html
http://tweepy.readthedocs.io/en/v3.6.0/cursor_tutorial.html

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[250]

As shown in the following diagram, we start by creating a Tweepy stream that writes
raw data in CSV files. We then create a Spark Streaming DataFrame that reads the
CSV files and is periodically updated with new data. From the Spark Streaming
DataFrame, we create a Spark structured query using SQL and store its results
in a Parquet database:

Streaming computation flow

Authentication with Twitter
Before using any of the Twitter APIs, it is recommended to authenticate with the
system. One of the most commonly used authentication mechanism is the OAuth
2.0 protocol (https://oauth.net) which enables third-party applications to access
a service on the web. The first thing you need to do is acquire a set of key strings
that are used by the OAuth protocol to authenticate you:

• Consumer key: String that uniquely identifies the client app (a.k.a. the API
Key).

• Consumer secret: Secret string known only to the application and the Twitter
OAuth server. It can be thought of like a password.

• Access token: String used to authenticate your requests. This token is also
used during the authorization phase to determine the level of access for the
application.

• Access token secret: Similar to the consumer secret, this is a secret string sent
with the access token to be used as a password.

To generate the preceding key strings, you need to go to http://apps.twitter.
com, provide authentication with your regular Twitter user ID and password and
follow these steps:

1. Create a new Twitter app using the Create New App button.
2. Fill out the application details, agree to the Developer agreement and click

on Create your Twitter application button.

https://oauth.net
http://apps.twitter.com
http://apps.twitter.com

Chapter 7

[251]

Note: Make sure that your mobile phone number is added to your
profile or you'll get an error when creating the Twitter application.
You can provide a random URL for the mandatory Website input
and leave the URL input blank as this is an optional callback URL.

3. Click on the Keys and Access Tokens tab to get the consumer and access
token. At any time, you can regenerate these tokens using the buttons
available on this page. If you do so, you'll need to also update the value
in your application code.

For easier code maintenance, let's put these tokens in their own variables at the top
of the Notebook and create the tweepy.OAuthHandler class that we'll use later on:

from tweepy import OAuthHandler
Go to http://apps.twitter.com and create an app.
The consumer key and secret will be generated for you after
consumer_key="XXXX"
consumer_secret="XXXX"

After the step above, you will be redirected to your app's page.
Create an access token under the "Your access token" section
access_token="XXXX"
access_token_secret="XXXX"

auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

Creating the Twitter stream
For implementing our application, we only need to use the Twitter streaming
API that is documented here: http://tweepy.readthedocs.io/en/v3.5.0/
streaming_how_to.html. In this step, we create a Twitter stream that stores the
incoming data into CSV files on the local filesystem. This is done using a custom
RawTweetsListener class that inherits from tweepy.streaming.StreamListener.
Custom processing of the incoming data is done by overriding the on_data method.

In our case, we want to transform the incoming data from JSON to CSV using
DictWriter from the standard Python csv module. Because the Spark Streaming file
input source triggers only when new files are created in the input directory, we can't
simply append the data into an existing file. Instead, we buffer the data into an array
and write it to disk once the buffer has reached capacity.

http://tweepy.readthedocs.io/en/v3.5.0/streaming_how_to.html
http://tweepy.readthedocs.io/en/v3.5.0/streaming_how_to.html

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[252]

For simplicity, the implementation doesn't include cleaning up the
files once they have been processed. Another minor limitation of this
implementation is that we currently wait until the buffer is filled to write
the file which theoretically could take a long time if no new tweets appear.

The code for the RawTweetsListener is shown here:

from six import iteritems
import json
import csv
from tweepy.streaming import StreamListener
class RawTweetsListener(StreamListener):
 def __init__(self):
 self.buffered_data = []
 self.counter = 0

 def flush_buffer_if_needed(self):
 "Check the buffer capacity and write to a new file if needed"
 length = len(self.buffered_data)
 if length > 0 and length % 10 == 0:
 with open(os.path.join(output_dir,
 "tweets{}.csv".format(self.counter)), "w") as fs:
 self.counter += 1
 csv_writer = csv.DictWriter(fs,
 fieldnames = fieldnames)
 for data in self.buffered_data:
 csv_writer.writerow(data)
 self.buffered_data = []

 def on_data(self, data):
 def transform(key, value):
 return transforms[key](value) if key in transforms
else value

 self.buffered_data.append(
 {key:transform(key,value) \
 for key,value in iteritems(json.loads(data)) \
 if key in fieldnames}
)
 self.flush_buffer_if_needed()
 return True

 def on_error(self, status):
 print("An error occured while receiving streaming data: {}".

Chapter 7

[253]

format(status))
 return False

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode1.py

A few important things to notice from the preceding code are:

• Each tweet coming from the Twitter API contains a lot of data, and we
pick which field to keep using the field_metadata variable. We also
define a global variable fieldnames that holds the list of fields to capture
from the stream, and a transforms variable that contains a dictionary with
all the field names that have a transform function as a key and the transform
function itself as a value:
from pyspark.sql.types import StringType, DateType
from bs4 import BeautifulSoup as BS
fieldnames = [f["name"] for f in field_metadata]
transforms = {
 item['name']:item['transform'] for item in field_metadata
if "transform" in item
}
field_metadata = [
 {"name": "created_at","type": DateType()},
 {"name": "text", "type": StringType()},
 {"name": "source", "type": StringType(),
 "transform": lambda s: BS(s, "html.parser").text.strip()
 }
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode2.py

• The CSV files are written in output_dir which is defined in its own variable.
At start time, we first remove the directory and its contents:
import shutil
def ensure_dir(dir, delete_tree = False):
 if not os.path.exists(dir):
 os.makedirs(dir)
 elif delete_tree:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode2.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[254]

 shutil.rmtree(dir)
 os.makedirs(dir)
 return os.path.abspath(dir)

root_dir = ensure_dir("output", delete_tree = True)
output_dir = ensure_dir(os.path.join(root_dir, "raw"))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode3.py

• The field_metadata contains the Spark DataType that we'll use later
on to build the schema when creating the Spark streaming query.

• The field_metadata also contains an optional transform lambda function
to cleanse the value before being written to disk. For reference, a lambda
function in Python is an anonymous function defined inline (see https://
docs.python.org/3/tutorial/controlflow.html#lambda-expressions).
We use it for the source field that is often returned as an HTML fragment. In
this lambda function, we use the BeautifulSoup library (which was also used
in the previous chapter) to extract only the text as shown in the following
snippet:

lambda s: BS(s, "html.parser").text.strip()

Now that the RawTweetsListener is created, we define a start_stream function
that we'll use later on in the PixieApp. This function takes an array of search terms
as input and starts a new stream using the filter method:

from tweepy import Stream
def start_stream(queries):
 "Asynchronously start a new Twitter stream"
 stream = Stream(auth, RawTweetsListener())
 stream.filter(track=queries, async=True)
 return stream

Notice the async=True parameter passed to stream.filter.
This is needed to make sure that the function doesn't block, which
would prevent us from running any other code in the Notebook.
You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode4.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode3.py
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode4.py

Chapter 7

[255]

The following code starts the stream that will receive tweets containing the word
baseball in it:

stream = start_stream(["baseball"])

When running the preceding code, no output is generated in the Notebook.
However, you can see the files (that is, tweets0.csv, tweets1.csv, and so on.)
being generated in the output directory (that is, ../output/raw) from the path
where the Notebook is being run.

To stop the stream, we simply call the disconnect method, as shown here:

stream.disconnect()

Creating a Spark Streaming DataFrame
Referring to the architecture diagram, the next step is to create a Spark Streaming
DataFrame tweets_sdf that uses the output_dir as the source file input. We
can think of a Streaming DataFrame as an unbounded table where new rows
are continuously added as new data arrives from the stream.

Note: Spark Structured Streaming supports multiple types of input
source including File, Kafka, Socket, and Rate. (Both Socket and Rate
are used only for testing.)

The following diagram is taken from the Spark website and does a great
job explaining how new data is appended to the Streaming DataFrame:

Streaming DataFrame flow

Source: https://spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[256]

The Spark Streaming Python API provides an elegant way to create the Streaming
DataFrame using the spark.readStream property which creates a new pyspark.
sql.streamingreamReader object that conveniently lets you chain method calls
with the added benefit of creating clearer code (see https://en.wikipedia.org/
wiki/Method_chaining for more details on this pattern).

For example, to create a CSV file stream, we call the format method with csv,
chain the applicable options and call the load method with the path of the directory:

schema = StructType(
[StructField(f["name"], f["type"], True) for f in field_metadata]
)
csv_sdf = spark.readStream\
 .format("csv")\
 .option("schema", schema)\
 .option("multiline", True)\
 .option("dateFormat", 'EEE MMM dd kk:mm:ss Z y')\
 .option("ignoreTrailingWhiteSpace", True)\
 .option("ignoreLeadingWhiteSpace", True)\
 .load(output_dir)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode5.py

spark.readStream also provides a convenient high-level csv method that
takes the path as the first argument and keyword arguments for the options:

csv_sdf = spark.readStream \
 .csv(
 output_dir,
 schema=schema,
 multiLine = True,
 dateFormat = 'EEE MMM dd kk:mm:ss Z y',
 ignoreTrailingWhiteSpace = True,
 ignoreLeadingWhiteSpace = True
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode6.py

https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Method_chaining
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode6.py

Chapter 7

[257]

You can verify that the csv_sdf DataFrame is indeed a Streaming DataFrame by
calling the isStreaming method which should return true. The following code
also adds a call to printSchema to verify that the schema follows the field_
metadata configuration as expected:

print(csv_sdf.isStreaming)
csv_sdf.printSchema()

Returns:

root
 |-- created_at: date (nullable = true)
 |-- text: string (nullable = true)
 |-- source: string (nullable = true)

Before continuing to the next step, it is important to understand how the csv_sdf
Streaming DataFrame fits in the Structured Streaming programming model and
what limitations it has. At its core, the Spark low-level APIs define the Resilient
Distributed Dataset (RDD) data structure which encapsulates all the underlying
complexity of managing the distributed data. Features like fault-tolerance (cluster
nodes that crashes for any reason are transparently restarted with no intervention
from the developer) are automatically handled by the framework. There are two
types of RDD operations: transformations and actions. Transformations are logical
operations on an existing RDD that are not immediately executed on the cluster until
an action is invoked (lazy execution). The output of a transformation is a new RDD.
Internally, Spark maintains an RDD acyclic directed graph that keeps track of all the
lineage resulting in the creation of the RDD, which is useful when recovering from
server failure. Example transformations include map, flatMap, filter, sample, and
distinct. The same goes for transformations on DataFrames (which internally are
backed by RDDs) that have the benefit of including SQL queries. On the other hand,
actions do not produce other RDDs, but rather perform an operation on the actual
distributed data to return a non-RDD value. Examples of actions include reduce,
collect, count, and take.

As mentioned before, csv_sdf is a Streaming DataFrame, which means that
the data is continuously added to it and as such we are only able to apply
transformations to it, not actions. To circumvent this problem, we must first
create a streaming query using csv_sdf.writeStream which is a pyspark.sql.
streaming.DataStreamWriter object. The streaming query is responsible for
sending the results to an output sink. We can then run the streaming query using
the start() method.

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[258]

Spark Streaming supports multiple output sink types:

• File: All the classic file formats are supported, including JSON, CSV, and
Parquet

• Kafka: Write directly to one or more Kafka topics
• Foreach: Run arbitrary computations on each element in the collection
• Console: Prints the output to the system console (used mainly for

debugging)
• Memory: Output is stored in memory

In the next section, we'll create and run a structured query on csv_sdf with
an output sink that stores the output in Parquet format.

Creating and running a structured query
Using the tweets_sdf Streaming DataFrame, we create a streaming query
tweet_streaming_query that writes the data into a Parquet format using
the append output mode.

Note: Spark streaming queries support three output modes: complete
where the entire table is written at each trigger, append where only the
delta rows since the last trigger are written, and update where only the
rows that were modified are written.

Parquet is a columnar database format that provides an efficient, scalable storage for
distributed analytics. You can find more information about the Parquet format at:
https://parquet.apache.org.

The following code creates and starts the tweet_streaming_query streaming query:

tweet_streaming_query = csv_sdf \
 .writeStream \
 .format("parquet") \
 .option("path", os.path.join(root_dir, "output_parquet")) \
 .trigger(processingTime="2 seconds") \
 .option("checkpointLocation", os.path.join(root_dir,
"output_chkpt")) \
 .start()

https://parquet.apache.org

Chapter 7

[259]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode7.py

Similarly, you can stop the streaming query by using the stop() method as follows:

tweet_streaming_query.stop()

In the preceding code, we use the path option to specify the location of the Parquet
files, and the checkpointLocation to specify the location of the recovery data that
would be used in case of a server failure. We also specify the trigger interval for new
data to be read from the stream and new rows to be added to the Parquet database.

For testing purpose, you can also use the console sink to see the new rows being
read every time a new raw CSV file is generated in the output_dir directory:

tweet_streaming_query = csv_sdf.writeStream\
 .outputMode("append")\
 .format("console")\
 .trigger(processingTime='2 seconds')\
 .start()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode8.py

You can see the results in the system output of the master node of your Spark
cluster (you will need to physically access the master node machine and look at
the log files, since, unfortunately, the output is not printed into the Notebook
itself because the operation is executed in a different process. Location of the log
files depends on the cluster management software; please refer to the specific
documentation for more information).

Here are sample results displayed for a particular batch (identifiers have been
masked):

Batch: 17

+----------+--------------------+-------------------+
|created_at| text| source|
+----------+--------------------+-------------------+
|2018-04-12|RT @XXXXXXXXXXXXX...|Twitter for Android|
|2018-04-12|RT @XXXXXXX: Base...| Twitter for iPhone|

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode8.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[260]

2018-04-12	That's my roommat...	Twitter for iPhone
2018-04-12	He's come a long ...	Twitter for iPhone
2018-04-12	RT @XXXXXXXX: U s...	Twitter for iPhone
2018-04-12	Baseball: Enid 10...	PushScoreUpdates
2018-04-12	Cubs and Sox aren...	Twitter for iPhone
2018-04-12	RT @XXXXXXXXXX: T...	RoundTeam
2018-04-12	@XXXXXXXX that ri...	Twitter for iPhone
2018-04-12	RT @XXXXXXXXXX: S...	Twitter for iPhone
+----------+--------------------+-------------------+

Monitoring active streaming queries
When a streaming query is started, cluster resources are allocated by Spark.
Therefore, it is important to manage and monitor these queries to make sure that
you don't run out of cluster resources. At any time, you can get a list of all the
running queries as shown in the following code:

print(spark.streams.active)

Results:

[<pyspark.sql.streaming.StreamingQuery object at 0x12d7db6a0>,
<pyspark.sql.streaming.StreamingQuery object at 0x12d269c18>]

You can then dive into the details of each query by using the following query
monitoring properties:

• id: Returns a unique identifier for the query that persists across restarts
from checkpoint data

• runId: Returns a unique ID generated for the current session
• explain(): Prints detailed explanations of the query
• recentProgress: Returns an array of the most recent progress updates
• lastProgress: Returns the most recent progress

The following code prints the most recent progress for each active query:

import json
for query in spark.streams.active:
 print("-----------")
 print("id: {}".format(query.id))
 print(json.dumps(query.lastProgress, indent=2, sort_keys=True))

Chapter 7

[261]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode9.py

Results for the first query are shown here:

id: b621e268-f21d-4eef-b6cd-cb0bc66e53c4
{
 "batchId": 18,
 "durationMs": {
 "getOffset": 4,
 "triggerExecution": 4
 },
 "id": "b621e268-f21d-4eef-b6cd-cb0bc66e53c4",
 "inputRowsPerSecond": 0.0,
 "name": null,
 "numInputRows": 0,
 "processedRowsPerSecond": 0.0,
 "runId": "d2459446-bfad-4648-ae3b-b30c1f21be04",
 "sink": {
 "description": "org.apache.spark.sql.execution.streaming.
ConsoleSinkProvider@586d2ad5"
 },
 "sources": [
 {
 "description": "FileStreamSource[file:/Users/dtaieb/cdsdev/
notebookdev/Pixiedust/book/Chapter7/output/raw]",
 "endOffset": {
 "logOffset": 17
 },
 "inputRowsPerSecond": 0.0,
 "numInputRows": 0,
 "processedRowsPerSecond": 0.0,
 "startOffset": {
 "logOffset": 17
 }
 }
],
 "stateOperators": [],
 "timestamp": "2018-04-12T21:40:10.004Z"
}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode9.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[262]

As an exercise for the reader, it would be useful to build a PixieApp that provides
a live dashboard with updated details about each active streaming query.

Note: We'll show how to build this PixieApp in Part 3 – Create a real-time
dashboard PixieApp.

Creating a batch DataFrame from the
Parquet files

Note: For the rest of this chapter, we define a batch Spark DataFrame
as a classic Spark DataFrame, that is non-streaming.

The last step of this streaming computation flow is to create one or more batch
DataFrames that we can use for building our analytics and data visualizations.
We can think of this last step as taking a snapshot of the data for deeper analysis.

There are two ways to programmatically load a batch DataFrame from a Parquet file:

• Using spark.read (notice that we don't use spark.readStream as we
did earlier):
parquet_batch_df = spark.read.parquet(os.path.join(root_dir,
"output_parquet"))

• Using spark.sql:

parquet_batch_df = spark.sql(
"select * from parquet.'{}'".format(
os.path.join(root_dir, "output_parquet")
)
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode10.py

The benefit of this method is that we can use any ANSI SQL query to load the data,
instead of using the equivalent low-level DataFrame APIs that we would have to use
in the first method.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode10.py

Chapter 7

[263]

We can then periodically refresh the data by rerunning the preceding code and
recreating the DataFrame. We are now ready to create further analysis on the data
by, for example, running the PixieDust display() method on it in order to create
visualizations:

import pixiedust
display(parquet_batch_df)

We select the Bar Chart menu and drag and drop the source field in the Keys
field area. Since we want to show only the top 10 tweets, we set this value in the # of
Rows to Display field. The following screenshot shows the PixieDust options dialog:

Options dialog for showing the top 10 sources of tweets

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[264]

After clicking OK, we see the following results:

Chart showing the number of tweets related to baseball by source

In this section, we've seen how to use the Tweepy library to create a Twitter stream,
clean the raw data and store it in CSV files, create a Spark Streaming DataFrame,
run streaming queries on it and store the output in a Parquet database, create a batch
DataFrame from the Parquet file, and visualize the data using PixieDust display().

The complete notebook for Part 1 – Acquiring the data with Spark Structured
Streaming can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%201.ipynb

In the next part, we'll look at enriching the data with sentiment and entity extraction
using the IBM Watson Natural Language Understanding service.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%201.ipynb

Chapter 7

[265]

Part 2 – Enriching the data with
sentiment and most relevant
extracted entity
In this part, we enrich the Twitter data with sentiment information, for example,
positive, negative, and neutral. We also want to extract the most relevant entity from
the tweet, for example, sport, organization, and location. This extra information will
be analyzed and visualized by the real-time dashboard that we'll build in the next
section. The algorithms used to extract sentiment and entity from an unstructured
text belong to a field of computer science and artificial intelligence called natural
language processing (NLP). There are plenty of tutorials available on the web that
provide algorithm examples on how to extract sentiment. For example, you can
find a comprehensive text analytic tutorial on the scikit-learn repo at https://
github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_
analytics/working_with_text_data.rst.

However, for this sample application, we are not going to build our own NLP
algorithm. Instead, we'll choose a cloud-based service that provides text analytics
such as sentiment and entity extraction. This approach works very well when you
have generic requirements such as do not require training custom models, but even
then, most of the service providers now provide tooling to do so. There are major
advantages to use a cloud-based provider over creating your own model such as
saving on the development time and much better accuracy and performance. With a
simple REST call, we'll be able to generate the data we need and integrate it into the
flow of our application. Also, it would be very easy to change providers if needed as
the code responsible for interfacing with the service is well isolated.

For this sample application, we'll use the IBM Watson Natural Language
Understanding (NLU) service which is a part of the IBM Watson family
of cognitive services, and available on IBM Cloud.

Getting started with the IBM Watson
Natural Language Understanding service
The process of provisioning a new service is usually the same for every cloud
provider. After logging in, you go to a service catalog page where you can search for
a particular service.

https://github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_analytics/working_with_text_data.rst
https://github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_analytics/working_with_text_data.rst
https://github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_analytics/working_with_text_data.rst

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[266]

To log in to the IBM Cloud, just go to https://console.bluemix.net and create
a free IBM account if you don't already have one. Once in the dashboard, there are
multiple ways to search for the IBM Watson NLU service:

• Click on the top left-hand menu, and select Watson, select Browse services,
and find the Natural Language Understanding entry in the list of services.

• Click on the Create Resource button in the top-right corner to get to
the catalog. Once in the catalog, you can search for Natural Language
Understanding in the search bar as shown in the following screenshot:

Searching for Watson NLU in the service catalog

You can then click on Natural Language Understanding to provision a new instance.
It is not unusual that cloud providers offer a free or trial-based plan for some services
and fortunately Watson NLU provides one of these, with the limitation that you can
train only one custom model with a maximum of 30,000 NLU items processed per
month (which is adequate for our sample application). After selecting the Lite (free)
plan and clicking on the Create button, the newly provisioned instance will appear
on the dashboard and is ready to accept requests.

Note: After creating the service, you may be redirected to the NLU
service getting started document. If so, simply navigate back to the
dashboard where you should see the new service instance listed.

The next step is to test the service from our Notebook by making a REST call.
Every service provides detailed documentation on how to use it including the
API reference. From the Notebook, we could use the requests package to make
GET, POST, PUT, or DELETE calls according to the API reference, but it is
highly recommended to check whether the service offers SDKs with high-level
programmatic access to the APIs.

https://console.bluemix.net

Chapter 7

[267]

Fortunately, IBM Watson provides the watson_developer_cloud open source
library which includes multiple open source SDKs supporting some of the most
popular languages, including Java, Python, and Node.js. For this project, we'll
use the Python SDK with source code and code examples located here: https://
github.com/watson-developer-cloud/python-sdk.

The following pip command installs the watson_developer_cloud package
directly from the Jupyter Notebook:

!pip install Watson_developer_cloud

Notice the ! in front of the command that signifies that it's a shell
command.
Note: Don't forget to restart the kernel once installation is complete.

Most cloud service providers use a common pattern to let consumers authenticate
with the service, which consists of generating a set of credentials from the service
console dashboard that will be embedded in the client application. To generate the
credentials, simply click on the Service credentials tab of your Watson NLU instance
and click on the New credential button.

This will generate a new set of credentials in JSON format as shown in the following
screenshot:

Generating new credentials for the Watson NLU service

https://github.com/watson-developer-cloud/python-sdk
https://github.com/watson-developer-cloud/python-sdk

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[268]

Now that we have the credentials to our service, we can create a
NaturalLanguageUnderstandingV1 object that will provide programmatic access
to the REST APIs, as shown in the following code:

from watson_developer_cloud import NaturalLanguageUnderstandingV1
from watson_developer_cloud.natural_language_understanding_v1 import
Features, SentimentOptions, EntitiesOptions

nlu = NaturalLanguageUnderstandingV1(
 version='2017-02-27',
 username='XXXX',
 password='XXXX'
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode11.py

Note: In the preceding code, replace the XXXX text with the appropriate
username and password from the service credentials.
The version argument refers to a specific version of the API. To know
the latest version, go to the official documentation page located here:
https://www.ibm.com/watson/developercloud/natural-
language-understanding/api/v1

Before continuing with building the application, let's take a moment to understand
the text analytics capabilities offered by the Watson Natural Language service which
include:

• Sentiment
• Entities
• Concepts
• Categories
• Emotion
• Keywords
• Relations
• Semantic roles

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode11.py
https://www.ibm.com/watson/developercloud/natural-language-understanding/api/v1
https://www.ibm.com/watson/developercloud/natural-language-understanding/api/v1

Chapter 7

[269]

In our application, enriching the Twitter data happens in the RawTweetsListener
where we create an enrich method that will be invoked from the on_data handler
method. In this method, we call the nlu.analyze method with the Twitter data and
a feature list that includes sentiment and entities only as shown in the following code:

Note: The [[RawTweetsListener]] notation means that the following
code is part of a class called RawTweetsListener and that the user
should not attempt to run the code as is without the complete class.
As always, you can always refer to the complete notebook for reference.

[[RawTweetsListener]]
def enrich(self, data):
 try:
 response = nlu.analyze(
 text = data['text'],
 features = Features(
 sentiment=SentimentOptions(),
 entities=EntitiesOptions()
)
)
 data["sentiment"] = response["sentiment"]["document"]["label"]
 top_entity = response["entities"][0] if
len(response["entities"]) > 0 else None
 data["entity"] = top_entity["text"] if top_entity is not None
else ""
 data["entity_type"] = top_entity["type"] if top_entity is not
None else ""
 return data
 except Exception as e:
 self.warn("Error from Watson service while enriching data:
{}".format(e))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode12.py

The results are then stored in the data object which will be written to the CSV files.
We also guard against unexpected exceptions skipping the current tweet and logging
a warning message instead of letting the exception bubble up which would stop the
Twitter stream.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode12.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[270]

Note: The most common exception happens when the tweet data
is in a language that is not supported by the service.

We use the @Logger decorator described in Chapter 5, Python and
PixieDust Best Practices and Advanced Concepts to log messages against
the PixieDust logging framework. As a reminder, you can use the
%pixiedustLog magic from another cell to view the log messages.

We still need to change the schema metadata to include the new fields as follows:

field_metadata = [
 {"name": "created_at", "type": DateType()},
 {"name": "text", "type": StringType()},
 {"name": "source", "type": StringType(),
 "transform": lambda s: BS(s, "html.parser").text.strip()
 },
 {"name": "sentiment", "type": StringType()},
 {"name": "entity", "type": StringType()},
 {"name": "entity_type", "type": StringType()}
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode13.py

Finally, we update on_data handler to invoke the enrich method as follows:

def on_data(self, data):
 def transform(key, value):
 return transforms[key](value) if key in transforms else value
 data = self.enrich(json.loads(data))
 if data is not None:
 self.buffered_data.append(
 {key:transform(key,value) \
 for key,value in iteritems(data) \
 if key in fieldnames}
)
 self.flush_buffer_if_needed()
 return True

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode14.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode14.py

Chapter 7

[271]

When we restart the Twitter stream and create the Spark Streaming DataFrame,
we can verify that we have the correct schema using the following code:

schema = StructType(
 [StructField(f["name"], f["type"], True) for f in field_metadata]
)
csv_sdf = spark.readStream \
 .csv(
 output_dir,
 schema=schema,
 multiLine = True,
 dateFormat = 'EEE MMM dd kk:mm:ss Z y',
 ignoreTrailingWhiteSpace = True,
 ignoreLeadingWhiteSpace = True
)
csv_sdf.printSchema()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode15.py

Which shows the following results as expected:

root
 |-- created_at: date (nullable = true)
 |-- text: string (nullable = true)
 |-- source: string (nullable = true)
 |-- sentiment: string (nullable = true)
 |-- entity: string (nullable = true)
 |-- entity_type: string (nullable = true)

Similarly, when we run the structured query with the console sink, data is
displayed in batches in the console of the Spark master node as shown here:

Batch: 2

+----------+---------------+---------------+---------+------------+--
-----------+
|created_at| text| source|sentiment| entity|
entity_type|
+----------+---------------+---------------+---------+------------+--
-----------+
|2018-04-14|Some little ...| Twitter iPhone| positive| Drew|
Person|d

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode15.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[272]

|2018-04-14|RT @XXXXXXXX...| Twitter iPhone| neutral| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXXXXX...| Twitter iPhone| neutral| baseball|
Sport|
|2018-04-14|RT @XXXXXXXX...| Twitter Client| neutral| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXXXXX...| Twitter Client| positive| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXX: I...|Twitter Android| positive| Greg XXXXXX|
Person|
|2018-04-14|RT @XXXXXXXX...| Twitter iPhone| positive| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXX: I...|Twitter Android| positive| Greg XXXXXX|
Person|
|2018-04-14|Congrats to ...|Twitter Android| positive| softball|
Sport|
|2018-04-14|translation:...| Twitter iPhone| neutral| null|
null|
+----------+---------------+---------------+---------+------------+--
-----------+

Finally, we run the structured query with the Parquet output sink, create a batch
DataFrame, and explore the data using the PixieDust display() to show, for
example, a count of tweets by sentiment (positive, negative, neutral) clustered
by the entity as shown in the following chart:

Bar chart showing the number of tweets by sentiment clustered by entities

Chapter 7

[273]

The complete notebook for Part 2 – Enrich the data with sentiment and
most relevant extracted entity is located here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%202.ipynb

If you are running it, I encourage you to experiment by adding more
fields to the schema, run different SQL queries, and visualize the data
with PixieDust display().

In the next section, we'll build a dashboard that displays multiple metrics about
the Twitter data.

Part 3 – Creating a real-time dashboard
PixieApp
As always, we first need to define the requirements for the MVP version of
the dashboard. This time we'll borrow a tool from the agile methodology called
a user story which describes the features we want to build from the perspective
of the user. The agile methodology also prescribes fully understanding the context
of the different users that will interact with the software by categorizing them into
personas. In our case, we will only use one persona: Frank the marketing director
who wants to get real-time insights from what consumers are talking about on social media.

The user story goes like this:

• Frank enters a search query like for example a product name
• A dashboard is then presented that displays a set of charts showing

metrics about user sentiments (positive, negative, neutral)
• The dashboard also contains a word cloud of all the entities being uttered

in the tweets
• Additionally, the dashboard has an option to display the real-time progress

of all the Spark Streaming queries that are currently active

Note: The last feature is not really needed for Frank, but we show it here
anyway as an example implementation of the exercise given earlier.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%202.ipynb

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[274]

Refactoring the analytics into their own
methods
Before we start, we need to refactor the code that starts the Twitter stream and
creates the Spark Streaming DataFrame into their own method that we will invoke
in the PixieApp.

The start_stream, start_streaming_dataframe, and start_parquet_
streaming_query methods are as follows:

def start_stream(queries):
 "Asynchronously start a new Twitter stream"
 stream = Stream(auth, RawTweetsListener())
 stream.filter(track=queries, languages=["en"], async=True)
 return stream

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode16.py

def start_streaming_dataframe(output_dir):
 "Start a Spark Streaming DataFrame from a file source"
 schema = StructType(
 [StructField(f["name"], f["type"], True) for f in field_
metadata]
)
 return spark.readStream \
 .csv(
 output_dir,
 schema=schema,
 multiLine = True,
 timestampFormat = 'EEE MMM dd kk:mm:ss Z yyyy',
 ignoreTrailingWhiteSpace = True,
 ignoreLeadingWhiteSpace = True
)

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode17.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode17.py

Chapter 7

[275]

def start_parquet_streaming_query(csv_sdf):
 """
 Create and run a streaming query from a Structured DataFrame
 outputing the results into a parquet database
 """
 streaming_query = csv_sdf \
 .writeStream \
 .format("parquet") \
 .option("path", os.path.join(root_dir, "output_parquet")) \
 .trigger(processingTime="2 seconds") \
 .option("checkpointLocation", os.path.join(root_dir, "output_
chkpt")) \
 .start()
 return streaming_query

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode18.py

As part of the preparation work, we also need to manage the life cycle of the
different streams that will be created by the PixieApp and make sure that the
underlying resources are correctly stopped when the user restarts the dashboard.
To help with that, we create a StreamsManager class that encapsulates the Tweepy
twitter_stream and the CSV Streaming DataFrame. This class has a reset method
that will stop the twitter_stream, stop all the active streaming queries, delete all
the output files created from the previous queries, and start a new one with a new
query string. If the reset method is called without a query string, then we don't
start new streams.

We also create a global streams_manager instance that will keep track of the
current state even if the dashboard is restarted. Since the user can rerun the cell that
contains the global streams_manager we need to make sure that the reset method
is automatically invoked when the current global instance is deleted. For that, we
override the object's __del__ method, which is Python's way of implementing
a destructor and call reset.

The code for StreamsManager is shown here:

class StreamsManager():
 def __init__(self):
 self.twitter_stream = None
 self.csv_sdf = None

 def reset(self, search_query = None):

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode18.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[276]

 if self.twitter_stream is not None:
 self.twitter_stream.disconnect()
 #stop all the active streaming queries and re_initialize the
directories
 for query in spark.streams.active:
 query.stop()
 # initialize the directories
 self.root_dir, self.output_dir = init_output_dirs()
 # start the tweepy stream
 self.twitter_stream = start_stream([search_query]) if search_
query is not None else None
 # start the spark streaming stream
 self.csv_sdf = start_streaming_dataframe(output_dir) if
search_query is not None else None

 def __del__(self):
 # Automatically called when the class is garbage collected
 self.reset()

streams_manager = StreamsManager()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode19.py

Creating the PixieApp
Like in Chapter 6, Analytics Study: AI and Image Recognition with TensorFlow, we'll
use the TemplateTabbedApp class again to create a tab layout with two PixieApps:

• TweetInsightApp: Lets the user specify a query string and shows the
real-time dashboard associated with it

• StreamingQueriesApp: Monitors the progress of the active structured
queries

In the default route of the TweetInsightApp, we return a fragment that asks the user
for the query string as follows:

from pixiedust.display.app import *
@PixieApp
class TweetInsightApp():
 @route()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode19.py

Chapter 7

[277]

 def main_screen(self):
 return """
<style>
 div.outer-wrapper {
 display: table;width:100%;height:300px;
 }
 div.inner-wrapper {
 display: table-cell;vertical-align: middle;height: 100%;width:
100%;
 }
</style>
<div class="outer-wrapper">
 <div class="inner-wrapper">
 <div class="col-sm-3"></div>
 <div class="input-group col-sm-6">
 <input id="query{{prefix}}" type="text" class="form-control"
 value=""
 placeholder="Enter a search query (e.g. baseball)">

 <button class="btn btn-default" type="button"
 pd_options="search_query=$val(query{{prefix}})">
 Go
 </button>

 </div>
 </div>
</div>
 """

TweetInsightApp().run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode20.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode20.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[278]

The following screenshot shows the results of running the preceding code:

Note: We'll create the main TwitterSentimentApp PixieApp that has
the tabbed layout and includes this class later on in this section. For now,
we are only showing the TweetInsightApp child app in isolation.

Welcome screen for the Twitter Sentiment Dashboard

In the Go button, we invoke the search_query route with the query string provided
by the user. In this route, we first start the various streams and create a batch
DataFrame stored in a class variable called parquet_df from the output directory
where the Parquet database is located. We then return the HTML fragment that
is composed of three widgets showing the following metrics:

• Bar chart for each of the three sentiments clustered by entities
• Line chart subplots showing the distribution of the tweets by sentiment
• A word cloud for the entities

Each of the widgets is calling a specific route at a regular interval using the pd_
refresh_rate attribute documented in Chapter 5, Python and PixieDust Best Practices
and Advanced Concepts. We also make sure to reload the parquet_df variable to pick
up the new data that has arrived since the last time. This variable is then referenced
in the pd_entity attribute for displaying the chart.

The following code shows the implementation for the search_query route:

import time
[[TweetInsightApp]]
@route(search_query="*")
 def do_search_query(self, search_query):
 streams_manager.reset(search_query)
 start_parquet_streaming_query(streams_manager.csv_sdf)
 while True:

Chapter 7

[279]

 try:
 parquet_dir = os.path.join(root_dir,
 "output_parquet")
 self.parquet_df = spark.sql("select * from
parquet.'{}'".format(parquet_dir))
 break
 except:
 time.sleep(5)
 return """
<div class="container">
 <div id="header{{prefix}}" class="row no_loading_msg"
 pd_refresh_rate="5000" pd_target="header{{prefix}}">
 <pd_script>
print("Number of tweets received: {}".format(streams_manager.twitter_
stream.listener.tweet_count))
 </pd_script>
 </div>
 <div class="row" style="min-height:300px">
 <div class="col-sm-5">
 <div id="metric1{{prefix}}" pd_refresh_rate="10000"
 class="no_loading_msg"
 pd_options="display_metric1=true"
 pd_target="metric1{{prefix}}">
 </div>
 </div>
 <div class="col-sm-5">
 <div id="metric2{{prefix}}" pd_refresh_rate="12000"
 class="no_loading_msg"
 pd_options="display_metric2=true"
 pd_target="metric2{{prefix}}">
 </div>
 </div>
 </div>

 <div class="row" style="min-height:400px">
 <div class="col-sm-offset-1 col-sm-10">
 <div id="word_cloud{{prefix}}" pd_refresh_rate="20000"
 class="no_loading_msg"
 pd_options="display_wc=true"
 pd_target="word_cloud{{prefix}}">
 </div>
 </div>
 </div>
 """

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[280]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode21.py

There are multiple things to notice from the preceding code:

• The output directory for the Parquet files may not be ready when we try
to load the parquet_df batch DataFrame, which would cause an exception.
To solve this timing issue, we wrap the code into a try...except statement
and wait for 5 seconds using time.sleep(5).

• We also display the current count of tweets in the header. To do this we
add a <div> element that refreshes every 5 seconds, with a <pd_script>
that prints the current count of tweets using streams_manager.twitter_
stream.listener.tweet_count which is a variable we added to the
RawTweetsListener class. We also updated the on_data() method to
increment the tweet_count variable every time a new tweet arrives as
shown in the following code:
[[TweetInsightApp]]
def on_data(self, data):
 def transform(key, value):
 return transforms[key](value) if key in transforms
else value
 data = self.enrich(json.loads(data))
 if data is not None:
 self.tweet_count += 1
 self.buffered_data.append(
 {key:transform(key,value) \
 for key,value in iteritems(data) \
 if key in fieldnames}
)
 self.flush_buffer_if_needed()
 return True

Also, to avoid flickering, we prevent the displaying of the loading spinner
image using class="no_loading_msg" in the <div> element.

• We invoke three different routes (display_metric1, display_metric2,
and display_wc) that are responsible for displaying the three widgets
respectively.

The display_metric1 and display_metric2 routes are very similar. They
return a div with parquet_df as the pd_entity and a custom <pd_options>
child element that contains the JSON configuration passed to the PixieDust
display() layer.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode21.py

Chapter 7

[281]

The following code shows the implementation for the display_metric1 route:

[[TweetInsightApp]]
@route(display_metric1="*")
 def do_display_metric1(self, display_metric1):
 parquet_dir = os.path.join(root_dir, "output_parquet")
 self.parquet_df = spark.sql("select * from parquet.'{}'".
format(parquet_dir))
 return """
<div class="no_loading_msg" pd_render_onload pd_entity="parquet_df">
 <pd_options>
 {
 "legend": "true",
 "keyFields": "sentiment",
 "clusterby": "entity_type",
 "handlerId": "barChart",
 "rendererId": "bokeh",
 "rowCount": "10",
 "sortby": "Values DESC",
 "noChartCache": "true"
 }
 </pd_options>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode22.py

The display_metric2 route follows a similar pattern but with a different set
of pd_options attributes.

The last route is display_wc and is responsible for displaying the word cloud for
the entities. This route uses the wordcloud Python library that you can install with
the following command:

!pip install wordcloud

Note: As always, don't forget to restart the kernel once installation
is complete.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode22.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[282]

We use the @captureOutput decorator documented in Chapter 5, Python and
PixieDust Best Practices and Advanced Concepts as shown here:

import matplotlib.pyplot as plt
from wordcloud import WordCloud

[[TweetInsightApp]]
@route(display_wc="*")
@captureOutput
def do_display_wc(self):
 text = "\n".join(
 [r['entity'] for r in self.parquet_df.select("entity").
collect() if r['entity'] is not None]
)
 plt.figure(figsize=(13,7))
 plt.axis("off")
 plt.imshow(
 WordCloud(width=750, height=350).generate(text),
 interpolation='bilinear'
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode23.py

The text passed to the WordCloud class is generated from collecting all the entities
in the parquet_df batch DataFrame.

The following screenshot shows the dashboard after letting a Twitter stream,
created with the search query baseball, run for a little while:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode23.py

Chapter 7

[283]

Twitter Sentiment Dashboard for the search query "baseball"

The second PixieApp is used to monitor the streaming queries that are actively
running. The main route returns an HTML fragment that has a <div> element
that invokes the show_progress route at regular intervals (5000 ms) as shown
in the following code:

@PixieApp
class StreamingQueriesApp():
 @route()
 def main_screen(self):
 return """
<div class="no_loading_msg" pd_refresh_rate="5000" pd_options="show_
progress=true">
</div>
 """

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[284]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode24.py

In the show_progress route we use the query.lastProgress monitoring
API described earlier in this chapter, iterate over the JSON object using Jinja2
{%for%} loop and display the results in a table as shown in the following code:

@route(show_progress="true")
 def do_show_progress(self):
 return """
{%for query in this.spark.streams.active%}
 <div>
 <div class="page-header">
 <h1>Progress Report for Spark Stream: {{query.id}}</h1>
 <div>
 <table>
 <thead>
 <tr>
 <th>metric</th>
 <th>value</th>
 </tr>
 </thead>
 <tbody>
 {%for key, value in query.lastProgress.items()%}
 <tr>
 <td>{{key}}</td>
 <td>{{value}}</td>
 </tr>
 {%endfor%}
 </tbody>
 </table>
{%endfor%}
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode25.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode25.py

Chapter 7

[285]

The following screenshot shows the streaming query monitoring PixieApp:

Live monitoring of the active Spark streaming queries

The last step is to put together the complete application using the
TemplateTabbedApp class as shown in the following code:

from pixiedust.display.app import *
from pixiedust.apps.template import TemplateTabbedApp

@PixieApp
class TwitterSentimentApp(TemplateTabbedApp):
 def setup(self):
 self.apps = [
 {"title": "Tweets Insights", "app_class":
"TweetInsightApp"},
 {"title": "Streaming Queries", "app_class":
"StreamingQueriesApp"}
]

app = TwitterSentimentApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode26.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode26.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[286]

Part 3 of our sample application is now complete; you can find the fully-built
Notebook here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%203.ipynb

In the next section, we discuss ways to make the data pipeline of our application
more scalable by using Apache Kafka for event streaming and IBM Streams
Designer for data enrichment of the streaming data.

Part 4 – Adding scalability with Apache
Kafka and IBM Streams Designer

Note: This section is optional. It demonstrates how to re-implement
parts of the data pipeline with cloud-based streaming services to achieve
greater scalability

Implementing the entire data pipeline in a single Notebook gave us high
productivity during development and testing. We can experiment with the code
and test the changes very rapidly with a very small footprint. Also, performances
have been reasonable because we have been working with a relatively small
amount of data. However, it is quite obvious that we wouldn't use this architecture
in production and the next question we need to ask ourselves is where are the
bottlenecks that would prevent the application from scaling as the quantity of
streaming data coming from Twitter increases dramatically.

In this section, we identify two areas for improvement:

• In the Tweepy stream, the incoming data is sent to the RawTweetsListener
instance for processing using the on_data method. We need to make sure
to spend as little time as possible in this method otherwise the system
will fall behind as the amount of incoming data increases. In the current
implementation, the data is enriched synchronously by making an external
call to the Watson NLU service; it is then buffered and eventually written to
disk. To fix this issue, we send the data to a Kafka service, which is a highly
scalable, fault tolerant streaming platform using a publish/subscribe pattern
for processing a high volume of data. We also use the Streaming Analytics
service, which will consume data from Kafka and enrich it by invoking
the Watson NLU service. Both services are available on the IBM Cloud.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%203.ipynb

Chapter 7

[287]

Note: There are alternative open source frameworks that we could have
used for processing the streaming data, such as, for example, Apache
Flink (https://flink.apache.org) or Apache Storm (http://
storm.apache.org).

• In the current implementation, the data is stored as CSV files, and we
create a Spark Streaming DataFrame with the output directory as the
source. This step consumes time and resources on the Notebook and the
local environment. Instead, we can have the Streaming Analytics write
back the enriched events in a different topic and create a Spark Streaming
DataFrame with the Message Hub service as the Kafka input source.

The following diagram shows the updated architecture for our sample application:

Scaling the architecture with Kafka and Streams Designer

In the next few sections, we will implement the updated architecture, starting with
streaming the tweets to Kafka.

https://flink.apache.org
http://storm.apache.org
http://storm.apache.org

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[288]

Streaming the raw tweets to Kafka
Provisioning a Kafka / Message Hub service instance on IBM Cloud follows the
same pattern as the steps we used to provision the Watson NLU service. We first
locate and select the service in the catalog, pick a pricing plan and click Create.
We then open the service dashboard and select the Service credentials tab to
create new credentials as shown in the following screenshot:

Creating new credentials for the Message Hub service

As is the case for all the services available on IBM Cloud, the credentials come in
the form of a JSON object that we'll need to store in its own variable in the Notebook
as shown in the following code (again, don't forget to replace the XXXX text with your
username and password from the service credentials):

message_hub_creds = {
 "instance_id": "XXXXX",
 "mqlight_lookup_url": "https://mqlight-lookup-prod02.messagehub.
services.us-south.bluemix.net/Lookup?serviceId=XXXX",
 "api_key": "XXXX",
 "kafka_admin_url": "https://kafka-admin-prod02.messagehub.services.
us-south.bluemix.net:443",
 "kafka_rest_url": "https://kafka-rest-prod02.messagehub.services.us-
south.bluemix.net:443",
 "kafka_brokers_sasl": [
 "kafka03-prod02.messagehub.services.us-south.bluemix.net:9093",
 "kafka01-prod02.messagehub.services.us-south.bluemix.net:9093",

Chapter 7

[289]

 "kafka02-prod02.messagehub.services.us-south.bluemix.net:9093",
 "kafka05-prod02.messagehub.services.us-south.bluemix.net:9093",
 "kafka04-prod02.messagehub.services.us-south.bluemix.net:9093"
],
 "user": "XXXX",
 "password": "XXXX"
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode27.py

As for interfacing with Kafka, we have a choice between multiple good client
libraries. I have tried many of them, but the one I ended up using most often
is kafka-python (https://github.com/dpkp/kafka-python) which has the
advantage of being a pure Python implementation and is thereby easier to install.

To install it from the Notebook, use the following command:

!pip install kafka-python

Note: As always, do not forget to restart the kernel after installing any
libraries.

The kafka-python library provides a KafkaProducer class for writing the data
as messages into the service, which we'll need to configure with the credentials we
created earlier. There are multiple Kafka configuration options available and going
over all of them is beyond the scope of this book. The required options are related
to authentication, host servers, and API version.

The following code is implemented in the __init__ constructor of
RawTweetsListener class. It creates a KafkaProducer instance and stores it as
a class variable:

[[RawTweetsListener]]
context = ssl.create_default_context()
context.options &= ssl.OP_NO_TLSv1
context.options &= ssl.OP_NO_TLSv1_1
kafka_conf = {
 'sasl_mechanism': 'PLAIN',
 'security_protocol': 'SASL_SSL',
 'ssl_context': context,
 "bootstrap_servers": message_hub_creds["kafka_brokers_sasl"],

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode27.py
https://github.com/dpkp/kafka-python

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[290]

 "sasl_plain_username": message_hub_creds["user"],
 "sasl_plain_password": message_hub_creds["password"],
 "api_version":(0, 10, 1),
 "value_serializer" : lambda v: json.dumps(v).encode('utf-8')
}
self.producer = KafkaProducer(**kafka_conf)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode28.py

We configure a lambda function for the value_serializer key that serializes
JSON objects which is the format we'll be using for our data.

Note: We need to specify the api_version key because otherwise,
the library would try to autodiscover its value which would cause a
NoBrokerAvailable exception to be raised due to a bug in the kafka-
python library reproducible only on Macs. A fix for this bug has not yet
been provided at the time of writing this book.

We now need to update the on_data method to send the tweets data to Kafka
using the tweets topic. A Kafka topic is like a channel that applications can publish
or subscribe to. It is important to have the topic already created before attempting
to write into it otherwise an exception will be raised. This is done in the following
ensure_topic_exists method:

import requests
import json

def ensure_topic_exists(topic_name):
 response = requests.post(
 message_hub_creds["kafka_rest_url"] +
 "/admin/topics",
 data = json.dumps({"name": topic_name}),
 headers={"X-Auth-Token": message_hub_creds["api_key"]}
)
 if response.status_code != 200 and \
 response.status_code != 202 and \
 response.status_code != 422 and \
 response.status_code != 403:
 raise Exception(response.json())

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode28.py

Chapter 7

[291]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode29.py

In the preceding code, we make a POST request into the path /admin/topic
with a JSON payload that contains the name of the topic we want to create. The
request must be authenticated using the API key provided in the credentials and
the X-Auth-Token header. We also make sure to ignore HTTP error codes 422 and
403 which indicate that the topic already exists.

The code for the on_data method now looks much simpler as shown here:

[[RawTweetsListener]]
def on_data(self, data):
 self.tweet_count += 1
 self.producer.send(
 self.topic,
 {key:transform(key,value) \
 for key,value in iteritems(json.loads(data)) \
 if key in fieldnames}
)
 return True

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode30.py

As we can see, with this new code, we're spending as little time as possible in the
on_data method, which is the goal we wanted to achieve. The tweet data is now
flowing into the Kafka tweets topic, ready to be enriched by the Streaming Analytics
service which we'll discuss in the next section.

Enriching the tweets data with the Streaming
Analytics service
For this step, we'll need to use Watson Studio which is an integrated cloud-based
IDE that provides various tools for working with data, including machine learning
/ deep learning models, Jupyter Notebooks, stream flows, and more. Watson Studio
is a companion tool to IBM Cloud accessible at https://datascience.ibm.com,
and therefore no extra sign up is required.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode30.py
https://datascience.ibm.com

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[292]

Once logged in to Watson Studio, we create a new project which we'll call
Data Analysis with Python.

Note: It is OK to select the default options when creating a project.

We then go to the Settings tab to create a Streaming Analytics service, which will
be the engine that powers our enrichment process and associate it with the project.
Note that we could also have created the service in the IBM Cloud catalog as we did
for the other services used in this chapter, but since we still have to associate it with
the project, we might as well do the creation in Watson Studio too.

In the Settings tab, we scroll to the Associated services section and click on the
Add service drop-down to select Streaming Analytics. In the next page, you have
the choice between Existing and New. Select New and follow the steps to create the
service. Once done, the newly created service should be associated with the project
as shown in the following screenshot:

Note: If there are multiple free options, it is OK to pick any one of them.

Associating the Streaming Analytics service with the project

We are now ready to create the stream flow that defines the enrichment processing
of our tweet data.

We go to the Assets tab, scroll down to the Streams flows section and click on the
New streams flow button. In the next page, we give a name, select the Streaming
Analytics service, select Manually and click on the Create button.

We are now in the Streams Designer which is composed of a palette of operators
on the left and a canvas where we can graphically build our stream flow. For our
sample application, we'll need to pick three operators from the palette and drag
and drop them into the canvas:

Chapter 7

[293]

• Message Hub from the Sources section of the palette: Input source for our
data. Once in the canvas, we rename it Source Message Hub (by double-
clicking on it to enter edit mode).

• Code from the Processing and analytics section: It will contain the data
enrichment Python code that invokes the Watson NLU service. We rename
the operator to Enrichment.

• Message Hub from the Targets section of the palette: Output source
for the enriched data. We rename it to Target Message Hub.

Next, we create a connection between the Source Message Hub and Enrichment
and between Enrichment and the Target Message Hub. To create a connection
between two operators, simply grab the output port at the end of the first operator
and drag it to the input port of the other operator. Notice that a source operator has
only one output port on the right of the box to denote that it only supports outgoing
connections, while a target operator has only one input port on the left to denote
that it only supports incoming connections. Any operator from the PROCESSING
AND ANALYTICS section has two ports on the left and right as they accept both
incoming and outgoing connections.

The following screenshot shows the fully completed canvas:

Tweet enrichment stream flow

Let's now look at the configuration of each of these three operators.

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[294]

Note: To complete this section, make sure to run the code that generates
topics to the Message Hub instance that we discussed in the previous
section. Otherwise, the Message Hub instance will be empty, and no
schema will be detected.

Click on the source Message Hub. An animated pane on the right appears with the
options to select the Message Hub instance that contains the tweets. The first time,
you'll need to create a connection to the Message Hub instance. Select tweets as the
topic. Click on the Edit Output Schema and then Detect Schema to have the schema
autopopulated from the data. You can also preview the live streaming data using the
Show Preview button as shown in the following screenshot:

Setting the schema and previewing the live streaming data

Now select the Code operator to implement the code that invokes the Watson
NLU. The animated contextual right-hand pane contains a Python code editor
with boilerplate code that includes the required functions to implement, namely
init(state) and process(event, state).

In the init method, we instantiate the NaturalLanguageUnderstandingV1 instance
as shown in the following code:

import sys
from watson_developer_cloud import NaturalLanguageUnderstandingV1

Chapter 7

[295]

from watson_developer_cloud.natural_language_understanding_v1 import
Features, SentimentOptions, EntitiesOptions

init() function will be called once on pipeline initialization
@state a Python dictionary object for keeping state. The state
object is passed to the process function
def init(state):
 # do something once on pipeline initialization and save in the
state object
 state["nlu"] = NaturalLanguageUnderstandingV1(
 version='2017-02-27',
 username='XXXX',
 password='XXXX'
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode31.py

Note: We need to install the Watson_developer_cloud library via
the Python packages link located above the Python editor window
in the right-hand contextual pane as shown in the following screenshot:

Adding the watson_cloud_developer package to the stream flow

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode31.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[296]

The process method is invoked on every event data. We use it to invoke the
Watson NLU and add the extra information to the event object as shown in the
following code:

@event a Python dictionary object representing the input event tuple
as defined by the input schema
@state a Python dictionary object for keeping state over subsequent
function calls
return must be a Python dictionary object. It will be the output of
this operator.
Returning None results in not submitting an output tuple for this
invocation.
You must declare all output attributes in the Edit Schema window.
def process(event, state):
 # Enrich the event, such as by:
 # event['wordCount'] = len(event['phrase'].split())
 try:
 event['text'] = event['text'].replace('"', "'")
 response = state["nlu"].analyze(
 text = event['text'],
 features=Features(sentiment=SentimentOptions(),
entities=EntitiesOptions())
)
 event["sentiment"] = response["sentiment"]["document"]
["label"]
 top_entity = response["entities"][0] if
len(response["entities"]) > 0 else None
 event["entity"] = top_entity["text"] if top_entity is not None
else ""
 event["entity_type"] = top_entity["type"] if top_entity is not
None else ""
 except Exception as e:
 return None
 return event

Chapter 7

[297]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode32.py

Note: We must also declare all output variables by using the
Edit Output Schema link as shown in the following screenshot:

Declaring all output variables for the Code operator

Finally, we configure the target Message Hub to use the enriched_tweets topic.
Note that you'll need to manually create the topic the first time by going into the
dashboard of the Message Hub instance on the IBM Cloud and clicking on the Add
Topic button.

We then save the stream flow using the Save button in the main toolbar. Any errors
in the flow, whether it be a compile error in the code, a service configuration error
or any other errors, will be shown in the notification pane. After we make sure that
there is no error, we can run the flow using the Run button which takes us to the
streams flow live monitoring screen. This screen is composed of multiple panes.
The main pane shows the different operators with the data represented as little
balls flowing in a virtual pipe between operators. We can click on a pipe to show
the events payload in a pane on the right. This is really useful for debugging as
we can visualize how the data is transformed through each operator.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode32.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[298]

Note: Streams Designer also supports adding Python logging messages
in the code operator which can then be downloaded on your local
machine for analysis. You can learn more about this functionality here:
https://dataplatform.cloud.ibm.com/docs/content/
streaming-pipelines/downloading_logs.html

The following screenshot shows the stream flow live monitoring screen:

Live monitoring screen for the Twitter Sentiment Analysis stream flow

We now have our enriched tweets flowing in the Message Hub instance using
the enriched_tweets topic. In the next section, we show how to create a Spark
Streaming DataFrame using the Message Hub instance as the input source.

Creating a Spark Streaming DataFrame
with a Kafka input source
In this final step, we create a Spark Streaming DataFrame that consumes the enriched
tweets from the enriched_tweets Kafka topic of the Message Hub service. For this,
we use the built-in Spark Kafka connector specifying the topic we want to subscribe
to in the subscribe option. We also need to specify the list of Kafka servers in the
kafka.bootstrap.servers option, by reading it from the global message_hub_
creds variable that we created earlier.

https://dataplatform.cloud.ibm.com/docs/content/streaming-pipelines/downloading_logs.html
https://dataplatform.cloud.ibm.com/docs/content/streaming-pipelines/downloading_logs.html

Chapter 7

[299]

Note: You have probably noticed that different systems use different
names for this option making it more error prone. Fortunately, in case of
a misspelling, an exception with an explicit root cause message will be
displayed.

The preceding options are for Spark Streaming, and we still need to configure
the Kafka credentials so that the lower level Kafka consumer can be properly
authenticated with the Message Hub service. To properly pass these consumer
properties to Kafka, we do not use the .option method, but rather we create
a kafka_options dictionary that we pass to the load method as shown in the
following code:

def start_streaming_dataframe():
 "Start a Spark Streaming DataFrame from a Kafka Input source"
 schema = StructType(
 [StructField(f["name"], f["type"], True) for f in field_
metadata]
)
 kafka_options = {
 "kafka.ssl.protocol":"TLSv1.2",
 "kafka.ssl.enabled.protocols":"TLSv1.2",
 "kafka.ssl.endpoint.identification.algorithm":"HTTPS",
 'kafka.sasl.mechanism': 'PLAIN',
 'kafka.security.protocol': 'SASL_SSL'
 }
 return spark.readStream \
 .format("kafka") \
 .option("kafka.bootstrap.servers", ",".join(message_hub_
creds["kafka_brokers_sasl"])) \
 .option("subscribe", "enriched_tweets") \
 .load(**kafka_options)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode33.py

You would think that we're done with the code at this point since the rest of the
Notebook should work unchanged from Part 3 – Create a real-time dashboard PixieApp.
This would be correct until we run the Notebook and start seeing exceptions with
Spark complaining that the Kafka connector cannot be found. This is because the
Kafka connector is not included in the core distribution of Spark and must be
installed separately.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode33.py

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[300]

Unfortunately, these types of problems which are infrastructural in nature and are
not directly related to the task at hand, happen all the time and we end up spending
a lot of time trying to fix them. Searching on Stack Overflow or any other technical
site usually yields a solution rapidly, but in some cases, the answer is not obvious.
In this case, because we are running in a Notebook and not in a spark-submit script,
there isn't much help available, and we have to experiment ourselves until we find
the solution. To install the spark-sql-kafka, we need to edit the kernel.json file
discussed earlier in this chapter, and add the following option to the "PYSPARK_
SUBMIT_ARGS" entry:

--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.0

When the kernel restarts, this configuration will automatically download the
dependencies and cache them locally.

It should all work now right? Well, not yet. We still have to configure Kafka security
to use the credentials to our Message Hub service which uses SASL as the security
protocol. For that, we need to provide a JAAS (short for, Java Authentication
and Authorization Service) configuration file that will contain the username and
password for the service. The latest version of Kafka provides a flexible mechanism
to programmatically configure the security using a consumer property called sasl.
jaas.config. Unfortunately, the latest version of Spark (2.3.0 as of the time of
writing) has not yet updated to the latest version of Kafka. So, we have to fall back
to the other way of configuring JAAS which is to set a JVM system property called
java.security.auth.login.config with the path to a jaas.conf configuration
file.

We first create the jaas.conf in a directory of our choice and add the following
content to it:

KafkaClient {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="XXXX"
 password="XXXX";
};

In the preceding content, replace the XXXX text with the username and password
taken from the Message Hub service credentials.

We then add the following configuration to the "PYSPARK_SUBMIT_ARGS" entry
of kernel.json:

--driver-java-options=-Djava.security.auth.login.config=<<jaas.conf
path>>

Chapter 7

[301]

For reference, here is a sample kernel.json that contains these configurations:

{
 "language": "python",
 "env": {
 "SCALA_HOME": "/Users/dtaieb/pixiedust/bin/scala/scala-2.11.8",
 "PYTHONPATH": "/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7/python/:/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7/python/lib/py4j-0.10.6-src.zip",
 "SPARK_HOME": "/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7",
 "PYSPARK_SUBMIT_ARGS": "--driver-java-options=-Djava.security.auth.
login.config=/Users/dtaieb/pixiedust/jaas.conf --jars /Users/dtaieb/
pixiedust/bin/cloudant-spark-v2.0.0-185.jar --driver-class-path /
Users/dtaieb/pixiedust/data/libs/* --master local[10] --packages org.
apache.spark:spark-sql-kafka-0-10_2.11:2.3.0 pyspark-shell",
 "PIXIEDUST_HOME": "/Users/dtaieb/pixiedust",
 "SPARK_DRIVER_MEMORY": "10G",
 "SPARK_LOCAL_IP": "127.0.0.1",
 "PYTHONSTARTUP": "/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7/python/pyspark/shell.py"
 },
 "display_name": "Python with Pixiedust (Spark 2.3)",
 "argv": [
 "python",
 "-m",
 "ipykernel",
 "-f",
 "{connection_file}"
]
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode34.json

Note: We should always restart the Notebook server when modifying
kernel.json to make sure that all new configurations are properly
reloaded.

The rest of the Notebook code doesn't change, and the PixieApp dashboard should
work the same.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode34.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode34.json

Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[302]

We have now completed Part 4 of our sample application; you can
find the complete notebook here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%204.ipynb

The extra code we had to write at the end of this section reminds us that the journey
of working with data is never a straight line. We have to be prepared to deal with
obstacles that can be different in nature: a bug in a dependency library or a limitation
in an external service. Surmounting these obstacles doesn't have to stop the project
for a long time. Since we're using mostly open-source components, we can leverage
a large community of like-minded developers on social sites such as Stack Overflow,
get new ideas and code samples, and experiment quickly on a Jupyter Notebook.

Summary
In this chapter, we've built a data pipeline that analyzes large quantities of streaming
data containing unstructured text and applies NLP algorithms coming from external
cloud services to extract sentiment and other important entities found in the text.
We also built a PixieApp dashboard that displays live metrics with insights extracted
from the tweets. We've also discussed various techniques for analyzing data at scale,
including Apache Spark Structured Streaming, Apache Kafka, and IBM Streaming
Analytics. As always, the goal of these sample applications is to show the art of
the possible in building data pipelines with a special focus on leveraging existing
frameworks, libraries, and cloud services.

In the next chapter, we'll discuss time series analysis, which is another great data
science topic with a lot of industry applications, which we'll illustrate by building
a Financial Portfolio analysis application.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%204.ipynb

[303]

Analytics Study: Prediction
- Financial Time Series

Analysis and Forecasting
"When making important decisions, it's ok to trust your instincts
but always verify with data"

 – David Taieb

The study of time series is a very important field of data science with multiple
applications in industry, including the weather, medicine, sales, and, of course,
finance. It is a broad and complex subject and covering it in detail would be outside
the scope of this book, but we'll try to touch upon a few of the important concepts in
this chapter, staying sufficiently high level as not to require any particular specific
knowledge from the reader. We also show how Python is particularly well adapted
to time series analysis from data manipulation with libraries like pandas (https://
pandas.pydata.org) for data analysis and NumPy (http://www.numpy.org) for
scientific computation, to visualization with Matplotlib (https://matplotlib.org)
and Bokeh (https://bokeh.pydata.org).

This chapter starts with an introduction to the NumPy library and its most important
APIs that will be put to good use when building descriptive analytics to analyze
time series representing stock historical financial data. Using Python libraries such as
statsmodels (https://www.statsmodels.org/stable/index.html), we'll show
how to do statistical exploration and find properties like stationarity, autocorrelation
function (ACF), and partial autocorrelation function (PACF). which will be useful
to find trends in the data and creating forecasting models. We'll then operationalize
these analytics by building a PixieApp that summarizes all the important statistics
and visualizations about stock historical financial data.

https://pandas.pydata.org
https://pandas.pydata.org
http://www.numpy.org
https://matplotlib.org
https://bokeh.pydata.org
https://www.statsmodels.org/stable/index.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[304]

In the second part, we'll attempt to build a time series forecasting model that predicts
future trends of a stock. We'll use an autoregressive model with Integrated Moving
Average called ARIMA where we use previous values in the time series to predict
the next value. ARIMA is one of the most popular models currently used, although
new models based on recurrent neural networks are starting to gain in popularity.

As usual, we'll conclude the chapter by incorporating the building of an ARIMA
time series forecasting model in the StockExplorer PixieApp.

Getting started with NumPy
The NumPy library is one of the main reasons why Python has gained so much
traction in the data scientist community. It is a foundational library upon which a
lot of the most popular libraries, such as pandas (https://pandas.pydata.org),
Matplotlib (https://matplotlib.org), SciPy (https://www.scipy.org), and
scikit-learn (http://scikit-learn.org) are built.

The key capabilities provided by NumPy are:

• A very powerful multidimensional NumPy array called ndarray with very
high-performance mathematical operations (at least compared to regular
Python lists and arrays)

• Universal functions also called ufunc for short, for providing very efficient
and easy-to-use element by element operations on one or more ndarray

• Powerful ndarray slicing and selection capabilities
• Broadcasting functions that make it possible to apply arithmetic operations

on ndarray of different shapes provided that some rules are respected

Before we start exploring the NumPy APIs, there is one API that is absolutely
essential to know: lookfor(). With this method, you can find a function using
a query string, which is very useful considering the hundreds of powerful APIs
provided by NumPy.

For example, I can look for a function that computes the average mean of an array:

import numpy as np
np.lookfor("average")

The results are as follows:

Search results for 'average'

numpy.average
 Compute the weighted average along the specified axis.

https://pandas.pydata.org
https://matplotlib.org
https://www.scipy.org
http://scikit-learn.org

Chapter 8

[305]

numpy.irr
 Return the Internal Rate of Return (IRR).
numpy.mean
 Compute the arithmetic mean along the specified axis.
numpy.nanmean
 Compute the arithmetic mean along the specified axis, ignoring
NaNs.
numpy.ma.average
 Return the weighted average of array over the given axis.
numpy.ma.mean
 Returns the average of the array elements along given axis.
numpy.matrix.mean
 Returns the average of the matrix elements along the given axis.
numpy.chararray.mean
 Returns the average of the array elements along given axis.
numpy.ma.MaskedArray.mean
 Returns the average of the array elements along given axis.
numpy.cov
 Estimate a covariance matrix, given data and weights.
numpy.std
 Compute the standard deviation along the specified axis.
numpy.sum
 Sum of array elements over a given axis.
numpy.var
 Compute the variance along the specified axis.
numpy.sort
 Return a sorted copy of an array.
numpy.median
 Compute the median along the specified axis.
numpy.nanstd
 Compute the standard deviation along the specified axis, while
numpy.nanvar
 Compute the variance along the specified axis, while ignoring
NaNs.
numpy.nanmedian
 Compute the median along the specified axis, while ignoring NaNs.
numpy.partition
 Return a partitioned copy of an array.
numpy.ma.var
 Compute the variance along the specified axis.
numpy.apply_along_axis
 Apply a function to 1-D slices along the given axis.
numpy.ma.apply_along_axis
 Apply a function to 1-D slices along the given axis.

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[306]

numpy.ma.MaskedArray.var
 Compute the variance along the specified axis.

Within seconds, I can find a few candidate functions without having to leave my
Notebook to consult the documentation. In the preceding case, I can spot a few
functions that are interesting— np.average and np.mean—for which I still need
to know their arguments. Again, instead of looking up the documentation which
takes time and breaks the flow of what I was doing, I use a little-known capability of
Jupyter Notebooks that provides me with the signature and docstring of the function
inline. To invoke the inline help of a function, simply position the cursor at the end
of the function and use the Shift + Tab combination. Calling Shift + Tab a second time
will expand the pop-up window to show more of the text as shown in the following
screenshot:

Note: Shift + Tab only applies to a function.

Inline help in Jupyter Notebook.

Using this method, I can rapidly iterate over the candidate functions until I find the
one that fits my needs.

It is important to note that np.lookfor() is not limited to querying the NumPy
module; you could search in other modules as well. For example, the following code
searches for acf (autocorrelation function) related methods in the statsmodels
package:

import statsmodels
np.lookfor("acf", module = statsmodels)

Chapter 8

[307]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode1.py

This produces the following results:

Search results for 'acf'

statsmodels.tsa.vector_ar.var_model.var_acf
 Compute autocovariance function ACF_y(h) up to nlags of
stable VAR(p)
statsmodels.tsa.vector_ar.var_model._var_acf
 Compute autocovariance function ACF_y(h) for h=1,...,p
statsmodels.tsa.tests.test_stattools.TestPACF
 Set up for ACF, PACF tests.
statsmodels.sandbox.tsa.fftarma.ArmaFft.acf2spdfreq
 not really a method
statsmodels.tsa.stattools.acf
 Autocorrelation function for 1d arrays.
statsmodels.tsa.tests.test_stattools.TestACF_FFT
 Set up for ACF, PACF tests.
...

Creating a NumPy array
There are many ways to create a NumPy array. Here are the methods most
commonly used:

• From a Python list or tuple using np.array(), for example,
np.array([1, 2, 3, 4]).

• From one of the NumPy factory functions:
 ° np.random: A module that provides a very rich set of functions

for randomly generating values. This module is composed of
the following categories:
 Simple random data: rand, randn, randint, and so on
 Permutations: shuffle, permutation
 Distributions: geometric, logistic, and so on

You can find more information on the np.random module here:
https://docs.scipy.org/doc/numpy-1.14.0/reference/
routines.random.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode1.py
https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[308]

 ° np.arange: Return an ndarray with evenly spaced values within
a given interval.
 Signature: numpy.arange([start,]stop, [step,]dtype=None)
 For example: np.arange(1, 100, 10)
 Results: array([1, 11, 21, 31, 41, 51, 61, 71, 81, 91])

 ° np.linspace: Similar to np.arange, it returns an ndarray with
evenly spaced values within a given interval, the difference being
that with linspace you specify the number of samples you want
instead of the number of steps.
 For example: np.linspace(1,100,8, dtype=int)
 Results: array([1, 15, 29, 43, 57, 71, 85, 100])

 ° np.full, np.full_like, np.ones, np.ones_like, np.zeros,
np.zeros_like: Create an ndarray initialized with a constant value.
 For example: np.ones((2,2), dtype=int)
 Results: array([[1, 1], [1, 1]])

 ° np.eye, np.identity, np.diag: Creates an ndarray with constant
values in the diagonal:

 For example: np.eye(3,3)
 Results: array([[1, 0, 0],[0, 1, 0],[0, 0, 1]])

Note: When the dtype argument is not provided, NumPy tries to infer it
from the input argument. However, it may happen that the type returned
is not the correct one; for example, float is returned when it should be
an integer. In this case, you should use the dtype argument to force
the type. For example:

np.arange(1, 100, 10, dtype=np.integer)

Why NumPy arrays are so much faster than their Python lists and arrays
counterpart?

As mentioned before, operations on NumPy arrays run much faster than their
Python counterpart. This is because Python is a dynamic language that doesn't
know, a priori, the type it's dealing with and therefore has to constantly query
the metadata associated with it to dispatch it to the right method. On the other
hand, NumPy is highly optimized to deal with large multidimensional arrays of
data by, among other things, delegating the execution of the CPU-intensive routine
to external highly optimized C libraries that have been precompiled.

Chapter 8

[309]

To be able to do that, NumPy places two important constraints on ndarrays:

• ndarrays are immutable: Therefore, if you want to change the shape or the
size of an ndarray or if you want to add/delete elements, you always must
create a new one. For example, the following code creates an ndarray using
the arange() function which returns a one-dimensional array with evenly
spaced values, and then reshapes it to fit a 4 by 5 matrix:
ar = np.arange(20)
print(ar)
print(ar.reshape(4,5))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode2.py

The results are as follows:
before:
 [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
after:
 [[0 1 2 3 4]
 [5 6 7 8 9]
 [10 11 12 13 14]
 [15 16 17 18 19]]

• Elements in an ndarray must be of the same type: ndarray carries the
element type in the dtype member. When creating a new ndarray using the
nd.array() function, NumPy will automatically infer a type that is suitable
for all elements.

For example: np.array([1,2,3]).dtype will be dtype('int64').
np.array([1,2,'3']).dtype will be dtype('<U21') where < means
little endian (see https://en.wikipedia.org/wiki/Endianness) and
U21 means a 21-character Unicode string.

Note: You can find detailed information about all the supported data
types here:
https://docs.scipy.org/doc/numpy/reference/arrays.
dtypes.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode2.py
https://en.wikipedia.org/wiki/Endianness
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[310]

Operations on ndarray
Most often, we have the need to summarize data over an ndarray. Fortunately,
NumPy provides a very rich set of functions (also called reduction functions)
that provide out-of-the-box summarization over an ndarray or an axis of the ndarray.

For reference, a NumPy axis corresponds to a dimension of the array. For example,
a two-dimensional ndarray has two axes: one running across rows, which is referred
to as axis 0 and one running across columns which is called axis 1.

The following diagram illustrates the axes in a two-dimensional array:

Axes in a two-dimensional array

Most of the reduction functions we'll discuss next take an axis as an argument.
They fall into the following categories:

• Mathematical functions:
 ° Trigonometric: np.sin, np.cos, and so on
 ° Hyperbolic: np.sinh, np.cosh, and so on
 ° Rounding: np.around, np.floor, and so on
 ° Sums, products, differences: np.sum, np.prod, np.cumsum, and so on
 ° Exponents and logarithms: np.exp, np.log, and so on
 ° Arithmetic: np.add, np.multiply, and so on
 ° Miscellaneous: np.sqrt, np.absolute, and so on

Chapter 8

[311]

Note: All these unary functions (functions that take only one argument)
work directly at the ndarray level. For example, we can use np.square
to square all the values in an array at once:
Code: np.square(np.arange(10))
Results: array([0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
You can find more information on NumPy mathematical functions here:
https://docs.scipy.org/doc/numpy/reference/routines.
math.html

• Statistical functions:

 ° Order statistics: np.amin, np.amax, np.percentile, and so on
 ° Averages and variances: np.median, np.var, np.std, and so on
 ° Correlating: np.corrcoef, np.correlate, np.cov, and so on
 ° Histograms: np.histogram, np.bincount, and so on

Note: pandas provides very tight integration with NumPy and lets you
apply these NumPy operations on pandas DataFrames. We'll use this
capability quite a bit when analyzing time series in the rest of this chapter.

The following code example creates a pandas DataFrame and computes the square
on all the columns:

Applying NumPy operations to pandas DataFrames

https://docs.scipy.org/doc/numpy/reference/routines.math.html
https://docs.scipy.org/doc/numpy/reference/routines.math.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[312]

Selections on NumPy arrays
NumPy arrays support similar slicing operations as Python arrays and lists. So,
using an ndarray created with the np.arrange() method, we can do the following:

sample = np.arange(10)
print("Sample:", sample)
print("Access by index: ", sample[2])
print("First 5 elements: ", sample[:5])
print("From 8 to the end: ", sample[8:])
print("Last 3 elements: ", sample[-3:])
print("Every 2 elements: ", sample[::2])

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode3.py

Which produces the following results:

Sample: [0 1 2 3 4 5 6 7 8 9]
Access by index: 2
First 5 elements: [0 1 2 3 4]
From index 8 to the end: [8 9]
Last 3 elements: [7 8 9]
Every 2 elements: [0 2 4 6 8]

Selections using slices also work with NumPy arrays that have multiple dimensions.
We can use slices for every dimension in the array. This is not the case for Python
arrays and lists which only allow indexing using integers of slices.

Note: For reference a slice in Python has the following syntax:

start:end:step

As an example, let's create a NumPy array with the shape (3,4), that is, 3 rows *
4 columns:

my_nparray = np.arange(12).reshape(3,4)
print(my_nparray)

Returns:

array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode3.py

Chapter 8

[313]

Suppose that I want to select only the middle of the matrix, that is, [5, 6]. I can simply
apply slices on rows and columns, for example, [1:2] to select the second row and
[1:3] to select the second and third values in the second row:

print(my_nparray[1:2, 1:3])

Returns:

array([[5, 6]])

Another interesting NumPy feature is that we can also use predicates to index
an ndarray with Boolean values.

For example:

print(sample > 5)

Returns:

[False False False False False False True True True True]

We can then use the Boolean ndarray to select subsets of data with a simple
and elegant syntax.

For example:

print(sample[sample > 5])

Returns:

[6 7 8 9]

This is only a small preview of all the selection capabilities of NumPy.
For more information on NumPy selection, you can visit:
https://docs.scipy.org/doc/numpy-1.13.0/reference/
arrays.indexing.html

Broadcasting
Broadcasting is a very convenient feature of NumPy. It lets you perform arithmetic
operations on ndarrays having different shapes. The term broadcasting comes from
the fact that the smaller array is automatically duplicated to fit the bigger array
so that they have compatible shapes. There are however a set of rules that govern
how broadcasting works.

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[314]

You can find more information on broadcasting here:
https://docs.scipy.org/doc/numpy/user/basics.
broadcasting.html

The simplest form of NumPy broadcasting is scalar broadcasting, which lets
you perform element-wise arithmetic operations between an ndarray and a scalar
(that is, a number).

For example:

my_nparray * 2

Returns:

array([[0, 2, 4, 6],
 [8, 10, 12, 14],
 [16, 18, 20, 22]])

Note: In the following discussion, we assume that we want
to operate on two ndarrays which do not have the same dimensions.

Broadcasting with smaller arrays needs to follow only one rule: one of the arrays
must have at least one of its dimensions equal to 1. The idea is to duplicate the
smaller array along the dimensions that don't match until they do.

The following diagram, taken from the http://www.scipy-lectures.org/ website,
illustrates very nicely the different cases for adding two arrays:

Broadcasting flow explained

Source: http://www.scipy-lectures.org/_images/numpy_broadcasting.png

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://www.scipy-lectures.org/

Chapter 8

[315]

The three use cases demonstrated in the preceding diagram are:

• The array's dimensions match: Perform the sum element-wise as usual.
• The smaller array has only 1 row: Duplicate the rows until the dimensions

fit the first array. The same algorithm would be used if the smaller array
had only 1 column.

• The first array has only 1 column and the second array only 1 row:

 ° Duplicate the columns in the first array until we have the same
number of columns as the second array

 ° Duplicate the rows in the second array until we have the same
number of rows as the first array

The following code sample shows NumPy broadcasting in action:

my_nparray + np.array([1,2,3,4])

Results:

array([[1, 3, 5, 7],
 [5, 7, 9, 11],
 [9, 11, 13, 15]])

In this section, we provided a basic introduction to NumPy, at least enough to get
us started and follow the code samples that we'll cover in the rest of this chapter.
In the next section, we will start the discussion on time series with statistical data
exploration to find patterns that will help us to identify underlying structures in the
data.

Statistical exploration of time series
For the sample application, we'll use stock historical financial data provided by
the Quandl data platform financial APIs (https://www.quandl.com/tools/api)
and the quandl Python library (https://www.quandl.com/tools/python).

To get started, we need to install the quandl library by running the following
command in its own cell:

!pip install quandl

Note: As always, don't forget to restart the kernel after the installation
is complete.

https://www.quandl.com/tools/api
https://www.quandl.com/tools/python

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[316]

Access to the Quandl data is free but limited to 50 calls a day, but you can bypass
this limit by creating a free account and get an API key:

1. Go to https://www.quandl.com and create a new account by clicking
on the SIGN UP button on the top right.

2. Fill up the form in three steps of the sign-up wizard. (I chose Personal,
but depending on your situation, you may want to choose Business or
Academic.)

3. At the end of the process, you should receive an email confirmation with
a link to activate the account.

4. Once the account is activated, log in to the Quandl platform website and
click on Account Settings in the top right-hand menu, and then go to the API
KEY tab.

5. Copy the API key provided in this page. This value will be used to
programmatically set the key in the quandl Python library as shown in the
following code:

import quandl
quandl.ApiConfig.api_key = "YOUR_KEY_HERE"

The quandl library is mainly composed of two APIs:

• quandl.get(dataset, **kwargs): This returns a pandas DataFrame or
a NumPy array for the requested dataset(s). The dataset argument can be
either a string (single dataset) or a list of strings (multi dataset). Each dataset
follows the syntax database_code/dataset_code when database_code is a
data publisher and dataset_code related to the resource. (See next how to
get a full list of all the database_code and dataset_code).
The keyword arguments enable you to refine the query. You can find the
full list of supported arguments in the quandl code on GitHub: https://
github.com/quandl/quandl-python/blob/master/quandl/get.py.
One interesting keyword argument called returns controls the data
structure returned by the method and can take the following two values:

 ° pandas: Returns a pandas DataFrame
 ° numpy: Returns a NumPy array

https://www.quandl.com
https://github.com/quandl/quandl-python/blob/master/quandl/get.py
https://github.com/quandl/quandl-python/blob/master/quandl/get.py

Chapter 8

[317]

• quandl.get_table(datatable_code, **kwargs): Returns a non-time
series dataset (called datatable) about a resource. We will not be using
this method in this chapter, but you can find out more about it by looking
at the code: https://github.com/quandl/quandl-python/blob/master/
quandl/get_table.py.

To get the list of database_code, we use the Quandl REST API: https://www.
quandl.com/api/v3/databases?api_key=YOUR_API_KEY&page=n which uses
pagination.

Note: In the preceding URL, replace the YOUR_API_KEY value with your
actual API key.

The returned payload is in the following JSON format:

{
 "databases": [{
 "id": 231,
 "name": "Deutsche Bundesbank Data Repository",
 "database_code": "BUNDESBANK",
 "description": "Data on the German economy, ...",
 "datasets_count": 49358,
 "downloads": 43209922,
 "premium": false,
 "image": "https://quandl--upload.s3.amazonaws/...thumb_
bundesbank.png",
 "favorite": false,
 "url_name": "Deutsche-Bundesbank-Data-Repository"
 },...
],
 "meta": {
 "query": "",
 "per_page": 100,
 "current_page": 1,
 "prev_page": null,
 "total_pages": 3,
 "total_count": 274,
 "next_page": 2,
 "current_first_item": 1,
 "current_last_item": 100
 }
}

https://github.com/quandl/quandl-python/blob/master/quandl/get_table.py
https://github.com/quandl/quandl-python/blob/master/quandl/get_table.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[318]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode4.json

We use a while loop to load all the available pages relying on the payload['meta']
['next_page'] value to know when to stop. At each iteration, we append the list
of database_code information into an array called databases as shown in the
following code:

import requests
databases = []
page = 1
while(page is not None):
 payload = requests.get("https://www.quandl.com/api/v3/
databases?api_key={}&page={}"\
 .format(quandl.ApiConfig.api_key, page)).json()
 databases += payload['databases']
 page = payload['meta']['next_page']

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode5.py

The databases variable now contains an array of JSON objects containing the
metadata about each database_code. We use the PixieDust display() API
to look at the data in a nice searchable table:

import pixiedust
display(databases)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode4.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode4.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode5.py

Chapter 8

[319]

In the following screenshot of the PixieDust table, we use the Filter button described
in Chapter 2, Python and Jupyter Notebooks to Power your Data Analysis, to access the
statistics about the count of datasets available in each database, for example, min,
max and mean:

List of Quandl database codes

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[320]

After searching for a database that contains stock information from the
New York Stock Exchange (NYSE), I found the XNYS database as shown here:

Note: Make sure to increase the number of the value displayed to
300 in the chart options dialog, so all the results are shown in the table.

Looking for a database with stock data from NYSE

Unfortunately, the XNYS database is not public and requires a paid subscription.
I ended up using the WIKI database code, which for some reason was not part of the
list returned by the preceding API request, but which I found in some code examples.

I then used the https://www.quandl.com/api/v3/databases/{database_code}/
codes REST API to get the list of datasets. Fortunately, this API returns a CSV
compressed in a ZIP file, which the PixieDust sampleData() method can handle
easily, as shown in the following code:

codes = pixiedust.sampleData("https://www.quandl.com/api/v3/
databases/WIKI/codes?api_key=" + quandl.ApiConfig.api_key)
display(codes)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode6.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode6.py

Chapter 8

[321]

In the PixieDust table interface, we click on the Options dialog to increase
the number of values displayed to 4000 so that we can fit the entire dataset
(which is 3,198) and use the search bar to look for particular stocks as shown
in the following screenshot:

Note: The search bar only searches for the rows that are displayed in the
browser, which can be a smaller set when the dataset is too large. Since
in this case, the dataset is too large, it would be impractical to increase
the number of rows to display; it is recommended to use the Filter
instead which guarantees to query the entire dataset.
The CSV file returned by the quandl API doesn't have a header,
but PixieDust.sampleData() expects one to be there. This
is currently a limitation that will be addressed in the future.

List of datasets for the WIKI database

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[322]

For the rest of this section, we load the Microsoft stock (ticker symbol MSFT)
historical time series data for the last several years and start exploring its statistical
properties. In the following code, we use quandl.get() with the WIKI/MSFT dataset.
We add a column called daily_spread that computes the daily gain/loss by calling
the pandas diff() method, which returns the difference between the current and
previous adjusted close price. Note that the returned pandas DataFrame uses the
dates as an index, but PixieDust does not support plotting time series by the index
at this time. Therefore, in the following code, we call reset_index() to convert the
DateTime index into a new column called Date that contains the dates information:

msft = quandl.get('WIKI/MSFT')
msft['daily_spread'] = msft['Adj. Close'].diff()
msft = msft.reset_index()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode7.py

For our first data exploration, we use display() to create a line chart of the stock
adjusted closing price over time using the Bokeh renderer.

The following screenshot shows the Options configuration and the resulting line
chart:

MSFT Price over time, adjusted for dividend distribution, stock split, and other corporate actions

We can also generate a chart that shows the daily spread for each day of the period,
as shown in the following screenshot:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode7.py

Chapter 8

[323]

Daily Spread for the MSFT stock

Hypothetical investment
As an exercise, let's try to create a chart that shows how a hypothetical investment
of $10,000 in the selected stock (MSFT) would fare over time. To do this, we must
compute a DataFrame that contains the total investment value for each day of the
period, factoring in the daily spread that we calculated in the previous paragraph
and use the PixieDust display() API to visualize the data.

We use pandas ability to select rows using a predicate based on dates to first filter
the DataFrame to select only the data points in the period we are interested in. We
then calculate the number of shares bought by dividing the initial investment
of $10,000 by the closing price on the first day of the period and add the initial
investment value. All this computation is made very easy, thanks to the efficient
series computation of pandas and the underlying NumPy foundational library.
We use the np.cumsum() method (https://docs.scipy.org/doc/numpy-1.14.0/
reference/generated/numpy.cumsum.html) to compute the cumulative sum of
all the daily gains adding the initial investment value of $10,000.

Finally, we make the chart easier to read by using the resample() method that
converts the frequency from daily to monthly computing the new values using
the average for the month.

The following code computes the growth DataFrame using a period starting
in May 2016:

import pandas as pd
tail = msft[msft['Date'] > '2016-05-16']
investment = np.cumsum((10000 / tail['Adj. Close'].values[0]) *
tail['daily_spread']) + 10000
investment = investment.astype(int)

https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.cumsum.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.cumsum.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[324]

investment.index = tail['Date']
investment = investment.resample('M').mean()
investment = pd.DataFrame(investment).reset_index()
display(investment)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode8.py

The following screenshot shows the graph generated by the display()
API including the configuration options:

Hypothetical portfolio growth

Autocorrelation function (ACF) and
partial autocorrelation function (PACF)
Before trying to generate predictive models, it is essential to understand whether
the time series has identifiable patterns, such as seasonality or trends. One popular
technique is to look at how data points correlate with previous data points according
to a specified time lag. The intuition is that the autocorrelation would reveal internal
structures, such as for example, identifying periods when high correlation (positive
or negative) occurs. You can experiment with different lag values (that is, for each
data point, how many previous points are you taking into account) to find the right
periodicity.

Computing the ACF usually requires calculating the Pearson R correlation
coefficient for the set of data points (https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient) which is not a trivial thing to do. The good news is
that the statsmodels Python library has a tsa package (tsa stands for time series
analysis) that provides helper methods for computing the ACF, that are tightly
integrated with pandas Series.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode8.py
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Chapter 8

[325]

Note: If not already done, we install the statsmodels package
using the following command, restarting the kernel after completion:
!pip install statsmodels

The following code uses plot_acf() from the tsa.api.graphics package to
compute and visualize the ACF for the adjusted close price of the MSFT stock
time series:

import statsmodels.tsa.api as smt
import matplotlib.pyplot as plt
smt.graphics.plot_acf(msft['Adj. Close'], lags=100)
plt.show()

The following is the result:

ACF for MSFT with lags = 100

The preceding chart shows the autocorrelation of the data at a number of
previous data points (lag) given by the x abscissa. So, at lag 0, you always have an
autocorrelation of 1.0 (you always correlate perfectly with yourself), lag 1 shows the
autocorrelation with the previous data point, lag 2 shows the autocorrelation with
the data point that is two steps behind. We can clearly see that the autocorrelation
decreases as the lags increase. In the preceding chart, we used only 100 lags, and
we see that the autocorrelation still remains statistically significant at around 0.9,
which tells us that data separated by long periods of time is not correlated. This
suggests that the data has a trend, which is quite obvious when glancing at the
overall price chart.

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[326]

To confirm this hypothesis, we plot the ACF chart with a bigger lags argument,
say 1000 (which is not unreasonable given the fact that our series has more than
10,000 data points), as shown in the following screenshot:

ACF for MSFT with lags = 1000

We now clearly see that the autocorrelation falls below the significance level
at around 600 lags.

To better illustrate how the ACF works, let's generate a time series that is periodic,
without a trend and see what we can learn. For example, we can use np.cos()
on a series of evenly spaced points generated with np.linspace():

smt.graphics.plot_acf(np.cos(np.linspace(0, 1000, 100)), lags=50)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode9.py

The results are as follows:

ACF for a periodic series with no trends

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode9.py

Chapter 8

[327]

In the preceding chart, we can see that the autocorrelation spikes again at regular
intervals (every 5 lags or so), clearly showing periodicity (also called seasonality
when dealing with real-world data).

Using ACF to detect structure in your time series can sometimes lead to problems,
especially when you have strong periodicity. In this case, you'll always see a spike
in autocorrelation at a multiple of the period, no matter how far back you try to
autocorrelate your data and this could lead to the wrong interpretation. To work
around this problem, we use the PACF which uses a shorter lag and unlike ACF,
doesn't reuse correlations previously found in shorter time periods. The math for
ACF and PACF is rather complex, but the reader only needs to understand the
intuition behind it and happily use libraries such as statsmodels to do the heavy
lifting computation. One resource I used to get more information on ACF and PACF
can be found here: https://www.mathworks.com/help/econ/autocorrelation-
and-partial-autocorrelation.html.

Back to our MSFT stock time series, the following code shows how to plot its PACF
using the smt.graphics package:

import statsmodels.tsa.api as smt
smt.graphics.plot_pacf(msft['Adj. Close'], lags=50)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode10.py

The results are shown in the following screenshot:

Partial autocorrelation for the MSFT stock time series

https://www.mathworks.com/help/econ/autocorrelation-and-partial-autocorrelation.html
https://www.mathworks.com/help/econ/autocorrelation-and-partial-autocorrelation.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode10.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[328]

We'll get back to ACF and PACF later on in this chapter when we discuss time series
forecasting with the ARIMA model.

In this section, we've discussed multiple ways to explore the data. It is of course
by no means exhaustive, but we get the idea of how tools such as Jupyter, pandas,
NumPy, and PixieDust make it easier to experiment and fail fast if necessary. In the
next section, we will build a PixieApp that brings all these charts together.

Putting it all together with
the StockExplorer PixieApp
For the first version of our StockExplorer PixieApp, we want to operationalize the
data exploration of a stock data time series selected by the user. Similar to the other
PixieApps we've built, the first screen has a simple layout with an input box where
the user can enter a list of stock tickers separated by commas, and an Explore button
to start data exploration. The main screen is composed of a vertical navigator bar
with a menu for each type of data exploration. To make the PixieApp code more
modular and easier to maintain and extend, we implement each data exploration
screen in its own child PixieApp which is triggered by the vertical navigation bar.
Also, each child PixieApp inherits from a base class called BaseSubApp that provides
common functionalities useful to all the subclasses. The following diagram shows the
overall UI layout as well as a class diagram for all the child PixieApps:

UI layout of the StockExplorer PixieApp

Let's first look at the implementation for the welcome screen. It is implemented in
the default route for the StockExplorer PixieApp class. The following code shows a
partial implementation of the StockExplorer class to include the default route only.

Chapter 8

[329]

Note: Do not try to run this code yet, until the full implementation
is provided.

@PixieApp
class StockExplorer():
 @route()
 def main_screen(self):
 return """
<style>
 div.outer-wrapper {
 display: table;width:100%;height:300px;
 }
 div.inner-wrapper {
 display: table-cell;vertical-align: middle;height: 100%;width:
100%;
 }
</style>
<div class="outer-wrapper">
 <div class="inner-wrapper">
 <div class="col-sm-3"></div>
 <div class="input-group col-sm-6">
 <input id="stocks{{prefix}}" type="text"
 class="form-control"
 value="MSFT,AMZN,IBM"
 placeholder="Enter a list of stocks separated by comma
e.g MSFT,AMZN,IBM">

 <button class="btn btn-default" type="button" pd_
options="explore=true">
 <pd_script>
self.select_tickers('$val(stocks{{prefix}})'.split(','))
 </pd_script>
 Explore
 </button>

 </div>
 </div>
</div>
"""

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[330]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode11.py

The preceding code is very similar to the other sample PixieApps we've seen so far.
The Explore button contains the following two PixieApp attributes:

• A pd_script child element, which calls a Python snippet to set the stock
tickers. We also use the $val directive to retrieve the user-entered value for
the stock tickers:
<pd_script>
 self.select_tickers('$val(stocks{{prefix}})'.split(','))
</pd_script>

• The pd_options attribute, which points to the explore route:

pd_options="explore=true"

The select_tickers helper method stores the list of tickers in a dictionary member
variable and selects the first one as the active ticker. For performance reasons, we
only load the data when needed, that is, when setting the active ticker for the first
time or when the user clicks on a particular ticker in the UI.

Note: As in previous chapters, the [[StockExplorer]] notation
indicates that the code that follows is part of the StockExplorer class.

[[StockExplorer]]
def select_tickers(self, tickers):
 self.tickers = {ticker.strip():{} for ticker in tickers}
 self.set_active_ticker(tickers[0].strip())

def set_active_ticker(self, ticker):
 self.active_ticker = ticker
 if 'df' not in self.tickers[ticker]:
 self.tickers[ticker]['df'] = quandl.get('WIKI/{}'.
format(ticker))
 self.tickers[ticker]['df']['daily_spread'] = self.
tickers[ticker]['df']['Adj. Close'] - self.tickers[ticker]['df']['Adj.
Open']
 self.tickers[ticker]['df'] = self.tickers[ticker]['df'].
reset_index()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode11.py

Chapter 8

[331]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode12.py

The lazy loading of the stock data for a particular ticker symbol into a pandas
DataFrame is done in set_active_ticker(). We first check whether the DataFrame
has already been loaded by looking if the df key is present and, if not, we call the
quandl API with the dataset_code: 'WIKI/{ticker}'. We also add a column
that computes the daily spread of the stock that will be displayed in the basic
exploration screen. Finally, we need to call reset_index() (https://pandas.
pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.
html) on the DataFrame to convert the index which is a DateTimeIndex into its
own column called Date. The reason is that the PixieDust display() doesn't yet
support visualization of DataFrame with a DateTimeIndex.

In the explore route, we return an HTML fragment that builds the layout for the
whole screen. As shown in the preceding mock-up, we use the btn-group-vertical
and btn-group-toggle bootstrap classes to create the vertical navigation bar. The
list of menus and associated child PixieApp are defined in the tabs Python variable,
and we use Jinja2 {%for loop%} to build the content. We also add a placeholder
<div> element with id ="analytic_screen{{prefix}}" that will be the recipient
of the child PixieApp screen.

The explore route implementation is shown here:

[[StockExplorer]]
@route(explore="*")
 @templateArgs
 def stock_explore_screen(self):
 tabs = [("Explore","StockExploreSubApp"),
 ("Moving Average", "MovingAverageSubApp"),
 ("ACF and PACF", "AutoCorrelationSubApp")]
 return """
<style>
 .btn:active, .btn.active {
 background-color:aliceblue;
 }
</style>
<div class="page-header">
 <h1>Stock Explorer PixieApp</h1>
</div>
<div class="container-fluid">
 <div class="row">
 <div class="btn-group-vertical btn-group-toggle col-sm-2"

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode12.py
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[332]

 data-toggle="buttons">
 {%for title, subapp in tabs%}
 <label class="btn btn-secondary {%if loop.first%}
active{%endif%}"
 pd_options="show_analytic={{subapp}}"
 pd_target="analytic_screen{{prefix}}">
 <input type="radio" {%if loop.first%}checked{%endif%}>
 {{title}}
 </label>
 {%endfor%}
 </div>
 <div id="analytic_screen{{prefix}}" class="col-sm-10">
 </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode13.py

In the preceding code, notice that we use the @templateArgs decorator
because we want to use the tabs variable, which is created locally to the
method implementation, in the Jinja2 template.

Each menu in the vertical navigation bar points to the same analytic_
screen{{prefix}} target and invokes the show_analytic route with
the selected child PixieApp class name referenced by {{subapp}}.

In turn, the show_anatytic route simply returns an HTML fragment with
a <div> element that has a pd_app attribute referencing the child PixieApp class
name. We also use the pd_render_onload attribute to ask PixieApp to render the
content of the <div> element as soon as it is loaded in the browser DOM.

The following code is for the show_analytic route:

 @route(show_analytic="*")
 def show_analytic_screen(self, show_analytic):
 return """
<div pd_app="{{show_analytic}}" pd_render_onload></div>
"""

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode13.py

Chapter 8

[333]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode14.py

BaseSubApp – base class for all the child
PixieApps
Let's now look at the implementation for each of the child PixieApps and how
the base class BaseSubApp is used to provide common functionalities. For each
child PixieApp we want the user to be able to select a stock ticker through a tabbed
interface as shown in the following screenshot:

Tab widget for MSFT, IBM, AMZN tickers

Instead of repeating the HTML fragment for every child PixieApp, we use
a technique that I particularly like which consists of creating a Python decorator
called add_ticker_selection_markup that dynamically changes how the function
behaves (for more information on Python decorators, see https://wiki.python.
org/moin/PythonDecorators). This decorator is created in the BaseSubApp class
and will automatically prepend the tab selection widget HTML markup for the route,
as shown in the following code:

[[BaseSubApp]]
def add_ticker_selection_markup(refresh_ids):
 def deco(fn):
 def wrap(self, *args, **kwargs):
 return """
<div class="row" style="text-align:center">
 <div class="btn-group btn-group-toggle"
 style="border-bottom:2px solid #eeeeee"
 data-toggle="buttons">
 {%for ticker, state in this.parent_pixieapp.tickers.items()%}
 <label class="btn btn-secondary {%if this.parent_pixieapp.
active_ticker == ticker%}active{%endif%}"
 pd_refresh=\"""" + ",".join(refresh_ids) + """\" pd_
script="self.parent_pixieapp.set_active_ticker('{{ticker}}')">
 <input type="radio" {%if this.parent_pixieapp.active_
ticker == ticker%}checked{%endif%}>
 {{ticker}}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode14.py
https://wiki.python.org/moin/PythonDecorators
https://wiki.python.org/moin/PythonDecorators

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[334]

 </label>
 {%endfor%}
 </div>
</div>
 """ + fn(self, *args, **kwargs)
 return wrap
 return deco

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode15.py

At first glance, the preceding code may appear very hard to read as the add_ticker_
selection_markup decorator method contains two levels of anonymous nested
methods. Let's try to explain the purpose for each of them including the main add_
ticker_selection_markup decorator method:

• add_ticker_selection_markup: This is the main decorator method that
takes one argument called refresh_ids which will be used in the generated
markup. This method returns an anonymous function called deco that takes
a function argument.

• deco: This is the wrapper method that takes one argument called fn which
is a pointer to the original function to which the decorator is applied. This
method returns an anonymous function called wrap which will be called
in lieu of the original function when it is called in the user code.

• wrap: This is the final wrapper method that takes three arguments:

 ° self: Pointer to the host class for the function
 ° *args: Any variable arguments that the original method defines

(could be empty)
 ° **kwargs: Any keyword arguments that the original method defines

(could be empty)

The wrap method can access the variables that are outside its scope through
the Python closure mechanism. In this case, it uses the refresh_ids to
generate the tab widget markup, and then calls the fn function with the
self, args, and kwargs arguments.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode15.py

Chapter 8

[335]

Note: Do not worry if the preceding explanation is still confusing, even
after reading it multiple times. You can just use the decorator for now,
and it won't affect your ability to understand the rest of the chapter.

StockExploreSubApp – first child PixieApp
We can now implement the first child PixieApp called StockExploreSubApp.
In the main screen, we create two <div> elements that each have a pd_options
attribute that calls the show_chart route with Adj. Close and daily_spread as
values. In turn, the show_chart route returns a <div> element with a pd_entity
attribute pointing to the parent_pixieapp.get_active_df() method with a
<pd_options> element that contains a JSON payload for displaying a Bokeh line
chart with Date as the x abscissa and whatever value is passed as an argument as
the column for the y ordinate. We also decorate the route with the BaseSubApp.
add_ticker_selection_markup decorator using the ID of the preceding two <div>
elements as the refresh_ids argument.

The following code shows the implementation for the StockExplorerSubApp
child PixieApp:

@PixieApp
class StockExploreSubApp(BaseSubApp):
 @route()
 @BaseSubApp.add_ticker_selection_markup(['chart{{prefix}}',
'daily_spread{{prefix}}'])
 def main_screen(self):
 return """
<div class="row" style="min-height:300px">
 <div class="col-xs-6" id="chart{{prefix}}" pd_render_onload pd_
options="show_chart=Adj. Close">
 </div>
 <div class="col-xs-6" id="daily_spread{{prefix}}" pd_render_onload
pd_options="show_chart=daily_spread">
 </div>
</div>
"""

 @route(show_chart="*")
 def show_chart_screen(self, show_chart):
 return """
<div pd_entity="parent_pixieapp.get_active_df()" pd_render_onload>
 <pd_options>
 {

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[336]

 "handlerId": "lineChart",
 "valueFields": "{{show_chart}}",
 "rendererId": "bokeh",
 "keyFields": "Date",
 "noChartCache": "true",
 "rowCount": "10000"
 }
 </pd_options>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode16.py

In the preceding show_chart route, the pd_entity uses the get_active_df()
method from the parent_pixieapp which is defined in the StockExplorer main
class as follows:

[[StockExplorer]]
def get_active_df(self):
 return self.tickers[self.active_ticker]['df']

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode17.py

As a reminder, the StockExploreSubApp is associated with the menu through
a tuple in the tabs array variable declared in the Explore route of the
StockExplorer route:

tabs = [("Explore","StockExploreSubApp"), ("Moving Average",
"MovingAverageSubApp"),("ACF and PACF", "AutoCorrelationSubApp")]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode18.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode18.py

Chapter 8

[337]

The following screenshot shows the StockExploreSubApp:

StockExploreSubApp main screen

MovingAverageSubApp – second child PixieApp
The second child PixieApp is MovingAverageSubApp which displays a line chart
of the moving average for the selected stock ticker with a lag that is configurable
through a slider control. Similar to the ticker selection tab, the lag slider will be
needed in another child PixieApp. We could use the same decorator technique
we use for the ticker selection tab control, but here we want to be able to position
the lag slider anywhere on the page. So instead, we'll use a pd_widget control
called lag_slider that we define in the BaseSubApp class and return an HTML
fragment for the slider control. It also adds a <script> element that uses the jQuery
slider method available in the jQuery UI module (see https://api.jqueryui.
com/slider for more information). We also add a change handler function that
is called when the user has selected a new value. In this handler, we call the
pixiedust.sendEvent function to publish an event of the lagSlider type and a
payload containing the new value for the lag. It is the responsibility of the caller to
add a <pd_event_handler> element to listen to that event and process the payload.

The following code shows the implementation of the lag_slider pd_widget:

[[BaseSubApp]]
@route(widget="lag_slider")
def slider_screen(self):
 return """
<div>
 <label class="field">Lag:50</
label>
 <i class="fa fa-info-circle" style="color:orange"

https://api.jqueryui.com/slider
https://api.jqueryui.com/slider

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[338]

 data-toggle="pd-tooltip"
 title="Selected lag used to compute moving average, ACF or
PACF"></i>
 <div id="slider{{prefix}}" name="slider" data-min=30
 data-max=300
 data-default=50 style="margin: 0 0.6em;">
 </div>
</div>
<script>
$("[id^=slider][id$={{prefix}}]").each(function() {
 var sliderElt = $(this)
 var min = sliderElt.data("min")
 var max = sliderElt.data("max")
 var val = sliderElt.data("default")
 sliderElt.slider({
 min: isNaN(min) ? 0 : min,
 max: isNaN(max) ? 100 : max,
 value: isNaN(val) ? 50 : val,
 change: function(evt, ui) {
 $("[id=slideval{{prefix}}]").text(ui.value);
 pixiedust.sendEvent({type:'lagSlider',value:ui.value})
 },
 slide: function(evt, ui) {
 $("[id=slideval{{prefix}}]").text(ui.value);
 }
 });
})
</script>
 """

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode19.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode19.py

Chapter 8

[339]

In the MovingAverageSubApp we use the add_ticker_selection_markup
decorator with chart{{prefix}} as an argument in the default route to add the
ticker selection tab and add a <div> element with pd_widget named lag_slider,
including a <pd_event_handler> to set the self.lag variable and refresh the chart
div. The chart div uses a pd_entity attribute with the get_moving_average_df()
method that calls the rolling method (https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.Series.rolling.html) on the pandas Series
returned from the selected pandas DataFrame and calls the mean() method on it.
Because the PixieDust display() does not yet support pandas Series, we build a
pandas DataFrame using the series index as a column called x and return it in the
get_moving_average_df() method.

The following code shows the implementation of the MovingAverageSubApp child
PixieApp

@PixieApp
class MovingAverageSubApp(BaseSubApp):
 @route()
 @BaseSubApp.add_ticker_selection_markup(['chart{{prefix}}'])
 def main_screen(self):
 return """
<div class="row" style="min-height:300px">
 <div class="page-header text-center">
 <h1>Moving Average for {{this.parent_pixieapp.active_
ticker}}</h1>
 </div>
 <div class="col-sm-12" id="chart{{prefix}}" pd_render_onload
pd_entity="get_moving_average_df()">
 <pd_options>
 {
 "valueFields": "Adj. Close",
 "keyFields": "x",
 "rendererId": "bokeh",
 "handlerId": "lineChart",
 "rowCount": "10000"
 }
 </pd_options>
 </div>
</div>
<div class="row">
 <div pd_widget="lag_slider">
 <pd_event_handler
 pd_source="lagSlider"
 pd_script="self.lag = eventInfo['value']"
 pd_refresh="chart{{prefix}}">

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.rolling.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.rolling.html

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[340]

 </pd_event_handler>
 </div>
</div>
"""
 def get_moving_average_df(self):
 ma = self.parent_pixieapp.get_active_df()['Adj. Close'].
rolling(window=self.lag).mean()
 ma_df = pd.DataFrame(ma)
 ma_df["x"] = ma_df.index
 return ma_df

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode20.py

The following screenshot shows the chart displayed by the MovingAverageSubApp:

MovingAverageSubApp screenshot

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode20.py

Chapter 8

[341]

AutoCorrelationSubApp – third child PixieApp
For the third child, PixieApp called AutoCorrelationSubApp; we display the
ACF and PACF of the selected stock DataFrame, which are computed using the
statsmodels package.

The following code shows the implementation of the AutoCorrelationSubApp
which also uses the add_ticker_selection_markup decorator and the pd_widget
named lag_slider:

import statsmodels.tsa.api as smt
@PixieApp
class AutoCorrelationSubApp(BaseSubApp):
 @route()
 @BaseSubApp.add_ticker_selection_markup(['chart_acf{{prefix}}',
'chart_pacf{{prefix}}'])
 def main_screen(self):
 return """
<div class="row" style="min-height:300px">
 <div class="col-sm-6">
 <div class="page-header text-center">
 <h1>Auto-correlation Function</h1>
 </div>
 <div id="chart_acf{{prefix}}" pd_render_onload
pd_options="show_acf=true">
 </div>
 </div>
 <div class="col-sm-6">
 <div class="page-header text-center">
 <h1>Partial Auto-correlation Function</h1>
 </div>
 <div id="chart_pacf{{prefix}}" pd_render_onload
pd_options="show_pacf=true">
 </div>
 </div>
</div>

<div class="row">
 <div pd_widget="lag_slider">
 <pd_event_handler
 pd_source="lagSlider"
 pd_script="self.lag = eventInfo['value']"
 pd_refresh="chart_acf{{prefix}},chart_pacf{{prefix}}">
 </pd_event_handler>
 </div>

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[342]

</div>
"""
 @route(show_acf='*')
 @captureOutput
 def show_acf_screen(self):
 smt.graphics.plot_acf(self.parent_pixieapp.get_active_df()
['Adj. Close'], lags=self.lag)

 @route(show_pacf='*')
 @captureOutput
 def show_pacf_screen(self):
 smt.graphics.plot_pacf(self.parent_pixieapp.get_active_df()
['Adj. Close'], lags=self.lag)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode21.py

In the preceding code, we define two routes: show_acf and show_pacf which
respectively call the plot_acf and plot_pacf methods of the smt.graphics
package. We also use the @captureOutput decorator to signal the PixieApp
framework to capture the output generated by plot_acf and plot_pacf.

The following screenshot shows the charts displayed by AutoCorrelationSubApp:

AutoCorrelationSubApp screenshot

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode21.py

Chapter 8

[343]

In this section, we showed how to put together a sample PixieApp that does basic
data exploration on a time series and display various statistical charts. The complete
Notebook can be found here: https://github.com/DTAIEB/Thoughtful-Data-
Science/blob/master/chapter%208/StockExplorer%20-%20Part%201.ipynb.

In the next section, we try to build a time series forecast model using a very popular
model called Autoregressive Integrated Moving Average (ARIMA).

Time series forecasting using
the ARIMA model
ARIMA is one of the most popular time series forecasting models and as its name
indicates is made up of three terms:

•	 AR: Stands for autoregression, which is nothing more than applying
a linear regression algorithm using one observation and its own lagged
observations as training data.

The AR model uses the following formula:

1 1 2 2t t t p t p tY Y Y Yφ φ φ ε− − −= + + + +…

Where iφ are the weights of the models learned from the previous
observations and tε is the residual error for observation t.
We also call p the order of the autoregression model, which is defined
as the number of lag observations included in the preceding formula.
For example:
AR(2) is defined as:

1 1 2 2t t t tY Y Yφ φ ε− −= + +

AR(1) is defined as:

1 1t t tY Yφ ε−= +

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%201.ipynb

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[344]

• I: Stands for integrated. For the ARIMA model to work, it is assumed that
the time series is stationary or can be made stationary. A series is said to be
stationary (https://en.wikipedia.org/wiki/Stationary_process) if its
mean and variance doesn't change over time.

Note: There is also the notion of strict stationarity which requires that the
joint probability distribution of a subset of observations doesn't change
when shifted in time.
Using mathematical notation, strict stationarity translates to:

 ()1, , ,t t t kF y y y+ +… and ()1, , ,t m t m t m kF y y y+ + + + +… are the same for any
t, m, and k, with F being the joint probability distribution.
In practice, this condition is too strong, and the preceding weaker
definition provided is preferred.

We can make a time series stationary through a transformation that uses
differencing of the log between an observation and the one before that,
as shown in the following equation:

1log logt t tZ Y Y−= −

It is possible that multiple log differencing transformations are needed before
the time series is actually made stationary. We call d the number of times
we transform the series using log differencing.
For example:
I(0) is defined as no log differencing needed (the model is then called
ARMA).
I(1) is defined as 1 log differencing needed.
I(2) is defined as 2 log differencing needed.

Note: It is important to remember to do the reverse transformation
for as many integrations that were made, after predicting a value.

https://en.wikipedia.org/wiki/Stationary_process

Chapter 8

[345]

• MA: Stands for moving average. The MA model uses the residual error from
the mean of the current observation and the weighted residual errors of the
lagged observations. We can define the model using the following formula:

1 1 2 2t t t t q t qY µ ε θ ε θ ε θ ε− − −= + + + + +…

Where µ is the mean of the time series, tε are the residual errors in the series
and qθ are the weights for the lagged residual errors.
We call q the size of the moving average window.
For example:
MA(0) is defined as no moving average needed (the model is then called AR).
MA(1) is defined as using a moving average window of 1. The formula
becomes:

1 1t t tY µ ε θ ε −= + +

As per the preceding definition, we use the notation ARIMA(p,d,q) to define
an ARIMA model with an autoregression model of order p, an integration/
differencing of order d, and a moving average window of size q.

Implementing all the code to build an ARIMA model can be very time-consuming.
Fortunately, the statsmodels library implements an ARIMA class in the
statsmodels.tsa.arima_model package that provides all the computation needed
to train a model with the fit() method and predict values with the predict()
method. It also takes care of the log differencing to make the time series stationary.
The trick is to find the parameters p, d, and q for building the optimal ARIMA model.
For this, we use the ACF and PACF chart as follows:

• The p value corresponds to the number of lags (on the x abscissa) where
the ACF chart crosses the statistical significance threshold for the first time.

• Similarly, the q value corresponds to the number of lags (on the x abscissa)
where the PACF chart crosses the statistical significance threshold for the
first time.

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[346]

Build an ARIMA model for the MSFT stock
time series
As a reminder, the price chart for the MSFT stock time series looks like this:

MSFT stock series chart

Before we start building our model, let's first withhold the last 14 days of the data
for testing and use the rest for training.

The following code defines two new variables: train_set and test_set:

train_set, test_set = msft[:-14], msft[-14:]

Note: If you're still not familiar with the preceding slicing notation,
please refer to the section on NumPy at the beginning of this chapter

From the preceding chart, we can clearly observe a growth trend starting in 2012 but
no clear seasonality. Therefore, we can safely assume that there is no stationarity.
Let's first try to apply a log differencing transformation once and plot the
corresponding ACF and PACF chart.

Chapter 8

[347]

In the following code, we build the logmsft pandas Series by using np.log() on
the Adj. Close column and then build the logmsft_diff pandas DataFrame using
the difference between logmsft and the lag of 1 (using the shift() method). As was
done before, we also call reset_index() to convert the Date index into a column so
that the PixieDust display() can process it:

logmsft = np.log(train_set['Adj. Close'])
logmsft.index = train_set['Date']
logmsft_diff = pd.DataFrame(logmsft - logmsft.shift()).reset_index()
logmsft_diff.dropna(inplace=True)
display(logmsft_diff)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode22.py

The results are shown in the following screenshot:

MSFT stock series after log differencing applied

From looking at the preceding graph, we can reasonably think that we've succeeded
at making the time series stationary with 0 as the mean. We can also use a more
rigorous way to test for stationarity by using the Dickey-Fuller test (https://
en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test) which tests the
null hypothesis that a unit root is present in an AR(1) model.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode22.py
https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[348]

Note: In statistics, statistical hypothesis testing consists of challenging
whether a proposed hypothesis is true, by taking a sample and deciding
whether the claim remains true. We look at the p-value (https://
en.wikipedia.org/wiki/P-value) which helps determine the
significance of the results. More details on statistical hypothesis testing
can be found here:
https://en.wikipedia.org/wiki/Statistical_hypothesis_
testing

The following code uses the adfuller method from the statsmodels.tsa.
stattools package:

from statsmodels.tsa.stattools import adfuller
import pprint

ad_fuller_results = adfuller(
logmsft_diff['Adj. Close'], autolag = 'AIC', regression = 'c'
)
labels = ['Test Statistic','p-value','#Lags Used','Number of
Observations Used']
pp = pprint.PrettyPrinter(indent=4)
pp.pprint({labels[i]: ad_fuller_results[i] for i in range(4)})

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode23.py

We use the pprint package which is very useful for pretty-printing
any Python data structures. More info on pprint can be found here:
https://docs.python.org/3/library/pprint.html

The results (explained in detail at: http://www.statsmodels.org/devel/
generated/statsmodels.tsa.stattools.adfuller.html) are shown here:

{
 'Number of lags used': 3,
 'Number of Observations Used': 8057,
 'Test statistic': -48.071592138591136,
 'MacKinnon's approximate p-value': 0.0
}

https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode23.py
https://docs.python.org/3/library/pprint.html
http://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.adfuller.html
http://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.adfuller.html

Chapter 8

[349]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode24.json

The p-value is below the significance level; therefore, we can reject the null
hypothesis that a unit root is present in the AR(1) model, which gives us confidence
that the time series is stationary.

We then plot the ACF and PACF chart which will give us the p and q parameters
of the ARIMA model:

The following code builds the ACF chart:

import statsmodels.tsa.api as smt
smt.graphics.plot_acf(logmsft_diff['Adj. Close'], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode25.py

The results are shown in the following screenshot:

ACF for the log difference MSFT DataFrame

From the preceding ACF graph, we can see that the correlation crosses the statistical
significance threshold for the first time at a lag of 1. Therefore, we'll use p = 1 as the
AR order of our ARIMA model.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode24.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode24.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode25.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[350]

We do the same for the PACF:

smt.graphics.plot_pacf(logmsft_diff['Adj. Close'], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode26.py

The results are shown in the following screenshot:

PACF for the log difference MSFT DataFrame

From the preceding PACF graph, we can also see that the correlation crosses
the statistical significance threshold for the first time at a lag of 1. Therefore,
we'll use q = 1 as the MA order of our ARIMA model.

We also had to apply the log differencing transformation only once. Therefore
we'll use d = 1 for the integrated part of the ARIMA model.

Note: When calling the ARIMA class, if you use d = 0, then you may
have to do the log differencing manually and, in this case, you'll need
to revert the transformation yourself on the predicted values. If not, the
statsmodels package will take care of reverting the transformation
before returning the predicted value.

The following code trains an ARIMA model on the train_set time series using
p = 1, d = 1, and q=1 as values to the order tuple argument of the ARIMA constructor.
We then call the fit() method to proceed with the training and obtain a model:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode26.py

Chapter 8

[351]

from statsmodels.tsa.arima_model import ARIMA

import warnings
with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 arima_model_class = ARIMA(train_set['Adj. Close'], dates=train_
set['Date'], order=(1,1,1))
 arima_model = arima_model_class.fit(disp=0)

 print(arima_model.resid.describe())

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode27.py

Note: We use the warnings package to avoid getting the mutiple
deprecation warnings that may happen if you are using older versions
of NumPy and pandas.

In the preceding code, we use train_set['Adj. Close'] as an argument to the
ARIMA constructor. Since we are using a Series for the data, we also need to pass the
train_set['Date'] series for the dates argument. Note that if we passed a pandas
DataFrame instead with a DateIndex index, then we wouldn't have to use the
dates argument. The final argument to the ARIMA constructor is the order argument
which is a tuple of three values indicating the p, d, and q order, as discussed at the
beginning of this section.

We then call the fit() method that returns the actual ARIMA model that we'll use
to predict values. For information purposes, we print statistics about the residual
errors of the model using arima_model.resid.describe().

The results are shown here:

count 8.061000e+03
mean -5.785533e-07
std 4.198119e-01
min -5.118915e+00
25% -1.061133e-01
50% -1.184452e-02
75% 9.848486e-02
max 5.023380e+00
dtype: float64

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode27.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[352]

The mean residual error is 75.7 10−− ∗ which is very close to zero and therefore shows
that the model may be overfitting the training data.

Now that we have a model let's try to diagnose it. We define a method called plot_
predict that takes a model, a series of dates and a number indicating how far back
we want to look. We then call the ARIMA plot_predict() method to create a chart
with both the predicted and observed values.

The following code shows the implementation for the plot_predict() method,
including calling it twice with 100 and 10:

def plot_predict(model, dates_series, num_observations):
 fig = plt.figure(figsize = (12,5))
 model.plot_predict(
 start = str(dates_series[len(dates_series)-num_observations]),
 end = str(dates_series[len(dates_series)-1])
)
 plt.show()

plot_predict(arima_model, train_set['Date'], 100)
plot_predict(arima_model, train_set['Date'], 10)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode28.py

The results are shown here:

Observations versus Forecast chart

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode28.py

Chapter 8

[353]

The preceding charts show how close the predictions are to the actual observations
from the training set. We now use the test set that was withheld before to further
diagnose the model. For this part, we use the forecast() method which predicts the
next data point. For each value of the test_set, we build a new ARIMA model from
an array of observations called history that contains the training data augmented
with each predicted value.

The following code shows the implementation for the compute_test_set_
predictions() method that takes a train_set and a test_set as arguments and
returns a pandas DataFrame with a forecast column containing all the predicted
values and a test column containing the corresponding actual observed values:

def compute_test_set_predictions(train_set, test_set):
 with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 history = train_set['Adj. Close'].values
 forecast = np.array([])
 for t in range(len(test_set)):
 prediction = ARIMA(history, order=(1,1,0)).fit(disp=0).
forecast()
 history = np.append(history, test_set['Adj. Close'].
iloc[t])
 forecast = np.append(forecast, prediction[0])
 return pd.DataFrame(
 {"forecast": forecast,
 "test": test_set['Adj. Close'],
 "Date": pd.date_range(start=test_set['Date'].iloc
[len(test_set)-1], periods = len(test_set))
 }
)

results = compute_test_set_predictions(train_set, test_set)
display(results)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode29.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode29.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[354]

The following screenshot shows the result chart:

Chart of predicted versus acutal values

We can measure the error using the popular mean_squared_error method
(https://en.wikipedia.org/wiki/Mean_squared_error) of the scikit-learn
package (http://scikit-learn.org) which is defined as follows:

()
2

1

1 ˆ
n

i i
i

MSE Y Y
n =

= −∑

Where iY is the actual value and îY is the predicted value.

The following code defines a compute_mean_squared_error method that
takes a test and a forecast series and returns the value of the mean squared error:

from sklearn.metrics import mean_squared_error
def compute_mean_squared_error(test_series, forecast_series):
 return mean_squared_error(test_series, forecast_series)

print('Mean Squared Error: {}'.format(
compute_mean_squared_error(test_set['Adj. Close'], results.forecast))
)

https://en.wikipedia.org/wiki/Mean_squared_error
http://scikit-learn.org

Chapter 8

[355]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode30.py

The result is shown here:

Mean Squared Error: 6.336538843075749

StockExplorer PixieApp Part 2 – add time
series forecasting using the ARIMA model
In this section, we improve the StockExplorer PixieApp by adding a menu that
provides time series forecasting for the selected stock ticker using an ARIMA model.
We create a new class called ForecastArimaSubApp and update the tabs variable
in the main StockExplorer class.

[[StockExplorer]]
@route(explore="*")
@templateArgs
def stock_explore_screen(self):
 tabs = [("Explore","StockExploreSubApp"),
 ("Moving Average", "MovingAverageSubApp"),
 ("ACF and PACF", "AutoCorrelationSubApp"),
 ("Forecast with ARIMA", "ForecastArimaSubApp")]
 ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode31.py

The ForecastArimaSubApp child PixieApp is composed of two screens. The first
screen displays the time series chart as well as the ACF and the PACF charts. The
goal of this screen is to provide the user with the necessary data exploration to figure
out what are the values for the p, d, and q order of the ARIMA model, as explained
in the previous section. By looking at the time series chart, we can figure out whether
the time series is stationary (which, as a reminder, is a requirement for building
the ARIMA model). If not, the user can click on the Add differencing button to try
to make the DataFrame stationery by using a log differencing transformation. The
three charts are then updated using the transformed DataFrame.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode31.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[356]

The following code shows the default route for the ForecastArimaSubApp child
PixieApp:

from statsmodels.tsa.arima_model import ARIMA

@PixieApp
class ForecastArimaSubApp(BaseSubApp):
 def setup(self):
 self.entity_dataframe = self.parent_pixieapp.get_active_df().
copy()
 self.differencing = False

 def set_active_ticker(self, ticker):
 BaseSubApp.set_active_ticker(self, ticker)
 self.setup()

 @route()
 @BaseSubApp.add_ticker_selection_markup([])
 def main_screen(self):
 return """
<div class="page-header text-center">
 <h2>1. Data Exploration to test for Stationarity
 <button class="btn btn-default"
 pd_script="self.toggle_differencing()" pd_refresh>
 {%if this.differencing%}Remove differencing{%else%}Add
differencing{%endif%}
 </button>
 <button class="btn btn-default"
 pd_options="do_forecast=true">
 Continue to Forecast
 </button>
 </h2>
</div>

<div class="row" style="min-height:300px">
 <div class="col-sm-10" id="chart{{prefix}}" pd_render_onload
pd_options="show_chart=Adj. Close">
 </div>
</div>

<div class="row" style="min-height:300px">
 <div class="col-sm-6">
 <div class="page-header text-center">
 <h3>Auto-correlation Function</h3>
 </div>

Chapter 8

[357]

 <div id="chart_acf{{prefix}}" pd_render_onload
pd_options="show_acf=true">
 </div>
 </div>
 <div class="col-sm-6">
 <div class="page-header text-center">
 <h3>Partial Auto-correlation Function</h3>
 </div>
 <div id="chart_pacf{{prefix}}" pd_render_onload
pd_options="show_pacf=true">
 </div>
 </div>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode32.py

The preceding code follows a pattern that we should now be familiar with:

• Define a setup method that is guaranteed to be called when the PixieApp
starts. In this method, we make a copy of the selected DataFrame obtained
from the parent PixieApp. We also maintain a variable called self.
differencing that tracks whether the user clicked on the Add differencing
button.

• We create a default route that shows the first screen that is composed of the
following components:

 ° A header with two buttons: Add differencing for making the time
series stationary and Continue to forecast to display the second
screen which we'll discuss later. The Add differencing button
toggles to Remove differencing when the differencing has been
applied.

 ° A <div> element that invokes the show_chart route to display
the time series chart.

 ° A <div> element that invokes the show_acf route to display the
ACF chart.

 ° A <div> element that invokes the show_pacf route to display the
PACF chart.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode32.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[358]

• We use an empty array [] as an argument to the @BaseSubApp.add_ticker_
selection_markup decorator to make sure that the entire screen is refreshed
when the user selects another stock ticker, and to restart from the first screen.
We also need to reset the internal variables. To achieve this, we made a
change to the add_ticker_selection_markup to define a new method
in BaseSubApp called set_active_ticker that is a wrapper method to the
set_active_ticker from the parent PixieApp. The idea is to let subclasses
override this method and inject extra code if needed. We also change the
pd_script attribute for the tab element to invoke this method when the
user selects a new ticker symbol as shown in the following code:

[[BaseSubApp]]
def add_ticker_selection_markup(refresh_ids):
 def deco(fn):
 def wrap(self, *args, **kwargs):
 return """
<div class="row" style="text-align:center">
 <div class="btn-group btn-group-toggle"
 style="border-bottom:2px solid #eeeeee"
 data-toggle="buttons">
 {%for ticker, state in this.parent_pixieapp.tickers.
items()%}
 <label class="btn btn-secondary {%if this.parent_pixieapp.
active_ticker == ticker%}active{%endif%}"
 pd_refresh=\"""" + ",".join(refresh_ids) + """\"
pd_script="self.set_active_ticker('{{ticker}}')">
 <input type="radio" {%if this.parent_pixieapp.active_
ticker == ticker%}checked{%endif%}>
 {{ticker}}
 </label>
 {%endfor%}
 </div>
</div>
 """ + fn(self, *args, **kwargs)
 return wrap
 return deco

 def set_active_ticker(self, ticker):
 self.parent_pixieapp.set_active_ticker(ticker)

Chapter 8

[359]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode33.py

In the ForecastArimaSubApp child PixieApp, we then override the set_active_
tracker method, first calling the super and then calling the self.setup() to
reinitialize the internal variables:

[[ForecastArimaSubApp]]
def set_active_ticker(self, ticker):
 BaseSubApp.set_active_ticker(self, ticker)
 self.setup()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode34.py

The route implementation for the first forecast screen is pretty straightforward.
The Add differencing / Remove differencing button has a pd_script attribute
that calls the self.toggle_differencing() method and the pd_refresh attribute to
update the entire page. It also defines the three <div> elements that respectively call
the show_chart, show_acf, and show_pacf routes as shown in the following code:

[[ForecastArimaSubApp]]
@route()
 @BaseSubApp.add_ticker_selection_markup([])
 def main_screen(self):
 return """
<div class="page-header text-center">
 <h2>1. Data Exploration to test for Stationarity
 <button class="btn btn-default"
 pd_script="self.toggle_differencing()" pd_refresh>
 {%if this.differencing%}Remove differencing{%else%}Add
differencing{%endif%}
 </button>
 <button class="btn btn-default" pd_options="do_forecast=true">
 Continue to Forecast
 </button>
 </h2>
</div>

<div class="row" style="min-height:300px">
 <div class="col-sm-10" id="chart{{prefix}}" pd_render_onload
pd_options="show_chart=Adj. Close">

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode34.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode34.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[360]

 </div>
</div>

<div class="row" style="min-height:300px">
 <div class="col-sm-6">
 <div class="page-header text-center">
 <h3>Auto-correlation Function</h3>
 </div>
 <div id="chart_acf{{prefix}}" pd_render_onload
pd_options="show_acf=true">
 </div>
 </div>
 <div class="col-sm-6">
 <div class="page-header text-center">
 <h3>Partial Auto-correlation Function</h3>
 </div>
 <div id="chart_pacf{{prefix}}" pd_render_onload
pd_options="show_pacf=true">
 </div>
 </div>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode35.py

The toggle_differencing() method tracks the current differencing state with
the self.differencing variable and either makes a copy of the active DataFrame
from the parent_pixieapp or applies a log differencing transformation to the self.
entity_dataframe variable as shown in the following code:

def toggle_differencing(self):
 if self.differencing:
 self.entity_dataframe = self.parent_pixieapp.get_active_df().
copy()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode35.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode35.py

Chapter 8

[361]

 self.differencing = False
 else:
 log_df = np.log(self.entity_dataframe['Adj. Close'])
 log_df.index = self.entity_dataframe['Date']
 self.entity_dataframe = pd.DataFrame(log_df - log_df.shift()).
reset_index()
 self.entity_dataframe.dropna(inplace=True)
 self.differencing = True

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode36.py

The show_acf and show_pacf routes are pretty straightforward. They respectively
call the smt.graphics.plot_acf and smt.graphics.plot_pacf methods. They
also use the @captureOutput decorator to pass through the chart image to the
target widget:

@route(show_acf='*')
@captureOutput
def show_acf_screen(self):
 smt.graphics.plot_acf(self.entity_dataframe['Adj. Close'],
lags=50)

@route(show_pacf='*')
@captureOutput
def show_pacf_screen(self):
 smt.graphics.plot_pacf(self.entity_dataframe['Adj. Close'],
lags=50)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode37.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode36.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode36.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode37.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode37.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[362]

The following screenshot shows the data exploration page of the forecast
child PixieApp without the differencing:

First forecast screen without applying differencing

Chapter 8

[363]

As expected, the charts are consistent with a time series that is not stationary.
When the user clicks on the Add differencing button, the following screen is shown:

First forecast screen with differencing applied

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[364]

The next step is to implement the do_forecast route that is invoked by the
Continue to Forecast button. This route is responsible for building the ARIMA
model; it starts by showing a configuration page with three input texts that let
the user enter the p, d, and q orders, which have been inferred by looking at the
charts in the data exploration screen. We add a Go button to proceed with the
model building using the build_arima_model route which we'll discuss later
in this section. The header also has a Diagnose Model button that invokes another
page responsible for evaluating the accuracy of the model.

The implementation of the do_forecast route is shown here. Note that we use
the add_ticker_selection_markup with an empty array to refresh the entire
page when the user selects another stock ticker:

[[ForecastArimaSubApp]]
@route(do_forecast="true")
 @BaseSubApp.add_ticker_selection_markup([])
 def do_forecast_screen(self):
 return """
<div class="page-header text-center">
 <h2>2. Build Arima model
 <button class="btn btn-default"
 pd_options="do_diagnose=true">
 Diagnose Model
 </button>
 </h2>
</div>
<div class="row" id="forecast{{prefix}}">
 <div style="font-weight:bold">Enter the p,d,q order for the ARIMA
model you want to build</div>

 <div class="form-group" style="margin-left: 20px">
 <label class="control-label">Enter the p order for the
AR model:</label>
 <input type="text" class="form-control"
 id="p_order{{prefix}}"
 value="1" style="width: 100px;margin-left:10px">

 <label class="control-label">Enter the d order for the
Integrated step:</label>
 <input type="text" class="form-control"
 id="d_order{{prefix}}" value="1"
 style="width: 100px;margin-left:10px">

 <label class="control-label">Enter the q order for the
MA model:</label>

Chapter 8

[365]

 <input type="text" class="form-control"
 id="q_order{{prefix}}" value="1"
 style="width: 100px;margin-left:10px">
 </div>

 <center>
 <button class="btn btn-default"
 pd_target="forecast{{prefix}}"
 pd_options="p_order=$val(p_order{{prefix}});d_
order=$val(p_order{{prefix}});q_order=$val(p_order{{prefix}})">
 Go
 </button>
 </center>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode38.py

The following screenshot shows the configuration page of the Build ARIMA
model page:

Configuration page of the Build Arima model page

The Go button has a pd_options attribute that invokes a route with three states:
p_order, d_order, and q_order with values taken from the three input boxes
associated with each attribute.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode38.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode38.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[366]

The route for building the ARIMA model is shown in the following code. It
starts by splitting the active DataFrame into a training and test set, withholding
14 observations for the test set. It then builds the model and computes the residual
errors. Once the model is successfully built, we return an HTML markup that
contains a chart showing the predicted values for the training set versus the actual
values in the training set. This is done by calling the plot_predict route. Finally,
we also show statistics about the residual errors for the model by creating a <div>
element with a pd_entity attribute pointing to the residuals variable with a <pd_
options> child element that configures a table view of all the statistics

The chart showing the predictions versus the actual training set is using the plot_
predict route which calls the plot_predict method we created earlier in the
Notebook. We also use the @captureOutput decorator to dispatch the chart image
to the correct widget.

The implementation of the plot_predict route is shown here:

 @route(plot_predict="true")
 @captureOutput
 def plot_predict(self):
 plot_predict(self.arima_model, self.train_set['Date'], 100)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode39.py

The build_arima_model route implementation is shown here:

@route(p_order="*",d_order="*",q_order="*")
def build_arima_model_screen(self, p_order, d_order, q_order):
 #Build the arima model
 self.train_set = self.parent_pixieapp.get_active_df()[:-14]
 self.test_set = self.parent_pixieapp.get_active_df()[-14:]
 self.arima_model = ARIMA(
 self.train_set['Adj. Close'], dates=self.train_set['Date'],
 order=(int(p_order),int(d_order),int(q_order))

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode39.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode39.py

Chapter 8

[367]

).fit(disp=0)
 self.residuals = self.arima_model.resid.describe().to_frame().
reset_index()
 return """
<div class="page-header text-center">
 <h3>ARIMA Model succesfully created</h3>
<div>
<div class="row">
 <div class="col-sm-10 col-sm-offset-3">
 <div pd_render_onload pd_options="plot_predict=true">
 </div>
 <h3>Predicted values against the train set</h3>
 </div>
</div>
<div class="row">
 <div pd_render_onload pd_entity="residuals">
 <pd_options>
 {
 "handlerId": "tableView",
 "table_noschema": "true",
 "table_nosearch": "true",
 "table_nocount": "true"
 }
 </pd_options>
 </div>
 <h3><center>Residual errors statistics</center></h3>
<div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode40.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode40.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode40.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[368]

The following screenshot shows the result for the Build Arima model page:

Model building page

The final screen of the forecast child app is the diagnose model screen invoked by the
do_diagnose route. In this screen, we simply display a line chart for the DataFrame
returned by the compute_test_set_predictions method we created earlier in the
Notebook with the train_set and test_set variables. The <div> element for this
chart is using a pd_entity attribute that calls an intermediary class method called
compute_test_set_predictions. It also has a <pd_options> child element with
the display() options for showing the line chart.

Chapter 8

[369]

The following code shows the implementation of the do_diagnose_screen route:

 def compute_test_set_predictions(self):
 return compute_test_set_predictions(self.train_set,
self.test_set)

 @route(do_diagnose="true")
 @BaseSubApp.add_ticker_selection_markup([])
 def do_diagnose_screen(self):
 return """
<div class="page-header text-center"><h2>3. Diagnose the model against
the test set</h2></div>
<div class="row">
 <div class="col-sm-10 center" pd_render_onload pd_entity=
"compute_test_set_predictions()">
 <pd_options>
 {
 "keyFields": "Date",
 "valueFields": "forecast,test",
 "handlerId": "lineChart",
 "rendererId": "bokeh",
 "noChartCache": "true"
 }
 </pd_options>
 </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode41.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode41.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode41.py

Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[370]

The following screenshot shows the results of the diagnose page:

Model diagnose screen

In this section, we have shown how to improve the StockExplorer sample
PixieApp to include forecasting capabilities using the ARIMA model. Incidentally,
we've demonstrated how to use the PixieApp programming model to create
a three-step wizard that first performs some data exploration, then configures
the parameters of the model and builds it and finally diagnoses the model
against the test set.

The complete implementation of the notebook can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%208/StockExplorer%20-%20Part%202.ipynb

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%202.ipynb

Chapter 8

[371]

Summary
In this chapter, we touched upon the topic of time series analysis and forecasting.
Of course, we've only scratched the surface, and there is certainly much more to
explore. It is also a very important field for the industry, especially in the finance
world, with very active research. For example, we see more and more data scientists
trying to build time series forecasting models based on recurrent neural network
(https://en.wikipedia.org/wiki/Recurrent_neural_network) algorithms,
with great success. We've also demonstrated how Jupyter Notebooks combined with
PixieDust and the ecosystem of libraries, such as pandas, numpy, and statsmodels,
help accelerate the development of analytics as well as its operationalization into
applications that are consumable by the line of business user.

In the next chapter, we will look at another important data science use case: graphs.
We'll build a sample application related to flight travel and discuss how and
when we should apply graph algorithms to solve data problems.

https://en.wikipedia.org/wiki/Recurrent_neural_network

[373]

Analytics Study: Graph
Algorithms - US Domestic

Flight Data Analysis
"It is a capital mistake to theorize before one has data."

 – Sherlock Holmes

In this chapter, we focus on a fundamental computer science data model called graphs
and the different types of algorithm commonly used on them. As a data scientist or
developer, it is very important to be familiar with graphs and quickly recognize when
they provide the right solution to solve a particular data problem. For example, graphs
are very well suited to GPS-based applications such as Google Maps, to find the best
route from point A to point B, taking into account all kinds of parameters, including
whether the user is driving, walking or taking public transport, or whether the user
wants the shortest route or one that maximizes the use of highways regardless of
overall distance. Some of these parameters can also be real-time parameters, such
as traffic conditions, and the weather. Another important class of applications that
uses graphs is social networks, such as Facebook or Twitter, where vertices represent
individuals and edges represent relationships, such as is a friend, and follows.

We'll start this chapter with a high-level introduction to graphs and associated graph
algorithms. We'll then introduce networkx which is a Python library that makes it
easy to load, manipulate, and visualize graph data structures as well as provide a rich
set of graph algorithms. We'll continue the discussion by building sample analytics
that analyzes US flight data using various graph algorithms where airports are used
as vertices and flights as edges. As always, we'll also operationalize these analytics
by building a simple dashboard PixieApp. We'll finish this chapter by building a
forecasting model applying time series techniques we've learned in Chapter 8, Analytics
Study: Prediction - Financial Time Series Analysis and Forecasting to historical flight data.

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[374]

Introduction to graphs
The introduction of graphs and the associated graph theory is widely attributed
to Leonhard Euler in 1736 when he worked on the problem of the Seven
Bridges of Königsberg (https://en.wikipedia.org/wiki/Seven_Bridges_
of_K%C3%B6nigsberg).

The city was divided by the Pregel river which at some point formed two islands,
and seven bridges were built according to the layout shown in the following
diagram. The problem was to find a way for a person to walk across each and
every bridge once and only once and come back to the starting point. Euler
proved that there was no solution to this problem and while doing this gave
birth to graph theory. The fundamental idea was to transform the city diagram into
a graph where each land mass is a vertex, and each bridge is an edge that linked two
vertices (that is, land mass). The problem was then reduced to finding a path, which
is a continuous sequence of edges and vertices, that contains each and every bridge
only once.

The following diagram shows how Euler simplified the Seven Bridges of Königsberg
problem into a graph problem:

Simplifying the Seven Bridges of Königsberg problem into a graph problem

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Chapter 9

[375]

Using a more formal definition, graphs are the data structures that represent
pairwise relationships (called edges) between objects (called vertices or nodes).
It is common to use the following notation to represent a graph: G = (V, E) where
V is the set of vertices and E is the set of edges.

There are mainly two broad categories of graphs:

• Directed graphs (called digraphs): The order in the pairwise relationship
matters, that is, the edge (A-B) going from vertex A to vertex B is different
from the edge (B-A) going from vertex B to vertex A.

• Undirected graphs: The order in the pairwise relationship doesn't matter,
that is, edge (A-B) is the same as an edge (B-A).

The following diagram shows the representation of a sample graph both
as undirected (edges have no arrows) and directed (edges have arrows):

Graph representations
There are mainly two ways of representing a graph:

• Adjacency matrix: Represents the graph using an n by n matrix (we'll call
it A), where n is the number of vertices in the graph. The vertices are indexed
using 1 to n integers. We use , 1i jA = to denote that an edge exists between
vertex i and vertex j and , 0i jA = to denote that no edge exists between
vertex i and vertex j. In the case of undirected graphs, we would always
have ,i jA = ,j iA because the order doesn't matter. However, in the case of
digraphs where order matters, Ai,j may be different from Aj,i.

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[376]

The following example shows how to represent a sample graph in
an adjacency matrix both directed and undirected:

Adjacency matrix representation of a graph (both directed and undirected)

It is important to note that the adjacency matrix representation has a constant
space complexity which is ()2O n where n is the number of vertices, but it
has a time complexity of O(1) which is constant time to compute whether
two vertices are connected with an edge between them. The high space
complexity might be OK when the graph is dense (lots of edges) but could
be a waste of space when the graph is sparse, in which case we might prefer
the following adjacency list representation.

Note: The big O notation (https://en.wikipedia.org/wiki/
Big_O_notation) is commonly used in code analysis to represent the
performance of an algorithm by evaluating its behavior as the input size
grows. It is used both for evaluating running time (number of instructions
needed to run the algorithm) and space requirements (how much storage
will it need over time).

• Adjacency list: For each vertex, we maintain a list of all the vertices
connected by an edge. In the case of an undirected graph, each edge
is represented twice, one for each endpoint, which is not the case for
a digraph where the order matters.

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation

Chapter 9

[377]

The following figure shows the adjacency list representation of a graph,
both directed and undirected:

Adjacency list representation of a graph (both directed and undirected)

Contrary to the adjacency matrix representation, the adjacency list
representation has a smaller space complexity which is O (m + n) where
m is the number of edges and n is the number of vertices. However, the
time complexity increases to O(m) compared to O(1) for the adjacency matrix.
For these reasons, it is preferable to use the adjacency list representation
when the graph is sparsely connected (that is, doesn't have a lot of edges).

As hinted in the preceding discussion, which graph representation to use depends
heavily on the graph density but also on the type of algorithms we are planning
to use. In the next section, we discuss the most commonly used graph algorithms.

Graph algorithms
The following is a list of the most commonly used graph algorithms:

• Search: In the context of the graph, searching means finding paths between
two vertices. A path is defined as a continuous sequence of edges and vertices.
The motivation for searching paths in a graph can be multiple; it could be that
you're interested in finding the shortest path according to some predefined
distance criteria, such as the minimum number of edges (for example, GPS
route mapping) or you simply want to know that a path between two vertices
exists (for example, ensure that every machine in a network is reachable from
any other machine). A generic algorithm to search for a path is to start from
the given vertex, discover all the vertices that are connected to it, mark the
discovered vertices as explored (so we don't find them twice) and continue
the same exploration for each discovered vertex until we find the target vertex,
or we run out of vertices. There are two commonly used flavors of this search
algorithm: Breadth First Search and Depth First Search, each having their
own use cases for which they are better suited. The difference between these
two algorithms consists of the way we find the unexplored vertices:

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[378]

 ° Breadth First Search (BFS): The unexplored nodes that are immediate
neighbors are explored first. When the immediate neighborhood
has been explored, start exploring the neighborhood of each node
in the layer, until the end of the graph is reached. Because we are
exploring all vertices that are directly connected first, this algorithm
guarantees to find the shortest path which corresponds to the number
of neighborhoods found. An extension to BFS is the famous Dijkstra
shortest path algorithm where each edge is associated with a non-
negative weight. In this case, the shortest path may not be the one
with the least number of hops but rather a path that minimizes the
sum of all weights. One example application of the Dijkstra shortest
path is to find the shortest route between two points on a map.

 ° Depth First Search (DFS): For each immediate neighbor vertex,
aggressively explore its neighbors first going as deeply as you
can and then start backtracking when you run out of neighbors.
Example of applications for DFS include finding the topological
sort and strongly connected components of a digraph. For reference,
a topological sort is a linear ordering of the vertices such that each
vertex in the linear order follows the edge direction of the next one
(that is, it doesn't move backward). See https://en.wikipedia.
org/wiki/Topological_sorting for more information.

The following diagram demonstrates the differences in finding the
unexplored nodes between BFS and DFS:

Order of finding unexplored vertices in BFS and DFS

• Connected components and strongly connected components: Connected
components of a graph are groups of vertices where there is a path between
any two vertices. Note that the definition only specifies that a path must exist
which means that two vertices do not have to have an edge between them
as long as a path exists. In the case of a digraph, the connected component
is called a strongly connected component because of the additional direction
constraint that requires that not only should any vertex A have a path to any
other vertex B, but that B must also have a path to A.

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting

Chapter 9

[379]

The following diagram shows the strongly connected components
or a sample directed graph:

Strongly connected components of a directed graph

• Centrality: The centrality indicator of a vertex provides an indication of
how important the vertex is with regard to the other vertices in the graph.
There are multiple important applications for these centrality indices. For
example, identifying the most influential person in a social network or
ranking a web search by pages that are the most important, and so on.
There are multiple indices of centrality, but we'll focus on the following
four that we'll use later in this chapter:

 ° Degree: The degree of a vertex is the number of edges for which
the vertex is one of the endpoints. In the case of a digraph, it's the
number of edges for which the vertex is either a source or a target,
and we call indegree the number of edges for which the vertex
is a target and outdegree the number of edges for which the vertex
is a source.

 ° PageRank: This is the famous algorithm developed by the founders
of Google, Larry Page, and Sergey Brin. PageRank is used to rank
the search results by providing a measure of importance for a given
website that includes counting the number of links to that website
from other websites. It also factors in an estimation of the quality
of these links (that is, how trustworthy is the site linking to yours).

 ° Closeness: Closeness centrality is inversely proportional to the
average length of the shortest path between the given vertex and
all the other vertices in the graph. The intuition is that the closer
a vertex is to all the other nodes, the more important it is.

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[380]

The closeness centrality can be calculated with the following simple
equation:

()
()
1
,

y

C x
d y x

=
∑

(Source: https://en.wikipedia.org/wiki/Centrality#Closeness_centrality)

Where d(y,x) is the length of the edge between node x and y.
 ° Shortest path betweenness: Measure based on how many times

the given vertex is part of the shortest path between any two nodes.
The intuition is that the more a vertex contributes to shortest paths,
the more important it is. The mathematical equation for shortest
path betweenness is provided here:

() ()
()

, , st
B

s v t V st

v
Given a graphG V E thenC v

σ
σ≠ ≠ ∈

= = ∑
(Source: https://en.wikipedia.org/wiki/Centrality#Betweenness_centrality)

Where stσ is the total number of shortest paths from vertex s to vertex
t and ()st vσ is the subset of stσ that pass through v.

Note: More information on centrality can be found here:
https://en.wikipedia.org/wiki/Centrality

Graph and big data
Our graph discussion has so far focused on data that can fit into a single machine,
but what happens when we have very large graphs with billions of vertices and
edges where loading the entire data into memory would not be possible? A natural
solution would be to distribute the data across a cluster of multiple nodes which
process the data in parallel and have the individual results merged to form the final
answer. Fortunately, there are multiple frameworks that provide such graph-parallel
capabilities, and they pretty much all include the implementation for most of the
commonly-used graph algorithms. Examples of popular open-source frameworks are
Apache Spark GraphX (https://spark.apache.org/graphx) and Apache Giraph
(http://giraph.apache.org) which is currently used by Facebook to analyze its
social network.

https://en.wikipedia.org/wiki/Centrality#Closeness_centrality
https://en.wikipedia.org/wiki/Centrality
https://spark.apache.org/graphx
http://giraph.apache.org

Chapter 9

[381]

Without diving into too much detail, it's important to know that these frameworks
are all inspired from the bulk synchronous parallel (BSP) model of distributed
computation (https://en.wikipedia.org/wiki/Bulk_synchronous_parallel)
which uses messages between machines to find vertices across the cluster. The
key point to remember is that these frameworks are usually very easy to use,
for example, it would have been fairly easy to write this chapter's analytics using
Apache Spark GraphX.

In this section, we've reviewed only a fraction of all the graph algorithms available
and going deeper would be beyond the scope of this book. Implementing these
algorithms yourself would take a considerable amount of time, but fortunately, there
are plenty of open source libraries that provide fairly complete implementations
of the graph algorithms and that are easy to use and integrate into your application.
In the rest of this chapter, we'll use the networkx open source Python library.

Getting started with the networkx graph
library
Before we start, if not already done, we need to install the networkx library using
the pip tool. Execute the following code in its own cell:

!pip install networkx

Note: As always, don't forget to restart the kernel after the installation
is complete.

Most of the algorithms provided by networkx are directly callable from the
main module. Therefore a user will only need the following import statement:

import networkx as nx

https://en.wikipedia.org/wiki/Bulk_synchronous_parallel

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[382]

Creating a graph
As a starting point, let's review the different types of graphs supported by networkx
and the constructors that create empty graphs:

• Graph: An undirected graph with only one edge between vertices allowed.
Self-loop edges are permitted. Constructor example:
G = nx.Graph()

• Digraph: Subclass of Graph that implements a directed graph. Constructor
example:
G = nx.DiGraph()

• MultiGraph: Undirected graph that allows multiple edges between vertices.
Constructor example:
G = nx.MultiGraph()

• MultiDiGraph: Directed graph that allows multiples edges between vertices.
Constructor example:

G = nx.MultiDiGraph()

The Graph class provides many methods for adding and removing vertices and
edges. Here is a subset of the available methods:

• add_edge(u_of_edge, v_of_edge, **attr): Add an edge between vertex
u and vertex v, with optional additional attributes that will be associated
with the edge. The vertices u and v will automatically be created if they
don't already exist in the graph.

• remove_edge(u, v): Remove the edge between u and v.
• add_node(self, node_for_adding, **attr): Add a node to the graph

with optional additional attributes.
• remove_node(n): Remove the node identified by the given argument n.
• add_edges_from(ebunch_to_add, **attr): Add multiple edges in bulk

with optional additional attributes. The edges must be given as a list of two-
tuples (u,v) or three-tuples (u,v,d) where d is the dictionary that contains
edge data.

• add_nodes_from(self, nodes_for_adding, **attr): Add multiple
nodes in bulk with optional additional attributes. The nodes can be provided
as a list, dict, set, array, and so on.

Chapter 9

[383]

As an exercise, let's build the directed graph we've been using as a sample from
the beginning:

Sample graph to be created programmatically using networkx

The following code starts by creating a DiGraph() object, adds all the nodes in
one call using the add_nodes_from() method, and then starts adding the edges
using, for illustration, a combination of add_edge() and add_edges_from():

G = nx.DiGraph()
G.add_nodes_from(['A', 'B', 'C', 'D', 'E'])
G.add_edge('A', 'B')
G.add_edge('B', 'B')
G.add_edges_from([('A', 'E'),('A', 'D'),('B', 'C'),('C', 'E'),
('D', 'C')])

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode1.py

The Graph class also provides easy access to its properties through variable class
views. For example, you can iterate over the vertices and edges of a graph using
G.nodes and G.edges, but also access an individual edge with the following
notation: G.edges[u,v].

The following code iterates over the nodes of a graph and prints them:

for n in G.nodes:
 print(n)

The networkx library also provides a rich set of prebuilt graph generators that
can be useful for testing your algorithms. For example, you can easily generate
a complete graph using the complete_graph() generator as shown in the
following code:

G_complete = nx.complete_graph(10)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode1.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[384]

You can find a complete list of all the available graph generators here:
https://networkx.github.io/documentation/networkx-2.1/
reference/generators.html#generators

Visualizing a graph
NetworkX supports multiple rendering engines including Matplotlib, Graphviz
AGraph (http://pygraphviz.github.io) and Graphviz with pydot (https://
github.com/erocarrera/pydot). Even though Graphviz provides very powerful
drawing capabilities, I found it very hard to install. Matplotlib, however, is already
preinstalled in Jupyter Notebooks which gets you started very quickly.

The core drawing function is called draw_networkx which takes a graph as an
argument and a bunch of optional keyword arguments that let you style the
graph, such as color, width, and the label font of the nodes and edges. The overall
layout of the graph drawing is configured by passing the GraphLayout object
through the pos keyword argument. The default layout is spring_layout (which
uses a force-directed algorithm), but NetworkX supports many others, including
circular_layout, random_layout, and spectral_layout. You can find a list of
all the available layouts here: https://networkx.github.io/documentation/
networkx-2.1/reference/drawing.html#module-networkx.drawing.layout.

For convenience, networkx encapsulates each of these layouts into its own high-level
drawing methods that call reasonable default values so that the caller doesn't have
to deal with the intricacies of each of these layouts. For example, the draw() method
will draw the graph with a sprint_layout, draw_circular() with a circular_
layout, and draw_random()with a random_layout.

In the following sample code, we use the draw() method to visualize the
G_complete graph we created earlier:

%matplotlib inline
import matplotlib.pyplot as plt
nx.draw(G_complete, with_labels=True)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode2.py

https://networkx.github.io/documentation/networkx-2.1/reference/generators.html#generators
https://networkx.github.io/documentation/networkx-2.1/reference/generators.html#generators
http://pygraphviz.github.io
https://github.com/erocarrera/pydot
https://github.com/erocarrera/pydot
https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html#module-networkx.drawing.layout
https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html#module-networkx.drawing.layout
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode2.py

Chapter 9

[385]

The results are shown in the following output:

Drawing of a complete graph with 10 nodes

Drawing graphs with networkx is both easy and fun, and because it's using
Matplotlib, you can beautify them even further using the Matplotlib drawing
capabilities. I encourage the reader to experiment further by visualizing different
graphs in a Notebook. In the next section, we'll start implementing a sample
application that analyzes flight data using graph algorithms.

Part 1 – Loading the US domestic flight
data into a graph
To initialize the Notebook, let's run the following code, in its own cell, to import
the packages which we'll be using quite heavily in the rest of this chapter:

import pixiedust
import networkx as nx
import pandas as pd
import matplotlib.pyplot as plt

We'll also be using the 2015 Flight Delays and Cancellations dataset available on
the Kaggle website at this location: https://www.kaggle.com/usdot/datasets.
The dataset is composed of three files:

• airports.csv: List of all U.S. airports including their IATA code
(International Air Transport Association: https://openflights.org/
data.html), city, state, longitude, and latitude.

• airlines.csv: List of U.S. airlines including their IATA code.
• flights.csv: List of flights that occurred in 2015. This data includes date,

origin and destination airports, scheduled and actual times, and delays.

https://www.kaggle.com/usdot/datasets
https://openflights.org/data.html
https://openflights.org/data.html

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[386]

The flights.csv file contains close to 6 million records, which need to be cleaned
up to remove all flights that do not have an IATA three letter code in the origin or
destination airport. We also want to remove the rows that have a missing value in
the ELAPSED_TIME column. Failure to do so would cause problems when we load
the data into a graph structure. Another issue is that the dataset contains a few time
columns, such as DEPARTURE_TIME, and ARRIVAL_TIME, and to save space, these
columns only store the time in HHMM format, while the actual date is stored in the
YEAR, MONTH, and DAY column. One of the analyses we will do in this chapter will
need a complete datetime for the DEPARTURE_TIME, and since it is a time-consuming
operation to do this transformation, we do it now and store it in the processed
version of flights.csv that we'll store on GitHub. This operation uses the pandas
apply() method that is called with the to_datetime() function and axis=1
(indicating that the transformation is applied on each row).

Another issue is that we want to store the files on GitHub, but there is a maximum
file size limitation of 100 M. So, to make the file smaller than 100 M, we also remove
some of the columns that won't be needed in the analysis we're trying to build and
then zip the file before storing it on GitHub. Of course, another benefit is that the
DataFrame will load faster with a smaller file.

After downloading the files from the Kaggle website, we run the following code
which first loads the CSV file into a pandas DataFrame, remove the unwanted
rows and columns, and write the data back to a file:

Note: The original data is stored in a file called flights.raw.csv.
Running the following code may take some time due to the large size
of the file which contains 6 million records.

import pandas as pd
import datetime
import numpy as np

clean up the flights data in flights.csv
flights = pd.read_csv('flights.raw.csv', low_memory=False)

select only the rows that have a 3 letter IATA code in the ORIGIN
and DESTINATION airports
mask = (flights["ORIGIN_AIRPORT"].str.len() == 3) &
(flights["DESTINATION_AIRPORT"].str.len() == 3)
flights = flights[mask]

remove the unwanted columns
dropped_columns=["SCHEDULED_DEPARTURE","SCHEDULED_TIME",

Chapter 9

[387]

"CANCELLATION_REASON","DIVERTED","DIVERTED","TAIL_NUMBER",
"TAXI_OUT","WHEELS_OFF","WHEELS_ON",
"TAXI_IN","SCHEDULED_ARRIVAL", "ARRIVAL_TIME", "AIR_SYSTEM_
DELAY","SECURITY_DELAY",
"AIRLINE_DELAY","LATE_AIRCRAFT_DELAY", "WEATHER_DELAY"]
flights.drop(dropped_columns, axis=1, inplace=True)

remove the row that have NA in the ELAPSED_TIME column
flights.dropna(subset=["ELAPSED_TIME"], inplace=True)

remove the row that have NA in the DEPARTURE_TIME column
flights.dropna(subset=["ELAPSED_TIME"], inplace=True)

Create a new DEPARTURE_TIME columns that has the actual datetime
def to_datetime(row):
 departure_time = str(int(row["DEPARTURE_TIME"])).zfill(4)
 hour = int(departure_time[0:2])
 return datetime.datetime(year=row["YEAR"], month=row["MONTH"],
 day=row["DAY"],
 hour = 0 if hour >= 24 else hour,
 minute=int(departure_time[2:4])
)
flights["DEPARTURE_TIME"] = flights.apply(to_datetime, axis=1)

write the data back to file without the index
flights.to_csv('flights.csv', index=False)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode3.py

Note: As documented in the pandas.read_csv documentation
(http://pandas.pydata.org/pandas-docs/version/0.23/
generated/pandas.read_csv.html), we use the keyword argument
low_memory=False to make sure the data is not loaded in chunks
which could cause problems with type inference, especially with very
large files.

For convenience, the three files are stored at the following GitHub location:
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/
chapter%209/USFlightsAnalysis.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode3.py
http://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.read_csv.html
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%209/USFlightsAnalysis
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%209/USFlightsAnalysis

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[388]

The following code uses the pixiedust.sampleData() method to load the data into
three pandas DataFrames corresponding to airlines, airports, and flights:

airports = pixiedust.sampleData("https://github.com/DTAIEB/Thoughtful-
Data-Science/raw/master/chapter%209/USFlightsAnalysis/airports.csv")
airlines = pixiedust.sampleData("https://github.com/DTAIEB/Thoughtful-
Data-Science/raw/master/chapter%209/USFlightsAnalysis/airlines.csv")
flights = pixiedust.sampleData("https://github.com/DTAIEB/Thoughtful-
Data-Science/raw/master/chapter%209/USFlightsAnalysis/flights.zip")

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode4.py

Note: The GitHub URL uses the /raw/ segment which indicates that
we want to download the raw file as opposed to the HTML for the
corresponding GitHub page.

The next step is to load the data into a networkx directed weighted graph object
using the flights DataFrame as the edge list and the values from the ELAPSED_TIME
column as the weight. We first deduplicate all the flights that have the same airports
as origin and destination, by grouping them using the pandas.groupby() method
with a multi-index that has ORIGIN_AIRPORT and DESTINATION_AIRPORT as the keys.
We then select the ELAPSED_TIME column from the DataFrameGroupBy object and
aggregate the results using the mean() method. This will give us a new DataFrame
that has the mean average ELAPSED_TIME for each flight with the same origin and
destination airport:

edges = flights.groupby(["ORIGIN_AIRPORT","DESTINATION_AIRPORT"])
[["ELAPSED_TIME"]].mean()
edges

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode5.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode5.py

Chapter 9

[389]

The results are shown in the following screenshot:

Flights grouped by origin and destination with mean average ELAPSED_TIME

Before using this DataFrame to create the directed graph, we need to reset the
index from a multi-index to a regular single index converting the index columns into
regular columns. For that, we simply use the reset_index() method as shown here:

edges = edges.reset_index()
edges

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode6.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode6.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[390]

We now have a DataFrame with the right shape, ready to be used to create the
directed graph, as shown in the following screenshot:

Flights grouped by origin and destination with mean average ELAPSED_TIME and a single index

To create the directed weighted graph, we use the NetworkX from_pandas_
edgelist() method which takes a pandas DataFrame as the input source. We also
specify the source and target columns, as well as the weight column (in our case
ELAPSED_TIME). Finally, we tell NetworkX that we want to create a directed graph
by using the create_using keyword arguments, passing an instance of DiGraph
as a value.

The following code shows how to call the from_pandas_edgelist() method:

flight_graph = nx.from_pandas_edgelist(
 flights, "ORIGIN_AIRPORT","DESTINATION_AIRPORT",
 "ELAPSED_TIME",
 create_using = nx.DiGraph())

Chapter 9

[391]

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode7.py

Note: NetworkX supports the creation of graphs by converting from
multiple formats including dictionaries, lists, NumPy and SciPy matrices
and of course pandas. You can find more information about these
conversion capabilities here:

https://networkx.github.io/documentation/networkx-2.1/
reference/convert.html

We can quickly validate that our graph has the right values by directly printing
its nodes and edges:

print("Nodes: {}".format(flight_graph.nodes))
print("Edges: {}".format(flight_graph.edges))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode8.py

Which produces the following output (truncated):

Nodes: ['BOS', 'TYS', 'RKS', 'AMA', 'BUF', 'BHM', 'PPG', …,
'CWA', 'DAL', 'BFL']
Edges: [('BOS', 'LAX'), ('BOS', 'SJC'), ..., ('BFL', 'SFO'),
('BFL', 'IAH')]

We can also create better visualization by using the built-in drawing APIs available
in networkx which support multiple rendering engines including Matplotlib,
Graphviz AGraph (http://pygraphviz.github.io) and Graphviz with pydot
(https://github.com/erocarrera/pydot).

For simplicity, we'll use the NetworkX draw() method which uses the readily
available Matplotlib engine. To beautify the visualization, we configure it with
proper width and height (12, 12) and add a colormap with vivid color (we use
the cool and spring colormap from matplolib.cm, see: https://matplotlib.
org/2.0.2/examples/color/colormaps_reference.html).

The following code shows the implementation of the graph visualization:

import matplotlib.cm as cm
fig = plt.figure(figsize = (12,12))
nx.draw(flight_graph, arrows=True, with_labels=True,

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode7.py
https://networkx.github.io/documentation/networkx-2.1/reference/convert.html
https://networkx.github.io/documentation/networkx-2.1/reference/convert.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode8.py
http://pygraphviz.github.io
https://github.com/erocarrera/pydot
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[392]

 width = 0.5,style="dotted",
 node_color=range(len(flight_graph)),
 cmap=cm.get_cmap(name="cool"),
 edge_color=range(len(flight_graph.edges)),
 edge_cmap=cm.get_cmap(name="spring")
)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode9.py

Which produces the following results:

Quick visualization of our directed graph using Matplotlib

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode9.py

Chapter 9

[393]

In the preceding chart, the nodes are positioned using a default graph layout
called spring_layout, which is a force-directed layout. One benefit of this layout
is that it quickly reveals the nodes with the most edge connections which are
located at the center of the graph. We can change the graph layout by using the
pos keyword argument when calling the draw() method. networkx supports other
types of layout including circular_layout, random_layout, shell_layout,
and spectral_layout.

For example, using a random_layout:

import matplotlib.cm as cm
fig = plt.figure(figsize = (12,12))
nx.draw(flight_graph, arrows=True, with_labels=True,
 width = 0.5,style="dotted",
 node_color=range(len(flight_graph)),
 cmap=cm.get_cmap(name="cool"),
 edge_color=range(len(flight_graph.edges)),
 edge_cmap=cm.get_cmap(name="spring"),
 pos = nx.random_layout(flight_graph)
)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode10.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode10.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[394]

We get the following results:

Flight data graph using a random_layout

Note: You can find more information about these layouts here:
https://networkx.github.io/documentation/networkx-2.1/
reference/drawing.html

Graph centrality
The next interesting thing to analyze about the graph is its centrality indices which
allow us to discover which nodes are the most important vertices. As an exercise,
we'll compute four types of centrality index: degree, PageRank, closeness, and
shortest path betweenness. We'll then augment the airports DataFrame to add
a column for each of the centrality indices and visualize the results in a Mapbox
map using PixieDust display().

Computing the degree of the digraph is very easy with networkx; simply use
the degree property of the flight_graph object as follows:

print(flight_graph.degree)

https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html
https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html

Chapter 9

[395]

This outputs an array of tuples with the airport code and the degree index as follows:

[('BMI', 14), ('RDM', 8), ('SBN', 13), ('PNS', 18), ………, ('JAC', 26),
('MEM', 46)]

We now want to add a DEGREE column to the airport DataFrame that contains
the degree value from the preceding array for each of the airport rows. To do that,
we'll need to create a new DataFrame that has two columns: IATA_CODE and DEGREE
and perform a pandas merge() operation on the IATA_CODE.

The merge operation is illustrated in the following diagram:

Merging the degree DataFrame to the airports DataFrame

The following code shows how to implement the aforementioned steps. We first
create a JSON payload by iterating over the flight_path.degree output and use
the pd.DataFrame() constructor to create the DataFrame. We then use pd.merge()
using airports and degree_df as arguments. We also use the on argument with
value IATA_CODE which is the key column we'll want to do the join on:

degree_df = pd.DataFrame([{"IATA_CODE":k, "DEGREE":v} for k,v in
flight_graph.degree], columns=["IATA_CODE", "DEGREE"])
airports_centrality = pd.merge(airports, degree_df, on='IATA_CODE')
airports_centrality

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode11.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode11.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[396]

The results are shown in the following screenshot:

Airport DataFrame augmented with the DEGREE column

To visualize the data in a Mapbox map, we simply use PixieDust.display() on the
airport_centrality DataFrame:

display(airports_centrality)

The following screenshot shows the options dialog:

Mapbox options for displaying the airports

Chapter 9

[397]

After clicking OK on the options dialog, we get the following results:

Showing the airport with degree centrality

For the other centrality indices, we can notice that the corresponding computation
functions all return a JSON output (as opposed to an array for the degree attribute)
with the IATA_CODE airport code as key and the centrality index as value.

For example, if we are computing the PageRank using the following code:

nx.pagerank(flight_graph)

We get the following results:

{'ABE': 0.0011522441195896051,
 'ABI': 0.0006671948649909588,
 ...
 'YAK': 0.001558809391270303,
 'YUM': 0.0006214341604372096}

With this in mind, instead of repeating the same steps as we did for degree, we can
implement a generic function called compute_centrality() that takes the function
that computes the centrality and a column name as arguments, create a temporary
DataFrame that contains the computed centrality values, and merge it with the
airports_centrality DataFrame.

The following code shows the implementation for compute_centrality():

from six import iteritems
def compute_centrality(g, centrality_df, compute_fn, col_name, *args,

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[398]

**kwargs):
 # create a temporary DataFrame that contains the computed
centrality values
 temp_df = pd.DataFrame(
 [{"IATA_CODE":k, col_name:v} for k,v in iteritems
(compute_fn(g, *args, **kwargs))],
 columns=["IATA_CODE", col_name]
)
 # make sure to remove the col_name from the centrality_df
is already there
 if col_name in centrality_df.columns:
 centrality_df.drop([col_name], axis=1, inplace=True)
 # merge the 2 DataFrame on the IATA_CODE column
 centrality_df = pd.merge(centrality_df, temp_df, on='IATA_CODE')
 return centrality_df

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode12.py

We can now simply call the compute_centrality() method with the three compute
functions nx.pagerank(), nx.closeness_centrality(), and nx.betweenness_
centrality() with the columns PAGE_RANK, CLOSENESS, and BETWEENNESS
respectively as shown in the following code:

airports_centrality = compute_centrality(flight_graph, airports_
centrality, nx.pagerank, "PAGE_RANK")
airports_centrality = compute_centrality(flight_graph, airports_
centrality, nx.closeness_centrality, "CLOSENESS")
airports_centrality = compute_centrality(
 flight_graph, airports_centrality, nx.betweenness_centrality,
"BETWEENNESS", k=len(flight_graph))
airports_centrality

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode13.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode13.py

Chapter 9

[399]

The airports_centrality DataFrame now has the extra columns as shown in the
following output:

Airports DataFrame augmented with PAGE_RANK, CLOSENESS and BETWEENNESS values

As an exercise, we can verify that the four centrality indices provide consistent
results for the top airports. Using the pandas nlargest() method, we can get the
top 10 airports for the four indices as shown in the following code:

for col_name in ["DEGREE", "PAGE_RANK", "CLOSENESS", "BETWEENNESS"]:
 print("{} : {}".format(
 col_name,
 airports_centrality.nlargest(10, col_name)["IATA_CODE"].
values)
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode14.py

Which produces the following results:

DEGREE : ['ATL' 'ORD' 'DFW' 'DEN' 'MSP' 'IAH' 'DTW' 'SLC' 'EWR' 'LAX']
PAGE_RANK : ['ATL' 'ORD' 'DFW' 'DEN' 'MSP' 'IAH' 'DTW' 'SLC' 'SFO'
'LAX']
CLOSENESS : ['ATL' 'ORD' 'DFW' 'DEN' 'MSP' 'IAH' 'DTW' 'SLC' 'EWR'
'LAX']
BETWEENNESS : ['ATL' 'DFW' 'ORD' 'DEN' 'MSP' 'SLC' 'DTW' 'ANC'
'IAH' 'SFO']

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode14.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[400]

As we can see, Atlanta airport comes up as the top airport for all centrality indices.
As an exercise, let's create a generic method called visualize_neighbors() that
visualizes all the neighbors of a given node and call it with the Atlanta node. In this
method, we create a subgraph centered around the parent node by adding an edge
from itself to all its neighbors. We use the NetworkX neighbors() method to get
all the neighbors of a specific node.

The following code shows the implementation of the visualize_neighbors()
method:

import matplotlib.cm as cm
def visualize_neighbors(parent_node):
 fig = plt.figure(figsize = (12,12))
 # Create a subgraph and add an edge from the parent node to all
its neighbors
 graph = nx.DiGraph()
 for neighbor in flight_graph.neighbors(parent_node):
 graph.add_edge(parent_node, neighbor)
 # draw the subgraph
 nx.draw(graph, arrows=True, with_labels=True,
 width = 0.5,style="dotted",
 node_color=range(len(graph)),
 cmap=cm.get_cmap(name="cool"),
 edge_color=range(len(graph.edges)),
 edge_cmap=cm.get_cmap(name="spring"),
)
 plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode15.py

We then call the visualize_neighbors() method on the ATL node:

visualize_neighbors("ATL")

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode15.py

Chapter 9

[401]

Which produces the following output:

Visualization of the top node ATL and its neighbors

We complete this Part 1 section by computing the shortest path between two
nodes using the famous Dijkstra algorithm (https://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm). We'll experiment with different weight attributes
to check if we are getting different results.

As an example, let's compute the shortest path between Boston Logan Airport
in Massachusetts (BOS) and Pasco Tri-Cities Airport in Washington (PSC) using
the NetworkX dijkstra_path() method (https://networkx.github.io/
documentation/networkx-2.1/reference/algorithms/generated/networkx.
algorithms.shortest_paths.weighted.dijkstra_path.html).

We first use the ELAPSED_TIME column as the weight attribute:

Note: As a reminder, ELAPSED_TIME is the average flight time
for each of the flights with the same origin and destination airports
that we computed earlier in this section.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://networkx.github.io/documentation/networkx-2.1/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
https://networkx.github.io/documentation/networkx-2.1/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
https://networkx.github.io/documentation/networkx-2.1/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[402]

nx.dijkstra_path(flight_graph, "BOS", "PSC", weight="ELAPSED_TIME")

Which returns:

['BOS', 'MSP', 'PSC']

Unfortunately, the centrality indices we computed earlier are not part of the
flight_graph DataFrame, so using it as the column name for the weight attribute
won't work. However, the dijkstra_path() also allows us to use a function
to dynamically compute the weight. Since we want to try for different centrality
indices, we need to create a factory method (https://en.wikipedia.org/wiki/
Factory_method_pattern) that will create a function for a given centrality index
passed as an argument. This argument is used as a closure for a nested wrapper
function that conforms to the dijkstra_path() method's weight argument. We also
use a cache dictionary to remember the computed weights for a given airport, since
the algorithm will call the function multiple times for the same airport. If the weight
is not in the cache, we look it up in the airports_centrality DataFrame using the
centrality_indice_col parameter. The final weight is computed by getting the
inverse of the centrality value, since the Dijkstra algorithm favors paths with shorter
distances.

The following code shows the implementation of the compute_weight factory
method:

use a cache so we don't recompute the weight for the same airport
every time
cache = {}
def compute_weight(centrality_indice_col):
 # wrapper function that conform to the dijkstra weight argument
 def wrapper(source, target, attribute):
 # try the cache first and compute the weight if not there
 source_weight = cache.get(source, None)
 if source_weight is None:
 # look up the airports_centrality for the value
 source_weight = airports_centrality.loc[airports_
centrality["IATA_CODE"] == source][centrality_indice_col].values[0]
 cache[source] = source_weight
 target_weight = cache.get(target, None)
 if target_weight is None:
 target_weight = airports_centrality.loc[airports_
centrality["IATA_CODE"] == target][centrality_indice_col].values[0]
 cache[target] = target_weight
 # Return weight is inversely proportional to the computed
weighted since
 # the Dijkstra algorithm give precedence to shorter distances

https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern

Chapter 9

[403]

 return float(1/source_weight) + float(1/target_weight)
 return wrapper

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode16.py

We can now call the NetworkX dijkstra_path() method for each of the centrality
indices. Note that we don't use BETWEENNESS because some of the values are
equal to zero which can't be used as a weight. We also need to clear the cache before
calling the dijkstra_path() method because using different centrality indices
will produce different values for each airport.

The following code shows how to compute the shortest path for each centrality
index:

for col_name in ["DEGREE", "PAGE_RANK", "CLOSENESS"]:
 #clear the cache
 cache.clear()
 print("{} : {}".format(
 col_name,
 nx.dijkstra_path(flight_graph, "BOS", "PSC",
 weight=compute_weight(col_name))
))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode17.py

The following result is produced:

DEGREE : ['BOS', 'DEN', 'PSC']
PAGE_RANK : ['BOS', 'DEN', 'PSC']
CLOSENESS : ['BOS', 'DEN', 'PSC']

It is interesting to note that, as expected, the computed shortest path is the same
for the three centrality indices, going through Denver airport which is a top central
airport. However, it is not the same as the one computed using the ELAPSED_TIME
weight which would have us go through Minneapolis instead.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode17.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[404]

In this section, we have shown how to load US flight data into a graph data structure,
compute different centrality indices and use them to compute the shortest path
between airports. We also discussed different ways of visualizing the graph data.

The complete Notebook for Part 1 can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%201.ipynb

In the next section, we'll create the USFlightsAnalysis PixieApp that
operationalizes these analytics.

Part 2 – Creating the USFlightsAnalysis
PixieApp
For the first iteration of our USFlightsAnalysis, we want to implement a simple
user story that leverages the analytics created in Part 1:

• The welcome screen will show two drop-down controls for selecting
an origin and a destination airport

• When an airport is selected, we show a graph showing the selected airports
and its immediate neighbors

• When both airports are selected, the user clicks on the Analyze button
to show a Mapbox map with all the airports

• The user can select one of the centrality indices available as checkboxes
to show the shortest flight path according to the selected centrality

Let's first look at the implementation for the welcome screen which is implemented
in the default route of the USFlightsAnalysis PixieApp. The following code defines
the USFlightsAnalysis class which is decorated with the @PixieApp decorator
to make it a PixieApp. It contains a main_screen() method that is decorated with
the @route() decorator to make it the default route. This method returns an HTML
fragment that will be used as the welcome screen when the PixieApp starts. The
HTML fragment is composed of two parts: one that shows the drop-down control for
selecting the origin airport and one that contains the drop-down control for selecting
the destination airport. We use a Jinja2 {%for...%} loop that goes over each of the
airports (returned by the get_airports() method) to generate a set of <options>
elements. Under each of these controls, we add a placeholder <div> element that
will host the graph visualization when an airport is selected.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%201.ipynb

Chapter 9

[405]

Note: As always, we use the [[USFlightsAnalysis]] notation to
denote that the code shows only a partial implementation and therefore
the reader should not attempt to run it as is until the full implementation
is provided.
We'll explain later on why the USFlightsAnalysis class inherits from
the MapboxBase class.

[[USFlightsAnalysis]]
from pixiedust.display.app import *
from pixiedust.apps.mapboxBase import MapboxBase
from collections import OrderedDict

@PixieApp
class USFlightsAnalysis(MapboxBase):
 ...
 @route()
 def main_screen(self):
 return """
<style>
 div.outer-wrapper {
 display: table;width:100%;height:300px;
 }
 div.inner-wrapper {
 display: table-cell;vertical-align: middle;height: 100%;width:
100%;
 }
</style>
<div class="outer-wrapper">
 <div class="inner-wrapper">
 <div class="col-sm-6">
 <div class="rendererOpt" style="font-weight:bold">
 Select origin airport:
 </div>
 <div>
 <select id="origin_airport{{prefix}}"
 pd_refresh="origin_graph{{prefix}}">
 <option value="" selected></option>
 {%for code, airport in this.get_airports() %}
 <option value="{{code}}">{{code}} - {{airport}}</
option>
 {%endfor%}
 </select>
 </div>
 <div id="origin_graph{{prefix}}" pd_options="visualize_

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[406]

graph=$val(origin_airport{{prefix}})"></div>
 </div>
 <div class="input-group col-sm-6">
 <div class="rendererOpt" style="font-weight:bold">
 Select destination airport:
 </div>
 <div>
 <select id="destination_airport{{prefix}}"
 pd_refresh="destination_graph{{prefix}}">
 <option value="" selected></option>
 {%for code, airport in this.get_airports() %}
 <option value="{{code}}">{{code}} - {{airport}}</
option>
 {%endfor%}
 </select>
 </div>
 <div id="destination_graph{{prefix}}"
pd_options="visualize_graph=$val(destination_airport{{prefix}})">
 </div>
 </div>
 </div>
</div>
<div style="text-align:center">
 <button class="btn btn-default" type="button"
pd_options="org_airport=$val(origin_airport{{prefix}});dest_
airport=$val(destination_airport{{prefix}})">
 <pd_script type="preRun">
 if ($("#origin_airport{{prefix}}").val() == "" ||
$("#destination_airport{{prefix}}").val() == ""){
 alert("Please select an origin and destination
airport");
 return false;
 }
 return true;
 </pd_script>
 Analyze
 </button>
</div>
"""

def get_airports(self):
 return [tuple(l) for l in airports_centrality[["IATA_CODE",
"AIRPORT"]].values.tolist()]

Chapter 9

[407]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode18.py

When the user selects the origin airport, a pd_refresh targetted at the placeholder
<div> element with ID origin_graph{{prefix}}, is triggered. In turn, this
<div> element triggers a route using the state: visualize_graph=$val(origin_
airport{{prefix}}. As a reminder, the $val() directive is resolved at runtime
by fetching the airport value of the origin_airport{{prefix}} drop-down
element. A similar implementation is used for the destination airport.

The code for the visualize_graph route is provided here. It simply calls the
visualize_neighbors() method that we implemented in Part 1, which we slightly
change in Part 2 to add an optional figure size parameter to accommodate the size of
the host <div> element. As a reminder, we also use the @captureOutput decorator
since the visualize_neighbors() method is directly writing to the output of the
selected cell:

[[USFlightsAnalysis]]
@route(visualize_graph="*")
@captureOutput
def visualize_graph_screen(self, visualize_graph):
 visualize_neighbors(visualize_graph, (5,5))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode19.py

The Analyze button is triggering the compute_path_screen() route which is
associated with the org_airport and dest_airport state parameters. We also
want to make sure that both airports are selected before allowing the compute_
path_screen() route to proceed. To do that, we use a <pd_script> child element
with type="preRun" that contains JavaScript code that will be executed before the
route is triggered. The contract is for this code to return the Boolean true if we want
to let the route proceed, or to return false otherwise.

For the Analyze button we check that both drop-downs have a value and return
true if that's the case or else raise an error message and return false:

<button class="btn btn-default" type="button" pd_options="org_
airport=$val(origin_airport{{prefix}});dest_airport=$val(destination_
airport{{prefix}})">

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode19.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[408]

 <pd_script type="preRun">
 if ($("#origin_airport{{prefix}}").val() == "" ||
$("#destination_airport{{prefix}}").val() == ""){
 alert("Please select an origin and destination airport");
 return false;
 }
 return true;
 </pd_script>
 Analyze
 </button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode20.html

The following output shows the end results when selecting BOS as the origin airport
and PSC as the destination:

Welcome screen with both airports selected

Let's now look at the implementation of the compute_path_screen() route which
is responsible for showing the Mapbox map of all the airports and the shortest
path based on the selected centrality index as a layer which is an extra visualization
superimposed on the overall map.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode20.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode20.html

Chapter 9

[409]

The following code shows its implementation:

[[USFlightsAnalysis]]
@route(org_airport="*", dest_airport="*")
def compute_path_screen(self, org_airport, dest_airport):
 return """
<div class="container-fluid">
 <div class="form-group col-sm-2" style="padding-right:10px;">
 <div>Centrality Indices</div>
 {% for centrality in this.centrality_indices.keys() %}
 <div class="rendererOpt checkbox checkbox-primary">
 <input type="checkbox"
 pd_refresh="flight_map{{prefix}}"
pd_script="self.compute_toggle_centrality_layer('{{org_airport}}',
'{{dest_airport}}', '{{centrality}}')">
 <label>{{centrality}}</label>
 </div>
 {%endfor%}
 </div>
 <div class="form-group col-sm-10">
 <h1 class="rendererOpt">Select a centrality index to show
the shortest flight path
 </h1>
 <div id="flight_map{{prefix}}" pd_entity="self.airports_
centrality" pd_render_onload>
 <pd_options>
 {
 "keyFields": "LATITUDE,LONGITUDE",
 "valueFields": "AIRPORT,DEGREE,PAGE_RANK,ELAPSED_
TIME,CLOSENESS",
 "custombasecolorsecondary": "#fffb00",
 "colorrampname": "Light to Dark Red",
 "handlerId": "mapView",
 "quantiles": "0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,
0.9,1.0",
 "kind": "choropleth",
 "rowCount": "1000",
 "numbins": "5",
 "mapboxtoken": "pk.
eyJ1IjoibWFwYm94IiwiYSI6ImNpejY4M29iazA2Z2gycXA4N2pmbDZmangifQ.-g_
vE53SD2WrJ6tFX7QHmA",
 "custombasecolor": "#ffffff"
 }
 </pd_options>
 </div>

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[410]

 </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode21.py

The central <div> element of this screen is the Mapbox map which by default shows
the Mapbox map of all the airports. As shown in the code above, the <pd_options>
child element is taken directly from the corresponding cell metadata where we
configured the map in Part 1.

On the left-hand side, we generate a set of checkboxes corresponding to
each centrality index, using a Jinja2 {%for …%} loop over the centrality_
indices variable. We initialize this variable in the setup() method of the
USFlightsAnalysis PixieApp which is guaranteed to be called when the PixieApp
starts. This variable is an OrderedDict (https://docs.python.org/3/library/
collections.html#collections.OrderedDict) with keys as the centrality index
and values as a color scheme that will be used in the Mapbox rendering:

[[USFlightsAnalysis]]
def setup(self):
 self.centrality_indices = OrderedDict([
 ("ELAPSED_TIME","rgba(256,0,0,0.65)"),
 ("DEGREE", "rgba(0,256,0,0.65)"),
 ("PAGE_RANK", "rgba(0,0,256,0.65)"),
 ("CLOSENESS", "rgba(128,0,128,0.65)")
])

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode22.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode21.py
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode22.py

Chapter 9

[411]

The following output shows the analysis screen with no centrality index selected:

Analysis screen with no centrality index selected

We now arrive at the step where the user selects a centrality index to trigger
a shortest path search. Each of the checkboxes have a pd_script attribute that calls
the compute_toggle_centrality_layer() method. This method is responsible
for calling the NetworkX dijkastra_path() method with a weight argument
generated by calling the compute_weight() method that we discussed in Part 1.
This method returns an array with each airport that constitutes the shortest path.
Using this path, we then create a JSON object that contains the GeoJSON payload
as a set of lines to be displayed on the map.

At this point, it's worth pausing to discuss what a layer is. A layer is defined using
the GeoJSON format (http://geojson.org) which we briefly discussed in Chapter 5,
Python and PixieDust Best Practices and Advanced Concepts. As a reminder, a GeoJSON
payload is a JSON object with a specific schema that includes among other things a
geometry element that defines the shape of the object being drawn.

For example, we can define a line using the LineString type and an array
of longitude and latitude coordinates for both ends of the line:

{
 "geometry": {
 "type": "LineString",
 "coordinates": [

http://geojson.org

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[412]

 [-93.21692, 44.88055],
 [-119.11903000000001, 46.26468]
]
 },
 "type": "Feature",
 "properties": {}
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode23.json

Assuming we can generate this GeoJSON payload from the shortest path, we may
wonder how to pass it to the PixieDust Mapbox renderer so that it can be displayed.
Well, the mechanism is pretty simple: the Mapbox renderer will introspect the
host PixieApp for any class variable that conforms to a specific format and use it
to generate the Mapbox layer to be displayed. To help with conforming with this
mechanism, we use the MapboxBase utility class that we briefly introduced earlier.
This class has a get_layer_index() method that takes a unique name (we use
the centrality index) as an argument and returns its index. It also takes an extra
optional argument that creates the layer in case it doesn't already exist. We then call
the toggleLayer() method passing the layer index as an argument to turn the layer
on and off.

The following code shows the implementation of the compute_toggle_
centrality_layer() method that implements the aforementioned steps:

[[USFlightsAnalysis]]
def compute_toggle_centrality_layer(self, org_airport, dest_airport,
centrality):
 cache.clear()
 cities = nx.dijkstra_path(flight_graph, org_airport, dest_airport,
weight=compute_weight(centrality))
 layer_index = self.get_layer_index(centrality, {
 "name": centrality,
 "geojson": {
 "type": "FeatureCollection",
 "features":[
 {"type":"Feature",
 "properties":{"route":"{} to {}".format(cities[i],
cities[i+1])},
 "geometry":{
 "type":"LineString",
 "coordinates":[

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode23.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode23.json

Chapter 9

[413]

 self.get_airport_location(cities[i]),
 self.get_airport_location(cities[i+1])
]
 }
 } for i in range(len(cities) - 1)
]
 },
 "paint":{
 "line-width": 8,
 "line-color": self.centrality_indices[centrality]
 }
 })
 self.toggleLayer(layer_index)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode24.py

The coordinates in the geometry object are computed using the get_airport_
location() method that queries the airports_centrality DataFrame that
we created in Part 1, as shown in the following code:

[[USFlightsAnalysis]]
def get_airport_location(self, airport_code):
 row = airports_centrality.loc[airports["IATA_CODE"] == airport_
code]
 if row is not None:
 return [row["LONGITUDE"].values[0], row["LATITUDE"].values[0]]
 return None

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode25.py

The layer object passed to the get_layer_index() method has the following
properties:

• name: String that uniquely identifies the layer.
• geojson: GeoJSON object that defines the features and geometry of the layer.
• url: Used only if geojson is not present. Points at a URL that returns

a GeoJSON payload.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode25.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[414]

• paint: Optional extra properties specific to Mapbox specification that defines
how the layer data is styled, for example, color, width, and opacity.

• layout: Optional extra properties specific to Mapbox specification that
defines how the layer data is drawn, for example, fill, visibility, and symbol.

Note: You can find more information about Mapbox layout and paint
properties here:
https://www.mapbox.com/mapbox-gl-js/style-spec/#layers

In the preceding code, we specify extra paint properties to configure the line-
width and the line-color which we take from the centrality_indices JSON
object defined in the setup() method.

The following output shows the shortest path for a flight from BOS to PSC using
the ELAPSED_TIME (in red) and the DEGREE (in green) centrality indices:

Displaying the shortest path from BOS to PSC using the ELAPSED_TIME and DEGREE centrality indices

In this section, we've built a PixieApp that provides visualization of the shortest
path between two airports using the PixieDust Mapbox renderer. We've shown how
to create a new layer to enrich the map with extra information using the MapboxBase
utility class.

https://www.mapbox.com/mapbox-gl-js/style-spec/#layers

Chapter 9

[415]

You can find the completed Notebook for Part 2 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%202.ipynb

In the next section, we'll add additional data exploration related to flight delays
and associated airlines.

Part 3 – Adding data exploration
to the USFlightsAnalysis PixieApp
In this section, we want to extend the route analysis screen of the
USFlightsAnalysis PixieApp to add two charts showing the historical arrival
delay for each airline that flies out of the selected origin airport: one for all the flights
coming out of the origin airport and one for all the flights regardless of airport. This
will give us a way to compare visually whether the delay for a particular airport is
better or worse than for all the other airports.

We start by implementing a method that selects the flights for a given airline.
We also add an optional airport argument that can be used to control whether
we include all flights or only the one that originates from this airport. The returned
DataFrame should have two columns: DATE and ARRIVAL_DELAY.

The following code shows the implementation of this method:

def compute_delay_airline_df(airline, org_airport=None):
 # create a mask for selecting the data
 mask = (flights["AIRLINE"] == airline)
 if org_airport is not None:
 # Add the org_airport to the mask
 mask = mask & (flights["ORIGIN_AIRPORT"] == org_airport)
 # Apply the mask to the Pandas dataframe
 df = flights[mask]
 # Convert the YEAR, MONTH and DAY column into a DateTime
 df["DATE"] = pd.to_datetime(flights[['YEAR','MONTH', 'DAY']])
 # Select only the columns that we need
 return df[["DATE", "ARRIVAL_DELAY"]]

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%202.ipynb

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[416]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode26.py

We can test the preceding code by using it with Delta flights from Boston. We
can then call the PixieDust display() method to create a line chart that we'll use
in the PixieApp:

bos_delay = compute_delay_airline_df("DL", "BOS")
display(bos_delay)

In the PixieDust output we select the Line Chart menu and configure the options
dialog as follows:

The options dialog for generating an arrival delay line chart for Delta flights out of Boston

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode26.py

Chapter 9

[417]

When clicking OK, we get the following chart:

Chart delay for all Delta flights coming out of Boston

As we are going to use this chart in the PixieApp, it is a good idea to copy the JSON
configuration from the Edit Cell Metadata dialog box:

PixieDust display() configuration for the delay chart that needs to be copied for the PixieApp

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[418]

Now that we know how to generate a delay chart, we can start designing
the PixieApp. We start by changing the layout of the main screen to use the
TemplateTabbedApp helper class that gives us the tabbed layout for free.
The overall analysis screen is now driven by the RouteAnalysisApp child
PixieApp that contains two tabs: the Search Shortest Route tab associated
with the SearchShortestRouteApp child PixieApp and the Explore Airlines
tab associated with the AirlinesApp child PixieApp.

The following diagram provides a high-level flow of all the classes involved
in the new layout:

New tabbed layout class diagram

The implementation for the RouteAnalysisApp is pretty straightforward using
the TemplateTabbedApp as shown in the following code:

from pixiedust.apps.template import TemplateTabbedApp

@PixieApp
class RouteAnalysisApp(TemplateTabbedApp):
 def setup(self):
 self.apps = [
 {"title": "Search Shortest Route",
 "app_class": "SearchShortestRouteApp"},
 {"title": "Explore Airlines",
 "app_class": "AirlinesApp"}
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode27.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode27.py

Chapter 9

[419]

The SearchShortestRouteApp child PixieApp is basically a copy of the main
PixieApp class we created in Part 2. The only difference is that it is a child PixieApp
of the RouteAnalysisApp which itself is a child PixieApp of the USFlightsAnalysis
main PixieApp. Therefore, we need a mechanism for passing the origin and
destination airport down to the respective child PixieApps. To achieve this, we use
the pd_options attribute when instantiating the RouteAnalysisApp child PixieApp.

In the USFlightAnalysis class, we change the analyze_route method to return
a simple <div> element that triggers the RouteAnalysisApp. We also add a
pd_options attribute with the org_airport and dest_airport, as shown in the
following code:

[[USFlightsAnalysis]]
@route(org_airport="*", dest_airport="*")
def analyze_route(self, org_airport, dest_airport):
 return """
<div pd_app="RouteAnalysisApp"
pd_options="org_airport={{org_airport}};dest_airport={{dest_airport}}"
 pd_render_onload>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode28.py

Conversely, in the setup() method of the SearchShortestRouteApp child
PixieApp, we read the values for org_airport and dest_airport from the
options dictionary of the parent_pixieapp, as shown in the following code:

[[SearchShortestRouteApp]]
from pixiedust.display.app import *
from pixiedust.apps.mapboxBase import MapboxBase
from collections import OrderedDict

@PixieApp
class SearchShortestRouteApp(MapboxBase):
 def setup(self):
 self.org_airport = self.parent_pixieapp.options.get
("org_airport")
 self.dest_airport = self.parent_pixieapp.options.get
("dest_airport")
 self.centrality_indices = OrderedDict([
 ("ELAPSED_TIME","rgba(256,0,0,0.65)"),

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode28.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[420]

 ("DEGREE", "rgba(0,256,0,0.65)"),
 ("PAGE_RANK", "rgba(0,0,256,0.65)"),
 ("CLOSENESS", "rgba(128,0,128,0.65)")
])
 ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode29.py

Note: The rest of the implementation of the SearchShortestRouteApp
has been ommitted for brevity since it's exactly the same as in Part 2. To
access the implementation, please refer to the completed Part 3 Notebook.

The last PixieApp class to implement is the AirlinesApp, which that will display all
the delay charts. Similar to the SearchShortestRouteApp, we store org_airport
and dest_airport from the parent_pixieapp options dictionary. We also compute
a list of tuples (code and name) for all the airlines that have flights out of the given
org_airport. To do that, we use the pandas groupby() method on the AIRLINE
column and get a list of the index values as shown in the following code:

[[AirlinesApp]]
@PixieApp
class AirlinesApp():
 def setup(self):
 self.org_airport = self.parent_pixieapp.options.get
("org_airport")
 self.dest_airport = self.parent_pixieapp.options.get
("dest_airport")
 self.airlines = flights[flights["ORIGIN_AIRPORT"] == self.
org_airport].groupby("AIRLINE").size().index.values.tolist()
 self.airlines = [(a, airlines.loc[airlines["IATA_CODE"] ==
a]["AIRLINE"].values[0]) for a in self.airlines]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode30.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode30.py

Chapter 9

[421]

In the main screen of the AirlinesApp, we generate a set of rows for each of the
airlines using the Jinja2 {%for...%} loop. In each row, we add two <div> elements
that will hold the delay line chart for the given airline: one for flights coming out of
the origin airport and one for all the flights for this airline. Each <div> element
has a pd_options attribute, with the org_airport and dest_airport as state
attributes, which triggers the delay_airline_screen route. We also add a delay_
org_airport Boolean state attribute to denote which type of delay chart we want
to display. To make sure the <div> element is rendered immediately, we add the
pd_render_onload attribute as well.

The following code shows the implementation of the AirlinesApp default route:

[[AirlinesApp]]
@route()
 def main_screen(self):
 return """
<div class="container-fluid">
 {%for airline_code, airline_name in this.airlines%}
 <div class="row" style="max-e">
 <h1 style="color:red">{{airline_name}}</h1>
 <div class="col-sm-6">
 <div pd_render_onload pd_options="delay_org_
airport=true;airline_code={{airline_code}};airline_name=
{{airline_name}}"></div>
 </div>
 <div class="col-sm-6">
 <div pd_render_onload pd_options="delay_org_
airport=false;airline_code={{airline_code}};airline_name=
{{airline_name}}"></div>
 </div>
 </div>
 {%endfor%}
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode31.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode31.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[422]

The delay_airline_screen() route has three parameters:

• delay_org_airport: true if we only want the flights coming out of the
origin airport, and false if we want all the flights for the given airline.
We use this flag to build the mask for filtering the data out of the flights
DataFrame.

• airline_code: The IATA code for the given airline.
• airline_name: The full name of the airline. We'll use this when building the

UI in the Jinja2 template.

In the body of the delay_airline_screen() method, we also compute the average
delay for the selected data in the average_delay local variable. As a reminder,
in order to use this variable in the Jinja2 template, we use the @templateArgs
decorator, which automatically makes all local variables available in the Jinja2
template.

The <div> element that holds the chart has a pd_entity attribute that uses the
compute_delay_airline_df() method that we created at the beginning of this
section. However, we needed to rewrite this method as a member of the class since
the arguments have changed: org_airport is now a class variable, and delay_org_
airport is now a String Boolean. We also add a <pd_options> child element with
the PixieDust display() JSON configuration that we copied from the Edit Cell
Metadata dialog.

The following code shows the implementation of the delay_airline_screen()
route:

[[AirlinesApp]]
@route(delay_org_airport="*",airline_code="*", airline_name="*")
 @templateArgs
 def delay_airline_screen(self, delay_org_airport, airline_code,
airline_name):
 mask = (flights["AIRLINE"] == airline_code)
 if delay_org_airport == "true":
 mask = mask & (flights["ORIGIN_AIRPORT"] == self.
org_airport)
 average_delay = round(flights[mask]["ARRIVAL_DELAY"].
mean(), 2)
 return """
{%if delay_org_airport == "true" %}
<h4>Delay chart for all flights out of {{this.org_airport}}</h4>
{%else%}
<h4>Delay chart for all flights</h4>
{%endif%}
<h4 style="margin-top:5px">Average delay: {{average_delay}}

Chapter 9

[423]

minutes</h4>
<div pd_render_onload pd_entity="compute_delay_airline_df
('{{airline_code}}', '{{delay_org_airport}}')">
 <pd_options>
 {
 "keyFields": "DATE",
 "handlerId": "lineChart",
 "valueFields": "ARRIVAL_DELAY",
 "noChartCache": "true"
 }
 </pd_options>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode32.py

The compute_delay_airline_df() method has two arguments: airlines that
correspond to the IATA code and the delay_org_airport String Boolean. We
already covered implementation of this method, but the new adapted code
is provided here:

[[AirlinesApp]]
def compute_delay_airline_df(self, airline, delay_org_airport):
 mask = (flights["AIRLINE"] == airline)
 if delay_org_airport == "true":
 mask = mask & (flights["ORIGIN_AIRPORT"] == self.
org_airport)
 df = flights[mask]
 df["DATE"] = pd.to_datetime(flights[['YEAR','MONTH', 'DAY']])
 return df[["DATE", "ARRIVAL_DELAY"]]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode33.py

Running the USFlightsAnalysis PixieApp with BOS and PSC as the origin
and destination airports respectively, we click on the Explore Airlines tab.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode33.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[424]

The results are shown in the following screenshot:

Delay line charts for all the airlines that provide services from Boston airport

In this section, we provide another example of how to use the PixieApp
programming model to build powerful dashboards that provide visualization
and insights into the output of the analytics developed in the Notebook.

Chapter 9

[425]

The completed Notebook for Part 3 of the USFlightsAnalysis
PixieApp can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%203.ipynb

In the next section, we'll build an ARIMA model that tries to predict flight delays.

Part 4 – Creating an ARIMA model
for predicting flight delays
In Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis and Forecasting,
we used time series analysis to build a forecasting model for predicting financial
stocks. We can actually use the same technique in flight delays since, after all, we
are also dealing here with time series, and so in this section, we'll follow the exact
same steps. For each destination airport and optional airline, we'll build a pandas
DataFrame that contains matching flight information.

Note: We'll use the statsmodels library again. Make sure to install it if you
haven't done so already and refer to Chapter 8, Analytics Study: Prediction -
Financial Time Series Analysis and Forecasting for more information.

As an example, let's focus on all the Delta (DL) flights with BOS as the destination:

df = flights[(flights["AIRLINE"] == "DL") & (flights["ORIGIN_AIRPORT"]
== "BOS")]

Using the ARRIVAL_DELAY column as a value for our time series, we plot the ACF
and PACF plots to identify trends and seasonality as shown in the following code:

import statsmodels.tsa.api as smt
smt.graphics.plot_acf(df['ARRIVAL_DELAY'], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode34.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode34.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode34.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[426]

The result is shown in the following screenshot:

Autocorrelation function for the ARRIVAL_DELAY data

Similarly, we also plot the partial autocorrelation function using the following code:

import statsmodels.tsa.api as smt
smt.graphics.plot_pacf(df['ARRIVAL_DELAY'], lags=50)
plt.show()

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode35.py

The results are shown here:

Partial Autocorrelation for the ARRIVAL_DELAY data

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode35.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode35.py

Chapter 9

[427]

From the preceding charts, we can hypothesize that the data has a trend and/
or seasonality, and that it is not stationary. Using the log difference technique
that we explained in Chapter 8, Analytics Study: Prediction - Financial Time Series
Analysis and Forecasting, we transform the series and visualize it with the PixieDust
display() method, as shown in the following code:

Note: We also make sure to remove the rows with NA and Infinite values
by first calling the replace() method to replace np.inf and -np.inf
with np.nan, and then call the dropna() method to remove all the rows
with the np.nan value.

import numpy as np
train_set, test_set = df[:-14], df[-14:]
train_set.index = train_set["DEPARTURE_TIME"]
test_set.index = test_set["DEPARTURE_TIME"]
logdf = np.log(train_set['ARRIVAL_DELAY'])
logdf.index = train_set['DEPARTURE_TIME']
logdf_diff = pd.DataFrame(logdf - logdf.shift()).reset_index()
logdf_diff.replace([np.inf, -np.inf], np.nan, inplace=True)
logdf_diff.dropna(inplace=True)
display(logdf_diff)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode36.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode36.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode36.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[428]

The following screenshot shows the PixieDust option dialog:

Options dialog for the log difference of the ARRIVAL_DELAY data

After clicking OK, we get the following results:

Note: When running the preceding code, you may not get the exact
same chart as shown in the following screenshot. This is because
we configure the # of Rows to Display in the options dialog to be
100 which means that PixieDust will take a sample of size 100 before
creating the chart.

Chapter 9

[429]

Log difference line chart of the ARRIVAL_DELAY data

The preceding chart looks stationary; we can reinforce this hypothesis by plotting
the ACF and PACF again on the log difference as shown in the following code:

smt.graphics.plot_acf(logdf_diff["ARRIVAL_DELAY"], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode37.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode37.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode37.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[430]

The results are as follows:

ACF chart for the log difference of the ARRIVAL_DELAY data

In the following code, we do the same thing for the PACF:

smt.graphics.plot_pacf(logdf_diff["ARRIVAL_DELAY"], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode38.py

The results are as follows:

PACF chart for the log difference of the ARRIVAL_DELAY data

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode38.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode38.py

Chapter 9

[431]

As a reminder from Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis
and Forecasting, an ARIMA model is composed of three orders: p, d, and q. From the
preceding two charts, we can infer these orders for the ARIMA model we want to build:

• Autoregression order p is 1: Corresponds to the first time the ACF crosses
the significance level

• Integration order d is 1: We had to do a log difference once
• Moving average order q is 1: Corresponds to the first time the PACF crosses

the significance level

Based on these hypotheses, we can build an ARIMA model using the statsmodels
package and get information about its residual error, as shown in the following code:

from statsmodels.tsa.arima_model import ARIMA

import warnings
with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 arima_model_class = ARIMA(train_set['ARRIVAL_DELAY'],
 dates=train_set['DEPARTURE_TIME'],
 order=(1,1,1))
 arima_model = arima_model_class.fit(disp=0)
 print(arima_model.resid.describe())

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode39.py

The results are shown as follows:

count 13882.000000
mean 0.003116
std 48.932043
min -235.439689
25% -17.446822
50% -5.902274
75% 6.746263
max 1035.104295
dtype: float64

As we can see, the mean error is only 0.003 which is pretty good, so we're ready
to run the model with values from the train_set and visualize the discrepencies
with the actual values.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode39.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode39.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[432]

The following code uses the ARIMA plot_predict() method to create the chart:

def plot_predict(model, dates_series, num_observations):
 fig,ax = plt.subplots(figsize = (12,8))
 model.plot_predict(
 start = dates_series[len(dates_series)-num_observations],
 end = dates_series[len(dates_series)-1],
 ax = ax
)
 plt.show()
plot_predict(arima_model, train_set['DEPARTURE_TIME'], 100)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode40.py

The results are shown as follows:

Forecast versus actual

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode40.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode40.py

Chapter 9

[433]

In the preceding chart, we can clearly see that the forecast line is much smoother than
the actual values. This makes sense since, in reality, there are always unexpected
reasons for delays that can be treated as outliers and therefore hard to model.

We still need to use the test_set to validate the model with data not yet seen by
the model. The following code creates a compute_test_set_predictions() method
to compare forecast and test data and visualize the results using the PixieDust
display() method:

def compute_test_set_predictions(train_set, test_set):
 with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 history = train_set['ARRIVAL_DELAY'].values
 forecast = np.array([])
 for t in range(len(test_set)):
 prediction = ARIMA(history, order=(1,1,0)).fit(disp=0).
forecast()
 history = np.append(history, test_set['ARRIVAL_DELAY'].
iloc[t])
 forecast = np.append(forecast, prediction[0])
 return pd.DataFrame(
 {"forecast": forecast,
 "test": test_set['ARRIVAL_DELAY'],
 "Date": pd.date_range(start=test_set['DEPARTURE_TIME'].
iloc[len(test_set)-1], periods = len(test_set))
 }
)

results = compute_test_set_predictions(train_set, test_set)
display(results)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode41.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode41.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode41.py

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[434]

The PixieDust options dialog is shown here:

Options dialog for the forecast versus test comparison line chart

After clicking OK, we get the following results:

Forecast versus Test Data line chart

Chapter 9

[435]

We are now ready to integrate this model into our USFlightsAnalysis PixieApp,
by adding a third tab to the RouteAnalysisApp main screen called Flight
Delay Prediction. This tab will be driven by a new child PixieApp called
PredictDelayApp that will let the user select a flight segment of the shortest
path computed using the Dijkstra shortest path algorithm with DEGREE as the
centrality index. The user will also be able to select an airline, in which case
the training data will be limited to flights operated by the selected airline.

In the following code, we create the PredictDelayApp child PixieApp and
implement the setup() method that computes the Dijkstra shortest path for
the selected origin and destination airports:

[[PredictDelayApp]]
import warnings
import numpy as np
from statsmodels.tsa.arima_model import ARIMA

@PixieApp
class PredictDelayApp():
 def setup(self):
 self.org_airport = self.parent_pixieapp.options.get
("org_airport")
 self.dest_airport = self.parent_pixieapp.options.get
("dest_airport")
 self.airlines = flights[flights["ORIGIN_AIRPORT"] ==
self.org_airport].groupby("AIRLINE").size().index.values.tolist()
 self.airlines = [(a, airlines.loc[airlines["IATA_CODE"] ==
a]["AIRLINE"].values[0]) for a in self.airlines]
 path = nx.dijkstra_path(flight_graph, self.org_airport,
self.dest_airport, weight=compute_weight("DEGREE"))
 self.paths = [(path[i], path[i+1]) for i in range
(len(path) - 1)]

In the default route of the PredictDelayApp, we use the Jinja2 {%for..%} loop
to build two drop-down boxes that display the flight segment and the airlines,
as shown in the following code:

[[PredictDelayApp]]
@route()
 def main_screen(self):
 return """
<div class="container-fluid">
 <div class="row">
 <div class="col-sm-6">
 <div class="rendererOpt" style="font-weight:bold">
 Select a flight segment:

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[436]

 </div>
 <div>
 <select id="segment{{prefix}}" pd_refresh="
prediction_graph{{prefix}}">
 <option value="" selected></option>
 {%for start, end in this.paths %}
 <option value="{{start}}:{{end}}">{{start}} ->
{{end}}</option>
 {%endfor%}
 </select>
 </div>
 </div>
 <div class="col-sm-6">
 <div class="rendererOpt" style="font-weight:bold">
 Select an airline:
 </div>
 <div>
 <select id="airline{{prefix}}" pd_refresh="
prediction_graph{{prefix}}">
 <option value="" selected></option>
 {%for airline_code, airline_name in this.
airlines%}
 <option value="{{airline_code}}">{{airline_
name}}</option>
 {%endfor%}
 </select>
 </div>
 </div>
 </div>
 <div class="row">
 <div class="col-sm-12">
 <div id="prediction_graph{{prefix}}"
 pd_options="flight_segment=$val(segment{{prefix}});
airline=$val(airline{{prefix}})">
 </div>
 </div>
 </div>
</div>
 """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode42.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode42.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode42.py

Chapter 9

[437]

The two drop-downs have a pd_refresh attribute that points to the <div>
element with ID prediction_graph{{prefix}}. When triggered, this <div>
element invokes the predict_screen() route using the flight_segment and
airline state attributes.

In the predict_screen() route, we use the flight_segment and airline
arguments to create the training dataset, build an ARIMA model that forecasts
the model, and visualize the results in a line chart that compares the forecast and
the actual values.

Time series forecast models are limited to predictions that are close to
the actual data, and since we only have data from 2015, we can't really
use this model to predict more recent data. Of course, in a production
application, it is assumed that we have flight data that is current and
therefore this wouldn't be a problem.

The following code shows the implementation of the predict_screen() route:

[[PredictDelayApp]]
@route(flight_segment="*", airline="*")
 @captureOutput
 def predict_screen(self, flight_segment, airline):
 if flight_segment is None or flight_segment == "":
 return "<div>Please select a flight segment</div>"
 airport = flight_segment.split(":")[1]
 mask = (flights["DESTINATION_AIRPORT"] == airport)
 if airline is not None and airline != "":
 mask = mask & (flights["AIRLINE"] == airline)
 df = flights[mask]
 df.index = df["DEPARTURE_TIME"]
 df = df.tail(50000)
 df = df[~df.index.duplicated(keep='first')]
 with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 arima_model_class = ARIMA(df["ARRIVAL_DELAY"],
dates=df['DEPARTURE_TIME'], order=(1,1,1))
 arima_model = arima_model_class.fit(disp=0)
 fig, ax = plt.subplots(figsize = (12,8))
 num_observations = 100
 date_series = df["DEPARTURE_TIME"]
 arima_model.plot_predict(
 start = str(date_series[len(date_series)-num_
observations]),

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[438]

 end = str(date_series[len(date_series)-1]),
 ax = ax
)
 plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode43.py

In the following code, we also wanted to make sure that the dataset index is
deduplicated to avoid errors when plotting the results. This is done by filtering
the duplicated indices using df = df[~df.index.duplicated(keep='first')].

The last thing left to do is to wire the PredictDelayApp child PixieApp to the
RouteAnalysisApp as shown in the following code:

from pixiedust.apps.template import TemplateTabbedApp

@PixieApp
class RouteAnalysisApp(TemplateTabbedApp):
 def setup(self):
 self.apps = [
 {"title": "Search Shortest Route",
 "app_class": "SearchShortestRouteApp"},
 {"title": "Explore Airlines",
 "app_class": "AirlinesApp"},
 {"title": "Flight Delay Prediction",
 "app_class": "PredictDelayApp"}
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode44.py

When we run the USFlightsAnalysis PixieApp using BOS and PSC as we did in
the previous sections. In the Flight Delay Prediction tab, we select the BOS->DEN
flight segment.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode43.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode43.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode44.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode44.py

Chapter 9

[439]

The results are shown as follows:

Forecast for the Boston to Denver flight segment

In this section, we've shown how to use time series forecasting models to predict
flight delays based on historical data.

You can find the complete Notebook here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%204.ipynb

As a reminder, while this is only a sample application which has a lot of room
for improvement, the techniques for operationalizing data analytics using the
PixieApp programming model would apply just the same in any other project.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%204.ipynb

Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[440]

Summary
In this chapter, we've discussed graphs and its associated graph theory, exploring
its data structure and algorithms. We've also briefly introduced the networkx
Python library that provides a rich set of APIs for manipulating and visualizing
graphs. We then applied these techniques toward building a sample application
that analyzes flight data by treating it as a graph problem with airports being the
vertices and flights the edges. As always, we've also shown how to operationalize
these analytics into a simple yet powerful dashboard that can run directly in the
Jupyter Notebook and then optionally be deployed as a web analytics application
with the PixieGateway microservice.

This chapter completes the series of sample applications that cover many important
industry use cases. In the next chapter, I offer some final thoughts about the theme
of this book which is to bridge the gap between data science and engineering by
making working with data simple and accessible to all.

[441]

The Future of Data Analysis
and Where to Develop

your Skills
"We are creating and hiring to fill "new collar" jobs – entirely new roles in areas
such as cybersecurity, data science, artificial intelligence and cognitive business."

 – Ginni Rometty, IBM Chairman, and CEO

Once again, let me thank you and congratulate you, the reader, for the long journey
of reading through these long chapters and perhaps trying some or all of the sample
code provided. I tried to provide a good mix between diving into the fundamentals
of a particular topic, such as deep learning or time series analysis, and giving
comprehensive example code for the practitioner. I especially hope that you
found the idea of tightly integrating the data science analytics with the PixieApp
application programming model in a single Jupyter Notebook interesting and novel.
But, most importantly, I hope that you found it useful and something you can reuse
in your own projects and with your own teams.

The Future of Data Analysis and Where to Develop your Skills

[442]

At the beginning of Chapter 1, Programming and Data Science – A New Toolset, I use the
Drew's Conway Venn Diagram (which is one of my favorites) as a representation of
what is data science and why data scientists are widely considered unicorns. With
all respect to Drew Conway, I'd like to extend this diagram to denote the important
and growing role of developers in the field of data science, as shown in the following
diagram:

Drew's Conway Venn Diagram for data science that now includes developers

I'd now like to take advantage of this last chapter to provide my views for the
future and what to expect when it comes to AI and data science.

Forward thinking – what to expect for
AI and data science
This is the part I like a lot as I get to express forward-looking opinions without being
held accountable for accuracy since, by definition, these are only my opinions .

Chapter 10

[443]

As I explained in Chapter 1, Programming and Data Science – A New Toolset, I believe
that AI and data science are here to stay, and they will continue to cause disruption
to existing industries for the foreseeable future, most likely at an accelerating rate.
This will certainly have an effect on the overall number of jobs and, similar to other
technological revolutions we've seen in the past (agricultural, industrial, information,
and many more), some will disappear, while new ones will be created.

In 2016, Ginny Rometty, IBM Chairman, and CEO, in a letter to President Donald
Trump (https://www.ibm.com/blogs/policy/ibm-ceo-ginni-romettys-
letter-u-s-president-elect), talks about the need to better prepare for the
AI revolution by creating new types of jobs that she calls "new collar," as shown
in the following excerpt:

"Getting a job at today's IBM does not always require a college degree; at some
of our centers in the United States, as many as one third of employees have less
than a four-year degree. What matters most is relevant skills, sometimes obtained
through vocational training. In addition, we are creating and hiring to fill "new
collar" jobs – entirely new roles in areas such as cybersecurity, data science,
artificial intelligence and cognitive business."

These "new collar" jobs can only be created in sufficient numbers if we are successful
in our quest to democratize data science, because data science is the lifeblood
of AI and everyone needs to be involved in some capacity; developers, line of
business users, data engineers, and so on. It is easy to imagine that the demand for
these new types of jobs will be so high that traditional academic tracks will not be
able to fill the needs. Rather, it will be incumbent upon the industry to fill the void
by creating new programs designed to retrain all existing workers whose jobs may
be at risk of becoming redundant. New programs similar to the Everyone Can Code
program from Apple (https://www.apple.com/everyone-can-code) will emerge;
perhaps something like Anyone can do Data Science. I also think that MOOCs (short
for, Massive Open Online Courses) will play an even greater role that we already
see today with the many partnerships being formed between key MOOC players
such as Coursera and edX, and companies like IBM (see https://www.coursera.
org/ibm).

There are other things companies can do in order to better prepare for the AI and
data science revolution. In Chapter 1, Programming and Data Science – A New Toolset,
I talk about three pillars for a data science strategy that can help us with this
ambitious goal: data, services, and tools.

https://www.ibm.com/blogs/policy/ibm-ceo-ginni-romettys-letter-u-s-president-elect
https://www.ibm.com/blogs/policy/ibm-ceo-ginni-romettys-letter-u-s-president-elect
https://www.apple.com/everyone-can-code
https://www.coursera.org/ibm
https://www.coursera.org/ibm

The Future of Data Analysis and Where to Develop your Skills

[444]

On the services side, high growth in public clouds is substantially contributing
to the overall increase in high-quality services in multiple fields: data persistence,
cognitive, streaming, and so on. Providers such as Amazon, Facebook, Google,
IBM, and Microsoft are taking a leading role in building innovative capabilities
with a service-first approach backed by a strong platform that provides a consistent
experience for developers. This trend will continue to accelerate, with more and
more powerful services being released at an increasingly rapid rate.

A good example is Google self-learning AI called AlphaZero (https://
en.wikipedia.org/wiki/AlphaZero), which taught itself chess in 4 hours
and went on to beat a champion chess program. Another great example comes
from IBM's recently announced project debater (https://www.research.ibm.
com/artificial-intelligence/project-debater), which is the first AI
system that can debate a human on complex topics. These types of advances
will continue to fuel the availability of more and more powerful services that
can be accessed by everyone, including developers. Chatbots are another example
of services that have been successfully democratized as it has never been easier
for developers to create applications that contain conversational capabilities.
I believe that consuming these services will become easier and easier over time,
enabling developers to build amazing new applications that we can't even begin
to imagine today.

On the data side, we need to make accessing high-quality data much easier than
it is today. One model I have in mind is coming from a television show called 24.
Full disclosure; I love watching, and binging on, TV series and I think that some
of them provide a good indicator of where technology is headed. In 24, Jack Bauer,
a counter-terrorism agent, has 24 hours to stop bad guys from causing catastrophic
events. Watching that show, I'm always amazed at how easy the data circulates from
the analyst back at the command center to the mobile phone of Jack Bauer, or how,
given a data problem with only minutes to solve, the analyst is able to summon the
data from different systems (satellite images, system of records, and so on) to zero-
in on the bad guys; for example, we're looking for someone who bought this type of
chemicals in the last 2 months and within a given radius. Wow! from my perspective,
this is how easy and frictionless it should be for data scientists to access and process
data. I believe we are making great progress toward this goal with tools such as
Jupyter Notebooks that act as a control plane for connecting data sources with
services and analytics that process them. Jupyter Notebooks bring tools to the data
instead of the opposite, thus lowering greatly the cost of entry for anyone who wants
to get involved in data science.

https://en.wikipedia.org/wiki/AlphaZero
https://en.wikipedia.org/wiki/AlphaZero
https://www.research.ibm.com/artificial-intelligence/project-debater
https://www.research.ibm.com/artificial-intelligence/project-debater

Chapter 10

[445]

References
• DeepQA (IBM): https://researcher.watson.ibm.com/researcher/

view_group_subpage.php?id=2159

• Deep parsing in Watson, McCord, Murdock, Boguraev: http://brenocon.com/
watson_special_issue/03%20Deep%20parsing.pdf

• Jupyter for Data Science, Dan Toomey, Packt Publishing: https://www.
packtpub.com/big-data-and-business-intelligence/jupyter-data-
science

• PixieDust documentation: https://pixiedust.github.io/pixiedust/
• The Visual Python Debugger for Jupyter Notebooks You've Always Wanted, David

Taieb: https://medium.com/ibm-watson-data-lab/the-visual-python-
debugger-for-jupyter-notebooks-youve-always-wanted-761713babc62

• Share Your Jupyter Notebook Charts on the Web, David Taieb: https://medium.
com/ibm-watson-data-lab/share-your-jupyter-notebook-charts-on-
the-web-43e190df4adb

• Deploy Your Analytics as Web Apps Using PixieDust's 1.1 Release, David Taieb:
https://medium.com/ibm-watson-data-lab/deploy-your-analytics-
as-web-apps-using-pixiedusts-1-1-release-d08067584a14

• Kubernetes: https://kubernetes.io/docs/home/
• WordCloud: https://amueller.github.io/word_cloud/index.html
• Neural Networks and Deep Learning, Michael Nielsen: http://

neuralnetworksanddeeplearning.com/index.html

• Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, An MIT
Press book: http://www.deeplearningbook.org/

• TensorFlow documentation site: https://www.tensorflow.org/
• TensorFlow For Poets: https://codelabs.developers.google.com/

codelabs/tensorflow-for-poets

• Tensorflow and deep learning - without a PhD, Martin Görner: https://www.
youtube.com/watch?v=vq2nnJ4g6N0

• Apache Spark: https://spark.apache.org/
• Tweepy library documentation: http://tweepy.readthedocs.io/en/

latest/

• Watson Developer Cloud Python SDK: https://github.com/watson-
developer-cloud/python-sdk

• Kafka-Python: https://kafka-python.readthedocs.io/en/master/
usage.html

https://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=2159
https://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=2159
http://brenocon.com/watson_special_issue/03%20Deep%20parsing.pdf
http://brenocon.com/watson_special_issue/03%20Deep%20parsing.pdf
https://www.packtpub.com/big-data-and-business-intelligence/jupyter-data-science
https://www.packtpub.com/big-data-and-business-intelligence/jupyter-data-science
https://www.packtpub.com/big-data-and-business-intelligence/jupyter-data-science
https://pixiedust.github.io/pixiedust/
https://medium.com/ibm-watson-data-lab/the-visual-python-debugger-for-jupyter-notebooks-youve-always-wanted-761713babc62
https://medium.com/ibm-watson-data-lab/the-visual-python-debugger-for-jupyter-notebooks-youve-always-wanted-761713babc62
https://medium.com/ibm-watson-data-lab/share-your-jupyter-notebook-charts-on-the-web-43e190df4adb
https://medium.com/ibm-watson-data-lab/share-your-jupyter-notebook-charts-on-the-web-43e190df4adb
https://medium.com/ibm-watson-data-lab/share-your-jupyter-notebook-charts-on-the-web-43e190df4adb
https://medium.com/ibm-watson-data-lab/deploy-your-analytics-as-web-apps-using-pixiedusts-1-1-release-d08067584a14
https://medium.com/ibm-watson-data-lab/deploy-your-analytics-as-web-apps-using-pixiedusts-1-1-release-d08067584a14
https://kubernetes.io/docs/home/
https://amueller.github.io/word_cloud/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://www.deeplearningbook.org/
https://www.tensorflow.org/
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
https://www.youtube.com/watch?v=vq2nnJ4g6N0
https://www.youtube.com/watch?v=vq2nnJ4g6N0
https://spark.apache.org/
http://tweepy.readthedocs.io/en/latest/
http://tweepy.readthedocs.io/en/latest/
https://github.com/watson-developer-cloud/python-sdk
https://github.com/watson-developer-cloud/python-sdk
https://kafka-python.readthedocs.io/en/master/usage.html
https://kafka-python.readthedocs.io/en/master/usage.html

The Future of Data Analysis and Where to Develop your Skills

[446]

• Sentiment Analysis of Twitter Hashtags with Spark, David Taieb: https://
medium.com/ibm-watson-data-lab/real-time-sentiment-analysis-of-
twitter-hashtags-with-spark-7ee6ca5c1585

• Time Series Forecasting using Statistical and Machine Learning Models, Jeffrey
Yau: https://www.youtube.com/watch?v=_vQ0W_qXMxk

• Time Series Forecasting Theory, Analytics University: https://www.youtube.
com/watch?v=Aw77aMLj9uM

• Time Series Analysis - PyCon 2017, Aileen Nielsen: https://www.youtube.
com/watch?v=zmfe2RaX-14

• Quandl Python documentation: https://docs.quandl.com/docs/python
• Statsmodels documentation: https://www.statsmodels.org/stable/

index.html

• NetworkX: https://networkx.github.io/documentation/
networkx-2.1/index.html

• GeoJSON Specification: http://geojson.org/
• Beautiful Soup Documentation: https://www.crummy.com/software/

BeautifulSoup/bs4/doc

https://medium.com/ibm-watson-data-lab/real-time-sentiment-analysis-of-twitter-hashtags-with-spark-7ee6ca5c1585
https://medium.com/ibm-watson-data-lab/real-time-sentiment-analysis-of-twitter-hashtags-with-spark-7ee6ca5c1585
https://medium.com/ibm-watson-data-lab/real-time-sentiment-analysis-of-twitter-hashtags-with-spark-7ee6ca5c1585
https://www.youtube.com/watch?v=_vQ0W_qXMxk
https://www.youtube.com/watch?v=Aw77aMLj9uM
https://www.youtube.com/watch?v=Aw77aMLj9uM
https://www.youtube.com/watch?v=zmfe2RaX-14
https://www.youtube.com/watch?v=zmfe2RaX-14
https://docs.quandl.com/docs/python
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://networkx.github.io/documentation/networkx-2.1/index.html
https://networkx.github.io/documentation/networkx-2.1/index.html
http://geojson.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc
https://www.crummy.com/software/BeautifulSoup/bs4/doc

[447]

PixieApp Quick-Reference
This appendix is a developer quick-reference guide that provides a summary
of all the PixieApp attributes.

Annotations
• @PixieApp: Class annotation that must be added to any class that

is a PixieApp.
Arguments: None
Example:
from pixiedust.display.app import *
@PixieApp
class MyApp():
 pass

• @route: Method annotation required to denote that a method—which can
have any name—is associated with a route.
Arguments: **kwargs. Keyword arguments (key-value pairs) representing
the route definition. The PixieApp dispatcher will match the current kernel
request with a route according to the following rules:

 ° The route with the highest number of arguments get evaluated first.
 ° All arguments must match for a route to be selected. Argument

values can use * to denote that any value will match.
 ° If a route is not found, then the default route (the one with no

argument) is selected.
 ° Each key of the route argument can be either a transient state

(defined by the pd_options attribute) or persisted (field of the
PixieApp class that remains present until explicitly changed).

 ° The method can have any number of arguments. When invoking
the method, the PixieApp dispatcher will try to match the method
argument with the route arguments with the same name.

PixieApp Quick-Reference

[448]

Return: The method must return an HTML fragment (except if the @
captureOutput annotation is used) that will be injected in the frontend.
The method can leverage the Jinja2 template syntax to generate the HTML.
The HTML template has access to a certain number of variables:

 ° this: Reference to the PixieApp class (Note that we use this instead
of self because self is already used by the Jinja2 framework itself)

 ° prefix: String ID that is unique to the PixieApp instance
 ° entity: The current data entity for the request
 ° Method arguments: All arguments of the method can be accessed

as a variable in the Jinja2 template

Example:
from pixiedust.display.app import *
@PixieApp
class MyApp():
 @route(key1=”value1”, key2=”*”)
 def myroute_screen(self, key1, key2):
 return “<div>fragment: Key1 = {{key1}} - Key2 = {{key2}}”

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode25.py

• @templateArgs: Annotation that enables any local variable to be used within
the Jinja2 template. Note that @templateArgs cannot be used in combination
with @captureOutput:
Arguments: None
Example:
from pixiedust.display.app import *
@PixieApp
class MyApp():
 @route(key1=”value1”, key2=”*”)
 @templateArgs
 def myroute_screen(self, key1, key2):
 local_var = “some value”
 return “<div>fragment: local_var = {{local_var}}”

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode25.py

Appendix

[449]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode26.py

• @captureOutput: Annotation that changes the contract with the route
method, so that it doesn’t have to return an HTML fragment anymore.
Instead, the method body can simply output the results as it would in
a Notebook cell. The framework will capture the output and return it
as HTML. Note that you cannot use Jinja2 template in this case.
Arguments: None
Example:
from pixiedust.display.app import *
import matplotlib.pyplot as plt
@PixieApp
class MyApp():
 @route()
 @captureOutput
 def main_screen(self):
 plt.plot([1,2,3,4])
 plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode27.py

• @Logger: Add logging capabilities by adding logging methods to the class:
debug, warn, info, error, critical, exception.

Arguments: None
Example:
from pixiedust.display.app import *
from pixiedust.utils import Logger
@PixieApp
@Logger()
class MyApp():
 @route()
 def main_screen(self):
 self.debug(“In main_screen”)
 return “<div>Hello World</div>”

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode27.py

PixieApp Quick-Reference

[450]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode28.py

Custom HTML attributes
These can be used with any regular HTML elements to configure kernel requests.
The PixieApp framework can trigger these requests when the element receives
a click or change event, or right after the HTML fragment has completed loading.

• pd_options: List of key-value pairs that define transient states for the
kernel request, according to the following format: pd_options=”key1=va
lue1;key2=value2;...”. When used in combination with the pd_entity
attribute, the pd_options attribute invokes the PixieDust display() API.
In this case, you can get the values from the metadata of a separate Notebook
cell in which you have used the display() API. When using pd_options
in display() mode, it is recommended for convenience, to use the JSON
notation of pd_options by creating a child element called <pd_options>
and include the JSON values as text.
Example with pd_options as child element invoking display():
<div pd_entity>
 <pd_options>
 {
 “mapboxtoken”: “XXXXX”,
 “chartsize”: “90”,
 “aggregation”: “SUM”,
 “rowCount”: “500”,
 “handlerId”: “mapView”,
 “rendererId”: “mapbox”,
 “valueFields”: “IncidntNum”,
 “keyFields”: “X,Y”,
 “basemap”: “light-v9”
 }
 </pd_options>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode29.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode29.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode29.html

Appendix

[451]

Example with pd_options as HTML attribute:
<!-- Invoke a route that displays a chart -->
<button type=”submit” pd_options=”showChart=true”
pd_target=”chart{{prefix}}”>
 Show Chart
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode30.html

• pd_entity: Used only to invoke the display() API on specific data. Must
be used in combination with pd_options where key-value pairs will be
used as arguments to display(). If no value is specified for the pd_entity
attribute, then it is assumed to be the entity passed to the run method that
starts the PixieApp. The pd_entity value can be either a variable defined
in the Notebook or a field of the PixieApp (for example, pd_entity=”df”),
or a field to an object using the dot notation (for example, pd_entity=”obj_
instance.df”).

• pd_target: By default, the output of a kernel request is injected in the overall
output cell or dialog (if you use runInDialog=”true” as an argument to the
run method). However, you can use pd_target=”elementId” to specify
a target element that will receive the output. (Note that the elementId
must exist in the current view.)
Example:
<div id=”chart{{prefix}}”>
<button type=”submit” pd_options=”showChart=true”
pd_target=”chart{{prefix}}”>
 Show Chart
</button>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode31.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode30.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode30.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode31.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode31.html

PixieApp Quick-Reference

[452]

• pd_script: This invokes arbitrary Python code as part of the kernel request.
This can be used in combination with other attributes like pd_entity
and pd_options. It’s important to note that the Python indentation rules
(https://docs.python.org/2.0/ref/indentation.html) must be
respected to avoid a runtime error.
If the Python code contains multiple lines, it is recommended to use
pd_script as a child element and store the code as text.
Example:
<!-- Invoke a method to load a dataframe before visualizing it -->
<div id=”chart{{prefix}}”>
<button type=”submit”
 pd_entity=”df”
 pd_script=”self.df = self.load_df()”
 pd_options=”handlerId=dataframe”
 pd_target=”chart{{prefix}}”>
 Show Chart
</button>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode32.html

• pd_app: This dynamically invokes a separate PixieApp by its fully qualified
class name. The pd_options attribute can be used to pass route arguments
to invoke a specific route of the PixieApp.
Example:
<div pd_render_onload
 pd_option=”show_route_X=true”
 pd_app=”some.package.RemoteApp”>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode33.html

https://docs.python.org/2.0/ref/indentation.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode32.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode32.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode33.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode33.html

Appendix

[453]

• pd_render_onload: This should be used to trigger a kernel request upon
loading, as opposed to when a user clicks on an element or when a change
event occurs. The pd_render_onload attribute can be combined with any
other attribute that defines the request, like pd_options or pd_script.
Note that this attribute should only be used with a div element.
Example:
<div pd_render_onload>
 <pd_script>
print(‘hello world rendered on load’)
 </pd_script>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode34.html

• pd_refresh: This is used to force the HTML element to execute a kernel
request even if no event (click or change event) has occurred. If no value
is specified, then the current element is refreshed, otherwise, the element
with the ID specified in the value will be refreshed.
Example:
<!-- Update state before refreshing a chart -->
<button type=”submit”
 pd_script=”self.show_line_chart()”
 pd_refresh=”chart{{prefix}}”>
 Show line chart
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode35.html

• pd_event_payload: This emits a PixieApp event with the specified payload
content. This attribute follows the same rules as pd_options:

 ° Each key-value pair must be encoded using the key=value notation
 ° The event will be triggered on a click or a change event
 ° Support for $val() directive to dynamically inject user entered input
 ° Use <pd_event_payload> child to enter raw JSON.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode34.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode34.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode35.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode35.html

PixieApp Quick-Reference

[454]

Example:
<button type=”submit” pd_event_payload=”type=topicA;message=Button
clicked”>
 Send event A
</button>
<button type=”submit”>
 <pd_event_payload>
 {
 “type”:”topicA”,
 “message”:”Button Clicked”
 }
 </pd_event_payload>
 Send event A
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode36.html

• pd_event_handler: Subscribers can listen to an event by declaring a <pd_
event_handler> child element which can accept any of the PixieApp kernel
execution attributes like pd_options and pd_script. This element must use
the pd_source attribute to filter which events they want to process. The pd_
source attribute can contain one of the following values:

 ° targetDivId: Only events originating from the element with the
specified ID will be accepted

 ° type: Only events with the specified type will be accepted

Example:
<div class=”col-sm-6” id=”listenerA{{prefix}}”>
 Listening to button event
 <pd_event_handler
 pd_source=”topicA”
 pd_script=”print(eventInfo)”
 pd_target=”listenerA{{prefix}}”>
 </pd_event_handler>
</div>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode36.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode36.html

Appendix

[455]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode37.html

Note: Using * for pd_source denotes that all events will be accepted.

• pd_refresh_rate: This is used to repeat the execution of an element at
a specified interval expressed in milliseconds. This is useful for when you
want to poll the state of a particular variable and show the result in the UI.

Example:
<div pd_refresh_rate=”3000”
 pd_script=”print(self.get_status())”>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode38.html

Methods
• setup: This is an optional method implemented by the PixieApp to

initialize its state. Will be automatically invoked before the PixieApp runs.
Arguments: None
Example:
def setup(self):
 self.var1 = “some initial value”
 self.pandas_dataframe = pandas.DataFrame(data)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode39.py

• run: This starts the PixieApp.
Arguments:

 ° entity: [Optional] Dataset passed as input to the PixieApp. Can be
referenced with the pd_entity attribute or directly as a field called
pixieapp_entity.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode37.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode37.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode38.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode38.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode39.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode39.py

PixieApp Quick-Reference

[456]

 ° **kwargs: Keyword arguments to be passed to the PixieApp
when it runs. For example, using runInDialog=”true” will
start the PixieApp in a dialog.

Example:
app = MyPixieApp()
app.run(runInDialog=”true”)

• invoke_route: This is used to programmatically invoke a route.
Arguments:

 ° Route method: Method to be invoked.
 ° **kwargs: Keyword arguments to be passed to the route method.

Example:
app.invoke_route(app.route_method, arg1 = “value1”, arg2 =
“value2”)

• getPixieAppEntity: This is used to retrieve the current PixieApp
entity (which can be None) passed when calling the run() method.
getPixieAppEntity() is typically called from within the PixieApp
itself, that is:

self.getPixieAppEntity()

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python Machine Learning

Sebastian Raschka
Vahid Mirjalili

ISBN: 978-1-78712-593-3

 f Understand the key frameworks in data science, machine learning, and deep
learning

 f Harness the power of the latest Python open source libraries in machine learning
 f Master machine learning techniques using challenging real-world data
 f Master deep neural network implementation using the TensorFlow library
 f Ask new questions of your data through machine learning models and neural

networks
 f Learn the mechanics of classification algorithms to implement the best tool for

the job
 f Predict continuous target outcomes using regression analysis
 f Uncover hidden patterns and structures in data with clustering
 f Delve deeper into textual and social media data using sentiment analysis

https://www.packtpub.com/big-data-and-business-intelligence/statistics-data-science

[458]

Other Books You May Enjoy

Natural Language Processing with TensorFlow

Thushan Ganegedara

ISBN: 978-1-78847-831-1

 f Core concepts of NLP and various approaches to natural language processing
 f How to solve NLP tasks by applying TensorFlow functions to create neural

networks
 f Strategies to process large amounts of data into word representations that can be

used by deep learning applications
 f Techniques for performing sentence classification and language generation using

CNNs and RNNs
 f About employing state-of-the art advanced RNNs, like long short-term memory,

to solve complex text generation tasks
 f How to write automatic translation programs and implement an actual neural

machine translator from scratch
 f The trends and innovations that are paving the future in NLP

https://www.packtpub.com/big-data-and-business-intelligence/practical-data-science-cookbook-second-edition

[459]

Other Books You May Enjoy

Deep Reinforcement Learning

Hands-On

Maxim Lapan

ISBN: 978-1-78883-424-7

 f Understand the DL context of RL and implement complex DL models
 f Learn the foundation of RL: Markov decision processes
 f Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO,

DDPG, D4PG and others
 f Discover how to deal with discrete and continuous action spaces in various

environments
 f Defeat Atari arcade games using the value iteration method
 f Create your own OpenAI Gym environment to train a stock trading agent
 f Teach your agent to play Connect4 using AlphaGo Zero
 f Explore the very latest deep RL research on topics including AI-driven chatbots

https://www.packtpub.com/big-data-and-business-intelligence/practical-data-science-cookbook-second-edition

[460]

Other Books You May Enjoy

Leave a review – let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[461]

Symbols
@captureOutput decorator: used, for creating

word cloud image 142
@captureOutput decorator: used, for

integrating third-party 142

A
access tokens

reference link 56
adjacency list 376, 377
adjacency matrix 375, 376
AlphaZero

reference link 444
Anaconda

reference link 36
Apache Hadoop

URL 244
Apache Kafka

reference link 16
Apache Spark

about 244
architecture 244, 245
notebooks, configuring 246, 247
reference link 16
URL 244

Apache Spark, components
GraphX 245
MLlib 245
Spark SQL 245
Spark Streaming 245

Apache Spark DataFrame
reference link 33

Apache Spark Structured Streaming
URL 249

Artificial Intelligence (AI)

Index
about 3, 189
future 442-444

autocorrelation function (ACF) 303, 324-328
AutoCorrelationSubApp 341, 343
Autoregressive Integrated Moving

Average (ARIMA)
about 304, 343
building, for MSFT stock time series 346-354
creating, for predicting flight delays 425-439
used, for forecasting time series 343-370

B
backpropagation

URL 194
BaseSubApp 333, 334
Business Intelligence (BI) 2, 32
big data 380
Bokeh

reference link 49
Bootstrap CSS framework

reference link 81
Breadth First Search (BFS) 378
broadcasting 313, 315
Brunel

reference link 49
bulk synchronous parallel (BSP) 381

C
client-side debugging 181, 182
cognitive computing 192
collaborative filtering (CF)

reference link 9
connected components 378
convolutional neural network (CNN) 211

[462]

cost function 195
Coursera

reference link 443
cross-entropy

reference link 195

D
D3

reference link 63
Dask

reference link 22
URL 244

data
enriching, with extracted entity 265
enriching, with sentiment 265
loading, into Notebook with SampleData 36,

38-40, 42
wrangling, with pixiedust_rosie 42-49

DataBricks
reference link 24

data exploration
adding, to USFlightsAnalysis PixieApp 415,

418-424
data pipeline

building 9, 10, 19, 20
data science

about 1, 2
advantages 3, 4
example 7, 8
future 442-444
implementing 6, 7
strategy 20, 21
using 5, 6

data science analytics
architecture, operationalizing 68-70

data scientist
skills 10, 12

data visualization 49
data wrangling 42
debugging 169
deep learning 192-195
Depth First Search (DFS) 378
Docker command line

reference link 115

Docker containers
URL 110

F
feature, NumPy

broadcasting 313, 315
features 191
feed-forward 193
filtering types, visualized data

numerical type 60
string type 61, 63

filters
reference link 83

font icons
reference link 81

G
Giraph

reference link 380
Google Map

reference link 56
graph

about 374, 380
representing 375
US domestic flight data, loading 385,

388-393
graph algorithms

about 377
centrality 379
connected component 378
search 377
strongly connected component 378

graph algorithms, centrality
closeness 379
degree 379
PageRank 379
shortest path betweenness 380

graph algorithms, search
Breadth First Search (BFS) 378
Depth First Search (DFS) 378

graph centrality 394-403
graph, representing 376

adjacency list 376, 377
adjacency matrix 375

GraphX
reference link 380

[463]

H
hand-off pattern 64
hidden layers 193
hypothetical investment 323

I
IBM Watson DeepQA

about 12, 13
architecture 14, 15

IBM Watson Natural Language
Understanding (NLU)

about 265
service 265-273

IEEE Spectrum
reference link 30

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 212

image recognition sample application
about 211
model, retraining with custom training

data 230-242
PixieApp, creating 220-224
TensorBoard graph visualization, integrating

224, 226, 228-230
image recognition sample application,

requisites
pretrained MobileNet model,

loading 212-219
Indri

reference link 15
interactive API

using, for data visualization 49-58
International Air Transport

Association (IATA) 385

J
Java Authentication and Authorization Service

(JAAS) 300
JavaScript Date Object

reference link 184
JinJa2

for loop 77
if statement 77
reference link 77
variables 77

jQuery JS framework
reference link 81

jQuery UI
reference link 337

Jupyter
messaging, reference link 69
reference link 16

JupyterHub
reference link 24

Jupyter Kernel Gateway options
reference link 116

Jupyter Notebook
about 22
advantages 23-25
debugging, with pdb 169, 171, 172
reference link 187
run code 121
warmup code 121

K
Key Performance Indicators (KPIs) 8
kube API Server 111
kubelet 111
Kubernetes

overview 110, 111
PixieGateway server, configuring 112-116
PixieGateway server, installing 112, 114, 115
URL 110

Kubernetes cluster
URL 110

Kubernetes Master Node 111

L
LaTeX project

reference link 22
linear classifiers

reference link 196
line magics, magic commands

reference link 170

M
machine learning

about 190, 191
supervised 190
unsupervised 190

[464]

magic commands
about 170
reference link 170

Mapbox
reference link 56

Markdown
reference link 144

Matplotlib
reference link 49

mean square error (MSE)
about 198
reference link 195

Minimum Viable Product (MVP) 211
model 191
MOOC (Massive Open Online Courses)

about 443
advantages 25

MovingAverageSubApp 337, 339
MSFT stock time series

ARIMA model, building 346-354

N
natural language processing (NLP) 4, 243,

265
ndarray

about 304
operations 310, 311

networkx graph library
graph, creating 382, 383
graph, visualizing 384, 385
initiating 381

neural networks 192
neurons 192
New York Stock Exchange (NYSE) 320
Node.js

executing, in Python Notebook 183-187
reference link 63

NumPy
initiating 304, 306
key capabilities 304

NumPy array
creating 307-309
selections 312, 313

O
OAuth 2.0 protocol

access token 250
access token secret 250
consumer key 250
consumer secret 250
URL 250

OpenData
reference link 36

P
pandas

reference link 33
Parquet format

reference link 258
partial autocorrelation function (PACF) 303,

324, 325, 327, 328
pd_app attribute

about 147
used, for invoking PixieApp 145

pdb
used, for debugging on Jupyter Notebook

169, 171, 172
pd_widget

used, for creating widget 148
PixieApp

about 74
anatomy 74, 75
analytics, refactoring 274, 275
arbitrary Python code, invoking with

pd_script 100-104
code, reusing 145
class variables and methods 78
creating 276-286
GitHub project, sample application 80, 82, 83
improving, with pd_refresh 105, 107
invoking, with pd_app attribute 145
local variables, to method 78
method arguments 78
modularity, increasing 145
PixieDust display() API invoking, pd_entity

attribute used 92-99
real-time dashboard, creating 273
requests, generating to routes 79
reusable widgets, creating 107
routes 76, 77
search results, displaying in table 84-92
streaming capabilities, adding 153-155

[465]

using 63, 64, 67
widget, creating with pd_widget 148, 149

PixieApp events
used, for adding dashboard drill-downs 156,

158, 159, 161
PixieApp routes

debugging, with PixieDebugger 176-178
PixieDebugger

used, for debugging PixieApp routes 176-178
used, for visual debugging 173-175

PixieDust
about 32, 34, 35
data streaming 150-152
reference link 25

PixieDust logging
issues, troubleshooting 178, 179, 181

pixiedust_rosie
used, for data wrangling 42, 44, 46-49

PixieDust visualizations
extending 161-168

PixieGateway
admin console 134-136
reference link 36

PixieGateway Docker image
reference link 115

PixieGateway server
admin console credentials 117
application, publishing 124, 126, 127
architecture 120-123
charts sharing, by publishing as web pages

129-132, 134
configuring 116
Python console 137
remote kernels 118
state, encoding in PixieApp URL 128, 129
storage connector 117
warmup and run code, displaying for

PixieApp 138
PixieGateway server, REST interface

browser client, used for executing admin
console 120

browser client, used for executing
PixieApp 120

Jupyter Notebook Server 120
Platform as a Service (PaaS) 4
Python

advantages 28-32

magic commands 170
Python Debugger

reference link 169
Python decorators

reference link 75, 333
Python, logging facility

reference link 179
Python Notebook

Node.js, executing 183-187

Q
Question Answering (QA) 12

R
React

reference link 67
Rectified Linear Unit (ReLu) 194
reduction functions 310, 311
REPL (Read-Eval-Print-Loop)

about 22
reference link 183

Representational State Transfer (REST)
reference link 19

Resilient Distributed Dataset (RDD) 33, 257
Rosie Pattern Language (RPL) 43

S
SampleData

used, for loading data into Notebook 36, 38-
40, 42

scalability
adding, with Apache Kafka 286, 287
adding, with IBM Streams Designer 286, 287

scikit learn package
reference link 29

scopes, data science
descriptive analytics 2
predictive analytics 2
prescriptive analytics 2

[466]

Seaborn
reference link 49

single-page application (SPA)
about 74
reference link 74

Solr
reference link 15

Spark cluster
notebooks 246
spark-submit 246

Spark Streaming DataFrame
creating, with Kafka input source 298-302

Spark Structured Streaming
active streaming queries,

monitoring 260, 262
batch DataFrame, creating from Parquet files

262, 264
data, acquiring 249
data pipeline, architecture diagram 249
Spark Streaming DataFrame,

creating 255-258
structured query, creating 258, 259
structured query, executing 258, 259
Twitter, authentication 250, 251
Twitter stream, creating 251-255

statistical exploration
of time series 315-322

StockExplorer PixieApp
AutoCorrelationSubApp 341, 343
BaseSubApp 333, 334
MovingAverageSubApp 337, 339
StockExploreSubApp 335, 336
UI layout 328, 330-332

StockExploreSubApp 335-337
strongly connected component 378

T
TensorFlow

classification, with DNNClassifier 199-206,
208, 210

initiating 195, 196-198
references 195

time series
forecasting, with ARIMA model 343-355, 357,

359, 360, 364, 366, 368, 370
statistical exploration 315, 316, 318-322

time series analysis 324
Tone Analyzer

reference link 16
Tornado

reference link 31
Transformations 257
TurboGears

reference link 31
Tweepy

URL 249
tweets

streaming, to Kafka 288-291
tweets data

enriching, with Streaming Analytics service
291, 292, 294, 296-298

Twitter
sentiment analysis 17, 18

Twitter sentiment analysis
application 248, 249

types, graph
directed graphs 375
undirected graphs 375

types, magic commands
cell magics 170
line magics 170

U
US domestic flight data

loading, into graph 385, 388-391, 393
user story 273
USFlightsAnalysis PixieApp

creating 404, 407, 408, 410, 411, 414
data exploration, adding 415, 418-420,

422-424
utilities, PixieDust

PackageManager 33
Scala Bridge 33
Spark Job Progress Monitor 33

V
visual debugging

with PixieDebugger 173-175
visualized data

filtering 60

[467]

W
Watson Developer Cloud Python SDK

URL 249
Watson Studio

reference link 24
word cloud image

creating, with @captureOutput
decorator 142-144

Y
YAML

URL 114

	Cover
	Copyright
	Mapt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1 - Perspectives on Data Science from a Developer
	What is data science
	Is data science here to stay?
	Why is data science on the rise?
	What does that have to do with developers?
	Putting these concepts into practice
	Deep diving into a concrete example
	Data pipeline blueprint
	What kind of skills are required to become a data scientist?
	IBM Watson DeepQA
	Back to our sentiment analysis of Twitter hashtags project
	Lessons learned from building our first enterprise-ready data pipeline
	Data science strategy
	Jupyter Notebooks at the center of our strategy
	Why are Notebooks so popular?

	Summary

	Chapter 2 - Data Science at Scale with Jupyter Notebooks and PixieDust
	Why choose Python?
	Introducing PixieDust
	SampleData – a simple API for loading data
	Wrangling data with pixiedust_rosie
	Display – a simple interactive API for data visualization
	Filtering
	Bridging the gap between developers and data scientists with PixieApps
	Architecture for operationalizing data science analytics
	Summary

	Chapter 3 - PixieApp under the Hood
	Anatomy of a PixieApp
	Routes
	Generating requests to routes
	A GitHub project tracking sample application
	Displaying the search results in a table
	Invoking the PixieDust display() API using pd_entity attribute
	Invoking arbitrary Python code with pd_script
	Making the application more responsive with pd_refresh
	Creating reusable widgets
	Summary

	Chapter 4 - Deploying PixieApps
to the Web with the PixieGateway Server
	Overview of Kubernetes
	Installing and configuring the PixieGateway server
	PixieGateway server configuration
	PixieGateway architecture
	Publishing an application
	Encoding state in the PixieApp URL
	Sharing charts by publishing them as web pages
	PixieGateway admin console
	Python Console
	Displaying warmup and run code for a PixieApp

	Summary

	Chapter 5 - Best Practices and Advanced PixieDust Concepts
	Use @captureOutput decorator to integrate the output of third-party Python libraries
	Create a word cloud image with
@captureOutput

	Increase modularity and code reuse
	Creating a widget with pd_widget
	PixieDust support of streaming data
	Adding streaming capabilities to your PixieApp

	Adding dashboard drill-downs with PixieApp events
	Extending PixieDust visualizations
	Debugging
	Debugging on the Jupyter Notebook using pdb
	Visual debugging with PixieDebugger
	Debugging PixieApp routes with PixieDebugger
	Troubleshooting issues using PixieDust logging
	Client-side debugging

	Run Node.js inside a Python Notebook
	Summary

	Chapter 6 - Image Recognition
with TensorFlow
	What is machine learning?
	What is deep learning?
	Getting started with TensorFlow
	Simple classification with DNNClassifier

	Image recognition sample application
	Part 1 – Load the pretrained MobileNet model
	Part 2 – Create a PixieApp for our image recognition sample application
	Part 3 – Integrate the TensorBoard graph visualization
	Part 4 – Retrain the model with custom training data

	Summary

	Chapter 7 - Big Data Twitter
Sentiment Analysis
	Getting started with Apache Spark
	Apache Spark architecture
	Configuring Notebooks to work with Spark

	Twitter sentiment analysis application
	Part 1 – Acquiring the data with Spark Structured Streaming
	Architecture diagram for the data pipeline
	Authentication with Twitter
	Creating the Twitter stream
	Creating a Spark Streaming DataFrame
	Creating and running a structured query
	Monitoring active streaming queries
	Creating a batch DataFrame from the Parquet files

	Part 2 – Enriching the data with sentiment and most relevant extracted entity
	Getting started with the IBM Watson Natural Language Understanding service

	Part 3 – Creating a real-time dashboard PixieApp
	Refactoring the analytics into their own methods
	Creating the PixieApp

	Part 4 – Adding scalability with Apache Kafka and IBM Streams Designer
	Streaming the raw tweets to Kafka
	Enriching the tweets data with the Streaming Analytics service
	Creating a Spark Streaming DataFrame
with a Kafka input source

	Summary

	Chapter 8 - Financial Time Series Analysis and Forecasting
	Getting started with NumPy
	Creating a NumPy array
	Operations on ndarray
	Selections on NumPy arrays
	Broadcasting

	Statistical exploration of time series
	Hypothetical investment
	Autocorrelation function (ACF) and partial autocorrelation function (PACF)

	Putting it all together with the StockExplorer PixieApp
	BaseSubApp – base class for all the child PixieApps
	StockExploreSubApp – first child PixieApp
	MovingAverageSubApp – second child PixieApp
	AutoCorrelationSubApp – third child PixieApp

	Time series forecasting using the ARIMA model
	Build an ARIMA model for the MSFT stock time series
	StockExplorer PixieApp Part 2 – add time series forecasting using the ARIMA model

	Summary

	Chapter 9 - US Domestic Flight Data Analysis Using Graphs
	Introduction to graphs
	Graph representations
	Graph algorithms
	Graph and big data

	Getting started with the networkx graph library
	Creating a graph
	Visualizing a graph

	Part 1 – Loading the US domestic flight data into a graph
	Graph centrality

	Part 2 – Creating the USFlightsAnalysis PixieApp
	Part 3 – Adding data exploration to the USFlightsAnalysis PixieApp
	Part 4 – Creating an ARIMA model for predicting flight delays
	Summary

	Chapter 10 - Final Thoughts
	Forward thinking – what to expect for AI and data science
	References

	PixieApp Quick-Reference
	Annotations
	Custom HTML attributes
	Methods

	Other Books
You May Enjoy
	Leave a review – let other readers know what you think

	Index

