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Preface
"Developers are the most-important, most-valuable constituency in business 
today, regardless of industry."

                                                     – Stephen O'Grady, author of The New Kingmakers

First, let me thank you and congratulate you, the reader, for the decision to invest 
some of your valuable time to read this book. Throughout the chapters to come, I will 
take you on a journey of discovering or even re-discovering data science from the 
perspective of a developer and will develop the theme of this book which is that data 
science is a team sport and that if it is to be successful, developers will have to play 
a bigger role in the near future and better collaborate with data scientists. However, 
to make data science more inclusive to people of all backgrounds and trades, we first 
need to democratize it by making data simple and accessible—this is in essence what this 
book is about.

Why am I writing this book?
As I'll explain in more detail in Chapter 1, Programming and Data Science – A New 
Toolset, I am first and foremost a developer with over 20 years, experience of building 
software components of a diverse nature; frontend, backend, middleware, and so on. 
Reflecting back on this time, I realize how much getting the algorithms right always 
came first in my mind; data was always somebody else's problem. I rarely had to 
analyze it or extract insight from it. At best, I was designing the right data structure 
to load it in a way that would make my algorithm run more efficiently and the code 
more elegant and reusable.
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However, as the Artificial Intelligence and data science revolution got under way, 
it became obvious to me that developers like myself needed to get involved, and 
so 7 years ago in 2011, I jumped at the opportunity to become the lead architect 
for the IBM Watson core platform UI & Tooling. Of course, I don't pretend to have  
become an expert in machine learning or NLP, far from it. Learning through practice 
is not a substitute for getting a formal academic background. 

However, a big part of what I want to demonstrate in this book is that, with the right 
tools and approach, someone equipped with the right mathematical foundations 
(I'm only talking about high-school level calculus concepts really) can quickly 
become a good practitioner in the field. A key ingredient to being successful 
is to simplify as much as possible the different steps of building a data pipeline; 
from acquiring, loading, and cleaning the data, to visualizing and exploring it,  
all the way to building and deploying machine learning models.

It was with an eye to furthering this idea of making data simple and accessible 
to a community beyond data scientists that, 3 years ago, I took on a leading role at 
the IBM Watson Data Platform team with the mission of expanding the community 
of developers working with data with a special focus on education and activism 
on their behalf. During that time as the lead developer advocate, I started to talk 
openly about the need for developers and data scientists to better collaborate in 
solving complex data problems.

Note: During discussions at conferences and meetups, I would 
sometimes get in to trouble with data scientists who would get upset 
because they interpreted my narrative as me saying that data scientists 
are not good software developers. I want to set the record straight, 
including with you, the data scientist reader, that this is far from the case.
The majority of data scientists are excellent software developers with 
a comprehensive knowledge of computer science concepts. However, 
their main objective is to solve complex data problems which require 
rapid, iterative experimentations to try new things, not to write elegant, 
reusable components.

But I didn't want to only talk the talk; I also wanted to walk the walk and started 
the PixieDust open source project as my humble contribution to solving this 
important problem. As the PixieDust work progressed nicely, the narrative 
became crisper and easier to understand with concrete example applications 
that developers and data scientists alike could become excited about.
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When I was presented with the opportunity to write a book about this story, 
I hesitated for a long time before embarking on this adventure for mainly 
two reasons:

• I have written extensively in blogs, articles, and tutorials about my 
experience as a data science practitioner with Jupyter Notebooks. I also 
have extensive experience as a speaker and workshop moderator at a 
variety of conferences. One good example is the keynote speech I gave at 
ODSC London in 2017 titled, The Future of Data Science: Less Game of Thrones, 
More Alliances (https://odsc.com/training/portfolio/future-data-
science-less-game-thrones-alliances). However, I had never written 
a book before and had no idea of how big a commitment it would be, even 
though I was warned many times by friends that had authored books before.

• I wanted this book to be inclusive and target equally the developer, the data 
scientist, and the line of business user, but I was struggling to find the right 
content and tone to achieve that goal.

In the end, the decision to embark on this adventure came pretty easily. Having 
worked on the PixieDust project for 2 years, I felt we had made terrific progress 
with very interesting innovations that generated lots of interest in the open-source 
community and that writing a book would complement nicely our advocacy work 
on helping developers get involved in data science.

As a side note, for the reader who is thinking about writing a book and who has 
similar concerns, I can only advise on the first one with a big, "Yes, go for it." For sure, 
it is a big commitment that requires a substantial amount of sacrifice but provided 
that you have a good story to tell with solid content, it is really worth the effort.

Who this book is for
This book will serve the budding data scientist and developer with an interest in 
developing their skills or anyone wishing to become a professional data scientist. 
With the introduction of PixieDust from its creator, the book will also be a great 
desk companion for the already accomplished Data Scientist.

No matter the individual's level of interest, the clear, easy-to-read text and real-life 
scenarios would suit those with a general interest in the area, since they get to play 
with Python code running in Jupyter Notebooks.

To produce a functioning PixieDust dashboard, only a modicum of HTML and 
CSS is required. Fluency in data interpretation and visualization is also necessary 
since this book addresses data professionals such as business and general data 
analysts. The later chapters also have much to offer.

https://odsc.com/training/portfolio/future-data-science-less-game-thrones-alliances
https://odsc.com/training/portfolio/future-data-science-less-game-thrones-alliances
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What this book covers
The book contains two logical parts of roughly equal length. In the first half, I lay 
down the theme of the book which is the need to bridge the gap between data 
science and engineering, including in-depth details about the Jupyter + PixieDust 
solution I'm proposing. The second half is dedicated to applying what we learned 
in the first half, to four industry cases.

Chapter 1, Programming and Data Science – A New Toolset, I attempt to provide 
a definition of data science through the prism of my own experience, building 
a data pipeline that performs sentiment analysis on Twitter posts. I defend the idea 
that it is a team sport and that most often, silos exist between the data science and 
engineering teams that cause unnecessary friction, inefficiencies and, ultimately, 
a failure to realize its full potential. I also argue the point of view that data science 
is here to stay and that eventually, it will become an integral part of what is known 
today as computer science (I like to think that someday new terms will emerge, such 
as computer data science that better capture this duality).

Chapter 2, Python and Jupyter Notebooks to Power your Data Analysis, I start diving into 
popular data science tools such as Python and its ecosystem of open-source libraries 
dedicated to data science, and of course Jupyter Notebooks. I explain why I think 
Jupyter Notebooks will become the big winner in the next few years. I also introduce 
the PixieDust open-source library capabilities starting from the simple display() 
method that lets the user visually explore data in an interactive user interface 
by building compelling charts. With this API, the user can choose from multiple 
rendering engines such as Matplotlib, Bokeh, Seaborn, and Mapbox. The display() 
capability was the only feature in the PixieDust MVP (minimum viable product) but, 
over time, as I was interacting with a lot of data science practitioners, I added new 
features to what would quickly become the PixieDust toolbox:

• sampleData(): A simple API for easily loading data into pandas and Apache 
Spark DataFrames

• wrangle_data(): A simple API for cleaning and massaging datasets. This 
capability includes the ability to destructure columns into new columns 
using regular expressions to extract content from unstructured text. The 
wrangle_data() API can also make recommendations based on predefined 
patterns.

• PackageManager: Lets the user install third-party Apache Spark packages 
inside a Python Notebook.

• Scala Bridge: Enables the user to run the Scala code inside a Python 
Notebook. Variables defined in the Python side are accessible in Scala 
and vice-versa.
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• Spark Job Progress Monitor: Lets you track the status of your Spark Job 
with a real-time progress bar that displays directly in the output cell of the 
code being executed.

• PixieApp: Provides a programming model centered around HTML/CSS that 
lets developers build sophisticated dashboards to operationalize the analytics 
built in the Notebook. PixieApps can run directly in the Jupyter Notebook 
or be deployed as analytic web applications using the PixieGateway 
microservice. PixieGateway is an open-source companion project to 
PixieDust.

The following diagram summarizes the PixieDust development journey, including 
recent additions such as the PixieGateway and the PixieDebugger which is the first 
visual Python debugger for Jupyter Notebooks:

PixieDust journey

One key message to take away from this chapter is that PixieDust is first and 
foremost an open-source project that lives and breathes through the contributions 
of the developer community. As is the case for countless open-source projects, we 
can expect many more breakthrough features to be added to PixieDust over time.

Chapter 3, Accelerate your Data Analysis with Python Libraries, I take the reader through 
a deep dive of the PixieApp programming model, illustrating each concept along the 
way with a sample application that analyzes GitHub data. I start with a high-level 
description of the anatomy of a PixieApp including its life cycle and the execution flow 
with the concept of routes. I then go over the details of how developers can use regular 
HTML and CSS snippets to build the UI of the dashboard, seamlessly interacting with 
the analytics and leveraging the PixieDust display() API to add sophisticated charts.

The PixieApp programming model is the cornerstone of the tooling strategy for 
bridging the gap between data science and engineering, as it streamlines the process 
of operationalizing the analytics, thereby increasing collaboration between data 
scientists and developers and reducing the time-to-market of the application.
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Chapter 4, Publish your Data Analysis to the Web - the PixieApp Tool, I discuss the 
PixieGateway microservice which enables developers to publish PixieApps 
as analytical web applications. I start by showing how to quickly deploy a 
PixieGateway microservice instance both locally and on the cloud as a Kubernetes 
container. I then go over the PixieGateway admin console capabilities, including 
the various configuration profiles and how to live-monitor the deployed PixieApps 
instances and the associated backend Python kernels. I also feature the chart sharing 
capability of the PixieGateway that lets the user turn a chart created with the 
PixieDust display() API into a web page accessible by anyone on the team.

The PixieGateway is a ground-breaking innovation with the potential of seriously 
speeding up the operationalization of analytics—which is sorely needed today—
to fully capitalize on the promise of data science. It represents an open-source 
alternative to similar products that already exist on the market, such as the Shiny 
Server from R-Studio (https://shiny.rstudio.com/deploy) and Dash from 
Plotly (https://dash.plot.ly)

Chapter 5, Python and PixieDust Best Practices and Advanced Concepts, I complete 
the deep-dive of the PixieDust toolbox by going over advanced concepts of the 
PixieApp programming model:

• @captureOutput decorator: By default, PixieApp routes require developers 
to provide an HTML fragment that will be injected in the application UI. 
This is a problem when we want to call a third-party Python library that 
is not aware of the PixieApp architecture and directly generate the output 
to the Notebook. @captureOutput solves this problem by automatically 
redirecting the content generated by the third-party Python library and 
encapsulating it into a proper HTML fragment.

• Leveraging Python class inheritance for greater modularity and code reuse: 
Breaks down the PixieApp code into logical classes that can be composed 
together using the Python class inheritance capability. I also show how 
to call an external PixieApp using the pd_app custom attribute.

• PixieDust support for streaming data: Shows how PixieDust display() 
and PixieApp can also handle streaming data.

• Implementing Dashboard drill-down with PixieApp events: Provides 
a mechanism for letting PixieApp components publish and subscribe to 
events generated when the user interacts with the UI (for example, charts, 
and buttons).

• Building a custom display renderer for the PixieDust display() API: 
Walks through the code of a simple renderer that extends the PixieDust 
menus. This renderer displays a custom HTML table showing the selected 
data.

https://shiny.rstudio.com/deploy
https://dash.plot.ly
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• Debugging techniques: Go over the various debugging techniques that 
PixieDust offers including the visual Python debugger called PixieDebugger 
and the %%PixiedustLog magic for displaying Python logging messages.

• Ability to run Node.js code: We discuss the pixiedust_node extension 
that manages the life cycle of a Node.js process responsible for executing 
arbitrary Node.js scripts directly from within the Python Notebook.

Thanks to the open-source model with its transparent development process and 
a growing community of users who provided some valuable feedback, we were 
able to prioritize and implement a lot of these advanced features over time. The 
key point I'm trying to make is that following an open-source model with an 
appropriate license (PixieDust uses the Apache 2.0 license available here https://
www.apache.org/licenses/LICENSE-2.0) does work very well. It helped us grow 
the community of users, which in turn provided us with the necessary feedback 
to prioritize new features that we knew were high value, and in some instances 
contributed code in the form of GitHub pull requests.

Chapter 6, Analytics Study: AI and Image Recognition with TensorFlow, I dive into the 
first of four industry cases. I start with a high-level introduction to machine learning, 
followed by an introduction to deep learning—a subfield of machine learning—and 
the TensorFlow framework that makes it easier to build neural network models. 
I then proceed to build an image recognition sample application including the 
associated PixieApp in four parts:

• Part 1: Builds an image recognition TensorFlow model by using the 
pretrain ImageNet model. Using the TensorFlow for poets tutorial, I 
show how to build analytics to load and score a neural network model. 

• Part 2: Creates a PixieApp that operationalizes the analytics created in Part 
1. This PixieApp scrapes the images from a web page URL provided by the 
user, scores them against the TensorFlow model and then graphically shows 
the results.

• Part 3: I show how to integrate the TensorBoard Graph Visualization 
component directly in the Notebook, providing the ability to debug 
the neural network model.

• Part 4: I show how to retrain the model with custom training data 
and update the PixieApp to show the results from both models.

I decided to start the series of sample applications with deep learning image 
recognition with TensorFlow because it's an important use case that is growing 
in popularity and demonstrating how we can build the models and deploy them 
in an application in the same Notebook represents a powerful statement toward 
the theme of bridging the gap between data science and engineering.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
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Chapter 7, Analytics Study: NLP and Big Data with Twitter Sentiment Analysis, I talk 
about doing natural language processing at Twitter scale. In this chapter, I show 
how to use the IBM Watson Natural Language Understanding cloud-based service 
to perform a sentiment analysis of the tweets. This is very important because it 
reminds the reader that reusing managed hosted services rather building the 
capability in-house can sometimes be an attractive option.

I start with an introduction to the Apache Spark parallel computing framework, 
and then move on to building the application in four parts:

• Part 1: Acquiring the Twitter data with Spark Structured Streaming
• Part 2: Enriching the data with sentiment and most relevant entity extracted 

from the text
• Part 3: Operationalizing the analytics by creating a real-time dashboard 

PixieApp.
• Part 4: An optional section that re-implements the application with 

Apache Kafka and IBM Streaming Designer hosted service to demonstrate 
how to add greater scalability.

I think the reader, especially those who are not familiar with Apache Spark, will 
enjoy this chapter as it is a little easier to follow than the previous one. The key 
takeaway is how to build analytics that scale with Jupyter Notebooks that are 
connected to a Spark cluster.

Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis and Forecasting, 
I talk about time series analysis which is a very important field of data science 
with lots of practical applications in the industry. I start the chapter with a deep 
dive into the NumPy library which is foundational to so many other libraries, such 
as pandas and SciPy. I then proceed with the building of the sample application, 
which analyzes a time series comprised of historical stock data, in two parts:

• Part 1: Provides a statistical exploration of the time series including various 
charts such as autocorrelation function (ACF) and partial autocorrelation 
function (PACF)

• Part 2: Builds a predictive model based on the ARIMA algorithms using 
the statsmodels Python library

Time series analysis is such an important field of data science that I consider to 
be underrated. I personally learned a lot while writing this chapter. I certainly hope 
that the reader will enjoy it as well and that reading it will spur an interest to know 
more about this great topic. If that's the case, I also hope that you'll be convinced 
to try out Jupyter and PixieDust on your next learnings about time series analysis.
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Chapter 9, Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis, 
I complete this series of industry use cases with the study of Graphs. I chose a 
sample application that analyzes flight delays because the data is readily available, 
and it's a good fit for using graph algorithms (well, for full disclosure, I may 
also have chosen it because I had already written a similar application to predict 
flight delays based on weather data where I used Apache Spark MLlib: https://
developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-
with-apache-spark-mllib-flightstats-and-weather-data). 

I start with an introduction to graphs and associated graph algorithms including 
several of the most popular graph algorithms such as Breadth First Search and 
Depth First Search. I then proceed with an introduction to the networkx Python 
library that is used to build the sample application.

The application is made of four parts:

• Part 1: Shows how to load the US domestic flight data into a graph.
• Part 2: Creates the USFlightsAnalysis PixieApp that lets the user select an 

origin and destination airport and then display a Mapbox map of the shortest 
path between the two airports according to a selected centrality

• Part 3: Adds data exploration to the PixieApp that includes various statistics 
for each airline that flies out of the selected origin airport

• Part 4: Use the techniques learned in Chapter 8, Analytics Study: Prediction - 
Financial Time Series Analysis and Forecasting to build an ARIMA model for 
predicting flight delays

Graph theory is also another important and growing field of data science and 
this chapter nicely rounds up the series, which I hope provides a diverse and 
representative set of industry use cases. For readers who are particularly interested 
in using graph algorithms with big data, I recommend looking at Apache Spark 
GraphX (https://spark.apache.org/graphx) which implements many of the 
graph algorithms using a very flexible API.

Chapter 10, The Future of Data Analysis and Where to Develop your Skills, I end the 
book by giving a brief summary and explaining my take on Drew's Conway Venn 
Diagram. Then I talk about the future of AI and data science and how companies 
could prepare themselves for the AI and data science revolution. Also, I have listed 
some great references for further learning.

Appendix, PixieApp Quick-Reference, is a developer quick-reference guide that provides 
a summary of all the PixieApp attributes. This explains the various annotations, 
custom HTML attributes, and methods with the help of appropriate examples.

But enough about the introduction: let's get started on our journey with the first 
chapter titled Programming and Data Science – A New Toolset.

https://developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-with-apache-spark-mllib-flightstats-and-weather-data
https://developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-with-apache-spark-mllib-flightstats-and-weather-data
https://developer.ibm.com/clouddataservices/2016/08/04/predict-flight-delays-with-apache-spark-mllib-flightstats-and-weather-data
https://spark.apache.org/graphx
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To get the most out of this book
• Most of the software needed to follow the example is open source and 

therefore free to download. Instructions are provided throughout the book, 
starting with installing anaconda which includes the Jupyter Notebook server.

• In Chapter 7, Analytics Study: NLP and Big Data with Twitter Sentiment 
Analysis, the sample application requires the use of IBM Watson cloud 
services including NLU and Streams Designer. These services come 
with a free tier plan, which is sufficient to follow the example along.

Download the example code files
You can download the example code files for this book from your account 
at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files emailed 
directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen 

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Data-Analysis-with-Python. We also have other code bundles 
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/DataAnalysiswithPython_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Data-Analysis-with-Python
https://github.com/PacktPublishing/Data-Analysis-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ThoughtfulDataScience_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ThoughtfulDataScience_ColorImages.pdf
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Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example: "You can use the {%if ...%}...{%elif ...%}...{%else%}…
{%endif%} notation to conditionally output text."

A block of code is set as follows:

import pandas
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_df = pandas.read_csv(data_url)
building_df

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

import pandas
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_df = pandas.read_csv(data_url)
building_df

Any command-line input or output is written as follows:

jupyter notebook --generate-config

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
" The next step is to create a new route that takes the user value and returns the 
results. This route will be invoked by the Submit Query button."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title 
in the subject of your message. If you have questions about any aspect of this book, 
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address 
or website name. Please contact us at copyright@packtpub.com with a link to the 
material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book, 
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave 
a review on the site that you purchased it from? Potential readers can then see and 
use your unbiased opinion to make purchase decisions, we at Packt can understand 
what you think about our products, and our authors can see your feedback on their 
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://packtpub.com
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Programming and Data 
Science – A New Toolset

"Data is a precious thing and will last longer than the systems themselves."

– Tim Berners-Lee, inventor of the World Wide Web

(https://en.wikipedia.org/wiki/Tim_Berners-Lee)

In this introductory chapter, I'll start the conversation by attempting to answer a few 
fundamental questions that will hopefully provide context and clarity for the rest of 
this book:

• What is data science and why it's on the rise
• Why is data science here to stay
• Why do developers need to get involved in data science

Using my experience as a developer and recent data science practitioner, I'll then 
discuss a concrete data pipeline project that I worked on and a data science strategy 
that derived from this work, which is comprised of three pillars: data, services, and 
tools. I'll end the chapter by introducing Jupyter Notebooks which are at the center 
of the solution I'm proposing in this book.

What is data science
If you search the web for a definition of data science, you will certainly find 
many. This reflects the reality that data science means different things to different 
people. There is no real consensus on what data scientists exactly do and what 
training they must have; it all depends on the task they're trying to accomplish, 
for example, data collection and cleaning, data visualization, and so on.

https://en.wikipedia.org/wiki/Tim_Berners-Lee
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For now, I'll try to use a universal and, hopefully, consensual definition: data science 
refers to the activity of analyzing a large amount of data in order to extract knowledge and 
insight leading to actionable decisions. It's still pretty vague though; one can ask what 
kind of knowledge, insight, and actionable decision are we talking about?

To orient the conversation, let's reduce the scope to three fields of data science:

• Descriptive analytics: Data science is associated with information retrieval 
and data collection techniques with the goal of reconstituting past events 
to identify patterns and find insights that help understand what happened 
and what caused it to happen. An example of this is looking at sales figures 
and demographics by region to categorize customer preferences. This part 
requires being familiar with statistics and data visualization techniques.

• Predictive analytics: Data science is a way to predict the likelihood that 
some events are currently happening or will happen in the future. In this 
scenario, the data scientist looks at past data to find explanatory variables 
and build statistical models that can be applied to other data points for which 
we're trying to predict the outcome, for example, predicting the likelihood 
that a credit card transaction is fraudulent in real-time. This part is usually 
associated with the field of machine learning.

• Prescriptive analytics: In this scenario, data science is seen as a way to make 
better decisions, or perhaps I should say data-driven decisions. The idea is 
to look at multiple options and using simulation techniques, quantify, and 
maximize the outcome, for example, optimizing the supply chain by looking 
at minimizing operating costs.

In essence, descriptive data science answers the question of what (does the 
data tells me), predictive data science answers the question of why (is the data 
behaving a certain way), and prescriptive data science answers the questions 
of how (do we optimize the data toward a specific goal).

Is data science here to stay?
Let's get straight to the point from the start: I strongly think that the answer is yes.

However, that was not always the case. A few years back, when I first started 
hearing about data science as a concept, I initially thought that it was yet another 
marketing buzzword to describe an activity that already existed in the industry: 
Business Intelligence (BI). As a developer and architect working mostly on solving 
complex system integration problems, it was easy to convince myself that I didn't 
need to get directly involved in data science projects, even though it was obvious 
that their numbers were on the rise, the reason being that developers traditionally 
deal with data pipelines as black boxes that are accessible with well-defined APIs. 
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However, in the last decade, we've seen exponential growth in data science interest 
both in academia and in the industry, to the point it became clear that this model 
would not be sustainable. 

As data analytics are playing a bigger and bigger role in a company's operational 
processes, the developer's role was expanded to get closer to the algorithms and 
build the infrastructure that would run them in production. Another piece of 
evidence that data science has become the new gold rush is the extraordinary growth 
of data scientist jobs, which have been ranked number one for 2 years in a row on 
Glassdoor (https://www.prnewswire.com/news-releases/glassdoor-reveals-
the-50-best-jobs-in-america-for-2017-300395188.html) and are consistently 
posted the most by employers on Indeed. Headhunters are also on the prowl on 
LinkedIn and other social media platforms, sending tons of recruiting messages 
to whoever has a profile showing any data science skills.

One of the main reasons behind all the investment being made into these 
new technologies is the hope that it will yield major improvements and greater 
efficiencies in the business. However, even though it is a growing field, data 
science in the enterprise today is still confined to experimentation instead of being 
a core activity as one would expect given all the hype. This has lead a lot of people 
to wonder if data science is a passing fad that will eventually subside and yet 
another technology bubble that will eventually pop, leaving a lot of people behind.

These are all good points, but I quickly realized that it was more than just 
a passing fad; more and more of the projects I was leading included the integration 
of data analytics into the core product features. Finally, it is when the IBM Watson 
Question Answering system won at a game of Jeopardy! against two experienced 
champions, that I became convinced that data science, along with the cloud, big data, 
and Artificial Intelligence (AI), was here to stay and would eventually change the 
way we think about computer science.

Why is data science on the rise?
There are multiple factors involved in the meteoric rise of data science.

First, the amount of data being collected keeps growing at an exponential rate. 
According to recent market research from the IBM Marketing Cloud (https://www-
01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345GBEN) something 
like 2.5 quintillion bytes are created every day (to give you an idea of how big that 
is, that's 2.5 billion of billion bytes), but yet only a tiny fraction of this data is ever 
analyzed, leaving tons of missed opportunities on the table.

https://www.prnewswire.com/news-releases/glassdoor-reveals-the-50-best-jobs-in-america-for-2017-300395188.html
https://www.prnewswire.com/news-releases/glassdoor-reveals-the-50-best-jobs-in-america-for-2017-300395188.html
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345GBEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=WRL12345GBEN
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Second, we're in the midst of a cognitive revolution that started a few years ago; 
almost every industry is jumping on the AI bandwagon, which includes natural 
language processing (NLP) and machine learning. Even though these fields existed 
for a long time, they have recently enjoyed the renewed attention to the point that 
they are now among the most popular courses in colleges as well as getting the lion's 
share of open source activities. It is clear that, if they are to survive, companies need 
to become more agile, move faster, and transform into digital businesses, and as the 
time available for decision-making is shrinking to near real-time, they must become 
fully data-driven. If you also include the fact that AI algorithms need high-quality 
data (and a lot of it) to work properly, we can start to understand the critical role 
played by data scientists.

Third, with advances in cloud technologies and the development of Platform 
as a Service (PaaS), access to massive compute engines and storage has never 
been easier or cheaper. Running big data workloads, once the purview of large 
corporations, is now available to smaller organizations or any individuals with 
a credit card; this, in turn, is fueling the growth of innovation across the board.

For these reasons, I have no doubt that, similar to the AI revolution, data science 
is here to stay and that its growth will continue for a long time. But we also can't 
ignore the fact that data science hasn't yet realized its full potential and produced 
the expected results, in particular helping companies in their transformation into 
data-driven organizations. Most often, the challenge is achieving that next step, 
which is to transform data science and analytics into a core business activity 
that ultimately enables clear-sighted, intelligent, bet-the-business decisions.

What does that have to do with 
developers?
This is a very important question that we'll spend a lot of time developing in the 
coming chapters. Let me start by looking back at my professional journey; I spent 
most of my career as a developer, dating back over 20 years ago, working on many 
aspects of computer science.
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I started by building various tools that helped with software internationalization 
by automating the process of translating the user interface into multiple languages. 
I then worked on a LotusScript (scripting language for Lotus Notes) editor for 
Eclipse that would interface directly with the underlying compiler. This editor 
provided first-class development features, such as content assist, which provides 
suggestions, real-time syntax error reporting, and so on. I then spent a few years 
building middleware components based on Java EE and OSGI (https://www.osgi.
org) for the Lotus Domino server. During that time, I led a team that modernized the 
Lotus Domino programming model by bringing it to the latest technologies available 
at the time. I was comfortable with all aspects of software development, frontend, 
middleware, backend data layer, tooling, and so on; I was what some would call 
a full-stack developer.

That was until I saw a demo of the IBM Watson Question Answering system that 
beat longtime champions Brad Rutter and Ken Jennings at a game of Jeopardy! in 
2011. Wow! This was groundbreaking, a computer program capable of answering 
natural language questions. I was very intrigued and, after doing some research, 
meeting with a few researchers involved in the project, and learning about the 
techniques used to build this system, such as NLP, machine learning, and general 
data science, I realized how much potential this technology would have if applied 
to other parts of the business.

A few months later, I got an opportunity to join the newly formed Watson Division 
at IBM, leading a tooling team with the mission to build data ingestion and accuracy 
analysis capabilities for the Watson system. One of our most important requirements 
was to make sure the tools were easy to use by our customers, which is why, in 
retrospect, giving this responsibility to a team of developers was the right move. 
From my perspective, stepping into that job was both challenging and enriching. 
I was leaving a familiar world where I excelled at designing architectures based 
on well-known patterns and implementing frontend, middleware, or backend 
software components to a world focused mostly on working with a large amount 
of data; acquiring it, cleansing it, analyzing it, visualizing it, and building models. 
I spent the first six months drinking from the firehose, reading, and learning about 
NLP, machine learning, information retrieval, and statistical data science, at least 
enough to be able to work on the capabilities I was building.

https://www.osgi.org
https://www.osgi.org
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It was at that time, interacting with the research team to bring these algorithms 
to market, that I realized how important developers and data scientists needed to 
collaborate better. The traditional approach of having data scientists solve complex 
data problems in isolation and then throw the results "over the wall" to developers 
for them to operationalize them is not sustainable and doesn't scale, considering that 
the amount of data to process keeps growing exponentially and the required time 
to market keeps shrinking.

Instead, their role needs to be shifting toward working as one team, which means 
that data scientists must work and think like software developers and vice versa. 
Indeed, this looks very good on paper: on the one hand, data scientists will benefit 
from tried-and-true software development methodologies such as Agile—with 
its rapid iterations and frequent feedback approach—but also from a rigorous 
software development life cycle that brings compliance with enterprise needs, such 
as security, code reviews, source control, and so on. On the other hand, developers 
will start thinking about data in a new way: as analytics meant to discover insights 
instead of just a persistence layer with queries and CRUD (short for, create, read, 
update, delete) APIs.

Putting these concepts into practice
After 4 years as the Watson Core Tooling lead architect building self-service 
tooling for the Watson Question Answering system, I joined the Developer 
Advocacy team of the Watson Data Platform organization which has the expanded 
mission of creating a platform that brings the portfolio of data and cognitive services 
to the IBM public cloud. Our mission was rather simple: win the hearts and minds 
of developers and help them be successful with their data and AI projects.

The work had multiple dimensions: education, evangelism, and activism. The 
first two are pretty straightforward, but the concept of activism is relevant to this 
discussion and worth explaining in more details. As the name implies, activism 
is about bringing change where change is needed. For our team of 15 developer 
advocates, this meant walking in the shoes of developers as they try to work with 
data—whether they're only getting started or already operationalizing advanced 
algorithms—feel their pain and identify the gaps that should be addressed. 
To that end, we built and made open source numerous sample data pipelines 
with real-life use cases.
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At a minimum, each of these projects needed to satisfy three requirements:

• The raw data used as input must be publicly available
• Provide clear instructions for deploying the data pipeline on the cloud 

in a reasonable amount of time
• Developers should be able to use the project as a starting point for similar 

scenarios, that is, the code must be highly customizable and reusable

The experience and insights we gained from these exercises were invaluable:

• Understanding which data science tools are best suited for each task
• Best practice frameworks and languages
• Best practice architectures for deploying and operationalizing analytics

The metrics that guided our choices were multiple: accuracy, scalability, code 
reusability, but most importantly, improved collaboration between data scientists 
and developers.

Deep diving into a concrete example
Early on, we wanted to build a data pipeline that extracted insights from Twitter 
by doing sentiment analysis of tweets containing specific hashtags and to deploy 
the results to a real-time dashboard. This application was a perfect starting point 
for us, because the data science analytics were not too complex, and the application 
covered many aspects of a real-life scenario:

• High volume, high throughput streaming data
• Data enrichment with sentiment analysis NLP
• Basic data aggregation
• Data visualization
• Deployment into a real-time dashboard
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To try things out, the first implementation was a simple Python application that 
used the tweepy library (the official Twitter library for Python: https://pypi.
python.org/pypi/tweepy) to connect to Twitter and get a stream of tweets and 
textblob (the simple Python library for basic NLP: https://pypi.python.org/
pypi/textblob) for sentiment analysis enrichment.

The results were then saved into a JSON file for analysis. This prototype was a great 
way to getting things started and experiment quickly, but after a few iterations we 
quickly realized that we needed to get serious and build an architecture that satisfied 
our enterprise requirements.

Data pipeline blueprint
At a high level, data pipelines can be described using the following generic blueprint:

Data pipeline workflow

The main objective of a data pipeline is to operationalize (that is, provide direct 
business value) the data science analytics outcome in a scalable, repeatable 
process, and with a high degree of automation. Examples of analytics could be 
a recommendation engine to entice consumers to buy more products, for example, 
the Amazon recommended list, or a dashboard showing Key Performance 
Indicators (KPIs) that can help a CEO make future decisions for the company.

https://pypi.python.org/pypi/tweepy
https://pypi.python.org/pypi/tweepy
https://pypi.python.org/pypi/textblob
https://pypi.python.org/pypi/textblob
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There are multiple persons involved in the building of a data pipeline:

• Data engineers: They are responsible for designing and operating 
information systems. In other words, data engineers are responsible for 
interfacing with data sources to acquire the data in its raw form and then 
massage it (some call this data wrangling) until it is ready to be analyzed. 
In the Amazon recommender system example, they would implement 
a streaming processing pipeline that captures and aggregates specific 
consumer transaction events from the e-commerce system of records 
and stores them into a data warehouse.

• Data scientists: They analyze the data and build the analytics that extract 
insight. In our Amazon recommender system example, they could use a 
Jupyter Notebook that connects to the data warehouse to load the dataset 
and build a recommendation engine using, for example, collaborative 
filtering algorithm (https://en.wikipedia.org/wiki/Collaborative_
filtering).

• Developers: They are responsible for operationalizing the analytics into an 
application targeted at line of business users (business analysts, C-Suite, end 
users, and so on). Again, in the Amazon recommender system, the developer 
will present the list of recommended products after the user has completed 
a purchase or via a periodic email.

• Line of business users: This encompasses all users that consume the 
output of data science analytics, for example, business analysts analyzing 
dashboards to monitor the health of a business or the end user using 
an application that provides a recommendation as to what to buy next.

In real-life, it is not uncommon that the same person plays more than one 
of the roles described here; this may mean that one person has multiple, 
different needs when interacting with a data pipeline.

As the preceding diagram suggests, building a data science pipeline is iterative 
in nature and adheres to a well-defined process:

1. Acquire Data: This step includes acquiring the data in its raw form from 
a variety of sources: structured (RDBMS, system of records, and so on) 
or unstructured (web pages, reports, and so on):

 ° Data cleansing: Check for integrity, fill missing data, fix incorrect 
data, and data munging

 ° Data prep: Enrich, detect/remove outliers, and apply business rules

https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering
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2. Analyze: This step combines descriptive (understand the data) and 
prescriptive (build models) activities:

 ° Explore: Find statistical properties, for example, central tendency, 
standard deviation, distribution, and variable identification, such  
as univariate and bivariate analysis, the correlation between 
variables, and so on.

 ° Visualization: This step is extremely important to properly analyze 
the data and form hypotheses. Visualization tools should provide 
a reasonable level of interactivity to facilitate understanding of the 
data.

 ° Build model: Apply inferential statistics to form hypotheses, such 
as selecting features for the models. This step usually requires expert 
domain knowledge and is subject to a lot of interpretation.

3. Deploy: Operationalize the output of the analysis phase:
 ° Communicate: Generate reports and dashboards that communicate 

the analytic output clearly for consumption by the line of business 
user (C-Suite, business analyst, and so on)

 ° Discover: Set a business outcome objective that focuses on 
discovering new insights and business opportunities that can  
lead to a new source of revenue

 ° Implement: Create applications for end-users

4. Test: This activity should really be included in every step, but here 
we're talking about creating a feedback loop from field usage:

 ° Create metrics that measure the accuracy of the models
 ° Optimize the models, for example, get more data, find new features, 

and so on

What kind of skills are required 
to become a data scientist?
In the industry, the reality is that data science is so new that companies do not 
yet have a well-defined career path for it. How do you get hired for a data scientist 
position? How many years of experience is required? What skills do you need 
to bring to the table? Math, statistics, machine learning, information technology, 
computer science, and what else?
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Well, the answer is probably a little bit of everything plus one more critical skill: 
domain-specific expertise.

There is a debate going on around whether applying generic data science techniques 
to any dataset without an intimate understanding of its meaning, leads to the desired 
business outcome. Many companies are leaning toward making sure data scientists 
have substantial amount of domain expertise, the rationale being that without it 
you may unknowingly introduce bias at any steps, such as when filling the gaps 
in the data cleansing phase or during the feature selection process, and ultimately 
build models that may well fit a given dataset but still end up being worthless. 
Imagine a data scientist working with no chemistry background, studying unwanted 
molecule interactions for a pharmaceutical company developing new drugs. This is 
also probably why we're seeing a multiplication of statistics courses specialized in 
a particular domain, such as biostatistics for biology, or supply chain analytics for 
analyzing operation management related to supply chains, and so on.

To summarize, a data scientist should be in theory somewhat proficient in the 
following areas:

• Data engineering / information retrieval
• Computer science
• Math and statistics
• Machine learning
• Data visualization
• Business intelligence
• Domain-specific expertise

If you are thinking about acquiring these skills but don't have the time 
to attend traditional classes, I strongly recommend using online courses.
I particularly recommend this course: https://www.coursera.org/: 
https://www.coursera.org/learn/data-science-course.

https://www.coursera.org/
https://www.coursera.org/learn/data-science-course
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The classic Drew's Conway Venn Diagram provides an excellent visualization 
of what is data science and why data scientists are a bit of a unicorn:

Drew's Conway Data Science Venn Diagram

By now, I hope it becomes pretty clear that the perfect data scientist that fits the 
preceding description is more an exception than the norm and that, most often, 
the role involves multiple personas. Yes, that's right, the point I'm trying to make 
is that data science is a team sport and this idea will be a recurring theme throughout 
this book.

IBM Watson DeepQA
One project that exemplifies the idea that data science is a team sport is the 
IBM DeepQA research project which originated as an IBM grand challenge 
to build an artificial intelligence system capable of answering natural language 
questions against predetermined domain knowledge. The Question Answering 
(QA) system should be good enough to be able to compete with human contestants 
at the Jeopardy! popular television game show.
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As is widely known, this system dubbed IBM Watson went on to win the 
competition in 2011 against two of the most seasoned Jeopardy! champions: 
Ken Jennings and Brad Rutter. The following photo was taken from the actual 
game that aired on February 2011:

IBM Watson battling Ken Jennings and Brad Rutter at Jeopardy!

Source: https://upload.wikimedia.org/wikipedia/en/9/9b/Watson_Jeopardy.jpg

It was during the time that I was interacting with the research team that built 
the IBM Watson QA computer system that I got to take a closer look at the 
DeepQA project architecture and realized first-hand how many data science fields 
were actually put to use.

The following diagram depicts a high-level architecture of the DeepQA data 
pipeline:

Watson DeepQA architecture diagram

Source: https://researcher.watson.ibm.com/researcher/files/us-mike.barborak/DeepQA-Arch.PNG
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As the preceding diagram shows, the data pipeline for answering a question 
is composed of the following high-level steps:

1. Question & Topic Analysis (natural language processing): This step 
uses a deep parsing component which detects dependency and hierarchy 
between the words that compose the question. The goal is to have a deeper 
understanding of the question and extracts fundamental properties, such 
as the following:

 ° Focus: What is the question about?
 ° Lexical Answer Type (LAT): What is the type of the expected 

answer, for example, a person, a place, and so on. This information 
is very important during the scoring of candidate answers as 
it provides an early filter for answers that don't match the LAT.

 ° Named-entity resolution: This resolves an entity into a standardized 
name, for example, "Big Apple" to "New York".

 ° Anaphora resolution: This links pronouns to previous terms in the 
question, for example, in the sentence "On Sept. 1, 1715 Louis XIV 
died in this city, site of a fabulous palace he built," the pronoun 
"he" refers to Louis XIV.

 ° Relations detection: This detects relations within the question, 
for example, "She divorced Joe DiMaggio in 1954" where the 
relation is "Joe DiMaggio Married X." These type of relations  
(Subject->Predicate->Object) can be used to query triple stores 
and yield high-quality candidate answers.

 ° Question class: This maps the question to one of the predefined 
types used in Jeopardy!, for example, factoid, multiple-choice, 
puzzle, and so on.
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2. Primary search and Hypothesis Generation (information retrieval): This 
step relies heavily on the results of the question analysis step to assemble 
a set of queries adapted to the different answer sources available. Some 
example of answer sources include a variety of full-text search engines, 
such as Indri (https://www.lemurproject.org/indri.php) and Apache 
Lucene/Solr (http://lucene.apache.org/solr), document-oriented and 
title-oriented search (Wikipedia), triple stores, and so on. The search results 
are then used to generate candidate answers. For example, title-oriented 
results will be directly used as candidates while document searches will 
require more detailed analysis of the passages (again using NLP techniques) 
to extract possible candidate answers.

3. Hypothesis and Evidence scoring (NLP and information retrieval): For each 
candidate answer, another round of search is performed to find additional 
supporting evidence using different scoring techniques. This step also acts 
as a prescreening test where some of the candidate answers are eliminated, 
such as the answers that do not match the LAT computed from step 1. The 
output of this step is a set of machine learning features corresponding to the 
supporting evidence found. These features will be used as input to a set of 
machine learning models for scoring the candidate answers.

4. Final merging and scoring (machine learning): During this final step, 
the system identifies variants of the same answer and merges them together. 
It also uses machine learning models to select the best answers ranked by 
their respective scores, using the features generated in step 3. These machine 
learning models have been trained on a set of representative questions with 
the correct answers against a corpus of documents that has been  
pre-ingested.

As we continue the discussion on how data science and AI are changing the 
field of computer science, I thought it was important to look at the state of the art. 
IBM Watson is one of these flagship projects that has paved the way to more advances 
we've seen since it beats Ken Jennings and Brad Rutter at the game of Jeopardy!.

Back to our sentiment analysis of Twitter 
hashtags project
The quick data pipeline prototype we built gave us a good understanding of 
the data, but then we needed to design a more robust architecture and make 
our application enterprise ready. Our primary goal was still to gain experience 
in building data analytics, and not spend too much time on the data engineering 
part. This is why we tried to leverage open source tools and frameworks as much 
as possible:

https://www.lemurproject.org/indri.php
http://lucene.apache.org/solr
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• Apache Kafka (https://kafka.apache.org): This is a scalable streaming 
platform for processing the high volume of tweets in a reliable and fault-
tolerant way.

• Apache Spark (https://spark.apache.org): This is an in-memory  
cluster-computing framework. Spark provides a programming interface 
that abstracts a complexity of parallel computing.

• Jupyter Notebooks (http://jupyter.org): These interactive web-
based documents (Notebooks) let users remotely connect to a computing 
environment (Kernel) to create advanced data analytics. Jupyter Kernels 
support a variety of programming languages (Python, R, Java/Scala, and 
so on) as well as multiple computing frameworks (Apache Spark, Hadoop, 
and so on).

For the sentiment analysis part, we decided to replace the code we wrote using the 
textblob Python library with the Watson Tone Analyzer service (https://www.ibm.
com/watson/services/tone-analyzer), which is a cloud-based rest service that 
provides advanced sentiment analysis including detection of emotional, language, 
and social tone. Even though the Tone Analyzer is not open source, a free version 
that can be used for development and trial is available on IBM Cloud (https://www.
ibm.com/cloud).

https://kafka.apache.org
https://spark.apache.org
http://jupyter.org
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/cloud
https://www.ibm.com/cloud
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Our architecture now looks like this:

Twitter sentiment analysis data pipeline architecture

In the preceding diagram, we can break down the workflow in to the following steps:

1. Produce a stream of tweets and publish them into a Kafka topic, which 
can be thought of as a channel that groups events together. In turn, a receiver 
component can subscribe to this topic/channel to consume these events.

2. Enrich the tweets with emotional, language, and social tone scores: use Spark 
Streaming to subscribe to Kafka topics from component 1 and send the text to 
the Watson Tone Analyzer service. The resulting tone scores are added to the 
data for further downstream processing. This component was implemented 
using Scala and, for convenience, was run using a Jupyter Scala Notebook.

3. Data analysis and exploration: For this part, we decided to go with a Python 
Notebook simply because Python offer a more attractive ecosystem of 
libraries, especially around data visualizations.

4. Publish results back to Kafka.
5. Implement a real-time dashboard as a Node.js application.
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With a team of three people, it took us about 8 weeks to get the dashboard working 
with real-time Twitter sentiment data. There are multiple reasons for this seemingly 
long time:

• Some of the frameworks and services, such as Kafka and Spark Streaming, 
were new to us and we had to learn how to use their APIs.

• The dashboard frontend was built as a standalone Node.js application 
using the Mozaïk framework (https://github.com/plouc/mozaik), 
which made it easy to build powerful live dashboards. However, we 
found a few limitations with the code, which forced us to dive into the 
implementation and write patches, hence adding delays to the overall 
schedule.

The results are shown in the following screenshot:

Twitter sentiment analysis real-time dashboard

https://github.com/plouc/mozaik
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Lessons learned from building our 
first enterprise-ready data pipeline
Leveraging open source frameworks, libraries, and tools definitely helped us be 
more efficient in implementing our data pipeline. For example, Kafka and Spark 
were pretty straightforward to deploy and easy to use, and when we were stuck, 
we could always rely on the developer community for help by using, for example, 
question and answer sites, such as https://stackoverflow.com.

Using a cloud-based managed service for the sentiment analysis step, such as the 
IBM Watson Tone Analyzer (https://www.ibm.com/watson/services/tone-
analyzer) was another positive. It allowed us to abstract out the complexity of 
training and deploying a model, making the whole step more reliable and certainly 
more accurate than if we had implemented it ourselves.

It was also super easy to integrate as we only needed to make a REST request 
(also known as an HTTP request, see https://en.wikipedia.org/wiki/
Representational_state_transfer for more information on REST architecture) 
to get our answers. Most of the modern web services now conform to the REST 
architecture, however, we still need to know the specification for each of the APIs, 
which can take a long time to get right. This step is usually made simpler by using an 
SDK library, which is often provided for free and in most popular languages, such as 
Python, R, Java, and Node.js. SDK libraries provide higher level programmatic access 
to the service by abstracting out the code that generates the REST requests. The SDK 
would typically provide a class to represent the service, where each method would 
encapsulate a REST API while taking care of user authentication and other headers.

On the tooling side, we were very impressed with Jupyter Notebooks, which 
provided excellent features, such as collaboration and full interactivity (we'll cover 
Notebooks in more detail later on).

Not everything was smooth though, as we struggled in a few key areas:

• Which programming language to choose for some of the key tasks, such as 
data enrichment and data analysis. We ended up using Scala and Python, 
even though there was little experience on the team, mostly because they 
are very popular among data scientists and also because we wanted to 
learn them.

https://stackoverflow.com
https://www.ibm.com/watson/services/tone-analyzer
https://www.ibm.com/watson/services/tone-analyzer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
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• Creating visualizations for data exploration was taking too much time. 
Writing a simple chart with a visualization library, such as Matplotlib 
or Bokeh required writing too much code. This, in turn, slowed down 
our need for fast experimentation.

• Operationalizing the analytics into a real-time dashboard was way too 
hard to be scalable. As mentioned before, we needed to write a full-fledged 
standalone Node.js application that consumes data from Kafka and needed to 
be deployed as a cloud-foundry application (https://www.cloudfoundry.
org) on the IBM Cloud. Understandably, this task required quite a long time 
to complete the first time, but we also found that it was difficult to update 
as well. Changes in the analytics that write data to Kafka needed to be 
synchronized with the changes on the dashboard application as well.

Data science strategy
If data science is to continue to grow and graduate into a core business activity, 
companies must find a way to scale it across all layers of the organization and 
overcome all the difficult challenges we discussed earlier. To get there, we identified 
three important pillars that architects planning a data science strategy should focus 
on, namely, data, services, and tools:

Three pillars of data science at scale

https://www.cloudfoundry.org
https://www.cloudfoundry.org
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• Data is your most valuable resource: You need a proper data strategy to 
make sure data scientists have easy access to the curated contents they need. 
Properly classifying the data, set appropriate governance policies, and make 
the metadata searchable will reduce the time data scientists spend acquiring 
the data and then asking for permission to use it. This will not only increase 
their productivity, it will also improve their job satisfaction as they will 
spend more time working on doing actual data science.
Setting a data strategy that enables data scientists to easily access high-quality data 
that's relevant to them increases productivity and morale and ultimately leads to 
a higher rate of successful outcomes.

• Services: Every architect planning for data science should be thinking 
about a service-oriented architecture (SOA). Contrary to traditional 
monolithic applications where all the features are bundled together into 
a single deployment, a service-oriented system breaks down functionalities 
into services which are designed to do a few things but to do it very well, 
with high performance and scalability. These systems are then deployed 
and maintained independently from each other giving scalability and 
reliability to the whole application infrastructure. For example, you could 
have a service that runs algorithms to create a deep learning model, another 
one would persist the models and let applications run it to make predictions 
on customer data, and so on.
The advantages are obvious: high reusability, easier maintenance, reduced 
time to market, scalability, and much more. In addition, this approach would 
fit nicely into a cloud strategy giving you a growth path as the size of your 
workload increases beyond existing capacities. You also want to prioritize 
open source technologies and standardize on open protocols as much as 
possible.
Breaking processes into smaller functions infuses scalability, reliability, 
and repeatability into the system.
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• Tools do matter! Without the proper tools, some tasks become extremely 
difficult to complete (at least that's the rationale I use to explain why I fail 
at fixing stuff around the house). However, you also want to keep the tools 
simple, standardized, and reasonably integrated so they can be used by less 
skilled users (even if I was given the right tool, I'm not sure I would have 
been able to complete the house fixing task unless it's simple enough to use). 
Once you decrease the learning curve to use these tools, non-data scientist 
users will feel more comfortable using them.

Making the tools simpler to use contributes to breaking the silos and increases 
collaboration between data science, engineering, and business teams.

Jupyter Notebooks at the center 
of our strategy
In essence, Notebooks are web documents composed of editable cells that let you 
run commands interactively against a backend engine. As their name indicates, we 
can think of them as the digital version of a paper scratch pad used to write notes 
and results about experiments. The concept is very powerful and simple at the same 
time: a user enters code in the language of his/her choice (most implementations 
of Notebooks support multiple languages, such as Python, Scala, R, and many 
more), runs the cell and gets the results interactively in an output area below the cell 
that becomes part of the document. Results could be of any type: text, HTML, and 
images, which is great for graphing data. It's like working with a traditional REPL 
(short for, Read-Eval-Print-Loop) program on steroids since the Notebook can be 
connected to powerful compute engines (such as Apache Spark (https://spark.
apache.org) or Python Dask (https://dask.pydata.org) clusters) allowing  
you to experiment with big data if needed.

Within Notebooks, any classes, functions, or variables created in a cell are visible 
in the cells below, enabling you to write complex analytics piece by piece, iteratively 
testing your hypotheses and fixing problems before moving on to the next phase. 
In addition, users can also write rich text using the popular Markdown language 
or mathematical expressions using LaTeX (https://www.latex-project.org/), 
to describe their experiments for others to read.

https://spark.apache.org
https://spark.apache.org
https://dask.pydata.org
https://www.latex-project.org/
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The following figure shows parts of a sample Jupyter Notebook with a Markdown 
cell explaining what the experiment is about, a code cell written in Python to create 
3D plots, and the actual 3D charts results:

Sample Jupyter Notebook

Why are Notebooks so popular?
In the last few years, Notebooks have seen a meteoric growth in popularity as 
the tool of choice for data science-related activities. There are multiple reasons that 
can explain it, but I believe the main one is its versatility, making it an indispensable 
tool not just for data scientists but also for most of the personas involved in building 
data pipelines, including business analysts and developers.

For data scientists, Notebooks are ideal for iterative experimentation because 
it enables them to quickly load, explore, and visualize data. Notebooks are also 
an excellent collaboration tool; they can be exported as JSON files and easily shared 
across the team, allowing experiments to be identically repeated and debugged when 
needed. In addition, because Notebooks are also web applications, they can be easily 
integrated into a multi-users cloud-based environment providing an even better 
collaborative experience. 
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These environments can also provide on-demand access to large compute resources 
by connecting the Notebooks with clusters of machines using frameworks such as 
Apache Spark. Demand for these cloud-based Notebook servers is rapidly growing 
and as a result, we're seeing an increasing number of SaaS (short for, Software 
as a Service) solutions, both commercial with, for example, IBM Data Science 
Experience (https://datascience.ibm.com) or DataBricks (https://databricks.
com/try-databricks) and open source with JupyterHub (https://jupyterhub.
readthedocs.io/en/latest).

For business analysts, Notebooks can be used as presentation tools that in most 
cases provide enough capabilities with its Markdown support to replace traditional 
PowerPoints. Charts and tables generated can be directly used to effectively 
communicate results of complex analytics; there's no need to copy and paste 
anymore, plus changes in the algorithms are automatically reflected in the final 
presentation. For example, some Notebook implementations, such as Jupyter, 
provide an automated conversion of the cell layout to the slideshow, making 
the whole experience even more seamless.

For reference, here are the steps to produce these slides in Jupyter 
Notebooks:

• Using the View | Cell Toolbar | Slideshow, first annotate 
each cell by choosing between Slide, Sub-Slide, Fragment, 
Skip, or Notes.

• Use the nbconvert jupyter command to convert the Notebook 
into a Reveal.js-powered HTML slideshow:

      jupyter nbconvert <pathtonotebook.ipynb> --to slides

• Optionally, you can fire up a web application server to access 
these slides online:

       jupyter nbconvert <pathtonotebook.ipynb> --to 
slides –post serve

For developers, the situation is much less clear-cut. On the one hand, developers love 
REPL programming, and Notebooks offer all the advantages of an interactive REPL 
with the added bonuses that it can be connected to a remote backend. By virtue 
of running in a browser, results can contain graphics and, since they can be saved, 
all or part of the Notebook can be reused in different scenarios. So, for a developer, 
provided that your language of choice is available, Notebooks offer a great way 
to try and test things out, such as fine-tuning an algorithm or integrating a new API. 
On the other hand, there is little Notebook adoption by developers for data science 
activities that can complement the work being done by data scientists, even though 
they are ultimately responsible for operationalizing the analytics into applications 
that address customer needs.

https://datascience.ibm.com
https://databricks.com/try-databricks
https://databricks.com/try-databricks
https://jupyterhub.readthedocs.io/en/latest
https://jupyterhub.readthedocs.io/en/latest
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To improve the software development life cycle and reduce time to value, they 
need to start using the same tools, programming languages, and frameworks as 
data scientists, including Python with its rich ecosystem of libraries and Notebooks, 
which have become such an important data science tool. Granted that developers 
have to meet the data scientist in the middle and get up to speed on the theory and 
concept behind data science. Based on my experience, I highly recommend using 
MOOCs (short for, Massive Open Online Courses) such as Coursera (https://
www.coursera.org) or EdX (http://www.edx.org), which provide a wide variety 
of courses for every level.

However, having used Notebooks quite extensively, it is clear that, while being very 
powerful, they are primarily designed for data scientists, leaving developers with 
a steep learning curve. They also lack application development capabilities that are 
so critical for developers. As we've seen in the Sentiment analysis of Twitter Hashtags 
project, building an application or a dashboard based on the analytics created in a 
Notebook can be very difficult and require an architecture that can be difficult to 
implement and that has a heavy footprint on the infrastructure.

It is to address these gaps that I decided to create the PixieDust (https://github.
com/ibm-watson-data-lab/pixiedust) library and open source it. As we'll see 
in the next chapters, the main goal of PixieDust is to lower the cost of entry for new 
users (whether it be data scientists or developers) by providing simple APIs for 
loading and visualizing data. PixieDust also provides a developer framework with 
APIs for easily building applications, tools, and dashboards that can run directly 
in the Notebook and also be deployed as web applications.

Summary
In this chapter, I gave my perspective on data science as a developer, discussing the 
reasons why I think that data science along with AI and Cloud has the potential to 
define the next era of computing. I also discussed the many problems that must be 
addressed before it can fully realize its potential. While this book doesn't pretend 
to provide a magic recipe that solves all these problems, it does try to answer the 
difficult but critical question of democratizing data science and more specifically 
bridging the gap between data scientists and developers.

https://www.coursera.org
https://www.coursera.org
http://www.edx.org
https://github.com/ibm-watson-data-lab/pixiedust
https://github.com/ibm-watson-data-lab/pixiedust
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In the next few chapters, we'll dive into the PixieDust open source library and learn 
how it can help Jupyter Notebooks users be more efficient when working with 
data. We'll also deep dive on the PixieApp application development framework 
that enables developers to leverage the analytics implemented in the Notebook 
to build application and dashboards.

In the remaining chapters, we will deep dive into many examples that show how 
data scientists and developers can collaborate effectively to build end-to-end data 
pipelines, iterate on the analytics, and deploy them to end users at a fraction of the 
time. The sample applications will cover many industry use-cases, such as image 
recognition, social media, and financial data analysis which include data science 
use cases like descriptive analytics, machine learning, natural language processing, 
and streaming data.

We will not discuss deeply the theory behind all the algorithms covered in the 
sample applications (which is beyond the scope of this book and would take 
more than one book to cover), but we will instead emphasize how to leverage 
the open source ecosystem to rapidly complete the task at hand (model building, 
visualization, and so on) and operationalize the results into applications and 
dashboards.

The provided sample applications are written mostly in Python 
and come with complete source code. The code has been extensively 
tested and is ready to be re-used and customized in your own projects.
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Python and Jupyter 
Notebooks to Power your 

Data Analysis
"The Best Line of Code is the One You Didn't Have to Write!"

– Unknown

In the previous chapter, I gave a developer's perspective on data science based 
on real experience and discussed three strategic pillars required for successful 
deployment with in the enterprise: data, services, and tools. I also discussed the 
idea that data science is not only the sole purview of data scientists, but rather 
a team sport with a special role for developers.

In this chapter, I'll introduce a solution—based on Jupyter Notebooks, Python, 
and the PixieDust open source library—that focuses on three simple goals:

• Democratizing data science by lowering the barrier to entry for non-data 
scientists

• Increasing collaboration between developers and data scientists
• Making it easier to operationalize data science analytics

This solution only focuses on the tools pillar and not on data and 
services, which should be implemented independently, although we'll cover 
some of it when discussing the sample applications starting in Chapter 6, 
Analytics Study: AI and Image Recognition with TensorFlow.
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Why choose Python?
Like many developers, when it came to building data-intensive projects, using 
Python wasn't my first choice. To be honest, having worked with Java for so many 
years, Scala seemed much more attractive to me at first, even though the learning 
curve was pretty steep. Scala is a very powerful language that elegantly combines 
object-oriented and functional programming, which is sorely lacking in Java 
(at least until Java 8 started to introduce lambda expressions).

Scala also provides a very concise syntax that translates into fewer lines of code, 
higher productivity, and ultimately fewer bugs. This comes in very handy, especially 
when a large part of your work is to manipulate data. Another reason for liking Scala 
is the better API coverage when using big data frameworks such as Apache Spark, 
which are themselves written in Scala. There are also plenty of other good reasons 
to prefer Scala, such as it's a strong typed system and its interoperability with Java, 
online documentation, and high performance.

So, for a developer like myself who is starting to get involved in data science, Scala 
would seem like a more natural choice, but yet, spoiler alert, we ended up focusing 
on Python instead. There are multiple reasons for this choice:

• Python, as a language, has a lot going on for itself too. It is a dynamic 
programming language with similar benefits to Scala, such as functional 
programming, and concise syntax, among others.

• Python has seen, over the last few years, a meteoric rise among data 
scientists, overtaking longtime rival R as the overall preferred language for 
data science, as demonstrated by a quick search for the terms Python Data 
Science, Python Machine Learning, R Data Science, and R Machine 
Learning on Google Trends:
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Interest trends for 2017

In a virtuous circle, Python's rising popularity fuels a vast and growing ecosystem 
of wide-ranging libraries that can be easily imported into your projects using 
the pip Python package installer. Data scientists now have access to many 
powerful open source Python libraries for data manipulation, data visualization, 
statistics, mathematics, machine learning, and natural language processing.

Even beginners can quickly build a machine learning classifier using the popular 
scikit-learn package (http://scikit-learn.org) without being a machine learning 
expert, or quickly plot rich charts using Matplotlib (https://matplotlib.org) 
or Bokeh (https://bokeh.pydata.org).

http://scikit-learn.org
https://matplotlib.org
https://bokeh.pydata.org
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In addition, Python has also emerged as one of the top languages for developers 
as shown in this IEEE Spectrum 2017 survey (https://spectrum.ieee.org/
computing/software/the-2017-top-programming-languages):

Usage statistics by programming languages

This trend is also confirmed on GitHub where Python is now number three in the 
total number of repositories, just behind Java and JavaScript:

GitHub repositories statistics by programming language

https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
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The preceding chart shows some interesting statistics, demonstrating how active 
the Python developer community is. Python - related repositories that are active 
on GitHub are the third biggest in size, with similarly healthy total code pushes 
and opened issues per repository.

Python has also become ubiquitous on the web, powering numerous high-profile 
websites with web development frameworks, such as Django (https://www.
djangoproject.com), Tornado (http://www.tornadoweb.org) and TurboGears 
(http://turbogears.org). More recently, there are signs that Python is also 
making its way into the field of cloud services with all major Cloud providers 
including it in some capacity in their offerings.

Python obviously has a bright future in the field of data science, especially when 
used in conjunction with powerful tools such as Jupyter Notebooks, which have 
become very popular in the data scientist community. The value proposition of 
Notebooks is that they are very easy to create and perfect for quickly running 
experiments. In addition, Notebooks support multiple high-fidelity serialization 
formats that can capture instructions, code, and results, which can then very easily 
be shared with other data scientists on the team or as open source for everyone 
to use. For example, we're seeing an explosion of Jupyter Notebooks being shared 
on GitHub, numbering in excess of 2.5 million and counting.

The following screenshot shows the result of a GitHub search for any file with 
the extension .ipynb, which is the most popular format for serialized Jupyter 
Notebooks (JSON format):

Search results for Jupyter Notebooks on GitHub

https://www.djangoproject.com
https://www.djangoproject.com
http://www.tornadoweb.org
http://turbogears.org
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This is great, but Jupyter Notebooks are too often thought of as data scientist tools 
only. We'll see in the coming chapters that they can be much more and that they 
can also help all types of teams solve data problems. For example, they can help 
business analysts quickly load and visualize a dataset, enable developers to work 
with data scientists directly within a Notebook to leverage their analytics and build 
powerful dashboards, or allow DevOps to effortlessly deploy these dashboards into 
scalable, enterprise-ready microservices that can run as standalone web applications 
or embeddable components. It is based on this vision of bringing the tools of data 
science to non-data scientists that the PixieDust open source project was created.

Introducing PixieDust
Fun fact

I am often asked how I came up with the name PixieDust, for which 
I answer that I simply wanted to make Notebook simple, as in magical, 
for non-data scientists.

PixieDust (https://github.com/ibm-watson-data-lab/pixiedust) is an  
open-source project composed primarily of three components designed to 
address the three goals stated at the beginning of this chapter:

• A helper Python library for Jupyter Notebooks that provides simple APIs 
to load data from various sources into popular frameworks, such as pandas 
and Apache Spark DataFrame, and then to visualize and explore the dataset 
interactively.

• A simple Python-based programming model that enables developers to 
"productize" the analytics directly into the Notebook by creating powerful 
dashboards called PixieApps. As we'll see in the next chapters, PixieApps 
are different from traditional BI (short for, Business Intelligence) 
dashboards because developers can directly use HTML and CSS to create 
an arbitrary complex layout. In addition, they can embed in their business 
logic access to any variable, class, or function created in the Notebook.

• A secure microservice web server called PixieGateway that can run 
PixieApps as standalone web applications or as components that can be 
embedded into any website. PixieApps can easily be deployed from the 
Jupyter Notebook using a graphical wizard and without requiring any 
code changes. In addition, PixieGateway supports the sharing of any charts 
created by PixieDust as embeddable web pages, allowing data scientists 
to easily communicate results outside of the Notebook.

https://github.com/ibm-watson-data-lab/pixiedust
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It is important to note that the PixieDust display() API primarily supports two 
popular data processing frameworks:

• pandas (https://pandas.pydata.org): By far the most popular 
Python data analysis package, pandas provides two main data structures: 
DataFrame for manipulating two-dimensional table-like datasets, and Series 
for one-dimensional column-like datasets.

Currently, only pandas DataFrames are supported by PixieDust 
display().

• Apache Spark DataFrame (https://spark.apache.org/docs/latest/
sql-programming-guide.html): This is a high-level data structure for 
manipulating distributed datasets across a Spark Cluster. Spark DataFrames 
are built on top of the lower-level RDD (short for, Resilient Distributed 
Dataset) with the added functionality that it supports SQL queries.

Another less commonly used format supported by PixieDust display() is an array 
of JSON objects. In this case, PixieDust will use the values to build the rows and keys 
are used as columns, for example, as follows:

my_data = [
{"name": "Joe", "age": 24},
{"name": "Harry", "age": 35},
{"name": "Liz", "age": 18},
...
]

In addition, PixieDust is highly extensible both at the data handling and rendering 
level. For example, you can add new data types to be rendered by the visualization 
framework or if you want to leverage a plotting library you particularly like, you 
can easily add it to the list of renderers supported by PixieDust (see the next chapters 
for more details).

You will also find that PixieDust contains a few extra utilities related to Apache 
Spark, such as the following:

• PackageManager: This lets you install Spark packages inside a Python 
Notebook.

• Scala Bridge: This lets you use Scala directly in a Python Notebook using 
the %%scala magic. Variables are automatically transferred from Python to 
Scala and vice versa.

• Spark Job Progress Monitor: Track the status of any Spark job by showing 
a progress bar directly in the cell output.

https://pandas.pydata.org
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html


Python and Jupyter Notebooks to Power your Data Analysis

[ 34 ]

Before we dive into each of the three PixieDust components, it would be a good idea 
to get access to a Jupyter Notebook, either by signing up to a hosted solution on the 
cloud (for example, Watson Studio at https://datascience.ibm.com) or installing 
a development version on your local machine.

You can install the Notebook server locally by following the instructions 
here: http://jupyter.readthedocs.io/en/latest/install.
html.

To start the Notebook server locally, simply run the following command from 
a Terminal:

jupyter notebook --notebook-dir=<<directory path where notebooks are 
stored>>

The Notebook home page will automatically open in a browser. There are many 
configuration options to control how the Notebook server is launched. These options 
can be added to the command line or persisted in the Notebook configuration file. 
If you want to experiment with all the possible configuration options, you can 
generate a configuration file using the --generate-config option as follows:

jupyter notebook --generate-config

This will generate the following Python file, <home_directory>/.jupyter/
jupyter_notebook_config.py, which contains a set of auto-documented options 
that have been disabled. For example, if you don't want to have the browser 
automatically opened when the Jupyter Notebook starts, locate the line that contains 
the sc.NotebookApp.open_browser variable, uncomment it, and set it to False:

## Whether to open in a browser after starting. The specific browser 
used is
#  platform dependent and determined by the python standard library 
'web browser'
#  module, unless it is overridden using the --browser (NotebookApp.
browser)
#  configuration option.
c.NotebookApp.open_browser = False

After making that change, simply save the jupyter_notebook_config.py file and 
restart the Notebook server.

https://datascience.ibm.com
http://jupyter.readthedocs.io/en/latest/install.html
http://jupyter.readthedocs.io/en/latest/install.html
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The next step is to install the PixieDust library using the pip tool:

1. From the Notebook itself, enter the following command in a cell:
!pip install pixiedust

Note: The exclamation point syntax is specific to Jupyter Notebook 
and denotes that the rest of the command will be executed as a system 
command. For example, you could use !ls to list all the files and 
directories that are under the current working directory.

2. Run the cell using the Cell | Run Cells menu or the Run icon on the toolbar. 
You can also use the following keyboard shortcuts to run a cell:

 ° Ctrl + Enter: Run and keep the current cell selected
 ° Shift + Enter: Run and select the next cell
 ° Alt + Enter: Run and create new empty cell just below

3. Restart the kernel to make sure the pixiedust library is correctly loaded 
into the kernel.

The following screenshot shows the results after installing pixiedust for the 
first time:

Installing the PixieDust library on a Jupyter Notebook
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I strongly recommend using Anaconda (https://anaconda.org), 
which provides excellent Python package management capabilities. If, 
like me, you like to experiment with different versions of Python and 
libraries dependencies, I suggest you use Anaconda virtual environments.
They are lightweight Python sandboxes that are very easy to create 
and activate (see https://conda.io/docs/user-guide/tasks/
manage-environments.html):

• Create a new environment: conda create --name env_name
• List all environments: conda env list
• Activate an environment: source activate env_name

I also recommend that, optionally, you get familiar with the source code, 
which is available at https://github.com/ibm-watson-data-lab/
pixiedust and https://github.com/ibm-watson-data-lab/
pixiegateway.

We are now ready to explore the PixieDust APIs starting with sampleData() in the 
next section.

SampleData – a simple API for loading 
data
Loading data into a Notebook is one of the most repetitive tasks a data scientist 
can do, yet depending on the framework or data source being used, writing 
the code can be difficult and time-consuming.

Let's take a concrete example of trying to load a CSV file from an open data site 
(say https://data.cityofnewyork.us) into both a pandas and Apache Spark 
DataFrame.

Note: Going forward, all the code is assumed to run in a Jupyter 
Notebook.

For pandas, the code is pretty straightforward as it provides an API to directly load 
from URL:

import pandas
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_df = pandas.read_csv(data_url)
building_df

https://anaconda.org
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/ibm-watson-data-lab/pixiedust
https://github.com/ibm-watson-data-lab/pixiedust
https://github.com/ibm-watson-data-lab/pixiegateway
https://github.com/ibm-watson-data-lab/pixiegateway
https://opendata.cityofnewyork.us/
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The last statement, calling building_df, will print its contents in the output cell. 
This is possible without a print because Jupyter is interpreting the last statement  
of a cell calling a variable as a directive to print it:

The default output of a pandas DataFrame

However, for Apache Spark, we need to first download the data into a file then 
use the Spark CSV connector to load it into a DataFrame:

#Spark CSV Loading
from pyspark.sql import SparkSession
try:
    from urllib import urlretrieve
except ImportError:
    #urlretrieve package has been refactored in Python 3
    from urllib.request import urlretrieve

data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
urlretrieve (data_url, "building.csv")

spark = SparkSession.builder.getOrCreate()
building_df = spark.read\
  .format('org.apache.spark.sql.execution.datasources.csv.
CSVFileFormat')\
  .option('header', True)\
  .load("building.csv")
building_df



Python and Jupyter Notebooks to Power your Data Analysis

[ 38 ]

The output is slightly different since building_df is now a Spark DataFrame:

Default output of a Spark DataFrame

Even though this code is not that big, it has to be repeated every time and, most 
likely, will require spending the time to do a Google search to remember the correct 
syntax. The data may also be in a different format, for example, JSON, which will 
require calling different APIs both for pandas and Spark. The data may also not 
be well-formed and can contain a bad line in a CSV file or have a wrong JSON 
syntax. All these issues are unfortunately not rare and contribute to the 80/20 rule 
of data science, which states that data scientists spends on average 80% of their time 
acquiring, cleaning, and loading data and only 20% doing the actual analysis.

PixieDust provides a simple sampleData API to help improve the situation. When 
called with no parameters, it displays a list of pre-curated datasets ready for analysis:

import pixiedust
pixiedust.sampleData()

The results are shown as follows:

PixieDust built-in datasets

The list of prebuilt curated datasets can be customized to fit the organization, 
which is a good step toward our data pillar, as described in the previous chapter.

The user can then simply call the sampleData API again with the ID of the prebuilt 
dataset and get a Spark DataFrame if the Spark framework in the Jupyter Kernel 
is available or fall back to a pandas DataFrame if not.

In the following example, we call sampleData() on a Notebook connected with 
Spark. We also call enableSparkJobProgressMonitor() to display real-time 
information about the Spark jobs involved in the operation.
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Note: Spark jobs are processes that run on a particular node in the Spark 
cluster with a specific subset of the data. In the case of loading a large 
amount data from a data source, each Spark job is given a specific subset 
to work on (the actual size depends on the number of nodes in the cluster 
and the size of the overall data), running in parallel with the other jobs.

In a separate cell, we run the following code to enable the Spark Job Progress Monitor:

pixiedust.enableSparkJobProgressMonitor()

The results are as follows:

Successfully enabled Spark Job Progress Monitor

We then invoke sampleData to load the cars dataset:

cars = pixiedust.sampleData(1)

The results are shown as follows:

Loading a built-in dataset with PixieDust sampleData API

The user can also pass an arbitrary URL that points to a downloadable file; PixieDust 
currently supports JSON and CSV files. In this case, PixieDust will automatically 
download the file, cache it in a temporary area, detect the format, and load it into 
a Spark or pandas DataFrame depending on whether Spark is available in the 
Notebook. Note that the user can also force loading into pandas even if Spark 
is available using the forcePandas keyword argument:

import pixiedust
data_url = "https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD"
building_dataframe = pixiedust.sampleData(data_url, forcePandas=True)

The results are as follows:

Downloading 'https://data.cityofnewyork.us/api/views/e98g-f8hy/rows.
csv?accessType=DOWNLOAD' from https://data.cityofnewyork.us/api/views/



Python and Jupyter Notebooks to Power your Data Analysis

[ 40 ]

e98g-f8hy/rows.csv?accessType=DOWNLOAD
Downloaded 13672351 bytes
Creating pandas DataFrame for 'https://data.cityofnewyork.us/api/
views/e98g-f8hy/rows.csv?accessType=DOWNLOAD'. Please wait...
Loading file using 'pandas'
Successfully created pandas DataFrame for 'https://data.cityofnewyork.
us/api/views/e98g-f8hy/rows.csv?accessType=DOWNLOAD'

The sampleData() API is also smart enough to recognize URLs that point to 
compressed files of the ZIP and GZ types. In this case, it will automatically unpack 
the raw binary data and load the file included in the archive. For ZIP files, it looks 
at the first file in the archive and, for GZ files, it simply decompresses the content 
as GZ files are not archives and do not contain multiple files. The sampleData() 
API will then load the DataFrame from the decompressed file.

For example, we can directly load borough information from a ZIP file provided 
by the London open data website and display the results as a pie chart using the 
display() API, as follows:

import pixiedust
london_info = pixiedust.sampleData("https://files.datapress.com/
london/dataset/london-borough-profiles/2015-09-24T15:50:01/London-
borough-profiles.zip")

The results are as follows (assuming that your Notebook is connected to Spark, 
otherwise a pandas DataFrame will be loaded):

Downloading 'https://files.datapress.com/london/dataset/london-
borough-profiles/2015-09-24T15:50:01/London-borough-profiles.zip' 
from https://files.datapress.com/london/dataset/london-borough-
profiles/2015-09-24T15:50:01/London-borough-profiles.zip
Extracting first item in zip file...
File extracted: london-borough-profiles.csv
Downloaded 948147 bytes
Creating pySpark DataFrame for 'https://files.datapress.com/london/
dataset/london-borough-profiles/2015-09-24T15:50:01/London-borough-
profiles.zip'. Please wait...
Loading file using 'com.databricks.spark.csv'
Successfully created pySpark DataFrame for 'https://files.datapress.
com/london/dataset/london-borough-profiles/2015-09-24T15:50:01/London-
borough-profiles.zip'
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We can then call display() on the london_info DataFrame, as shown here:

display(london_info)

We select Pie Chart in the Chart menu and in the Options dialog, we drag and 
drop the Area name column in the Keys area and the Crime rates per thousand 
population 2014/15 in the Values area, as shown in the following screenshot:

Chart options for visualizing the london_info DataFrame
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After clicking on the OK button in the Options dialog, we get the following results:

Pie chart created from a URL pointing at a compressed file

Many times, you have found a great dataset, but the file contains errors or the 
data that's important to you is in the wrong format or buried in some unstructured 
text that needs to be extracted into its own column. This process is also known as 
data wrangling and can be very time-consuming. In the next section, we will look 
at an extension to PixieDust called pixiedust_rosie that provides a wrangle_data 
method, which helps with this process.

Wrangling data with pixiedust_rosie
Working in a controlled experiment is, most of the time, not the same as working 
in the real world. By this I mean that, during development, we usually pick (or I 
should say manufacture) a sample dataset that is designed to behave; it has the right 
format, it complies with the schema specification, no data is missing, and so on. The 
goal is to focus on verifying the hypotheses and build the algorithms, and not so 
much on data cleansing, which can be very painful and time-consuming. However, 
there is an undeniable benefit to get data that is as close to the real thing as early as 
possible in the development process. To help with this task, I worked with two IBM 
colleagues, Jamie Jennings and Terry Antony, who volunteered to build an extension 
to PixieDust called pixiedust_rosie. 
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This Python package implements a simple wrangle_data() method to automate the 
cleansing of raw data. The pixiedust_rosie package currently supports CSV and 
JSON, but more formats will be added in the future. The underlying data processing 
engine uses the Rosie Pattern Language (RPL) open source component, which 
is a regular expressions engine designed to be simpler to use for developers, more 
performant, and scalable to big data. You can find more information about Rosie 
here: http://rosie-lang.org.

To get started, you need to install the pixiedust_rosie package using the following 
command:

!pip install pixiedust_rosie

The pixiedust_rosie package has a dependency on pixiedust and rosie, 
which will be automatically downloaded if not already installed on the system.

The wrangle_data() method is very similar to the sampleData() API. When called 
with no parameters, it will show you the list of pre-curated datasets, as shown here:

import pixiedust_rosie
pixiedust_rosie.wrangle_data()

This produces the following results:

List of pre-curated datasets available for wrangle_data()

http://rosie-lang.org
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You can also invoke it with the ID of a pre-curated dataset or a URL link, 
for example, as follows:

url = "https://github.com/ibm-watson-data-lab/pixiedust_rosie/raw/
master/sample-data/Healthcare_Cost_and_Utilization_Project__HCUP__-_
National_Inpatient_Sample.csv"
pixiedust_rosie.wrangle_data(url)

In the preceding code, we invoke wrangle_data() on a CSV file referenced by the 
url variable. The function starts by downloading the file in the local filesystem and 
performs an automated data classification on a subset of the data, to infer the data 
schema. A schema editor PixieApp is then launched, which provides a set of wizard 
screens to let the user configure the schema. For example, the user will be able to 
drop and rename columns and, more importantly, destructure existing columns 
into new columns by providing Rosie patterns.

The workflow is illustrated in the following diagram:

wrangle_data() workflow

The first screen of the wrangle_data() wizard shows the schema that has 
been inferred by the Rosie data classifier as shown in the following screenshot:



Chapter 2

[ 45 ]

The wrangle_data() schema editor

The preceding schema widget shows the column names, Rosie Type (advanced type 
representation specific to Rosie) and Column Type (map to the supported pandas 
types). Each row also contains three action buttons:

• Delete column: This removes the columns from the schema. This column 
will not appear in the final pandas DataFrame.

• Rename column: This changes the name of the column.
• Transform column: This transforms a column by destructuring it into new 

columns.

At any time, the user is able to preview the data (shown in the preceding 
SampleData widget) to validate that the schema configuration is behaving 
as intended.
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When the user clicks on the transform column button, a new screen is shown that lets 
the user specify patterns for building new columns. In some cases, the data classifier 
will be able to automatically detect the patterns, in which case, a button will be 
added to ask the user whether the suggestions should be applied.

The following screenshot shows the Transform Selected Column screen with 
automated suggestions:

Transform column screen

This screen shows four widgets with the following information:

• Rosie Pattern input is where you can enter a custom Rosie Pattern that 
represents the data for this column. You then use the Extract Variables 
button to tell the schema editor which part of the pattern should be 
extracted into a new column (more on that is explained soon).
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• There's a help widget that provides a link to the RPL documentation.
• There's a preview of the data for the current column.
• There's a preview of the data with the Rosie Pattern applied.

When the user clicks on the Extract Variables button, the widget is updated 
as follow:

Extracting Rosie variables into columns

At this point, the user has the option to edit the definition and then click on the 
Create Columns button to add the new columns to the schema. The Sample of New 
Column(s) widget is then updated to show a preview of what the data would look 
like. An error is shown in this widget if the pattern definition contains bad syntax:

Preview of new columns after applying pattern definitions
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When the user clicks on the Commit Columns button, the main schema editor 
screen is displayed again with the new columns added, as shown in the following 
screenshot:

Schema editor with new columns

The final step is to click on the Finish button to apply the schema definition to 
the raw file and create a pandas DataFrame that will be available as a variable in 
the Notebook. At this point, the user is presented with a dialog box that contains 
a default variable name that can be edited, as shown in the following screenshot:
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Edit the variable name for the Result Pandas DataFrame

After clicking on the Finish button, pixiedust_rosie goes over the entire dataset, 
applying the schema definition. When done, it creates a new cell just below the 
current one with a generated code that invokes the display() API on the newly 
generated pandas DataFrame, as shown here:

#Code generated by pixiedust_rosie
display(wrangled_df)

Running the preceding cell will let you explore and visualize the new dataset.

The wrangle_data() capability we've explored in this section is a first step toward 
helping data scientists spend less time cleaning the data and more time analyzing it. 
In the next section, we will discuss how to help data scientists with data exploration 
and visualization.

Display – a simple interactive API for data 
visualization
Data visualization is another very important data science task that is indispensable 
for exploring and forming hypotheses. Fortunately, the Python ecosystem has a lot 
of powerful libraries dedicated to data visualization, such as these popular examples:

• Matplotlib: http://matplotlib.org
• Seaborn: https://seaborn.pydata.org
• Bokeh: http://bokeh.pydata.org
• Brunel: https://brunelvis.org

However, similar to data loading and cleaning, using these libraries in a Notebook 
can be difficult and time-consuming. Each of these libraries come with their own 
programming model and APIs are not always easy to learn and use, especially if 
you are not an experienced developer. Another issue is that these libraries do not 
have a high-level interface to commonly used data processing frameworks such as 
pandas (except maybe Matplotlib) or Apache Spark and, as a result, a lot of data 
preparation is needed before plotting the data.

http://matplotlib.org
https://seaborn.pydata.org
http://bokeh.pydata.org
https://brunelvis.org
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To help with this problem, PixieDust provides a simple display() API that enables 
Jupyter Notebook users to plot data using an interactive graphical interface and 
without any required coding. This API doesn't actually create charts but does all 
the heavy lifting of preparing the data before delegating to a renderer by calling 
its APIs according to the user selection.

The display() API supports multiple data structures (pandas, Spark, and JSON) 
as well as multiple renderers (Matplotlib, Seaborn, Bokeh, and Brunel).

As an illustration, let's use the built-in car performance dataset and start visualizing 
the data by calling the display() API:

import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True) #car performance data
display(cars)

The first time the command is called on the cell, a tabular view is displayed and, 
as the user navigates through the menus, selected options are stored in the cell 
metadata as JSON so they can be used again the next time the cell is running. 
The output layout for all the visualizations follows the same pattern:

• There's an extensible top-level menu for switching between charts.
• There's a download menu for downloading the file in the local machine.
• There's a filter toggle button that lets users refine their exploration by 

filtering the data. We'll discuss the filter capability in the Filtering section.
• There's a Expand/Collapse Pixiedust Output button for collapsing/

expanding the output content.
• There's an Options button that invokes a dialog box with configurations 

specific to the current visualization.
• There's a Share button that lets you publish the visualization on the web.

Note: This button can only be used if you have deployed a PixieGateway, 
which we'll discuss in detail in Chapter 4, Publish your Data Analysis to the 
Web - the PixieApp Tool.

• There's a contextual set of options on the right-hand side of the visualization.
• There's the main visualization area.
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Visualization output layout for the table renderer

To start creating a chart, first select the appropriate type in the menu. Out of the box, 
PixieDust supports six types of charts: Bar Chart, Line Chart, Scatter Plot, Pie Chart, 
Map, and Histogram. As we'll see in Chapter 5, Python and PixieDust Best Practices and 
Advanced Concepts, PixieDust also provides APIs to let you customize these menus by 
adding new ones or adding options to existing ones:

PixieDust Charts menu
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The first time a chart menu is called, an options dialog will be displayed to configure 
a set of basic configuration options, such as what to use for the X and Y axes, the type 
of aggregation, and many more. To save you time, the dialog will be prepopulated 
with the data schema that PixieDust automatically introspected from the DataFrame.

In the following example, we will create a bar chart showing the average mileage 
consumption by horsepower:

Bar chart dialog options
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Clicking OK will display the interactive interface in the cell output area:

Bar chart visualization
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The canvas shows the chart in the center area and some contextual options on 
the side relevant to the type of chart selected. For example, we can select the field 
origin in the Cluster By combobox to show a breakdown by country of origin:

Clustered bar chart visualization

As mentioned before, PixieDust display() doesn't actually create the chart, rather 
it prepares the data based on the selected options and does the heavy lifting of 
calling the APIs of a renderer engine, with the correct parameters. The goal behind 
this design is for each chart type to support multiple renderers without any extra 
coding, providing as much freedom of exploration to the user as possible.



Chapter 2

[ 55 ]

Out of the box, PixieDust supports the following renderers provided that the 
corresponding libraries are installed. For those that are not installed, a warning 
will be generated in the PixieDust log and the corresponding renderer will not be 
displayed in the menu. We'll cover in detail the PixieDust log in Chapter 5, Python 
and PixieDust Best Practices and Advanced Concepts.

• Matplotlib (https://matplotlib.org)
• Seaborn (https://seaborn.pydata.org)

This library needs to be installed using: !pip install seaborn.

• Bokeh (https://bokeh.pydata.org)

This library needs to be installed using: !pip install bokeh.

• Brunel (https://brunelvis.org)

This library needs to be installed using: !pip install brunel.

• Google Map (https://developers.google.com/maps)
• Mapbox (https://www.mapbox.com)

Note: Google Map and Mapbox require an API key that you can obtain 
on their respective sites.

https://matplotlib.org
https://seaborn.pydata.org
https://bokeh.pydata.org
https://brunelvis.org
https://developers.google.com/maps
https://www.mapbox.com


Python and Jupyter Notebooks to Power your Data Analysis

[ 56 ]

You can switch between renderers using the Renderer combobox. For example, if 
we want more interactivity to explore the chart (such as zooming and panning), we 
can use the Bokeh renderer instead of Matplotlib, which gives us only a static image:

Cluster bar chart using the Bokeh renderer

Another chart type worth mentioning is Map, which is interesting when your 
data contains geospatial information, such as longitude, latitude, or country/state 
information. PixieDust supports multiple types of geo-mapping rendering engines 
including the popular Mapbox engine.

Before using the Mapbox renderer, it is recommended to get an API key 
from the Mapbox site at this location: (https://www.mapbox.com/
help/how-access-tokens-work). However, if you don't have one, 
a default key will be provided by PixieDust.

To create a Map chart, let's use the Million-dollar home sales in NE Mass dataset, 
as follows:

import pixiedust
homes = pixiedust.sampleData(6, forcePandas=True) #Million dollar home 
sales in NE Mass
display(homes)

https://www.mapbox.com/help/how-access-tokens-work
https://www.mapbox.com/help/how-access-tokens-work
https://www.mapbox.com/help/how-access-tokens-work
https://www.mapbox.com/help/how-access-tokens-work
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First, select Map in the chart drop-down button, then in the options dialog, select 
LONGITUDE and LATITUDE as the keys and enter the Mapbox access token in the 
provided input. You can add multiples fields in the Values area, and they will 
be displayed as tooltips on the map:

Options dialog for Mapbox charts
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When clicking the OK button, you'll get an interactive map that you can 
customize using the style (simple, choropleth, or density map), color, and 
basemap (light, satellite, dark, and outdoors) options:

Interactive Mapbox visualization

Each chart type has its own set of contextual options, which are self-explanatory, 
and I encourage you at this point to play with each and every one of them. If you 
find issues or have enhancement ideas, you can always create a new issue on GitHub 
at https://github.com/ibm-watson-data-lab/pixiedust/issues or, better yet, 
submit a pull request with your code changes (there's more information on how to 
do that here: https://help.github.com/articles/creating-a-pull-request).

To avoid reconfiguring the chart every time the cell runs, PixieDust stores the 
chart options as a JSON object in the cell metadata, which is eventually saved 
in the Notebook. You can manually inspect this data by selecting the View | 
Cell Toolbar | Edit Metadata menu, as shown in the following screenshot:

https://github.com/ibm-watson-data-lab/pixiedust/issues
https://github.com/ibm-watson-data-lab/pixiedust/issues
https://help.github.com/articles/creating-a-pull-request
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Show Edit Metadata button

An Edit Metadata button will be shown at the top of the cell, which, when clicked 
on, displays the PixieDust configuration:

Edit Cell Metadata dialog

This JSON configuration will be important when we discuss PixieApps in the 
next section.
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Filtering
To better explore data, PixieDust also provides a built-in, simple graphical interface 
that lets you quickly filter the data being visualized. You can quickly invoke the 
filter by clicking on the filter toggle button in the top-level menu. To keep things 
simple, the filter only supports building predicates based on one column only, 
which is sufficient in most cases to validate simple hypotheses (based on feedback, 
this feature may be enhanced in the future to support multiple predicates). The filter 
UI will automatically let you select the column to filter on and, based on its type, 
will show different options:

• Numerical type: The user can select a mathematical comparator and enter 
a value for the operand. For convenience, the UI will also show statistical 
values related to the chosen column, which can be used when picking the 
operand value:

Filter on the mpg numerical column of the cars data set
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• String type: The user can enter an expression to match the column value, 
which can be either a regular expression or a plain string. For convenience, 
the UI also shows basic help on how to build a regular expression:

Filter on the name String type of the cars dataset

When clicking on the Apply button, the current visualization is updated to reflect 
the filter configuration. It is important to note that the filter applies to the whole 
cell and not only to the current visualization. Therefore, it will continue to apply 
when switching between chart types. The filter configuration is also saved in the cell 
metadata, so it will be preserved when saving the Notebook and rerunning the cell.
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For example, the following screenshot visualizes the cars dataset as a bar chart 
showing only the rows with mpg greater than 23, which, according to the statistics 
box, is the mean for the dataset, and clustered by years. In the options dialog, 
we select the mpg column as the key and origin as the value:

Filtered bar chart for the cars dataset
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To summarize, in this section, we've discussed how PixieDust can help with 
three difficult and time-consuming data science tasks: data loading, data wrangling, 
and data visualization. Next, we are going to see how PixieDust can help increase 
collaboration between data scientists and developers.

Bridging the gap between developers 
and data scientists with PixieApps
Solving hard data problems is only part of the mission given to data science teams. 
They also need to make sure that data science results get properly operationalized 
to deliver business value to the organization. Operationalizing data analytics is 
very much use case - dependent. It could mean, for example, creating a dashboard 
that synthesizes insights for decision makers or integrating a machine learning 
model, such as a recommendation engine, into a web application.

In most cases, this is where data science meets software engineering (or as some 
would say, where the rubber meets the road). Sustained collaboration between the 
teams—instead of a one-time handoff—is key to a successful completion of the 
task. More often than not, they also have to grapple with different languages and 
platforms, leading to significant code rewrites by the software engineering team.

We experienced it firsthand in our Sentiment analysis of Twitter hashtags project when 
we needed to build a real-time dashboard to visualize the results. The data analytics 
was written in Python using pandas, Apache Spark, and a few plotting libraries such 
as Matplotlib and Bokeh, while the dashboard was written in Node.js (https://
nodejs.org) and D3 (https://d3js.org).

We also needed to build a data interface between the analytics and the dashboard 
and, since we needed the system to be real-time, we chose to use Apache Kafka 
to stream events formatted with the analytics results.

https://nodejs.org
https://nodejs.org
https://d3js.org
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The following diagram generalizes an approach that I call the hand-off pattern 
where the data science team builds the analytics and deploys the results in a data 
interface layer. The results are then consumed by the application. The data layer 
is usually handled by the data engineer, which is one of the roles we discussed 
in Chapter 1, Programming and Data Science – A New Toolset:

Hand-off between data science and engineering

The problem with this hand-off pattern is that it is not conducive to rapid iteration. 
Any changes in the data layer need to be synchronized with the software engineering 
team to avoid breaking the application. The idea behind PixieApps is to build the 
application while staying as close as possible to the data science environment, which 
is, in our case, the Jupyter Notebook. With this approach, the analytics are directly 
called from the PixieApp, which runs embedded in the Jupyter Notebook, hence 
making it easy for data scientists and developers to collaborate and iterate to make 
rapid improvements.

PixieApp defines a simple programming model for building single-page 
applications with direct access to the IPython Notebook Kernel (which is the Python 
backend process running the Notebook code). In essence, a PixieApp is a Python 
class that encapsulates both the presentation and business logic. The presentation 
is composed of a set of special methods called routes that return an arbitrary HTML 
fragment. Each PixieApp has a default route that returns the HTML fragment for 
the starting page. Developers can use custom HTML attributes to invoke other 
routes and dynamically update all or part of the page. A route may, for example, 
invoke a machine learning algorithm created from within the Notebook or generate 
a chart using the PixieDust display framework.
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The following diagram shows the high-level architecture of how PixieApps 
interact with the Jupyter Notebook client frontend and the IPython Kernel:

PixieApp interaction with the Jupyter Kernel

As a preview of what a PixieApp looks like, here's a hello world sample application 
that has one button showing a bar chart for the cars DataFrame we created in the 
previous section:

#import the pixieapp decorators
from pixiedust.display.app import *

#Load the cars dataframe into the Notebook
cars = pixiedust.sampleData(1)

@PixieApp   #decorator for making the class a PixieApp
class HelloWorldApp():
    #decorator for making a method a
    #route (no arguments means default route)
    @route()
    def main_screen(self):
        return """
        <button type="submit" pd_options="show_chart=true" pd_
target="chart">Show Chart</button>
        <!--Placeholder div to display the chart-->
        <div id="chart"></div>
        """
    
    @route(show_chart="true")
    def chart(self):
        #Return a div bound to the cars dataframe
        #using the pd_entity attribute
        #pd_entity can refer a class variable or
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        #a global variable scoped to the notebook
        return """
        <div pd_render_onload pd_entity="cars">
            <pd_options>
                {
                  "title": "Average Mileage by Horsepower",
                  "aggregation": "AVG",
                  "clusterby": "origin",
                  "handlerId": "barChart",
                  "valueFields": "mpg",
                  "rendererId": "bokeh",
                  "keyFields": "horsepower"
                }
            </pd_options>
        </div>
        """
#Instantiate the application and run it
app = HelloWorldApp()
app.run()

When the preceding code runs in a Notebook cell, we get the following results:

Hello World PixieApp
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You probably have a lot of questions about the preceding code, but don't worry. 
In the next chapters, we'll cover all the PixieApp technical details, including how 
to use them in end-to-end pipelines.

Architecture for operationalizing data 
science analytics
In the previous section, we saw how PixieApps combined with the PixieDust display 
framework offer an easy way to build powerful dashboards that connect directly 
with your data analytics, allowing for rapid iterations between the algorithms 
and the user interface. This is great for rapid prototyping, but Notebooks are not 
suitable to be used in a production environment where the target persona is the 
line of business user. One obvious solution would be to rewrite the PixieApp using 
a traditional three tiers web application architecture, for example, as follows:

• React (https://reactjs.org) for the presentation layer
• Node.js for the web layer
• A data access library targeted at the web analytics layer for machine learning 

scoring or running any other analytic jobs

However, this would provide only a marginal improvement over the existing 
process, which would consist only, in this case, of the ability to do iterative 
implementation with the PixieApp.

A much better solution would be to directly deploy and run PixieApps as 
web applications, including the analytics in the surrounding Notebook and, 
while we're at it, without any code change.

https://reactjs.org
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Using this model, Jupyter Notebooks would become the central tool for a simplified 
development life cycle, as shown in the following diagram:

Data science pipeline development life cycle

1. Data scientists use a Python Notebook to load, enrich, and analyze data 
and create analytics (machine learning models, statistics, and so on)

2. From the same Notebook, developers create a PixieApp to operationalize 
these analytics

3. Once ready, developers publish the PixieApp as a web application, where 
it can be easily consumed interactively by line-of-business users without 
the need to access Notebooks

PixieDust provides an implementation of this solution with the PixieGateway 
component. PixieGateway is a web application server responsible for loading 
and running PixieApps. It is built on top of the Jupyter Kernel Gateway (https://
github.com/jupyter/kernel_gateway), which itself is built on top of the Tornado 
web framework, and therefore follows an architecture as shown in the following 
diagram:

https://github.com/jupyter/kernel_gateway
https://github.com/jupyter/kernel_gateway
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PixieGateway architecture diagram

1. The PixieApp is published into the PixieGateway server directly from the 
Notebook and a URL is generated. Behind the scene, PixieGateway allocates 
a Jupyter Kernel to run the PixieApp. Based on configuration, the PixieApp 
could share the kernel instance with other apps or have a dedicated kernel 
based on needs. The PixieGateway middleware can scale horizontally 
by managing the lifecycle of multiple kernels instances, which themselves 
can either be local to the server or remote on a cluster.

Note: Remote kernels must be Jupyter Kernel Gateways.

Using the publishing wizard, the user can optionally define security 
for the application. Multiple options are available including Basic 
Authentication, OAuth 2.0, and Bearer Token.

2. The line of business users accesses the app from their browser using the 
URL from step 1.

3. PixieGateway provides a comprehensive admin console for managing the 
server including configuring the applications, configuring and monitoring 
kernels, access to the logs for troubleshooting, and so on.

4. The PixieGateway manages sessions for each active user and dispatches 
requests to the appropriate kernels for execution using the IPython 
messaging protocol (http://jupyter-client.readthedocs.io/en/
latest/messaging.html) over WebSocket or ZeroMQ depending 
on whether the Kernel is local or remote.

http://jupyter-client.readthedocs.io/en/latest/messaging.html
http://jupyter-client.readthedocs.io/en/latest/messaging.html
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When productizing your analytics, this solution provides a major improvement 
over the classic three-tier web application architecture because it collapses the web 
and the data tier into one web analytics tiers, as shown in the following diagram:

Comparison between classic three tiers and PixieGateway web architecture

In the classic three-tier architecture, developers have to maintain multiple 
REST endpoints that invoke the analytics in the data tier and massage the data 
to comply with the presentation tier requirements for correctly displaying the data. 
As a result, a lot of engineering has to be added to these endpoints, increasing the 
cost of development and code maintenance. In contrast, in the PixieGateway two-
tier architecture, developers do not have to worry about creating endpoints because 
the server is responsible for dispatching the requests to the appropriate kernel using 
built-in generic endpoints. Explained another way, the PixieApp Python methods 
automatically become endpoints for the presentation tier without any code change. 
This model is conducive to rapid iterations since any change in the Python code is 
directly reflected in the application after republishing.

PixieApps are great to rapidly build single-page applications and dashboards. 
However, you may also want to generate simpler one-page reports and share them 
with your users. To that end, PixieGateway also lets you share charts generated by 
the display() API using the Share button, resulting in a URL linking to a web page 
containing the chart. In turn, a user can embed the chart into a website or a blog post 
by copying and pasting the code generated for the page.
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Note: We'll cover PixieGateway in details in Chapter 4, Publish your Data 
Analysis to the Web - the PixieApp Tool, including how to install a new 
instance both locally and on the cloud.

To demonstrate this capability, let's use the cars DataFrame created earlier:

Share Chart dialog

If sharing is successful, then the next page will show the generated URL and the 
code snippet to embed into a web application or blog post:

Confirmation of a shared chart
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Clicking on the link will take you to the page:

Display chart as a web page

Summary
In this chapter, we discussed the reasons why our data science tooling strategy was 
centered around Python and Jupyter Notebook. We also introduced the PixieDust 
capabilities that improve user productivity with features such as the following:

• Data loading and cleaning
• Data visualization and exploration without any coding
• A simple programming model based on HTML and CSS, called PixieApp, 

for building tools and dashboards that interact directly with the Notebook
• A point and click mechanism to publish charts and PixieApp directly 

to the web

In the next chapter, we'll do a deep dive on the PixieApp programming model, 
discussing every aspect of the APIs with numerous code samples.
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Accelerate your Data 
Analysis with Python 

Libraries
"Every vision is a joke until the first man accomplishes it; once realized,  
it becomes commonplace."

                                                                                          – Robert H Goddard

In this chapter, we will do a technical deep dive into the PixieApp framework. 
You will be able to use the following information both as a Getting Started tutorial 
and as reference documentation for the PixieApp programming model.

We will start with a high-level description of the anatomy of a PixieApp before 
diving in to its foundational concepts, such as routes and requests. To help follow 
along, we will incrementally build a GitHub Tracking sample application that applies 
the capabilities and best practices as they are being introduced, starting from 
building the data analytics to integrating them into the PixieApp.

By the end of this chapter, you should be able to apply the lessons learned to your 
own use case, including writing your own PixieApp.

Note: The PixieApp programming model doesn't require any prior 
experience with JavaScript, however, it is expected that the reader 
is familiar with the following:

• Python (https://www.python.org)
• HTML5 (https://www.w3schools.com/html)
• CSS3 (https://www.w3schools.com/css)

https://www.python.org
https://www.w3schools.com/html
https://www.w3schools.com/css
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Anatomy of a PixieApp
The term PixieApp stands for Pixie Application, and is meant to emphasize its tight 
integration with the PixieDust capabilities, especially the display() API. Its main 
goal is to make it easy for developers to build a user interface that can invoke the 
data analytics implemented in the Jupyter Notebook.

A PixieApp follows the single-page application (SPA) design pattern (https://
en.wikipedia.org/wiki/Single-page_application), where the user is presented 
with a welcome screen that is dynamically updated to respond to a user interaction. 
An update can be a partial refresh, such as updating a graph after the user clicks on 
a control or a full refresh, such as a new screen in a multistep process. In each case, 
the update is controlled on the server side by a route that is triggered using a specific 
mechanism that we'll discuss later. When triggered, the route executes code to 
handle the request and then emits an HTML fragment, which is applied to the right 
target DOM element (https://www.w3schools.com/js/js_htmldom.asp) on the 
client side.

The following sequence diagram shows how the client side and server side interact 
with each other when running a PixieApp:

Sequence diagram showing the information flow of a PixieApp

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://www.w3schools.com/js/js_htmldom.asp
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When the PixieApp is started (by calling the run method), the default route is 
invoked, and the corresponding HTML fragment is returned. As the user interacts 
with the application, more requests are executed, triggering the associated routes 
which refresh the UI accordingly.

From an implementation perspective, a PixieApp is simply a regular Python 
class that has been decorated with the @PixieApp decorator. Under the cover, 
the  PixieApp decorator instruments the class to add methods and fields required 
to run the app, such as the run method.

More information on Python decorators can be found here:
https://wiki.python.org/moin/PythonDecorators

To get things started, the following code shows a simple Hello World PixieApp:

#import the pixieapp decorators
from pixiedust.display.app import *

@PixieApp   #decorator for making the class a PixieApp
class HelloWorldApp():
    @route()  #decorator for making a method a route (no arguments 
means default route)
    def main_screen(self):
        return """<div>Hello World</div>"""

#Instantiate the application and run it
app = HelloWorldApp()
app.run()

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode1.py

The preceding code shows the structure of a PixieApp, how to define the routes, 
and how to instantiate and run the app. Because PixieApps are regular Python 
classes, they can inherit from other classes, including other PixieApps, which 
is convenient for larger projects to make the code modular and reusable.

https://wiki.python.org/moin/PythonDecorators
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode1.py
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Routes
Routes are used to dynamically update all or part of the client screen. They 
can be easily defined by using the @route decorator on any class method,  
based on the following rules:

• A route method is required to return a string that represents the 
HTML fragment for the update.

Note: CSS and JavaScript are allowed to be used in the fragment.

• The @route decorator can have one or more keyword arguments, which 
are required to be of the String type. These keyword arguments can 
be thought of as request parameters, which are used internally by the 
PixieApp framework to dispatch the request to the route that is the 
best match according to the following rules:

 ° The routes with most arguments are always evaluated first.
 ° All arguments must match for a route to be selected.
 ° If the route is not found, then the default route is selected 

as a fallback.
 ° Routes can be configured using a wildcard, that is, *, in which case, 

any value for the state argument will be a match.

Following is an example:
       @route(state1="value1", state2="value2")

• A PixieApp is required to have one, and only one, default route, which 
is a route with no argument, that is, @route().

It is very important to configure the routes in a way that doesn't cause conflict, 
especially if your application has hierarchical states. For example, a route associated 
with state1="load" could be responsible for loading data and then a second 
route associated with (state1="load", state2="graph") could be responsible 
for plotting the data. In this case, a request with both state1 and state2 specified 
will match the second route because route evaluation happens from most specific 
to least specific, stopping at the first matching route.
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To clarify, the following diagram shows how requests are matched with routes:

Matching requests to routes

The expected contract for a method defined as a route is to return an HTML 
fragment, which can contain Jinja2 templating constructs. Jinja2 is a powerful 
Python template engine that provides a rich set of features to dynamically generate 
text, including access to Python variables, methods, and control structures, such as 
if...else, the for loop, and so on. Covering all its features would be beyond 
the scope of this book, but let's discuss a few important constructs that are used 
frequently:

Note: If you want to know more about Jinja2, you can read the full 
documentation here:
http://jinja.pocoo.org/docs/templates

• Variables: You can use the double-curly braces to access variables that are 
in scope, for example, "<div>This is my variable {{my_var}}</div>". 
During rendering, the my_var variable will be replaced with its actual value. 
You can also use the . (dot) notation to access complex object, for example, 
"<div>This is a nested value {{my_var.sub_value}}</div>".

• for loop: You can use the {%for ...%}...{%endfor%} notation 
to dynamically generate text by iterating over a sequence of items 
(list, tuple, dictionary, and so on), as in the example:
{%for message in messages%}
<li>{{message}}</li>
{%endfor%}

• if statement: You can use the {%if ...%}...{%elif ...%}...{%else%}…
{%endif%} notation to conditionally output text, as in the example:

{%if status.error%}
<div class="error">{{status.error}}</div>
{%elif status.warning%}

http://jinja.pocoo.org/docs/templates
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<div class="warning">{{status.warning}}</div>
{%else%}
<div class="ok">{{status.message}}</div>
{%endif%}

It is also important to know how variables and methods come into the scope of the 
JinJa2 template string returned by the route. PixieApp automatically provides access 
to three types of variables and methods:

• Class variables and methods: These are accessible using the this keyword.

Note: The reason we're not using the more Pythonic self keyword 
is that it is unfortunately already taken by Jinja2 itself.

• Method arguments: This is useful when the route arguments use the * value 
and you want to have access to that value at runtime. In this case, you can 
add arguments to the method itself using the same name as the one defined 
in the route arguments and the PixieApp framework will automatically pass 
the correct value.

Note: The order of the arguments actually doesn't matter. You also do not 
have to use every argument defined in the route, which is convenient if 
you are only interested in using a subset of the arguments.

The variable will also be in the scope of the Jinja2 template string, as shown 
in the example:
@route(state1="*", state2="*")
def my_method(self, state1, state2):
    return "<div>State1 is {{state1}}. State2 is {{state2}}</div>"

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode2.py

• Local variables to the method: PixieApp will automatically put all 
the local variables defined in the method in scope of the Jinja2 template 
string, provided that you add the @templateArgs decorator to the method, 
as shown in the example:

@route()
@templateArgs
def main_screen(self):
    var1 = self.compute_something()
    var2 = self.compute_something_else()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode2.py
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    return "<div>var1 is {{var1}}. var2 is {{var2}}</div>"

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode3.py

Generating requests to routes
As mentioned before, PixieApp follows the SPA design pattern. After the first 
screen is loaded, all subsequent interactions with the server are done using 
dynamic requests as opposed to URL links as is the case for multipage web 
applications. There are three ways to generate a kernel request to a route:

• Use the pd_options custom attribute to define a list of states to be passed 
to the server, as in the following example:
pd_options="state1=value1;state2=value2;..;staten=valuen"

• If you already have a JSON object that contains the pd_options value—
as in the case of invoking display()—you would have to transform it into 
the format expected by the pd_options HTML attribute, which can be time-
consuming. In this case, it is more convenient to specify pd_options as a child 
element, which allows the options to be passed directly as a JSON object (and 
avoid the extra work of transforming the data), as in the following example:
<div>
    <pd_options>
        {"state1":"value1","state2":"value2",...,
        "staten":"valuen"}
    </pd_options>
</div>

• Programmatically by calling the invoke_route method, as in the following 
example:

self.invoke_route(self.route_method, state1='value1', 
state2='value2')

Note: Remember to use this, as opposed to self, if you are calling 
this method from a Jinja2 template string, as self is already used 
by Jinja2 itself.

When the state values passed in pd_options need to be dynamically computed 
based on user selections, you need to use the $val(arg) special directive, which 
acts as a macro that will be resolved at the time the kernel request is executed.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode3.py
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The $val(arg) directive takes one argument that can be one of the following:

• The ID of an HTML element on the page, such as an input or a combobox, 
as in the following example:
<div>
    <pd_options>
        {"state1":"$val(my_element_id)","state2":"value2"}
    <pd_options>
</div>

• A JavaScript function that must return the desired value, as in the following 
example:

<script>
    function resValue(){
            return "my_query";
    }
</script>
...
<div pd_options="state1=$val(resValue)"></div>

Note: Dynamic value using the $val directive are supported by most 
of the PixieDust custom attributes.

A GitHub project tracking sample application
Let's apply what we learned so far to implementing the sample application. To try 
things out, we want to use the GitHub Rest APIs (https://developer.github.
com/v3) to search for projects and load the results into a pandas DataFrame for 
analysis.

The initial code shows the welcome screen with a simple input box to enter 
the GitHub query and a button to submit the request:

from pixiedust.display.app import *

@PixieApp
class GitHubTracking():
    @route()
    def main_screen(self):
        return """
<style>
    div.outer-wrapper {

https://developer.github.com/v3
https://developer.github.com/v3
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        display: table;width:100%;height:300px;
    }
    div.inner-wrapper {
        display: table-cell;vertical-align: middle; 
        height: 100%;width: 100%;
    }
</style>
<div class="outer-wrapper">
    <div class="inner-wrapper">
        <div class="col-sm-3"></div>
        <div class="input-group col-sm-6">
            <input id="query{{prefix}}" type="text"  
             class="form-control"  
             placeholder="Search projects on GitHub">
            <span class="input-group-btn">
                <button class="btn btn-default"  
                 type="button">Submit Query</button>
            </span>
        </div>
    </div>
</div>
"""

app = GitHubTracking()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode4.py

A few things to note from the preceding code:

• The Bootstrap CSS framework (https://getbootstrap.com/docs/3.3) and 
the jQuery JS framework (https://jquery.com) are provided by the Jupyter 
Notebook. We can readily use them in our code without the need to install 
them.

• Font Awesome icons (https://fontawesome.com) are also available 
by default in the Notebook.

• The PixieApp code could be executed in multiple cells of the Notebook. 
Since we're relying on DOM element IDs, it is important to make sure that 
two elements do not have the same ID which would cause undesirable 
side effects. To that end, it is recommended to always include the unique 
identifier {{prefix}}, provided by the PixieDust framework, for example, 
"query{{prefix}}".

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode4.py
https://getbootstrap.com/docs/3.3
https://jquery.com
https://fontawesome.com
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The results are shown in the following screenshot:

Welcome screen of our GitHub Tracking application

The next step is to create a new route that takes the user value and returns the 
results. This route will be invoked by the Submit Query button.

To keep things simple, the following code doesn't use a Python library to interface 
with GitHub, such as PyGithub (http://pygithub.readthedocs.io/en/latest), 
instead, we'll directly call the REST APIs as documented in the GitHub website:

Note: When you see the following notation [[GitHubTracking]], 
this means that the code is meant to be added to the GitHubTracking 
PixieApp class and, to avoid repeating the surrounding code over and 
over again, it has been omitted. When in doubt, you can always refer 
to the complete Notebook specified at the end of the section.

import requests
import pandas
[[GitHubTracking]]
@route(query="*")
@templateArgs
def do_search(self, query):
    response = requests.get( "https://api.github.com/search/
repositories?q={}".format(query))
    frames = [pandas.DataFrame(response.json()['items'])]
    while response.ok and "next" in response.links:
        response = requests.get(response.links['next']['url'])
        frames.append(pandas.DataFrame(response.json()['items']))

    pdf = pandas.concat(frames)
    response = requests.get( "https://api.github.com/search/
repositories?q={}".format(query))
    if not response.ok:

http://pygithub.readthedocs.io/en/latest
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        return "<div>An Error occurred: {{response.text}}</div>"
    return """<h1><center>{{pdf|length}} repositories were found</
center></h1>"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode5.py

In the preceding code, we created a route called do_search that takes one argument 
called query, which we use to build an API URL to GitHub. Using the requests 
Python module (http://docs.python-requests.org) to issue a GET request to 
this URL, we get a JSON payload that we turn into a pandas DataFrame. According 
to the GitHub documentation, the Search API paginates with the next page being 
stored in the link's headers. The code uses a while loop to go over each link and load 
the next page into a new DataFrame. We then concatenate all the DataFrames into 
one called pdf. All we have left to do is build the HTML fragment that will display 
the results. The fragment uses the Jinja2 notation {{...}} to access the pdf variable 
defined as a local variable, which only works because we used the @templateArgs 
decorator in the do_search method. Notice that we also use a Jinja2 filter called 
length to display the number of repositories found: {{pdf|length}}.

For more information on filters, visit the following:
http://jinja.pocoo.org/docs/templates/#filters

We still need to invoke the do_search route when the user clicks on the 
Submit Query button. For that, we add the pd_options attribute to the 
<button> element, as highlighted here:

<div class="input-group col-sm-6">
    <input id="query{{prefix}}" type="text"
     class="form-control"
     placeholder="Search projects on GitHub">
    <span class="input-group-btn">
        <button class="btn btn-default"  
         type="button"  
         pd_options="query=$val(query{{prefix}})">
            Submit Query
        </button>
    </span>
</div>

We use the $val() directive in the pd_options attribute to dynamically retrieve 
the value of the input box with ID equals to "query{{prefix}}" and store it in 
the query argument.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode5.py
http://docs.python-requests.org
http://jinja.pocoo.org/docs/templates/#filters
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Displaying the search results in a table
The preceding code loads all the data at once, which is not recommended since we 
could have a huge number of hits. Similarly, displaying it all in one go would make 
the UI sluggish and non-practical. Thankfully, we can easily build a paginated table 
without too much effort, using the following steps:

1. Create a route called do_retrieve_page that takes a URL as an argument 
and returns the HTML fragment for the table body

2. Maintain the first, previous, next, and last URLs as fields in the PixieApp 
class

3. Create a pagination widget (we'll use Bootstrap since it's available) 
with First, Prev, Next, and Last button

4. Create a table placeholder with the columns headers to be displayed

We'll now update the code for do_search, as follows:

Note: The following code is referencing the do_retrieve_page method 
which we will define a little later. Please do not attempt to run this code 
as is until you also add the do_retrieve_page method.

[[GitHubTracking]]
@route(query="*")
@templateArgs
def do_search(self, query):
    self.first_url = "https://api.github.com/search/
repositories?q={}".format(query)
    self.prev_url = None
    self.next_url = None
    self.last_url = None

    response = requests.get(self.first_url)
    if not response.ok:
        return "<div>An Error occurred: {{response.text}}</div>"

    total_count = response.json()['total_count']
    self.next_url = response.links.get('next', {}).get('url',  
                                                        None)
    self.last_url = response.links.get('last', {}).get('url',  
                                                        None)
    return """
<h1><center>{{total_count}} repositories were found</center></h1>
<ul class="pagination">
    <li><a href="#" pd_options="page=first_url"  
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     pd_target="body{{prefix}}">First</a></li>
    <li><a href="#" pd_options="page=prev_url"  
     pd_target="body{{prefix}}">Prev</a></li>
    <li><a href="#" pd_options="page=next_url"  
     pd_target="body{{prefix}}">Next</a></li>
    <li><a href="#" pd_options="page=last_url"  
     pd_target="body{{prefix}}">Last</a></li>
</ul>
<table class="table">
    <thead>
        <tr>
            <th>Repo Name</th>
            <th>Lastname</th>
            <th>URL</th>
            <th>Stars</th>
        </tr>
    </thead>
    <tbody id="body{{prefix}}">
        {{this.invoke_route(this.do_retrieve_page,  
         page='first_url')}}
    </tbody>
</table>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode6.py

The preceding code sample shows a very important property of PixieApps, which 
is that you can maintain state throughout the life cycle of the application by simply 
storing the data into class variables. In this case, we use self.first_url, self.
prev_url, self.next_url, and self.last_url. These variables use the pd_
options property for each button in the pagination widget and update each time 
the do_retrieve_page route is invoked. The fragment returned by do_search now 
returns a table with a placeholder for the body, identified by body{{prefix}}, 
which becomes the pd_target for each button. We also use the invoke_route 
method to make sure that we get the first page when the table is first displayed.

We've seen before that the HTML fragment returned by a route is used to replace the 
entire page, but in the preceding code, we use the pd_target="body{{prefix}}" 
attribute to signify that the HTML fragment will be injected in the body element 
of the table that has the body{{prefix}} ID. If needed, you can also define multiple 
targets for a user action, by creating one or more <target> elements as children of 
the clickable source element. Each <target> element can itself use all the PixieApp 
custom attributes to configure kernel requests.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode6.py
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Here is an example:

<button type="button">Multiple Targets
    <target pd_target="elementid1"  
     pd_options="state1=value1"></target>
    <target pd_target="elementid2"  
     pd_options="state2=value2"></target>
</button>

Back to our GitHub sample application, the do_retrieve_page method now looks 
like this:

[[GitHubTracking]]
@route(page="*")
@templateArgs
def do_retrieve_page(self, page):
    url = getattr(self, page)
    if url is None:
        return "<div>No more rows</div>"
    response = requests.get(url)
    self.prev_url = response.links.get('prev', {}).get('url',  
                                                       None)
    self.next_url = response.links.get('next', {}).get('url',  
                                                       None)
    items = response.json()['items']
    return """
{%for row in items%}
<tr>
    <td>{{row['name']}}</td>
    <td>{{row.get('owner',{}).get('login', 'N/A')}}</td>
    <td><a href="{{row['html_url']}}"  
     target="_blank">{{row['html_url']}}</a></td>
    <td>{{row['stargazers_count']}}</td>
</tr>
{%endfor%}
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode7.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode7.py
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The page argument is a string that contains the name of the url class variable 
we want to display. We use the standard getattr Python function (https://docs.
python.org/2/library/functions.html#getattr) to get the url value from the 
page. We then issue a GET request on the GitHub API url to retrieve the payload 
as JSON format which we pass to the Jinja2 template to generate the set of rows 
that will be injected in the table. For that, we use the {%for…%} loop control structure 
available in Jinja2 (http://jinja.pocoo.org/docs/templates/#for) to generate 
a sequence of <tr> and <td> HTML tags.

The following screenshot shows the search results for the query: pixiedust:

Screen showing the list of GitHub repo resulting from a query

In Part 1, we showed how to create the GitHubTracking PixieApp, 
invoke the GitHub query REST API, and display the results in a table 
using pagination. You can find the complete Notebook with the source 
code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-%20
Part%201.ipynb

In the next section, we will explore more PixieApp features that will allow us to 
improve the application by letting the user drill down into a particular repository 
and visualize various statistics about the repository.

https://docs.python.org/2/library/functions.html#getattr
https://docs.python.org/2/library/functions.html#getattr
http://jinja.pocoo.org/docs/templates/#for
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%201.ipynb
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The first step is to add a button to each row of the search results table that triggers 
a new route for visualizing the selected repository statistics.

The following code is part of the do_search function and adds a new column in the 
table header:

<thead>
    <tr>
        <th>Repo Name</th>
        <th>Lastname</th>
        <th>URL</th>
        <th>Stars</th>
        <th>Actions</th>
    </tr>
</thead>

To complete the table, we update the do_retrieve_page method to add a new 
cell that contains a <button> element, with pd_options arguments that match 
the new route: analyse_repo_owner and analyse_repo_name. The values of these 
arguments are extracted from the row element used for iterating over the payload 
received from the GitHub request:

{%for row in items%}
<tr>
    <td>{{row['name']}}</td>
    <td>{{row.get('owner',{}).get('login', 'N/A')}}</td>
    <td><a href="{{row['html_url']}}"  
     target="_blank">{{row['html_url']}}</a></td>
    <td>{{row['stargazers_count']}}</td>
    <td>
        <button pd_options=
         "analyse_repo_owner={{row["owner"]["login"]}};
         analyse_repo_name={{row['name']}}"
         class="btn btn-default btn-sm" title="Analyze Repo">
            <i class="fa fa-line-chart"></i>
        </button>
    </td>
</tr>
{%endfor%}

With this simple code change in place, restart the PixieApp by running the cell 
again and we can now see the button for each repo, even though we haven't yet 
implemented the corresponding route, which we'll implement next. As a reminder, 
when no matching route is found, the default route is triggered.
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The following screenshot shows the table with the added buttons:

Adding action buttons for each row

The next step is to create the route associated with the Repo Visualization page. 
The design for this page is rather simple: from a combobox, the user chooses the type 
of data they want to visualize on the page. The GitHub REST API provides access to 
many types of data but, for this sample application, we will use the commit activity 
data, which is part of the Statistics category (see https://developer.github.com/
v3/repos/statistics/#get-the-last-year-of-commit-activity-data for 
a detailed description of this API).

As an exercise, feel free to improve this sample application by adding 
visualizations for other types of APIs, such as the Traffic API (https://
developer.github.com/v3/repos/traffic).

It's also important to note that, even though most of the GitHub APIs work without 
authentication, the server may throttle the responses if you don't provide credentials. 
To authenticate the requests, you will need to use your GitHub password or generate 
a personal access token by selecting the Developer settings menu on your GitHub 
Settings page, then click on Personal access tokens menu, followed by the 
Generate new token button.

In a separate Notebook cell, we will create two variables for the GitHub user 
ID and token:

github_user = "dtaieb"
github_token = "XXXXXXXXXX"

https://developer.github.com/v3/repos/statistics/#get-the-last-year-of-commit-activity-data for a detailed description of this API
https://developer.github.com/v3/repos/statistics/#get-the-last-year-of-commit-activity-data for a detailed description of this API
https://developer.github.com/v3/repos/statistics/#get-the-last-year-of-commit-activity-data for a detailed description of this API
https://developer.github.com/v3/repos/traffic
https://developer.github.com/v3/repos/traffic
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These variables will be used later on to authenticate the requests. Note that, even 
though these variables are created in their own cell, they are visible to the entire 
Notebook, including the PixieApp code.

To provide good code modularity and reuse, we'll implement the Repo 
Visualization page in a new class and have our main PixieApp class inherit from 
it and automatically reuse its routes. This is a pattern to keep in mind when you 
start having large projects and want to break it down into multiple classes.

The main route for the Repo Visualization page returns an HTML fragment that 
has a drop-down menu and a <div> placeholder for the visualizations. The drop-
down menu is created using Bootstrap dropdown class (https://www.w3schools.
com/bootstrap/bootstrap_dropdowns.asp). To make the code easier to maintain, 
the menu items are generated using a Jinja2 {%for..%} loop over an array of tuples 
(https://docs.python.org/3/tutorial/datastructures.html#tuples-and-
sequences) called analyses that contains a description and a function for loading 
the data into a pandas DataFrame. Again here, we create this array in its own cell, 
which will be referenced in the PixieApp class:

analyses = [("Commit Activity", load_commit_activity)]

Note: The load_commit_activity function will be discussed later 
on in this section.
For the purpose of this sample application, the array only contains 
one element related to the commit activity, but any element you may 
add in the future will automatically be picked up by the UI.

The do_analyse_repo route has two arguments: analyse_repo_owner and 
analyse_repo_name, which should be sufficient to access the GitHub APIs. We 
also need to save these arguments as class variables because they will be needed 
in the route that generates the visualizations:

@PixieApp
class RepoAnalysis():
    @route(analyse_repo_owner="*", analyse_repo_name="*")
    @templateArgs
    def do_analyse_repo(self, analyse_repo_owner, analyse_repo_name):
        self._analyse_repo_owner = analyse_repo_owner
        self._analyse_repo_name = analyse_repo_name
        return """
<div class="container-fluid">
    <div class="dropdown center-block col-sm-2">
        <button class="btn btn-primary dropdown-toggle"  
         type="button" data-toggle="dropdown">
            Select Repo Data Set

https://www.w3schools.com/bootstrap/bootstrap_dropdowns.asp
https://www.w3schools.com/bootstrap/bootstrap_dropdowns.asp
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
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            <span class="caret"></span>
        </button>
        <ul class="dropdown-menu"  
         style="list-style:none;margin:0px;padding:0px">
            {%for analysis,_ in this.analyses%}
                <li>
                    <a href="#"  
                     pd_options="analyse_type={{analysis}}"  
                     pd_target="analyse_vis{{prefix}}"
                     style="text-decoration: none;background-
color:transparent">
                        {{analysis}}
                    </a>
                </li>
            {%endfor%}
        </ul>
    </div>
    <div id="analyse_vis{{prefix}}" class="col-sm-10"></div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode8.py

Two things to note in the preceding code are the following:

• The Jinja2 template references the analyses array using 
the this keyword, even though the analyses variable 
is not defined as a class variable. This works because of 
another important PixieApp feature: any variable defined 
in the Notebook itself can be referenced as if they were  
class variables of the PixieApp.

• I store analyse_repo_owner and analyse_repo_name 
as class variables with a different name, for example, _analyse_
repo_owner and _analyse_repo_name. This is important 
because using the same name would have a side effect on the 
route matching algorithm, which also looks at class variables 
to find arguments. Using the same name would then cause 
this route to always be found, which is not the desired effect.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode8.py
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The action button link is defined by the <a> tag and uses pd_options to access 
a route that has one argument called analyse_type, as well as pd_target pointing 
at the "analyse_vis{{prefix}}" placeholder, <div>, defined below in the same 
HTML fragment.

Invoking the PixieDust display() API using 
pd_entity attribute
When using the pd_options attribute to create a kernel request, the PixieApp 
framework uses the current PixieApp class as the target. However, you can change 
this target by specifying a pd_entity attribute. You could, for example, point 
at another PixieApp or, more interestingly, point at a data structure supported 
by the display() API, such as a pandas or Spark DataFrame. In this case, and 
provided that you include the correct options as expected by the display() API, 
the generated output will be the chart itself (an image in the case of Matplotlib, 
Iframe in the case of Mapbox, or an SVG in the case of Bokeh). One simple way to get 
the correct options is to invoke the display() API in its own cell, configure the chart 
as desired using the menus and then copy the cell metadata JSON fragment available 
by clicking on the Edit Metadata button. (You may first have to enable the button 
by using the menu View | Cell Toolbar | Edit Metadata).

You can also specify pd_entity without any value. In this case, the PixieApp 
framework will use the entity passed as the first argument to the run method 
used to launch the PixieApp application. For example, my_pixieapp.run(cars) 
with cars being a pandas or Spark DataFrame created by the pixiedust.
sampleData() method. The value of pd_entity can also be a function call 
that returns the entity. This is useful when you want to dynamically compute 
the entity before rendering it. As with other variables, the scope of pd_entity 
can be either the PixieApp class or any variable declared in the Notebook.

For example, we can create a function in its own cell that takes a prefix as an 
argument and returns a pandas DataFrame. We then use it as a pd_entity 
value in my PixieApp, as shown in the following code:

def compute_pdf(key):
    return pandas.DataFrame([
        {"col{}".format(i): "{}{}-{}".format(key,i,j) for i in 
range(4)} for j in range(10)
    ])
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode9.py

In the preceding code, we used Python list comprehensions (https://docs.python.
org/2/tutorial/datastructures.html#list-comprehensions) to quickly 
generate mock data based on the key argument.

Python list comprehensions are one of my favorite features of the 
Python language as they let you create, transform, and extract data 
with an expressive and concise syntax.

I can then create a PixieApp that uses the compute_pdf function as a pd_entity 
to render the data as a table:

from pixiedust.display.app import *
@PixieApp
class TestEntity():
    @route()
    def main_screen(self):
        return """
        <h1><center>
            Simple PixieApp with dynamically computed dataframe
        </center></h1>
        <div pd_entity="compute_pdf('prefix')"  
         pd_options="handlerId=dataframe"  
         pd_render_onload></div>
        """
test = TestEntity()
test.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode10.py

In the preceding code, for simplicity, I hardcoded the key to 'prefix' and I'll 
leave it as an exercise to use an input control and the $val() directive to make 
it user definable.

Another important thing to notice is the use of the pd_render_onload attribute 
in the div that displays the chart. This attribute tells PixieApp to execute the kernel 
request defined by the element immediately after it is loaded into the browser DOM.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode9.py
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode10.py
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The results for the preceding PixieApp are shown in the following screenshot:

Dynamic DataFrame creation within a PixieApp

Back to our GitHub Tracking application, let's now apply the pd_entity value to 
the DataFrame loaded from the GitHub Statistics API. We create a method called 
load_commit_activity, responsible for loading the data into a pandas DataFrame 
and returning it along with the pd_options needed to display the chart:

from datetime import datetime
import requests
import pandas
def load_commit_activity(owner, repo_name):
    response = requests.get(
        "https://api.github.com/repos/{}/{}/stats/commit_activity".
format(owner, repo_name),
        auth=(github_user, github_token)
    ).json()
    pdf = pandas.DataFrame([
        {"total": item["total"],  
        "week":datetime.fromtimestamp(item["week"])} for item in 
response
    ])

    return {
        "pdf":pdf,
        "chart_options": {
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          "handlerId": "lineChart",
          "keyFields": "week",
          "valueFields": "total",
          "aggregation": "SUM",
          "rendererId": "bokeh"
        }
    }

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode11.py

The preceding code sends a GET request to GitHub, authenticated with the github_
user and github_token variables set up at the beginning of the Notebook. The 
response is a JSON payload that we'll use to create a pandas DataFrame. Before we 
can create the DataFrame, we need to transform the JSON payload in to the right 
format. Right now, the payload looks like this:

[
{"days":[0,0,0,0,0,0,0],"total":0,"week":1485046800},
{"days":[0,0,0,0,0,0,0],"total":0,"week":1485651600},
{"days":[0,0,0,0,0,0,0],"total":0,"week":1486256400},
{"days":[0,0,0,0,0,0,0],"total":0,"week":1486861200}
...
]

We need to drop the days key as it's not needed for displaying the chart and, 
for proper chart display, we need to convert the value of the week key, which is 
a Unix timestamp, into a Python datetime object. This transformation is done using 
a Python list comprehension with a simple line of code:

[{"total": item["total"], "week":datetime.fromtimestamp(item["week"])} 
for item in response]

In the current implementation, the load_commit_activity function is defined in 
its own cell, but we could also have defined it as a member method of the PixieApp. 
As a best practice, using its own cell is very convenient because we can unit test the 
function and iterate rapidly on it without incurring the overhead of running the full 
app every time.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode11.py
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To get the pd_options value, we can simply run the function with a sample 
repo information and then call the display() API in a separate cell:

Using display() in a separate cell to get the visualization configuration

To obtain the preceding chart, you need to select Line Chart and then, in the 
Options dialog, drag and drop the week column to the Keys box and the total 
column to the Values box. You also need to select Bokeh as the renderer. Once done, 
notice that PixieDust will automatically detect that the x axis is a datetime and will 
adjust the rendering accordingly.

Using the Edit Metadata button, we can now copy the chart options JSON fragment:
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Capturing the display() JSON configuration

And return it in the load_commit_activity payload:

return {
        "pdf":pdf,
        "chart_options": {
          "handlerId": "lineChart",
          "keyFields": "week",
          "valueFields": "total",
          "aggregation": "SUM",
          "rendererId": "bokeh"
        }
    }

We are now ready to implement the do_analyse_type route in the RepoAnalysis 
class, as shown in the following code:

[[RepoAnalysis]]
@route(analyse_type="*")
@templateArgs
def do_analyse_type(self, analyse_type):
    fn = [analysis_fn for a_type,analysis_fn in analyses if a_type == 
analyse_type]
    if len(fn) == 0:
        return "No loader function found for {{analyse_type}}"
    vis_info = fn[0](self._analyse_repo_owner,  
                     self._analyse_repo_name)
    self.pdf = vis_info["pdf"]
    return """
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    <div pd_entity="pdf" pd_render_onload>
        <pd_options>{{vis_info["chart_options"] | tojson}}</pd_
options>
    </div>
    """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode12.py

The route has one argument called analyse_type, which we use as a key to find 
the load function in the analyses array (notice that I again use a list comprehension 
to do the search quickly). We then call this function passing the repo owner and 
name to get the vis_info JSON payload and store the pandas DataFrame into a 
class variable called pdf. The returned HTML fragment will then use pdf as the 
pd_entity value and vis_info["chart_options"] as pd_options. Here I use 
the tojson Jinja2 filter (http://jinja.pocoo.org/docs/templates/#list-of-
builtin-filters) to ensure that it is properly escaped in the generated HTML.  
I am also allowed to use the vis_info variable even though it's been declared  
on the stack because I used the @templateArgs decorator for the function.

The last thing to do before testing our improved application is to make sure the 
main GitHubTracking PixieApp class inherits from the RepoAnalysis PixieApp:

@PixieApp
class GitHubTracking(RepoAnalysis):
    @route()
    def main_screen(self):
        <<Code omitted here>>

    @route(query="*")
    @templateArgs
    def do_search(self, query):
        <<Code omitted here>>

    @route(page="*")
    @templateArgs
    def do_retrieve_page(self, page):
        <<Code omitted here>>

app = GitHubTracking()
app.run()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode12.py
http://jinja.pocoo.org/docs/templates/#list-of-builtin-filters
http://jinja.pocoo.org/docs/templates/#list-of-builtin-filters
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode13.py

A screenshot of the Repo Analysis page is shown here:

GitHub repo commit activity visualization

If you want to experiment further, you can find the complete 
Notebook for the GitHub Tracking application Part 2 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20- 
%20Part%202.ipynb

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%202.ipynb
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Invoking arbitrary Python code with pd_script
In this section, we look at the pd_script custom attribute which lets you run 
arbitrary Python code whenever a kernel request is triggered. There are a few 
rules that govern how the Python code is executed:

• The code has access to the PixieApp class using the self keyword, as well 
as any variables, functions, and classes defined in the Notebook, as in the 
following example:
<button type="submit" pd_script="self.state='value'">Click me</
button>

• If a pd_target is specified, then any statement using the print function 
will be output in the target element. This is not the case if no pd_target is 
present. In other words, you cannot use pd_script to do a full-page refresh 
(you would have to use the pd_options attribute instead), as in the example:
from pixiedust.display.app import *

def call_me():
    print("Hello from call_me")

@PixieApp
class Test():
    @route()
    def main_screen(self):
        return """
        <button type="submit" pd_script="call_me()"  
         pd_target="target{{prefix}}">Click me</button>

        <div id="target{{prefix}}"></div>
        """
Test().run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode14.py

• If the code contains more than one line, it is recommended to use the pd_
script child element, which lets you write the Python code using multiple 
lines. When using this form, make sure that the code respects the Python 
language rules for indentation, as in the example:

@PixieApp
class Test():

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode14.py


Chapter 3

[ 101 ]

    @route()
    def main_screen(self):
        return """
        <button type="submit"  
         pd_script="call_me()"  
         pd_target="target{{prefix}}">
            <pd_script>
                self.name="some value"
                print("This is a multi-line pd_script")
            </pd_script>
            Click me
        </button>

        <div id="target{{prefix}}"></div>
        """
Test().run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode15.py

One common use case for pd_script is to update some state on the server 
before triggering a kernel request. Let's apply this technique to our GitHub Tracking 
application by adding a checkbox to switch the visualization between a line chart 
and a statistical summary of the data.

In the fragment HTML returned by do_analyse_repo, we add the checkbox element 
used to switch between the chart and the statistics summary:

[[RepoAnalysis]]
...
return """
<div class="container-fluid">
    <div class="col-sm-2">
        <div class="dropdown center-block">
            <button class="btn btn-primary
             dropdown-toggle" type="button"
             data-toggle="dropdown">
                Select Repo Data Set
                <span class="caret"></span>
            </button>
            <ul class="dropdown-menu"
             style="list-style:none;margin:0px;padding:0px">
                {%for analysis,_ in this.analyses%}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode15.py
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                    <li>
                        <a href="#"
                        pd_options="analyse_type={{analysis}}"
                        pd_target="analyse_vis{{prefix}}"
                        style="text-decoration: none;background-
color:transparent">
                            {{analysis}}
                        </a>
                    </li>
                {%endfor%}
            </ul>
        </div>
        <div class="checkbox">
            <label>
                <input id="show_stats{{prefix}}" type="checkbox"
                  pd_script="self.show_stats=('$val(show_
stats{{prefix}})' == 'true')">
                Show Statistics
            </label>
        </div>
    </div>
    <div id="analyse_vis{{prefix}}" class="col-sm-10"></div>
</div>
"""

In the checkbox element, we include a pd_script attribute that modifies a variable 
state on the server based on the state of the checkbox element. We use the $val() 
directive to retrieve the value of the show_stats_{{prefix}} element and 
compare it with the true string. When the user clicks on the checkbox, the state 
is immediately changed on the server and, the next time the user clicks on the menu, 
the stats are showing instead of the charts.

We now need to change the do_analyse_type route to dynamically configure  
pd_entity and chart_options:

[[RepoAnalysis]]
@route(analyse_type="*")
@templateArgs
def do_analyse_type(self, analyse_type):
    fn = [analysis_fn for a_type,analysis_fn in analyses if a_type == 
analyse_type]
    if len(fn) == 0:
        return "No loader function found for {{analyse_type}}"
    vis_info = fn[0](self._analyse_repo_owner,  
                     self._analyse_repo_name)
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    self.pdf = vis_info["pdf"]
    chart_options = {"handlerId":"dataframe"} if self.show_stats else 
vis_info["chart_options"]
    return """
    <div pd_entity="get_pdf()" pd_render_onload>
        <pd_options>{{chart_options | tojson}}</pd_options>
    </div>
    """

You can find the file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode16.py

chart_options is now a local variable that contains options for displaying as a table 
if show_stats is true and regular line chart options if not.

pd_entity is now set to the get_pdf() method, which is responsible 
for returning the appropriate DataFrame based on the show_stats variable:

def get_pdf(self):
    if self.show_stats:
        summary = self.pdf.describe()
        summary.insert(0, "Stat", summary.index)
        return summary
    return self.pdf

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode17.py

We use the pandas describe() method (https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.DataFrame.describe.html) that returns 
a DataFrame containing summary statistics, such as count, mean, standard deviation, 
and so on. We also make sure that the first column of this DataFrame contains the 
name of the statistic.

The last change we need to make is to initialize the show_stats variable because, 
if we don't, then the first time we check it, we'll get an AttributeError exception.

Because of the internal mechanics of using the @PixieApp decorator, you can't use 
the __init__ method to initialize variables; instead, the PixieApp programming 
model requires you to use a method called setup, which is guaranteed to be called 
when the application starts:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode17.py
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.describe.html
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@PixieApp
class RepoAnalysis():
    def setup(self):
        self.show_stats = False
    ...

Note: If you have a class inheriting from other PixieApps, then 
the PixieApp framework will automatically call all setup functions 
from base classes using their order of appearance.

The following screenshot shows the summary statistics being displayed:

Summary statistics for a GitHub repo

You can find the complete Notebook for the GitHub Tracking application 
Part 3 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20- 
%20Part%203.ipynb

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%203.ipynb
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Making the application more responsive with 
pd_refresh
We want to improve the user experience by making the Show Statistics 
button directly show the statistics table instead of having the user to click on the 
menu again. Similar to the menu that loads the Commit Activity, we could add 
a pd_options attribute to the checkbox with the pd_target attribute pointing 
at the analyse_vis{{prefix}} element. Instead of duplicating pd_options in 
each of the controls that triggers a new display, we could add it once to analyse_
vis{{prefix}} and have it update itself with the pd_refresh attribute.

The following diagram shows the differences between the two designs:

Sequence diagram with and without pd_refresh

In both cases, step 1 is to update some state on the server side. In the case of the route 
being invoked by the Control shown in step 2, the request specification is stored 
in the control itself, triggering step 3, which is to generate the HTML fragment and 
inject it in the target element. With pd_refresh, the control doesn't know the pd_
options to invoke the route, instead, it simply uses pd_refresh to signal the target 
element, which in turn will invoke the route. In this design, we only need to specify 
the request once (in the target element) and user control needs only to update state 
before triggering a refresh. This makes the implementation much easier to maintain.

To better understand the differences between the two designs, let's compare both 
implementations in the RepoAnalysis class.
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For the Analysis menu, the changes are as follows:

Before, the control triggered the analyse_type route, passing the {{analysis}} 
selection as part of the kernel request, targeting analyse_vis{{prefix}}:

<a href="#" pd_options="analyse_type={{analysis}}"
            pd_target="analyse_vis{{prefix}}"
            style="text-decoration: none;background-
color:transparent">
      {{analysis}}
</a>

After, the control now stores the selection state as a class field and asks the analyse_
vis{{prefix}} element to refresh itself:

<a href="#" pd_script="self.analyse_type='{{analysis}}'"
 pd_refresh="analyse_vis{{prefix}}"
 style="text-decoration: none;background-color:transparent">
    {{analysis}}
</a>

Similarly, the changes for the Show Statistics checkbox are as follows:

Before the checkbox simply set the show_stats state in the class; the user had to click 
on the menu again to get the visualization:

<div class="checkbox">
    <label>
        <input type="checkbox"
         id="show_stats{{prefix}}"
pd_script="self.show_stats='$val(show_stats{{prefix}})'=='true'">
        Show Statistics
    </label>
</div>

After, the visualization is updated as soon as the checkbox is selected, thanks to the 
pd_refresh attribute:

<div class="checkbox">
    <label>
        <input type="checkbox"
         id="show_stats{{prefix}}"
  pd_script="self.show_stats='$val(show_stats{{prefix}})'=='true'"
         pd_refresh="analyse_vis{{prefix}}">
         Show Statistics
    </label>
</div>
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Finally, the changes for the analyse_vis{{prefix}} element are as follows:

Before, the element didn't know how to update itself, it relies on other controls 
to direct a request to the appropriate route:

<div id="analyse_vis{{prefix}}" class="col-sm-10"></div>

After, the element carries the kernel configuration to update itself; any control 
can now change state and call refresh:

<div id="analyse_vis{{prefix}}" class="col-sm-10"
     pd_options="display_analysis=true"
     pd_target="analyse_vis{{prefix}}">
</div>

You can find the complete Notebook for this section for the GitHub 
Tracking application Part 4 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-%20
Part%204.ipynb

Creating reusable widgets
The PixieApp programming model provides a mechanism for packaging the 
HTML and logic of a complex UI construct into a widget that can be easily 
called from other PixieApps. The steps to create a widget are as follows:

1. Create a PixieApp class that will contain the widget.
2. Create a route with a special widget attribute, as in the example:

@route(widget="my_widget")

It will be the starting route for the widget.

3. Create a consumer PixieApp class that inherits from the widget 
PixieApp class.

4. Invoke the widget from a <div> element by using the pd_widget attribute.

Here is an example of how to create a widget and consumer PixieApp class:

from pixiedust.display.app import *

@PixieApp

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
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class WidgetApp():
    @route(widget="my_widget")
    def widget_main_screen(self):
        return "<div>Hello World Widget</div>"

@PixieApp
class ConsumerApp(WidgetApp):
    @route()
    def main_screen(self):
        return """<div pd_widget="my_widget"></div>"""

ConsumerApp.run()

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/sampleCode18.py

Summary
In this chapter, we've covered the foundational building blocks of the PixieApp 
programming model that lets you create powerful tools and dashboards directly 
in the Notebook.

We've also illustrated PixieApp concepts and techniques by showing how 
to build a GitHub Tracking sample application, including detailed code examples. 
Best practices and more advanced PixieApp concepts will be covered in Chapter 5, 
Python and PixieDust Best Practices and Advanced Concepts, including events, 
streaming, and debugging.

By now, you should hopefully have a good idea of how Jupyter Notebooks, 
PixieDust, and PixieApps can help bridge the gap between data scientists and 
developers by enabling them to collaborate from within a single tool, such as 
Jupyter Notebook.

In the next chapter, we'll show how to free the PixieApp from the Notebook 
and publish it as a web application using the PixieGateway microservice server.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/sampleCode18.py
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Publish your Data Analysis to 
the Web - the PixieApp Tool

"Data, I think, is one of the most powerful mechanisms for telling stories.  
I take a huge pile of data and I try to get it to tell stories."

                                                       – Steven Levitt, co-author of Freakonomics

In the previous chapter, we discussed how Jupyter Notebooks, coupled with 
PixieDust, accelerate your data science projects with simple APIs that let you load, 
clean, and visualize data without the need to write extensive code, as well as enable 
collaboration between data scientists and developers with PixieApps. In this chapter, 
we'll show how to liberate your PixieApps and associated data analytics from the 
Jupyter Notebook by publishing them as web applications using the PixieGateway 
server. This operationalization of the Notebook is particularly attractive to the line 
of business user persona (business analysts, C-Suite executives, and many more) who 
would like to use the PixieApps but who, unlike data scientists or developers, may 
not be comfortable using Jupyter Notebooks to do so. Instead, they would prefer 
to access it as a classic web application or perhaps, similar to a YouTube video, 
embed it into a blog post or a GitHub page. Using a website or a blog post, it will 
be easier to communicate the valuable insights and other results extracted from the 
data analytics from your data.

By the end of this chapter, you will be able to install and configure a PixieGateway 
server instance both locally for testing or in a Kubernetes container on the cloud 
for production. For those readers who are not familiar with Kubernetes, we'll cover 
the basics in the next section.
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The other main capability of the PixieGateway server that we'll cover in this chapter, 
is the ability to easily share a chart created with the PixieDust display() API. We'll 
show how to publish it as a web page accessible by your team with a single click of 
a button. Finally, we'll cover the PixieGateway admin console that lets you manage 
your applications, charts, kernels, server logs, and a Python console executing  
ad-hoc code requests against a kernel.

Note: The PixieGateway server is a subcomponent of PixieDust, its source 
code can be found here:
https://github.com/pixiedust/pixiegateway

Overview of Kubernetes
Kubernetes (https://kubernetes.io) is a scalable open source system for 
automating and orchestrating the deployment and management of containerized 
applications, which are very popular among cloud service providers. It is most 
often used with Docker containers (https://www.docker.com) although other 
types of containers are supported. Before you start, you will need access to a set of 
computers that have been configured as a Kubernetes cluster; you can find a tutorial 
on how to create such a cluster here: https://kubernetes.io/docs/tutorials/
kubernetes-basics.

If you don't have the computer resources, a good solution would be to use 
a public cloud vendor that provides a Kubernetes service, such as Amazon 
AWS EKS (https://aws.amazon.com/eks), Microsoft Azure (https://azure.
microsoft.com/en-us/services/container-service/kubernetes), or IBM 
Cloud Kubernetes Service (https://www.ibm.com/cloud/container-service).

To better understand how a Kubernetes cluster works, let's look at the high-level 
architecture shown in the following diagram:

https://github.com/pixiedust/pixiegateway
https://kubernetes.io
https://www.docker.com
https://kubernetes.io/docs/tutorials/kubernetes-basics
https://kubernetes.io/docs/tutorials/kubernetes-basics
https://aws.amazon.com/eks
https://azure.microsoft.com/en-us/services/container-service/kubernetes
https://azure.microsoft.com/en-us/services/container-service/kubernetes
https://www.ibm.com/cloud/container-service
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Kubernetes high-level architecture

At the top of the stack, we have the kubectl command-line tool that enables users 
to manage the Kubernetes cluster by sending commands to the Kubernetes Master 
Node. The kubectl commands use the following syntax:

kubectl [command] [TYPE] [NAME] [flags]

Where:

• command: This specifies the operation, for example, create, get, describe, 
and delete

• TYPE: This specifies the resource type, for example, pods, nodes, and 
services

• NAME: This specifies the name of the resource
• flags: This specifies optional flags specific to the operation

For more information on how to use kubectl, visit the following:

https://kubernetes.io/docs/reference/kubectl/overview

Another important component present in the worker node is the kubelet, which 
controls the pod's life cyle by reading the pod configuration from the kube API Server. 
It also is responsible for communication with the master node. The kube-proxy 
provides load balancing capabilities between all the pods according to the policy 
specified in the master node, hence ensuring high-availability of the overall application.

https://kubernetes.io/docs/reference/kubectl/overview
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In the next section, we will discuss the different ways to install and configure 
the PixieGateway server, including one method that uses a Kubernetes cluster.

Installing and configuring the 
PixieGateway server
Before we dive into the technical details, it would be a good idea to deploy 
a PixieGateway server instance to try things out.

There are mainly two types of installation you can try: local install and server install.

Local install: Use this method for testing and development.

For this part, I strongly recommend using Anaconda virtual environments 
(https://conda.io/docs/user-guide/tasks/manage-environments.html) 
because they provide good isolation between the environments, enabling you 
to experiment with different versions and configurations of the Python package.

If you are managing multiple environments, you can get a list of all the available 
environments by using the following command:

conda env list

First, select the environment of your choice by using the following command from 
a Terminal:

source activate <<my_env>>

You should see the name of your environment in the Terminal, which is an 
indication that you've correctly activated it.

Next, install the pixiegateway package from PyPi by running the following 
command:

pip install pixiegateway

Note: You can find more information about the pixiegateway package 
on PyPi here:
https://pypi.python.org/pypi/pixiegateway

Once all the dependencies have been installed, you're ready to start the server. 
Assuming that you want to use the 8899 port, you can start the PixieGateway 
server using the following command:

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://pypi.python.org/pypi/pixiegateway
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jupyter pixiegateway --port=8899

Example output should look like this:

(dashboard) davids-mbp-8:pixiegateway dtaieb$ jupyter pixiegateway 
--port=8899

Pixiedust database opened successfully

Pixiedust version 1.1.10

[PixieGatewayApp] Jupyter Kernel Gateway at http://127.0.0.1:8899

Note: To stop the PixieGateway server, simply use Ctrl + C from 
the Terminal.

You can now open the PixieGateway admin console at the following URL: http://
localhost:8899/admin.

Note: When challenged, use admin as the user and blank (no password) 
as the password. We'll review how to configure security and other 
properties in the PixieGateway server configuration section later in 
this chapter.

Server install using Kubernetes and Docker: Use this install method if you need 
to run PixieGateway in a production environment where you want to give access 
to the deployed PixieApps to multiple users over the web.

The following instructions will use IBM Cloud Kubernetes Service, but they 
can easily be adapted to other providers:

1. Create an IBM Cloud account if you don't already have one 
and create a container service instance from the catalog.

Note: A lite version plan is available for testing at no cost.

2. Download and install the Kubernetes CLI (https://kubernetes.io/
docs/tasks/tools/install-kubectl) and the IBM Cloud CLI (https://
console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.
html#getting-started).

https://kubernetes.io/docs/tasks/tools/install-kubectl
https://kubernetes.io/docs/tasks/tools/install-kubectl
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started
https://console.bluemix.net/docs/cli/reference/bluemix_cli/get_started.html#getting-started
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Note: An additional get started article on Kubernetes containers can 
be found here:
https://console.bluemix.net/docs/containers/container_
index.html#container_index

3. Log in to the IBM Cloud and then target the org and space where your 
Kubernetes instance resides. Install and initialize the container-service 
plugin:
bx login -a https://api.ng.bluemix.net

bx target -o <YOUR_ORG> -s <YOUR_SPACE></YOUR_SPACE>

bx plugin install container-service -r Bluemix

bx cs init

4. Check that your cluster is created and, if not, create one:
bx cs clusters

bx cs cluster-create --name my-cluster

5. Download the cluster configuration that will be used by the kubectl 
command, which is executed on your local machine, later on:
bx cs cluster-config my-cluster

The preceding command will generate a temporary YML file that contains 
the cluster information and an environment variable export statement 
that you must run before starting to use the kubectl command, as in the  
example:
   export KUBECONFIG=/Users/dtaieb/.bluemix/plugins/container-

   service/clusters/davidcluster/kube-config-hou02-davidcluster.
yml

Note: YAML is a very popular data serialization format commonly used 
for system configuration. You can find more information here:
http://www.yaml.org/start.html

6. You can now use kubectl to create the deployment and services for your 
PixieGateway server. For convenience, the PixieGateway GitHub repository 
already has a generic version of deployment.yml and service.yml that 
you can directly reference. We'll review how to configure these files for 
Kubernetes in the PixieGateway server configuration section later in this 
chapter:
kubectl create -f https://github.com/ibm-watson-data-lab/

https://console.bluemix.net/docs/containers/container_index.html#container_index
https://console.bluemix.net/docs/containers/container_index.html#container_index
http://www.yaml.org/start.html
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pixiegateway/raw/master/etc/deployment.yml

kubectl create -f https://github.com/ibm-watson-data-lab/
pixiegateway/raw/master/etc/service.yml

7. It would be a good idea to verify the state of your clusters using the kubectl 
get command:
kubectl get pods

kubectl get nodes

kubectl get services

8. Finally, you'll need the public IP address of the server, which you can find by 
looking at the Public IP column of the output returned using the following 
command, in the Terminal:
bx cs workers my-cluster

9. If all goes well, you can now test your deployment by opening the admin 
console at http://<server_ip>>:32222/admin. This time, the default 
credentials for the admin console are admin/changeme and we'll show 
how to change them in the next section.

The deployment.yml file used in the Kubernetes install instructions is referencing 
a Docker image that has the PixieGateway binaries and all its dependencies 
preinstalled and configured. The PixieGateway Docker image is available 
at https://hub.docker.com/r/dtaieb/pixiegateway-python35.

When working locally, the recommended method is to follow the steps of the local 
install described earlier. However, for readers who prefer to work with Docker 
images, it is possible to try out the PixieGateway Docker image locally without 
Kubernetes, by directly installing it on your local laptop with a simple Docker 
command:

docker run -p 9999:8888 dtaieb/pixiegateway-python35

The preceding command assumes that you have already installed Docker and that 
it is currently running on your local machine. If not, you can download an installer 
from the following link: https://docs.docker.com/engine/installation.

The Docker image will automatically be pulled if not already present and the 
container will start, starting the PixieGateway server at local port 8888. The -p 
switch in the command maps the 8888 port local to the container, to the 9999 port 
local to the host machine. With the given configuration, you would access the Docker 
instance of the PixieGateway server at the following URL: http://localhost:9999/
admin.

https://hub.docker.com/r/dtaieb/pixiegateway-python35
https://docs.docker.com/engine/installation
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You can find more information about the Docker command line here:
https://docs.docker.com/engine/reference/ 
commandline/cli

Note: Another reason why you would use this method is to provide your 
own custom Docker image for the PixieGateway server. This can be useful 
if you have built an extension to PixieGateway and want to provide it to 
your users as an already configured Docker image. Discussion around 
how to build a Docker image from a base image is beyond the scope of 
this book, but you can find detailed information here:
https://docs.docker.com/engine/reference/commandline/
image_build

PixieGateway server configuration
Configuring the PixieGateway server is very similar to configuring the Jupyter 
Kernel Gateway. Most options are configured using a Python configuration file; 
to start things off, you can generate a template configuration file using the following 
command:

jupyter kernelgateway --generate-config

The jupyter_kernel_gateway_config.py template file will be generated under 
the ~/.jupyter directory (~ indicates the user home directory). You can find more 
information about the standard Jupyter Kernel Gateway options here: http://
jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html.

Using the jupyter_kernel_gateway_config.py file is fine when you are working 
locally and have easy access to the filesystem. When using the Kubernetes install,  
it is recommended to configure the options as environment variables, which you  
can set directly in the deployment.yml file by using the predefined env category.

Let's now look at each configuration options for the PixieGateway server. A list is 
provided here using both the Python and Environment method:

Note: As a reminder, Python method means setting the parameter in 
the jupyter_kernel_gateway_config.py Python config file, while 
the Environment method means setting the parameters in the Kubernetes 
deployment.yml file.

https://docs.docker.com/engine/reference/
commandline/cli
https://docs.docker.com/engine/reference/
commandline/cli
https://docs.docker.com/engine/reference/commandline/image_build
https://docs.docker.com/engine/reference/commandline/image_build
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
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• Admin console credentials: Configure the user ID/password for the admin 
console:

 ° Python: PixieGatewayApp.admin_user_id, PixieGatewayApp.
admin_password

 ° Environment: ADMIN_USERID and ADMIN_PASSWORD

• Storage connector: Configure a persistent storage for various resources, 
such as charts, and Notebooks. By default, PixieGateway uses the local 
filesystem; for example, it will store the published Notebooks under the ~/
pixiedust/gateway directory. Using the local filesystem is probably fine 
for a local test environment, but when using a Kubernetes install, you will 
need to explicitly use persistent volumes (https://kubernetes.io/docs/
concepts/storage/persistent-volumes), which can be difficult to use. 
If no persistence strategy is put in place, the persisted files will be deleted 
when the container is restarted and all your published chart and PixieApps 
will disappear. PixieGateway provides another option, which is to configure 
a storage connector that lets you persist the data using the mechanism and 
backend of your choice.
To configure a storage connector for charts, you must specify a fully 
qualified class name in either one of the following configuration variables:

 ° Python: SingletonChartStorage.chart_storage_class
 ° Environment: PG_CHART_STORAGE

The referenced connector class must inherit from the ChartStorage 
abstract class defined in the pixiegateway.chartsManager package 
(implementation can be found here: https://github.com/ibm-watson-
data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.
py).
PixieGateway provides an out of the box connector to the Cloudant/
CouchDB NoSQL database (http://couchdb.apache.org). To use 
this connector, you'll need to set the connector class to pixiegateway.
chartsManager.CloudantChartStorage. You'll also need to specify 
secondary configuration variables to specify the server and credential 
information (we show the Python/Environment form):

 ° CloudantConfig.host / PG_CLOUDANT_HOST

 ° CloudantConfig.port / PG_CLOUDANT_PORT

 ° CloudantConfig.protocol / PG_CLOUDANT_PROTOCOL

 ° CloudantConfig.username / PG_CLOUDANT_USERNAME

 ° CloudantConfig.password / PG_CLOUDANT_PASSWORD

https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.py
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.py
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/pixiegateway/chartsManager.py
http://couchdb.apache.org
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• Remote Kernels: Specify the configuration for a remote Jupyter Kernel 
Gateway.
At the moment, this configuration option is only supported in Python 
mode. The variable name you need to use is ManagedClientPool.remote_
gateway_config. The expected value is a JSON object that contains the 
server information, which can be specified in two ways:

 ° protocol, host, and port
 ° notebook_gateway specifies fully qualified URL to the server

Depending on the kernel configuration, security can also be provided using 
two ways:

 ° auth_token

 ° user and password

This can be seen in the following example:

c.ManagedClientPool.remote_gateway_config={
    'protocol': 'http',
    'host': 'localhost',
    'port': 9000,
    'auth_token':'XXXXXXXXXX'
}

c.ManagedClientPool.remote_gateway_config={
    'notebook_gateway': 'https://YYYYY.us-south.bluemix.net:8443/
gateway/default/jkg/',
    'user': 'clsadmin',
    'password': 'XXXXXXXXXXX'
}

Notice that, in the preceding example, you need to prefix the variable 
with c.. This is a requirement coming from the underlying Jupyter/
IPython configuration mechanism.

For reference, here are the complete configuration example files using both Python 
and Kubernetes Environment variables formats:

• The following are the contents of jupyter_kernel_gateway_config.py:
c.PixieGatewayApp.admin_password = "password"

c.SingletonChartStorage.chart_storage_class = "pixiegateway.
chartsManager.CloudantChartStorage"
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c.CloudantConfig.host="localhost"
c.CloudantConfig.port=5984
c.CloudantConfig.protocol="http"
c.CloudantConfig.username="admin"
c.CloudantConfig.password="password"

c.ManagedClientPool.remote_gateway_config={
    'protocol': 'http',
    'host': 'localhost',
    'port': 9000,
    'auth_token':'XXXXXXXXXX'
}

• The following are the contents of deployment.yml:

apiVersion: extensions/v1beta1
kind: Deployment 
metadata:
  name: pixiegateway-deployment
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: pixiegateway
    spec:
      containers:
        - name: pixiegateway
          image: dtaieb/pixiegateway-python35
          imagePullPolicy: Always
          env:
            - name: ADMIN_USERID
              value: admin
            - name: ADMIN_PASSWORD
              value: changeme
            - name: PG_CHART_STORAGE
              value: pixiegateway.chartsManager.
CloudantChartStorage
            - name: PG_CLOUDANT_HOST
              value: XXXXXXXX-bluemix.cloudant.com
            - name: PG_CLOUDANT_PORT
              value: "443"
            - name: PG_CLOUDANT_PROTOCOL
              value: https
            - name: PG_CLOUDANT_USERNAME
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              value: YYYYYYYYYYY-bluemix
            - name: PG_CLOUDANT_PASSWORD
              value: ZZZZZZZZZZZZZ

PixieGateway architecture
Now would be a good time to look again at the PixieGateway architecture diagram 
presented in Chapter 2, Python and Jupyter Notebooks to Power your Data Analysis. 
The server is implemented as a custom extension (called Personality) to the 
Jupyter Kernel Gateway (https://github.com/jupyter/kernel_gateway).

In turn, the PixieGateway server provides extension points to customize some 
behavior that we'll discuss later in this chapter.

The high-level architecture diagram for the PixieGateway server is shown here:

PixieGateway architecture diagram

As the diagram indicates, PixieGateway provides a REST interface for three types 
of clients:

• Jupyter Notebook Server: This calls a dedicated set of REST APIs for sharing 
charts and publishing PixieApps as web applications

• Browser client running a PixieApp: A special REST API manages the 
execution of Python code in the associated kernel

• Browser client running the admin console: A dedicated set of REST 
APIs for managing various server resources and stats, for example, 
PixieApps and kernel instances

https://github.com/jupyter/kernel_gateway
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On the backend, the PixieGateway server manages the life cycle of one or more 
Jupyter Kernel instances responsible for running the PixieApps. At runtime, each 
PixieApp is deployed on a kernel instance using a specific set of steps. The following 
diagram shows a typical topology of all the PixieApp user instances running on 
the server:

The topology of running PixieApp instances

When a PixieApp is deployed on the server, the code contained in every 
cell of the Jupyter Notebook is analyzed and broken into two parts:

• Warmup code: This is all the code defined in all the cells above the main 
PixieApp definition. This code is run only once, when the PixieApp 
application is first started on the kernel, and will not run again until the 
kernel is restarted, or until it is called explicitly from the run code. This 
is important because it will help you better optimize performances; for 
example, you should always put in the warmup section, code that loads a 
large amount of data that doesn't change much or that may require a long 
time to initialize.

• Run code: This is code that will be run in its own instance for every user 
session. The run code is typically extracted from the cell that contains the 
PixieApp class declaration. The publisher automatically discovers this cell 
by doing a static analysis of the Python code and specifically looking for the 
following two criteria, which must both be met:

 ° The cell contains a class that has the @PixieApp annotation
 ° The cell instantiates the class and call its run() method
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For example, the following code must be in its own cell to qualify as the 
run code:

@PixieApp
class MyApp():
    @route()
    def main_screen(self):
    return "<div>Hello World</div>"

app = MyApp()
app.run()

As we've seen in Chapter 3, Accelerate your Data Analysis with Python Libraries, 
it is possible to declare multiple PixieApps in the same notebook that will be 
used as child PixieApp or as base classes to the main PixieApp. In this case, 
we need to make sure that they are defined in their own cell and that you 
don't try to instantiate them and call their run() method.
The rule is that there can be only one main PixieApp class for which the 
run() method will be called and the cell that contains this code is considered 
the run code by the PixieGateway.

Note: Cells that are not marked as Code, such as Markdown, Raw 
NBConvert, or Heading are ignored during the static analysis done by the 
PixieGateway server. Therefore, it is safe to keep them in your Notebook.

For each client session, PixieGateway will instantiate an instance of the main 
PixieApp class using the run code (represented as colored hexagons in the preceding 
diagram). Depending on current load, PixieGateway will decide how many 
PixieApps should run in a particular kernel instance and, if needed, automatically 
spawn a new kernel to serve the extra users. For example, if five users are using the 
same PixieApp, three instances may be running in a particular kernel instance and 
the two others will be run in another kernel instance. PixieGateway is constantly 
monitoring the usage patterns to optimize workload distribution by load balancing 
the instances of PixieApps between multiple kernels.

To help understand how the Notebook code is broken down, the following 
diagram reflects how the warmup and run code are extracted from the Notebook 
and transformed to make sure that multiple instances coexist peacefully within the 
same kernel:

As a reminder, the cell that contains the main PixieApp must 
also have code that instantiates it and calls the run() method.
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PixieApp life cycle: Warmup and Run Code

Because a given kernel instance can host more than one Notebook with its main 
PixieApp, we need to make sure that there is no accidental name collision when the 
warmup code for two main PixieApps is executed. For example, the title variable 
may be used in both PixieApps and, if left alone, the value for the second one would 
override the value for the first one. To avoid this conflict, all the variable names 
in the warmup code are made unique by injecting a namespace.

The title = 'some string' statement becomes ns1_title = 'some string' 
after publication. The PixieGateway publisher will also update all references 
to title throughout the code to reflect the new name. All of this renaming is 
automatically done at runtime and there are no specific things that need to be 
done by the developer.

We will show real code examples later on when we cover the PixieApp details page 
of the admin console.

If you have packaged the code for your main PixieApp as a Python module 
that is imported in the Notebook, you still need to declare the code for 
a wrapper PixieApp that inherits from it. This is because the PixieGateway 
does a static code analysis, looking for the @PixieApp notation, and if not 
found, the main PixieApp will not be properly recognized.

For example, let's assume that you have a PixieApp named 
AwesomePixieApp imported from the awesome package.  
In this case, you would put the following code in its own cell:
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from awesome import AwesomePixieApp
@PixieApp
class WrapperAwesome(AwesomePixieApp):
    pass
app = WrapperAwesome()
app.run()

Publishing an application
In this section, we'll publish the GitHub Tracking application that we created in Chapter 
3, Accelerate your Data Analysis with Python Libraries, into a PixieGateway instance.

You can use the completed notebook from this GitHub location:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%203/GitHub%20Tracking%20
Application/GitHub%20Sample%20Application%20-%20
Part%204.ipynb

From the Notebook, run the application as usual and use the publish button located 
on the top-left of the cell output, to start the process:

Invoke the publish dialog

The publish dialog has multiple tab menus:

• Options:
 ° PixieGateway Server: For example, http://localhost:8899
 ° Page Title: A short description that will be used as the page title 

when displayed in the browser

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%203/GitHub%20Tracking%20Application/GitHub%20Sample%20Application%20-%20Part%204.ipynb
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• Security: Configure the PixieApp security when accessed through the web:
 ° No security
 ° Token: A security token must be added as a query parameter to the 

URL, for example, http://localhost:8899/GitHubTracking?toke
n=941b3990d5c0464586d67e48705b9deb.

Note: At this time, PixieGateway doesn't provide any authentication/
authorization mechanism. Third party authorization, such as OAuth 
2.0 (https://oauth.net/2), JWT (https://jwt.io), and 
others will be added in the future.

• Imports: Display the list of Python package dependencies automatically 
detected by the PixieDust publisher. These imported packages will be 
automatically installed, if not already present, on the kernel where the 
application is running. When detecting a particular dependency, PixieDust 
looks at the current system to get the version and install location, for 
example, PyPi or a custom install URL such as a GitHub repo, for example.

• Kernel Spec: This is where you can choose a kernel spec for your PixieApp. 
By default, PixieDust selects the default kernel available on the PixieGateway 
server but if, for example, your Notebook relies on Apache Spark, you should 
be able to pick a kernel that supports it. This option can also be changed after 
the PixieApp has been deployed using the admin console.

Here's a sample screenshot of the PixieApp publish dialog:

PixieApp publish dialog

https://oauth.net/2
https://jwt.io
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Clicking the Publish button will start the publishing process. Upon completion 
(which depending on the size of the Notebook is pretty fast), you'll see the 
following screen:

Successful publish screen

You can then test the application by clicking on the provided link, which you can 
copy and share with users on your team. The following screenshot shows the three 
main screens of the GitHub Tracking application running as a web application on the 
PixieGateway:

PixieApp running as a web application
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Now that you know how to publish a PixieApp, let's review a few developer best 
practices and rules that will help you optimize PixieApps that are intended to be 
published as web applications:

• A PixieApp instance is created for each user session, therefore to improve 
performances, make sure that it doesn't include code that is long-running 
or that loads a large amount of static data (data that doesn't change often). 
Instead, place it in the warmup code section and reference it from the 
PixieApp as needed.

• Don't forget to add the code that runs the PixieApp in the same cell. If not, 
you'll end up with a blank page when running it on the web. As a good 
practice, it is recommended to assign the PixieApp instance into its own 
variable. For example, do this:
app = GitHubTracking()
app.run()

That's instead of the following
GitHubTracking().run()

• You can have multiple PixieApp classes declared in the same Notebook, 
which is needed if you are using child PixieApp or PixieApp inheritance. 
However, only one of them can be the main PixieApp, which the 
PixieGateway will run. It is the one that has the extra code that instantiates 
and runs the PixieApp.

• It's a good idea to add a Docstring (https://www.python.org/dev/peps/
pep-0257) to your PixieApp class that gives a short description of the 
application. As we'll see in the PixieGateway admin Console section, later in 
this chapter, this docstring will be displayed in the PixieGateway admin 
console, as in the following example:

@PixieApp
class GitHubTracking(RepoAnalysis):
    """
    GitHub Tracking Sample Application
    """
    @route()
    def main_screen(self):
        return """
    ...

https://www.python.org/dev/peps/pep-0257
https://www.python.org/dev/peps/pep-0257
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Encoding state in the PixieApp URL
In some cases, you may want to capture the state of a PixieApp in the URL as 
query parameters so that it can be bookmarked and/or shared with other people. 
The idea is that, when using query parameters, the PixieApp doesn't start from 
the main screen but rather automatically activates the route corresponding to the 
parameters. For example, in the GitHub Tracking application, you could use http://
localhost:8899/pixieapp/GitHubTracking?query=pixiedust to bypass the 
initial screen and jump directly to the table showing the list of repositories that 
match the given query.

You can have the query parameters automatically added to the URL when the route 
is activated by adding the persist_args special argument to the route.

It would look like this for the do_search() route:

@route(query="*", persist_args='true')
@templateArgs
def do_search(self, query):
    self.first_url = "https://api.github.com/search/
repositories?q={}".format(query)
    self.prev_url = None
    self.next_url = None
    self.last_url = None
    ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%204/sampleCode1.py

The persist_args keyword argument does not affect how the route is activated. 
It is only there to automatically add the proper query arguments to the URL when 
activated. You can try to make this simple change in the Notebook, republish the 
PixieApp to the PixieGateway server, and try it out. As soon as you hit the submit 
button on the first screen, you'll notice that the URL is automatically updated to 
include the query argument.

Note: The persist_args argument also works when running in the 
Notebook although the implementation is different since we don't have 
a URL. Instead, the parameters are added to the cell metadata using the 
pixieapp key, as shown in the following screenshot:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode1.py
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Cell metadata showing the PixieApp parameters

If you are using the persist_args feature, you may find that, while doing iterative 
development, it becomes cumbersome to always go to the cell metadata to remove 
the parameters. As a shortcut, the PixieApp framework adds a home button in the 
top-right toolbar to reset the arguments with a single click.

As an alternative, you could also avoid saving the route arguments in the cell 
metadata altogether when running in the Notebook (but still save them while 
running on the web). To do that, you would need to use web as the value for 
the persist_args argument instead of true:

@route(query="*", persist_args='web')
…

Sharing charts by publishing them 
as web pages
In this section, we show how to easily share a chart created by the display() 
API and publish it as a web page.

Using the example from Chapter 2, Python and Jupyter Notebooks to Power your Data 
Analysis, let's load the cars performance dataset and create a chart using display():

import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True) #car performance data
display(cars)
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%204/sampleCode2.py

In the PixieDust output interface, select the Bar Chart menu, then in the options 
dialog, select horsepower for the Keys and mpg for the Values, as shown in the 
following screenshot:

PixieDust Chart options

We then use the Share button to invoke the chart sharing dialog as shown in the 
following screenshot, which uses Bokeh as the renderer:

Note: Chart sharing works with any renderer, and I encourage you  
to try it with other renderers such as Matplotlib and Mapbox.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode2.py
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Invoke the Share Chart dialog

In the Share Chart dialog, you can specify the PixieGateway server and an optional 
description for the chart:

Note that as a convenience, PixieDust will automatically remember 
the last one used.

Share Chart dialog



Publish your Data Analysis to the Web - the PixieApp Tool

[ 132 ]

Clicking on the Share button will start the publishing process that takes the 
chart content to the PixieGateway and then returns a unique URL to the web 
page. Similar to the PixieApp, you can then share this URL with the team:

Chart sharing confirmation dialog

The confirmation dialog contains the unique URL for the chart and an HTML 
fragment that lets you embed the chart in your own web page, such as a blog post, 
and a dashboard.

Clicking on the link will show the following PixieGateway page:

Chart page
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The preceding page shows metadata about the chart, for example, Author, 
Description, and Date, as well as the embedded HTML fragment. Notice that if 
the chart has interactivity (as is the case for Bokeh, Brunel, or Mapbox), then it is 
preserved in the PixieGateway page.

For example, in the preceding screenshot, the user can still wheel zoom, box zoom, 
and pan to explore the chart or download the chart as a PNG file.

Embedding the chart in your own page is also very easy. Simply copy the embedded 
HTML fragment anywhere in your HTML, as shown in the following example:

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <title>Example page with embedded chart</title>
    </head>
    <body>
        <h1> Embedded a PixieDust Chart in a custom HTML Page</h1>
        <div>
            <object type="text/html" width="600" height="400"
                data="http://localhost:8899/embed/04089782-7543-42a6-
8dd1-e4d1cb06596a/600/400"> 
                <a href="http://localhost:8899/embed/04089782-7543-
42a6-8dd1-e4d1cb06596a">View Chart</a>
            </object>
        </div>
    </body>
</html>

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%204/sampleCode3.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode3.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%204/sampleCode3.html
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Embedded chart objects must use the same level of security or higher 
as the browser. If not, the browser will throw a Mixed Content error. 
For example, if the host page is loaded over HTTPS, then the embedded 
chart must also be loaded over HTTPS, which means that you'll need to 
enable HTTPS in the PixieGateway server. You can also visit http://
jupyter-kernel-gateway.readthedocs.io/en/latest/
config-options.html to configure an SSL/TLS certificate for the 
PixieGateway server. Another solution that is easier to maintain would 
be to configure an Ingress service for the Kubernetes cluster that provides 
TLS termination.

For convenience, we provide a template ingress YAML file for the 
PixieGateway service here: https://github.com/ibm-watson-
data-lab/pixiegateway/blob/master/etc/ingress.yml. You 
will need to update this file with the TLS host and the secret provided by 
your provider. For example, if you are using the IBM Cloud Kubernetes 
Service, you just have to enter the cluster name in the <your cluster 
name> placeholder. You can find more information on how to redirect 
HTTP to HTTPS here: https://console.bluemix.net/docs/
containers/cs_annotations.html#redirect-to-https. Ingress 
services are a great way to improve security, reliability, and protect 
against DDOS attacks. For example, you can set various limits, such as 
the number of requests/connections per seconds allowed for each unique 
IP address or maximum bandwidth allowed. For more information 
please see https://kubernetes.io/docs/concepts/services-
networking/ingress.

PixieGateway admin console
The admin console is a great tool to manage your resources and troubleshoot them. 
You can access it using the /admin URL. Notice that you will need to authenticate 
with the user/password that you configured (see the PixieGateway server configuration 
section for instructions on how to configure the user/password in this chapter; 
by default the user is admin and the password is <blank>).

The user interface for the admin console is composed of multiple menus focused  
on a specific task. Let's look at them one by one:

• PixieApps:
 ° Information about all the deployed PixieApps: URL, description, 

and so on

http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
http://jupyter-kernel-gateway.readthedocs.io/en/latest/config-options.html
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/etc/ingress.yml
https://github.com/ibm-watson-data-lab/pixiegateway/blob/master/etc/ingress.yml
https://console.bluemix.net/docs/containers/cs_annotations.html#redirect-to-https
https://console.bluemix.net/docs/containers/cs_annotations.html#redirect-to-https
https://kubernetes.io/docs/concepts/services-networking/ingress
https://kubernetes.io/docs/concepts/services-networking/ingress
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 ° Security management
 ° Actions, for example, delete, and download

Admin console PixieApp management page

• Charts:
 ° Information about all the published charts: link, preview, and so on
 ° Actions, for example, delete, download, and embed fragment

Admin console chart management page
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• Kernel Stats:
The following screenshot shows the Kernel Stats screen:

Admin console Kernel Stats page

This screen shows a live table of all the kernels currently running in the 
PixieGateway. Each row contains the following information:

 ° Kernel Name: This is the name of the kernel with a drill-down link, 
which shows the Kernel Spec, Log, and Python Console.

 ° Status: This shows the status as idle or busy.
 ° Busy Ratio: This is a value between 0 and 100% that denotes the 

kernel utilization since it was started.
 ° Running Apps: This is a list of running PixieApps. Each PixieApp is  

a drill-down link that displays the warmup code and runs code  
for the PixieApp. This is very useful for troubleshooting errors  
since you can see what code is being run by the PixieGateway.

 ° Users Count: This is the number of users with open sessions in this 
kernel.

• Server Logs:

Full access the tornado server log for troubleshooting
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Admin console server logs page

Python Console
The Python Console is invoked by clicking on the kernel link in the Kernel Stats 
screen. The admin can use it to execute any code against the kernel, which can 
be useful to troubleshoot issues.

For example, the following screenshot shows how to invoke the PixieDust log:

Display PixieDust log from the PixieGateway admin Python Console
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Displaying warmup and run code for 
a PixieApp
When an execution error happens while loading a page, the PixieGateway will show 
the full Python traceback in the browser. However, the error may be hard to find 
because its root cause may be in the warmup code that is executed once when the 
PixieApp starts. One important debugging technique is to look at the warmup and 
run code executed by the PixieGateway to spot any anomalies.

If the error is still not obvious, you could, for example, copy the warmup and run 
code in a temporary Notebook and try to run it from there, with the hope that you 
can reproduce the error and spot the issue.

You can access the warmup and run code by clicking on the PixieApp link on the 
Kernel Stats screen, which will take you to the following screen:

Display the warmup and run code

Note that the warmup and run code do not contain the original code formatting and 
therefore can be harder to read. You can mitigate this issue by copying it and pasting 
the code into a temporary Notebook and reformatting it again.
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Summary
After reading this chapter, you should be able to install, configure, and manage 
a PixieGateway microservice server, publish charts as a web page, and deploy 
a PixieApp from a Notebook to a web application. Whether you are a data scientist 
working on analytics in a Jupyter Notebook or a developer writing and deploying 
applications targeted at the line of a business user, we've shown, in this chapter, 
how PixieDust can help accomplish your tasks more efficiently and reduce the  
time it takes to operationalize your analytics.

In the next chapter, we'll look at advanced topics and best practices related to 
PixieDust and the PixieApp programming model, which will be useful when we 
go over the industry use cases and sample data pipelines in the remaining chapters.
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Python and PixieDust Best 
Practices and Advanced 

Concepts
"In God we Trust, all others bring data."

                                   – W. Edwards Deming

In the remaining chapters of this book, we will do a deep dive into the architecture 
of industry use cases, including the implementation of sample data pipelines, heavily 
applying the techniques we've learned so far. Before we start looking at the code, let's 
complete our toolbox with a few best practices and advanced PixieDust concepts that 
will be useful in the implementation of our sample applications:

• Calling third-party Python libraries with @captureOutput decorator
• Increasing modularity and code reuse of your PixieApp
• PixieDust support of streaming data
• Adding dashboard drill-downs with PixieApp events
• Extending PixieDust with a custom display renderer
• Debugging:

 ° Line-by-line Python code debugging running on the Jupyter 
Notebook using pdb

 ° Visual debugging with PixieDebugger
 ° Using the PixieDust logging framework to troubleshoot issues
 ° Tips for client-side JavaScript debugging

• Running Node.js inside a Python Notebook
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Use @captureOutput decorator to 
integrate the output of third-party 
Python libraries
Suppose that you want to reuse your PixieApp in a third-party library that you 
have been using for a while in order to perform a certain task, such as, for example, 
computing clusters with the scikit-learn machine learning library (http://scikit-
learn.org) and displaying them as a graph. The problem is that most of the time, 
you are calling a high-level method that doesn't return data, but rather directly 
draws something on the cell output area, such as a chart or a report table. Calling 
this method from a PixieApp route will not work because the contract for routes is 
to return an HTML fragment string that will be processed by the framework. In this 
case, the method most likely doesn't return anything since it is writing the results 
directly in the cell output. The solution is to use the @captureOutput decorator—
which is part of the PixieApp framework—in the route method.

Create a word cloud image with  
@captureOutput
To better illustrate the @captureOutput scenario described earlier, let's take 
a concrete example where we want to build a PixieApp that uses the wordcloud 
Python library (https://pypi.python.org/pypi/wordcloud) to generate a word 
cloud image from a text file provided by the user via a URL.

We first install the wordcloud library by running the following command 
in its own cell:

!pip install wordcloud

Note: Make sure to restart the kernel when the installation of the 
wordcloud library is complete.

The code for the PixieApp looks like this:

from pixiedust.display.app import *
import requests
from wordcloud import WordCloud
import matplotlib.pyplot as plt

@PixieApp

http://scikit-learn.org
http://scikit-learn.org
https://pypi.python.org/pypi/wordcloud


Chapter 5

[ 143 ]

class WordCloudApp():
    @route()
    def main_screen(self):
        return """
        <div style="text-align:center">
            <label>Enter a url: </label>
            <input type="text" size="80" id="url{{prefix}}">
            <button type="submit"
                pd_options="url=$val(url{{prefix}})"
                pd_target="wordcloud{{prefix}}">
                Go
            </button>
        </div>
        <center><div id="wordcloud{{prefix}}"></div></center>
        """

    @route(url="*")
    @captureOutput
    def generate_word_cloud(self, url):
        text = requests.get(url).text
        plt.axis("off")
        plt.imshow(
            WordCloud(max_font_size=40).generate(text),
            interpolation='bilinear'
        )

app = WordCloudApp()
app.run()

You can find the code here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode1.py

Notice that by simply adding the @captureOutput decorator to the generate_word_
cloud route, we don't need to return an HTML fragment string any more. We can 
simply invoke the Matplotlib imshow() function that sends the image to the system 
output. The PixieApp framework will take care of capturing the output and package 
it as an HTML fragment string that will be injected in the correct div placeholder. 
The result is as follows:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode1.py
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Note: We use the following input URL coming from the wordcloud 
repo on GitHub:
https://github.com/amueller/word_cloud/blob/master/
examples/constitution.txt

Another good link to use is:
https://raw.githubusercontent.com/amueller/word_cloud/
master/examples/a_new_hope.txt

Simple PixieApp that generates a word cloud from a text

Any function that draws directly to the cell output can be used with the @
captureOutput decorator. For example, you can use the Matplotlib show() method 
or the IPython display() method with the HTML or JavaScript classes. You can 
even use the display_markdown() method to output rich text using the Markdown 
markup language (https://en.wikipedia.org/wiki/Markdown) as shown in the 
following code:

from pixiedust.display.app import *
from IPython.display import display_markdown

@PixieApp
class TestMarkdown():
    @route()
    @captureOutput
    def main_screen(self):
        display_markdown("""
# Main Header:
## Secondary Header with bullet
1. item1
2. item2
3. item3

https://github.com/amueller/word_cloud/blob/master/examples/constitution.txt
https://github.com/amueller/word_cloud/blob/master/examples/constitution.txt
https://raw.githubusercontent.com/amueller/word_cloud/master/examples/a_new_hope.txt
https://raw.githubusercontent.com/amueller/word_cloud/master/examples/a_new_hope.txt
https://en.wikipedia.org/wiki/Markdown
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Showing image of the PixieDust logo
![alt text](https://github.com/pixiedust/pixiedust/raw/master/docs/_
static/PixieDust%202C%20\(256x256\).png "PixieDust Logo")
    """, raw=True)

TestMarkdown().run()

This produces the following result:

PixieApp using @captureOutput with Markdown

Increase modularity and code reuse
Breaking up your application into smaller, self-contained components is always 
a good development practice because it makes the code reusable and easier to 
maintain. The PixieApp framework provides two ways to create and run reusable 
components:

• Dynamically invoking other PixieApps with the pd_app attribute
• Packaging part of an application as a reusable widget

Using the pd_app attribute, you can dynamically invoke another PixieApp (we'll 
call it child PixieApp from here on) by its fully qualified class name. The output of 
the child PixieApp is placed in the host HTML element (usually a div element) or 
in a dialog by using the runInDialog=true option. You can also initialize the child 
PixieApp using the pd_options attribute, in which case the framework will invoke 
the corresponding route.

To better understand how pd_app works, let's rewrite our WordCloud application by 
refactoring the code that generates the WordCloud image in its own PixieApp that 
we'll call WCChildApp.
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The following code implements WCChildApp as a regular PixieApp, but notice that 
it doesn't contain a default route. It only has a route called generate_word_cloud 
that is supposed to be called by another PixieApp using a url argument:

from pixiedust.display.app import *
import requests
from wordcloud import WordCloud
import matplotlib.pyplot as plt

@PixieApp
class WCChildApp():
    @route(url='*')
    @captureOutput
    def generate_word_cloud(self, url):
        text = requests.get(url).text
        plt.axis("off")
        plt.imshow(
            WordCloud(max_font_size=40).generate(text),
            interpolation='bilinear'
        )

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode2.py

We can now build the main PixieApp that will invoke the WCChildApp when the user 
clicks on the Go button after specifying the URL:

@PixieApp
class WordCloudApp():
    @route()
    def main_screen(self):
        return """
        <div style="text-align:center">
            <label>Enter a url: </label>
            <input type="text" size="80" id="url{{prefix}}">
            <button type="submit"
                pd_options="url=$val(url{{prefix}})"
                pd_app="WCChildApp"
                pd_target="wordcloud{{prefix}}">
                Go
            </button>
        </div>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode2.py
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        <center><div id="wordcloud{{prefix}}"></div></center>
        """

app = WordCloudApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode3.py

In the preceding code, the Go button has the following attributes:

• pd_app="WCChildApp": Use the class name for the child PixieApp. Note that 
if your child PixieApp lives in an imported Python module, then you'll need 
to use the fully qualified name.

• pd_options="url=$val(url{{prefix}})": Store the URL entered 
by the user as an initialization option to the child PixieApp.

• pd_target="wordcloud{{prefix}}": Tell PixieDust to place the output 
of the child PixieApp in the div with the ID wordcloud{{prefix}}.

The pd_app attribute is a powerful way to modularize your code by encapsulating 
the logic and presentation of a component. The pd_widget attribute provides 
another way to achieve similar results, but this time the component is not invoked 
externally, but rather by inheritance.

Each method has pros and cons:

• The pd_widget technique is implemented as a route and is certainly more 
lightweight than pd_app, which requires the creation of an entirely new 
PixieApp instance. Note that both pd_widget and pd_app (through the 
parent_pixieapp variable) have access to all variables contained in the 
host app.

• The pd_app attribute provides a cleaner separation between the components 
and more flexibility than widgets. You could, for example, have a button that 
dynamically invokes multiple PixieApps based on some user selection.

Note: As we'll see later in this chapter, this is actually what the PixieDust 
display uses for the options dialog.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode3.py
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If you find yourself in need of having multiple copies of the same component  
in a PixieApp, ask yourself whether the component requires its state to be 
maintained in a class variable. If that's the case, it is preferable to use pd_app,  
but, if not, then using pd_widget would work as well.

Creating a widget with pd_widget
To create a widget, you can use the following steps:

1. Create a PixieApp class that contains a route tagged with a special argument 
called widget

2. Make the main class inherit from the PixieApp widget
3. Invoke the widget using the pd_widget attribute on a div element

Again, as an illustration, let's rewrite the WordCloud app with the widget:

from pixiedust.display.app import *
import requests
from word cloud import WordCloud
import matplotlib.pyplot as plt

@PixieApp
class WCChildApp():
    @route(widget='wordcloud')
    @captureOutput
    def generate_word_cloud(self):
        text = requests.get(self.url).text if self.url else ""
        plt.axis("off")
        plt.imshow(
            WordCloud(max_font_size=40).generate(text),
            interpolation='bilinear'
        )

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode4.py

Notice in the preceding code that url is now referenced as a class variable because we 
assume that the base class will provide it. The code has to test whether url is None, 
which would be the case on startup. We implement it this way because pd_widget 
is an attribute that cannot easily be dynamically generated (you would have to use 
a secondary route that generates the div fragment with the pd_widget attribute).

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode4.py
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The main PixieApp class now looks like this:

@PixieApp
class WordCloudApp(WCChildApp):
    @route()
    def main_screen(self):
        self.url=None
        return """
        <div style="text-align:center">
            <label>Enter a url: </label>
            <input type="text" size="80" id="url{{prefix}}">
            <button type="submit"
                pd_script="self.url = '$val(url{{prefix}})'"
                pd_refresh="wordcloud{{prefix}}">
                Go
            </button>
        </div>
        <center><div pd_widget="wordcloud"  
                 id="wordcloud{{prefix}}"></div></center>
        """

app = WordCloudApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode5.py

The div that contains the pd_widget attribute is rendered on start, but since url 
is still None, no word cloud is actually generated. The Go button has a pd_script 
attribute that set the self.url to the value provided by the user. It also has a pd_
refresh attribute sets to the pd_widget div that will call the wordcloud widget 
again, but this time with a URL initialized to the correct value.

In this section, we've seen two ways to modularize your code for reuse, as well as 
the pros and cons for both. I strongly recommend that you play with the code to get 
a feel of when to use each technique. Don't worry if you feel this is still a little fuzzy; 
it will hopefully become clearer when we use these techniques in the sample code 
of the chapters ahead.

In the next section, we change gears and look at streaming data support in PixieDust.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode5.py
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PixieDust support of streaming data
With the rise of IOT devices (Internet of Things), being able to analyze and 
visualize live streams of data is becoming more and more important. For example, 
you could have sensors such as thermometers in machines or portable medical 
devices like pacemakers, continuously streaming data to a streaming service such 
as Kafka. PixieDust makes it easier to work with live data inside Jupyter Notebooks 
by providing simple integration APIs to both the PixieApp and the display() 
framework.

On a visualization level, PixieDust uses Bokeh (https://bokeh.pydata.org) 
support for efficient data source updates to plot streaming data into live charts 
(note that at the moment, only line chart and scatter plot are supported, but more 
will be added in the future). The display() framework also supports geospatial 
visualization of streaming data using the Mapbox rendering engine.

To activate streaming visualizations, you need to use a class that inherits from 
StreamingDataAdapter, which is an abstract class that is part of the PixieDust 
API. This class acts as a generic bridge between the streaming data source and 
the visualization framework.

Note: I recommend spending time looking at the code for 
StreamingDataAdapter here:
https://github.com/pixiedust/pixiedust/blob/0c536b45
c9af681a4da160170d38879298aa87cb/pixiedust/display/
streaming/__init__.py

The following diagram shows how the StreamingDataAdapter data structure fits 
into the display() framework:

StreamingDataAdapter architecture

https://bokeh.pydata.org
https://github.com/pixiedust/pixiedust/blob/0c536b45c9af681a4da160170d38879298aa87cb/pixiedust/display/streaming/__init__.py
https://github.com/pixiedust/pixiedust/blob/0c536b45c9af681a4da160170d38879298aa87cb/pixiedust/display/streaming/__init__.py
https://github.com/pixiedust/pixiedust/blob/0c536b45c9af681a4da160170d38879298aa87cb/pixiedust/display/streaming/__init__.py
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When implementing a subclass of StreamingDataAdapter, you must override 
the doGetNextData() method provided by the base class, which will be called 
repeatedly to fetch new data to update the visualization. You can also optionally 
override the getMetadata() method to pass context to the rendering engine 
(we'll use this method later to configure the Mapbox rendering).

The abstract implementation of doGetNextData() looks like this:

@abstractmethod
def doGetNextData(self):
    """Return the next batch of data from the underlying stream.
    Accepted return values are:
    1. (x,y): tuple of list/numpy arrays representing the x and y axis
    2. pandas dataframe
    3. y: list/numpy array representing the y axis. In this case, 
the x axis is automatically created
    4. pandas serie: similar to #3
    5. json
    6. geojson
    7. url with supported payload (json/geojson)
    """
    Pass

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode6.py

The preceding docstring explains the different types of data that is allowed 
to be returned from doGetNextData().

As an example, we want to visualize the location of a fictitious drone wandering 
around the earth on a map and in real time. Its current location is provided 
by a REST service at: https://wanderdrone.appspot.com.

The payload uses GeoJSON (http://geojson.org), for example:

{
    "geometry": {
        "type": "Point",
        "coordinates": [
            -93.824908715741202, 10.875051131034805
        ]
    },

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode6.py
https://wanderdrone.appspot.com
http://geojson.org
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    "type": "Feature",
    "properties": {}
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode7.json

To render our drone location in real time, we create a DroneStreamingAdapter class 
that inherits from StreamingDataAdapter and simply return the drone location 
service URL in the doGetNextData() method as shown in the following code:

from pixiedust.display.streaming import *

class DroneStreamingAdapter(StreamingDataAdapter):
    def getMetadata(self):
        iconImage = "rocket-15"
        return {
            "layout": {"icon-image": iconImage, "icon-size": 1.5},
            "type": "symbol"
        }
    def doGetNextData(self):
        return "https://wanderdrone.appspot.com/"
adapter = DroneStreamingAdapter()
display(adapter)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode8.py

In the getMetadata() method, we return the Mapbox specific style properties 
(as documented here: https://www.mapbox.com/mapbox-gl-js/style-spec) that 
uses a rocket Maki icon (https://www.mapbox.com/maki-icons) as a symbol for 
the drone.

With a few lines of code, we were able to create a real-time geospatial visualization 
of a drone location, with the following results:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode7.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode7.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode8.py
https://www.mapbox.com/mapbox-gl-js/style-spec
https://www.mapbox.com/maki-icons
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Real-time geospatial mapping of a drone

You can find the complete Notebook for this example in the PixieDust 
repo at this location:
https://github.com/pixiedust/pixiedust/blob/master/
notebook/pixieapp-streaming/Mapbox%20Streaming.ipynb

Adding streaming capabilities to your PixieApp
In the next example, we show how to visualize streaming data coming from an 
Apache Kafka data source, using the MessageHubStreamingApp PixieApp provided 
out of the box by PixieDust: https://github.com/pixiedust/pixiedust/blob/
master/pixiedust/apps/messageHub/messageHubApp.py.

Note: MessageHubStreamingApp works with the IBM Cloud Kafka 
service called Message Hub (https://console.bluemix.net/docs/
services/MessageHub/index.html#messagehub), but it can easily 
be adapted to any other Kafka service.

https://github.com/ibm-watson-data-lab/pixiedust/blob/master/notebook/pixieapp-streaming/Mapbox%20Streaming.ipynb
https://github.com/ibm-watson-data-lab/pixiedust/blob/master/notebook/pixieapp-streaming/Mapbox%20Streaming.ipynb
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/apps/messageHub/messageHubApp.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/apps/messageHub/messageHubApp.py
https://console.bluemix.net/docs/services/MessageHub/index.html#messagehub
https://console.bluemix.net/docs/services/MessageHub/index.html#messagehub
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Don't worry if you are not familiar with Apache Kafka as we'll cover aspects of 
this in Chapter 7, Analytics Study: NLP and Big Data with Twitter Sentiment Analysis.

This PixieApp lets the user choose a Kafka topic associated with a service instance 
and display the events in real-time. Assuming that the events payload from the 
selected topic uses a JSON format, it presents a schema inferred from sampling the 
events data. The user can then choose a particular field (must be numerical) and a 
real-time chart showing the average of the values for this field over time is displayed.

Real-time visualization of streaming data

The key PixieApp attribute needed to provide streaming capabilities is pd_refresh_
rate, which executes a particular kernel request at specified intervals (pull model). 
In the preceding application, we use it to update the real-time chart, as shown in the 
following HTML fragment returned by the showChart route:

    @route(topic="*",streampreview="*",schemaX="*")
    def showChart(self, schemaX):
        self.schemaX = schemaX
        self.avgChannelData = self.streamingData.
getStreamingChannel(self.computeAverages)
        return """
<div class="well" style="text-align:center">
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    <div style="font-size:x-large">Real-time chart for {{this.
schemaX}}(average).</div>
</div>

<div pd_refresh_rate="1000" pd_entity="avgChannelData"></div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode9.py

The preceding div is bound to the avgChannelData entity via the pd_entity 
attribute and is responsible for creating the real-time chart that is updated 
every second (pd_refresh_rate=1000 ms). In turn, the avgChannelData entity is 
created via a call to getStreamingChannel(), which is passed to the self. The 
computeAverage function is responsible for updating the average value for all 
the data being streamed. It is important to note that avgChannelData is a class 
that inherits from StreamingDataAdapter and, therefore, can be passed to the 
display() framework for building real-time charts.

The last piece of the puzzle is for the PixieApp to return a displayHandler needed 
by the display() framework. This is done by overriding the newDisplayHandler() 
method as follows:

def newDisplayHandler(self, options, entity):
    if self.streamingDisplay is None:
        self.streamingDisplay = LineChartStreamingDisplay(options, 
entity)
    else:
        self.streamingDisplay.options = options
    return self.streamingDisplay

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode10.py

In the preceding code, we use it to create an instance of 
LineChartStreamingDisplay provided by PixieDust in the pixiedust.display.
streaming.bokeh package (https://github.com/pixiedust/pixiedust/blob/
master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.
py), passing the avgChannelData entity.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode10.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.py
https://github.com/pixiedust/pixiedust/blob/master/pixiedust/display/streaming/bokeh/lineChartStreamingDisplay.py


Python and PixieDust Best Practices and Advanced Concepts

[ 156 ]

If you want to see this application in action, you need to create a Message Hub 
service instance on IBM Cloud (https://console.bluemix.net/catalog/
services/message-hub) and, using its credentials, invoke this PixieApp 
in a Notebook with the following code:

from pixiedust.apps.messageHub import *
MessageHubStreamingApp().run(
    credentials={
        "username": "XXXX",
        "password": "XXXX",
        "api_key" : "XXXX",
        "prod": True
    }
)

If you are interested in knowing more about PixieDust streaming, you can find other 
streaming application examples here:

• A simple PixieApp that demonstrate how to create streaming visualizations 
from randomly generated data: https://github.com/pixiedust/
pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20
Streaming-Random.ipynb

• PixieApp that shows how to build live visualization of stock tickers: 
https://github.com/pixiedust/pixiedust/blob/master/notebook/
pixieapp-streaming/PixieApp%20Streaming-Stock%20Ticker.ipynb

The next topic will cover PixieApp events that let you add interactivity between 
different components of your application.

Adding dashboard drill-downs with 
PixieApp events
The PixieApp framework supports sending and receiving events between different 
components using the publish-subscribe pattern available in browsers. The great 
advantage of using this model, which borrows from the loose coupling pattern 
(https://en.wikipedia.org/wiki/Loose_coupling), is that it allows the sending 
and receiving components to remain agnostic of each other. Therefore, their 
implementation can be executed independently from one another and will not be 
sensitive to changes in requirements. This can be very useful when your PixieApp is 
using components from different PixieApps built by different teams, or if the events 
are coming from the user interacting with a chart (for instance, clicking on a map) 
and you want to provide drill-down features.

https://console.bluemix.net/catalog/services/message-hub
https://console.bluemix.net/catalog/services/message-hub
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb
https://github.com/ibm-watson-data-lab/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Random.ipynb 
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Stock%20Ticker.ipynb
https://github.com/pixiedust/pixiedust/blob/master/notebook/pixieapp-streaming/PixieApp%20Streaming-Stock%20Ticker.ipynb
https://en.wikipedia.org/wiki/Loose_coupling
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Each event carries a JSON payload of arbitrary keys and values. The payload 
must have at least one of the following keys (or both):

• targetDivId: A DOM ID identifying the element sending the event
• type: A string identifying the event type

Publishers can trigger events in two ways:

• Declarative: Use the pd_event_payload attribute to specify the payload 
content. This attribute follows the same rules as pd_options:

 ° Each key/value pair must be encoded using the key=value notation
 ° The event will be triggered by a click or a change event
 ° Support must be provided for the $val() directive to dynamically 

inject user-entered input
 ° Use the <pd_event_payload> child to enter raw JSON

Example:
<button type="submit" pd_event_payload="type=topicA;message=Button 
clicked">
    Send event A
</button>

Alternatively, we can use this:
<button type="submit">
    <pd_event_payload>
    {
        "type":"topicA",
        "message":"Button Clicked"
    }
    </pd_event_payload>
    Send event A
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode11.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode11.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode11.html
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• Programmatic: In some cases, you may want to directly trigger an event 
via JavaScript. In this case, you can use the sendEvent(payload, divId) 
method of the pixiedust global object. The divId is an optional argument 
that specifies the origin of the event. If the divId argument is omitted, then it 
defaults to the divId of the element that is currently sending the event. As a 
result, you should always use pixiedust.sendEvent without a divId from 
a JavaScript handler of a user event such as click, and hover.

Example:
<table
onclick="pixiedust.sendEvent({type:'topicB',text:event.srcElement.
innerText})">
    <tr><td>Row 1</td></tr>
    <tr><td>Row 2</td></tr>
    <tr><td>Row 3</td></tr>
</table>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode12.html

Subscribers can listen to an event by declaring a <pd_event_handler> element that 
can accept any of the PixieApp Kernel execution attributes, such as pd_options and 
pd_script. It must also use the pd_source attribute to filter which events they want 
to process. The pd_source attribute can contain one of the following values:

• targetDivId: Only events originating from the element with the specified 
ID will be accepted

• type: Only events with the specified type will be accepted
• "*": Denotes that any event will be accepted

Example:

<div class="col-sm-6" id="listenerA{{prefix}}">
    Listening to button event
    <pd_event_handler
        pd_source="topicA"
        pd_script="print(eventInfo)"
        pd_target="listenerA{{prefix}}">
    </pd_event_handler>
</div>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode12.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode12.html
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode13.html

The following diagram shows how components interact with one another:

 

Sending/receiving events between components

In the following code sample, we illustrate the PixieDust eventing system 
by building two publishers, a button element and a table, where each row  
is an event source. We also have two listeners implemented as div elements:

from pixiedust.display.app import *
@PixieApp
class TestEvents():
    @route()
    def main_screen(self):
        return """
<div>
    <button type="submit">
        <pd_event_payload>
        {
            "type":"topicA",
            "message":"Button Clicked"
        }
        </pd_event_payload>
        Send event A
    </button>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode13.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode13.html
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    <table onclick="pixiedust.sendEvent({type:'topicB',text:event.
srcElement.innerText})">
        <tr><td>Row 1</td></tr>
        <tr><td>Row 2</td></tr>
        <tr><td>Row 3</td></tr>
    </table>
</div>
<div class="container" style="margin-top:30px">
    <div class="row">
        <div class="col-sm-6" id="listenerA{{prefix}}">
            Listening to button event
            <pd_event_handler pd_source="topicA" pd_
script="print(eventInfo)" pd_target="listenerA{{prefix}}">
            </pd_event_handler>
        </div>
        <div class="col-sm-6" id="listenerB{{prefix}}">
            Listening to table event
            <pd_event_handler pd_source="topicB" pd_
script="print(eventInfo)" pd_target="listenerB{{prefix}}">
            </pd_event_handler>
        </div>
    </div>
</div>
        """
app = TestEvents()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode14.py

The preceding code produces the following results:

User interaction flow for PixieApp events

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode14.py
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PixieApp events enable you to create sophisticated dashboards with drill-
down capabilities. It is also good to know that you can leverage events that 
are automatically published for some of the charts generated by the display() 
framework. For example, built-in renderers, such as Google Maps, Mapbox, and 
Table, will automatically generate events when the user clicks somewhere on the 
chart. This is very useful for rapidly building all kinds of interactive dashboards with 
drill-down capabilities.

In the next topic, we'll discuss how to use the PixieDust extensibility APIs to create 
custom visualizations.

Extending PixieDust visualizations
PixieDust is designed to be highly extensible. You can create your own visualization 
and control when it can be invoked, based on the entity being displayed. There 
are multiple extensibility layers provided by the PixieDust framework. The lowest 
and most powerful one lets you create your own Display class. However, the 
majority of visualizations have a lot of properties in common, such as standard 
options (aggregation, max rows, title, and so on), or a caching mechanism to prevent 
recomputing everything if the user only selected a minor option that doesn't require 
reprocessing of the data.

To prevent users from reinventing the wheel every time, PixieDust offers a second 
extensibility layer called renderer that includes all the facilities described here.

The following diagram illustrates the different layers:

PixieDust extension layers
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To start working with the Display Extension Layer, you'll need to get your 
visualization presented in the menu by creating a class that inherits from 
pixiedust.display.DisplayHandlerMeta. This class contains two methods 
that need to be overridden:

• getMenuInfo(self,entity,dataHandler): Return an empty array if the 
entity passed as an argument is not supported, otherwise an array containing 
a set of JSON objects with information about the menu. Each JSON object 
must contain the following information:

 ° id: A unique string that identifies your tool.
 ° categoryId: A unique string that identifies the menu category 

or group. A full list of all the built-in categories is provided a little 
later on.

 ° title: An arbitrary string that describes the menu.
 ° icon: The name of a font-awesome icon, or a URL for an image.

• newDisplayHandler(self,options,entity): When your menu is activated 
by the user, the newDisplayHandler() method is called. This method must 
return a class instance that inherits from pixiedust.display.Display. 
The contract is for this class to implement the doRender() method, which 
is responsible for creating the visualization.

Let's take the example of creating a custom table rendering for a pandas DataFrame. 
We first create the DisplayHandlerMeta class that configures the menu and the 
factory method:

from pixiedust.display.display import *
import pandas
@PixiedustDisplay()
class SimpleDisplayMeta(DisplayHandlerMeta):
    @addId
    def getMenuInfo(self,entity,dataHandler):
        if type(entity) is pandas.core.frame.DataFrame:
            return [
               {"categoryId": "Table", "title": "Simple Table", 
"icon": "fa-table", "id": "simpleTest"}
            ]
        return []
    def newDisplayHandler(self,options,entity):
        return SimpleDisplay(options,entity)
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode15.py

Notice that the preceding SimpleDisplayMeta class needs to be decorated with  
@PixiedustDisplay, which is required to add this class to the internal PixieDust 
registry of plugins. In the getMenuInfo() method, we first check whether the entity 
type is pandas DataFrame and, if not, return an empty array signifying that this plugin 
doesn't support the current entity and will therefore not contribute anything to the 
menu. If the type is correct, we return an array with one JSON object containing the 
menu info.

The factory method newDisplayHandler() gets passed the options and entity 
as parameters. The options argument is a dictionary of key/value pairs containing 
the various choices made by the users. As we'll see later, the visualization can define 
arbitrary key/value pairs reflecting its capabilities, and the PixieDust framework 
will automatically persist them in the cell metadata.

For example, you could add an option for displaying HTTP links as clickable  
in the UI. In our example, we return a SimpleDisplay instance as defined here:

class SimpleDisplay(Display):
    def doRender(self, handlerId):
        self._addHTMLTemplateString("""
<table class="table table-striped">
   <thead>
       {%for column in entity.columns.tolist()%}
       <th>{{column}}</th>
       {%endfor%}
   </thead>
   <tbody>
       {%for _, row in entity.iterrows()%}
       <tr>
           {%for value in row.tolist()%}
           <td>{{value}}</td>
           {%endfor%}
       </tr>
       {%endfor%}
   </tbody>
</table>
        """)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode15.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode16.py

As stated before, the SimpleDisplay class must inherit from the Display class 
and implement the doRender() method. Within the implementation of this method, 
you have access to the self.entity and self.options variables to adjust how 
the information is rendered on screen. In the preceding sample, we use the self._
addHTMLTemplateString() method to create the HTML fragment that will render 
the visualization. As is the case for PixieApp routes, the string being passed to 
self._addHTMLTemplateString() can leverage the Jinja2 template engine and 
have automatic access to variables such as entity. If you don't want to hardcode the 
template string in the Python file, you can extract it into its own file that you must 
place in a directory called templates that must be located in the same directory as 
the calling Python file. You would then need to use the self._addHTMLTemplate() 
method that takes the name of the file as an argument (without specifying the 
templates directory).

The other advantage of externalizing the HTML fragment into its own file 
is that you don't have to restart the kernel every time you make a change, 
which can save you a lot of time. Because of the way Python works, the 
same cannot be said if the HTML fragment is embedded in the source 
code, in which case you would have to restart the kernel for any changes 
made in the HTML fragment.

It is also important to note that self._addHTMLTemplate() and self._
addHTMLTemplateString() accept keyword arguments that will be passed 
to the Jinja2 template. For example:

self._addHTMLTemplate('simpleTable.html', custom_arg = "Some value")

We can now run a cell that displays, for example, the cars dataset:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode16.py
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Note: The Simple Table extension only works with pandas, not Spark 
DataFrame. Therefore, you would need to use forcePandas = True 
when calling sampleData() if your Notebook is connected to Spark.

Running a custom visualization plugin on a pandas DataFrame

As shown in the PixieDust extension layer architecture diagram, you can also extend 
PixieDust using the Renderer Extension Layer, which is more prescriptive than the 
Display Extension Layer but provides many more capabilities out of the box, such as 
options management and interim data computation caching. From the user interface 
perspective, users can switch between renderers using a Renderer drop-down in the 
upper right-hand corner of the chart area.

PixieDust comes with a few built-in renderers, such as Matplotlib, Seaborn, Bokeh, 
Mapbox, Brunel, and Google Maps, but it doesn't declare any hard dependency 
on the underlying visualization libraries, including Bokeh, Brunel, or Seaborn. 
Therefore, it is incumbent on the user to manually install them, otherwise, they won't 
show up in the menus.
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The following screenshot illustrates the mechanism to switch between renderers  
for a given chart:

Switching between renderers

Adding a new renderer is similar to adding a display visualization (it's using 
the same APIs), though it's actually simpler since you only have to build one 
class (no need to build the metadata class). Here are the steps you need to follow:

1. Create a Display class that inherits from the specialized BaseChartDisplay 
class. Implement the required doRenderChart() method.

2. Use the @PixiedustRenderer decorator to register the rendererId (which 
must be unique across all renderers) and the type of chart being rendered.
Note that the same rendererId can be reused for all the charts included 
in the renderer. PixieDust provides a set of core chart types:

 ° tableView

 ° barChart

 ° lineChart

 ° scatterPlot

 ° pieChart

 ° mapView

 ° histogram
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3. (Optional) Create a set of dynamic options using the @commonChartOptions 
decorator.

4. (Optional) Customize the options dialog by overriding the get_options_
dialog_pixieapp() method to return the fully qualified name of a PixieApp 
class inheriting from the BaseOptions class in the pixiedust.display.
chart.options.baseOptions package.

As an example, let's rewrite the preceding custom SimpleDisplay table visualization 
using the renderer extension layer:

from pixiedust.display.chart.renderers import PixiedustRenderer
from pixiedust.display.chart.renderers.baseChartDisplay import 
BaseChartDisplay

@PixiedustRenderer(rendererId="simpletable", id="tableView")
class SimpleDisplayWithRenderer(BaseChartDisplay):
    def get_options_dialog_pixieapp(self):
        return None #No options needed

    def doRenderChart(self):
        return self.renderTemplateString("""
<table class="table table-striped">
   <thead>
       {%for column in entity.columns.tolist()%}
       <th>{{column}}</th>
       {%endfor%}
   </thead>
   <tbody>
       {%for _, row in entity.iterrows()%}
       <tr>
           {%for value in row.tolist()%}
           <td>{{value}}</td>
           {%endfor%}
       </tr>
       {%endfor%}
   </tbody>
</table>
        """)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode17.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode17.py
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We decorate the class with the @PixiedustRenderer decorator, specifying a unique 
rendererId called simpletable, and associating it with the tableView chart type 
defined by the PixieDust framework. We return None for the get_options_dialog_
pixieapp() method to signify that this extension does not support custom options. 
As a result, the Options button will not be shown. In the doRenderChart() method, 
we return the HTML fragment. Since we want to use Jinja2, we need to render 
it using the self.renderTemplateString method.

We can now test this new renderer using the cars dataset.

Again, when running the code, make sure that you're loading the 
cars dataset as a pandas DataFrame. If you have already run the first 
implementation of the Simple Table and are reusing the Notebook, it 
is possible that you will still see the old Simple Table menu. If that's 
the case, you will need to restart the kernel and try again.

The following screenshot shows the simple table visualization as a renderer:

Testing the renderer implementation of the Simple Table

You can find more material about this topic at: https://pixiedust.github.io/
pixiedust/develop.html. Hopefully, by now, you have a good idea about the type 
of customization you can write to integrate your own visualization in the display() 
framework.

In the next section, we'll discuss a very important topic for developers: debugging.

https://pixiedust.github.io/pixiedust/develop.html
https://pixiedust.github.io/pixiedust/develop.html
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Debugging
Being able to rapidly debug an application is critical to the success of your project. 
If not, most—if not all—of the gains we've made in term of productivity and 
collaboration, by breaking the silo between data science and engineering, will be lost. 
It is also important to note that our code runs in different places, that is, Python on 
the server side, and JavaScript on the client side, and that debugging must take place 
in both places. For Python code, let's look at two ways to troubleshoot programming 
errors.

Debugging on the Jupyter Notebook using pdb
pdb (https://docs.python.org/3/library/pdb.html) is an interactive command- 
line Python debugger that comes as standard with every Python distribution.

There are multiple ways to invoke the debugger:

• At launch, from the command line:
python -m pdb <script_file>

• Programmatically, in the code:
import pdb
pdb.run("<insert a valid python statement here>")

• By setting an explicit breakpoint in the code with the set_trace() method:
import pdb
def my_function(arg1, arg2):
    pdb.set_trace()
    do_something_here()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode18.py

• Post-mortem, after an exception has occurred, by calling pdb.pm().

Once in the interactive debugger, you can invoke commands, inspect variables, 
run statements, set breakpoints, and so on.

A complete list of commands can be found here:
https://docs.python.org/3/library/pdb.html

https://docs.python.org/3/library/pdb.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode18.py
https://docs.python.org/3/library/pdb.html
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The great news is that Jupyter Notebooks provide first-class support for the 
interactive debugger. To invoke the debugger, simply use the %pdb cell magic 
command to turn it on/off, and, if an exception is triggered, then the debugger 
will automatically stop execution at the offending line.

Magic commands (http://ipython.readthedocs.io/en/stable/interactive/
magics.html) are constructs specific to the IPython kernel. They are language 
agnostic and therefore can theoretically be available in any language supported 
by the kernel (for example, Python, Scala, and R).

There are two types of magic commands:

• Line magics: The syntax is %<magic_command_name> [optional 
arguments]for example, %matplotlib inline, which configures 
Matplotlib to output the charts inline in the Notebook output cell.
They can be invoked anywhere in the cell code, and can even return 
values that can be assigned to Python variables, for example:
#call the pwd line magic to get the current working directory
#and assign the result into a Python variable called pwd
pwd = %pwd
print(pwd)

You can find a list of all the line magics here:
http://ipython.readthedocs.io/en/stable/interactive/
magics.html#line-magics

• Cell magics: The syntax is %%<magic_command_name> [optional 
arguments]. For example, we call the HTML cell magic to display HTML 
on the output cell:

%%html
<div>Hello World</div>

Cell magics must be located at the top of the cell; any other location would 
result in an execution error. Everything below the cell magic is passed as 
an argument to the handler to be interpreted according to the cell magic 
specification. For example, the HTML cell magic expects the rest of the cell 
content to be HTML.

The following code example calls a function that raises a ZeroDivisionError 
exception, with pdb automatic calling activated:

http://ipython.readthedocs.io/en/stable/interactive/magics.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html
http://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics
http://ipython.readthedocs.io/en/stable/interactive/magics.html#line-magics
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Note: Once you turn pdb on, it stays on for the duration of the 
Notebook session.

Interactive command-line debugging

Here are some important pdb commands that can be used to troubleshoot an issue:

• s(tep): Step into the function being called and stop at the next statement 
line.

• n(ext): Continue to the next line, without entering into a nest function.
• l(list): List code surrounding the current line.
• c(ontinue): Keep running the program and stop at the next breakpoint,  

or if another exception is raised.
• d(own): Move down the stack frame.
• u(p): Move up the stack frame.
• <any expression>: Evaluate and display an expression within the context 

of the current frame. For example, you can use locals() to get a list of all 
the local variables scoped to the current frame.
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If an exception occurred and you didn't set the automatic pdb calling, you can still 
invoke the debugger after the fact by using %debug magic in another cell, as shown 
in the following screenshot:

 

Doing a post-mortem debugging session with %debug

Similar to a regular Python script, you can also explicitly set a breakpoint 
programmatically with the pdb.set_trace() method. However, it is recommended 
using the enhanced version of set_trace() provided by the IPython core module 
that provides syntax coloring:

Explicit breakpoint

In the next topic, we look at an enhanced version of the Python debugger provided 
by PixieDust.
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Visual debugging with PixieDebugger
Using the standard command line-oriented Python pdb to debug your code  
is a nice tool to have in our tool belt, but it has two major limitations:

• It's command line-oriented, which means that commands have to be entered 
manually and results are sequentially appended to the cell output, making 
it impractical when it comes to advanced debugging

• It doesn't work with PixieApps

The PixieDebugger capability addresses both issues. You can use it with any Python 
code running in a Jupyter Notebook cell to visually debug the code. To invoke the 
PixieDebugger in a cell, simply add the %%pixie_debugger cell magic at the top 
of the cell.

Note: If you have not already done so, don't forget to always import 
pixiedust in a separate cell before attempting to use %%pixie_
debugger.

As an example, the following code is trying to compute how many cars have the 
name chevrolet in the cars dataset:

%%pixie_debugger
import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True)

def count_cars(name):
    count = 0
    for row in cars.itertuples():
        if name in row.name:
            count += 1
    return count

count_cars('chevrolet')

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode19.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode19.py
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Running the cell with the preceding code will trigger the visual debugger shown 
in the following screenshot. The user interface lets you step into the code line by 
line, with the ability to inspect local variables, evaluate Python expressions, and 
set breakpoints. The code execution toolbar provides buttons for managing code 
execution: resume execution, step over the current line, step into the code a particular 
function, run to the end of the current function, and display the stack frame up and 
down one level:

PixieDebugger in action

With no parameter, the pixie_debugger cell magic will stop at the first executable 
statement in the code. However, you can easily configure it to stop at specific 
locations using the -b switch, followed by a list of breakpoints that could be 
either a line number or a method name.

Starting from the preceding example code, let's add breakpoints at the count_cars() 
method and line 11:

%%pixie_debugger -b count_cars 11
import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True)



Chapter 5

[ 175 ]

def count_cars(name):
    count = 0
    for row in cars.itertuples():
        if name in row.name:
            count += 1
    return count

count_cars('chevrolet')

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode20.py

Running the preceding code will now trigger the PixieDebugger to stop at the first 
executable statement of the count_cars() method. It also added a breakpoint at line 
11, which will cause the execution flow to stop there if the user resumes, as can be 
seen in the following screenshot:

PixieDebugger with predefined breakpoints

Note: To run to a specific line of code without setting an explicit 
breakpoint, simply hover over the line number in the gutter in the left-
hand pane and click on the icon that appears.
Like the %debug line magic, you can also invoke the PixieDebugger to 
do post-mortem debugging by using the %pixie_debugger line magic.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode20.py
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Debugging PixieApp routes with PixieDebugger
PixieDebugger is fully integrated into the PixieApp framework. Whenever an 
exception happens while triggering a route, the resulting traceback is augmented 
with two extra buttons:

• Post Mortem: Invoke the PixieDebugger to start a post-mortem 
troubleshooting session that lets you inspect variables and analyses the stack 
frames

• Debug Route: Replay the current route stopping at the first executable 
statement in the PixieDebugger

As an example, let's consider the following code for implementing a PixieApp 
that lets the user search the cars dataset by providing a column name and a search 
query:

from pixiedust.display.app import *

import pixiedust
cars = pixiedust.sampleData(1, forcePandas=True)

@PixieApp
class DisplayCars():
    @route()
    def main_screen(self):
        return """
        <div>
            <label>Column to search</label>
            <input id="column{{prefix}}" value="name">
            <label>Query</label>
            <input id="search{{prefix}}">
            <button type="submit" pd_options="col=$val(column{{prefix}
});query=$val(search{{prefix}})"
                pd_target="target{{prefix}}">
                Search
            </button>
        </div>
        <div id="target{{prefix}}"></div>
        """
    @route(col="*", query="*")
    def display_screen(self, col, query):
        self.pdf = cars.loc[cars[col].str.contains(query)]
        return """



Chapter 5

[ 177 ]

        <div pd_render_onload pd_entity="pdf">
            <pd_options>
            {
              "handlerId": "tableView",
              "table_noschema": "true",
              "table_nosearch": "true",
              "table_nocount": "true"
            }
            </pd_options>
        </div>
        """
app = DisplayCars()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode21.py

The default value for the search column is name, but if the user enters a column name 
that doesn't exist, a traceback is generated as follows:

Enhanced traceback with buttons for invoking the PixieDebugger

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode21.py
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Clicking on the Debug Route will automatically start the PixieDebugger and stop 
at the first executable statement of the route, as shown in the following screenshot:

Debugging a PixieApp route

You could also deliberately have the PixieDebugger stop at the display_screen() 
route without waiting for a traceback to happen by using the debug_route keyword 
argument to the run method:

...
app = DisplayCars()
app.run(debug_route="display_screen")

PixieDebugger is the first visual Python debugger for Jupyter Notebook, providing 
a feature that has long been requested by the Jupyter user community. However, 
using live debugging is not the only tool that developers use. In the next section, 
we will look at debugging by inspecting logging messages.

Troubleshooting issues using PixieDust logging
It is always good practice to instrument your code with logging messages, and 
the PixieDust framework provides an easy way to create and read back logging 
messages directly from the Jupyter Notebook. To start off, you'll need to create 
a logger by calling the getLogger() method as follows:

import pixiedust
my_logger = pixiedust.getLogger(__name__)
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode22.py

You can use anything as an argument to the getLogger() method. However, 
to better identify where a particular message comes from, it is recommended using 
the __name__ variable, which returns the name of the current module. The my_
logger variable is a standard Python logger object that provides logging methods 
with various levels:

• debug(msg, *args, **kwargs): Logs a message with the DEBUG level.
• info(msg, *args, **kwargs): Logs a message with the INFO level.
• warning(msg, *args, **kwargs): Logs a message with the WARNING level.
• error(msg, *args, **kwargs): Logs a message with the ERROR level.
• critical(msg, *args, **kwargs): Logs a message with the CRITICAL 

level.
• exception(msg, *args, **kwargs): Logs a message with the EXCEPTION 

level. This method should only be called from within an exception handler.

Note: You can find more information about the Python logging 
framework here:
https://docs.python.org/2/library/logging.html

You can then query the log messages directly from the Jupyter Notebook using 
the %pixiedustLog cell magic, which takes the following parameters:

• -l: Filter by log level, for example, CRITICAL, FATAL, ERROR, WARNING, 
INFO, and DEBUG

• -f: Filter a message that contains a given string, for example, Exception
• -m: Maximum number of log messages returned

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode22.py
https://docs.python.org/2/library/logging.html
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In the following example, we use the %pixiedustLog magic to display all the debug 
messages, limiting these to the last five messages:

Display the last five log messages

For convenience, when working with Python classes, you can also use the @Logger 
decorator, which automatically creates a logger using the class name as its identifier.

Here is a code example that uses the @Logger decorator:

from pixiedust.display.app import *
from pixiedust.utils import Logger

@PixieApp
@Logger()
class AppWithLogger():
    @route()
    def main_screen(self):
        self.info("Calling default route")
        return "<div>hello world</div>"

app = AppWithLogger()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode23.py

After running the preceding PixieApp in a cell, you can invoke the %pixiedustLog 
magic to display the messages:

Querying the log with a specific term

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode23.py
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This completes our discussion on server-side debugging. In the next section, we look 
at a technique for performing client-side debugging

Client-side debugging
One of the design principles of the PixieApp programming model is to minimize the 
need for developers to write JavaScript. The framework will automatically trigger 
kernel requests by listening to user input events, such as click or change events. 
However, there will be cases where writing a little bit of JavaScript is inevitable. 
These JavaScript snippets are usually part of a particular route HTML fragment and 
are dynamically injected into the browser, which makes it very difficult to debug.

One popular technique is to sprinkle console.log calls in the JavaScript code 
in order to print messages to the browser developer console.

Note: Each browser flavor has its own way of invoking the developer 
console. For example, in Google Chrome, you would use View | 
Developer | JavaScript Console, or the Command + Alt + J shortcut.

One other debugging technique that I particularly like is to programmatically insert 
in a breakpoint in the JavaScript code using the debugger; statement. This statement 
has no effect unless the browser developer tools are open and source debugging 
is enabled, in which case, the execution will automatically break at the debugger; 
statement.

The following PixieApp example uses a JavaScript function to resolve  
a dynamic value referenced by the $val() directive:

from pixiedust.display.app import *

@PixieApp
class TestJSDebugger():
    @route()
    def main_screen(self):
        return """
<script>
function FooJS(){
    debugger;
    return "value"
}
</script>
<button type="submit" pd_options="state=$val(FooJS)">Call route</
button>
        """
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    @route(state="*")
    def my_route(self, state):
        return "<div>Route called with state <b>{{state}}</b></div>"

app = TestJSDebugger()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode24.py

In the preceding code, the button is dynamically setting the value of a state using 
the FooJS JavaScript function that contains a debugger statement. Executing the app 
and clicking on the button while the developer tool is open will automatically start 
a debugging session on the browser:

Debugging JavaScript code on the client side with a debugger; statement

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode24.py
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Run Node.js inside a Python Notebook
Even though I've clearly stated at the beginning of this book that Python has 
emerged as a clear leader in the field of data science, it is still only marginally used 
by the developer community where traditional languages, such as Node.js, are still 
preferred. Recognizing that, for some developers, learning a new language, such 
as Python, is a cost of entry to data science that may be too high, I partnered with 
my IBM colleague, Glynn Bird, to build an extension library to PixieDust called 
pixiedust_node (https://github.com/pixiedust/pixiedust_node) that would 
let developers run Node.js/JavaScript code inside cells in a Python Notebook. The 
goal of this library is to ease developers into the Python world by allowing them to 
reuse their favourite Node.js libraries, for example, to load and process data from 
existing data sources.

To install the pixiedust_node library, simply run the following command  
in its own cell:

!pip install pixiedust_node

Note: Don't forget to restart the kernel once the installation is complete.
Important: You need to make sure that a Node.js runtime version 6 or 
higher is installed on the same machine as the Jupyter Notebook Server.

Once the kernel has restarted, we import the pixiedust_node module:

import pixiedust_node

You should see information about both PixieDust and pixiedust_node in the output 
as follows:

pixiedust_node welcome output

When pixiedust_node is imported, a Node subprocess is created from the Python 
side along with a special thread that reads the output of the subprocess and passes 
it to the Python side to be displayed in the cell currently executing in the Notebook. 
This subprocess is responsible for starting an REPL session (Read-Eval-Print Loop: 
https://en.wikipedia.org/wiki/Read-eval-print_loop) that will execute 
all the scripts sent from the Notebook and make any created classes, functions, 
and variables reusable across all executions.

https://github.com/pixiedust/pixiedust_node
https://en.wikipedia.org/wiki/Read-eval-print_loop
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It also defines a set of functions that are designed to interact with the Notebook and 
the PixieDust display() API:

• print(data): Outputs the value of data in the cell currently executing in the 
Notebook.

• display(data): Calls the PixieDust display() API with a pandas 
DataFrame converted from data. If data cannot be converted into a pandas 
DataFrame, then it defaults to the print method.

• html(data): Displays the data as HTML in the cell currently executing in the 
Notebook.

• image(data): Expects data to be a URL to an image and displays it in the cell 
currently executing in the Notebook.

• help(): Displays a list of all the preceding methods.

In addition, pixiedust_node makes two variables, called npm and node, globally 
available in the Notebook:

• node.cancel(): Stops the current execution of code in the Node.js 
subprocess.

• node.clear(): Resets the Node.js session; all existing variables will be 
deleted.

• npm.install(package): Installs an npm package and makes it available 
to the Node.js session. The package is persisted across sessions.

• npm.uninstall(package): Removes the npm package from the system 
and the current Node.js session.

• npm.list(): Lists all npm packages currently installed.

pixiedust_node creates a cell magic that lets you run arbitrary JavaScript code. 
Simply use the %%node magic at the top of the cell and run it as usual. The code 
will then be executed in the Node.js subprocess REPL session.

The following code displays a string that includes the current datetime using the 
JavaScript Date object (https://www.w3schools.com/Jsref/jsref_obj_date.
asp):

%%node
var date = new Date()
print("Today's date is " + date)

This outputs the following:

"Today's date is Sun May 27 2018 20:36:35 GMT-0400 (EDT)"

https://www.w3schools.com/Jsref/jsref_obj_date.asp
https://www.w3schools.com/Jsref/jsref_obj_date.asp
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The following diagram illustrates the execution flow of the preceding cell:

The life cycle of a Node.js script execution

The JavaScript code is processed by the pixiedust_node magic and sent to the 
Node subprocess for execution. As the code is being executed, its output is read 
by the special thread and displayed back in the cell currently executing in the 
Notebook. Note that the JavaScript code may make an asynchronous call, in 
which case the execution will return right away before the asynchronous calls 
have finished. In this case, the Notebook will indicate that the cell code is done, 
even though more output may be generated later by the asynchronous code. There 
is no way to deterministically know when an asynchronous code is done. Therefore 
it is incumbent upon the developer to manage this state carefully.

pixiedust_node also has the ability to share variables between the Python side 
and the JavaScript side, and vice-versa. Therefore, you could declare a Python 
variable (such as an array of integers, for example), apply a transformation in 
JavaScript (perhaps using your favorite library), and have it processed back 
in Python.

The following code is run in two cells, one in pure Python declaring an array 
of integers, and one in JavaScript that multiplies each element by 2:
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The reverse direction also works the same. The following code starts by creating 
a JSON variable in JavaScript in a node cell, and then creates and displays a pandas 
DataFrame in the Python cell:

%%node
data = {
    "name": ["Bob","Alice","Joan","Christian"],
    "age": [20, 25, 19, 45]
}
print(data)

The results are as follows:

{"age": [20, 25, 19, 45], "name": ["Bob", "Alice", "Joan", 
"Christian"]}

Then, in a Python cell, we use PixieDust display():

df = pandas.DataFrame(data)
display(df)

Using the following options:

display() options for data created from a node cell
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And we get the following results:

Bar chart from data created in a node cell

We could also have arrived at the same results directly from the Node cell 
by using the display() method made available by pixiedust_node, as shown 
in the following code:

%%node
data = {
    "name": ["Bob","Alice","Joan","Christian"],
    "age": [20, 25, 19, 45]
}
display(data)

If you are interested in knowing more about pixiedust_node, I strongly recommend 
this blog post: https://medium.com/ibm-watson-data-lab/nodebooks-node-
js-data-science-notebooks-aa140bea21ba. As always, I encourage the reader 
to get involved with improving these tools, either by contributing code or ideas for 
enhancement.

https://medium.com/ibm-watson-data-lab/nodebooks-node-js-data-science-notebooks-aa140bea21ba
https://medium.com/ibm-watson-data-lab/nodebooks-node-js-data-science-notebooks-aa140bea21ba
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Summary
In this chapter, we've explored various advanced concepts, tools, and best 
practices that added more tools to our toolbox, ranging from advanced techniques 
for PixieApps (Streaming, how to implement a route by integrating third-party 
libraries with @captureOutput, PixieApp events, and better modularity with 
pd_app), to essential developer tools like the PixieDebugger. We've also covered 
the details of how to create your own custom visualization using the PixieDust 
display() API. We also discussed pixiedust_node, which is an extension of the 
PixieDust framework that lets developers who are more comfortable with JavaScript 
work with data in their favorite language.

Throughout the remainder of this book, we are going to put all these lessons learned 
to good use by building industry use case data pipelines, starting with a Deep 
Learning Visual Recognition application in Chapter 6, Analytics Study: AI and Image 
Recognition with TensorFlow.

A developer quick-reference guide for the PixieApp programming model is provided 
in Appendix, PixieApp Quick-Reference at the end of this book.
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Analytics Study: AI and 
Image Recognition with 

TensorFlow
"Artificial Intelligence, deep learning, machine learning — whatever you're  
doing if you don't understand it — learn it. Because otherwise, you're going  
to be a dinosaur within 3 years."

                                                                                                         – Mark Cuban

This is the first chapter of a series of sample applications covering popular 
industry use cases, and it is no coincidence that I start with a use case related 
to machine learning and, more specifically, deep learning through a image 
recognition sample application. We're seeing accelerated growth in the field 
of Artificial Intelligence (AI) over the last few years, to the point where many 
practical applications are becoming a reality, such as self-driving cars, and chatbots 
with advanced automated speech recognition that, for some tasks, are perfectly 
able to replace human operators, while more and more people, from academia to 
industry, are starting to get involved. However, there is a perception that the cost 
of entry is very high and that mastering the underlying mathematical concepts of 
machine learning is a prerequisite. In this chapter, we try to demonstrate, through 
the use of examples, that this is not the case.

We will start this chapter with a quick introduction to machine learning, and 
a subset of it called deep learning. We will then introduce a very popular deep learning 
framework called TensorFlow that we'll use to build an image recognition model. 
In the second part of this chapter, we'll show how to operationalize the model we've 
built by implementing a sample PixieApp that lets the user enter a link to a website, 
have all the images scraped, and use as input to the model to categorize them.
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At the end of this chapter, you should be convinced that it is possible to build 
meaningful applications and operationalize them without a Ph.D. in machine 
learning.

What is machine learning?
One definition that I think captures very well the intuition behind machine 
learning comes from Andrew Ng, adjunct professor at Stanford University, in 
his Machine Learning class on Coursera (https://www.coursera.org/learn/
machine-learning):

Machine learning is the science of getting computers to learn, without being 
explicitly programmed.

The key word from the preceding definition is learn, which, in this context, has 
a meaning that is very similar to how, we, humans learn. To continue with this 
parallel, from a young age, we were taught how to accomplish a task either by 
example, or on our own by trial and error. Broadly speaking, machine learning 
algorithms can be categorized into two types that correspond to the two ways 
in which humans learn:

• Supervised: The algorithm learns from example data that has been properly 
labeled. This data is also called training data, or sometimes referred to as 
ground truth.

• Unsupervised: The algorithm is able to learn on its own from data that has 
not been labeled.

For each of the two categories described here, the following table gives a high-level 
overview of the most commonly used machine learning algorithms and the type of 
problem they solve:

List of machine learning algorithms

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
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The output of these algorithms is called a model and is used to make predictions 
on new input data that has not been seen before. The overall end-to-end process for 
building and deploying these models is very consistent across the different types of 
algorithms.

The following diagram shows a high-level workflow of this process:

Machine learning model workflow

As always, the workflow starts with data. In the case of supervised learning, the 
data will be used as an example and therefore must be correctly labeled with the 
correct answers. The input data is then processed to extract intrinsic properties 
called features, which we can think of as numerical values representing the input 
data. Subsequently, these features are fed into a machine learning algorithm that 
builds a model. In typical settings, the original data is split between training, test, 
and blind data. The test and blind data are used during the model building phase 
to validate and optimize the model to make sure that it doesn't overfit the training 
data. Overfitting happens when the model parameters are such that they follow 
too closely the training data, leading to errors when unseen data is used. When the 
model produces the desired accuracy level, it is then deployed in production and 
used against new data as needed by the host application.

In this section, we will provide a very high-level introduction to machine learning 
with a simplified data pipeline workflow, just enough to give the intuition of 
how a model is built and deployed. Once again, if you are a beginner, I highly 
recommend Andrew Ng's Machine Learning class on Coursera (which I still revisit 
from time to time). In the next section, we will introduce a branch of machine 
learning called deep learning, which we'll use to build the image recognition 
sample application.
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What is deep learning?
Getting computers to learn, reason, and think (make decisions) is a science that 
is commonly called cognitive computing, of which machine learning and deep 
learning are a big part. The following Venn diagram shows how these fields are 
related to the overarching field of AI:

How deep learning fits in to AI

As the diagram suggests, deep learning is one type of machine learning algorithm. 
What is perhaps not widely known is that the field of deep learning has existed 
for quite some time, but hasn't really been widely used until very recently. The 
rekindling in interest is due to the extraordinary advances in computer, cloud, and 
storage technologies observed in the last few years that have fuelled exponential 
growth in AI with the development of many new deep learning algorithms, each 
best suited to solve a particular problem.

As we'll discuss later in this chapter, deep learning algorithms are especially good 
at learning complex non-linear hypotheses. Their design is actually inspired by how 
the human brain works, for example, the input data flows through multiple layers of 
computation units in order to decompose complex model representations (such as an 
image, for example) into simpler ones, before passing the results to the next layer, 
and so on and so forth, until reaching the final layer that is responsible for outputting 
the results. The assembly of these layers is also referred to as neural networks, and 
the computation units that compose a layer are called neurons. In essence, a neuron 
is responsible for taking multiple inputs and transforming them into a single output 
that can then be fed into other neurons in the next layers.

The following diagram represents a multilayer neural network for image 
classification:



Chapter 6

[ 193 ]

High-level representation of a neural network for image classification

The preceding neural network is also called feed-forward because the output 
of each computation unit is used as input to the next layer, starting with the input 
layer. The intermediary layers are called the hidden layers and contain intermediary 
features that are automatically learned by the network. In our image example, certain 
neurons could be responsible for detecting corners, while certain others might focus 
on edges, and so on. The final output layer is responsible for assigning a confidence 
level (score) to each of the output classes.

One important question is how does the neuron output get generated from its 
input? Without diving too deeply in to the mathematics involved, each artificial 
neuron applies an activation function ( )g x  on the weighted sum of its inputs 
to decide whether it should fire or not.

The following formula calculates the weighted sum:

i
jj

A input biasθ= ∗ +∑

Where iθ  is the matrix of weights between the layer i and i + 1. These weights 
are computed during the training phase that we will discuss briefly a little later.

Note: The bias in the preceding formula represents the weight of the bias 
neuron, which is an extra neuron added to each layer with an x value 
of +1. The bias neuron is special because it contributes to the input for 
the next layer, but it is not connected to the previous one. Its weight, 
however, is still normally learned like any other neuron. The intuition 
behind the bias neuron is that it provides the constant term b in the 
linear regression equation:

Y = mx + b
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Of course, applying the neuron activation function ( )g x  on A cannot simply 
produce a binary (0 or 1) value, because we wouldn't be able to correctly rank 
the final candidate answers if multiple classes are given the score of 1. Instead, 
we use activation functions that provide a non-discrete score between 0 and 1 and set 
a threshold value (for example, 0.5) to decide whether to activate the neuron or not.

One of the most popular activation functions is the sigmoid function:

( ) 1
1 xg x
e−

=
+

The following diagram shows how a neuron output is calculated from its input and 
its weight using a sigmoid activation function:

Neuron output calculation using the sigmoid function

Other popular activation functions include the hyperbolic tangent ( )tanh x  and 
the Rectified Linear Unit (ReLu): ( )max 0, x . ReLu works better when there are 
a lot of layers because it provides sparsity of firing neurons, thereby reducing noise 
and resulting in faster learning.

Feed-forward propagation is used during scoring of the model, but when it comes 
to training the weight matrix of the neural network, a popular method used is 
called backpropagation (https://en.wikipedia.org/wiki/Backpropagation).

The following high-level steps describe how the training works:

1. Randomly initialize the weight matrix (preferably using small values, 
for example, [ ],− +E E .

https://en.wikipedia.org/wiki/Backpropagation


Chapter 6

[ 195 ]

2. Use the forward propagation described earlier on all the training examples 
to compute the outputs of each neuron using the activation function of your 
choice.

3. Implement a cost function for your neural network. A cost function 
quantifies the error with respect to the training examples. There are multiple 
cost functions that can be used with the backpropagation algorithm, such as 
a mean-square error (https://en.wikipedia.org/wiki/Mean_squared_
error) and cross-entropy (https://en.wikipedia.org/wiki/Cross_
entropy).

4. Use backpropagation to minimize your cost function and compute the weight 
matrix. The idea behind backpropagation is to start with the activation values 
of the output layer, compute the error with respect to the training data, and 
pass their errors backward to the hidden layers. These errors are then 
adjusted to minimize the cost function implemented in step 3.

Note: Explaining in detail these cost functions and how they are 
being optimized is beyond the scope of this book. For a deeper dive, 
I highly recommend looking at the Deep Learning book from MIT 
press (Ian Goodfellow, Yoshua Bengio, and Aaron Courville)

In this section, we've discussed at a high level how neural networks work and 
how they are trained. Of course, we've only touched the surface of this exciting 
technology, but you hopefully should have an idea as to how they work. In the 
next section, we start looking at TensorFlow, which is a programming framework 
that helps abstract the underlying complexity of implementing a neural network.

Getting started with TensorFlow
There are multiple open source deep learning frameworks besides TensorFlow 
(https://www.tensorflow.org) that I could have chosen for this sample 
application.

Some of the most popular frameworks are as follows:

• PyTorch (http://pytorch.org)
• Caffee2 (https://caffe2.ai)
• MXNet (https://mxnet.apache.org)

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy
https://www.tensorflow.org
http://pytorch.org
https://caffe2.ai
https://mxnet.apache.org
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• Keras (https://keras.io): A high-level neural network abstraction API 
capable of running other deep learning frameworks such as TensorFlow,  
CNTK (https://github.com/Microsoft/cntk), and Theano  
(https://github.com/Theano/Theano)

TensorFlow APIs are available in multiple languages: Python, C++, Java, Go, and, 
more recently, JavaScript. We can distinguish two categories of APIs: high level and 
low level, represented by this diagram:

TensorFlow high-level API architecture

To get started with the TensorFlow API, let's build a simple neural network that 
will learn the XOR transformation.

As a reminder, the XOR operator has only four training examples:

X Y Result

0 0 0
0 1 1
1 0 1
1 1 0

It's interesting to note that linear classifiers (https://en.wikipedia.org/wiki/
Linear_classifier) are not able to learn the XOR transformation. However, we 
can solve this problem with a simple neural network with two neurons in the input 
layer, one hidden layer with two neurons, and an output layer with one neuron 
(binary classification), demonstrated as follows:

https://keras.io
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_classifier
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XOR neural network

Note: You can install TensorFlow directly from the Notebook by using 
the following command:
!pip install tensorflow

As always, don't forget to restart the kernel after any successful install.

To create the input and output layer tensors, we use the tf.placeholder API, 
as shown in the following code:

import tensorflow as tf
x_input = tf.placeholder(tf.float32)
y_output = tf.placeholder(tf.float32)

Then, we use the tf.Variable API (https://www.tensorflow.org/programmers_
guide/variables) to initialize the random value for the matrices θ1 and θ2, 
corresponding to the hidden layer and the output layer:

eps = 0.01
W1 = tf.Variable(tf.random_uniform([2,2], -eps, eps))
W2 = tf.Variable(tf.random_uniform([2,1], -eps, eps))

For the activation function, we use the sigmoid function:

Note: For simplicity, we omit to introduce the bias.

layer1 = tf.sigmoid(tf.matmul(x_input, W1))
output_layer = tf.sigmoid(tf.matmul(layer1, W2))

https://www.tensorflow.org/programmers_guide/variables
https://www.tensorflow.org/programmers_guide/variables
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For the cost function, we use the MSE (short for, mean square error):

cost = tf.reduce_mean(tf.square(y_output - output_layer))

With all the tensors in place in the graph, we can now proceed with the training 
by using the tf.train.GradientDescentOptimizer with a learning rate of 
0.05 to minimize our cost function:

train = tf.train.GradientDescentOptimizer(0.05).minimize(cost)
training_data = ([[0,0],[0,1],[1,0],[1,1]], [[0],[1],[1],[0]])
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(5000):
        sess.run(train,
            feed_dict={x_input: training_data[0], y_output: training_
data[1]})

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode1.py

The preceding code introduces the concept of a TensorFlow Session for the first 
time, which is a foundational part of the framework. In essence, any TensorFlow 
operation must be executed within the context of Session by using its run method. 
Sessions also maintain resources that need to be explicitly released using the close 
method. For convenience, the Session class supports the context management 
protocol by providing an __enter__ and __exit__ method. This allows the caller 
to call TensorFlow operations using the with statement (https://docs.python.
org/3/whatsnew/2.6.html#pep-343-the-with-statement) and have the 
resources automatically freed.

The following pseudo-code shows a typical structure of a TensorFlow execution:

with tf.Session() as sess:
    with-block statement with TensorFlow operations

In this section, we quickly explored the low-level TensorFlow APIs to build 
a simple neural network that learned the XOR transformation. In the next section, 
we'll explore the higher level estimator APIs that provide an abstraction layer on 
top of the low-level API.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode1.py
https://docs.python.org/3/whatsnew/2.6.html#pep-343-the-with-statement
https://docs.python.org/3/whatsnew/2.6.html#pep-343-the-with-statement
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Simple classification with DNNClassifier
Note: This section discusses the source code for a sample PixieApp. 
If you want to follow along, it might be easier to download the complete 
Notebook at this location:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/TensorFlow%20classification.
ipynb

Before we look at using Tensors, Graphs, and Sessions from the low-level 
TensorFlow APIs, it would be good to get familiar with the high-level API provided 
in the Estimators package. In this section, we build a simple PixieApp that takes 
a pandas DataFrame as input and trains a classification model with the categorical 
output.

Note: There are essentially two types of classification output: categorical 
and continuous. In a categorical classifier model, the output can only 
be chosen from a list of finite predefined values with or without a logical 
order. We commonly call binary classification a classification model with 
only two classes. On the other hand, the continuous output can have any 
numerical values.

The user is first asked to choose a numerical column to predict on, and 
a classification model is trained on all the other numerical columns present 
in the DataFrame.

Note: Some of the code of this sample app is adapted from https://
github.com/tensorflow/models/tree/master/samples/core/
get_started.

For this example, we'll use built-in sample dataset #7: Boston Crime data,  
two-week sample, but you could use any other dataset as long it has sufficient  
data and numerical columns.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/tensorflow/models/tree/master/samples/core/get_started
https://github.com/tensorflow/models/tree/master/samples/core/get_started
https://github.com/tensorflow/models/tree/master/samples/core/get_started
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As a reminder, you can browse the PixieDust built-in datasets using the following code:

import pixiedust
pixiedust.sampleData()

List of built-in datasets in PixieDust

The following code loads the Boston Crime dataset using the sampleData() API:

import pixiedust
crimes = pixiedust.sampleData(7, forcePandas=True)

As always, we first start by exploring the data using the display() command. 
The goal here is to look for a suitable column to predict on:

display(crimes)

Table view of the crime dataset
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It looks like nonviolent is a good candidate for binary classification. Let's now bring 
up a bar chart to make sure we have a good data distribution in this column:

Select the nonviolent column in the option dialog
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Clicking OK produces the following chart:

Distribution of nonviolent crimes

Unfortunately, the data is skewed toward nonviolent crimes, but we have close 
to 2,000 data points for violent crimes, which, for the purpose of this sample 
application, should be OK.

We are now ready to create the do_training method that will use a tf.estimator.
DNNClassifier to create a classification model.

Note: You can find more information on DNNClassifier and other 
high-level TensorFlow estimators here:
https://www.tensorflow.org/api_docs/python/tf/
estimator

The DNNClassifier constructor takes a lot of optional parameters. In our sample 
application, we'll only use three of them, but I encourage you to take a look at the 
other parameters in the documentation:

• feature_columns: An iterable of feature_column._FeatureColumn model 
inputs. In our case, we can just create an array from the numerical columns 
of the pandas DataFrame using Python comprehension.

• hidden_units: An iterable of a number of hidden layers per unit. Here, 
we'll use only two layers with 10 nodes each.

https://www.tensorflow.org/api_docs/python/tf/estimator
https://www.tensorflow.org/api_docs/python/tf/estimator
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• n_classes: The number of label classes. We'll infer this number by grouping 
the DataFrame on the predictor columns and count the rows.

Here's the code for the do_training method:

def do_training(train, train_labels, test, test_labels, num_classes):
    #set TensorFlow logging level to INFO
    tf.logging.set_verbosity(tf.logging.INFO)

    # Build 2 hidden layer DNN with 10, 10 units respectively.
    classifier = tf.estimator.DNNClassifier(
        # Compute feature_columns from dataframe keys using a list 
comprehension
        feature_columns =
            [tf.feature_column.numeric_column(key=key) for key in 
train.keys()],
        hidden_units=[10, 10],
        n_classes=num_classes)

    # Train the Model
    classifier.train(
        input_fn=lambda:train_input_fn(train, train_labels,100),
        steps=1000
    )

    # Evaluate the model
    eval_result = classifier.evaluate(
        input_fn=lambda:eval_input_fn(test, test_labels,100)
    )

    return (classifier, eval_result)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode2.py

The classifier.train method uses a train_input_fn method that is responsible 
for providing training input data (a.k.a ground truth) as minibatches, returning 
either a tf.data.Dataset or a tuple of (features, labels). Our code is also 
performing a model evaluation using classifier.evaluate to validate the 
accuracy by scoring the model against the test dataset and comparing the results 
in the given label. The results are then returned as part of the function output. 

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode2.py
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This method requires an eval_input_fn method that is similar to the train_input_
fn, with the exception that we do not make the dataset repeatable during evaluation. 
Since the two methods share most of the same code, we use a helper method called 
input_fn that is called by both methods with the appropriate flag:

def input_fn(features, labels, batch_size, train):
    # Convert the inputs to a Dataset and shuffle.
    dataset = tf.data.Dataset.from_tensor_slices((dict(features), 
labels)).shuffle(1000)
    if train:
        #repeat only for training
        dataset = dataset.repeat()
    # Return the dataset in batch
    return dataset.batch(batch_size)

def train_input_fn(features, labels, batch_size):
    return input_fn(features, labels, batch_size, train=True)

def eval_input_fn(features, labels, batch_size):
    return input_fn(features, labels, batch_size, train=False)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode3.py

The next step is to build the PixieApp that will create the classifier from a pandas 
DataFrame passed as input to the run method. The main screen builds a list of all 
the numerical columns into a drop-down control and asks the user to select a column 
that will be used as the classifier output. This is done in the following code using 
a Jinja2 {%for ...%} loop iterating over the DataFrame passed as input that is 
referenced using the pixieapp_entity variable.

Note: The following code uses the [[SimpleClassificationDNN]] 
notation to denote that it is incomplete code from the specified class. 
Do not try to run this code yet until the full implementation is provided.

[[SimpleClassificationDNN]]
from pixiedust.display.app import *
@PixieApp
class SimpleClassificationDNN():
    @route()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode3.py
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    def main_screen(self):
        return """
<h1 style="margin:40px">
    <center>The classificiation model will be trained on all the 
numeric columns of the dataset</center>
</h1>
<style>
    div.outer-wrapper {
        display: table;width:100%;height:300px;
    }
    div.inner-wrapper {
        display: table-cell;vertical-align: middle;height: 100%;width: 
100%;
    }
</style>
<div class="outer-wrapper">
    <div class="inner-wrapper">
        <div class="col-sm-3"></div>
        <div class="input-group col-sm-6">
          <select id="cols{{prefix}}" style="width:100%;height:30px" 
pd_options="predictor=$val(cols{{prefix}})">
              <option value="0">Select a predictor column</option>
              {%for col in this.pixieapp_entity.columns.values.
tolist()%}
              <option value="{{col}}">{{col}}</option>
              {%endfor%}
          </select>
        </div>
    </div>
</div>     
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode4.py

Using the crimes dataset, we run the PixieApp with the following code:

app = SimpleClassificationDNN()
app.run(crimes)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode4.py
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Note: The PixieApp code is incomplete at this time, but we can still see 
the results of the welcome page, as shown in the following screenshot:

The main screen showing the list of columns in the input pandas DataFrame

When the user selects the prediction column (for example, nonviolent), a new 
prepare_training route is triggered by the attribute: pd_options="predictor=$va
l(cols{{prefix}})". This route will show two bar charts showing the output class 
distribution for both the training and test sets that are randomly selected using an 
80/20 split from the original dataset.

Note: We use an 80/20 split between training and test sets, which, from 
my experience, is quite common. Of course, this is not an absolute rule 
and could be adjusted depending on the use case

The screen fragment also includes a button to start training the classifier.

The code for the prepare_training route is shown here:

[[SimpleClassificationDNN]]
@route(predictor="*")
@templateArgs
def prepare_training(self, predictor):
        #select only numerical columns
        self.dataset = self.pixieapp_entity.dropna(axis=1).select_
dtypes(
            include=['int16', 'int32', 'int64', 'float16', 'float32', 
'float64']
        )
        #Compute the number of classed by counting the groups
        self.num_classes = self.dataset.groupby(predictor).size().
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shape[0]
        #Create the train and test feature and labels
        self.train_x=self.dataset.sample(frac=0.8)
        self.full_train = self.train_x.copy()
        self.train_y = self.train_x.pop(predictor)
        self.test_x=self.dataset.drop(self.train_x.index)
        self.full_test = self.test_x.copy()
        self.test_y=self.test_x.pop(predictor)
        
        bar_chart_options = {
          "rowCount": "100",
          "keyFields": predictor,
          "handlerId": "barChart",
          "noChartCache": "true"
        }
        
        return """
<div class="container" style="margin-top:20px">
    <div class="row">
        <div class="col-sm-5">
            <h3><center>Train set class distribution</center></h3>
            <div pd_entity="full_train" pd_render_onload>
                <pd_options>{{bar_chart_options|tojson}}</pd_options>
            </div>
        </div>
        <div class="col-sm-5">
            <h3><center>Test set class distribution</center></h3>
            <div pd_entity="full_test" pd_render_onload>
                <pd_options>{{bar_chart_options|tojson}}</pd_options>
            </div>
        </div>
    </div>
</div>

<div style="text-align:center">
    <button class="btn btn-default" type="submit" pd_options="do_
training=true">
        Start Training
    </button>
</div>
"""
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode5.py

Note: @templateArgs is used due to the fact that we compute the bar_
chart_options variable once and then use it in the Jinja2 template.

Selecting the nonviolent prediction column gives us the following screenshot result:

Pretraining screen

The Start Training button invokes the do_training route using the attribute  
pd_options="do_training=true", which invokes the do_training method 
we created earlier. Note that we use the @captureOutput decorator because, since 
we set the TensorFlow log level to INFO, we want to capture the log messages and 
display them to the user. These log messages are sent back to the browser using 
the stream mode, and PixieDust will automatically display them as a specially 
created <div> element that will append the data to it as it arrives. When the training 
is done, the route returns an HTML fragment that generates a table with the 
evaluation metrics returned by the do_training method, as shown  
in the following code:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode5.py
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[[SimpleClassificationDNN]]
@route(do_training="*")
   @captureOutput
def do_training_screen(self):
       self.classifier, self.eval_results = \
      do_training(
self.train_x, self.train_y, self.test_x, self.test_y, self.num_classes
      )
        return """
<h2>Training completed successfully</h2>
<table>
    <thead>
        <th>Metric</th>
        <th>Value</th>
    </thead>
    <tbody>
{%for key,value in this.eval_results.items()%}
<tr>
    <td>{{key}}</td>
    <td>{{value}}</td>
</tr>
{%endfor%}
    </tbody>
</table>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode6.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode6.py
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The following screenshot shows the results after the model has been successfully 
created and includes the evaluation metrics table for the classification model with 
an accuracy of 87%:

Final screen showing the result of successful training

This PixieApp was run using the crimes dataset as an argument, as shown  
in the following code:

app = SimpleClassificationDNN()
app.run(crimes)

Once the model is successfully trained, you can access it to classify new data by 
calling the predict method on the app.classifier variable. Similar to the train 
and evaluate method, predict also takes an input_fn that constructs the input 
features.

Note: More details on the predict method are provided here:
https://www.tensorflow.org/api_docs/python/tf/
estimator/DNNClassifier#predict

https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier#predict
https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier#predict
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This sample application provides a good starting point for getting familiar 
with the TensorFlow framework by using the high-level estimator APIs.

Note: The complete Notebook for this sample application can be found 
here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/TensorFlow%20classification.ipynb

In the next section, we'll start building our image recognition sample application 
using the low-level TensorFlow APIs, including Tensors, Graphs, and Sessions.

Image recognition sample application
When it comes to building an open-ended application, you want to start by defining 
the requirements for an MVP (short for, Minimum Viable Product) version that 
contains just enough functionalities to make it usable and valuable to your users. 
When it comes to making technical decisions for your implementation, making 
sure that you get a working end-to-end implementation as quickly as possible, 
without investing too much time, is a very important criteria. The idea is that you 
want to start small so that you can quickly iterate and improve your application.

For the MVP of our image recognition sample application, we'll use the following 
requirements:

• Don't build a model from scratch; instead, reuse one of the pretrained generic 
convolutional neural network (CNN: https://en.wikipedia.org/wiki/
Convolutional_neural_network) models that are publicly available, 
such as MobileNet. We can always retrain these models later with custom 
training images using transfer learning (https://en.wikipedia.org/wiki/
Transfer_learning).

• For MVP, while we are focusing on scoring only and not training, we should 
still make it interesting for the users. So let's build a PixieApp that allows the 
user to input the URL of a web page and display all the images scraped from 
the page, including the classification output inferred by our model.

• Since we are learning about deep learning neural networks and TensorFlow, 
it would be great if we could display the TensorBoard Graph Visualization 
(https://www.tensorflow.org/programmers_guide/graph_viz) in the 
Jupyter Notebook directly without forcing the user to use another tool. This 
will provide a better user experience and increase their engagement with 
the application.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/TensorFlow%20classification.ipynb
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Transfer_learning
https://en.wikipedia.org/wiki/Transfer_learning
https://www.tensorflow.org/programmers_guide/graph_viz
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Note: The implementation of the application in this section is adapted 
from the tutorial:
https://codelabs.developers.google.com/codelabs/
tensorflow-for-poets

Part 1 – Load the pretrained MobileNet model
Note: You can download the completed Notebook to follow this section 
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%201.ipynb

There are plenty of publicly available image classification models, using CNNs, that 
are pretrained on large image databases such as ImageNet (http://www.image-
net.org). ImageNet has started multiple public challenges, such as the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) or the ImageNet Object 
Localization Challenge on Kaggle (https://www.kaggle.com/c/imagenet-object-
localization-challenge), with very interesting results.

These challenges have produced multiple models, such as ResNet, Inception, 
SqueezeNet, VGGNet, or Xception, each using a different neural network 
architecture. Going over each of these architectures is beyond the scope of this book, 
but even if you are not yet an expert in machine learning (which I am definitely not), 
I encourage you to read about them online. The model I've selected for this sample 
application is MobileNet because it is small, fast, and very accurate. It provides an 
image classification model for 1,000 categories of images, which is sufficient for this 
sample application.

To ensure the stability of the code, I've made a copy of the model in the GitHub 
repo: https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/
chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224.

In this directory, you can find the following files:

• frozen_graph.pb: A serialized binary version of the TensorFlow graph
• labels.txt: A text file that includes a description of the 1,000 image 

categories and their index
• quantized_graph.pb: A compressed form of the model graph that used 

an 8-bit fixed point representation

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
http://www.image-net.org
http://www.image-net.org
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224
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Loading the model consists of building a tf.graph object and associated labels. 
Since we may want to load multiple models in the future, we first define a dictionary 
that provides metadata about the model:

models = {
    "mobilenet": {
        "base_url":"https://github.com/DTAIEB/Thoughtful-Data-Science/
raw/master/chapter%206/Visual%20Recognition/mobilenet_v1_0.50_224",
        "model_file_url": "frozen_graph.pb",
        "label_file": "labels.txt",
        "output_layer": "MobilenetV1/Predictions/Softmax"
    }
}

You can find the file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode7.py

Each key in the preceding models dictionary represents the metadata of a particular 
model:

• base_url: Points to the URL where the files are stored
• model_file_url: The name of the model file that is assumed to be relative 

to base_url
• label_file: The name of the labels that are assumed to be relative to  

base_url

• output_layer: The name of the output layer that provides final scoring for 
each category

We implement a get_model_attribute helper method to facilitate reading from 
the model metadata, which will be very useful throughout our application:

# helper method for reading attributes from the model metadata
def get_model_attribute(model, key, default_value = None):
    if key not in model:
        if default_value is None:
            raise Exception("Require model attribute {} not found".
format(key))
        return default_value
    return model[key]

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode7.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode8.py

To load the graph, we download the binary file, load it into a tf.GraphDef 
object using the ParseFromString method, and we then invoke the tf.import_
graph_def method using the graph as the current content manager:

import tensorflow as tf
import requests
# Helper method for resolving url relative to the selected model
def get_url(model, path):
    return model["base_url"] + "/" + path
    
# Download the serialized model and create a TensorFlow graph
def load_graph(model):
    graph = tf.Graph()
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(
        requests.get( get_url( model, model["model_file_url"] ) 
).content
    )
    with graph.as_default():
        tf.import_graph_def(graph_def)
    return graph

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode9.py

The method that loads the labels returns either a JSON object or an array (we'll 
see later that both are needed). The following code uses a Python list comprehension 
to iterate over the lines returned by the requests.get call. It then uses the as_json 
flag to format the data as appropriate:

# Load the labels
def load_labels(model, as_json = False):
    labels = [line.rstrip() \
      for line in requests.get(get_url(model, model["label_file"]) 
).text.split("\n") if line != ""]
    if as_json:
        return [{"index": item.split(":")[0],"label":item.split(":")
[1]} for item in labels]
    return labels

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode9.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode10.py

The next step is to invoke the model to classify images. To make it simpler and 
perhaps more valuable, we ask the user to provide a URL to an HTML page that 
contains the images to be classified. We'll use the BeautifulSoup4 library to help 
parsing the page. To install BeautifulSoup4, simply run the following command:

!pip install beautifulsoup4

Note: As always, don't forget to restart the kernel once installation 
is complete.

The following get_image_urls method takes a URL as an input, downloads the 
HTML, instantiates a BeautifulSoup parser and extracts all the images found in any 
<img> elements and background-image styles. BeautifulSoup has a very elegant 
and easy-to-use API for parsing HTML. Here, we simply use the find_all method 
to find all <img> elements and the select method to select all elements with an 
inline style. The reader will be quick to notice that there are many other ways to 
create images using HTML that we are not discovering, such as, for example, images 
declared as CSS classes. As always, if you have the interest and time to improve it, I 
strongly welcome pull requests in the GitHub repo (see here for instructions on how 
to create a pull request: https://help.github.com/articles/creating-a-pull-
request).

The code for get_image_urls looks like this:

from bs4 import BeautifulSoup as BS
import re

# return an array of all the images scraped from an html page
def get_image_urls(url):
    # Instantiate a BeautifulSoup parser
    soup = BS(requests.get(url).text, "html.parser")
    
    # Local helper method for extracting url
    def extract_url(val):
        m = re.match(r"url\((.*)\)", val)
        val = m.group(1) if m is not None else val
        return "http:" + val if val.startswith("//") else val
    

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode10.py
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/creating-a-pull-request
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    # List comprehension that look for <img> elements and backgroud-
image styles
    return [extract_url(imgtag['src']) for imgtag in soup.find_
all('img')] + [ \
        extract_url(val.strip()) for key,val in \
        [tuple(selector.split(":")) for elt in soup.select("[style]") 
\
            for selector in elt["style"].strip(" ;").split(";")] \
            if key.strip().lower()=='background-image' \
        ]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode11.py

For each of the images discovered, we'll also need a helper function to download 
the images that will be passed as input to the model for classification.

The following download_image method downloads the image into a temporary file:

import tempfile
def download_image(url):
   response = requests.get(url, stream=True)
   if response.status_code == 200:
      with tempfile.NamedTemporaryFile(delete=False) as f:
         for chunk in response.iter_content(2048):
            f.write(chunk)
         return f.name
   else:
      raise Exception("Unable to download image: {}".format(response.
status_code))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode12.py

Given a local path to an image, we now need to decode it into a tensor by calling the 
right decode method from the tf.image package, that is, the decode_png for .png 
files.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode12.py
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Note: In mathematics, a tensor is a generalization of a vector, which 
is defined by a direction and a size, to support higher dimensionality. 
Vectors are tensors of order 1, similarly, scalars are tensors of order 0. 
Intuitively, we can think of order 2 tensors as a two-dimensional array 
with values defined as a result of multiplying two vectors. In TensorFlow, 
tensors are arrays of n-dimensions.

After a few transformations on the image reader tensor (casting to the right 
decimal representation, resizing, and normalization), we call tf.Session.run 
on the normalizer tensor to execute the steps defined earlier, as shown in the 
following code:

# decode a given image into a tensor
def read_tensor_from_image_file(model, file_name):
    file_reader = tf.read_file(file_name, "file_reader")
    if file_name.endswith(".png"):
        image_reader = tf.image.decode_png(file_reader, channels = 
3,name='png_reader')
    elif file_name.endswith(".gif"):
        image_reader = tf.squeeze(tf.image.decode_gif(file_
reader,name='gif_reader'))
    elif file_name.endswith(".bmp"):
        image_reader = tf.image.decode_bmp(file_reader, name='bmp_
reader')
    else:
        image_reader = tf.image.decode_jpeg(file_reader, channels = 3, 
name='jpeg_reader')
    float_caster = tf.cast(image_reader, tf.float32)
    dims_expander = tf.expand_dims(float_caster, 0);
    
    # Read some info from the model metadata, providing default values
    input_height = get_model_attribute(model, "input_height", 224)
    input_width = get_model_attribute(model, "input_width", 224)
    input_mean = get_model_attribute(model, "input_mean", 0)
    input_std = get_model_attribute(model, "input_std", 255)
        
    resized = tf.image.resize_bilinear(dims_expander, [input_height, 
input_width])
    normalized = tf.divide(tf.subtract(resized, [input_mean]),  
[input_std])
    sess = tf.Session()
    result = sess.run(normalized)
    return result



Analytics Study: AI and Image Recognition with TensorFlow

[ 218 ]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode13.py

With all the pieces in place, we are now ready to implement the score_image 
method that takes a tf.graph, a model metadata, and a URL to an image as 
input parameters, and returns the top five candidate classifications based on their 
confidence score, including their labels:

import numpy as np

# classify an image given its url
def score_image(graph, model, url):
    # Get the input and output layer from the model
    input_layer = get_model_attribute(model, "input_layer", "input")
    output_layer = get_model_attribute(model, "output_layer")
    
    # Download the image and build a tensor from its data
    t = read_tensor_from_image_file(model, download_image(url))
    
    # Retrieve the tensors corresponding to the input and output 
layers
    input_tensor = graph.get_tensor_by_name("import/" + input_layer + 
":0");
    output_tensor = graph.get_tensor_by_name("import/" + output_layer 
+ ":0");

    with tf.Session(graph=graph) as sess:
        results = sess.run(output_tensor, {input_tensor: t})
    results = np.squeeze(results)
    # select the top 5 candidate and match them to the labels
    top_k = results.argsort()[-5:][::-1]
    labels = load_labels(model)
    return [(labels[i].split(":")[1], results[i]) for i in top_k]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode14.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode14.py
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We can now test the code using the following steps:

1. Pick the mobilenet model and load the corresponding graph
2. Get a list of image URLs scraped from the Flickr website
3. Call the score_image method for each image URL and print the result

The code is shown here:

model = models['mobilenet']
graph = load_graph(model)
image_urls = get_image_urls("https://www.flickr.com/
search/?text=cats")
for url in image_urls:
    results = score_image(graph, model, url)
    print("Result for {}: \n\t{}".format(url, results))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode15.py

The results are pretty accurate (except for the first image that is a blank image) 
as shown in the following screenshot:

Classification of the images found on a Flickr page related to cats

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode15.py
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Part 1 of our image recognition sample application is now complete; you can find the 
full Notebook at the following location: https://github.com/DTAIEB/Thoughtful-
Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb.

In the next section, we will build a more user-friendly experience by building  
a user interface with a PixieApp.

Part 2 – Create a PixieApp for our 
image recognition sample application

Note: You can download the completed Notebook to follow this section 
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%202.ipynb

As a reminder, the setup method of a PixieApp, if defined, is executed before 
the app starts running. We use it to select our model and initialize the graph:

from pixiedust.display.app import *

@PixieApp
class ScoreImageApp():
    def setup(self):
        self.model = models["mobilenet"]
        self.graph = load_graph( self.model )
    ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode16.py

In the main screen of the PixieApp, we use an input box to let the user enter the URL 
to the web page, as shown in the following code snippet:

[[ScoreImageApp]]
@route()
def main_screen(self):
   return """
<style>
    div.outer-wrapper {
        display: table;width:100%;height:300px;

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode16.py
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    }
    div.inner-wrapper {
        display: table-cell;vertical-align: middle;height: 100%;width: 
100%;
    }
</style>
<div class="outer-wrapper">
    <div class="inner-wrapper">
        <div class="col-sm-3"></div>
        <div class="input-group col-sm-6">
          <input id="url{{prefix}}" type="text" class="form-control"
              value="https://www.flickr.com/search/?text=cats"
              placeholder="Enter a url that contains images">
          <span class="input-group-btn">
            <button class="btn btn-default" type="button" pd_
options="image_url=$val(url{{prefix}})">Go</button>
          </span>
        </div>
    </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode17.py

For convenience, we initialize the input text with a default value of https: 
//www.flickr.com/search/?text=cats.

We can already run the code to test the main screen by using the following code:

app = ScoreImageApp()
app.run()

The main screen looks like this:

The main screen for the image recognition PixieApp

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode17.py
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Note: This is good for testing, but we should keep in mind that the  
do_process_url route has not yet been implemented and, therefore, 
clicking on the Go button will fall back to the default route again.

Let's now implement the do_process_url route, which is triggered when the user 
clicks on the Go button. This route first calls the get_image_urls method to get 
the list of image URLs. Using Jinja2, we then build an HTML fragment that displays 
all the images. For each image, we asynchronously invoke the do_score_url route 
that runs the model and displays the results.

The following code shows the implementation of the do_process_url route:

[[ScoreImageApp]]
@route(image_url="*")
@templateArgs
def do_process_url(self, image_url):
    image_urls = get_image_urls(image_url)
    return """
<div>
{%for url in image_urls%}
<div style="float: left; font-size: 9pt; text-align: center; width: 
30%; margin-right: 1%; margin-bottom: 0.5em;">
<img src="{{url}}" style="width: 100%">
  <div style="display:inline-block" pd_render_onload pd_
options="score_url={{url}}">
  </div>
</div>
{%endfor%}
<p style="clear: both;">
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode18.py

Notice the use of the @templateArgs decorator, which allows the Jinja2 
fragment to reference the local image_urls variable.

Finally, in the do_score_url route, we call the score_image and display the results 
as a list:

[[ScoreImageApp]]
@route(score_url="*")

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode18.py


Chapter 6

[ 223 ]

@templateArgs
def do_score_url(self, score_url):
    results = score_image(self.graph, self.model, score_url)
    return """
<ul style="text-align:left">
{%for label, confidence in results%}
<li><b>{{label}}</b>: {{confidence}}</li>
{%endfor%}
</ul>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode19.py

The following screenshot shows the results for the Flickr page that contains images 
of cats:

Results of the image classification for cats

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode19.py
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As a reminder, you can find the complete Notebook at this location:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/Tensorflow%20VR%20Part%202.
ipynb

Our MVP application is almost complete. In the next section, we will integrate 
the TensorBoard graph visualization directly in the Notebook.

Part 3 – Integrate the TensorBoard graph 
visualization

Note: Part of the code described in this section is adapted from the 
deepdream notebook located here:
https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/examples/tutorials/deepdream/deepdream.ipynb

You can download the completed Notebook to follow this section 
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%203.ipynb

TensorFlow comes with a very powerful suite of visualizations that help with 
debugging and performance optimization of your application. Please take a 
moment to explore the TensorBoard capabilities here: https://www.tensorflow.
org/programmers_guide/summaries_and_tensorboard.

One issue here is that configuring the TensorBoard server to work with your 
Notebook could be difficult, especially if your Notebooks are hosted on the cloud, 
and you have little to no access to the underlying operating systems. In this case, 
configuring and starting the TensorBoard server could prove to be an impossible 
task. In this section, we show how to work around this problem by integrating 
the model graph visualization directly in your Notebook with zero configuration 
required. To provide a better user experience, we want to add the TensorBoard 
visualization to our PixieApp. We do that by changing the main layout to a tab 
layout and assign the TensorBoard visualization to its own tab. Conveniently, 
PixieDust provides a base PixieApp called TemplateTabbedApp that takes care of 
building a tabbed layout. When using TemplateTabbedApp as the base class, we 
need to configure the tab in the setup method as follows:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%202.ipynb
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb 
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/deepdream/deepdream.ipynb 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard
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[[ImageRecoApp]]
from pixiedust.apps.template import TemplateTabbedApp
@PixieApp
class ImageRecoApp(TemplateTabbedApp):
    def setup(self):
        self.apps = [
            {"title": "Score", "app_class": "ScoreImageApp"},
            {"title": "Model", "app_class": "TensorGraphApp"},
            {"title": "Labels", "app_class": "LabelsApp"}
        ]
        self.model = models["mobilenet"]
        self.graph = self.load_graph(self.model)
        
app = ImageRecoApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode20.py

It should be noted that in the preceding code, we have added the LabelsApp child 
PixieApp to the list of tabs even though it hasn't yet been implemented. Therefore, 
as expected, if you run the code as is, the Labels tab will fail.

self.apps contains an array of objects that define the tabs:

• title: Tab title
• app_class: PixieApp to run when the tab is selected

In ImageRecoApp, we configure three tabs associated with three child PixieApps: 
the ScoreImageApp that we've already created in Part 2 – Create a PixieApp for our 
image recognition sample application, the TensorGraphApp for displaying the model 
graph, and the LabelsApp to display a table of all the labeled categories used in 
the model.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode20.py
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The results are shown in the following screenshot:

Tabbed layout that includes Score, Model, and Labels

What's also nice about using TemplateTabbedApp superclass is that the  
sub-PixieApps are defined separately, which makes the code more maintainable 
and reusable.

Let's first look at the TensorGraphApp PixieApp. Its main route returns an 
HTML fragment that loads the tf-graph-basic.build.html into an Iframe from  
https://tensorboard.appspot.com, and using a JavaScript load listener applies 
the serialized graph definition that was computed using the tf.Graph.as_graph_
def method. To make sure the graph definition remains at a reasonable size, and 
to avoid unnecessary performance degradation on the browser client, we call the 
strip_consts method to remove tensors with constant values that have a large size.

The code for TensorGraphApp is shown here:

@PixieApp
class TensorGraphApp():
    """Visualize TensorFlow graph."""
    def setup(self):
        self.graph = self.parent_pixieapp.graph

    @route()
    @templateArgs
    def main_screen(self):
        strip_def = self.strip_consts(self.graph.as_graph_def())
        code = """
            <script>
              function load() {{
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                document.getElementById("{id}").pbtxt = {data};
              }}
            </script>
            <link rel="import" href="https://tensorboard.appspot.com/
tf-graph-basic.build.html" onload=load()>
            <div style="height:600px">
              <tf-graph-basic id="{id}"></tf-graph-basic>
            </div>
        """.format(data=repr(str(strip_def)), id='graph'+ self.
getPrefix()).replace('"', '&quot;')

        return """
<iframe seamless style="width:1200px;height:620px;border:0" 
srcdoc="{{code}}"></iframe>
"""

    def strip_consts(self, graph_def, max_const_size=32):
        """Strip large constant values from graph_def."""
        strip_def = tf.GraphDef()
        for n0 in graph_def.node:
            n = strip_def.node.add() 
            n.MergeFrom(n0)
            if n.op == 'Const':
                tensor = n.attr['value'].tensor
                size = len(tensor.tensor_content)
                if size > max_const_size:
                    tensor.tensor_content = "<stripped {} bytes>".
format(size).encode("UTF-8")
        return strip_def

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode21.py

Note: Child PixieApps have access to their parent PixieApp through the 
self.parent_pixieapp variables.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode21.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode21.py 
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The resulting screen for the TensorGraphApp child PixieApp is shown in the 
following screenshot. It provides an interactive visualization of the TensorFlow 
graph for the selected model, allowing the user to navigate through the different 
nodes and to drill down deeper into the model. However, it is important to note that 
the visualization runs entirely within the browser, without the TensorBoard server. 
Therefore, some of the functions available in the full TensorBoard, such as runtime 
statistics, are disabled.

Displaying the model graph for MobileNet V1

In the LabelsApp PixieApp, we simply load the labels as JSON format, 
and display it in a PixieDust table, using the handlerId=tableView option:

[[LabelsApp]]
@PixieApp
class LabelsApp():
    def setup(self):
        self.labels = self.parent_pixieapp.load_labels(
            self.parent_pixieapp.model, as_json=True
        )
    
    @route()
    def main_screen(self):
        return """
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<div pd_render_onload pd_entity="labels">
    <pd_options>
    {
        "table_noschema": "true",
        "handlerId": "tableView",
        "rowCount": "10000"
    }
    </pd_options>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode22.py

Note: We configure the table to not show the schema by setting table_
noschema to true, but we keep the search bar for convenience.

The results are shown in the following screenshot:

Searchable table for the model categories

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode22.py
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Our MVP image recognition sample application is now complete; you can find the 
full Notebook here: https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb.

In the next section, we will improve the application by allowing the user to retrain 
the model using custom images.

Part 4 – Retrain the model with custom 
training data

Note: You can download the completed Notebook to follow this section 
discussion here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%204.ipynb

The code in this section is quite extensive, and some helper functions 
that are not directly related to the topic will be omitted. However, as 
always, refer to the complete Notebook on GitHub for more information 
on the code.

In this section, we want to retrain the MobileNet model with custom training data 
and use it to classify images that would have had a low score on the generic model 
otherwise.

Note: The code in this section is adapted from the TensorFlow for poets 
tutorial:
https://github.com/googlecodelabs/tensorflow-for-
poets-2/blob/master/scripts/retrain.py

As is the case most of the time, getting quality training data can be one of the 
most daunting and time-consuming tasks. In our example, we need images in 
large quantities for each of the classes we want to train. For the sake of simplicity 
and reproducibility, we are using the ImageNet databases that conveniently 
provide APIs for getting URLs and associated labels. We also limit the downloaded 
files to .jpg files. Of course, feel free to acquire your own training data if needed.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb 
https://github.com/googlecodelabs/tensorflow-for-poets-2/blob/master/scripts/retrain.py
https://github.com/googlecodelabs/tensorflow-for-poets-2/blob/master/scripts/retrain.py
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We first download the list of all the image URLs from the Fall 2011 release that is 
available here: http://image-net.org/imagenet_data/urls/imagenet_fall11_
urls.tgz, and unpack the file into a local directory of your choice (for example, I 
chose /Users/dtaieb/Downloads/fall11_urls.txt).We also need to download 
the mapping between WordNet ID and words for all synsets available at http://
image-net.org/archive/words.txt, which we'll use to find the WordNet IDs 
containing the URLs that we need to download.

The following code will load both files into a pandas DataFrame respectively:

import pandas
wnid_to_urls = pandas.read_csv('/Users/dtaieb/Downloads/fall11_urls.
txt',
                sep='\t', names=["wnid", "url"],
                header=0, error_bad_lines=False,
                warn_bad_lines=False, encoding="ISO-8859-1")
wnid_to_urls['wnid'] = wnid_to_urls['wnid'].apply(lambda x: 
x.split("_")[0])
wnid_to_urls = wnid_to_urls.dropna()

wnid_to_words = pandas.read_csv('/Users/dtaieb/Downloads/words.txt',
                sep='\t', names=["wnid", "description"],
                header=0, error_bad_lines=False,
                warn_bad_lines=False, encoding="ISO-8859-1")
wnid_to_words = wnid_to_words.dropna()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode23.py

Notice that we needed to clean the wnid column in the wnid_to_urls 
dataset because it contains a suffix corresponding to the index of the 
image in the category.

We can then define a method get_url_for_keywords that returns a dictionary 
containing the categories as keys and an array of URLs as values:

def get_url_for_keywords(keywords):
    results = {}
    for keyword in keywords:
        df = wnid_to_words.loc[wnid_to_words['description'] == 
keyword]
        row_list = df['wnid'].values.tolist()
        descriptions = df['description'].values.tolist()
        if len(row_list) > 0:

http://image-net.org/imagenet_data/urls/imagenet_fall11_urls.tgz
http://image-net.org/imagenet_data/urls/imagenet_fall11_urls.tgz
http://image-net.org/archive/words.txt
http://image-net.org/archive/words.txt
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode23.py
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            results[descriptions[0]] = \
            wnid_to_urls.loc[wnid_to_urls['wnid'] == \
            row_list[0]]["url"].values.tolist()
    return results

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode24.py

We can easily glance at the data distribution by using PixieDust display.  
As always, feel free to do more exploration on your own:

Distribution of images by categories

We can now build the code that will download the images corresponding to a 
list of categories of our choice. In our case, we chose fruits: ["apple", "orange", 
"pear", "banana"]. The images will be downloaded in a subdirectory of the 
PixieDust home directory (using the PixieDust Environment helper class from 
the pixiedust.utils package), limiting the number of images to 500 for speed:

Note: The following code uses methods and imports defined earlier in the 
Notebook. Make sure to run the corresponding cell before attempting to 
run the following code.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode24.py
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from pixiedust.utils.environment import Environment
root_dir = ensure_dir_exists(os.path.join(Environment.pixiedustHome, 
"imageRecoApp")
image_dir = root_dir
image_dict = get_url_for_keywords(["apple", "orange", "pear", 
"banana"])
with open(os.path.join(image_dir, "retrained_label.txt"), "w")  
as f_label:
    for key in image_dict:
        f_label.write(key + "\n")
        path = ensure_dir_exists(os.path.join(image_dir, key))
        count = 0
        for url in image_dict[key]:
            download_image_into_dir(url, path)
            count += 1
            if count > 500:
                break;

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode25.py

The next part of the code processes each of the images in the training set using the 
following steps:

Note: As mentioned before, the code is quite extensive, and part of 
it is omitted; only the important parts are explained here. Please do 
not attempt to run the following code as is and refer to the complete 
Notebook for full implementation.

1. Decode the .jpeg file using the following code:
def add_jpeg_decoding(model):
    input_height = get_model_attribute(model,
                   "input_height")
    input_width = get_model_attribute(model, "input_width")
    input_depth = get_model_attribute(model, "input_depth")
    input_mean = get_model_attribute(model, "input_mean",
                 0)
    input_std = get_model_attribute(model, "input_std",
                255)
    
    jpeg_data = tf.placeholder(tf.string,

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode25.py
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                name='DecodeJPGInput')
    decoded_image = tf.image.decode_jpeg(jpeg_data,
                    channels=input_depth)
    decoded_image_as_float = tf.cast(decoded_image,
                             dtype=tf.float32)
    decoded_image_4d =  tf.expand_dims(
                       decoded_image_as_float,
                       0)
    resize_shape = tf.stack([input_height, input_width])
    resize_shape_as_int = tf.cast(resize_shape,
                          dtype=tf.int32)
    resized_image = tf.image.resize_bilinear(
                    decoded_image_4d,
                    resize_shape_as_int)
    offset_image = tf.subtract(resized_image, input_mean)
    mul_image = tf.multiply(offset_image, 1.0 / input_std)
    return jpeg_data, mul_image

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode26.py

2. Create the bottleneck values (caching them as appropriate) that normalize the 
image by resizing and rescaling it. This is done in the following code:
def run_bottleneck_on_image(sess, image_data,
    image_data_tensor,decoded_image_tensor,
    resized_input_tensor,bottleneck_tensor):
    # First decode the JPEG image, resize it, and rescale the 
pixel values.
    resized_input_values = sess.run(decoded_image_tensor,
        {image_data_tensor: image_data})
    # Then run it through the recognition network.
    bottleneck_values = sess.run(
        bottleneck_tensor,
        {resized_input_tensor: resized_input_values})
    bottleneck_values = np.squeeze(bottleneck_values)
    return bottleneck_values

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode26.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode27.py

3. Add the final training operations using the add_final_training_ops 
method, under a common namespace, so that it's easier to manipulate when 
visualizing the graph. The training steps are as follows:

1. Generate random weight with the tf.truncated_normal API:
      initial_value = tf.truncated_normal(
          [bottleneck_tensor_size, class_count],
          stddev=0.001)
          layer_weights = tf.Variable(
              initial_value, name='final_weights')

2. Add the biases, initialized to zero:
      layer_biases = tf.Variable(tf.zeros([class_count]),
          name='final_biases')

3. Compute the weighted sum:
      logits = tf.matmul(bottleneck_input, layer_weights) +
          layer_biases

4. Add the cross_entropy cost function:
      cross_entropy =
          tf.nn.softmax_cross_entropy_with_logits(
          labels=ground_truth_input, logits=logits)
      with tf.name_scope('total'):
          cross_entropy_mean = tf.reduce_mean(
          cross_entropy)

5. Minimize the cost function:

      optimizer = tf.train.GradientDescentOptimizer(
          learning_rate)
      train_step = optimizer.minimize(cross_entropy_mean)

To visualize the retrained graph, we first need to update the TensorGraphApp 
PixieApp to let the user select which model to visualize: generic MobileNet or 
custom. This is done by adding a <select> drop-down in the main route and 
attaching a pd_script element to update the state:

[[TensorGraphApp]]
return """
{%if this.custom_graph%}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode27.py
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<div style="margin-top:10px" pd_refresh>
    <pd_script>
self.graph = self.custom_graph if self.graph is not self.custom_graph 
else self.parent_pixieapp.graph
    </pd_script>
    <span style="font-weight:bold">Select a model to display:</span>
    <select>
        <option {%if this.graph!=this.custom_graph%}selected{%endif%} 
value="main">MobileNet</option>
        <option {%if this.graph==this.custom_graph%}selected{%endif%} 
value="custom">Custom</options>
    </select>
{%endif%}
<iframe seamless style="width:1200px;height:620px;border:0" 
srcdoc="{{code}}"></iframe>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode28.py

Rerunning our ImageReco PixieApp produces the following screenshot:

Visualization of the retrained graph

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode28.py
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Clicking on the train node will reveal the nested operations that run the 
backpropagation algorithms to minimize the cross_entropy_mean cost 
functions specified in the preceding add_final_training_ops:

with tf.name_scope('cross_entropy'):
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
        labels=ground_truth_input, logits=logits)
    with tf.name_scope('total'):
        cross_entropy_mean = tf.reduce_mean(cross_entropy)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode29.py

The following screenshot shows the details of the train namespace:

Backpropagation during training

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode29.py
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Similarly, we can add the drop-down toggle in the LabelsApp to switch 
the visualization between the generic MobileNet and custom model:

[[LabelsApp]]
@PixieApp
class LabelsApp():
    def setup(self):
        ...
    
    @route()
    def main_screen(self):
        return """
{%if this.custom_labels%}
<div style="margin-top:10px" pd_refresh>
    <pd_script>
self.current_labels = self.custom_labels if self.current_labels is not 
self.custom_labels else self.labels
    </pd_script>
    <span style="font-weight:bold">
        Select a model to display:</span>
    <select>
        <option {%if this.current_labels!=this.labels%}
selected{%endif%} value="main">MobileNet</option>
        <option {%if this.current_labels==this.custom_labels%}
selected{%endif%} value="custom">Custom</options>
    </select>
{%endif%}
<div pd_render_onload pd_entity="current_labels">
    <pd_options>
    {
        "table_noschema": "true",
        "handlerId": "tableView",
        "rowCount": "10000",
        "noChartCache": "true"
        
    }
    </pd_options>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode30.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode30.py
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The results are displayed in the following screenshot:

Display labels information for each model

The last step for our Part 4 MVP is to update the score_image method to classify 
the image with both models and add the results in a dictionary with an entry 
for each model. We define a local method do_score_image that returns the top 
5 candidates answers.

This method is called for each model, and the results populate a dictionary with 
the model name as the key:

# classify an image given its url
def score_image(graph, model, url):
    # Download the image and build a tensor from its data
    t = read_tensor_from_image_file(model, download_image(url))

    def do_score_image(graph, output_layer, labels):
        # Retrieve the tensors corresponding to the input and output 
layers
        input_tensor = graph.get_tensor_by_name("import/" +
            input_layer + ":0");
        output_tensor = graph.get_tensor_by_name( output_layer +
            ":0");

        with tf.Session(graph=graph) as sess:
            # Initialize the variables
            sess.run(tf.global_variables_initializer())
            results = sess.run(output_tensor, {input_tensor: t})
        results = np.squeeze(results)
        # select the top 5 candidates and match them to the labels
        top_k = results.argsort()[-5:][::-1]
        return [(labels[i].split(":")[1], results[i]) for i in top_k]
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    results = {}
    input_layer = get_model_attribute(model, "input_layer",
        "input")
    labels = load_labels(model)
    results["mobilenet"] = do_score_image(graph, "import/" +
        get_model_attribute(model, "output_layer"), labels)
    if "custom_graph" in model and "custom_labels" in model:
        with open(model["custom_labels"]) as f:
            labels = [line.rstrip() for line in f.readlines() if line 
!= ""]
            custom_labels = ["{}:{}".format(i, label) for i,label in 
zip(range(len(labels)), labels)]
        results["custom"] = do_score_image(model["custom_graph"],
            "final_result", custom_labels)
    return results

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode31.py

Since we modified the returned values for the score_image method, we need to 
adjust the HTML fragment returned in ScoreImageApp to loop over all the model 
entries of the results dictionary:

@route(score_url="*")
@templateArgs
def do_score_url(self, score_url):
    scores_dict = score_image(self.graph, self.model, score_url)
    return """
{%for model, results in scores_dict.items()%}
<div style="font-weight:bold">{{model}}</div>
<ul style="text-align:left">
{%for label, confidence in results%}
<li><b>{{label}}</b>: {{confidence}}</li>
{%endfor%}
</ul>
{%endfor%}
    """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%206/sampleCode32.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/sampleCode32.py
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With these changes in place, the PixieApp will automatically invoke the custom 
models if available and, if that's the case, display the results for both models.

The following screenshot shows the results for images related to banana:

Score with generic MobileNet and custom-trained model

The reader will notice that the scores for the custom models are pretty low. One 
possible explanation is that the training data acquisition is fully automated and 
used without human curation. One possible enhancement to this sample application 
would be to move the training data acquisition and retraining steps into its own tab 
PixieApp. We should also give the user the opportunity to validate the images and 
reject the one that is of poor quality. It would also be great to let the user relabel the 
images that have been wrongly categorized.
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The completed Notebook for Part 4 can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%206/Tensorflow%20VR%20Part%204.ipynb

In this section, we've discussed the incremental approach of building an image 
recognition sample application in a Jupyter Notebook using TensorFlow, with 
a special focus on operationalizating the algorithms using PixieApps. We started 
with building a simple classification model from a pandas DataFrame using the 
TensorFlow DNNClassifier estimator. We then built an MVP version of the 
image recognition sample application in four parts:

1. We loaded the pretrained MobileNet model
2. We created a PixieApp for our image recognition sample application
3. We integrated the TensorBoard graph visualization into the PixieApp
4. We enabled users to retrain the model with custom training data from 

ImageNet

Summary
Machine learning is a vast topic that enjoys tremendous growth, both in research 
and development. In this chapter, we've explored only a tiny fraction of the state 
of the art in connection with machine learning algorithms, namely, using a deep 
learning neural network to perform image recognition. For some readers who are 
just beginning to get familiar with machine learning, the sample PixieApps and 
associated algorithms code may be too deep to digest at one time. However, the 
underlying aim was to demonstrate how to iteratively build an application that 
leverages a machine learning model. We happened to use a convolutional neural 
network model for image recognition, but any other model would do.

Hopefully, you got a good idea of how PixieDust and the PixieApp programming 
model can help you with your own project, and I strongly encourage you to use this 
sample application as a starting point to build your own custom application using 
the machine learning of your choice. I also recommend deploying your PixieApp 
as a web application with the PixieGateway microservice and exploring whether 
it's a viable solution.

In the next chapter, we will cover another important industry use case related to 
big data and natural language processing. We'll build a sample application that 
analyzes social media trends using a natural language understanding service.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%206/Tensorflow%20VR%20Part%204.ipynb


[ 243 ]

Analytics Study: NLP and Big 
Data with Twitter Sentiment 

Analysis
"Data is the new oil."

                   – Unknown

In this chapter we are going to look at two important fields of AI and data science: 
natural language processing (NLP) and big data analysis. For the supporting 
sample application, we re-implement the Sentiment analysis of Twitter hashtags 
project described in Chapter 1, Programming and Data Science – A New Toolset, but 
this time we leverage Jupyter Notebooks and PixieDust to build live dashboards that 
analyze data from a stream of tweets related to a particular entity, such as a product 
offered by a company, for example, to provide sentiment information as well as 
information about other trending entities extracted from the same tweets. At the 
end of this chapter, the reader will learn how to integrate cloud-based NLP services 
such as IBM Watson Natural Language Understanding into their application as well 
as perform data analysis at (Twitter) scale with frameworks such as Apache Spark.

As always, we'll show how to operationalize the analytics by implementing a live 
dashboard as a PixieApp that runs directly in the Jupyter Notebook.
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Getting started with Apache Spark
The term big data can rightly feel vague and imprecise. What is the cut-off for 
considering any dataset big data? Is it 10 GB, 100 GB, 1 TB or more? One definition 
that I like is: big data is when the data cannot fit into the memory available in 
a single machine. For years, data scientists have been forced to sample large 
datasets, so they could fit into a single machine, but that started to change as parallel 
computing frameworks that are able to distribute the data into a cluster of machines 
made it possible to work with the dataset in its entirety, provided of course that the 
cluster had enough machines. At the same time, advances in cloud technologies 
made it possible to provision on demand a cluster of machines that are adapted 
to the size of the dataset.

Today, there are multiple frameworks (most of the time available as open source) 
that can provide robust, flexible parallel computing capabilities. Some of the most 
popular include Apache Hadoop (http://hadoop.apache.org), Apache Spark 
(https://spark.apache.org) and Dask (https://dask.pydata.org). For our 
Twitter Sentiment Analysis application, we'll use Apache Spark, which provides 
excellent performances in the area of scalability, programmability, and speed. 
In addition, many cloud providers offer some flavor of Spark as a Service giving 
the ability to create on demand an appropriately sized Spark cluster in minutes.

Some Spark as a Service cloud providers include:

• Microsoft Azure: https://azure.microsoft.com/en-us/services/
hdinsight/apache-spark

• Amazon Web Services: https://aws.amazon.com/emr/details/spark
• Google Cloud: https://cloud.google.com/dataproc
• Databricks: https://databricks.com
• IBM Cloud: https://www.ibm.com/cloud/analytics-engine

Note: Apache Spark can also be easily installed on a local machine 
for testing purposes, in which case, the cluster nodes are simulated 
using threads.

Apache Spark architecture
The following diagram shows the main components of the Apache Spark framework:

http://hadoop.apache.org
https://spark.apache.org
https://dask.pydata.org
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark
https://azure.microsoft.com/en-us/services/hdinsight/apache-spark
https://aws.amazon.com/emr/details/spark
https://cloud.google.com/dataproc
https://databricks.com
https://www.ibm.com/cloud/analytics-engine
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Spark high level architecture

• Spark SQL: The core data structure of this component is the Spark 
DataFrame, which enables users who know the SQL language, to 
effortlessly work with structured data.

• Spark Streaming: Module used to work with streaming data. As we'll see 
later on, we'll use this module and more specifically Structured Streaming 
(which was introduced in Spark 2.0) in our sample application.

• MLlib: Module that provides a feature-rich machine learning library that 
works on a Spark scale.

• GraphX: Module used for performing the graph-parallel computation.

There are mainly two ways of working with a Spark cluster as illustrated in the 
following diagram:

Two ways to work with a Spark cluster
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• spark-submit: Shell script used to launch Spark applications on a cluster
• Notebooks: Interactively execute code statements against a Spark cluster

Covering the spark-submit shell script is beyond the scope of this book, but official 
documentation can be found at: https://spark.apache.org/docs/latest/
submitting-applications.html. For the rest of this chapter, we'll focus on 
interacting with the Spark cluster via Jupyter Notebooks.

Configuring Notebooks to work with Spark
The instructions in this section only cover installing Spark locally for development 
and testing. Manually installing Spark in a cluster is beyond the scope of this book. 
If a real cluster is needed, it is highly recommended to use a cloud-based service.

By default, local Jupyter Notebooks are installed with plain Python Kernels. To work 
with Spark, users must use the following steps:

1. Install Spark locally by downloading a binary distribution from https://
spark.apache.org/downloads.html.

2. Generate a kernel specification in a temporary directory using the following 
command:
ipython kernel install --prefix /tmp

Note: The preceding command may generate a warning message 
that can be safely ignored as long as the following message is stated:
Installed kernelspec python3 in /tmp/share/jupyter/
kernels/python3

3. Go to /tmp/share/jupyter/kernels/python3, and edit the kernel.json 
file to add the following key to the JSON object (replace <<spark_root_
path>> with the directory path where you installed Spark and <<py4j_
version>> with the version installed on your system):
"env": {
    "PYTHONPATH": "<<spark_root_path>>/python/:<<spark_root_
path>>/python/lib/py4j-<<py4j_version>>-src.zip",
    "SPARK_HOME": "<<spark_root_path>>",
    "PYSPARK_SUBMIT_ARGS": "--master local[10] pyspark-shell",
    "SPARK_DRIVER_MEMORY": "10G",
    "SPARK_LOCAL_IP": "127.0.0.1",
    "PYTHONSTARTUP": "<<spark_root_path>>/python/pyspark/shell.py"
}

https://spark.apache.org/docs/latest/submitting-applications.html
https://spark.apache.org/docs/latest/submitting-applications.html
https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
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4. You may also want to customize the display_name key to make it unique 
and easily recognizable from the Juptyer UI. If you need to know the list 
of existing kernels, you can use the following command:
jupyter kernelspec list

The preceding command will give you a list of kernel names and associated 
paths on the local filesystem. From the path, you can open the kernel.json 
file to access the display_name value. For example:
    Available kernels:

      pixiedustspark16

    /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark16

      pixiedustspark21

    /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark21

      pixiedustspark22

    /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark22

      pixiedustspark23

    /Users/dtaieb/Library/Jupyter/kernels/pixiedustspark23

5. Install the kernel with the edited files using the following command:
jupyter kernelspec install /tmp/share/jupyter/kernels/python3

Note: Depending on the environment, you may receive a "permission 
denied" error when running the preceding command. In this case, you 
may want to run the command with the admin privileges using sudo 
or use the --user switch as follows:
jupyter kernelspec install --user /tmp/share/jupyter/
kernels/python3

For more information about install ation options, you can use the -h switch. 
For example:
    jupyter kernelspec install -h

6. Restart the Notebook server and start using the new PySpark kernel.

Fortunately, PixieDust provides an install script to automate the preceding 
manual steps.
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You can find detailed documentation for this script here:
https://pixiedust.github.io/pixiedust/install.html

In short, using the automated PixieDust install script requires the following 
command to be issued and the on-screen instructions to be followed:

jupyter pixiedust install

We'll dive deeper into the Spark programming model later in this chapter, but for 
now, let's define in the next section, the MVP requirements for our Twitter Sentiment 
Analysis application.

Twitter sentiment analysis application
As always, we start by defining the requirements for our MVP version:

• Connect to Twitter to get a stream of real-time tweets filtered by a query 
string provided by the user

• Enrich the tweets to add sentiment information and relevant entities 
extracted from the text

• Display a dashboard with various statistics about the data using live 
charts that are updated at specified intervals

• The system should be able to scale up to Twitter data size

The following diagram shows the first version of our application architecture:

Twitter sentiment architecture version 1

https://pixiedust.github.io/pixiedust/install.html
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For version 1, the application will be entirely implemented in a single Python 
Notebook and will call out to an external service for the NLP part. To be able to 
scale, we will certainly have to externalize some of the processing outside of the 
Notebook, but for development and testing, I found that being able to contain 
the whole application in a single Notebook significantly increases productivity.

As for libraries and frameworks, we'll use Tweepy (http://www.tweepy.org) 
for connecting to Twitter, Apache Spark Structured Streaming (https://spark.
apache.org/streaming) for processing the streaming data in a distributed cluster 
and the Watson Developer Cloud Python SDK (https://github.com/watson-
developer-cloud/python-sdk) to access the IBM Watson Natural Language 
Understanding (https://www.ibm.com/watson/services/natural-language-
understanding) service.

Part 1 – Acquiring the data with Spark 
Structured Streaming
To acquire the data, we use Tweepy which provides an elegant Python client 
library to access the Twitter APIs. The APIs covered by Tweepy are very extensive 
and covering them in detail is beyond the scope of this book, but you can find 
the complete API reference at the Tweepy official website: http://tweepy.
readthedocs.io/en/v3.6.0/cursor_tutorial.html.

You can install the Tweepy library directly from PyPi using the pip install 
command. The following command shows how to install it from a Notebook 
using the ! directive:

!pip install tweepy

Note: The current Tweepy version used is 3.6.0. Do not forget to restart 
the kernel after installing the library.

Architecture diagram for the data pipeline
Before we start diving into each component of the data pipeline, it would be good 
to take a look at its overall architecture and understand the computation flow.

http://www.tweepy.org
https://spark.apache.org/streaming
https://spark.apache.org/streaming
https://github.com/watson-developer-cloud/python-sdk
https://github.com/watson-developer-cloud/python-sdk
https://www.ibm.com/watson/services/natural-language-understanding
https://www.ibm.com/watson/services/natural-language-understanding
http://tweepy.readthedocs.io/en/v3.6.0/cursor_tutorial.html
http://tweepy.readthedocs.io/en/v3.6.0/cursor_tutorial.html
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As shown in the following diagram, we start by creating a Tweepy stream that writes 
raw data in CSV files. We then create a Spark Streaming DataFrame that reads the 
CSV files and is periodically updated with new data. From the Spark Streaming 
DataFrame, we create a Spark structured query using SQL and store its results 
in a Parquet database:

Streaming computation flow

Authentication with Twitter
Before using any of the Twitter APIs, it is recommended to authenticate with the 
system. One of the most commonly used authentication mechanism is the OAuth 
2.0 protocol (https://oauth.net) which enables third-party applications to access 
a service on the web. The first thing you need to do is acquire a set of key strings 
that are used by the OAuth protocol to authenticate you:

• Consumer key: String that uniquely identifies the client app (a.k.a. the API 
Key).

• Consumer secret: Secret string known only to the application and the Twitter 
OAuth server. It can be thought of like a password.

• Access token: String used to authenticate your requests. This token is also 
used during the authorization phase to determine the level of access for the 
application.

• Access token secret: Similar to the consumer secret, this is a secret string sent 
with the access token to be used as a password.

To generate the preceding key strings, you need to go to http://apps.twitter.
com, provide authentication with your regular Twitter user ID and password and 
follow these steps:

1. Create a new Twitter app using the Create New App button.
2. Fill out the application details, agree to the Developer agreement and click 

on Create your Twitter application button.

https://oauth.net
http://apps.twitter.com
http://apps.twitter.com
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Note: Make sure that your mobile phone number is added to your 
profile or you'll get an error when creating the Twitter application.
You can provide a random URL for the mandatory Website input 
and leave the URL input blank as this is an optional callback URL.

3. Click on the Keys and Access Tokens tab to get the consumer and access 
token. At any time, you can regenerate these tokens using the buttons 
available on this page. If you do so, you'll need to also update the value 
in your application code.

For easier code maintenance, let's put these tokens in their own variables at the top 
of the Notebook and create the tweepy.OAuthHandler class that we'll use later on:

from tweepy import OAuthHandler
# Go to http://apps.twitter.com and create an app.
# The consumer key and secret will be generated for you after
consumer_key="XXXX"
consumer_secret="XXXX"

# After the step above, you will be redirected to your app's page.
# Create an access token under the "Your access token" section
access_token="XXXX"
access_token_secret="XXXX"

auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

Creating the Twitter stream
For implementing our application, we only need to use the Twitter streaming 
API that is documented here: http://tweepy.readthedocs.io/en/v3.5.0/
streaming_how_to.html. In this step, we create a Twitter stream that stores the 
incoming data into CSV files on the local filesystem. This is done using a custom 
RawTweetsListener class that inherits from tweepy.streaming.StreamListener. 
Custom processing of the incoming data is done by overriding the on_data method.

In our case, we want to transform the incoming data from JSON to CSV using 
DictWriter from the standard Python csv module. Because the Spark Streaming file 
input source triggers only when new files are created in the input directory, we can't 
simply append the data into an existing file. Instead, we buffer the data into an array 
and write it to disk once the buffer has reached capacity.

http://tweepy.readthedocs.io/en/v3.5.0/streaming_how_to.html
http://tweepy.readthedocs.io/en/v3.5.0/streaming_how_to.html


Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[ 252 ]

For simplicity, the implementation doesn't include cleaning up the 
files once they have been processed. Another minor limitation of this 
implementation is that we currently wait until the buffer is filled to write 
the file which theoretically could take a long time if no new tweets appear.

The code for the RawTweetsListener is shown here:

from six import iteritems
import json
import csv
from tweepy.streaming import StreamListener
class RawTweetsListener(StreamListener):
    def __init__(self):
        self.buffered_data = []
        self.counter = 0

    def flush_buffer_if_needed(self):
        "Check the buffer capacity and write to a new file if needed"
        length = len(self.buffered_data)
        if length > 0 and length % 10 == 0:
            with open(os.path.join( output_dir,
                "tweets{}.csv".format(self.counter)), "w") as fs:
                self.counter += 1
                csv_writer = csv.DictWriter( fs,
                    fieldnames = fieldnames)
                for data in self.buffered_data:
                    csv_writer.writerow(data)
            self.buffered_data = []

    def on_data(self, data):
        def transform(key, value):
            return transforms[key](value) if key in transforms 
else value

        self.buffered_data.append(
            {key:transform(key,value) \
                 for key,value in iteritems(json.loads(data)) \
                 if key in fieldnames}
        )
        self.flush_buffer_if_needed()
        return True

    def on_error(self, status):
        print("An error occured while receiving streaming data: {}".
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format(status))
        return False

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode1.py

A few important things to notice from the preceding code are:

• Each tweet coming from the Twitter API contains a lot of data, and we 
pick which field to keep using the field_metadata variable. We also 
define a global variable fieldnames that holds the list of fields to capture 
from the stream, and a transforms variable that contains a dictionary with 
all the field names that have a transform function as a key and the transform 
function itself as a value:
from pyspark.sql.types import StringType, DateType
from bs4 import BeautifulSoup as BS
fieldnames = [f["name"] for f in field_metadata]
transforms = {
    item['name']:item['transform'] for item in field_metadata 
if "transform" in item
}
field_metadata = [
    {"name": "created_at","type": DateType()},
    {"name": "text", "type": StringType()},
    {"name": "source", "type": StringType(),
         "transform": lambda s: BS(s, "html.parser").text.strip()
    }
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode2.py

• The CSV files are written in output_dir which is defined in its own variable. 
At start time, we first remove the directory and its contents:
import shutil
def ensure_dir(dir, delete_tree = False):
    if not os.path.exists(dir):
        os.makedirs(dir)
    elif delete_tree:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode2.py
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        shutil.rmtree(dir)
        os.makedirs(dir)
    return os.path.abspath(dir)

root_dir = ensure_dir("output", delete_tree = True)
output_dir = ensure_dir(os.path.join(root_dir, "raw"))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode3.py

• The field_metadata contains the Spark DataType that we'll use later 
on to build the schema when creating the Spark streaming query.

• The field_metadata also contains an optional transform lambda function 
to cleanse the value before being written to disk. For reference, a lambda 
function in Python is an anonymous function defined inline (see https://
docs.python.org/3/tutorial/controlflow.html#lambda-expressions). 
We use it for the source field that is often returned as an HTML fragment. In 
this lambda function, we use the BeautifulSoup library (which was also used 
in the previous chapter) to extract only the text as shown in the following 
snippet:

lambda s: BS(s, "html.parser").text.strip()

Now that the RawTweetsListener is created, we define a start_stream function 
that we'll use later on in the PixieApp. This function takes an array of search terms 
as input and starts a new stream using the filter method:

from tweepy import Stream
def start_stream(queries):
    "Asynchronously start a new Twitter stream"
    stream = Stream(auth, RawTweetsListener())
    stream.filter(track=queries, async=True)
    return stream

Notice the async=True parameter passed to stream.filter. 
This is needed to make sure that the function doesn't block, which 
would prevent us from running any other code in the Notebook.
You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode4.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode3.py
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode4.py
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The following code starts the stream that will receive tweets containing the word 
baseball in it:

stream = start_stream(["baseball"])

When running the preceding code, no output is generated in the Notebook. 
However, you can see the files (that is, tweets0.csv, tweets1.csv, and so on.) 
being generated in the output directory (that is, ../output/raw) from the path 
where the Notebook is being run.

To stop the stream, we simply call the disconnect method, as shown here:

stream.disconnect()

Creating a Spark Streaming DataFrame
Referring to the architecture diagram, the next step is to create a Spark Streaming 
DataFrame tweets_sdf that uses the output_dir as the source file input. We 
can think of a Streaming DataFrame as an unbounded table where new rows 
are continuously added as new data arrives from the stream.

Note: Spark Structured Streaming supports multiple types of input 
source including File, Kafka, Socket, and Rate. (Both Socket and Rate 
are used only for testing.)

The following diagram is taken from the Spark website and does a great 
job explaining how new data is appended to the Streaming DataFrame:

Streaming DataFrame flow

Source: https://spark.apache.org/docs/latest/img/structured-streaming-stream-as-a-table.png
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The Spark Streaming Python API provides an elegant way to create the Streaming 
DataFrame using the spark.readStream property which creates a new pyspark.
sql.streamingreamReader object that conveniently lets you chain method calls 
with the added benefit of creating clearer code (see https://en.wikipedia.org/
wiki/Method_chaining for more details on this pattern).

For example, to create a CSV file stream, we call the format method with csv, 
chain the applicable options and call the load method with the path of the directory:

schema = StructType(
[StructField(f["name"], f["type"], True) for f in field_metadata]
)
csv_sdf = spark.readStream\
    .format("csv")\
    .option("schema", schema)\
    .option("multiline", True)\
    .option("dateFormat", 'EEE MMM dd kk:mm:ss Z y')\
    .option("ignoreTrailingWhiteSpace", True)\
    .option("ignoreLeadingWhiteSpace", True)\
    .load(output_dir)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode5.py

spark.readStream also provides a convenient high-level csv method that 
takes the path as the first argument and keyword arguments for the options:

csv_sdf = spark.readStream \
    .csv(
        output_dir,
        schema=schema,
        multiLine = True,
        dateFormat = 'EEE MMM dd kk:mm:ss Z y',
        ignoreTrailingWhiteSpace = True,
        ignoreLeadingWhiteSpace = True
    )

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode6.py

https://en.wikipedia.org/wiki/Method_chaining
https://en.wikipedia.org/wiki/Method_chaining
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode6.py
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You can verify that the csv_sdf DataFrame is indeed a Streaming DataFrame by 
calling the isStreaming method which should return true. The following code 
also adds a call to printSchema to verify that the schema follows the field_
metadata configuration as expected:

print(csv_sdf.isStreaming)
csv_sdf.printSchema()

Returns:

root
 |-- created_at: date (nullable = true)
 |-- text: string (nullable = true)
 |-- source: string (nullable = true)

Before continuing to the next step, it is important to understand how the csv_sdf 
Streaming DataFrame fits in the Structured Streaming programming model and 
what limitations it has. At its core, the Spark low-level APIs define the Resilient 
Distributed Dataset (RDD) data structure which encapsulates all the underlying 
complexity of managing the distributed data. Features like fault-tolerance (cluster 
nodes that crashes for any reason are transparently restarted with no intervention 
from the developer) are automatically handled by the framework. There are two 
types of RDD operations: transformations and actions. Transformations are logical 
operations on an existing RDD that are not immediately executed on the cluster until 
an action is invoked (lazy execution). The output of a transformation is a new RDD. 
Internally, Spark maintains an RDD acyclic directed graph that keeps track of all the 
lineage resulting in the creation of the RDD, which is useful when recovering from 
server failure. Example transformations include map, flatMap, filter, sample, and 
distinct. The same goes for transformations on DataFrames (which internally are 
backed by RDDs) that have the benefit of including SQL queries. On the other hand, 
actions do not produce other RDDs, but rather perform an operation on the actual 
distributed data to return a non-RDD value. Examples of actions include reduce, 
collect, count, and take.

As mentioned before, csv_sdf is a Streaming DataFrame, which means that 
the data is continuously added to it and as such we are only able to apply 
transformations to it, not actions. To circumvent this problem, we must first 
create a streaming query using csv_sdf.writeStream which is a pyspark.sql.
streaming.DataStreamWriter object. The streaming query is responsible for 
sending the results to an output sink. We can then run the streaming query using 
the start() method.



Analytics Study: NLP and Big Data with Twitter Sentiment Analysis

[ 258 ]

Spark Streaming supports multiple output sink types:

• File: All the classic file formats are supported, including JSON, CSV, and 
Parquet

• Kafka: Write directly to one or more Kafka topics
• Foreach: Run arbitrary computations on each element in the collection
• Console: Prints the output to the system console (used mainly for 

debugging)
• Memory: Output is stored in memory

In the next section, we'll create and run a structured query on csv_sdf with 
an output sink that stores the output in Parquet format.

Creating and running a structured query
Using the tweets_sdf Streaming DataFrame, we create a streaming query  
tweet_streaming_query that writes the data into a Parquet format using  
the append output mode.

Note: Spark streaming queries support three output modes: complete 
where the entire table is written at each trigger, append where only the 
delta rows since the last trigger are written, and update where only the 
rows that were modified are written.

Parquet is a columnar database format that provides an efficient, scalable storage for 
distributed analytics. You can find more information about the Parquet format at: 
https://parquet.apache.org.

The following code creates and starts the tweet_streaming_query streaming query:

tweet_streaming_query = csv_sdf \
    .writeStream \
    .format("parquet") \
    .option("path", os.path.join(root_dir, "output_parquet")) \
    .trigger(processingTime="2 seconds") \
    .option("checkpointLocation", os.path.join(root_dir,  
"output_chkpt")) \
    .start()

https://parquet.apache.org
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode7.py

Similarly, you can stop the streaming query by using the stop() method as follows:

tweet_streaming_query.stop()

In the preceding code, we use the path option to specify the location of the Parquet 
files, and the checkpointLocation to specify the location of the recovery data that 
would be used in case of a server failure. We also specify the trigger interval for new 
data to be read from the stream and new rows to be added to the Parquet database.

For testing purpose, you can also use the console sink to see the new rows being 
read every time a new raw CSV file is generated in the output_dir directory:

tweet_streaming_query = csv_sdf.writeStream\
    .outputMode("append")\
    .format("console")\
    .trigger(processingTime='2 seconds')\
    .start()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode8.py

You can see the results in the system output of the master node of your Spark 
cluster (you will need to physically access the master node machine and look at 
the log files, since, unfortunately, the output is not printed into the Notebook 
itself because the operation is executed in a different process. Location of the log 
files depends on the cluster management software; please refer to the specific 
documentation for more information).

Here are sample results displayed for a particular batch (identifiers have been 
masked):

-------------------------------------------
Batch: 17
-------------------------------------------
+----------+--------------------+-------------------+
|created_at|                text|             source|
+----------+--------------------+-------------------+
|2018-04-12|RT @XXXXXXXXXXXXX...|Twitter for Android|
|2018-04-12|RT @XXXXXXX: Base...| Twitter for iPhone|

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode8.py
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|2018-04-12|That's my roommat...| Twitter for iPhone|
|2018-04-12|He's come a long ...| Twitter for iPhone|
|2018-04-12|RT @XXXXXXXX: U s...| Twitter for iPhone|
|2018-04-12|Baseball: Enid 10...|   PushScoreUpdates|
|2018-04-12|Cubs and Sox aren...| Twitter for iPhone|
|2018-04-12|RT @XXXXXXXXXX: T...|          RoundTeam|
|2018-04-12|@XXXXXXXX that ri...| Twitter for iPhone|
|2018-04-12|RT @XXXXXXXXXX: S...| Twitter for iPhone|
+----------+--------------------+-------------------+

Monitoring active streaming queries
When a streaming query is started, cluster resources are allocated by Spark. 
Therefore, it is important to manage and monitor these queries to make sure that 
you don't run out of cluster resources. At any time, you can get a list of all the 
running queries as shown in the following code:

print(spark.streams.active)

Results:

[<pyspark.sql.streaming.StreamingQuery object at 0x12d7db6a0>, 
<pyspark.sql.streaming.StreamingQuery object at 0x12d269c18>]

You can then dive into the details of each query by using the following query 
monitoring properties:

• id: Returns a unique identifier for the query that persists across restarts 
from checkpoint data

• runId: Returns a unique ID generated for the current session
• explain(): Prints detailed explanations of the query
• recentProgress: Returns an array of the most recent progress updates
• lastProgress: Returns the most recent progress

The following code prints the most recent progress for each active query:

import json
for query in spark.streams.active:
    print("-----------")
    print("id: {}".format(query.id))
    print(json.dumps(query.lastProgress, indent=2, sort_keys=True))
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode9.py

Results for the first query are shown here:

-----------
id: b621e268-f21d-4eef-b6cd-cb0bc66e53c4
{
  "batchId": 18,
  "durationMs": {
    "getOffset": 4,
    "triggerExecution": 4
  },
  "id": "b621e268-f21d-4eef-b6cd-cb0bc66e53c4",
  "inputRowsPerSecond": 0.0,
  "name": null,
  "numInputRows": 0,
  "processedRowsPerSecond": 0.0,
  "runId": "d2459446-bfad-4648-ae3b-b30c1f21be04",
  "sink": {
    "description": "org.apache.spark.sql.execution.streaming.
ConsoleSinkProvider@586d2ad5"
  },
  "sources": [
    {
      "description": "FileStreamSource[file:/Users/dtaieb/cdsdev/
notebookdev/Pixiedust/book/Chapter7/output/raw]",
      "endOffset": {
        "logOffset": 17
      },
      "inputRowsPerSecond": 0.0,
      "numInputRows": 0,
      "processedRowsPerSecond": 0.0,
      "startOffset": {
        "logOffset": 17
      }
    }
  ],
  "stateOperators": [],
  "timestamp": "2018-04-12T21:40:10.004Z"
}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode9.py
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As an exercise for the reader, it would be useful to build a PixieApp that provides 
a live dashboard with updated details about each active streaming query.

Note: We'll show how to build this PixieApp in Part 3 – Create a real-time 
dashboard PixieApp.

Creating a batch DataFrame from the 
Parquet files

Note: For the rest of this chapter, we define a batch Spark DataFrame  
as a classic Spark DataFrame, that is non-streaming.

The last step of this streaming computation flow is to create one or more batch 
DataFrames that we can use for building our analytics and data visualizations. 
We can think of this last step as taking a snapshot of the data for deeper analysis.

There are two ways to programmatically load a batch DataFrame from a Parquet file:

• Using spark.read (notice that we don't use spark.readStream as we 
did earlier):
parquet_batch_df = spark.read.parquet(os.path.join(root_dir, 
"output_parquet"))

• Using spark.sql:

parquet_batch_df = spark.sql(
"select * from parquet.'{}'".format(
os.path.join(root_dir, "output_parquet")
)
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode10.py

The benefit of this method is that we can use any ANSI SQL query to load the data, 
instead of using the equivalent low-level DataFrame APIs that we would have to use 
in the first method.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode10.py
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We can then periodically refresh the data by rerunning the preceding code and 
recreating the DataFrame. We are now ready to create further analysis on the data 
by, for example, running the PixieDust display() method on it in order to create 
visualizations:

import pixiedust
display(parquet_batch_df)

We select the Bar Chart menu and drag and drop the source field in the Keys 
field area. Since we want to show only the top 10 tweets, we set this value in the # of 
Rows to Display field. The following screenshot shows the PixieDust options dialog:

Options dialog for showing the top 10 sources of tweets
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After clicking OK, we see the following results:

Chart showing the number of tweets related to baseball by source

In this section, we've seen how to use the Tweepy library to create a Twitter stream, 
clean the raw data and store it in CSV files, create a Spark Streaming DataFrame, 
run streaming queries on it and store the output in a Parquet database, create a batch 
DataFrame from the Parquet file, and visualize the data using PixieDust display().

The complete notebook for Part 1 – Acquiring the data with Spark Structured 
Streaming can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%201.ipynb

In the next part, we'll look at enriching the data with sentiment and entity extraction 
using the IBM Watson Natural Language Understanding service.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%201.ipynb
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Part 2 – Enriching the data with 
sentiment and most relevant 
extracted entity
In this part, we enrich the Twitter data with sentiment information, for example, 
positive, negative, and neutral. We also want to extract the most relevant entity from 
the tweet, for example, sport, organization, and location. This extra information will 
be analyzed and visualized by the real-time dashboard that we'll build in the next 
section. The algorithms used to extract sentiment and entity from an unstructured 
text belong to a field of computer science and artificial intelligence called natural 
language processing (NLP). There are plenty of tutorials available on the web that 
provide algorithm examples on how to extract sentiment. For example, you can 
find a comprehensive text analytic tutorial on the scikit-learn repo at https://
github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_
analytics/working_with_text_data.rst.

However, for this sample application, we are not going to build our own NLP 
algorithm. Instead, we'll choose a cloud-based service that provides text analytics 
such as sentiment and entity extraction. This approach works very well when you 
have generic requirements such as do not require training custom models, but even 
then, most of the service providers now provide tooling to do so. There are major 
advantages to use a cloud-based provider over creating your own model such as 
saving on the development time and much better accuracy and performance. With a 
simple REST call, we'll be able to generate the data we need and integrate it into the 
flow of our application. Also, it would be very easy to change providers if needed as 
the code responsible for interfacing with the service is well isolated.

For this sample application, we'll use the IBM Watson Natural Language 
Understanding (NLU) service which is a part of the IBM Watson family 
of cognitive services, and available on IBM Cloud.

Getting started with the IBM Watson 
Natural Language Understanding service
The process of provisioning a new service is usually the same for every cloud 
provider. After logging in, you go to a service catalog page where you can search for 
a particular service.

https://github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_analytics/working_with_text_data.rst
https://github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_analytics/working_with_text_data.rst
https://github.com/scikit-learn/scikit-learn/blob/master/doc/tutorial/text_analytics/working_with_text_data.rst
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To log in to the IBM Cloud, just go to https://console.bluemix.net and create 
a free IBM account if you don't already have one. Once in the dashboard, there are 
multiple ways to search for the IBM Watson NLU service:

• Click on the top left-hand menu, and select Watson, select Browse services, 
and find the Natural Language Understanding entry in the list of services.

• Click on the Create Resource button in the top-right corner to get to 
the catalog. Once in the catalog, you can search for Natural Language 
Understanding in the search bar as shown in the following screenshot:

Searching for Watson NLU in the service catalog

You can then click on Natural Language Understanding to provision a new instance. 
It is not unusual that cloud providers offer a free or trial-based plan for some services 
and fortunately Watson NLU provides one of these, with the limitation that you can 
train only one custom model with a maximum of 30,000 NLU items processed per 
month (which is adequate for our sample application). After selecting the Lite (free) 
plan and clicking on the Create button, the newly provisioned instance will appear 
on the dashboard and is ready to accept requests.

Note: After creating the service, you may be redirected to the NLU 
service getting started document. If so, simply navigate back to the 
dashboard where you should see the new service instance listed.

The next step is to test the service from our Notebook by making a REST call. 
Every service provides detailed documentation on how to use it including the 
API reference. From the Notebook, we could use the requests package to make 
GET, POST, PUT, or DELETE calls according to the API reference, but it is 
highly recommended to check whether the service offers SDKs with high-level 
programmatic access to the APIs. 

https://console.bluemix.net
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Fortunately, IBM Watson provides the watson_developer_cloud open source 
library which includes multiple open source SDKs supporting some of the most 
popular languages, including Java, Python, and Node.js. For this project, we'll 
use the Python SDK with source code and code examples located here: https://
github.com/watson-developer-cloud/python-sdk.

The following pip command installs the watson_developer_cloud package 
directly from the Jupyter Notebook:

!pip install Watson_developer_cloud

Notice the ! in front of the command that signifies that it's a shell 
command.
Note: Don't forget to restart the kernel once installation is complete.

Most cloud service providers use a common pattern to let consumers authenticate 
with the service, which consists of generating a set of credentials from the service 
console dashboard that will be embedded in the client application. To generate the 
credentials, simply click on the Service credentials tab of your Watson NLU instance 
and click on the New credential button.

This will generate a new set of credentials in JSON format as shown in the following 
screenshot:

Generating new credentials for the Watson NLU service

https://github.com/watson-developer-cloud/python-sdk
https://github.com/watson-developer-cloud/python-sdk
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Now that we have the credentials to our service, we can create a 
NaturalLanguageUnderstandingV1 object that will provide programmatic access 
to the REST APIs, as shown in the following code:

from watson_developer_cloud import NaturalLanguageUnderstandingV1
from watson_developer_cloud.natural_language_understanding_v1 import 
Features, SentimentOptions, EntitiesOptions

nlu = NaturalLanguageUnderstandingV1(
    version='2017-02-27',
    username='XXXX',
    password='XXXX'
)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode11.py

Note: In the preceding code, replace the XXXX text with the appropriate 
username and password from the service credentials.
The version argument refers to a specific version of the API. To know 
the latest version, go to the official documentation page located here:
https://www.ibm.com/watson/developercloud/natural-
language-understanding/api/v1

Before continuing with building the application, let's take a moment to understand 
the text analytics capabilities offered by the Watson Natural Language service which 
include:

• Sentiment
• Entities
• Concepts
• Categories
• Emotion
• Keywords
• Relations
• Semantic roles

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode11.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode11.py 
https://www.ibm.com/watson/developercloud/natural-language-understanding/api/v1
https://www.ibm.com/watson/developercloud/natural-language-understanding/api/v1
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In our application, enriching the Twitter data happens in the RawTweetsListener 
where we create an enrich method that will be invoked from the on_data handler 
method. In this method, we call the nlu.analyze method with the Twitter data and 
a feature list that includes sentiment and entities only as shown in the following code:

Note: The [[RawTweetsListener]] notation means that the following 
code is part of a class called RawTweetsListener and that the user 
should not attempt to run the code as is without the complete class. 
As always, you can always refer to the complete notebook for reference.

[[RawTweetsListener]]
def enrich(self, data):
    try:
        response = nlu.analyze(
            text = data['text'],
            features = Features(
                sentiment=SentimentOptions(),
                entities=EntitiesOptions()
            )
        )
        data["sentiment"] = response["sentiment"]["document"]["label"]
        top_entity = response["entities"][0] if 
len(response["entities"]) > 0 else None
        data["entity"] = top_entity["text"] if top_entity is not None 
else ""
        data["entity_type"] = top_entity["type"] if top_entity is not 
None else ""
        return data
    except Exception as e:
        self.warn("Error from Watson service while enriching data: 
{}".format(e))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode12.py

The results are then stored in the data object which will be written to the CSV files. 
We also guard against unexpected exceptions skipping the current tweet and logging 
a warning message instead of letting the exception bubble up which would stop the 
Twitter stream.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode12.py
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Note: The most common exception happens when the tweet data  
is in a language that is not supported by the service.

We use the @Logger decorator described in Chapter 5, Python and 
PixieDust Best Practices and Advanced Concepts to log messages against 
the PixieDust logging framework. As a reminder, you can use the 
%pixiedustLog magic from another cell to view the log messages.

We still need to change the schema metadata to include the new fields as follows:

field_metadata = [
    {"name": "created_at", "type": DateType()},
    {"name": "text", "type": StringType()},
    {"name": "source", "type": StringType(),
         "transform": lambda s: BS(s, "html.parser").text.strip()
    },
    {"name": "sentiment", "type": StringType()},
    {"name": "entity", "type": StringType()},
    {"name": "entity_type", "type": StringType()}
]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode13.py

Finally, we update on_data handler to invoke the enrich method as follows:

def on_data(self, data):
    def transform(key, value):
        return transforms[key](value) if key in transforms else value
    data = self.enrich(json.loads(data))
    if data is not None:
        self.buffered_data.append(
            {key:transform(key,value) \
                for key,value in iteritems(data) \
                if key in fieldnames}
        )
        self.flush_buffer_if_needed()
    return True

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode14.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode14.py
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When we restart the Twitter stream and create the Spark Streaming DataFrame, 
we can verify that we have the correct schema using the following code:

schema = StructType(
    [StructField(f["name"], f["type"], True) for f in field_metadata]
)
csv_sdf = spark.readStream \
    .csv(
        output_dir,
        schema=schema,
        multiLine = True,
        dateFormat = 'EEE MMM dd kk:mm:ss Z y',
        ignoreTrailingWhiteSpace = True,
        ignoreLeadingWhiteSpace = True
    )
csv_sdf.printSchema()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode15.py

Which shows the following results as expected:

root
 |-- created_at: date (nullable = true)
 |-- text: string (nullable = true)
 |-- source: string (nullable = true)
 |-- sentiment: string (nullable = true)
 |-- entity: string (nullable = true)
 |-- entity_type: string (nullable = true)

Similarly, when we run the structured query with the console sink, data is 
displayed in batches in the console of the Spark master node as shown here:

-------------------------------------------
Batch: 2
-------------------------------------------
+----------+---------------+---------------+---------+------------+--
-----------+
|created_at|           text|         source|sentiment|      entity|  
entity_type|
+----------+---------------+---------------+---------+------------+--
-----------+
|2018-04-14|Some little ...| Twitter iPhone| positive|        Drew|       
Person|d

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode15.py
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|2018-04-14|RT @XXXXXXXX...| Twitter iPhone|  neutral| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXXXXX...| Twitter iPhone|  neutral|    baseball|        
Sport|
|2018-04-14|RT @XXXXXXXX...| Twitter Client|  neutral| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXXXXX...| Twitter Client| positive| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXX: I...|Twitter Android| positive| Greg XXXXXX|       
Person|
|2018-04-14|RT @XXXXXXXX...| Twitter iPhone| positive| @
XXXXXXXXXX|TwitterHandle|
|2018-04-14|RT @XXXXX: I...|Twitter Android| positive| Greg XXXXXX|       
Person|
|2018-04-14|Congrats to ...|Twitter Android| positive|    softball|        
Sport|
|2018-04-14|translation:...| Twitter iPhone|  neutral|        null|         
null|
+----------+---------------+---------------+---------+------------+--
-----------+

Finally, we run the structured query with the Parquet output sink, create a batch 
DataFrame, and explore the data using the PixieDust display() to show, for 
example, a count of tweets by sentiment (positive, negative, neutral) clustered 
by the entity as shown in the following chart:

Bar chart showing the number of tweets by sentiment clustered by entities
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The complete notebook for Part 2 – Enrich the data with sentiment and 
most relevant extracted entity is located here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%202.ipynb

If you are running it, I encourage you to experiment by adding more 
fields to the schema, run different SQL queries, and visualize the data 
with PixieDust display().

In the next section, we'll build a dashboard that displays multiple metrics about 
the Twitter data.

Part 3 – Creating a real-time dashboard 
PixieApp
As always, we first need to define the requirements for the MVP version of 
the dashboard. This time we'll borrow a tool from the agile methodology called 
a user story which describes the features we want to build from the perspective 
of the user. The agile methodology also prescribes fully understanding the context 
of the different users that will interact with the software by categorizing them into 
personas. In our case, we will only use one persona: Frank the marketing director 
who wants to get real-time insights from what consumers are talking about on social media.

The user story goes like this:

• Frank enters a search query like for example a product name
• A dashboard is then presented that displays a set of charts showing 

metrics about user sentiments (positive, negative, neutral)
• The dashboard also contains a word cloud of all the entities being uttered 

in the tweets
• Additionally, the dashboard has an option to display the real-time progress 

of all the Spark Streaming queries that are currently active

Note: The last feature is not really needed for Frank, but we show it here 
anyway as an example implementation of the exercise given earlier.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%202.ipynb 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%202.ipynb 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%202.ipynb 
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Refactoring the analytics into their own 
methods
Before we start, we need to refactor the code that starts the Twitter stream and 
creates the Spark Streaming DataFrame into their own method that we will invoke 
in the PixieApp.

The start_stream, start_streaming_dataframe, and start_parquet_
streaming_query methods are as follows:

def start_stream(queries):
    "Asynchronously start a new Twitter stream"
    stream = Stream(auth, RawTweetsListener())
    stream.filter(track=queries, languages=["en"], async=True)
    return stream

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode16.py

def start_streaming_dataframe(output_dir):
    "Start a Spark Streaming DataFrame from a file source"
    schema = StructType(
        [StructField(f["name"], f["type"], True) for f in field_
metadata]
    )
    return spark.readStream \
        .csv(
            output_dir,
            schema=schema,
            multiLine = True,
            timestampFormat = 'EEE MMM dd kk:mm:ss Z yyyy',
            ignoreTrailingWhiteSpace = True,
            ignoreLeadingWhiteSpace = True
        )

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode17.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode17.py
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def start_parquet_streaming_query(csv_sdf):
    """
    Create and run a streaming query from a Structured DataFrame
    outputing the results into a parquet database
    """
    streaming_query = csv_sdf \
      .writeStream \
      .format("parquet") \
      .option("path", os.path.join(root_dir, "output_parquet")) \
      .trigger(processingTime="2 seconds") \
      .option("checkpointLocation", os.path.join(root_dir, "output_
chkpt")) \
      .start()
    return streaming_query

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode18.py

As part of the preparation work, we also need to manage the life cycle of the 
different streams that will be created by the PixieApp and make sure that the 
underlying resources are correctly stopped when the user restarts the dashboard. 
To help with that, we create a StreamsManager class that encapsulates the Tweepy 
twitter_stream and the CSV Streaming DataFrame. This class has a reset method 
that will stop the twitter_stream, stop all the active streaming queries, delete all 
the output files created from the previous queries, and start a new one with a new 
query string. If the reset method is called without a query string, then we don't 
start new streams.

We also create a global streams_manager instance that will keep track of the 
current state even if the dashboard is restarted. Since the user can rerun the cell that 
contains the global streams_manager we need to make sure that the reset method 
is automatically invoked when the current global instance is deleted. For that, we 
override the object's __del__ method, which is Python's way of implementing 
a destructor and call reset.

The code for StreamsManager is shown here:

class StreamsManager():
    def __init__(self):
        self.twitter_stream = None
        self.csv_sdf = None

    def reset(self, search_query = None):

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode18.py
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        if self.twitter_stream is not None:
            self.twitter_stream.disconnect()
        #stop all the active streaming queries and re_initialize the 
directories
        for query in spark.streams.active:
            query.stop()
        # initialize the directories
        self.root_dir, self.output_dir = init_output_dirs()
        # start the tweepy stream
        self.twitter_stream = start_stream([search_query]) if search_
query is not None else None
        # start the spark streaming stream
        self.csv_sdf = start_streaming_dataframe(output_dir) if 
search_query is not None else None

    def __del__(self):
        # Automatically called when the class is garbage collected
        self.reset()

streams_manager = StreamsManager()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode19.py

Creating the PixieApp
Like in Chapter 6, Analytics Study: AI and Image Recognition with TensorFlow, we'll 
use the TemplateTabbedApp class again to create a tab layout with two PixieApps:

• TweetInsightApp: Lets the user specify a query string and shows the  
real-time dashboard associated with it

• StreamingQueriesApp: Monitors the progress of the active structured 
queries

In the default route of the TweetInsightApp, we return a fragment that asks the user 
for the query string as follows:

from pixiedust.display.app import *
@PixieApp
class TweetInsightApp():
    @route()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode19.py
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    def main_screen(self):
        return """
<style>
    div.outer-wrapper {
        display: table;width:100%;height:300px;
    }
    div.inner-wrapper {
        display: table-cell;vertical-align: middle;height: 100%;width: 
100%;
    }
</style>
<div class="outer-wrapper">
    <div class="inner-wrapper">
        <div class="col-sm-3"></div>
        <div class="input-group col-sm-6">
          <input id="query{{prefix}}" type="text" class="form-control"
              value=""
              placeholder="Enter a search query (e.g. baseball)">
          <span class="input-group-btn">
            <button class="btn btn-default" type="button"
            pd_options="search_query=$val(query{{prefix}})">
                Go
            </button>
          </span>
        </div>
    </div>
</div>
        """

TweetInsightApp().run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode20.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode20.py
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The following screenshot shows the results of running the preceding code:

Note: We'll create the main TwitterSentimentApp PixieApp that has 
the tabbed layout and includes this class later on in this section. For now, 
we are only showing the TweetInsightApp child app in isolation.

 

Welcome screen for the Twitter Sentiment Dashboard

In the Go button, we invoke the search_query route with the query string provided 
by the user. In this route, we first start the various streams and create a batch 
DataFrame stored in a class variable called parquet_df from the output directory 
where the Parquet database is located. We then return the HTML fragment that 
is composed of three widgets showing the following metrics:

• Bar chart for each of the three sentiments clustered by entities
• Line chart subplots showing the distribution of the tweets by sentiment
• A word cloud for the entities

Each of the widgets is calling a specific route at a regular interval using the pd_
refresh_rate attribute documented in Chapter 5, Python and PixieDust Best Practices 
and Advanced Concepts. We also make sure to reload the parquet_df variable to pick 
up the new data that has arrived since the last time. This variable is then referenced 
in the pd_entity attribute for displaying the chart.

The following code shows the implementation for the search_query route:

import time
[[TweetInsightApp]]
@route(search_query="*")
    def do_search_query(self, search_query):
        streams_manager.reset(search_query)
        start_parquet_streaming_query(streams_manager.csv_sdf)
        while True:
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            try:
                parquet_dir = os.path.join(root_dir,
                    "output_parquet")
                self.parquet_df = spark.sql("select * from 
parquet.'{}'".format(parquet_dir))
                break
            except:
                time.sleep(5)
        return """
<div class="container">
    <div id="header{{prefix}}" class="row no_loading_msg"
        pd_refresh_rate="5000" pd_target="header{{prefix}}">
        <pd_script>
print("Number of tweets received: {}".format(streams_manager.twitter_
stream.listener.tweet_count))
        </pd_script>
    </div>
    <div class="row" style="min-height:300px">
        <div class="col-sm-5">
            <div id="metric1{{prefix}}" pd_refresh_rate="10000"
                class="no_loading_msg"
                pd_options="display_metric1=true"
                pd_target="metric1{{prefix}}">
            </div>
        </div>
        <div class="col-sm-5">
            <div id="metric2{{prefix}}" pd_refresh_rate="12000"
                class="no_loading_msg"
                pd_options="display_metric2=true"
                pd_target="metric2{{prefix}}">
            </div>
        </div>
    </div>

    <div class="row" style="min-height:400px">
        <div class="col-sm-offset-1 col-sm-10">
            <div id="word_cloud{{prefix}}" pd_refresh_rate="20000"
                class="no_loading_msg"
                pd_options="display_wc=true"
                pd_target="word_cloud{{prefix}}">
            </div>
        </div>
    </div>
        """
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode21.py

There are multiple things to notice from the preceding code:

• The output directory for the Parquet files may not be ready when we try 
to load the parquet_df batch DataFrame, which would cause an exception. 
To solve this timing issue, we wrap the code into a try...except statement 
and wait for 5 seconds using time.sleep(5).

• We also display the current count of tweets in the header. To do this we 
add a <div> element that refreshes every 5 seconds, with a <pd_script> 
that prints the current count of tweets using streams_manager.twitter_
stream.listener.tweet_count which is a variable we added to the 
RawTweetsListener class. We also updated the on_data() method to 
increment the tweet_count variable every time a new tweet arrives as 
shown in the following code:
[[TweetInsightApp]]
def on_data(self, data):
        def transform(key, value):
            return transforms[key](value) if key in transforms 
else value
        data = self.enrich(json.loads(data))
        if data is not None:
            self.tweet_count += 1
            self.buffered_data.append(
                {key:transform(key,value) \
                     for key,value in iteritems(data) \
                     if key in fieldnames}
            )
            self.flush_buffer_if_needed()
        return True

Also, to avoid flickering, we prevent the displaying of the loading spinner 
image using class="no_loading_msg" in the <div> element.

• We invoke three different routes (display_metric1, display_metric2, 
and display_wc) that are responsible for displaying the three widgets 
respectively.

The display_metric1 and display_metric2 routes are very similar. They 
return a div with parquet_df as the pd_entity and a custom <pd_options> 
child element that contains the JSON configuration passed to the PixieDust 
display() layer.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode21.py
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The following code shows the implementation for the display_metric1 route:

[[TweetInsightApp]]
@route(display_metric1="*")
    def do_display_metric1(self, display_metric1):
        parquet_dir = os.path.join(root_dir, "output_parquet")
        self.parquet_df = spark.sql("select * from parquet.'{}'".
format(parquet_dir))
        return """
<div class="no_loading_msg" pd_render_onload pd_entity="parquet_df">
    <pd_options>
    {
      "legend": "true",
      "keyFields": "sentiment",
      "clusterby": "entity_type",
      "handlerId": "barChart",
      "rendererId": "bokeh",
      "rowCount": "10",
      "sortby": "Values DESC",
      "noChartCache": "true"
    }
    </pd_options>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode22.py

The display_metric2 route follows a similar pattern but with a different set  
of pd_options attributes.

The last route is display_wc and is responsible for displaying the word cloud for 
the entities. This route uses the wordcloud Python library that you can install with 
the following command:

!pip install wordcloud

Note: As always, don't forget to restart the kernel once installation 
is complete.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode22.py
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We use the @captureOutput decorator documented in Chapter 5, Python and 
PixieDust Best Practices and Advanced Concepts as shown here:

import matplotlib.pyplot as plt
from wordcloud import WordCloud

[[TweetInsightApp]]
@route(display_wc="*")
@captureOutput
def do_display_wc(self):
    text = "\n".join(
        [r['entity'] for r in self.parquet_df.select("entity").
collect() if r['entity'] is not None]
    )
    plt.figure( figsize=(13,7) )
    plt.axis("off")
    plt.imshow(
        WordCloud(width=750, height=350).generate(text),
        interpolation='bilinear'
    )

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode23.py

The text passed to the WordCloud class is generated from collecting all the entities 
in the parquet_df batch DataFrame.

The following screenshot shows the dashboard after letting a Twitter stream, 
created with the search query baseball, run for a little while:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode23.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode23.py
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Twitter Sentiment Dashboard for the search query "baseball"

The second PixieApp is used to monitor the streaming queries that are actively 
running. The main route returns an HTML fragment that has a <div> element 
that invokes the show_progress route at regular intervals (5000 ms) as shown  
in the following code:

@PixieApp
class StreamingQueriesApp():
    @route()
    def main_screen(self):
        return """
<div class="no_loading_msg" pd_refresh_rate="5000" pd_options="show_
progress=true">
</div>
        """
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode24.py

In the show_progress route we use the query.lastProgress monitoring 
API described earlier in this chapter, iterate over the JSON object using Jinja2 
{%for%} loop and display the results in a table as shown in the following code:

@route(show_progress="true")
    def do_show_progress(self):
        return """
{%for query in this.spark.streams.active%}
    <div>
    <div class="page-header">
        <h1>Progress Report for Spark Stream: {{query.id}}</h1>
    <div>
    <table>
        <thead>
          <tr>
             <th>metric</th>
             <th>value</th>
          </tr>
        </thead>
        <tbody>
            {%for key, value in query.lastProgress.items()%}
            <tr>
                <td>{{key}}</td>
                <td>{{value}}</td>
            </tr>
            {%endfor%}
        </tbody>
    </table>
{%endfor%}
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode25.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode25.py
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The following screenshot shows the streaming query monitoring PixieApp:

Live monitoring of the active Spark streaming queries

The last step is to put together the complete application using the 
TemplateTabbedApp class as shown in the following code:

from pixiedust.display.app import *
from pixiedust.apps.template import TemplateTabbedApp

@PixieApp
class TwitterSentimentApp(TemplateTabbedApp):
    def setup(self):
        self.apps = [
            {"title": "Tweets Insights", "app_class": 
"TweetInsightApp"},
            {"title": "Streaming Queries", "app_class": 
"StreamingQueriesApp"}
        ]

app = TwitterSentimentApp()
app.run()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode26.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode26.py
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Part 3 of our sample application is now complete; you can find the fully-built 
Notebook here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%203.ipynb

In the next section, we discuss ways to make the data pipeline of our application 
more scalable by using Apache Kafka for event streaming and IBM Streams 
Designer for data enrichment of the streaming data.

Part 4 – Adding scalability with Apache 
Kafka and IBM Streams Designer

Note: This section is optional. It demonstrates how to re-implement 
parts of the data pipeline with cloud-based streaming services to achieve 
greater scalability

Implementing the entire data pipeline in a single Notebook gave us high 
productivity during development and testing. We can experiment with the code 
and test the changes very rapidly with a very small footprint. Also, performances 
have been reasonable because we have been working with a relatively small 
amount of data. However, it is quite obvious that we wouldn't use this architecture 
in production and the next question we need to ask ourselves is where are the 
bottlenecks that would prevent the application from scaling as the quantity of 
streaming data coming from Twitter increases dramatically.

In this section, we identify two areas for improvement:

• In the Tweepy stream, the incoming data is sent to the RawTweetsListener 
instance for processing using the on_data method. We need to make sure 
to spend as little time as possible in this method otherwise the system 
will fall behind as the amount of incoming data increases. In the current 
implementation, the data is enriched synchronously by making an external 
call to the Watson NLU service; it is then buffered and eventually written to 
disk. To fix this issue, we send the data to a Kafka service, which is a highly 
scalable, fault tolerant streaming platform using a publish/subscribe pattern 
for processing a high volume of data. We also use the Streaming Analytics 
service, which will consume data from Kafka and enrich it by invoking 
the Watson NLU service. Both services are available on the IBM Cloud.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%203.ipynb
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Note: There are alternative open source frameworks that we could have 
used for processing the streaming data, such as, for example, Apache 
Flink (https://flink.apache.org) or Apache Storm (http://
storm.apache.org).

• In the current implementation, the data is stored as CSV files, and we 
create a Spark Streaming DataFrame with the output directory as the 
source. This step consumes time and resources on the Notebook and the 
local environment. Instead, we can have the Streaming Analytics write 
back the enriched events in a different topic and create a Spark Streaming 
DataFrame with the Message Hub service as the Kafka input source.

The following diagram shows the updated architecture for our sample application:

Scaling the architecture with Kafka and Streams Designer

In the next few sections, we will implement the updated architecture, starting with 
streaming the tweets to Kafka.

https://flink.apache.org
http://storm.apache.org
http://storm.apache.org
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Streaming the raw tweets to Kafka
Provisioning a Kafka / Message Hub service instance on IBM Cloud follows the 
same pattern as the steps we used to provision the Watson NLU service. We first 
locate and select the service in the catalog, pick a pricing plan and click Create. 
We then open the service dashboard and select the Service credentials tab to 
create new credentials as shown in the following screenshot:

Creating new credentials for the Message Hub service

As is the case for all the services available on IBM Cloud, the credentials come in 
the form of a JSON object that we'll need to store in its own variable in the Notebook 
as shown in the following code (again, don't forget to replace the XXXX text with your 
username and password from the service credentials):

message_hub_creds = {
  "instance_id": "XXXXX",
  "mqlight_lookup_url": "https://mqlight-lookup-prod02.messagehub.
services.us-south.bluemix.net/Lookup?serviceId=XXXX",
  "api_key": "XXXX",
  "kafka_admin_url": "https://kafka-admin-prod02.messagehub.services.
us-south.bluemix.net:443",
  "kafka_rest_url": "https://kafka-rest-prod02.messagehub.services.us-
south.bluemix.net:443",
  "kafka_brokers_sasl": [
    "kafka03-prod02.messagehub.services.us-south.bluemix.net:9093",
    "kafka01-prod02.messagehub.services.us-south.bluemix.net:9093",
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    "kafka02-prod02.messagehub.services.us-south.bluemix.net:9093",
    "kafka05-prod02.messagehub.services.us-south.bluemix.net:9093",
    "kafka04-prod02.messagehub.services.us-south.bluemix.net:9093"
  ],
  "user": "XXXX",
  "password": "XXXX"
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode27.py

As for interfacing with Kafka, we have a choice between multiple good client 
libraries. I have tried many of them, but the one I ended up using most often 
is kafka-python (https://github.com/dpkp/kafka-python) which has the 
advantage of being a pure Python implementation and is thereby easier to install.

To install it from the Notebook, use the following command:

!pip install kafka-python

Note: As always, do not forget to restart the kernel after installing any 
libraries.

The kafka-python library provides a KafkaProducer class for writing the data 
as messages into the service, which we'll need to configure with the credentials we 
created earlier. There are multiple Kafka configuration options available and going 
over all of them is beyond the scope of this book. The required options are related 
to authentication, host servers, and API version.

The following code is implemented in the __init__ constructor of 
RawTweetsListener class. It creates a KafkaProducer instance and stores it as 
a class variable:

[[RawTweetsListener]]
context = ssl.create_default_context()
context.options &= ssl.OP_NO_TLSv1
context.options &= ssl.OP_NO_TLSv1_1
kafka_conf = {
    'sasl_mechanism': 'PLAIN',
    'security_protocol': 'SASL_SSL',
    'ssl_context': context,
    "bootstrap_servers": message_hub_creds["kafka_brokers_sasl"],

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode27.py
https://github.com/dpkp/kafka-python
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    "sasl_plain_username": message_hub_creds["user"],
    "sasl_plain_password": message_hub_creds["password"],
    "api_version":(0, 10, 1),
    "value_serializer" : lambda v: json.dumps(v).encode('utf-8')
}
self.producer = KafkaProducer(**kafka_conf)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode28.py

We configure a lambda function for the value_serializer key that serializes 
JSON objects which is the format we'll be using for our data.

Note: We need to specify the api_version key because otherwise, 
the library would try to autodiscover its value which would cause a 
NoBrokerAvailable exception to be raised due to a bug in the kafka-
python library reproducible only on Macs. A fix for this bug has not yet 
been provided at the time of writing this book.

We now need to update the on_data method to send the tweets data to Kafka 
using the tweets topic. A Kafka topic is like a channel that applications can publish 
or subscribe to. It is important to have the topic already created before attempting 
to write into it otherwise an exception will be raised. This is done in the following 
ensure_topic_exists method:

import requests
import json

def ensure_topic_exists(topic_name):
    response = requests.post(
                message_hub_creds["kafka_rest_url"] +
                "/admin/topics",
                data = json.dumps({"name": topic_name}),
                headers={"X-Auth-Token": message_hub_creds["api_key"]}
            )
    if response.status_code != 200 and \
       response.status_code != 202 and \
       response.status_code != 422 and \
       response.status_code != 403:
        raise Exception(response.json())

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode28.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode29.py

In the preceding code, we make a POST request into the path /admin/topic 
with a JSON payload that contains the name of the topic we want to create. The 
request must be authenticated using the API key provided in the credentials and 
the X-Auth-Token header. We also make sure to ignore HTTP error codes 422 and 
403 which indicate that the topic already exists.

The code for the on_data method now looks much simpler as shown here:

[[RawTweetsListener]]
def on_data(self, data):
    self.tweet_count += 1
    self.producer.send(
        self.topic,
        {key:transform(key,value) \
            for key,value in iteritems(json.loads(data)) \
            if key in fieldnames}
    )
    return True

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode30.py

As we can see, with this new code, we're spending as little time as possible in the  
on_data method, which is the goal we wanted to achieve. The tweet data is now 
flowing into the Kafka tweets topic, ready to be enriched by the Streaming Analytics 
service which we'll discuss in the next section.

Enriching the tweets data with the Streaming 
Analytics service
For this step, we'll need to use Watson Studio which is an integrated cloud-based 
IDE that provides various tools for working with data, including machine learning 
/ deep learning models, Jupyter Notebooks, stream flows, and more. Watson Studio 
is a companion tool to IBM Cloud accessible at https://datascience.ibm.com, 
and therefore no extra sign up is required.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode30.py
https://datascience.ibm.com
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Once logged in to Watson Studio, we create a new project which we'll call 
Data Analysis with Python.

Note: It is OK to select the default options when creating a project.

We then go to the Settings tab to create a Streaming Analytics service, which will 
be the engine that powers our enrichment process and associate it with the project. 
Note that we could also have created the service in the IBM Cloud catalog as we did 
for the other services used in this chapter, but since we still have to associate it with 
the project, we might as well do the creation in Watson Studio too.

In the Settings tab, we scroll to the Associated services section and click on the 
Add service drop-down to select Streaming Analytics. In the next page, you have 
the choice between Existing and New. Select New and follow the steps to create the 
service. Once done, the newly created service should be associated with the project 
as shown in the following screenshot:

Note: If there are multiple free options, it is OK to pick any one of them.

Associating the Streaming Analytics service with the project

We are now ready to create the stream flow that defines the enrichment processing 
of our tweet data.

We go to the Assets tab, scroll down to the Streams flows section and click on the 
New streams flow button. In the next page, we give a name, select the Streaming 
Analytics service, select Manually and click on the Create button.

We are now in the Streams Designer which is composed of a palette of operators 
on the left and a canvas where we can graphically build our stream flow. For our 
sample application, we'll need to pick three operators from the palette and drag 
and drop them into the canvas:
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• Message Hub from the Sources section of the palette: Input source for our 
data. Once in the canvas, we rename it Source Message Hub (by double- 
clicking on it to enter edit mode).

• Code from the Processing and analytics section: It will contain the data 
enrichment Python code that invokes the Watson NLU service. We rename 
the operator to Enrichment.

• Message Hub from the Targets section of the palette: Output source 
for the enriched data. We rename it to Target Message Hub.

Next, we create a connection between the Source Message Hub and Enrichment 
and between Enrichment and the Target Message Hub. To create a connection 
between two operators, simply grab the output port at the end of the first operator 
and drag it to the input port of the other operator. Notice that a source operator has 
only one output port on the right of the box to denote that it only supports outgoing 
connections, while a target operator has only one input port on the left to denote 
that it only supports incoming connections. Any operator from the PROCESSING 
AND ANALYTICS section has two ports on the left and right as they accept both 
incoming and outgoing connections.

The following screenshot shows the fully completed canvas:

Tweet enrichment stream flow

Let's now look at the configuration of each of these three operators.
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Note: To complete this section, make sure to run the code that generates 
topics to the Message Hub instance that we discussed in the previous 
section. Otherwise, the Message Hub instance will be empty, and no 
schema will be detected.

Click on the source Message Hub. An animated pane on the right appears with the 
options to select the Message Hub instance that contains the tweets. The first time, 
you'll need to create a connection to the Message Hub instance. Select tweets as the 
topic. Click on the Edit Output Schema and then Detect Schema to have the schema 
autopopulated from the data. You can also preview the live streaming data using the 
Show Preview button as shown in the following screenshot:

Setting the schema and previewing the live streaming data

Now select the Code operator to implement the code that invokes the Watson 
NLU. The animated contextual right-hand pane contains a Python code editor 
with boilerplate code that includes the required functions to implement, namely 
init(state) and process(event, state).

In the init method, we instantiate the NaturalLanguageUnderstandingV1 instance 
as shown in the following code:

import sys
from watson_developer_cloud import NaturalLanguageUnderstandingV1
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from watson_developer_cloud.natural_language_understanding_v1 import 
Features, SentimentOptions, EntitiesOptions

# init() function will be called once on pipeline initialization
# @state a Python dictionary object for keeping state. The state 
object is passed to the process function
def init(state):
    # do something once on pipeline initialization and save in the 
state object
    state["nlu"] = NaturalLanguageUnderstandingV1(
        version='2017-02-27',
        username='XXXX',
        password='XXXX'
    )

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode31.py

Note: We need to install the Watson_developer_cloud library via 
the Python packages link located above the Python editor window 
in the right-hand contextual pane as shown in the following screenshot:

Adding the watson_cloud_developer package to the stream flow

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode31.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode31.py 
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The process method is invoked on every event data. We use it to invoke the 
Watson NLU and add the extra information to the event object as shown in the 
following code:

# @event a Python dictionary object representing the input event tuple 
as defined by the input schema
# @state a Python dictionary object for keeping state over subsequent 
function calls
# return must be a Python dictionary object. It will be the output of 
this operator.
# Returning None results in not submitting an output tuple for this 
invocation.
# You must declare all output attributes in the Edit Schema window.
def process(event, state):
    # Enrich the event, such as by:
    # event['wordCount'] = len(event['phrase'].split())
    try:
        event['text'] = event['text'].replace('"', "'")
        response = state["nlu"].analyze(
            text = event['text'],
            features=Features(sentiment=SentimentOptions(), 
entities=EntitiesOptions())
        )
        event["sentiment"] = response["sentiment"]["document"]
["label"]
        top_entity = response["entities"][0] if 
len(response["entities"]) > 0 else None
        event["entity"] = top_entity["text"] if top_entity is not None 
else ""
        event["entity_type"] = top_entity["type"] if top_entity is not 
None else ""
    except Exception as e:
        return None
    return event
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode32.py

Note: We must also declare all output variables by using the 
Edit Output Schema link as shown in the following screenshot:

Declaring all output variables for the Code operator

Finally, we configure the target Message Hub to use the enriched_tweets topic. 
Note that you'll need to manually create the topic the first time by going into the 
dashboard of the Message Hub instance on the IBM Cloud and clicking on the Add 
Topic button.

We then save the stream flow using the Save button in the main toolbar. Any errors 
in the flow, whether it be a compile error in the code, a service configuration error 
or any other errors, will be shown in the notification pane. After we make sure that 
there is no error, we can run the flow using the Run button which takes us to the 
streams flow live monitoring screen. This screen is composed of multiple panes. 
The main pane shows the different operators with the data represented as little 
balls flowing in a virtual pipe between operators. We can click on a pipe to show 
the events payload in a pane on the right. This is really useful for debugging as 
we can visualize how the data is transformed through each operator.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode32.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode32.py 
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Note: Streams Designer also supports adding Python logging messages 
in the code operator which can then be downloaded on your local 
machine for analysis. You can learn more about this functionality here:
https://dataplatform.cloud.ibm.com/docs/content/
streaming-pipelines/downloading_logs.html

The following screenshot shows the stream flow live monitoring screen:

Live monitoring screen for the Twitter Sentiment Analysis stream flow

We now have our enriched tweets flowing in the Message Hub instance using 
the enriched_tweets topic. In the next section, we show how to create a Spark 
Streaming DataFrame using the Message Hub instance as the input source.

Creating a Spark Streaming DataFrame  
with a Kafka input source
In this final step, we create a Spark Streaming DataFrame that consumes the enriched 
tweets from the enriched_tweets Kafka topic of the Message Hub service. For this, 
we use the built-in Spark Kafka connector specifying the topic we want to subscribe 
to in the subscribe option. We also need to specify the list of Kafka servers in the 
kafka.bootstrap.servers option, by reading it from the global message_hub_
creds variable that we created earlier.

https://dataplatform.cloud.ibm.com/docs/content/streaming-pipelines/downloading_logs.html
https://dataplatform.cloud.ibm.com/docs/content/streaming-pipelines/downloading_logs.html
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Note: You have probably noticed that different systems use different 
names for this option making it more error prone. Fortunately, in case of 
a misspelling, an exception with an explicit root cause message will be 
displayed.

The preceding options are for Spark Streaming, and we still need to configure 
the Kafka credentials so that the lower level Kafka consumer can be properly 
authenticated with the Message Hub service. To properly pass these consumer 
properties to Kafka, we do not use the .option method, but rather we create 
a kafka_options dictionary that we pass to the load method as shown in the 
following code:

def start_streaming_dataframe():
    "Start a Spark Streaming DataFrame from a Kafka Input source"
    schema = StructType(
        [StructField(f["name"], f["type"], True) for f in field_
metadata]
    )
    kafka_options = {
        "kafka.ssl.protocol":"TLSv1.2",
        "kafka.ssl.enabled.protocols":"TLSv1.2",
        "kafka.ssl.endpoint.identification.algorithm":"HTTPS",
        'kafka.sasl.mechanism': 'PLAIN',
        'kafka.security.protocol': 'SASL_SSL'
    }
    return spark.readStream \
        .format("kafka") \
        .option("kafka.bootstrap.servers", ",".join(message_hub_
creds["kafka_brokers_sasl"])) \
        .option("subscribe", "enriched_tweets") \
        .load(**kafka_options)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode33.py

You would think that we're done with the code at this point since the rest of the 
Notebook should work unchanged from Part 3 – Create a real-time dashboard PixieApp. 
This would be correct until we run the Notebook and start seeing exceptions with 
Spark complaining that the Kafka connector cannot be found. This is because the 
Kafka connector is not included in the core distribution of Spark and must be 
installed separately. 

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode33.py
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Unfortunately, these types of problems which are infrastructural in nature and are 
not directly related to the task at hand, happen all the time and we end up spending 
a lot of time trying to fix them. Searching on Stack Overflow or any other technical 
site usually yields a solution rapidly, but in some cases, the answer is not obvious. 
In this case, because we are running in a Notebook and not in a spark-submit script, 
there isn't much help available, and we have to experiment ourselves until we find 
the solution. To install the spark-sql-kafka, we need to edit the kernel.json file 
discussed earlier in this chapter, and add the following option to the "PYSPARK_
SUBMIT_ARGS" entry:

--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.0

When the kernel restarts, this configuration will automatically download the 
dependencies and cache them locally.

It should all work now right? Well, not yet. We still have to configure Kafka security 
to use the credentials to our Message Hub service which uses SASL as the security 
protocol. For that, we need to provide a JAAS (short for, Java Authentication 
and Authorization Service) configuration file that will contain the username and 
password for the service. The latest version of Kafka provides a flexible mechanism 
to programmatically configure the security using a consumer property called sasl.
jaas.config. Unfortunately, the latest version of Spark (2.3.0 as of the time of 
writing) has not yet updated to the latest version of Kafka. So, we have to fall back 
to the other way of configuring JAAS which is to set a JVM system property called 
java.security.auth.login.config with the path to a jaas.conf configuration 
file.

We first create the jaas.conf in a directory of our choice and add the following 
content to it:

KafkaClient {
    org.apache.kafka.common.security.plain.PlainLoginModule required
    username="XXXX"
    password="XXXX";
};

In the preceding content, replace the XXXX text with the username and password 
taken from the Message Hub service credentials.

We then add the following configuration to the "PYSPARK_SUBMIT_ARGS" entry 
of kernel.json:

--driver-java-options=-Djava.security.auth.login.config=<<jaas.conf 
path>>
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For reference, here is a sample kernel.json that contains these configurations:

{
 "language": "python",
 "env": {
  "SCALA_HOME": "/Users/dtaieb/pixiedust/bin/scala/scala-2.11.8",
  "PYTHONPATH": "/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7/python/:/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7/python/lib/py4j-0.10.6-src.zip",
  "SPARK_HOME": "/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7",
  "PYSPARK_SUBMIT_ARGS": "--driver-java-options=-Djava.security.auth.
login.config=/Users/dtaieb/pixiedust/jaas.conf --jars /Users/dtaieb/
pixiedust/bin/cloudant-spark-v2.0.0-185.jar --driver-class-path /
Users/dtaieb/pixiedust/data/libs/* --master local[10] --packages org.
apache.spark:spark-sql-kafka-0-10_2.11:2.3.0 pyspark-shell",
  "PIXIEDUST_HOME": "/Users/dtaieb/pixiedust",
  "SPARK_DRIVER_MEMORY": "10G",
  "SPARK_LOCAL_IP": "127.0.0.1",
  "PYTHONSTARTUP": "/Users/dtaieb/pixiedust/bin/spark/spark-2.3.0-bin-
hadoop2.7/python/pyspark/shell.py"
 },
 "display_name": "Python with Pixiedust (Spark 2.3)",
 "argv": [
  "python",
  "-m",
  "ipykernel",
  "-f",
  "{connection_file}"
 ]
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/sampleCode34.json

Note: We should always restart the Notebook server when modifying 
kernel.json to make sure that all new configurations are properly 
reloaded.

The rest of the Notebook code doesn't change, and the PixieApp dashboard should 
work the same.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode34.json 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/sampleCode34.json 
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We have now completed Part 4 of our sample application; you can 
find the complete notebook here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%207/Twitter%20Sentiment%20
Analysis%20-%20Part%204.ipynb

The extra code we had to write at the end of this section reminds us that the journey 
of working with data is never a straight line. We have to be prepared to deal with 
obstacles that can be different in nature: a bug in a dependency library or a limitation 
in an external service. Surmounting these obstacles doesn't have to stop the project 
for a long time. Since we're using mostly open-source components, we can leverage 
a large community of like-minded developers on social sites such as Stack Overflow, 
get new ideas and code samples, and experiment quickly on a Jupyter Notebook.

Summary
In this chapter, we've built a data pipeline that analyzes large quantities of streaming 
data containing unstructured text and applies NLP algorithms coming from external 
cloud services to extract sentiment and other important entities found in the text. 
We also built a PixieApp dashboard that displays live metrics with insights extracted 
from the tweets. We've also discussed various techniques for analyzing data at scale, 
including Apache Spark Structured Streaming, Apache Kafka, and IBM Streaming 
Analytics. As always, the goal of these sample applications is to show the art of 
the possible in building data pipelines with a special focus on leveraging existing 
frameworks, libraries, and cloud services.

In the next chapter, we'll discuss time series analysis, which is another great data 
science topic with a lot of industry applications, which we'll illustrate by building 
a Financial Portfolio analysis application.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%207/Twitter%20Sentiment%20Analysis%20-%20Part%204.ipynb
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Analytics Study: Prediction 
- Financial Time Series 

Analysis and Forecasting
"When making important decisions, it's ok to trust your instincts  
but always verify with data"

                                                                                          – David Taieb

The study of time series is a very important field of data science with multiple 
applications in industry, including the weather, medicine, sales, and, of course, 
finance. It is a broad and complex subject and covering it in detail would be outside 
the scope of this book, but we'll try to touch upon a few of the important concepts in 
this chapter, staying sufficiently high level as not to require any particular specific 
knowledge from the reader. We also show how Python is particularly well adapted 
to time series analysis from data manipulation with libraries like pandas (https://
pandas.pydata.org) for data analysis and NumPy (http://www.numpy.org) for 
scientific computation, to visualization with Matplotlib (https://matplotlib.org) 
and Bokeh (https://bokeh.pydata.org).

This chapter starts with an introduction to the NumPy library and its most important 
APIs that will be put to good use when building descriptive analytics to analyze 
time series representing stock historical financial data. Using Python libraries such as 
statsmodels (https://www.statsmodels.org/stable/index.html), we'll show 
how to do statistical exploration and find properties like stationarity, autocorrelation 
function (ACF), and partial autocorrelation function (PACF). which will be useful 
to find trends in the data and creating forecasting models. We'll then operationalize 
these analytics by building a PixieApp that summarizes all the important statistics 
and visualizations about stock historical financial data.

https://pandas.pydata.org
https://pandas.pydata.org
http://www.numpy.org
https://matplotlib.org
https://bokeh.pydata.org
https://www.statsmodels.org/stable/index.html
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In the second part, we'll attempt to build a time series forecasting model that predicts 
future trends of a stock. We'll use an autoregressive model with Integrated Moving 
Average called ARIMA where we use previous values in the time series to predict 
the next value. ARIMA is one of the most popular models currently used, although 
new models based on recurrent neural networks are starting to gain in popularity.

As usual, we'll conclude the chapter by incorporating the building of an ARIMA 
time series forecasting model in the StockExplorer PixieApp.

Getting started with NumPy
The NumPy library is one of the main reasons why Python has gained so much 
traction in the data scientist community. It is a foundational library upon which a 
lot of the most popular libraries, such as pandas (https://pandas.pydata.org), 
Matplotlib (https://matplotlib.org), SciPy (https://www.scipy.org), and 
scikit-learn (http://scikit-learn.org) are built.

The key capabilities provided by NumPy are:

• A very powerful multidimensional NumPy array called ndarray with very 
high-performance mathematical operations (at least compared to regular 
Python lists and arrays)

• Universal functions also called ufunc for short, for providing very efficient 
and easy-to-use element by element operations on one or more ndarray

• Powerful ndarray slicing and selection capabilities
• Broadcasting functions that make it possible to apply arithmetic operations 

on ndarray of different shapes provided that some rules are respected

Before we start exploring the NumPy APIs, there is one API that is absolutely 
essential to know: lookfor(). With this method, you can find a function using 
a query string, which is very useful considering the hundreds of powerful APIs 
provided by NumPy.

For example, I can look for a function that computes the average mean of an array:

import numpy as np
np.lookfor("average")

The results are as follows:

Search results for 'average'
----------------------------
numpy.average
    Compute the weighted average along the specified axis.

https://pandas.pydata.org
https://matplotlib.org
https://www.scipy.org
http://scikit-learn.org
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numpy.irr
    Return the Internal Rate of Return (IRR).
numpy.mean
    Compute the arithmetic mean along the specified axis.
numpy.nanmean
    Compute the arithmetic mean along the specified axis, ignoring 
NaNs.
numpy.ma.average
    Return the weighted average of array over the given axis.
numpy.ma.mean
    Returns the average of the array elements along given axis.
numpy.matrix.mean
    Returns the average of the matrix elements along the given axis.
numpy.chararray.mean
    Returns the average of the array elements along given axis.
numpy.ma.MaskedArray.mean
    Returns the average of the array elements along given axis.
numpy.cov
    Estimate a covariance matrix, given data and weights.
numpy.std
    Compute the standard deviation along the specified axis.
numpy.sum
    Sum of array elements over a given axis.
numpy.var
    Compute the variance along the specified axis.
numpy.sort
    Return a sorted copy of an array.
numpy.median
    Compute the median along the specified axis.
numpy.nanstd
    Compute the standard deviation along the specified axis, while
numpy.nanvar
    Compute the variance along the specified axis, while ignoring 
NaNs.
numpy.nanmedian
    Compute the median along the specified axis, while ignoring NaNs.
numpy.partition
    Return a partitioned copy of an array.
numpy.ma.var
    Compute the variance along the specified axis.
numpy.apply_along_axis
    Apply a function to 1-D slices along the given axis.
numpy.ma.apply_along_axis
    Apply a function to 1-D slices along the given axis.
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numpy.ma.MaskedArray.var
    Compute the variance along the specified axis.

Within seconds, I can find a few candidate functions without having to leave my 
Notebook to consult the documentation. In the preceding case, I can spot a few 
functions that are interesting— np.average and np.mean—for which I still need 
to know their arguments. Again, instead of looking up the documentation which 
takes time and breaks the flow of what I was doing, I use a little-known capability of 
Jupyter Notebooks that provides me with the signature and docstring of the function 
inline. To invoke the inline help of a function, simply position the cursor at the end 
of the function and use the Shift + Tab combination. Calling Shift + Tab a second time 
will expand the pop-up window to show more of the text as shown in the following 
screenshot:

Note: Shift + Tab only applies to a function.

Inline help in Jupyter Notebook.

Using this method, I can rapidly iterate over the candidate functions until I find the 
one that fits my needs.

It is important to note that np.lookfor() is not limited to querying the NumPy 
module; you could search in other modules as well. For example, the following code 
searches for acf (autocorrelation function) related methods in the statsmodels 
package:

import statsmodels
np.lookfor("acf", module = statsmodels)
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode1.py

This produces the following results:

Search results for 'acf'
------------------------
statsmodels.tsa.vector_ar.var_model.var_acf
    Compute autocovariance function ACF_y(h) up to nlags of 
stable VAR(p)
statsmodels.tsa.vector_ar.var_model._var_acf
    Compute autocovariance function ACF_y(h) for h=1,...,p
statsmodels.tsa.tests.test_stattools.TestPACF
    Set up for ACF, PACF tests.
statsmodels.sandbox.tsa.fftarma.ArmaFft.acf2spdfreq
    not really a method
statsmodels.tsa.stattools.acf
    Autocorrelation function for 1d arrays.
statsmodels.tsa.tests.test_stattools.TestACF_FFT
    Set up for ACF, PACF tests.
...

Creating a NumPy array
There are many ways to create a NumPy array. Here are the methods most 
commonly used:

• From a Python list or tuple using np.array(), for example, 
np.array([1, 2, 3, 4]).

• From one of the NumPy factory functions:
 ° np.random: A module that provides a very rich set of functions 

for randomly generating values. This module is composed of 
the following categories:
 Simple random data: rand, randn, randint, and so on
 Permutations: shuffle, permutation
 Distributions: geometric, logistic, and so on

You can find more information on the np.random module here:
https://docs.scipy.org/doc/numpy-1.14.0/reference/
routines.random.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode1.py
https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html
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 ° np.arange: Return an ndarray with evenly spaced values within 
a given interval.
 Signature: numpy.arange([start, ]stop, [step, ]dtype=None)
 For example: np.arange(1, 100, 10)
 Results: array([ 1, 11, 21, 31, 41, 51, 61, 71, 81, 91])

 ° np.linspace: Similar to np.arange, it returns an ndarray with 
evenly spaced values within a given interval, the difference being 
that with linspace you specify the number of samples you want 
instead of the number of steps.
 For example: np.linspace(1,100,8, dtype=int)
 Results: array([  1,  15,  29,  43,  57,  71,  85, 100])

 ° np.full, np.full_like, np.ones, np.ones_like, np.zeros, 
np.zeros_like: Create an ndarray initialized with a constant value.
 For example: np.ones( (2,2), dtype=int)
 Results: array([[1, 1], [1, 1]])

 ° np.eye, np.identity, np.diag: Creates an ndarray with constant 
values in the diagonal:

 For example: np.eye(3,3)
 Results: array([[1, 0, 0],[0, 1, 0],[0, 0, 1]])

Note: When the dtype argument is not provided, NumPy tries to infer it 
from the input argument. However, it may happen that the type returned 
is not the correct one; for example, float is returned when it should be 
an integer. In this case, you should use the dtype argument to force 
the type. For example:

np.arange(1, 100, 10, dtype=np.integer)

Why NumPy arrays are so much faster than their Python lists and arrays 
counterpart?

As mentioned before, operations on NumPy arrays run much faster than their 
Python counterpart. This is because Python is a dynamic language that doesn't 
know, a priori, the type it's dealing with and therefore has to constantly query 
the metadata associated with it to dispatch it to the right method. On the other 
hand, NumPy is highly optimized to deal with large multidimensional arrays of 
data by, among other things, delegating the execution of the CPU-intensive routine 
to external highly optimized C libraries that have been precompiled.
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To be able to do that, NumPy places two important constraints on ndarrays:

• ndarrays are immutable: Therefore, if you want to change the shape or the 
size of an ndarray or if you want to add/delete elements, you always must 
create a new one. For example, the following code creates an ndarray using 
the arange() function which returns a one-dimensional array with evenly 
spaced values, and then reshapes it to fit a 4 by 5 matrix:
ar = np.arange(20)
print(ar)
print(ar.reshape(4,5))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode2.py

The results are as follows:
before:
   [ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
after: 
   [[ 0  1  2  3  4]
   [ 5  6  7  8  9]
   [10 11 12 13 14]
   [15 16 17 18 19]]

• Elements in an ndarray must be of the same type: ndarray carries the 
element type in the dtype member. When creating a new ndarray using the 
nd.array() function, NumPy will automatically infer a type that is suitable 
for all elements.

For example: np.array([1,2,3]).dtype will be dtype('int64').
np.array([1,2,'3']).dtype will be dtype('<U21') where < means 
little endian (see https://en.wikipedia.org/wiki/Endianness) and 
U21 means a 21-character Unicode string.

Note: You can find detailed information about all the supported data 
types here:
https://docs.scipy.org/doc/numpy/reference/arrays.
dtypes.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode2.py
https://en.wikipedia.org/wiki/Endianness
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
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Operations on ndarray
Most often, we have the need to summarize data over an ndarray. Fortunately, 
NumPy provides a very rich set of functions (also called reduction functions) 
that provide out-of-the-box summarization over an ndarray or an axis of the ndarray.

For reference, a NumPy axis corresponds to a dimension of the array. For example, 
a two-dimensional ndarray has two axes: one running across rows, which is referred 
to as axis 0 and one running across columns which is called axis 1.

The following diagram illustrates the axes in a two-dimensional array:

Axes in a two-dimensional array

Most of the reduction functions we'll discuss next take an axis as an argument. 
They fall into the following categories:

• Mathematical functions:
 ° Trigonometric: np.sin, np.cos, and so on
 ° Hyperbolic: np.sinh, np.cosh, and so on
 ° Rounding: np.around, np.floor, and so on
 ° Sums, products, differences: np.sum, np.prod, np.cumsum, and so on
 ° Exponents and logarithms: np.exp, np.log, and so on
 ° Arithmetic: np.add, np.multiply, and so on
 ° Miscellaneous: np.sqrt, np.absolute, and so on
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Note: All these unary functions (functions that take only one argument) 
work directly at the ndarray level. For example, we can use np.square 
to square all the values in an array at once:
Code: np.square(np.arange(10))
Results: array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81])
You can find more information on NumPy mathematical functions here:
https://docs.scipy.org/doc/numpy/reference/routines.
math.html

• Statistical functions:

 ° Order statistics: np.amin, np.amax, np.percentile, and so on
 ° Averages and variances: np.median, np.var, np.std, and so on
 ° Correlating: np.corrcoef, np.correlate, np.cov, and so on
 ° Histograms: np.histogram, np.bincount, and so on

Note: pandas provides very tight integration with NumPy and lets you 
apply these NumPy operations on pandas DataFrames. We'll use this 
capability quite a bit when analyzing time series in the rest of this chapter.

The following code example creates a pandas DataFrame and computes the square 
on all the columns:

Applying NumPy operations to pandas DataFrames

https://docs.scipy.org/doc/numpy/reference/routines.math.html
https://docs.scipy.org/doc/numpy/reference/routines.math.html
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Selections on NumPy arrays
NumPy arrays support similar slicing operations as Python arrays and lists. So, 
using an ndarray created with the np.arrange() method, we can do the following:

sample = np.arange(10)
print("Sample:", sample)
print("Access by index: ", sample[2])
print("First 5 elements: ", sample[:5])
print("From 8 to the end: ", sample[8:])
print("Last 3 elements: ", sample[-3:])
print("Every 2 elements: ", sample[::2])

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode3.py

Which produces the following results:

Sample: [0 1 2 3 4 5 6 7 8 9]
Access by index:  2
First 5 elements:  [0 1 2 3 4]
From index 8 to the end:  [8 9]
Last 3 elements:  [7 8 9]
Every 2 elements:  [0 2 4 6 8]

Selections using slices also work with NumPy arrays that have multiple dimensions. 
We can use slices for every dimension in the array. This is not the case for Python 
arrays and lists which only allow indexing using integers of slices.

Note: For reference a slice in Python has the following syntax:

start:end:step

As an example, let's create a NumPy array with the shape (3,4), that is, 3 rows * 
4 columns:

my_nparray = np.arange(12).reshape(3,4)
print(my_nparray)

Returns:

array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode3.py
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Suppose that I want to select only the middle of the matrix, that is, [5, 6]. I can simply 
apply slices on rows and columns, for example, [1:2] to select the second row and 
[1:3] to select the second and third values in the second row:

print(my_nparray[1:2, 1:3])

Returns:

array([[5, 6]])

Another interesting NumPy feature is that we can also use predicates to index 
an ndarray with Boolean values.

For example:

print(sample > 5 )

Returns:

[False False False False False False  True  True  True  True]

We can then use the Boolean ndarray to select subsets of data with a simple 
and elegant syntax.

For example:

print( sample[sample > 5] )

Returns:

[6 7 8 9]

This is only a small preview of all the selection capabilities of NumPy. 
For more information on NumPy selection, you can visit:
https://docs.scipy.org/doc/numpy-1.13.0/reference/
arrays.indexing.html

Broadcasting
Broadcasting is a very convenient feature of NumPy. It lets you perform arithmetic 
operations on ndarrays having different shapes. The term broadcasting comes from 
the fact that the smaller array is automatically duplicated to fit the bigger array 
so that they have compatible shapes. There are however a set of rules that govern 
how broadcasting works.

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
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You can find more information on broadcasting here:
https://docs.scipy.org/doc/numpy/user/basics.
broadcasting.html

The simplest form of NumPy broadcasting is scalar broadcasting, which lets 
you perform element-wise arithmetic operations between an ndarray and a scalar 
(that is, a number).

For example:

my_nparray * 2

Returns:

array([[ 0,  2,  4,  6],
       [ 8, 10, 12, 14],
       [16, 18, 20, 22]])

Note: In the following discussion, we assume that we want  
to operate on two ndarrays which do not have the same dimensions.

Broadcasting with smaller arrays needs to follow only one rule: one of the arrays 
must have at least one of its dimensions equal to 1. The idea is to duplicate the 
smaller array along the dimensions that don't match until they do.

The following diagram, taken from the http://www.scipy-lectures.org/ website, 
illustrates very nicely the different cases for adding two arrays:

Broadcasting flow explained

Source: http://www.scipy-lectures.org/_images/numpy_broadcasting.png

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://www.scipy-lectures.org/
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The three use cases demonstrated in the preceding diagram are:

• The array's dimensions match: Perform the sum element-wise as usual.
• The smaller array has only 1 row: Duplicate the rows until the dimensions 

fit the first array. The same algorithm would be used if the smaller array 
had only 1 column.

• The first array has only 1 column and the second array only 1 row:

 ° Duplicate the columns in the first array until we have the same 
number of columns as the second array

 ° Duplicate the rows in the second array until we have the same 
number of rows as the first array

The following code sample shows NumPy broadcasting in action:

my_nparray + np.array([1,2,3,4])

Results:

array([[ 1,  3,  5,  7],
       [ 5,  7,  9, 11],
       [ 9, 11, 13, 15]])

In this section, we provided a basic introduction to NumPy, at least enough to get 
us started and follow the code samples that we'll cover in the rest of this chapter. 
In the next section, we will start the discussion on time series with statistical data 
exploration to find patterns that will help us to identify underlying structures in the 
data.

Statistical exploration of time series
For the sample application, we'll use stock historical financial data provided by 
the Quandl data platform financial APIs (https://www.quandl.com/tools/api) 
and the quandl Python library (https://www.quandl.com/tools/python).

To get started, we need to install the quandl library by running the following 
command in its own cell:

!pip install quandl

Note: As always, don't forget to restart the kernel after the installation 
is complete.

https://www.quandl.com/tools/api
https://www.quandl.com/tools/python
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Access to the Quandl data is free but limited to 50 calls a day, but you can bypass 
this limit by creating a free account and get an API key:

1. Go to https://www.quandl.com and create a new account by clicking 
on the SIGN UP button on the top right.

2. Fill up the form in three steps of the sign-up wizard. (I chose Personal, 
but depending on your situation, you may want to choose Business or 
Academic.)

3. At the end of the process, you should receive an email confirmation with 
a link to activate the account.

4. Once the account is activated, log in to the Quandl platform website and 
click on Account Settings in the top right-hand menu, and then go to the API 
KEY tab.

5. Copy the API key provided in this page. This value will be used to 
programmatically set the key in the quandl Python library as shown in the 
following code:

import quandl
quandl.ApiConfig.api_key = "YOUR_KEY_HERE"

The quandl library is mainly composed of two APIs:

• quandl.get(dataset, **kwargs): This returns a pandas DataFrame or 
a NumPy array for the requested dataset(s). The dataset argument can be 
either a string (single dataset) or a list of strings (multi dataset). Each dataset 
follows the syntax database_code/dataset_code when database_code is a 
data publisher and dataset_code related to the resource. (See next how to 
get a full list of all the database_code and dataset_code).
The keyword arguments enable you to refine the query. You can find the 
full list of supported arguments in the quandl code on GitHub: https://
github.com/quandl/quandl-python/blob/master/quandl/get.py.
One interesting keyword argument called returns controls the data 
structure returned by the method and can take the following two values:

 ° pandas: Returns a pandas DataFrame
 ° numpy: Returns a NumPy array

https://www.quandl.com
https://github.com/quandl/quandl-python/blob/master/quandl/get.py
https://github.com/quandl/quandl-python/blob/master/quandl/get.py
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• quandl.get_table(datatable_code, **kwargs): Returns a non-time 
series dataset (called datatable) about a resource. We will not be using 
this method in this chapter, but you can find out more about it by looking 
at the code: https://github.com/quandl/quandl-python/blob/master/
quandl/get_table.py.

To get the list of database_code, we use the Quandl REST API: https://www.
quandl.com/api/v3/databases?api_key=YOUR_API_KEY&page=n which uses 
pagination.

Note: In the preceding URL, replace the YOUR_API_KEY value with your 
actual API key.

The returned payload is in the following JSON format:

{
  "databases": [{
         "id": 231,
         "name": "Deutsche Bundesbank Data Repository",
         "database_code": "BUNDESBANK",
         "description": "Data on the German economy, ...",
         "datasets_count": 49358,
         "downloads": 43209922,
         "premium": false,
         "image": "https://quandl--upload.s3.amazonaws/...thumb_
bundesbank.png",
         "favorite": false,
         "url_name": "Deutsche-Bundesbank-Data-Repository"
       },...
],
  "meta": {
    "query": "",
    "per_page": 100,
    "current_page": 1,
    "prev_page": null,
    "total_pages": 3,
    "total_count": 274,
    "next_page": 2,
    "current_first_item": 1,
    "current_last_item": 100
  }
}

https://github.com/quandl/quandl-python/blob/master/quandl/get_table.py
https://github.com/quandl/quandl-python/blob/master/quandl/get_table.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode4.json

We use a while loop to load all the available pages relying on the payload['meta']
['next_page'] value to know when to stop. At each iteration, we append the list 
of database_code information into an array called databases as shown in the 
following code:

import requests
databases = []
page = 1
while(page is not None):
    payload = requests.get("https://www.quandl.com/api/v3/
databases?api_key={}&page={}"\
                    .format(quandl.ApiConfig.api_key, page)).json()
    databases += payload['databases']
    page = payload['meta']['next_page']

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode5.py

The databases variable now contains an array of JSON objects containing the 
metadata about each database_code. We use the PixieDust display() API 
to look at the data in a nice searchable table:

import pixiedust
display(databases)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode4.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode4.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode5.py
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In the following screenshot of the PixieDust table, we use the Filter button described 
in Chapter 2, Python and Jupyter Notebooks to Power your Data Analysis, to access the 
statistics about the count of datasets available in each database, for example, min, 
max and mean:

List of Quandl database codes
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After searching for a database that contains stock information from the 
New York Stock Exchange (NYSE), I found the XNYS database as shown here:

Note: Make sure to increase the number of the value displayed to 
300 in the chart options dialog, so all the results are shown in the table.

Looking for a database with stock data from NYSE

Unfortunately, the XNYS database is not public and requires a paid subscription. 
I ended up using the WIKI database code, which for some reason was not part of the 
list returned by the preceding API request, but which I found in some code examples.

I then used the https://www.quandl.com/api/v3/databases/{database_code}/
codes REST API to get the list of datasets. Fortunately, this API returns a CSV 
compressed in a ZIP file, which the PixieDust sampleData() method can handle 
easily, as shown in the following code:

codes = pixiedust.sampleData( "https://www.quandl.com/api/v3/
databases/WIKI/codes?api_key=" + quandl.ApiConfig.api_key)
display(codes)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode6.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode6.py
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In the PixieDust table interface, we click on the Options dialog to increase 
the number of values displayed to 4000 so that we can fit the entire dataset 
(which is 3,198) and use the search bar to look for particular stocks as shown 
in the following screenshot:

Note: The search bar only searches for the rows that are displayed in the 
browser, which can be a smaller set when the dataset is too large. Since 
in this case, the dataset is too large, it would be impractical to increase 
the number of rows to display; it is recommended to use the Filter 
instead which guarantees to query the entire dataset.
The CSV file returned by the quandl API doesn't have a header, 
but PixieDust.sampleData() expects one to be there. This 
is currently a limitation that will be addressed in the future.

List of datasets for the WIKI database
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For the rest of this section, we load the Microsoft stock (ticker symbol MSFT) 
historical time series data for the last several years and start exploring its statistical 
properties. In the following code, we use quandl.get() with the WIKI/MSFT dataset. 
We add a column called daily_spread that computes the daily gain/loss by calling 
the pandas diff() method, which returns the difference between the current and 
previous adjusted close price. Note that the returned pandas DataFrame uses the 
dates as an index, but PixieDust does not support plotting time series by the index 
at this time. Therefore, in the following code, we call reset_index() to convert the 
DateTime index into a new column called Date that contains the dates information:

msft = quandl.get('WIKI/MSFT')
msft['daily_spread'] = msft['Adj. Close'].diff()
msft = msft.reset_index()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode7.py

For our first data exploration, we use display() to create a line chart of the stock 
adjusted closing price over time using the Bokeh renderer.

The following screenshot shows the Options configuration and the resulting line 
chart:

MSFT Price over time, adjusted for dividend distribution, stock split, and other corporate actions

We can also generate a chart that shows the daily spread for each day of the period, 
as shown in the following screenshot:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode7.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode7.py


Chapter 8

[ 323 ]

Daily Spread for the MSFT stock

Hypothetical investment
As an exercise, let's try to create a chart that shows how a hypothetical investment 
of $10,000 in the selected stock (MSFT) would fare over time. To do this, we must 
compute a DataFrame that contains the total investment value for each day of the 
period, factoring in the daily spread that we calculated in the previous paragraph 
and use the PixieDust display() API to visualize the data.

We use pandas ability to select rows using a predicate based on dates to first filter 
the DataFrame to select only the data points in the period we are interested in. We 
then calculate the number of shares bought by dividing the initial investment 
of $10,000 by the closing price on the first day of the period and add the initial 
investment value. All this computation is made very easy, thanks to the efficient 
series computation of pandas and the underlying NumPy foundational library. 
We use the np.cumsum() method (https://docs.scipy.org/doc/numpy-1.14.0/
reference/generated/numpy.cumsum.html) to compute the cumulative sum of 
all the daily gains adding the initial investment value of $10,000.

Finally, we make the chart easier to read by using the resample() method that 
converts the frequency from daily to monthly computing the new values using 
the average for the month.

The following code computes the growth DataFrame using a period starting 
in May 2016:

import pandas as pd
tail = msft[msft['Date'] > '2016-05-16']
investment = np.cumsum((10000 / tail['Adj. Close'].values[0]) * 
tail['daily_spread']) + 10000
investment = investment.astype(int)

https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.cumsum.html
https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.cumsum.html
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investment.index = tail['Date']
investment = investment.resample('M').mean()
investment = pd.DataFrame(investment).reset_index()
display(investment)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode8.py

The following screenshot shows the graph generated by the display() 
API including the configuration options:

Hypothetical portfolio growth

Autocorrelation function (ACF) and 
partial autocorrelation function (PACF)
Before trying to generate predictive models, it is essential to understand whether 
the time series has identifiable patterns, such as seasonality or trends. One popular 
technique is to look at how data points correlate with previous data points according 
to a specified time lag. The intuition is that the autocorrelation would reveal internal 
structures, such as for example, identifying periods when high correlation (positive 
or negative) occurs. You can experiment with different lag values (that is, for each 
data point, how many previous points are you taking into account) to find the right 
periodicity.

Computing the ACF usually requires calculating the Pearson R correlation 
coefficient for the set of data points (https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient) which is not a trivial thing to do. The good news is 
that the statsmodels Python library has a tsa package (tsa stands for time series 
analysis) that provides helper methods for computing the ACF, that are tightly 
integrated with pandas Series.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode8.py
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
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Note: If not already done, we install the statsmodels package 
using the following command, restarting the kernel after completion:
!pip install statsmodels

The following code uses plot_acf() from the tsa.api.graphics package to 
compute and visualize the ACF for the adjusted close price of the MSFT stock 
time series:

import statsmodels.tsa.api as smt
import matplotlib.pyplot as plt
smt.graphics.plot_acf(msft['Adj. Close'], lags=100)
plt.show()

The following is the result:

ACF for MSFT with lags = 100

The preceding chart shows the autocorrelation of the data at a number of 
previous data points (lag) given by the x abscissa. So, at lag 0, you always have an 
autocorrelation of 1.0 (you always correlate perfectly with yourself), lag 1 shows the 
autocorrelation with the previous data point, lag 2 shows the autocorrelation with 
the data point that is two steps behind. We can clearly see that the autocorrelation 
decreases as the lags increase. In the preceding chart, we used only 100 lags, and 
we see that the autocorrelation still remains statistically significant at around 0.9, 
which tells us that data separated by long periods of time is not correlated. This 
suggests that the data has a trend, which is quite obvious when glancing at the 
overall price chart. 
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To confirm this hypothesis, we plot the ACF chart with a bigger lags argument, 
say 1000 (which is not unreasonable given the fact that our series has more than 
10,000 data points), as shown in the following screenshot:

ACF for MSFT with lags = 1000

We now clearly see that the autocorrelation falls below the significance level 
at around 600 lags.

To better illustrate how the ACF works, let's generate a time series that is periodic, 
without a trend and see what we can learn. For example, we can use np.cos() 
on a series of evenly spaced points generated with np.linspace():

smt.graphics.plot_acf(np.cos(np.linspace(0, 1000, 100)), lags=50)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode9.py

The results are as follows:

ACF for a periodic series with no trends

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode9.py
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In the preceding chart, we can see that the autocorrelation spikes again at regular 
intervals (every 5 lags or so), clearly showing periodicity (also called seasonality 
when dealing with real-world data).

Using ACF to detect structure in your time series can sometimes lead to problems, 
especially when you have strong periodicity. In this case, you'll always see a spike 
in autocorrelation at a multiple of the period, no matter how far back you try to 
autocorrelate your data and this could lead to the wrong interpretation. To work 
around this problem, we use the PACF which uses a shorter lag and unlike ACF, 
doesn't reuse correlations previously found in shorter time periods. The math for 
ACF and PACF is rather complex, but the reader only needs to understand the 
intuition behind it and happily use libraries such as statsmodels to do the heavy 
lifting computation. One resource I used to get more information on ACF and PACF 
can be found here: https://www.mathworks.com/help/econ/autocorrelation-
and-partial-autocorrelation.html.

Back to our MSFT stock time series, the following code shows how to plot its PACF 
using the smt.graphics package:

import statsmodels.tsa.api as smt
smt.graphics.plot_pacf(msft['Adj. Close'], lags=50)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode10.py

The results are shown in the following screenshot:

Partial autocorrelation for the MSFT stock time series

https://www.mathworks.com/help/econ/autocorrelation-and-partial-autocorrelation.html
https://www.mathworks.com/help/econ/autocorrelation-and-partial-autocorrelation.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode10.py
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We'll get back to ACF and PACF later on in this chapter when we discuss time series 
forecasting with the ARIMA model.

In this section, we've discussed multiple ways to explore the data. It is of course 
by no means exhaustive, but we get the idea of how tools such as Jupyter, pandas, 
NumPy, and PixieDust make it easier to experiment and fail fast if necessary. In the 
next section, we will build a PixieApp that brings all these charts together.

Putting it all together with 
the StockExplorer PixieApp
For the first version of our StockExplorer PixieApp, we want to operationalize the 
data exploration of a stock data time series selected by the user. Similar to the other 
PixieApps we've built, the first screen has a simple layout with an input box where 
the user can enter a list of stock tickers separated by commas, and an Explore button 
to start data exploration. The main screen is composed of a vertical navigator bar 
with a menu for each type of data exploration. To make the PixieApp code more 
modular and easier to maintain and extend, we implement each data exploration 
screen in its own child PixieApp which is triggered by the vertical navigation bar. 
Also, each child PixieApp inherits from a base class called BaseSubApp that provides 
common functionalities useful to all the subclasses. The following diagram shows the 
overall UI layout as well as a class diagram for all the child PixieApps:

UI layout of the StockExplorer PixieApp

Let's first look at the implementation for the welcome screen. It is implemented in 
the default route for the StockExplorer PixieApp class. The following code shows a 
partial implementation of the StockExplorer class to include the default route only.
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Note: Do not try to run this code yet, until the full implementation 
is provided.

@PixieApp
class StockExplorer():
    @route()
    def main_screen(self):
        return """
<style>
    div.outer-wrapper {
        display: table;width:100%;height:300px;
    }
    div.inner-wrapper {
        display: table-cell;vertical-align: middle;height: 100%;width: 
100%;
    }
</style>
<div class="outer-wrapper">
    <div class="inner-wrapper">
        <div class="col-sm-3"></div>
        <div class="input-group col-sm-6">
          <input id="stocks{{prefix}}" type="text"
              class="form-control"
              value="MSFT,AMZN,IBM"
              placeholder="Enter a list of stocks separated by comma 
e.g MSFT,AMZN,IBM">
          <span class="input-group-btn">
            <button class="btn btn-default" type="button" pd_
options="explore=true">
                <pd_script>
self.select_tickers('$val(stocks{{prefix}})'.split(','))
                </pd_script>
                Explore
            </button>
          </span>
        </div>
    </div>
</div>
"""
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode11.py

The preceding code is very similar to the other sample PixieApps we've seen so far. 
The Explore button contains the following two PixieApp attributes:

• A pd_script child element, which calls a Python snippet to set the stock 
tickers. We also use the $val directive to retrieve the user-entered value for 
the stock tickers:
<pd_script>
   self.select_tickers('$val(stocks{{prefix}})'.split(','))
</pd_script>

• The pd_options attribute, which points to the explore route:

pd_options="explore=true"

The select_tickers helper method stores the list of tickers in a dictionary member 
variable and selects the first one as the active ticker. For performance reasons, we 
only load the data when needed, that is, when setting the active ticker for the first 
time or when the user clicks on a particular ticker in the UI.

Note: As in previous chapters, the [[StockExplorer]] notation 
indicates that the code that follows is part of the StockExplorer class.

[[StockExplorer]]
def select_tickers(self, tickers):
        self.tickers = {ticker.strip():{} for ticker in tickers}
        self.set_active_ticker(tickers[0].strip())

def set_active_ticker(self, ticker):
    self.active_ticker = ticker
    if 'df' not in self.tickers[ticker]:
        self.tickers[ticker]['df'] = quandl.get('WIKI/{}'.
format(ticker))
        self.tickers[ticker]['df']['daily_spread'] = self.
tickers[ticker]['df']['Adj. Close'] - self.tickers[ticker]['df']['Adj. 
Open']
        self.tickers[ticker]['df'] = self.tickers[ticker]['df']. 
reset_index()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode11.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode12.py

The lazy loading of the stock data for a particular ticker symbol into a pandas 
DataFrame is done in set_active_ticker(). We first check whether the DataFrame 
has already been loaded by looking if the df key is present and, if not, we call the 
quandl API with the dataset_code: 'WIKI/{ticker}'. We also add a column 
that computes the daily spread of the stock that will be displayed in the basic 
exploration screen. Finally, we need to call reset_index() (https://pandas.
pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.
html) on the DataFrame to convert the index which is a DateTimeIndex into its 
own column called Date. The reason is that the PixieDust display() doesn't yet 
support visualization of DataFrame with a DateTimeIndex.

In the explore route, we return an HTML fragment that builds the layout for the 
whole screen. As shown in the preceding mock-up, we use the btn-group-vertical 
and btn-group-toggle bootstrap classes to create the vertical navigation bar. The 
list of menus and associated child PixieApp are defined in the tabs Python variable, 
and we use Jinja2 {%for loop%} to build the content. We also add a placeholder 
<div> element with id ="analytic_screen{{prefix}}" that will be the recipient 
of the child PixieApp screen.

The explore route implementation is shown here:

[[StockExplorer]] 
@route(explore="*")
    @templateArgs
    def stock_explore_screen(self):
        tabs = [("Explore","StockExploreSubApp"),
                ("Moving Average", "MovingAverageSubApp"),
                ("ACF and PACF", "AutoCorrelationSubApp")]
        return """
<style>
    .btn:active, .btn.active {
        background-color:aliceblue;
    }
</style>
<div class="page-header">
    <h1>Stock Explorer PixieApp</h1>
</div>
<div class="container-fluid">
    <div class="row">
        <div class="btn-group-vertical btn-group-toggle col-sm-2"

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode12.py
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.reset_index.html
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             data-toggle="buttons">
            {%for title, subapp in tabs%}
            <label class="btn btn-secondary {%if loop.first%}
active{%endif%}"
                pd_options="show_analytic={{subapp}}"
                pd_target="analytic_screen{{prefix}}">
                <input type="radio" {%if loop.first%}checked{%endif%}>
                    {{title}}
            </label>
            {%endfor%}
        </div>
        <div id="analytic_screen{{prefix}}" class="col-sm-10">
    </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode13.py

In the preceding code, notice that we use the @templateArgs decorator 
because we want to use the tabs variable, which is created locally to the 
method implementation, in the Jinja2 template.

Each menu in the vertical navigation bar points to the same analytic_
screen{{prefix}} target and invokes the show_analytic route with 
the selected child PixieApp class name referenced by {{subapp}}.

In turn, the show_anatytic route simply returns an HTML fragment with 
a <div> element that has a pd_app attribute referencing the child PixieApp class 
name. We also use the pd_render_onload attribute to ask PixieApp to render the 
content of the <div> element as soon as it is loaded in the browser DOM.

The following code is for the show_analytic route:

    @route(show_analytic="*")
    def show_analytic_screen(self, show_analytic):
        return """
<div pd_app="{{show_analytic}}" pd_render_onload></div>
"""

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode13.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode13.py 
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode14.py

BaseSubApp – base class for all the child 
PixieApps
Let's now look at the implementation for each of the child PixieApps and how 
the base class BaseSubApp is used to provide common functionalities. For each 
child PixieApp we want the user to be able to select a stock ticker through a tabbed 
interface as shown in the following screenshot:

Tab widget for MSFT, IBM, AMZN tickers

Instead of repeating the HTML fragment for every child PixieApp, we use 
a technique that I particularly like which consists of creating a Python decorator 
called add_ticker_selection_markup that dynamically changes how the function 
behaves (for more information on Python decorators, see https://wiki.python.
org/moin/PythonDecorators). This decorator is created in the BaseSubApp class 
and will automatically prepend the tab selection widget HTML markup for the route, 
as shown in the following code:

[[BaseSubApp]]
def add_ticker_selection_markup(refresh_ids):
    def deco(fn):
        def wrap(self, *args, **kwargs):
            return """
<div class="row" style="text-align:center">
    <div class="btn-group btn-group-toggle"
         style="border-bottom:2px solid #eeeeee"
         data-toggle="buttons">
        {%for ticker, state in this.parent_pixieapp.tickers.items()%}
        <label class="btn btn-secondary {%if this.parent_pixieapp.
active_ticker == ticker%}active{%endif%}"
            pd_refresh=\"""" + ",".join(refresh_ids) + """\" pd_
script="self.parent_pixieapp.set_active_ticker('{{ticker}}')">
            <input type="radio" {%if this.parent_pixieapp.active_
ticker == ticker%}checked{%endif%}> 
                {{ticker}}

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode14.py
https://wiki.python.org/moin/PythonDecorators
https://wiki.python.org/moin/PythonDecorators
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        </label>
        {%endfor%}
    </div>
</div>
            """ + fn(self, *args, **kwargs)
        return wrap
    return deco

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode15.py

At first glance, the preceding code may appear very hard to read as the add_ticker_
selection_markup decorator method contains two levels of anonymous nested 
methods. Let's try to explain the purpose for each of them including the main add_
ticker_selection_markup decorator method:

• add_ticker_selection_markup: This is the main decorator method that 
takes one argument called refresh_ids which will be used in the generated 
markup. This method returns an anonymous function called deco that takes 
a function argument.

• deco: This is the wrapper method that takes one argument called fn which 
is a pointer to the original function to which the decorator is applied. This 
method returns an anonymous function called wrap which will be called 
in lieu of the original function when it is called in the user code.

• wrap: This is the final wrapper method that takes three arguments:

 ° self: Pointer to the host class for the function
 ° *args: Any variable arguments that the original method defines 

(could be empty)
 ° **kwargs: Any keyword arguments that the original method defines 

(could be empty)

The wrap method can access the variables that are outside its scope through 
the Python closure mechanism. In this case, it uses the refresh_ids to 
generate the tab widget markup, and then calls the fn function with the 
self, args, and kwargs arguments.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode15.py
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Note: Do not worry if the preceding explanation is still confusing, even 
after reading it multiple times. You can just use the decorator for now, 
and it won't affect your ability to understand the rest of the chapter.

StockExploreSubApp – first child PixieApp
We can now implement the first child PixieApp called StockExploreSubApp. 
In the main screen, we create two <div> elements that each have a pd_options 
attribute that calls the show_chart route with Adj. Close and daily_spread as 
values. In turn, the show_chart route returns a <div> element with a pd_entity 
attribute pointing to the parent_pixieapp.get_active_df() method with a 
<pd_options> element that contains a JSON payload for displaying a Bokeh line 
chart with Date as the x abscissa and whatever value is passed as an argument as 
the column for the y ordinate. We also decorate the route with the BaseSubApp.
add_ticker_selection_markup decorator using the ID of the preceding two <div> 
elements as the refresh_ids argument.

The following code shows the implementation for the StockExplorerSubApp 
child PixieApp:

@PixieApp
class StockExploreSubApp(BaseSubApp):
    @route()
    @BaseSubApp.add_ticker_selection_markup(['chart{{prefix}}', 
'daily_spread{{prefix}}'])
    def main_screen(self):
        return """
<div class="row" style="min-height:300px">
    <div class="col-xs-6" id="chart{{prefix}}" pd_render_onload pd_
options="show_chart=Adj. Close">
    </div>
    <div class="col-xs-6" id="daily_spread{{prefix}}" pd_render_onload 
pd_options="show_chart=daily_spread">
    </div>
</div>
"""
        
    @route(show_chart="*")
    def show_chart_screen(self, show_chart):
        return """
<div pd_entity="parent_pixieapp.get_active_df()" pd_render_onload>
    <pd_options>
    {
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      "handlerId": "lineChart",
      "valueFields": "{{show_chart}}",
      "rendererId": "bokeh",
      "keyFields": "Date",
      "noChartCache": "true",
      "rowCount": "10000"
    }
    </pd_options>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode16.py

In the preceding show_chart route, the pd_entity uses the get_active_df() 
method from the parent_pixieapp which is defined in the StockExplorer main 
class as follows:

[[StockExplorer]]
def get_active_df(self):
    return self.tickers[self.active_ticker]['df']

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode17.py

As a reminder, the StockExploreSubApp is associated with the menu through 
a tuple in the tabs array variable declared in the Explore route of the 
StockExplorer route:

tabs = [("Explore","StockExploreSubApp"), ("Moving Average", 
"MovingAverageSubApp"),("ACF and PACF", "AutoCorrelationSubApp")]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode18.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode18.py
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The following screenshot shows the StockExploreSubApp:

StockExploreSubApp main screen

MovingAverageSubApp – second child PixieApp
The second child PixieApp is MovingAverageSubApp which displays a line chart 
of the moving average for the selected stock ticker with a lag that is configurable 
through a slider control. Similar to the ticker selection tab, the lag slider will be 
needed in another child PixieApp. We could use the same decorator technique 
we use for the ticker selection tab control, but here we want to be able to position 
the lag slider anywhere on the page. So instead, we'll use a pd_widget control 
called lag_slider that we define in the BaseSubApp class and return an HTML 
fragment for the slider control. It also adds a <script> element that uses the jQuery 
slider method available in the jQuery UI module (see https://api.jqueryui.
com/slider for more information). We also add a change handler function that 
is called when the user has selected a new value. In this handler, we call the 
pixiedust.sendEvent function to publish an event of the lagSlider type and a 
payload containing the new value for the lag. It is the responsibility of the caller to 
add a <pd_event_handler> element to listen to that event and process the payload.

The following code shows the implementation of the lag_slider pd_widget:

[[BaseSubApp]]
@route(widget="lag_slider")
def slider_screen(self):
    return """
<div>
    <label class="field">Lag:<span id="slideval{{prefix}}">50</span></
label>
    <i class="fa fa-info-circle" style="color:orange"

https://api.jqueryui.com/slider
https://api.jqueryui.com/slider
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       data-toggle="pd-tooltip"
       title="Selected lag used to compute moving average, ACF or 
PACF"></i>
    <div id="slider{{prefix}}" name="slider" data-min=30 
         data-max=300
         data-default=50 style="margin: 0 0.6em;">
    </div>
</div>
<script>
$("[id^=slider][id$={{prefix}}]").each(function() {
    var sliderElt = $(this)
    var min = sliderElt.data("min")
    var max = sliderElt.data("max")
    var val = sliderElt.data("default")
    sliderElt.slider({
        min: isNaN(min) ? 0 : min,
        max: isNaN(max) ? 100 : max,
        value: isNaN(val) ? 50 : val,
        change: function(evt, ui) {
            $("[id=slideval{{prefix}}]").text(ui.value);
            pixiedust.sendEvent({type:'lagSlider',value:ui.value})
        },
        slide: function(evt, ui) {
            $("[id=slideval{{prefix}}]").text(ui.value);
        }
    });
})
</script>
        """

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode19.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode19.py
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In the MovingAverageSubApp we use the add_ticker_selection_markup 
decorator with chart{{prefix}} as an argument in the default route to add the 
ticker selection tab and add a <div> element with pd_widget named lag_slider, 
including a <pd_event_handler> to set the self.lag variable and refresh the chart 
div. The chart div uses a pd_entity attribute with the get_moving_average_df() 
method that calls the rolling method (https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.Series.rolling.html) on the pandas Series 
returned from the selected pandas DataFrame and calls the mean() method on it. 
Because the PixieDust display() does not yet support pandas Series, we build a 
pandas DataFrame using the series index as a column called x and return it in the 
get_moving_average_df() method.

The following code shows the implementation of the MovingAverageSubApp child 
PixieApp

@PixieApp
class MovingAverageSubApp(BaseSubApp):
    @route()
    @BaseSubApp.add_ticker_selection_markup(['chart{{prefix}}'])
    def main_screen(self):
        return """
<div class="row" style="min-height:300px">
    <div class="page-header text-center">
        <h1>Moving Average for {{this.parent_pixieapp.active_
ticker}}</h1>
    </div>
    <div class="col-sm-12" id="chart{{prefix}}" pd_render_onload  
pd_entity="get_moving_average_df()">
        <pd_options>
        {
          "valueFields": "Adj. Close",
          "keyFields": "x",
          "rendererId": "bokeh",
          "handlerId": "lineChart",
          "rowCount": "10000"
        }
        </pd_options>
    </div>
</div>
<div class="row">
    <div pd_widget="lag_slider">
        <pd_event_handler 
            pd_source="lagSlider"
            pd_script="self.lag = eventInfo['value']"
            pd_refresh="chart{{prefix}}">

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.rolling.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.rolling.html
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        </pd_event_handler>
    </div>
</div>
"""
    def get_moving_average_df(self):
        ma = self.parent_pixieapp.get_active_df()['Adj. Close'].
rolling(window=self.lag).mean()
        ma_df = pd.DataFrame(ma)
        ma_df["x"] = ma_df.index
        return ma_df

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode20.py

The following screenshot shows the chart displayed by the MovingAverageSubApp:

MovingAverageSubApp screenshot

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode20.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode20.py
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AutoCorrelationSubApp – third child PixieApp
For the third child, PixieApp called AutoCorrelationSubApp; we display the 
ACF and PACF of the selected stock DataFrame, which are computed using the 
statsmodels package.

The following code shows the implementation of the AutoCorrelationSubApp 
which also uses the add_ticker_selection_markup decorator and the pd_widget 
named lag_slider:

import statsmodels.tsa.api as smt
@PixieApp
class AutoCorrelationSubApp(BaseSubApp):
    @route()
    @BaseSubApp.add_ticker_selection_markup(['chart_acf{{prefix}}', 
'chart_pacf{{prefix}}'])
    def main_screen(self):
        return """
<div class="row" style="min-height:300px">
    <div class="col-sm-6">
        <div class="page-header text-center">
            <h1>Auto-correlation Function</h1>
        </div>
        <div id="chart_acf{{prefix}}" pd_render_onload  
pd_options="show_acf=true">
        </div>
    </div>
    <div class="col-sm-6">
        <div class="page-header text-center">
            <h1>Partial Auto-correlation Function</h1>
        </div>
        <div id="chart_pacf{{prefix}}" pd_render_onload  
pd_options="show_pacf=true">
        </div>
    </div>
</div> 

<div class="row">
    <div pd_widget="lag_slider">
        <pd_event_handler 
            pd_source="lagSlider"
            pd_script="self.lag = eventInfo['value']"
            pd_refresh="chart_acf{{prefix}},chart_pacf{{prefix}}">
        </pd_event_handler>
    </div>
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</div>
"""
    @route(show_acf='*')
    @captureOutput
    def show_acf_screen(self):
        smt.graphics.plot_acf(self.parent_pixieapp.get_active_df()
['Adj. Close'], lags=self.lag)
    
    @route(show_pacf='*')
    @captureOutput
    def show_pacf_screen(self):
        smt.graphics.plot_pacf(self.parent_pixieapp.get_active_df()
['Adj. Close'], lags=self.lag)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode21.py

In the preceding code, we define two routes: show_acf and show_pacf which 
respectively call the plot_acf and plot_pacf methods of the smt.graphics 
package. We also use the @captureOutput decorator to signal the PixieApp 
framework to capture the output generated by plot_acf and plot_pacf.

The following screenshot shows the charts displayed by AutoCorrelationSubApp:

AutoCorrelationSubApp screenshot

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode21.py
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In this section, we showed how to put together a sample PixieApp that does basic 
data exploration on a time series and display various statistical charts. The complete 
Notebook can be found here: https://github.com/DTAIEB/Thoughtful-Data-
Science/blob/master/chapter%208/StockExplorer%20-%20Part%201.ipynb.

In the next section, we try to build a time series forecast model using a very popular 
model called Autoregressive Integrated Moving Average (ARIMA).

Time series forecasting using 
the ARIMA model
ARIMA is one of the most popular time series forecasting models and as its name 
indicates is made up of three terms:

•	 AR: Stands for autoregression, which is nothing more than applying 
a linear regression algorithm using one observation and its own lagged 
observations as training data.

The AR model uses the following formula:

1 1 2 2t t t p t p tY Y Y Yφ φ φ ε− − −= + + + +…

Where iφ  are the weights of the models learned from the previous 
observations and tε  is the residual error for observation t.
We also call p the order of the autoregression model, which is defined 
as the number of lag observations included in the preceding formula. 
For example:
AR(2) is defined as:

1 1 2 2t t t tY Y Yφ φ ε− −= + +

AR(1) is defined as:

1 1t t tY Yφ ε−= +

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%201.ipynb
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• I: Stands for integrated. For the ARIMA model to work, it is assumed that 
the time series is stationary or can be made stationary. A series is said to be 
stationary (https://en.wikipedia.org/wiki/Stationary_process) if its 
mean and variance doesn't change over time.

Note: There is also the notion of strict stationarity which requires that the 
joint probability distribution of a subset of observations doesn't change 
when shifted in time.
Using mathematical notation, strict stationarity translates to:

 ( )1, , ,t t t kF y y y+ +…  and ( )1, , ,t m t m t m kF y y y+ + + + +…  are the same for any  
t, m, and k, with F being the joint probability distribution.
In practice, this condition is too strong, and the preceding weaker 
definition provided is preferred.

We can make a time series stationary through a transformation that uses 
differencing of the log between an observation and the one before that, 
as shown in the following equation:

1log logt t tZ Y Y−= −

It is possible that multiple log differencing transformations are needed before 
the time series is actually made stationary. We call d the number of times 
we transform the series using log differencing.
For example:
I(0) is defined as no log differencing needed (the model is then called 
ARMA).
I(1) is defined as 1 log differencing needed.
I(2) is defined as 2 log differencing needed.

Note: It is important to remember to do the reverse transformation  
for as many integrations that were made, after predicting a value.

https://en.wikipedia.org/wiki/Stationary_process
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• MA: Stands for moving average. The MA model uses the residual error from 
the mean of the current observation and the weighted residual errors of the 
lagged observations. We can define the model using the following formula:

1 1 2 2t t t t q t qY µ ε θ ε θ ε θ ε− − −= + + + + +…

Where µ  is the mean of the time series, tε  are the residual errors in the series 
and qθ  are the weights for the lagged residual errors.
We call q the size of the moving average window.
For example:
MA(0) is defined as no moving average needed (the model is then called AR).
MA(1) is defined as using a moving average window of 1. The formula 
becomes:

1 1t t tY µ ε θ ε −= + +

As per the preceding definition, we use the notation ARIMA(p,d,q) to define 
an ARIMA model with an autoregression model of order p, an integration/
differencing of order d, and a moving average window of size q.

Implementing all the code to build an ARIMA model can be very time-consuming. 
Fortunately, the statsmodels library implements an ARIMA class in the 
statsmodels.tsa.arima_model package that provides all the computation needed 
to train a model with the fit() method and predict values with the predict() 
method. It also takes care of the log differencing to make the time series stationary. 
The trick is to find the parameters p, d, and q for building the optimal ARIMA model. 
For this, we use the ACF and PACF chart as follows:

• The p value corresponds to the number of lags (on the x abscissa) where 
the ACF chart crosses the statistical significance threshold for the first time.

• Similarly, the q value corresponds to the number of lags (on the x abscissa) 
where the PACF chart crosses the statistical significance threshold for the 
first time.
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Build an ARIMA model for the MSFT stock 
time series
As a reminder, the price chart for the MSFT stock time series looks like this:

MSFT stock series chart

Before we start building our model, let's first withhold the last 14 days of the data 
for testing and use the rest for training.

The following code defines two new variables: train_set and test_set:

train_set, test_set = msft[:-14], msft[-14:]

Note: If you're still not familiar with the preceding slicing notation, 
please refer to the section on NumPy at the beginning of this chapter

From the preceding chart, we can clearly observe a growth trend starting in 2012 but 
no clear seasonality. Therefore, we can safely assume that there is no stationarity. 
Let's first try to apply a log differencing transformation once and plot the 
corresponding ACF and PACF chart.
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In the following code, we build the logmsft pandas Series by using np.log() on 
the Adj. Close column and then build the logmsft_diff pandas DataFrame using 
the difference between logmsft and the lag of 1 (using the shift() method). As was 
done before, we also call reset_index() to convert the Date index into a column so 
that the PixieDust display() can process it:

logmsft = np.log(train_set['Adj. Close'])
logmsft.index = train_set['Date']
logmsft_diff = pd.DataFrame(logmsft - logmsft.shift()).reset_index()
logmsft_diff.dropna(inplace=True)
display(logmsft_diff)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode22.py

The results are shown in the following screenshot:

MSFT stock series after log differencing applied

From looking at the preceding graph, we can reasonably think that we've succeeded 
at making the time series stationary with 0 as the mean. We can also use a more 
rigorous way to test for stationarity by using the Dickey-Fuller test (https://
en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test) which tests the 
null hypothesis that a unit root is present in an AR(1) model.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode22.py
https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test


Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[ 348 ]

Note: In statistics, statistical hypothesis testing consists of challenging 
whether a proposed hypothesis is true, by taking a sample and deciding 
whether the claim remains true. We look at the p-value (https://
en.wikipedia.org/wiki/P-value) which helps determine the 
significance of the results. More details on statistical hypothesis testing 
can be found here:
https://en.wikipedia.org/wiki/Statistical_hypothesis_
testing

The following code uses the adfuller method from the statsmodels.tsa.
stattools package:

from statsmodels.tsa.stattools import adfuller
import pprint

ad_fuller_results = adfuller(
logmsft_diff['Adj. Close'], autolag = 'AIC', regression = 'c'
)
labels = ['Test Statistic','p-value','#Lags Used','Number of 
Observations Used']
pp = pprint.PrettyPrinter(indent=4)
pp.pprint({labels[i]: ad_fuller_results[i] for i in range(4)})

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode23.py

We use the pprint package which is very useful for pretty-printing 
any Python data structures. More info on pprint can be found here:
https://docs.python.org/3/library/pprint.html

The results (explained in detail at: http://www.statsmodels.org/devel/
generated/statsmodels.tsa.stattools.adfuller.html) are shown here:

{
    'Number of lags used': 3,
    'Number of Observations Used': 8057,
    'Test statistic': -48.071592138591136,
    'MacKinnon's approximate p-value': 0.0
}

https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode23.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode23.py 
https://docs.python.org/3/library/pprint.html
http://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.adfuller.html
http://www.statsmodels.org/devel/generated/statsmodels.tsa.stattools.adfuller.html
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode24.json

The p-value is below the significance level; therefore, we can reject the null 
hypothesis that a unit root is present in the AR(1) model, which gives us confidence 
that the time series is stationary.

We then plot the ACF and PACF chart which will give us the p and q parameters 
of the ARIMA model:

The following code builds the ACF chart:

import statsmodels.tsa.api as smt
smt.graphics.plot_acf(logmsft_diff['Adj. Close'], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode25.py

The results are shown in the following screenshot:

ACF for the log difference MSFT DataFrame

From the preceding ACF graph, we can see that the correlation crosses the statistical 
significance threshold for the first time at a lag of 1. Therefore, we'll use p = 1 as the 
AR order of our ARIMA model.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode24.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode24.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode25.py
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We do the same for the PACF:

smt.graphics.plot_pacf(logmsft_diff['Adj. Close'], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode26.py

The results are shown in the following screenshot:

PACF for the log difference MSFT DataFrame

From the preceding PACF graph, we can also see that the correlation crosses 
the statistical significance threshold for the first time at a lag of 1. Therefore, 
we'll use q = 1 as the MA order of our ARIMA model.

We also had to apply the log differencing transformation only once. Therefore 
we'll use d = 1 for the integrated part of the ARIMA model.

Note: When calling the ARIMA class, if you use d = 0, then you may 
have to do the log differencing manually and, in this case, you'll need 
to revert the transformation yourself on the predicted values. If not, the 
statsmodels package will take care of reverting the transformation 
before returning the predicted value.

The following code trains an ARIMA model on the train_set time series using 
p = 1, d = 1, and q=1 as values to the order tuple argument of the ARIMA constructor. 
We then call the fit() method to proceed with the training and obtain a model:

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode26.py
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from statsmodels.tsa.arima_model import ARIMA

import warnings
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    arima_model_class = ARIMA(train_set['Adj. Close'], dates=train_
set['Date'], order=(1,1,1))
    arima_model = arima_model_class.fit(disp=0)

    print(arima_model.resid.describe())

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode27.py

Note: We use the warnings package to avoid getting the mutiple 
deprecation warnings that may happen if you are using older versions 
of NumPy and pandas.

In the preceding code, we use train_set['Adj. Close'] as an argument to the 
ARIMA constructor. Since we are using a Series for the data, we also need to pass the 
train_set['Date'] series for the dates argument. Note that if we passed a pandas 
DataFrame instead with a DateIndex index, then we wouldn't have to use the 
dates argument. The final argument to the ARIMA constructor is the order argument 
which is a tuple of three values indicating the p, d, and q order, as discussed at the 
beginning of this section.

We then call the fit() method that returns the actual ARIMA model that we'll use 
to predict values. For information purposes, we print statistics about the residual 
errors of the model using arima_model.resid.describe().

The results are shown here:

count    8.061000e+03
mean    -5.785533e-07
std      4.198119e-01
min     -5.118915e+00
25%     -1.061133e-01
50%     -1.184452e-02
75%      9.848486e-02
max      5.023380e+00
dtype: float64

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode27.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode27.py 
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The mean residual error is 75.7 10−− ∗  which is very close to zero and therefore shows 
that the model may be overfitting the training data.

Now that we have a model let's try to diagnose it. We define a method called plot_
predict that takes a model, a series of dates and a number indicating how far back 
we want to look. We then call the ARIMA plot_predict() method to create a chart 
with both the predicted and observed values.

The following code shows the implementation for the plot_predict() method, 
including calling it twice with 100 and 10:

def plot_predict(model, dates_series, num_observations):
    fig = plt.figure(figsize = (12,5))
    model.plot_predict(
        start = str(dates_series[len(dates_series)-num_observations]),
        end = str(dates_series[len(dates_series)-1])
    )
    plt.show()

plot_predict(arima_model, train_set['Date'], 100)
plot_predict(arima_model, train_set['Date'], 10)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode28.py

The results are shown here:

Observations versus Forecast chart

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode28.py
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The preceding charts show how close the predictions are to the actual observations 
from the training set. We now use the test set that was withheld before to further 
diagnose the model. For this part, we use the forecast() method which predicts the 
next data point. For each value of the test_set, we build a new ARIMA model from 
an array of observations called history that contains the training data augmented 
with each predicted value.

The following code shows the implementation for the compute_test_set_
predictions() method that takes a train_set and a test_set as arguments and 
returns a pandas DataFrame with a forecast column containing all the predicted 
values and a test column containing the corresponding actual observed values:

def compute_test_set_predictions(train_set, test_set):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        history = train_set['Adj. Close'].values
        forecast = np.array([])
        for t in range(len(test_set)):
            prediction = ARIMA(history, order=(1,1,0)).fit(disp=0).
forecast()
            history = np.append(history, test_set['Adj. Close'].
iloc[t])
            forecast = np.append(forecast, prediction[0])
        return pd.DataFrame(
          {"forecast": forecast,
           "test": test_set['Adj. Close'],
           "Date": pd.date_range(start=test_set['Date'].iloc 
[len(test_set)-1], periods = len(test_set))
          }
        )

results = compute_test_set_predictions(train_set, test_set)
display(results)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode29.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode29.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode29.py
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The following screenshot shows the result chart:

Chart of predicted versus acutal values

We can measure the error using the popular mean_squared_error method 
(https://en.wikipedia.org/wiki/Mean_squared_error) of the scikit-learn 
package (http://scikit-learn.org) which is defined as follows:

( )
2

1

1 ˆ
n

i i
i

MSE Y Y
n =

= −∑

Where iY  is the actual value and îY is the predicted value.

The following code defines a compute_mean_squared_error method that 
takes a test and a forecast series and returns the value of the mean squared error:

from sklearn.metrics import mean_squared_error
def compute_mean_squared_error(test_series, forecast_series):
    return mean_squared_error(test_series, forecast_series)

print('Mean Squared Error: {}'.format(
compute_mean_squared_error( test_set['Adj. Close'], results.forecast))
)

https://en.wikipedia.org/wiki/Mean_squared_error
http://scikit-learn.org
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode30.py

The result is shown here:

Mean Squared Error: 6.336538843075749

StockExplorer PixieApp Part 2 – add time 
series forecasting using the ARIMA model
In this section, we improve the StockExplorer PixieApp by adding a menu that 
provides time series forecasting for the selected stock ticker using an ARIMA model. 
We create a new class called ForecastArimaSubApp and update the tabs variable 
in the main StockExplorer class.

[[StockExplorer]]
@route(explore="*")
@templateArgs
def stock_explore_screen(self):
   tabs = [("Explore","StockExploreSubApp"),
           ("Moving Average", "MovingAverageSubApp"),
           ("ACF and PACF", "AutoCorrelationSubApp"),
            ("Forecast with ARIMA", "ForecastArimaSubApp")]
   ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode31.py

The ForecastArimaSubApp child PixieApp is composed of two screens. The first 
screen displays the time series chart as well as the ACF and the PACF charts. The 
goal of this screen is to provide the user with the necessary data exploration to figure 
out what are the values for the p, d, and q order of the ARIMA model, as explained 
in the previous section. By looking at the time series chart, we can figure out whether 
the time series is stationary (which, as a reminder, is a requirement for building 
the ARIMA model). If not, the user can click on the Add differencing button to try 
to make the DataFrame stationery by using a log differencing transformation. The 
three charts are then updated using the transformed DataFrame.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode31.py
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The following code shows the default route for the ForecastArimaSubApp child 
PixieApp:

from statsmodels.tsa.arima_model import ARIMA

@PixieApp
class ForecastArimaSubApp(BaseSubApp):
    def setup(self):
        self.entity_dataframe = self.parent_pixieapp.get_active_df().
copy()
        self.differencing = False
        
    def set_active_ticker(self, ticker):
        BaseSubApp.set_active_ticker(self, ticker)
        self.setup()

    @route()
    @BaseSubApp.add_ticker_selection_markup([])
    def main_screen(self):
        return """
<div class="page-header text-center">
    <h2>1. Data Exploration to test for Stationarity
        <button class="btn btn-default"
                pd_script="self.toggle_differencing()" pd_refresh>
            {%if this.differencing%}Remove differencing{%else%}Add 
differencing{%endif%}
        </button>
        <button class="btn btn-default"
                pd_options="do_forecast=true">
            Continue to Forecast
        </button>
    </h2>
</div>

<div class="row" style="min-height:300px">
    <div class="col-sm-10" id="chart{{prefix}}" pd_render_onload  
pd_options="show_chart=Adj. Close">
    </div>
</div>

<div class="row" style="min-height:300px">
    <div class="col-sm-6">
        <div class="page-header text-center">
            <h3>Auto-correlation Function</h3>
        </div>
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        <div id="chart_acf{{prefix}}" pd_render_onload  
pd_options="show_acf=true">
        </div>
    </div>
    <div class="col-sm-6">
        <div class="page-header text-center">
            <h3>Partial Auto-correlation Function</h3>
        </div>
        <div id="chart_pacf{{prefix}}" pd_render_onload  
pd_options="show_pacf=true">
        </div>
    </div>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode32.py

The preceding code follows a pattern that we should now be familiar with:

• Define a setup method that is guaranteed to be called when the PixieApp 
starts. In this method, we make a copy of the selected DataFrame obtained 
from the parent PixieApp. We also maintain a variable called self.
differencing that tracks whether the user clicked on the Add differencing 
button.

• We create a default route that shows the first screen that is composed of the 
following components:

 ° A header with two buttons: Add differencing for making the time 
series stationary and Continue to forecast to display the second 
screen which we'll discuss later. The Add differencing button 
toggles to Remove differencing when the differencing has been 
applied.

 ° A <div> element that invokes the show_chart route to display 
the time series chart.

 ° A <div> element that invokes the show_acf route to display the 
ACF chart.

 ° A <div> element that invokes the show_pacf route to display the 
PACF chart.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode32.py
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• We use an empty array [] as an argument to the @BaseSubApp.add_ticker_
selection_markup decorator to make sure that the entire screen is refreshed 
when the user selects another stock ticker, and to restart from the first screen. 
We also need to reset the internal variables. To achieve this, we made a 
change to the add_ticker_selection_markup to define a new method 
in BaseSubApp called set_active_ticker that is a wrapper method to the 
set_active_ticker from the parent PixieApp. The idea is to let subclasses 
override this method and inject extra code if needed. We also change the 
pd_script attribute for the tab element to invoke this method when the 
user selects a new ticker symbol as shown in the following code:

[[BaseSubApp]]
def add_ticker_selection_markup(refresh_ids):
        def deco(fn):
            def wrap(self, *args, **kwargs):
                return """
<div class="row" style="text-align:center">
    <div class="btn-group btn-group-toggle"
         style="border-bottom:2px solid #eeeeee"
         data-toggle="buttons">
        {%for ticker, state in this.parent_pixieapp.tickers.
items()%}
        <label class="btn btn-secondary {%if this.parent_pixieapp.
active_ticker == ticker%}active{%endif%}"
            pd_refresh=\"""" + ",".join(refresh_ids) + """\"  
pd_script="self.set_active_ticker('{{ticker}}')">
            <input type="radio" {%if this.parent_pixieapp.active_
ticker == ticker%}checked{%endif%}> 
                {{ticker}}
        </label>
        {%endfor%}
    </div>
</div>
                """ + fn(self, *args, **kwargs)
            return wrap
        return deco
    
    def set_active_ticker(self, ticker):
        self.parent_pixieapp.set_active_ticker(ticker)
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode33.py

In the ForecastArimaSubApp child PixieApp, we then override the set_active_
tracker method, first calling the super and then calling the self.setup() to 
reinitialize the internal variables:

[[ForecastArimaSubApp]]
def set_active_ticker(self, ticker):
        BaseSubApp.set_active_ticker(self, ticker)
        self.setup()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode34.py

The route implementation for the first forecast screen is pretty straightforward. 
The Add differencing / Remove differencing button has a pd_script attribute 
that calls the self.toggle_differencing() method and the pd_refresh attribute to 
update the entire page. It also defines the three <div> elements that respectively call 
the show_chart, show_acf, and show_pacf routes as shown in the following code:

[[ForecastArimaSubApp]]
@route()
    @BaseSubApp.add_ticker_selection_markup([])
    def main_screen(self):
        return """
<div class="page-header text-center">
  <h2>1. Data Exploration to test for Stationarity
    <button class="btn btn-default"
            pd_script="self.toggle_differencing()" pd_refresh>
    {%if this.differencing%}Remove differencing{%else%}Add 
differencing{%endif%}
    </button>
    <button class="btn btn-default" pd_options="do_forecast=true">
        Continue to Forecast
    </button>
  </h2>
</div>

<div class="row" style="min-height:300px">
  <div class="col-sm-10" id="chart{{prefix}}" pd_render_onload  
pd_options="show_chart=Adj. Close">

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode34.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode34.py


Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[ 360 ]

  </div>
</div>

<div class="row" style="min-height:300px">
    <div class="col-sm-6">
        <div class="page-header text-center">
            <h3>Auto-correlation Function</h3>
        </div>
        <div id="chart_acf{{prefix}}" pd_render_onload  
pd_options="show_acf=true">
        </div>
    </div>
    <div class="col-sm-6">
      <div class="page-header text-center">
         <h3>Partial Auto-correlation Function</h3>
      </div>
      <div id="chart_pacf{{prefix}}" pd_render_onload  
pd_options="show_pacf=true">
      </div>
    </div>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode35.py

The toggle_differencing() method tracks the current differencing state with 
the self.differencing variable and either makes a copy of the active DataFrame 
from the parent_pixieapp or applies a log differencing transformation to the self.
entity_dataframe variable as shown in the following code:

def toggle_differencing(self):
   if self.differencing:
       self.entity_dataframe = self.parent_pixieapp.get_active_df().
copy()

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode35.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode35.py
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       self.differencing = False
   else:
       log_df = np.log(self.entity_dataframe['Adj. Close'])
       log_df.index = self.entity_dataframe['Date']
       self.entity_dataframe = pd.DataFrame(log_df - log_df.shift()).
reset_index()
       self.entity_dataframe.dropna(inplace=True)
       self.differencing = True

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode36.py

The show_acf and show_pacf routes are pretty straightforward. They respectively 
call the smt.graphics.plot_acf and smt.graphics.plot_pacf methods. They 
also use the @captureOutput decorator to pass through the chart image to the 
target widget:

@route(show_acf='*')
@captureOutput
def show_acf_screen(self):
    smt.graphics.plot_acf(self.entity_dataframe['Adj. Close'], 
lags=50)

@route(show_pacf='*')
@captureOutput
def show_pacf_screen(self):
    smt.graphics.plot_pacf(self.entity_dataframe['Adj. Close'], 
lags=50)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode37.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode36.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode36.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode37.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode37.py
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The following screenshot shows the data exploration page of the forecast 
child PixieApp without the differencing:

First forecast screen without applying differencing
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As expected, the charts are consistent with a time series that is not stationary. 
When the user clicks on the Add differencing button, the following screen is shown:

First forecast screen with differencing applied
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The next step is to implement the do_forecast route that is invoked by the 
Continue to Forecast button. This route is responsible for building the ARIMA 
model; it starts by showing a configuration page with three input texts that let 
the user enter the p, d, and q orders, which have been inferred by looking at the 
charts in the data exploration screen. We add a Go button to proceed with the 
model building using the build_arima_model route which we'll discuss later 
in this section. The header also has a Diagnose Model button that invokes another 
page responsible for evaluating the accuracy of the model.

The implementation of the do_forecast route is shown here. Note that we use 
the add_ticker_selection_markup with an empty array to refresh the entire 
page when the user selects another stock ticker:

[[ForecastArimaSubApp]] 
@route(do_forecast="true")
    @BaseSubApp.add_ticker_selection_markup([])
    def do_forecast_screen(self):
        return """
<div class="page-header text-center">
    <h2>2. Build Arima model
        <button class="btn btn-default"
                pd_options="do_diagnose=true">
            Diagnose Model
        </button>
    </h2>
</div>
<div class="row" id="forecast{{prefix}}">
    <div style="font-weight:bold">Enter the p,d,q order for the ARIMA 
model you want to build</div>

    <div class="form-group" style="margin-left: 20px">
        <label class="control-label">Enter the p order for the 
AR model:</label>
        <input type="text" class="form-control"
               id="p_order{{prefix}}"
               value="1" style="width: 100px;margin-left:10px">

        <label class="control-label">Enter the d order for the 
Integrated step:</label>
        <input type="text" class="form-control"
               id="d_order{{prefix}}" value="1"
               style="width: 100px;margin-left:10px">

        <label class="control-label">Enter the q order for the 
MA model:</label>
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        <input type="text" class="form-control" 
               id="q_order{{prefix}}" value="1"
               style="width: 100px;margin-left:10px">
    </div>

    <center>
        <button class="btn btn-default"
               pd_target="forecast{{prefix}}"
            pd_options="p_order=$val(p_order{{prefix}});d_
order=$val(p_order{{prefix}});q_order=$val(p_order{{prefix}})">
        Go
        </button>
    </center>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode38.py

The following screenshot shows the configuration page of the Build ARIMA 
model page:

Configuration page of the Build Arima model page

The Go button has a pd_options attribute that invokes a route with three states: 
p_order, d_order, and q_order with values taken from the three input boxes 
associated with each attribute.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode38.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode38.py
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The route for building the ARIMA model is shown in the following code. It 
starts by splitting the active DataFrame into a training and test set, withholding 
14 observations for the test set. It then builds the model and computes the residual 
errors. Once the model is successfully built, we return an HTML markup that 
contains a chart showing the predicted values for the training set versus the actual 
values in the training set. This is done by calling the plot_predict route. Finally, 
we also show statistics about the residual errors for the model by creating a <div> 
element with a pd_entity attribute pointing to the residuals variable with a <pd_
options> child element that configures a table view of all the statistics

The chart showing the predictions versus the actual training set is using the plot_
predict route which calls the plot_predict method we created earlier in the 
Notebook. We also use the @captureOutput decorator to dispatch the chart image 
to the correct widget.

The implementation of the plot_predict route is shown here:

    @route(plot_predict="true")
    @captureOutput
    def plot_predict(self):
        plot_predict(self.arima_model, self.train_set['Date'], 100)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode39.py

The build_arima_model route implementation is shown here:

@route(p_order="*",d_order="*",q_order="*")
def build_arima_model_screen(self, p_order, d_order, q_order):
    #Build the arima model
    self.train_set = self.parent_pixieapp.get_active_df()[:-14]
    self.test_set = self.parent_pixieapp.get_active_df()[-14:]
    self.arima_model = ARIMA(
        self.train_set['Adj. Close'], dates=self.train_set['Date'],
        order=(int(p_order),int(d_order),int(q_order))

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode39.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode39.py
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    ).fit(disp=0)
    self.residuals = self.arima_model.resid.describe().to_frame().
reset_index()
    return """
<div class="page-header text-center">
    <h3>ARIMA Model succesfully created</h3>
<div>
<div class="row">
    <div class="col-sm-10 col-sm-offset-3">
        <div pd_render_onload pd_options="plot_predict=true">
        </div>
        <h3>Predicted values against the train set</h3>
    </div>
</div>
<div class="row">
    <div pd_render_onload pd_entity="residuals">
        <pd_options>
        {
          "handlerId": "tableView",
          "table_noschema": "true",
          "table_nosearch": "true",
          "table_nocount": "true"
        }
        </pd_options>
    </div>
    <h3><center>Residual errors statistics</center></h3>
<div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode40.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode40.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode40.py
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The following screenshot shows the result for the Build Arima model page:

Model building page

The final screen of the forecast child app is the diagnose model screen invoked by the 
do_diagnose route. In this screen, we simply display a line chart for the DataFrame 
returned by the compute_test_set_predictions method we created earlier in the 
Notebook with the train_set and test_set variables. The <div> element for this 
chart is using a pd_entity attribute that calls an intermediary class method called 
compute_test_set_predictions. It also has a <pd_options> child element with 
the display() options for showing the line chart.
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The following code shows the implementation of the do_diagnose_screen route:

    def compute_test_set_predictions(self):
        return compute_test_set_predictions(self.train_set,  
self.test_set)

    @route(do_diagnose="true")
    @BaseSubApp.add_ticker_selection_markup([])
    def do_diagnose_screen(self):
        return """
<div class="page-header text-center"><h2>3. Diagnose the model against 
the test set</h2></div>
<div class="row">
    <div class="col-sm-10 center" pd_render_onload pd_entity= 
"compute_test_set_predictions()">
        <pd_options>
        {
          "keyFields": "Date",
          "valueFields": "forecast,test",
          "handlerId": "lineChart",
          "rendererId": "bokeh",
          "noChartCache": "true"          
        }
        </pd_options>
    </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%208/sampleCode41.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode41.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/sampleCode41.py


Analytics Study: Prediction - Financial Time Series Analysis and Forecasting

[ 370 ]

The following screenshot shows the results of the diagnose page:

Model diagnose screen

In this section, we have shown how to improve the StockExplorer sample 
PixieApp to include forecasting capabilities using the ARIMA model. Incidentally, 
we've demonstrated how to use the PixieApp programming model to create 
a three-step wizard that first performs some data exploration, then configures 
the parameters of the model and builds it and finally diagnoses the model 
against the test set.

The complete implementation of the notebook can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/
master/chapter%208/StockExplorer%20-%20Part%202.ipynb

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%208/StockExplorer%20-%20Part%202.ipynb
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Summary
In this chapter, we touched upon the topic of time series analysis and forecasting. 
Of course, we've only scratched the surface, and there is certainly much more to 
explore. It is also a very important field for the industry, especially in the finance 
world, with very active research. For example, we see more and more data scientists 
trying to build time series forecasting models based on recurrent neural network 
(https://en.wikipedia.org/wiki/Recurrent_neural_network) algorithms, 
with great success. We've also demonstrated how Jupyter Notebooks combined with 
PixieDust and the ecosystem of libraries, such as pandas, numpy, and statsmodels, 
help accelerate the development of analytics as well as its operationalization into 
applications that are consumable by the line of business user.

In the next chapter, we will look at another important data science use case: graphs. 
We'll build a sample application related to flight travel and discuss how and 
when we should apply graph algorithms to solve data problems.

https://en.wikipedia.org/wiki/Recurrent_neural_network
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Analytics Study: Graph 
Algorithms - US Domestic 

Flight Data Analysis
"It is a capital mistake to theorize before one has data."

                                                              – Sherlock Holmes

In this chapter, we focus on a fundamental computer science data model called graphs 
and the different types of algorithm commonly used on them. As a data scientist or 
developer, it is very important to be familiar with graphs and quickly recognize when 
they provide the right solution to solve a particular data problem. For example, graphs 
are very well suited to GPS-based applications such as Google Maps, to find the best 
route from point A to point B, taking into account all kinds of parameters, including 
whether the user is driving, walking or taking public transport, or whether the user 
wants the shortest route or one that maximizes the use of highways regardless of 
overall distance. Some of these parameters can also be real-time parameters, such 
as traffic conditions, and the weather. Another important class of applications that 
uses graphs is social networks, such as Facebook or Twitter, where vertices represent 
individuals and edges represent relationships, such as is a friend, and follows.

We'll start this chapter with a high-level introduction to graphs and associated graph 
algorithms. We'll then introduce networkx which is a Python library that makes it 
easy to load, manipulate, and visualize graph data structures as well as provide a rich 
set of graph algorithms. We'll continue the discussion by building sample analytics 
that analyzes US flight data using various graph algorithms where airports are used 
as vertices and flights as edges. As always, we'll also operationalize these analytics 
by building a simple dashboard PixieApp. We'll finish this chapter by building a 
forecasting model applying time series techniques we've learned in Chapter 8, Analytics 
Study: Prediction - Financial Time Series Analysis and Forecasting to historical flight data.
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Introduction to graphs
The introduction of graphs and the associated graph theory is widely attributed 
to Leonhard Euler in 1736 when he worked on the problem of the Seven 
Bridges of Königsberg (https://en.wikipedia.org/wiki/Seven_Bridges_
of_K%C3%B6nigsberg).

The city was divided by the Pregel river which at some point formed two islands, 
and seven bridges were built according to the layout shown in the following 
diagram. The problem was to find a way for a person to walk across each and 
every bridge once and only once and come back to the starting point. Euler 
proved that there was no solution to this problem and while doing this gave 
birth to graph theory. The fundamental idea was to transform the city diagram into 
a graph where each land mass is a vertex, and each bridge is an edge that linked two 
vertices (that is, land mass). The problem was then reduced to finding a path, which 
is a continuous sequence of edges and vertices, that contains each and every bridge 
only once.

The following diagram shows how Euler simplified the Seven Bridges of Königsberg 
problem into a graph problem:

Simplifying the Seven Bridges of Königsberg problem into a graph problem

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
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Using a more formal definition, graphs are the data structures that represent 
pairwise relationships (called edges) between objects (called vertices or nodes). 
It is common to use the following notation to represent a graph: G = (V, E) where  
V is the set of vertices and E is the set of edges.

There are mainly two broad categories of graphs:

• Directed graphs (called digraphs): The order in the pairwise relationship 
matters, that is, the edge (A-B) going from vertex A to vertex B is different 
from the edge (B-A) going from vertex B to vertex A.

• Undirected graphs: The order in the pairwise relationship doesn't matter, 
that is, edge (A-B) is the same as an edge (B-A).

The following diagram shows the representation of a sample graph both 
as undirected (edges have no arrows) and directed (edges have arrows):

Graph representations
There are mainly two ways of representing a graph:

• Adjacency matrix: Represents the graph using an n by n matrix (we'll call 
it A), where n is the number of vertices in the graph. The vertices are indexed 
using 1 to n integers. We use , 1i jA = to denote that an edge exists between 
vertex i and vertex j and , 0i jA =  to denote that no edge exists between 
vertex i and vertex j. In the case of undirected graphs, we would always  
have ,i jA =  ,j iA  because the order doesn't matter. However, in the case of 
digraphs where order matters, Ai,j may be different from Aj,i.
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The following example shows how to represent a sample graph in 
an adjacency matrix both directed and undirected:

Adjacency matrix representation of a graph (both directed and undirected)

It is important to note that the adjacency matrix representation has a constant 
space complexity which is ( )2O n  where n is the number of vertices, but it 
has a time complexity of O(1) which is constant time to compute whether 
two vertices are connected with an edge between them. The high space 
complexity might be OK when the graph is dense (lots of edges) but could 
be a waste of space when the graph is sparse, in which case we might prefer 
the following adjacency list representation.

Note: The big O notation (https://en.wikipedia.org/wiki/
Big_O_notation) is commonly used in code analysis to represent the 
performance of an algorithm by evaluating its behavior as the input size 
grows. It is used both for evaluating running time (number of instructions 
needed to run the algorithm) and space requirements (how much storage 
will it need over time).

• Adjacency list: For each vertex, we maintain a list of all the vertices 
connected by an edge. In the case of an undirected graph, each edge 
is represented twice, one for each endpoint, which is not the case for 
a digraph where the order matters.

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
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The following figure shows the adjacency list representation of a graph, 
both directed and undirected:

Adjacency list representation of a graph (both directed and undirected)

Contrary to the adjacency matrix representation, the adjacency list 
representation has a smaller space complexity which is O (m + n) where 
m is the number of edges and n is the number of vertices. However, the 
time complexity increases to O(m) compared to O(1) for the adjacency matrix. 
For these reasons, it is preferable to use the adjacency list representation 
when the graph is sparsely connected (that is, doesn't have a lot of edges).

As hinted in the preceding discussion, which graph representation to use depends 
heavily on the graph density but also on the type of algorithms we are planning 
to use. In the next section, we discuss the most commonly used graph algorithms.

Graph algorithms
The following is a list of the most commonly used graph algorithms:

• Search: In the context of the graph, searching means finding paths between 
two vertices. A path is defined as a continuous sequence of edges and vertices. 
The motivation for searching paths in a graph can be multiple; it could be that 
you're interested in finding the shortest path according to some predefined 
distance criteria, such as the minimum number of edges (for example, GPS 
route mapping) or you simply want to know that a path between two vertices 
exists (for example, ensure that every machine in a network is reachable from 
any other machine). A generic algorithm to search for a path is to start from 
the given vertex, discover all the vertices that are connected to it, mark the 
discovered vertices as explored (so we don't find them twice) and continue 
the same exploration for each discovered vertex until we find the target vertex, 
or we run out of vertices. There are two commonly used flavors of this search 
algorithm: Breadth First Search and Depth First Search, each having their 
own use cases for which they are better suited. The difference between these 
two algorithms consists of the way we find the unexplored vertices:
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 ° Breadth First Search (BFS): The unexplored nodes that are immediate 
neighbors are explored first. When the immediate neighborhood 
has been explored, start exploring the neighborhood of each node 
in the layer, until the end of the graph is reached. Because we are 
exploring all vertices that are directly connected first, this algorithm 
guarantees to find the shortest path which corresponds to the number 
of neighborhoods found. An extension to BFS is the famous Dijkstra 
shortest path algorithm where each edge is associated with a non-
negative weight. In this case, the shortest path may not be the one 
with the least number of hops but rather a path that minimizes the 
sum of all weights. One example application of the Dijkstra shortest 
path is to find the shortest route between two points on a map.

 ° Depth First Search (DFS): For each immediate neighbor vertex, 
aggressively explore its neighbors first going as deeply as you 
can and then start backtracking when you run out of neighbors. 
Example of applications for DFS include finding the topological 
sort and strongly connected components of a digraph. For reference, 
a topological sort is a linear ordering of the vertices such that each 
vertex in the linear order follows the edge direction of the next one 
(that is, it doesn't move backward). See https://en.wikipedia.
org/wiki/Topological_sorting for more information.

The following diagram demonstrates the differences in finding the 
unexplored nodes between BFS and DFS:

Order of finding unexplored vertices in BFS and DFS

• Connected components and strongly connected components: Connected 
components of a graph are groups of vertices where there is a path between 
any two vertices. Note that the definition only specifies that a path must exist 
which means that two vertices do not have to have an edge between them 
as long as a path exists. In the case of a digraph, the connected component 
is called a strongly connected component because of the additional direction 
constraint that requires that not only should any vertex A have a path to any 
other vertex B, but that B must also have a path to A.

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Topological_sorting
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The following diagram shows the strongly connected components 
or a sample directed graph:

Strongly connected components of a directed graph

• Centrality: The centrality indicator of a vertex provides an indication of 
how important the vertex is with regard to the other vertices in the graph. 
There are multiple important applications for these centrality indices. For 
example, identifying the most influential person in a social network or 
ranking a web search by pages that are the most important, and so on.
There are multiple indices of centrality, but we'll focus on the following 
four that we'll use later in this chapter:

 ° Degree: The degree of a vertex is the number of edges for which 
the vertex is one of the endpoints. In the case of a digraph, it's the 
number of edges for which the vertex is either a source or a target, 
and we call indegree the number of edges for which the vertex 
is a target and outdegree the number of edges for which the vertex 
is a source.

 ° PageRank: This is the famous algorithm developed by the founders 
of Google, Larry Page, and Sergey Brin. PageRank is used to rank 
the search results by providing a measure of importance for a given 
website that includes counting the number of links to that website 
from other websites. It also factors in an estimation of the quality 
of these links (that is, how trustworthy is the site linking to yours).

 ° Closeness: Closeness centrality is inversely proportional to the 
average length of the shortest path between the given vertex and 
all the other vertices in the graph. The intuition is that the closer 
a vertex is to all the other nodes, the more important it is.
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The closeness centrality can be calculated with the following simple 
equation:

( )
( )
1
,

y

C x
d y x

=
∑

(Source: https://en.wikipedia.org/wiki/Centrality#Closeness_centrality)

Where d(y,x) is the length of the edge between node x and y.
 ° Shortest path betweenness: Measure based on how many times 

the given vertex is part of the shortest path between any two nodes. 
The intuition is that the more a vertex contributes to shortest paths, 
the more important it is. The mathematical equation for shortest 
path betweenness is provided here:
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(Source: https://en.wikipedia.org/wiki/Centrality#Betweenness_centrality)

Where stσ  is the total number of shortest paths from vertex s to vertex 
t and ( )st vσ  is the subset of stσ  that pass through v.

Note: More information on centrality can be found here:
https://en.wikipedia.org/wiki/Centrality

Graph and big data
Our graph discussion has so far focused on data that can fit into a single machine, 
but what happens when we have very large graphs with billions of vertices and 
edges where loading the entire data into memory would not be possible? A natural 
solution would be to distribute the data across a cluster of multiple nodes which 
process the data in parallel and have the individual results merged to form the final 
answer. Fortunately, there are multiple frameworks that provide such graph-parallel 
capabilities, and they pretty much all include the implementation for most of the 
commonly-used graph algorithms. Examples of popular open-source frameworks are 
Apache Spark GraphX (https://spark.apache.org/graphx) and Apache Giraph 
(http://giraph.apache.org) which is currently used by Facebook to analyze its 
social network. 

https://en.wikipedia.org/wiki/Centrality#Closeness_centrality
https://en.wikipedia.org/wiki/Centrality
https://spark.apache.org/graphx
http://giraph.apache.org
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Without diving into too much detail, it's important to know that these frameworks 
are all inspired from the bulk synchronous parallel (BSP) model of distributed 
computation (https://en.wikipedia.org/wiki/Bulk_synchronous_parallel) 
which uses messages between machines to find vertices across the cluster. The 
key point to remember is that these frameworks are usually very easy to use, 
for example, it would have been fairly easy to write this chapter's analytics using 
Apache Spark GraphX.

In this section, we've reviewed only a fraction of all the graph algorithms available 
and going deeper would be beyond the scope of this book. Implementing these 
algorithms yourself would take a considerable amount of time, but fortunately, there 
are plenty of open source libraries that provide fairly complete implementations 
of the graph algorithms and that are easy to use and integrate into your application. 
In the rest of this chapter, we'll use the networkx open source Python library.

Getting started with the networkx graph 
library
Before we start, if not already done, we need to install the networkx library using 
the pip tool. Execute the following code in its own cell:

!pip install networkx

Note: As always, don't forget to restart the kernel after the installation 
is complete.

Most of the algorithms provided by networkx are directly callable from the 
main module. Therefore a user will only need the following import statement:

import networkx as nx

https://en.wikipedia.org/wiki/Bulk_synchronous_parallel
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Creating a graph
As a starting point, let's review the different types of graphs supported by networkx 
and the constructors that create empty graphs:

• Graph: An undirected graph with only one edge between vertices allowed. 
Self-loop edges are permitted. Constructor example:
G = nx.Graph()

• Digraph: Subclass of Graph that implements a directed graph. Constructor 
example:
G = nx.DiGraph()

• MultiGraph: Undirected graph that allows multiple edges between vertices. 
Constructor example:
G = nx.MultiGraph()

• MultiDiGraph: Directed graph that allows multiples edges between vertices. 
Constructor example:

G = nx.MultiDiGraph()

The Graph class provides many methods for adding and removing vertices and 
edges. Here is a subset of the available methods:

• add_edge(u_of_edge, v_of_edge, **attr): Add an edge between vertex 
u and vertex v, with optional additional attributes that will be associated 
with the edge. The vertices u and v will automatically be created if they 
don't already exist in the graph.

• remove_edge(u, v): Remove the edge between u and v.
• add_node(self, node_for_adding, **attr): Add a node to the graph 

with optional additional attributes.
• remove_node(n): Remove the node identified by the given argument n.
• add_edges_from(ebunch_to_add, **attr): Add multiple edges in bulk 

with optional additional attributes. The edges must be given as a list of two-
tuples (u,v) or three-tuples (u,v,d) where d is the dictionary that contains 
edge data.

• add_nodes_from(self, nodes_for_adding, **attr): Add multiple 
nodes in bulk with optional additional attributes. The nodes can be provided 
as a list, dict, set, array, and so on.
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As an exercise, let's build the directed graph we've been using as a sample from 
the beginning:

Sample graph to be created programmatically using networkx

The following code starts by creating a DiGraph() object, adds all the nodes in 
one call using the add_nodes_from() method, and then starts adding the edges 
using, for illustration, a combination of add_edge() and add_edges_from():

G = nx.DiGraph()
G.add_nodes_from(['A', 'B', 'C', 'D', 'E'])
G.add_edge('A', 'B')
G.add_edge('B', 'B')
G.add_edges_from([('A', 'E'),('A', 'D'),('B', 'C'),('C', 'E'), 
('D', 'C')])

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode1.py

The Graph class also provides easy access to its properties through variable class 
views. For example, you can iterate over the vertices and edges of a graph using 
G.nodes and G.edges, but also access an individual edge with the following 
notation: G.edges[u,v].

The following code iterates over the nodes of a graph and prints them:

for n in G.nodes:
    print(n)

The networkx library also provides a rich set of prebuilt graph generators that 
can be useful for testing your algorithms. For example, you can easily generate 
a complete graph using the complete_graph() generator as shown in the 
following code:

G_complete = nx.complete_graph(10)

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode1.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode1.py
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You can find a complete list of all the available graph generators here:
https://networkx.github.io/documentation/networkx-2.1/
reference/generators.html#generators

Visualizing a graph
NetworkX supports multiple rendering engines including Matplotlib, Graphviz 
AGraph (http://pygraphviz.github.io) and Graphviz with pydot (https://
github.com/erocarrera/pydot). Even though Graphviz provides very powerful 
drawing capabilities, I found it very hard to install. Matplotlib, however, is already 
preinstalled in Jupyter Notebooks which gets you started very quickly.

The core drawing function is called draw_networkx which takes a graph as an 
argument and a bunch of optional keyword arguments that let you style the 
graph, such as color, width, and the label font of the nodes and edges. The overall 
layout of the graph drawing is configured by passing the GraphLayout object 
through the pos keyword argument. The default layout is spring_layout (which 
uses a force-directed algorithm), but NetworkX supports many others, including 
circular_layout, random_layout, and spectral_layout. You can find a list of 
all the available layouts here: https://networkx.github.io/documentation/
networkx-2.1/reference/drawing.html#module-networkx.drawing.layout.

For convenience, networkx encapsulates each of these layouts into its own high-level 
drawing methods that call reasonable default values so that the caller doesn't have 
to deal with the intricacies of each of these layouts. For example, the draw() method 
will draw the graph with a sprint_layout, draw_circular() with a circular_
layout, and draw_random()with a random_layout.

In the following sample code, we use the draw() method to visualize the  
G_complete graph we created earlier:

%matplotlib inline
import matplotlib.pyplot as plt
nx.draw(G_complete, with_labels=True)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode2.py

https://networkx.github.io/documentation/networkx-2.1/reference/generators.html#generators
https://networkx.github.io/documentation/networkx-2.1/reference/generators.html#generators
http://pygraphviz.github.io
https://github.com/erocarrera/pydot
https://github.com/erocarrera/pydot
https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html#module-networkx.drawing.layout
https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html#module-networkx.drawing.layout
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode2.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode2.py
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The results are shown in the following output:

Drawing of a complete graph with 10 nodes

Drawing graphs with networkx is both easy and fun, and because it's using 
Matplotlib, you can beautify them even further using the Matplotlib drawing 
capabilities. I encourage the reader to experiment further by visualizing different 
graphs in a Notebook. In the next section, we'll start implementing a sample 
application that analyzes flight data using graph algorithms.

Part 1 – Loading the US domestic flight 
data into a graph
To initialize the Notebook, let's run the following code, in its own cell, to import 
the packages which we'll be using quite heavily in the rest of this chapter:

import pixiedust
import networkx as nx
import pandas as pd
import matplotlib.pyplot as plt

We'll also be using the 2015 Flight Delays and Cancellations dataset available on 
the Kaggle website at this location: https://www.kaggle.com/usdot/datasets. 
The dataset is composed of three files:

• airports.csv: List of all U.S. airports including their IATA code 
(International Air Transport Association: https://openflights.org/
data.html), city, state, longitude, and latitude.

• airlines.csv: List of U.S. airlines including their IATA code.
• flights.csv: List of flights that occurred in 2015. This data includes date, 

origin and destination airports, scheduled and actual times, and delays.

https://www.kaggle.com/usdot/datasets
https://openflights.org/data.html
https://openflights.org/data.html
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The flights.csv file contains close to 6 million records, which need to be cleaned 
up to remove all flights that do not have an IATA three letter code in the origin or 
destination airport. We also want to remove the rows that have a missing value in 
the ELAPSED_TIME column. Failure to do so would cause problems when we load 
the data into a graph structure. Another issue is that the dataset contains a few time 
columns, such as DEPARTURE_TIME, and ARRIVAL_TIME, and to save space, these 
columns only store the time in HHMM format, while the actual date is stored in the 
YEAR, MONTH, and DAY column. One of the analyses we will do in this chapter will 
need a complete datetime for the DEPARTURE_TIME, and since it is a time-consuming 
operation to do this transformation, we do it now and store it in the processed 
version of flights.csv that we'll store on GitHub. This operation uses the pandas 
apply() method that is called with the to_datetime() function and axis=1 
(indicating that the transformation is applied on each row).

Another issue is that we want to store the files on GitHub, but there is a maximum 
file size limitation of 100 M. So, to make the file smaller than 100 M, we also remove 
some of the columns that won't be needed in the analysis we're trying to build and 
then zip the file before storing it on GitHub. Of course, another benefit is that the 
DataFrame will load faster with a smaller file.

After downloading the files from the Kaggle website, we run the following code 
which first loads the CSV file into a pandas DataFrame, remove the unwanted 
rows and columns, and write the data back to a file:

Note: The original data is stored in a file called flights.raw.csv.
Running the following code may take some time due to the large size 
of the file which contains 6 million records.

import pandas as pd
import datetime
import numpy as np

# clean up the flights data in flights.csv
flights = pd.read_csv('flights.raw.csv', low_memory=False)

# select only the rows that have a 3 letter IATA code in the ORIGIN 
and DESTINATION airports
mask = (flights["ORIGIN_AIRPORT"].str.len() == 3) & 
(flights["DESTINATION_AIRPORT"].str.len() == 3)
flights = flights[ mask ]

# remove the unwanted columns
dropped_columns=["SCHEDULED_DEPARTURE","SCHEDULED_TIME",
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"CANCELLATION_REASON","DIVERTED","DIVERTED","TAIL_NUMBER",
"TAXI_OUT","WHEELS_OFF","WHEELS_ON",
"TAXI_IN","SCHEDULED_ARRIVAL", "ARRIVAL_TIME", "AIR_SYSTEM_
DELAY","SECURITY_DELAY",
"AIRLINE_DELAY","LATE_AIRCRAFT_DELAY", "WEATHER_DELAY"]
flights.drop(dropped_columns, axis=1, inplace=True)

# remove the row that have NA in the ELAPSED_TIME column
flights.dropna(subset=["ELAPSED_TIME"], inplace=True)

# remove the row that have NA in the DEPARTURE_TIME column
flights.dropna(subset=["ELAPSED_TIME"], inplace=True)

# Create a new DEPARTURE_TIME columns that has the actual datetime
def to_datetime(row):
    departure_time = str(int(row["DEPARTURE_TIME"])).zfill(4)
    hour = int(departure_time[0:2])
    return datetime.datetime(year=row["YEAR"], month=row["MONTH"],
                             day=row["DAY"],
                             hour = 0 if hour >= 24 else hour,
                             minute=int(departure_time[2:4])
                            )
flights["DEPARTURE_TIME"] = flights.apply(to_datetime, axis=1)

# write the data back to file without the index
flights.to_csv('flights.csv', index=False)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode3.py

Note: As documented in the pandas.read_csv documentation 
(http://pandas.pydata.org/pandas-docs/version/0.23/
generated/pandas.read_csv.html), we use the keyword argument 
low_memory=False to make sure the data is not loaded in chunks 
which could cause problems with type inference, especially with very 
large files.

For convenience, the three files are stored at the following GitHub location: 
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/
chapter%209/USFlightsAnalysis.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode3.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode3.py
http://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.read_csv.html
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%209/USFlightsAnalysis
https://github.com/DTAIEB/Thoughtful-Data-Science/tree/master/chapter%209/USFlightsAnalysis
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The following code uses the pixiedust.sampleData() method to load the data into 
three pandas DataFrames corresponding to airlines, airports, and flights:

airports = pixiedust.sampleData("https://github.com/DTAIEB/Thoughtful-
Data-Science/raw/master/chapter%209/USFlightsAnalysis/airports.csv")
airlines = pixiedust.sampleData("https://github.com/DTAIEB/Thoughtful-
Data-Science/raw/master/chapter%209/USFlightsAnalysis/airlines.csv")
flights = pixiedust.sampleData("https://github.com/DTAIEB/Thoughtful-
Data-Science/raw/master/chapter%209/USFlightsAnalysis/flights.zip")

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode4.py

Note: The GitHub URL uses the /raw/ segment which indicates that 
we want to download the raw file as opposed to the HTML for the 
corresponding GitHub page.

The next step is to load the data into a networkx directed weighted graph object 
using the flights DataFrame as the edge list and the values from the ELAPSED_TIME 
column as the weight. We first deduplicate all the flights that have the same airports 
as origin and destination, by grouping them using the pandas.groupby() method 
with a multi-index that has ORIGIN_AIRPORT and DESTINATION_AIRPORT as the keys. 
We then select the ELAPSED_TIME column from the DataFrameGroupBy object and 
aggregate the results using the mean() method. This will give us a new DataFrame 
that has the mean average ELAPSED_TIME for each flight with the same origin and 
destination airport:

edges = flights.groupby(["ORIGIN_AIRPORT","DESTINATION_AIRPORT"]) 
[["ELAPSED_TIME"]].mean()
edges

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode5.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode4.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode5.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode5.py
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The results are shown in the following screenshot:

Flights grouped by origin and destination with mean average ELAPSED_TIME

Before using this DataFrame to create the directed graph, we need to reset the 
index from a multi-index to a regular single index converting the index columns into 
regular columns. For that, we simply use the reset_index() method as shown here:

edges = edges.reset_index()
edges

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode6.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode6.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode6.py
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We now have a DataFrame with the right shape, ready to be used to create the 
directed graph, as shown in the following screenshot:

Flights grouped by origin and destination with mean average ELAPSED_TIME and a single index

To create the directed weighted graph, we use the NetworkX from_pandas_
edgelist() method which takes a pandas DataFrame as the input source. We also 
specify the source and target columns, as well as the weight column (in our case 
ELAPSED_TIME). Finally, we tell NetworkX that we want to create a directed graph 
by using the create_using keyword arguments, passing an instance of DiGraph 
as a value.

The following code shows how to call the from_pandas_edgelist() method:

flight_graph = nx.from_pandas_edgelist(
    flights, "ORIGIN_AIRPORT","DESTINATION_AIRPORT",
    "ELAPSED_TIME",
    create_using = nx.DiGraph() )
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You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode7.py

Note: NetworkX supports the creation of graphs by converting from 
multiple formats including dictionaries, lists, NumPy and SciPy matrices 
and of course pandas. You can find more information about these 
conversion capabilities here:

https://networkx.github.io/documentation/networkx-2.1/
reference/convert.html

We can quickly validate that our graph has the right values by directly printing 
its nodes and edges:

print("Nodes: {}".format(flight_graph.nodes))
print("Edges: {}".format(flight_graph.edges))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode8.py

Which produces the following output (truncated):

Nodes: ['BOS', 'TYS', 'RKS', 'AMA', 'BUF', 'BHM', 'PPG', …, 
'CWA', 'DAL', 'BFL']
Edges: [('BOS', 'LAX'), ('BOS', 'SJC'), ..., ('BFL', 'SFO'), 
('BFL', 'IAH')]

We can also create better visualization by using the built-in drawing APIs available 
in networkx which support multiple rendering engines including Matplotlib, 
Graphviz AGraph (http://pygraphviz.github.io) and Graphviz with pydot 
(https://github.com/erocarrera/pydot).

For simplicity, we'll use the NetworkX draw() method which uses the readily 
available Matplotlib engine. To beautify the visualization, we configure it with 
proper width and height (12, 12) and add a colormap with vivid color (we use 
the cool and spring colormap from matplolib.cm, see: https://matplotlib.
org/2.0.2/examples/color/colormaps_reference.html).

The following code shows the implementation of the graph visualization:

import matplotlib.cm as cm
fig = plt.figure(figsize = (12,12))
nx.draw(flight_graph, arrows=True, with_labels=True,

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode7.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode7.py 
https://networkx.github.io/documentation/networkx-2.1/reference/convert.html
https://networkx.github.io/documentation/networkx-2.1/reference/convert.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode8.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode8.py
http://pygraphviz.github.io
https://github.com/erocarrera/pydot
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html
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        width = 0.5,style="dotted",
        node_color=range(len(flight_graph)),
        cmap=cm.get_cmap(name="cool"),
        edge_color=range(len(flight_graph.edges)),
        edge_cmap=cm.get_cmap(name="spring")
       )
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode9.py

Which produces the following results:

Quick visualization of our directed graph using Matplotlib

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode9.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode9.py
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In the preceding chart, the nodes are positioned using a default graph layout 
called spring_layout, which is a force-directed layout. One benefit of this layout 
is that it quickly reveals the nodes with the most edge connections which are 
located at the center of the graph. We can change the graph layout by using the 
pos keyword argument when calling the draw() method. networkx supports other 
types of layout including circular_layout, random_layout, shell_layout, 
and spectral_layout.

For example, using a random_layout:

import matplotlib.cm as cm
fig = plt.figure(figsize = (12,12))
nx.draw(flight_graph, arrows=True, with_labels=True,
        width = 0.5,style="dotted",
        node_color=range(len(flight_graph)),
        cmap=cm.get_cmap(name="cool"),
        edge_color=range(len(flight_graph.edges)),
        edge_cmap=cm.get_cmap(name="spring"),
        pos = nx.random_layout(flight_graph)
       )
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode10.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode10.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode10.py
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We get the following results:

Flight data graph using a random_layout

Note: You can find more information about these layouts here:
https://networkx.github.io/documentation/networkx-2.1/
reference/drawing.html

Graph centrality
The next interesting thing to analyze about the graph is its centrality indices which 
allow us to discover which nodes are the most important vertices. As an exercise, 
we'll compute four types of centrality index: degree, PageRank, closeness, and 
shortest path betweenness. We'll then augment the airports DataFrame to add 
a column for each of the centrality indices and visualize the results in a Mapbox 
map using PixieDust display().

Computing the degree of the digraph is very easy with networkx; simply use 
the degree property of the flight_graph object as follows:

print(flight_graph.degree)

https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html
https://networkx.github.io/documentation/networkx-2.1/reference/drawing.html
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This outputs an array of tuples with the airport code and the degree index as follows:

[('BMI', 14), ('RDM', 8), ('SBN', 13), ('PNS', 18), ………, ('JAC', 26), 
('MEM', 46)]

We now want to add a DEGREE column to the airport DataFrame that contains 
the degree value from the preceding array for each of the airport rows. To do that, 
we'll need to create a new DataFrame that has two columns: IATA_CODE and DEGREE 
and perform a pandas merge() operation on the IATA_CODE.

The merge operation is illustrated in the following diagram:

Merging the degree DataFrame to the airports DataFrame

The following code shows how to implement the aforementioned steps. We first 
create a JSON payload by iterating over the flight_path.degree output and use 
the pd.DataFrame() constructor to create the DataFrame. We then use pd.merge() 
using airports and degree_df as arguments. We also use the on argument with 
value IATA_CODE which is the key column we'll want to do the join on:

degree_df = pd.DataFrame([{"IATA_CODE":k, "DEGREE":v} for k,v in 
flight_graph.degree], columns=["IATA_CODE", "DEGREE"])
airports_centrality = pd.merge(airports, degree_df, on='IATA_CODE')
airports_centrality

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode11.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode11.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode11.py
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The results are shown in the following screenshot:

Airport DataFrame augmented with the DEGREE column

To visualize the data in a Mapbox map, we simply use PixieDust.display() on the 
airport_centrality DataFrame:

display(airports_centrality)

The following screenshot shows the options dialog:

Mapbox options for displaying the airports
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After clicking OK on the options dialog, we get the following results:

Showing the airport with degree centrality

For the other centrality indices, we can notice that the corresponding computation 
functions all return a JSON output (as opposed to an array for the degree attribute) 
with the IATA_CODE airport code as key and the centrality index as value.

For example, if we are computing the PageRank using the following code:

nx.pagerank(flight_graph)

We get the following results:

{'ABE': 0.0011522441195896051,
 'ABI': 0.0006671948649909588,
 ...
 'YAK': 0.001558809391270303,
 'YUM': 0.0006214341604372096}

With this in mind, instead of repeating the same steps as we did for degree, we can 
implement a generic function called compute_centrality() that takes the function 
that computes the centrality and a column name as arguments, create a temporary 
DataFrame that contains the computed centrality values, and merge it with the 
airports_centrality DataFrame.

The following code shows the implementation for compute_centrality():

from six import iteritems
def compute_centrality(g, centrality_df, compute_fn, col_name, *args, 
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**kwargs):
    # create a temporary DataFrame that contains the computed 
centrality values
    temp_df = pd.DataFrame(
        [{"IATA_CODE":k, col_name:v} for k,v in iteritems 
(compute_fn(g, *args, **kwargs))],
        columns=["IATA_CODE", col_name]
    )
    # make sure to remove the col_name from the centrality_df 
is already there
    if col_name in centrality_df.columns:
        centrality_df.drop([col_name], axis=1, inplace=True)
    # merge the 2 DataFrame on the IATA_CODE column
    centrality_df = pd.merge(centrality_df, temp_df, on='IATA_CODE')
    return centrality_df

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode12.py

We can now simply call the compute_centrality() method with the three compute 
functions nx.pagerank(), nx.closeness_centrality(), and nx.betweenness_
centrality() with the columns PAGE_RANK, CLOSENESS, and BETWEENNESS 
respectively as shown in the following code:

airports_centrality = compute_centrality(flight_graph, airports_
centrality, nx.pagerank, "PAGE_RANK")
airports_centrality = compute_centrality(flight_graph, airports_
centrality, nx.closeness_centrality, "CLOSENESS")
airports_centrality = compute_centrality(
    flight_graph, airports_centrality, nx.betweenness_centrality, 
"BETWEENNESS", k=len(flight_graph))
airports_centrality

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode13.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode12.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode13.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode13.py
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The airports_centrality DataFrame now has the extra columns as shown in the 
following output:

Airports DataFrame augmented with PAGE_RANK, CLOSENESS and BETWEENNESS values

As an exercise, we can verify that the four centrality indices provide consistent 
results for the top airports. Using the pandas nlargest() method, we can get the 
top 10 airports for the four indices as shown in the following code:

for col_name in ["DEGREE", "PAGE_RANK", "CLOSENESS", "BETWEENNESS"]:
    print("{} : {}".format(
        col_name,
        airports_centrality.nlargest(10, col_name)["IATA_CODE"].
values)
    )

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode14.py

Which produces the following results:

DEGREE : ['ATL' 'ORD' 'DFW' 'DEN' 'MSP' 'IAH' 'DTW' 'SLC' 'EWR' 'LAX']
PAGE_RANK : ['ATL' 'ORD' 'DFW' 'DEN' 'MSP' 'IAH' 'DTW' 'SLC' 'SFO' 
'LAX']
CLOSENESS : ['ATL' 'ORD' 'DFW' 'DEN' 'MSP' 'IAH' 'DTW' 'SLC' 'EWR' 
'LAX']
BETWEENNESS : ['ATL' 'DFW' 'ORD' 'DEN' 'MSP' 'SLC' 'DTW' 'ANC' 
'IAH' 'SFO']

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode14.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode14.py


Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[ 400 ]

As we can see, Atlanta airport comes up as the top airport for all centrality indices. 
As an exercise, let's create a generic method called visualize_neighbors() that 
visualizes all the neighbors of a given node and call it with the Atlanta node. In this 
method, we create a subgraph centered around the parent node by adding an edge 
from itself to all its neighbors. We use the NetworkX neighbors() method to get 
all the neighbors of a specific node.

The following code shows the implementation of the visualize_neighbors() 
method:

import matplotlib.cm as cm
def visualize_neighbors(parent_node):
    fig = plt.figure(figsize = (12,12))
    # Create a subgraph and add an edge from the parent node to all 
its neighbors
    graph = nx.DiGraph()
    for neighbor in flight_graph.neighbors(parent_node):
        graph.add_edge(parent_node, neighbor)
    # draw the subgraph
    nx.draw(graph, arrows=True, with_labels=True,
            width = 0.5,style="dotted",
            node_color=range(len(graph)),
            cmap=cm.get_cmap(name="cool"),
            edge_color=range(len(graph.edges)),
            edge_cmap=cm.get_cmap(name="spring"),
           )
    plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode15.py

We then call the visualize_neighbors() method on the ATL node:

visualize_neighbors("ATL")

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode15.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode15.py
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Which produces the following output:

Visualization of the top node ATL and its neighbors

We complete this Part 1 section by computing the shortest path between two 
nodes using the famous Dijkstra algorithm (https://en.wikipedia.org/wiki/
Dijkstra%27s_algorithm). We'll experiment with different weight attributes 
to check if we are getting different results.

As an example, let's compute the shortest path between Boston Logan Airport 
in Massachusetts (BOS) and Pasco Tri-Cities Airport in Washington (PSC) using 
the NetworkX dijkstra_path() method (https://networkx.github.io/
documentation/networkx-2.1/reference/algorithms/generated/networkx.
algorithms.shortest_paths.weighted.dijkstra_path.html).

We first use the ELAPSED_TIME column as the weight attribute:

Note: As a reminder, ELAPSED_TIME is the average flight time 
for each of the flights with the same origin and destination airports 
that we computed earlier in this section.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://networkx.github.io/documentation/networkx-2.1/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
https://networkx.github.io/documentation/networkx-2.1/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
https://networkx.github.io/documentation/networkx-2.1/reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html
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nx.dijkstra_path(flight_graph, "BOS", "PSC", weight="ELAPSED_TIME")

Which returns:

['BOS', 'MSP', 'PSC']

Unfortunately, the centrality indices we computed earlier are not part of the 
flight_graph DataFrame, so using it as the column name for the weight attribute 
won't work. However, the dijkstra_path() also allows us to use a function 
to dynamically compute the weight. Since we want to try for different centrality 
indices, we need to create a factory method (https://en.wikipedia.org/wiki/
Factory_method_pattern) that will create a function for a given centrality index 
passed as an argument. This argument is used as a closure for a nested wrapper 
function that conforms to the dijkstra_path() method's weight argument. We also 
use a cache dictionary to remember the computed weights for a given airport, since 
the algorithm will call the function multiple times for the same airport. If the weight 
is not in the cache, we look it up in the airports_centrality DataFrame using the 
centrality_indice_col parameter. The final weight is computed by getting the 
inverse of the centrality value, since the Dijkstra algorithm favors paths with shorter 
distances.

The following code shows the implementation of the compute_weight factory 
method:

# use a cache so we don't recompute the weight for the same airport 
every time
cache = {}
def compute_weight(centrality_indice_col):
    # wrapper function that conform to the dijkstra weight argument
    def wrapper(source, target, attribute):
        # try the cache first and compute the weight if not there
        source_weight = cache.get(source, None)
        if source_weight is None:
            # look up the airports_centrality for the value
            source_weight = airports_centrality.loc[airports_
centrality["IATA_CODE"] == source][centrality_indice_col].values[0]
            cache[source] = source_weight
        target_weight = cache.get(target, None)
        if target_weight is None:
            target_weight = airports_centrality.loc[airports_
centrality["IATA_CODE"] == target][centrality_indice_col].values[0]
            cache[target] = target_weight
        # Return weight is inversely proportional to the computed 
weighted since
        # the Dijkstra algorithm give precedence to shorter distances

https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern
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        return float(1/source_weight) + float(1/target_weight)
    return wrapper

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode16.py

We can now call the NetworkX dijkstra_path() method for each of the centrality 
indices. Note that we don't use BETWEENNESS because some of the values are 
equal to zero which can't be used as a weight. We also need to clear the cache before 
calling the dijkstra_path() method because using different centrality indices 
will produce different values for each airport.

The following code shows how to compute the shortest path for each centrality 
index:

for col_name in ["DEGREE", "PAGE_RANK", "CLOSENESS"]:
    #clear the cache
    cache.clear()
    print("{} : {}".format(
        col_name,
        nx.dijkstra_path(flight_graph, "BOS", "PSC",
                         weight=compute_weight(col_name))
    ))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode17.py

The following result is produced:

DEGREE : ['BOS', 'DEN', 'PSC']
PAGE_RANK : ['BOS', 'DEN', 'PSC']
CLOSENESS : ['BOS', 'DEN', 'PSC']

It is interesting to note that, as expected, the computed shortest path is the same 
for the three centrality indices, going through Denver airport which is a top central 
airport. However, it is not the same as the one computed using the ELAPSED_TIME 
weight which would have us go through Minneapolis instead.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode16.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode17.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode17.py
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In this section, we have shown how to load US flight data into a graph data structure, 
compute different centrality indices and use them to compute the shortest path 
between airports. We also discussed different ways of visualizing the graph data.

The complete Notebook for Part 1 can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%201.ipynb

In the next section, we'll create the USFlightsAnalysis PixieApp that 
operationalizes these analytics.

Part 2 – Creating the USFlightsAnalysis 
PixieApp
For the first iteration of our USFlightsAnalysis, we want to implement a simple 
user story that leverages the analytics created in Part 1:

• The welcome screen will show two drop-down controls for selecting 
an origin and a destination airport

• When an airport is selected, we show a graph showing the selected airports 
and its immediate neighbors

• When both airports are selected, the user clicks on the Analyze button 
to show a Mapbox map with all the airports

• The user can select one of the centrality indices available as checkboxes 
to show the shortest flight path according to the selected centrality

Let's first look at the implementation for the welcome screen which is implemented 
in the default route of the USFlightsAnalysis PixieApp. The following code defines 
the USFlightsAnalysis class which is decorated with the @PixieApp decorator 
to make it a PixieApp. It contains a main_screen() method that is decorated with 
the @route() decorator to make it the default route. This method returns an HTML 
fragment that will be used as the welcome screen when the PixieApp starts. The 
HTML fragment is composed of two parts: one that shows the drop-down control for 
selecting the origin airport and one that contains the drop-down control for selecting 
the destination airport. We use a Jinja2 {%for...%} loop that goes over each of the 
airports (returned by the get_airports() method) to generate a set of <options> 
elements. Under each of these controls, we add a placeholder <div> element that 
will host the graph visualization when an airport is selected.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%201.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%201.ipynb
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Note: As always, we use the [[USFlightsAnalysis]] notation to 
denote that the code shows only a partial implementation and therefore 
the reader should not attempt to run it as is until the full implementation 
is provided.
We'll explain later on why the USFlightsAnalysis class inherits from 
the MapboxBase class.

[[USFlightsAnalysis]]
from pixiedust.display.app import *
from pixiedust.apps.mapboxBase import MapboxBase
from collections import OrderedDict

@PixieApp
class USFlightsAnalysis(MapboxBase):
    ...
    @route()
    def main_screen(self):
        return """
<style>
    div.outer-wrapper {
        display: table;width:100%;height:300px;
    }
    div.inner-wrapper {
        display: table-cell;vertical-align: middle;height: 100%;width: 
100%;
    }
</style>
<div class="outer-wrapper">
    <div class="inner-wrapper">
        <div class="col-sm-6">
            <div class="rendererOpt" style="font-weight:bold">
                 Select origin airport:
            </div>
            <div>
                <select id="origin_airport{{prefix}}"
                        pd_refresh="origin_graph{{prefix}}">
                    <option value="" selected></option>
                    {%for code, airport in this.get_airports() %}
                    <option value="{{code}}">{{code}} - {{airport}}</
option>
                    {%endfor%}
                </select>
            </div>
            <div id="origin_graph{{prefix}}" pd_options="visualize_
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graph=$val(origin_airport{{prefix}})"></div>
        </div>
        <div class="input-group col-sm-6">
            <div class="rendererOpt" style="font-weight:bold">
                 Select destination airport:
            </div>
            <div>
                <select id="destination_airport{{prefix}}"
                        pd_refresh="destination_graph{{prefix}}">
                    <option value="" selected></option>
                    {%for code, airport in this.get_airports() %}
                    <option value="{{code}}">{{code}} - {{airport}}</
option>
                    {%endfor%}
                </select>
            </div>
            <div id="destination_graph{{prefix}}"
pd_options="visualize_graph=$val(destination_airport{{prefix}})">
            </div>
        </div>
    </div>
</div>
<div style="text-align:center">
    <button class="btn btn-default" type="button"
pd_options="org_airport=$val(origin_airport{{prefix}});dest_
airport=$val(destination_airport{{prefix}})">
        <pd_script type="preRun">
            if ($("#origin_airport{{prefix}}").val() == "" || 
$("#destination_airport{{prefix}}").val() == ""){
                alert("Please select an origin and destination 
airport");
                return false;
            }
            return true;
        </pd_script>
        Analyze
    </button>
</div>
"""

def get_airports(self):
    return [tuple(l) for l in airports_centrality[["IATA_CODE", 
"AIRPORT"]].values.tolist()]
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode18.py

When the user selects the origin airport, a pd_refresh targetted at the placeholder 
<div> element with ID origin_graph{{prefix}}, is triggered. In turn, this 
<div> element triggers a route using the state: visualize_graph=$val(origin_
airport{{prefix}}. As a reminder, the $val() directive is resolved at runtime 
by fetching the airport value of the origin_airport{{prefix}} drop-down 
element. A similar implementation is used for the destination airport.

The code for the visualize_graph route is provided here. It simply calls the 
visualize_neighbors() method that we implemented in Part 1, which we slightly 
change in Part 2 to add an optional figure size parameter to accommodate the size of 
the host <div> element. As a reminder, we also use the @captureOutput decorator 
since the visualize_neighbors() method is directly writing to the output of the 
selected cell:

[[USFlightsAnalysis]]
@route(visualize_graph="*")
@captureOutput
def visualize_graph_screen(self, visualize_graph):
    visualize_neighbors(visualize_graph, (5,5))

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode19.py

The Analyze button is triggering the compute_path_screen() route which is 
associated with the org_airport and dest_airport state parameters. We also 
want to make sure that both airports are selected before allowing the compute_
path_screen() route to proceed. To do that, we use a <pd_script> child element 
with type="preRun" that contains JavaScript code that will be executed before the 
route is triggered. The contract is for this code to return the Boolean true if we want 
to let the route proceed, or to return false otherwise.

For the Analyze button we check that both drop-downs have a value and return 
true if that's the case or else raise an error message and return false:

<button class="btn btn-default" type="button" pd_options="org_
airport=$val(origin_airport{{prefix}});dest_airport=$val(destination_
airport{{prefix}})">

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode18.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode19.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode19.py
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   <pd_script type="preRun">
       if ($("#origin_airport{{prefix}}").val() == "" || 
$("#destination_airport{{prefix}}").val() == ""){
           alert("Please select an origin and destination airport");
           return false;
       }
       return true;
   </pd_script>
      Analyze
   </button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode20.html

The following output shows the end results when selecting BOS as the origin airport 
and PSC as the destination:

Welcome screen with both airports selected

Let's now look at the implementation of the compute_path_screen() route which 
is responsible for showing the Mapbox map of all the airports and the shortest 
path based on the selected centrality index as a layer which is an extra visualization 
superimposed on the overall map.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode20.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode20.html
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The following code shows its implementation:

[[USFlightsAnalysis]]
@route(org_airport="*", dest_airport="*")
def compute_path_screen(self, org_airport, dest_airport):
    return """
<div class="container-fluid">
    <div class="form-group col-sm-2" style="padding-right:10px;">
        <div><strong>Centrality Indices</strong></div>
        {% for centrality in this.centrality_indices.keys() %}
        <div class="rendererOpt checkbox checkbox-primary">
            <input type="checkbox"
                   pd_refresh="flight_map{{prefix}}"
pd_script="self.compute_toggle_centrality_layer('{{org_airport}}', 
'{{dest_airport}}', '{{centrality}}')">
            <label>{{centrality}}</label>
        </div>
        {%endfor%}
    </div>
    <div class="form-group col-sm-10">
        <h1 class="rendererOpt">Select a centrality index to show 
the shortest flight path
        </h1>
        <div id="flight_map{{prefix}}" pd_entity="self.airports_
centrality" pd_render_onload>
            <pd_options>
            {
              "keyFields": "LATITUDE,LONGITUDE",
              "valueFields": "AIRPORT,DEGREE,PAGE_RANK,ELAPSED_
TIME,CLOSENESS",
              "custombasecolorsecondary": "#fffb00",
              "colorrampname": "Light to Dark Red",
              "handlerId": "mapView",
              "quantiles": "0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 
0.9,1.0",
              "kind": "choropleth",
              "rowCount": "1000",
              "numbins": "5",
              "mapboxtoken": "pk.
eyJ1IjoibWFwYm94IiwiYSI6ImNpejY4M29iazA2Z2gycXA4N2pmbDZmangifQ.-g_
vE53SD2WrJ6tFX7QHmA",
              "custombasecolor": "#ffffff"
            }
            </pd_options>
        </div>
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    </div>
</div>
"""

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode21.py

The central <div> element of this screen is the Mapbox map which by default shows 
the Mapbox map of all the airports. As shown in the code above, the <pd_options> 
child element is taken directly from the corresponding cell metadata where we 
configured the map in Part 1.

On the left-hand side, we generate a set of checkboxes corresponding to 
each centrality index, using a Jinja2 {%for …%} loop over the centrality_
indices variable. We initialize this variable in the setup() method of the 
USFlightsAnalysis PixieApp which is guaranteed to be called when the PixieApp 
starts. This variable is an OrderedDict (https://docs.python.org/3/library/
collections.html#collections.OrderedDict) with keys as the centrality index 
and values as a color scheme that will be used in the Mapbox rendering:

[[USFlightsAnalysis]]
def setup(self):
   self.centrality_indices = OrderedDict([
      ("ELAPSED_TIME","rgba(256,0,0,0.65)"),
      ("DEGREE", "rgba(0,256,0,0.65)"),
      ("PAGE_RANK", "rgba(0,0,256,0.65)"),
      ("CLOSENESS", "rgba(128,0,128,0.65)")
  ])

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode22.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode21.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode21.py
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode22.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode22.py
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The following output shows the analysis screen with no centrality index selected:

Analysis screen with no centrality index selected

We now arrive at the step where the user selects a centrality index to trigger 
a shortest path search. Each of the checkboxes have a pd_script attribute that calls 
the compute_toggle_centrality_layer() method. This method is responsible 
for calling the NetworkX dijkastra_path() method with a weight argument 
generated by calling the compute_weight() method that we discussed in Part 1. 
This method returns an array with each airport that constitutes the shortest path. 
Using this path, we then create a JSON object that contains the GeoJSON payload 
as a set of lines to be displayed on the map.

At this point, it's worth pausing to discuss what a layer is. A layer is defined using 
the GeoJSON format (http://geojson.org) which we briefly discussed in Chapter 5, 
Python and PixieDust Best Practices and Advanced Concepts. As a reminder, a GeoJSON 
payload is a JSON object with a specific schema that includes among other things a 
geometry element that defines the shape of the object being drawn.

For example, we can define a line using the LineString type and an array 
of longitude and latitude coordinates for both ends of the line:

{
    "geometry": {
        "type": "LineString",
        "coordinates": [

http://geojson.org
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            [-93.21692, 44.88055],
            [-119.11903000000001, 46.26468]
        ]
    },
    "type": "Feature",
    "properties": {}
}

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode23.json

Assuming we can generate this GeoJSON payload from the shortest path, we may 
wonder how to pass it to the PixieDust Mapbox renderer so that it can be displayed. 
Well, the mechanism is pretty simple: the Mapbox renderer will introspect the 
host PixieApp for any class variable that conforms to a specific format and use it 
to generate the Mapbox layer to be displayed. To help with conforming with this 
mechanism, we use the MapboxBase utility class that we briefly introduced earlier. 
This class has a get_layer_index() method that takes a unique name (we use 
the centrality index) as an argument and returns its index. It also takes an extra 
optional argument that creates the layer in case it doesn't already exist. We then call 
the toggleLayer() method passing the layer index as an argument to turn the layer 
on and off.

The following code shows the implementation of the compute_toggle_ 
centrality_layer() method that implements the aforementioned steps:

[[USFlightsAnalysis]]
def compute_toggle_centrality_layer(self, org_airport, dest_airport, 
centrality):
    cache.clear()
    cities = nx.dijkstra_path(flight_graph, org_airport, dest_airport, 
weight=compute_weight(centrality))
    layer_index = self.get_layer_index(centrality, {
        "name": centrality,
        "geojson": {
            "type": "FeatureCollection",
            "features":[
                {"type":"Feature",
                 "properties":{"route":"{} to {}".format(cities[i], 
cities[i+1])},
                 "geometry":{
                     "type":"LineString",
                     "coordinates":[

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode23.json
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode23.json
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                         self.get_airport_location(cities[i]),
                         self.get_airport_location(cities[i+1])
                     ]
                 }
                } for i in range(len(cities) - 1)
            ]
        },
        "paint":{
            "line-width": 8,
            "line-color": self.centrality_indices[centrality]
        }
    })
    self.toggleLayer(layer_index)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode24.py

The coordinates in the geometry object are computed using the get_airport_
location() method that queries the airports_centrality DataFrame that 
we created in Part 1, as shown in the following code:

[[USFlightsAnalysis]]
def get_airport_location(self, airport_code):
    row = airports_centrality.loc[airports["IATA_CODE"] == airport_
code]
    if row is not None:
        return [row["LONGITUDE"].values[0], row["LATITUDE"].values[0]]
    return None

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode25.py

The layer object passed to the get_layer_index() method has the following 
properties:

• name: String that uniquely identifies the layer.
• geojson: GeoJSON object that defines the features and geometry of the layer.
• url: Used only if geojson is not present. Points at a URL that returns 

a GeoJSON payload.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode24.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode25.py
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• paint: Optional extra properties specific to Mapbox specification that defines 
how the layer data is styled, for example, color, width, and opacity.

• layout: Optional extra properties specific to Mapbox specification that 
defines how the layer data is drawn, for example, fill, visibility, and symbol.

Note: You can find more information about Mapbox layout and paint 
properties here:
https://www.mapbox.com/mapbox-gl-js/style-spec/#layers

In the preceding code, we specify extra paint properties to configure the line-
width and the line-color which we take from the centrality_indices JSON 
object defined in the setup() method.

The following output shows the shortest path for a flight from BOS to PSC using 
the ELAPSED_TIME (in red) and the DEGREE (in green) centrality indices:

Displaying the shortest path from BOS to PSC using the ELAPSED_TIME and DEGREE centrality indices

In this section, we've built a PixieApp that provides visualization of the shortest 
path between two airports using the PixieDust Mapbox renderer. We've shown how 
to create a new layer to enrich the map with extra information using the MapboxBase 
utility class.

https://www.mapbox.com/mapbox-gl-js/style-spec/#layers
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You can find the completed Notebook for Part 2 here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%202.ipynb

In the next section, we'll add additional data exploration related to flight delays 
and associated airlines.

Part 3 – Adding data exploration 
to the USFlightsAnalysis PixieApp
In this section, we want to extend the route analysis screen of the 
USFlightsAnalysis PixieApp to add two charts showing the historical arrival 
delay for each airline that flies out of the selected origin airport: one for all the flights 
coming out of the origin airport and one for all the flights regardless of airport. This 
will give us a way to compare visually whether the delay for a particular airport is 
better or worse than for all the other airports.

We start by implementing a method that selects the flights for a given airline. 
We also add an optional airport argument that can be used to control whether 
we include all flights or only the one that originates from this airport. The returned 
DataFrame should have two columns: DATE and ARRIVAL_DELAY.

The following code shows the implementation of this method:

def compute_delay_airline_df(airline, org_airport=None):
    # create a mask for selecting the data
    mask = (flights["AIRLINE"] == airline)
    if org_airport is not None:
        # Add the org_airport to the mask
        mask = mask & (flights["ORIGIN_AIRPORT"] == org_airport)
    # Apply the mask to the Pandas dataframe
    df = flights[mask]
    # Convert the YEAR, MONTH and DAY column into a DateTime
    df["DATE"] = pd.to_datetime(flights[['YEAR','MONTH', 'DAY']])
    # Select only the columns that we need
    return df[["DATE", "ARRIVAL_DELAY"]]

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%202.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%202.ipynb
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode26.py

We can test the preceding code by using it with Delta flights from Boston. We 
can then call the PixieDust display() method to create a line chart that we'll use 
in the PixieApp:

bos_delay = compute_delay_airline_df("DL", "BOS")
display(bos_delay)

In the PixieDust output we select the Line Chart menu and configure the options 
dialog as follows:

The options dialog for generating an arrival delay line chart for Delta flights out of Boston

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode26.py
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When clicking OK, we get the following chart:

Chart delay for all Delta flights coming out of Boston

As we are going to use this chart in the PixieApp, it is a good idea to copy the JSON 
configuration from the Edit Cell Metadata dialog box:

PixieDust display() configuration for the delay chart that needs to be copied for the PixieApp
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Now that we know how to generate a delay chart, we can start designing 
the PixieApp. We start by changing the layout of the main screen to use the 
TemplateTabbedApp helper class that gives us the tabbed layout for free. 
The overall analysis screen is now driven by the RouteAnalysisApp child 
PixieApp that contains two tabs: the Search Shortest Route tab associated 
with the SearchShortestRouteApp child PixieApp and the Explore Airlines 
tab associated with the AirlinesApp child PixieApp.

The following diagram provides a high-level flow of all the classes involved 
in the new layout:

New tabbed layout class diagram

The implementation for the RouteAnalysisApp is pretty straightforward using 
the TemplateTabbedApp as shown in the following code:

from pixiedust.apps.template import TemplateTabbedApp

@PixieApp
class RouteAnalysisApp(TemplateTabbedApp):
    def setup(self):
        self.apps = [
            {"title": "Search Shortest Route",
             "app_class": "SearchShortestRouteApp"},
            {"title": "Explore Airlines",
             "app_class": "AirlinesApp"}
        ]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode27.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode27.py
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The SearchShortestRouteApp child PixieApp is basically a copy of the main 
PixieApp class we created in Part 2. The only difference is that it is a child PixieApp 
of the RouteAnalysisApp which itself is a child PixieApp of the USFlightsAnalysis 
main PixieApp. Therefore, we need a mechanism for passing the origin and 
destination airport down to the respective child PixieApps. To achieve this, we use 
the pd_options attribute when instantiating the RouteAnalysisApp child PixieApp.

In the USFlightAnalysis class, we change the analyze_route method to return 
a simple <div> element that triggers the RouteAnalysisApp. We also add a 
pd_options attribute with the org_airport and dest_airport, as shown in the 
following code:

[[USFlightsAnalysis]]
@route(org_airport="*", dest_airport="*")
def analyze_route(self, org_airport, dest_airport):
    return """
<div pd_app="RouteAnalysisApp"
pd_options="org_airport={{org_airport}};dest_airport={{dest_airport}}"
     pd_render_onload>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode28.py

Conversely, in the setup() method of the SearchShortestRouteApp child 
PixieApp, we read the values for org_airport and dest_airport from the 
options dictionary of the parent_pixieapp, as shown in the following code:

[[SearchShortestRouteApp]]
from pixiedust.display.app import *
from pixiedust.apps.mapboxBase import MapboxBase
from collections import OrderedDict

@PixieApp
class SearchShortestRouteApp(MapboxBase):
    def setup(self):
        self.org_airport = self.parent_pixieapp.options.get 
("org_airport")
        self.dest_airport = self.parent_pixieapp.options.get 
("dest_airport")
        self.centrality_indices = OrderedDict([
            ("ELAPSED_TIME","rgba(256,0,0,0.65)"),

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode28.py
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            ("DEGREE", "rgba(0,256,0,0.65)"),
            ("PAGE_RANK", "rgba(0,0,256,0.65)"),
            ("CLOSENESS", "rgba(128,0,128,0.65)")
        ])
        ...

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode29.py

Note: The rest of the implementation of the SearchShortestRouteApp 
has been ommitted for brevity since it's exactly the same as in Part 2. To 
access the implementation, please refer to the completed Part 3 Notebook.

The last PixieApp class to implement is the AirlinesApp, which that will display all 
the delay charts. Similar to the SearchShortestRouteApp, we store org_airport 
and dest_airport from the parent_pixieapp options dictionary. We also compute 
a list of tuples (code and name) for all the airlines that have flights out of the given 
org_airport. To do that, we use the pandas groupby() method on the AIRLINE 
column and get a list of the index values as shown in the following code:

[[AirlinesApp]]
@PixieApp
class AirlinesApp():
    def setup(self):
        self.org_airport = self.parent_pixieapp.options.get 
("org_airport")
        self.dest_airport = self.parent_pixieapp.options.get 
("dest_airport")
        self.airlines = flights[flights["ORIGIN_AIRPORT"] == self. 
org_airport].groupby("AIRLINE").size().index.values.tolist()
        self.airlines = [(a, airlines.loc[airlines["IATA_CODE"] ==  
a]["AIRLINE"].values[0]) for a in self.airlines]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode30.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode29.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode29.py 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode30.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode30.py
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In the main screen of the AirlinesApp, we generate a set of rows for each of the 
airlines using the Jinja2 {%for...%} loop. In each row, we add two <div> elements 
that will hold the delay line chart for the given airline: one for flights coming out of 
the origin airport and one for all the flights for this airline. Each <div> element 
has a pd_options attribute, with the org_airport and dest_airport as state 
attributes, which triggers the delay_airline_screen route. We also add a delay_
org_airport Boolean state attribute to denote which type of delay chart we want 
to display. To make sure the <div> element is rendered immediately, we add the 
pd_render_onload attribute as well.

The following code shows the implementation of the AirlinesApp default route:

[[AirlinesApp]]
@route()
    def main_screen(self):
        return """
<div class="container-fluid">
    {%for airline_code, airline_name in this.airlines%}
    <div class="row" style="max-e">
        <h1 style="color:red">{{airline_name}}</h1>
        <div class="col-sm-6">
            <div pd_render_onload pd_options="delay_org_
airport=true;airline_code={{airline_code}};airline_name= 
{{airline_name}}"></div>
        </div>
        <div class="col-sm-6">
            <div pd_render_onload pd_options="delay_org_
airport=false;airline_code={{airline_code}};airline_name= 
{{airline_name}}"></div>
        </div>
    </div>
    {%endfor%}
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode31.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode31.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode31.py
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The delay_airline_screen() route has three parameters:

• delay_org_airport: true if we only want the flights coming out of the 
origin airport, and false if we want all the flights for the given airline. 
We use this flag to build the mask for filtering the data out of the flights 
DataFrame.

• airline_code: The IATA code for the given airline.
• airline_name: The full name of the airline. We'll use this when building the 

UI in the Jinja2 template.

In the body of the delay_airline_screen() method, we also compute the average 
delay for the selected data in the average_delay local variable. As a reminder, 
in order to use this variable in the Jinja2 template, we use the @templateArgs 
decorator, which automatically makes all local variables available in the Jinja2 
template.

The <div> element that holds the chart has a pd_entity attribute that uses the 
compute_delay_airline_df() method that we created at the beginning of this 
section. However, we needed to rewrite this method as a member of the class since 
the arguments have changed: org_airport is now a class variable, and delay_org_
airport is now a String Boolean. We also add a <pd_options> child element with 
the PixieDust display() JSON configuration that we copied from the Edit Cell 
Metadata dialog.

The following code shows the implementation of the delay_airline_screen() 
route:

[[AirlinesApp]]
@route(delay_org_airport="*",airline_code="*", airline_name="*")
    @templateArgs
    def delay_airline_screen(self, delay_org_airport, airline_code, 
airline_name):
        mask = (flights["AIRLINE"] == airline_code)
        if delay_org_airport == "true":
            mask = mask & (flights["ORIGIN_AIRPORT"] == self. 
org_airport)
        average_delay = round(flights[mask]["ARRIVAL_DELAY"]. 
mean(), 2)
        return """
{%if delay_org_airport == "true" %}
<h4>Delay chart for all flights out of {{this.org_airport}}</h4>
{%else%}
<h4>Delay chart for all flights</h4>
{%endif%}
<h4 style="margin-top:5px">Average delay: {{average_delay}}  
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minutes</h4>
<div pd_render_onload pd_entity="compute_delay_airline_df 
('{{airline_code}}', '{{delay_org_airport}}')">
    <pd_options>
    {
      "keyFields": "DATE",
      "handlerId": "lineChart",
      "valueFields": "ARRIVAL_DELAY",
      "noChartCache": "true"
    }
    </pd_options>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode32.py

The compute_delay_airline_df() method has two arguments: airlines that 
correspond to the IATA code and the delay_org_airport String Boolean. We 
already covered implementation of this method, but the new adapted code 
is provided here:

[[AirlinesApp]]
def compute_delay_airline_df(self, airline, delay_org_airport):
        mask = (flights["AIRLINE"] == airline)
        if delay_org_airport == "true":
            mask = mask & (flights["ORIGIN_AIRPORT"] == self. 
org_airport)
        df = flights[mask]
        df["DATE"] = pd.to_datetime(flights[['YEAR','MONTH', 'DAY']])
        return df[["DATE", "ARRIVAL_DELAY"]]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode33.py

Running the USFlightsAnalysis PixieApp with BOS and PSC as the origin 
and destination airports respectively, we click on the Explore Airlines tab.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode32.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode33.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode33.py
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The results are shown in the following screenshot:

Delay line charts for all the airlines that provide services from Boston airport

In this section, we provide another example of how to use the PixieApp 
programming model to build powerful dashboards that provide visualization 
and insights into the output of the analytics developed in the Notebook.
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The completed Notebook for Part 3 of the USFlightsAnalysis 
PixieApp can be found here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%203.ipynb

In the next section, we'll build an ARIMA model that tries to predict flight delays.

Part 4 – Creating an ARIMA model 
for predicting flight delays
In Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis and Forecasting, 
we used time series analysis to build a forecasting model for predicting financial 
stocks. We can actually use the same technique in flight delays since, after all, we 
are also dealing here with time series, and so in this section, we'll follow the exact 
same steps. For each destination airport and optional airline, we'll build a pandas 
DataFrame that contains matching flight information.

Note: We'll use the statsmodels library again. Make sure to install it if you 
haven't done so already and refer to Chapter 8, Analytics Study: Prediction - 
Financial Time Series Analysis and Forecasting for more information.

As an example, let's focus on all the Delta (DL) flights with BOS as the destination:

df = flights[(flights["AIRLINE"] == "DL") & (flights["ORIGIN_AIRPORT"] 
== "BOS")]

Using the ARRIVAL_DELAY column as a value for our time series, we plot the ACF 
and PACF plots to identify trends and seasonality as shown in the following code:

import statsmodels.tsa.api as smt
smt.graphics.plot_acf(df['ARRIVAL_DELAY'], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode34.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%203.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode34.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode34.py
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The result is shown in the following screenshot:

Autocorrelation function for the ARRIVAL_DELAY data

Similarly, we also plot the partial autocorrelation function using the following code:

import statsmodels.tsa.api as smt
smt.graphics.plot_pacf(df['ARRIVAL_DELAY'], lags=50)
plt.show()

You can find the code file here:

https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode35.py

The results are shown here:

Partial Autocorrelation for the ARRIVAL_DELAY data

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode35.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode35.py
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From the preceding charts, we can hypothesize that the data has a trend and/
or seasonality, and that it is not stationary. Using the log difference technique 
that we explained in Chapter 8, Analytics Study: Prediction - Financial Time Series 
Analysis and Forecasting, we transform the series and visualize it with the PixieDust 
display() method, as shown in the following code:

Note: We also make sure to remove the rows with NA and Infinite values 
by first calling the replace() method to replace np.inf and -np.inf 
with np.nan, and then call the dropna() method to remove all the rows 
with the np.nan value.

import numpy as np
train_set, test_set = df[:-14], df[-14:]
train_set.index = train_set["DEPARTURE_TIME"]
test_set.index = test_set["DEPARTURE_TIME"]
logdf = np.log(train_set['ARRIVAL_DELAY'])
logdf.index = train_set['DEPARTURE_TIME']
logdf_diff = pd.DataFrame(logdf - logdf.shift()).reset_index()
logdf_diff.replace([np.inf, -np.inf], np.nan, inplace=True)
logdf_diff.dropna(inplace=True)
display(logdf_diff)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode36.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode36.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode36.py
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The following screenshot shows the PixieDust option dialog:

Options dialog for the log difference of the ARRIVAL_DELAY data

After clicking OK, we get the following results:

Note: When running the preceding code, you may not get the exact 
same chart as shown in the following screenshot. This is because 
we configure the # of Rows to Display in the options dialog to be 
100 which means that PixieDust will take a sample of size 100 before 
creating the chart.
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Log difference line chart of the ARRIVAL_DELAY data

The preceding chart looks stationary; we can reinforce this hypothesis by plotting 
the ACF and PACF again on the log difference as shown in the following code:

smt.graphics.plot_acf(logdf_diff["ARRIVAL_DELAY"], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode37.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode37.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode37.py
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The results are as follows:

ACF chart for the log difference of the ARRIVAL_DELAY data

In the following code, we do the same thing for the PACF:

smt.graphics.plot_pacf(logdf_diff["ARRIVAL_DELAY"], lags=100)
plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode38.py

The results are as follows:

PACF chart for the log difference of the ARRIVAL_DELAY data

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode38.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode38.py
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As a reminder from Chapter 8, Analytics Study: Prediction - Financial Time Series Analysis 
and Forecasting, an ARIMA model is composed of three orders: p, d, and q. From the 
preceding two charts, we can infer these orders for the ARIMA model we want to build:

• Autoregression order p is 1: Corresponds to the first time the ACF crosses 
the significance level

• Integration order d is 1: We had to do a log difference once
• Moving average order q is 1: Corresponds to the first time the PACF crosses 

the significance level

Based on these hypotheses, we can build an ARIMA model using the statsmodels 
package and get information about its residual error, as shown in the following code:

from statsmodels.tsa.arima_model import ARIMA

import warnings
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
    arima_model_class = ARIMA(train_set['ARRIVAL_DELAY'],
                              dates=train_set['DEPARTURE_TIME'],
                              order=(1,1,1))
    arima_model = arima_model_class.fit(disp=0)
    print(arima_model.resid.describe())

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode39.py

The results are shown as follows:

count    13882.000000
mean         0.003116
std         48.932043
min       -235.439689
25%        -17.446822
50%         -5.902274
75%          6.746263
max       1035.104295
dtype: float64

As we can see, the mean error is only 0.003 which is pretty good, so we're ready 
to run the model with values from the train_set and visualize the discrepencies 
with the actual values.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode39.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode39.py
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The following code uses the ARIMA plot_predict() method to create the chart:

def plot_predict(model, dates_series, num_observations):
    fig,ax = plt.subplots(figsize = (12,8))
    model.plot_predict(
        start = dates_series[len(dates_series)-num_observations],
        end = dates_series[len(dates_series)-1],
        ax = ax
    )
    plt.show()
plot_predict(arima_model, train_set['DEPARTURE_TIME'], 100)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode40.py

The results are shown as follows:

Forecast versus actual

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode40.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode40.py
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In the preceding chart, we can clearly see that the forecast line is much smoother than 
the actual values. This makes sense since, in reality, there are always unexpected 
reasons for delays that can be treated as outliers and therefore hard to model.

We still need to use the test_set to validate the model with data not yet seen by 
the model. The following code creates a compute_test_set_predictions() method 
to compare forecast and test data and visualize the results using the PixieDust 
display() method:

def compute_test_set_predictions(train_set, test_set):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        history = train_set['ARRIVAL_DELAY'].values
        forecast = np.array([])
        for t in range(len(test_set)):
            prediction = ARIMA(history, order=(1,1,0)).fit(disp=0).
forecast()
            history = np.append(history, test_set['ARRIVAL_DELAY'].
iloc[t])
            forecast = np.append(forecast, prediction[0])
        return pd.DataFrame(
          {"forecast": forecast,
           "test": test_set['ARRIVAL_DELAY'],
           "Date": pd.date_range(start=test_set['DEPARTURE_TIME'].
iloc[len(test_set)-1], periods = len(test_set))
          }
        )

results = compute_test_set_predictions(train_set, test_set)
display(results)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode41.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode41.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode41.py


Analytics Study: Graph Algorithms - US Domestic Flight Data Analysis

[ 434 ]

The PixieDust options dialog is shown here:

Options dialog for the forecast versus test comparison line chart

After clicking OK, we get the following results:

Forecast versus Test Data line chart
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We are now ready to integrate this model into our USFlightsAnalysis PixieApp, 
by adding a third tab to the RouteAnalysisApp main screen called Flight 
Delay Prediction. This tab will be driven by a new child PixieApp called 
PredictDelayApp that will let the user select a flight segment of the shortest 
path computed using the Dijkstra shortest path algorithm with DEGREE as the 
centrality index. The user will also be able to select an airline, in which case 
the training data will be limited to flights operated by the selected airline.

In the following code, we create the PredictDelayApp child PixieApp and 
implement the setup() method that computes the Dijkstra shortest path for 
the selected origin and destination airports:

[[PredictDelayApp]]
import warnings
import numpy as np
from statsmodels.tsa.arima_model import ARIMA

@PixieApp
class PredictDelayApp():
    def setup(self):
        self.org_airport = self.parent_pixieapp.options.get 
("org_airport")
        self.dest_airport = self.parent_pixieapp.options.get 
("dest_airport")
        self.airlines = flights[flights["ORIGIN_AIRPORT"] ==  
self.org_airport].groupby("AIRLINE").size().index.values.tolist()
        self.airlines = [(a, airlines.loc[airlines["IATA_CODE"] ==  
a]["AIRLINE"].values[0]) for a in self.airlines]
        path = nx.dijkstra_path(flight_graph, self.org_airport,  
self.dest_airport, weight=compute_weight("DEGREE"))
        self.paths = [(path[i], path[i+1]) for i in range 
(len(path) - 1)]

In the default route of the PredictDelayApp, we use the Jinja2 {%for..%} loop 
to build two drop-down boxes that display the flight segment and the airlines, 
as shown in the following code:

[[PredictDelayApp]]
@route()
    def main_screen(self):
        return """
<div class="container-fluid">
    <div class="row">
        <div class="col-sm-6">
            <div class="rendererOpt" style="font-weight:bold">
                Select a flight segment:
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            </div>
            <div>
                <select id="segment{{prefix}}" pd_refresh=" 
prediction_graph{{prefix}}">
                    <option value="" selected></option>
                    {%for start, end in this.paths %}
                    <option value="{{start}}:{{end}}">{{start}} -> 
{{end}}</option>
                    {%endfor%}
                </select>
            </div>
        </div>
        <div class="col-sm-6">
            <div class="rendererOpt" style="font-weight:bold">
                Select an airline:
            </div>
            <div>
                <select id="airline{{prefix}}" pd_refresh=" 
prediction_graph{{prefix}}">
                    <option value="" selected></option>
                    {%for airline_code, airline_name in this.
airlines%}
                    <option value="{{airline_code}}">{{airline_
name}}</option>
                    {%endfor%}
                </select>
            </div>
        </div>
    </div>
    <div class="row">
        <div class="col-sm-12">
            <div id="prediction_graph{{prefix}}"
                pd_options="flight_segment=$val(segment{{prefix}}); 
airline=$val(airline{{prefix}})">
            </div>
        </div>
    </div>
</div>
        """

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode42.py

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode42.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode42.py
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The two drop-downs have a pd_refresh attribute that points to the <div> 
element with ID prediction_graph{{prefix}}. When triggered, this <div> 
element invokes the predict_screen() route using the flight_segment and 
airline state attributes.

In the predict_screen() route, we use the flight_segment and airline 
arguments to create the training dataset, build an ARIMA model that forecasts 
the model, and visualize the results in a line chart that compares the forecast and 
the actual values.

Time series forecast models are limited to predictions that are close to 
the actual data, and since we only have data from 2015, we can't really 
use this model to predict more recent data. Of course, in a production 
application, it is assumed that we have flight data that is current and 
therefore this wouldn't be a problem.

The following code shows the implementation of the predict_screen() route:

[[PredictDelayApp]]
@route(flight_segment="*", airline="*")
    @captureOutput
    def predict_screen(self, flight_segment, airline):
        if flight_segment is None or flight_segment == "":
            return "<div>Please select a flight segment</div>"
        airport = flight_segment.split(":")[1]
        mask = (flights["DESTINATION_AIRPORT"] == airport)
        if airline is not None and airline != "":
            mask = mask & (flights["AIRLINE"] == airline)
        df = flights[mask]
        df.index = df["DEPARTURE_TIME"]
        df = df.tail(50000)
        df = df[~df.index.duplicated(keep='first')]
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            arima_model_class = ARIMA(df["ARRIVAL_DELAY"], 
dates=df['DEPARTURE_TIME'], order=(1,1,1))
            arima_model = arima_model_class.fit(disp=0)
            fig, ax = plt.subplots(figsize = (12,8))
            num_observations = 100
            date_series = df["DEPARTURE_TIME"]
            arima_model.plot_predict(
                start = str(date_series[len(date_series)-num_
observations]),
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                end = str(date_series[len(date_series)-1]),
                ax = ax
            )
            plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode43.py

In the following code, we also wanted to make sure that the dataset index is 
deduplicated to avoid errors when plotting the results. This is done by filtering 
the duplicated indices using df = df[~df.index.duplicated(keep='first')].

The last thing left to do is to wire the PredictDelayApp child PixieApp to the 
RouteAnalysisApp as shown in the following code:

from pixiedust.apps.template import TemplateTabbedApp

@PixieApp
class RouteAnalysisApp(TemplateTabbedApp):
    def setup(self):
        self.apps = [
            {"title": "Search Shortest Route",
             "app_class": "SearchShortestRouteApp"},
            {"title": "Explore Airlines",
             "app_class": "AirlinesApp"},
            {"title": "Flight Delay Prediction",
              "app_class": "PredictDelayApp"}
        ]

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/sampleCode44.py

When we run the USFlightsAnalysis PixieApp using BOS and PSC as we did in 
the previous sections. In the Flight Delay Prediction tab, we select the BOS->DEN 
flight segment.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode43.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode43.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode44.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/sampleCode44.py
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The results are shown as follows:

Forecast for the Boston to Denver flight segment

In this section, we've shown how to use time series forecasting models to predict 
flight delays based on historical data.

You can find the complete Notebook here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%209/USFlightsAnalysis/US%20
Flight%20data%20analysis%20-%20Part%204.ipynb

As a reminder, while this is only a sample application which has a lot of room 
for improvement, the techniques for operationalizing data analytics using the 
PixieApp programming model would apply just the same in any other project.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%204.ipynb
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%209/USFlightsAnalysis/US%20Flight%20data%20analysis%20-%20Part%204.ipynb
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Summary
In this chapter, we've discussed graphs and its associated graph theory, exploring 
its data structure and algorithms. We've also briefly introduced the networkx 
Python library that provides a rich set of APIs for manipulating and visualizing 
graphs. We then applied these techniques toward building a sample application 
that analyzes flight data by treating it as a graph problem with airports being the 
vertices and flights the edges. As always, we've also shown how to operationalize 
these analytics into a simple yet powerful dashboard that can run directly in the 
Jupyter Notebook and then optionally be deployed as a web analytics application 
with the PixieGateway microservice.

This chapter completes the series of sample applications that cover many important 
industry use cases. In the next chapter, I offer some final thoughts about the theme 
of this book which is to bridge the gap between data science and engineering by 
making working with data simple and accessible to all. 
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The Future of Data Analysis 
and Where to Develop 

your Skills
"We are creating and hiring to fill "new collar" jobs – entirely new roles in areas 
such as cybersecurity, data science, artificial intelligence and cognitive business."

                                                               – Ginni Rometty, IBM Chairman, and CEO

Once again, let me thank you and congratulate you, the reader, for the long journey 
of reading through these long chapters and perhaps trying some or all of the sample 
code provided. I tried to provide a good mix between diving into the fundamentals 
of a particular topic, such as deep learning or time series analysis, and giving 
comprehensive example code for the practitioner. I especially hope that you 
found the idea of tightly integrating the data science analytics with the PixieApp 
application programming model in a single Jupyter Notebook interesting and novel. 
But, most importantly, I hope that you found it useful and something you can reuse 
in your own projects and with your own teams.
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At the beginning of Chapter 1, Programming and Data Science – A New Toolset, I use the 
Drew's Conway Venn Diagram (which is one of my favorites) as a representation of 
what is data science and why data scientists are widely considered unicorns. With 
all respect to Drew Conway, I'd like to extend this diagram to denote the important 
and growing role of developers in the field of data science, as shown in the following 
diagram:

Drew's Conway Venn Diagram for data science that now includes developers

I'd now like to take advantage of this last chapter to provide my views for the 
future and what to expect when it comes to AI and data science.

Forward thinking – what to expect for 
AI and data science
This is the part I like a lot as I get to express forward-looking opinions without being 
held accountable for accuracy since, by definition, these are only my opinions .
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As I explained in Chapter 1, Programming and Data Science – A New Toolset, I believe 
that AI and data science are here to stay, and they will continue to cause disruption 
to existing industries for the foreseeable future, most likely at an accelerating rate. 
This will certainly have an effect on the overall number of jobs and, similar to other 
technological revolutions we've seen in the past (agricultural, industrial, information, 
and many more), some will disappear, while new ones will be created.

In 2016, Ginny Rometty, IBM Chairman, and CEO, in a letter to President Donald 
Trump (https://www.ibm.com/blogs/policy/ibm-ceo-ginni-romettys-
letter-u-s-president-elect), talks about the need to better prepare for the 
AI revolution by creating new types of jobs that she calls "new collar," as shown 
in the following excerpt:

"Getting a job at today's IBM does not always require a college degree; at some 
of our centers in the United States, as many as one third of employees have less 
than a four-year degree. What matters most is relevant skills, sometimes obtained 
through vocational training. In addition, we are creating and hiring to fill "new 
collar" jobs – entirely new roles in areas such as cybersecurity, data science, 
artificial intelligence and cognitive business."

These "new collar" jobs can only be created in sufficient numbers if we are successful 
in our quest to democratize data science, because data science is the lifeblood 
of AI and everyone needs to be involved in some capacity; developers, line of 
business users, data engineers, and so on. It is easy to imagine that the demand for 
these new types of jobs will be so high that traditional academic tracks will not be 
able to fill the needs. Rather, it will be incumbent upon the industry to fill the void 
by creating new programs designed to retrain all existing workers whose jobs may 
be at risk of becoming redundant. New programs similar to the Everyone Can Code 
program from Apple (https://www.apple.com/everyone-can-code) will emerge; 
perhaps something like Anyone can do Data Science. I also think that MOOCs (short 
for, Massive Open Online Courses) will play an even greater role that we already 
see today with the many partnerships being formed between key MOOC players 
such as Coursera and edX, and companies like IBM (see https://www.coursera.
org/ibm).

There are other things companies can do in order to better prepare for the AI and 
data science revolution. In Chapter 1, Programming and Data Science – A New Toolset, 
I talk about three pillars for a data science strategy that can help us with this 
ambitious goal: data, services, and tools.

https://www.ibm.com/blogs/policy/ibm-ceo-ginni-romettys-letter-u-s-president-elect
https://www.ibm.com/blogs/policy/ibm-ceo-ginni-romettys-letter-u-s-president-elect
https://www.apple.com/everyone-can-code
https://www.coursera.org/ibm
https://www.coursera.org/ibm
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On the services side, high growth in public clouds is substantially contributing 
to the overall increase in high-quality services in multiple fields: data persistence, 
cognitive, streaming, and so on. Providers such as Amazon, Facebook, Google, 
IBM, and Microsoft are taking a leading role in building innovative capabilities 
with a service-first approach backed by a strong platform that provides a consistent 
experience for developers. This trend will continue to accelerate, with more and 
more powerful services being released at an increasingly rapid rate.

A good example is Google self-learning AI called AlphaZero (https://
en.wikipedia.org/wiki/AlphaZero), which taught itself chess in 4 hours 
and went on to beat a champion chess program. Another great example comes 
from IBM's recently announced project debater (https://www.research.ibm.
com/artificial-intelligence/project-debater), which is the first AI 
system that can debate a human on complex topics. These types of advances 
will continue to fuel the availability of more and more powerful services that 
can be accessed by everyone, including developers. Chatbots are another example 
of services that have been successfully democratized as it has never been easier 
for developers to create applications that contain conversational capabilities. 
I believe that consuming these services will become easier and easier over time, 
enabling developers to build amazing new applications that we can't even begin 
to imagine today.

On the data side, we need to make accessing high-quality data much easier than 
it is today. One model I have in mind is coming from a television show called 24. 
Full disclosure; I love watching, and binging on, TV series and I think that some 
of them provide a good indicator of where technology is headed. In 24, Jack Bauer, 
a counter-terrorism agent, has 24 hours to stop bad guys from causing catastrophic 
events. Watching that show, I'm always amazed at how easy the data circulates from 
the analyst back at the command center to the mobile phone of Jack Bauer, or how, 
given a data problem with only minutes to solve, the analyst is able to summon the 
data from different systems (satellite images, system of records, and so on) to zero-
in on the bad guys; for example, we're looking for someone who bought this type of 
chemicals in the last 2 months and within a given radius. Wow! from my perspective, 
this is how easy and frictionless it should be for data scientists to access and process 
data. I believe we are making great progress toward this goal with tools such as 
Jupyter Notebooks that act as a control plane for connecting data sources with 
services and analytics that process them. Jupyter Notebooks bring tools to the data 
instead of the opposite, thus lowering greatly the cost of entry for anyone who wants 
to get involved in data science.

https://en.wikipedia.org/wiki/AlphaZero
https://en.wikipedia.org/wiki/AlphaZero
https://www.research.ibm.com/artificial-intelligence/project-debater
https://www.research.ibm.com/artificial-intelligence/project-debater
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PixieApp Quick-Reference
This appendix is a developer quick-reference guide that provides a summary  
of all the PixieApp attributes.

Annotations
• @PixieApp: Class annotation that must be added to any class that  

is a PixieApp.
Arguments: None
Example:
from pixiedust.display.app import *
@PixieApp
class MyApp():
    pass

• @route: Method annotation required to denote that a method—which can 
have any name—is associated with a route.
Arguments: **kwargs. Keyword arguments (key-value pairs) representing 
the route definition. The PixieApp dispatcher will match the current kernel 
request with a route according to the following rules:

 ° The route with the highest number of arguments get evaluated first.
 ° All arguments must match for a route to be selected. Argument 

values can use * to denote that any value will match.
 ° If a route is not found, then the default route (the one with no 

argument) is selected.
 ° Each key of the route argument can be either a transient state 

(defined by the pd_options attribute) or persisted (field of the 
PixieApp class that remains present until explicitly changed).

 ° The method can have any number of arguments. When invoking 
the method, the PixieApp dispatcher will try to match the method 
argument with the route arguments with the same name.
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Return: The method must return an HTML fragment (except if the @
captureOutput annotation is used) that will be injected in the frontend. 
The method can leverage the Jinja2 template syntax to generate the HTML. 
The HTML template has access to a certain number of variables:

 ° this: Reference to the PixieApp class (Note that we use this instead 
of self because self is already used by the Jinja2 framework itself)

 ° prefix: String ID that is unique to the PixieApp instance
 ° entity: The current data entity for the request
 ° Method arguments: All arguments of the method can be accessed 

as a variable in the Jinja2 template

Example:
from pixiedust.display.app import *
@PixieApp
class MyApp():
    @route(key1=”value1”, key2=”*”)
    def myroute_screen(self, key1, key2):
        return “<div>fragment: Key1 = {{key1}} - Key2 = {{key2}}”

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode25.py

• @templateArgs: Annotation that enables any local variable to be used within 
the Jinja2 template. Note that @templateArgs cannot be used in combination 
with @captureOutput:
Arguments: None
Example:
from pixiedust.display.app import *
@PixieApp
class MyApp():
    @route(key1=”value1”, key2=”*”)
    @templateArgs
    def myroute_screen(self, key1, key2):
        local_var = “some value”
        return “<div>fragment: local_var = {{local_var}}”

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode25.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode25.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode26.py

• @captureOutput: Annotation that changes the contract with the route 
method, so that it doesn’t have to return an HTML fragment anymore. 
Instead, the method body can simply output the results as it would in 
a Notebook cell. The framework will capture the output and return it 
as HTML. Note that you cannot use Jinja2 template in this case.
Arguments: None
Example:
from pixiedust.display.app import *
import matplotlib.pyplot as plt
@PixieApp
class MyApp():
    @route()
    @captureOutput
    def main_screen(self):
        plt.plot([1,2,3,4])
        plt.show()

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode27.py

• @Logger: Add logging capabilities by adding logging methods to the class: 
debug, warn, info, error, critical, exception.

Arguments: None
Example:
from pixiedust.display.app import *
from pixiedust.utils import Logger
@PixieApp
@Logger()
class MyApp():
    @route()
    def main_screen(self):
        self.debug(“In main_screen”)
        return “<div>Hello World</div>”

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode26.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode27.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode27.py
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode28.py

Custom HTML attributes
These can be used with any regular HTML elements to configure kernel requests. 
The PixieApp framework can trigger these requests when the element receives 
a click or change event, or right after the HTML fragment has completed loading.

• pd_options: List of key-value pairs that define transient states for the 
kernel request, according to the following format: pd_options=”key1=va
lue1;key2=value2;...”. When used in combination with the pd_entity 
attribute, the pd_options attribute invokes the PixieDust display() API. 
In this case, you can get the values from the metadata of a separate Notebook 
cell in which you have used the display() API. When using pd_options 
in display() mode, it is recommended for convenience, to use the JSON 
notation of pd_options by creating a child element called <pd_options> 
and include the JSON values as text.
Example with pd_options as child element invoking display():
<div pd_entity>
    <pd_options>
        {
            “mapboxtoken”: “XXXXX”,
            “chartsize”: “90”,
            “aggregation”: “SUM”,
            “rowCount”: “500”,
            “handlerId”: “mapView”,
            “rendererId”: “mapbox”,
            “valueFields”: “IncidntNum”,
            “keyFields”: “X,Y”,
            “basemap”: “light-v9”
        }
    </pd_options>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode29.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode28.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode29.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode29.html
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Example with pd_options as HTML attribute:
<!-- Invoke a route that displays a chart -->
<button type=”submit” pd_options=”showChart=true”  
pd_target=”chart{{prefix}}”>
    Show Chart
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode30.html

• pd_entity: Used only to invoke the display() API on specific data. Must 
be used in combination with pd_options where key-value pairs will be 
used as arguments to display(). If no value is specified for the pd_entity 
attribute, then it is assumed to be the entity passed to the run method that 
starts the PixieApp. The pd_entity value can be either a variable defined 
in the Notebook or a field of the PixieApp (for example, pd_entity=”df”), 
or a field to an object using the dot notation (for example, pd_entity=”obj_
instance.df”).

• pd_target: By default, the output of a kernel request is injected in the overall 
output cell or dialog (if you use runInDialog=”true” as an argument to the 
run method). However, you can use pd_target=”elementId” to specify 
a target element that will receive the output. (Note that the elementId 
must exist in the current view.)
Example:
<div id=”chart{{prefix}}”>
<button type=”submit” pd_options=”showChart=true”  
pd_target=”chart{{prefix}}”>
    Show Chart
</button>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode31.html

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode30.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode30.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode31.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode31.html
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• pd_script: This invokes arbitrary Python code as part of the kernel request. 
This can be used in combination with other attributes like pd_entity 
and pd_options. It’s important to note that the Python indentation rules 
(https://docs.python.org/2.0/ref/indentation.html) must be 
respected to avoid a runtime error.
If the Python code contains multiple lines, it is recommended to use  
pd_script as a child element and store the code as text.
Example:
<!-- Invoke a method to load a dataframe before visualizing it -->
<div id=”chart{{prefix}}”>
<button type=”submit”
    pd_entity=”df”
    pd_script=”self.df = self.load_df()”
    pd_options=”handlerId=dataframe”
    pd_target=”chart{{prefix}}”>
    Show Chart
</button>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode32.html

• pd_app: This dynamically invokes a separate PixieApp by its fully qualified 
class name. The pd_options attribute can be used to pass route arguments 
to invoke a specific route of the PixieApp.
Example:
<div pd_render_onload
     pd_option=”show_route_X=true”
     pd_app=”some.package.RemoteApp”>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode33.html

https://docs.python.org/2.0/ref/indentation.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode32.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode32.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode33.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode33.html


Appendix

[ 453 ]

• pd_render_onload: This should be used to trigger a kernel request upon 
loading, as opposed to when a user clicks on an element or when a change 
event occurs. The pd_render_onload attribute can be combined with any 
other attribute that defines the request, like pd_options or pd_script. 
Note that this attribute should only be used with a div element.
Example:
<div pd_render_onload>
    <pd_script>
print(‘hello world rendered on load’)
    </pd_script>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode34.html

• pd_refresh: This is used to force the HTML element to execute a kernel 
request even if no event (click or change event) has occurred. If no value 
is specified, then the current element is refreshed, otherwise, the element 
with the ID specified in the value will be refreshed.
Example:
<!-- Update state before refreshing a chart -->
<button type=”submit”
    pd_script=”self.show_line_chart()”
    pd_refresh=”chart{{prefix}}”>
    Show line chart
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode35.html

• pd_event_payload: This emits a PixieApp event with the specified payload 
content. This attribute follows the same rules as pd_options:

 ° Each key-value pair must be encoded using the key=value notation
 ° The event will be triggered on a click or a change event
 ° Support for $val() directive to dynamically inject user entered input
 ° Use <pd_event_payload> child to enter raw JSON.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode34.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode34.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode35.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode35.html
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Example:
<button type=”submit” pd_event_payload=”type=topicA;message=Button 
clicked”>
    Send event A
</button>
<button type=”submit”>
    <pd_event_payload>
    {
        “type”:”topicA”,
        “message”:”Button Clicked”
    }
    </pd_event_payload>
    Send event A
</button>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode36.html

• pd_event_handler: Subscribers can listen to an event by declaring a <pd_
event_handler> child element which can accept any of the PixieApp kernel 
execution attributes like pd_options and pd_script. This element must use 
the pd_source attribute to filter which events they want to process. The pd_
source attribute can contain one of the following values:

 ° targetDivId: Only events originating from the element with the 
specified ID will be accepted

 ° type: Only events with the specified type will be accepted

Example:
<div class=”col-sm-6” id=”listenerA{{prefix}}”>
    Listening to button event
    <pd_event_handler
        pd_source=”topicA”
        pd_script=”print(eventInfo)”
        pd_target=”listenerA{{prefix}}”>
    </pd_event_handler>
</div>

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode36.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode36.html
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You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode37.html

Note: Using * for pd_source denotes that all events will be accepted.

• pd_refresh_rate: This is used to repeat the execution of an element at 
a specified interval expressed in milliseconds. This is useful for when you 
want to poll the state of a particular variable and show the result in the UI.

Example:
<div pd_refresh_rate=”3000”
    pd_script=”print(self.get_status())”>
</div>

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode38.html

Methods
• setup: This is an optional method implemented by the PixieApp to 

initialize its state. Will be automatically invoked before the PixieApp runs.
Arguments: None
Example:
def setup(self):
    self.var1 = “some initial value”
    self.pandas_dataframe = pandas.DataFrame(data)

You can find the code file here:
https://github.com/DTAIEB/Thoughtful-Data-Science/
blob/master/chapter%205/sampleCode39.py

• run: This starts the PixieApp.
Arguments:

 ° entity: [Optional] Dataset passed as input to the PixieApp. Can be 
referenced with the pd_entity attribute or directly as a field called 
pixieapp_entity.

https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode37.html 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode37.html 
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode38.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode38.html
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode39.py
https://github.com/DTAIEB/Thoughtful-Data-Science/blob/master/chapter%205/sampleCode39.py
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 ° **kwargs: Keyword arguments to be passed to the PixieApp 
when it runs. For example, using runInDialog=”true” will 
start the PixieApp in a dialog.

Example:
app = MyPixieApp()
app.run(runInDialog=”true”)

• invoke_route: This is used to programmatically invoke a route.
Arguments:

 ° Route method: Method to be invoked.
 ° **kwargs: Keyword arguments to be passed to the route method.

Example:
app.invoke_route(app.route_method, arg1 = “value1”, arg2 = 
“value2”)

• getPixieAppEntity: This is used to retrieve the current PixieApp 
entity (which can be None) passed when calling the run() method. 
getPixieAppEntity() is typically called from within the PixieApp 
itself, that is:

self.getPixieAppEntity()
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of time series  315-322
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BaseSubApp  333, 334
MovingAverageSubApp  337, 339
StockExploreSubApp  335, 336
UI layout  328, 330-332

StockExploreSubApp  335-337
strongly connected component  378
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TensorFlow
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time series
forecasting, with ARIMA model  343-355, 357, 

359, 360, 364, 366, 368, 370
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Twitter
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application  248, 249
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US domestic flight data
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user story  273
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422-424
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Scala Bridge  33
Spark Job Progress Monitor  33
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visual debugging 
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visualized data

filtering  60
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creating, with @captureOutput  
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