

Learn React Hooks

Build and refactor modern React.js applications using Hooks

Daniel Bugl

BIRMINGHAM - MUMBAI

Learn React Hooks
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Heramb Bhavsar
Content Development Editor: Keagan Carneiro
Senior Editor: Mohammed Yusuf Imaratwale
Technical Editor: Suwarna Patil
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Aparna Bhagat

First published: October 2019

Production reference: 1181019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-144-3

www.packt.com

http://www.packt.com

To my family and friends for supporting me during the creation of this book.

To my father, who has supported me throughout my whole life.

To my co-founder, Georg Schelkshorn, who runs an amazing company with me. Thank you for
taking care of business while I was writing this book.

To my amazing girlfriend, Junxian Wang, for improving my life in many ways, for making me
more productive, and for always taking care of me. I love you so much.

Without you, all of this would not have been possible.

– Daniel Bugl

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Foreword
When Hooks were initially released, I was excited, but also skeptical. Being able to rely only
on functions was fantastic. On the other hand, Hooks such as useEffect required the
whole React community to rethink how to approach managing side effects.

Hooks made it very easy to handle the most commonplace things, such as rendering and
managing state. For such things, most of the time, you can get away with not actually
knowing that much about Hooks. Still, now and then, you will need to handle more
complex requirements and this requires you to have a deep understanding of when to
apply which Hook.

In his book, Daniel starts from the very beginning. Anyone with a basic understanding of
React can get started with it. Even so, this book goes very deep and even someone
experienced with Hooks will most likely learn something new since Daniel also touches on
design decisions and shows basic implementations of the presented concepts. Also, while
he covers the theory well, each chapter has plenty of hands-on examples.

Nik Graf
ReactVienna organizer
ReasonConf organizer

About Nik Graf
Nik Graf initiated the ReactVienna Meetup in 2015. He has created several open source
projects, including DraftJs plugins, Polished, and Belle, which all featured at Stripe's Open-
Source Retreat in 2016. As a consultant/freelancer, he supports multiple companies with
their frontend architecture using React and GraphQL. In addition to that, he produces
video courses, which can be found on his personal website: https://www.nikgraf.com.

When React Hooks were released, Nik created a searchable collection of community-
created Hooks at https://nikgraf.github.io/react-hooks/.

https://www.nikgraf.com/?fbclid=IwAR3ro4N_-4c-vr37cecCI03SAGjaVh7qfVfY0dmvcftlOSDnK9WAW3jDc8I
https://nikgraf.github.io/react-hooks/?fbclid=IwAR0i3mtKlJ7MS1PdbMB-XaCMo0IPvfLaTDj71Lrq7EoAU-3nYlLFB7CWcQ4

Contributors

About the author
Daniel Bugl is a developer, product designer, and entrepreneur focusing on web
technologies. He has a Bachelor of Science degree in business informatics and information
systems and is now studying data science at the Vienna University of Technology (TU
Wien). He is a contributor to many open source projects and a member of the React
community. He also founded and runs his own hardware/software start-up, TouchLay,
which helps other companies present their products and services. At his company, he
constantly works with web technologies, particularly making use of React and React
Hooks.

I want to thank the people involved in the production of this book, my co-founder, Georg
Schelkshorn; my family and friends; and my girlfriend, Junxian Wang.

About the reviewers
Farzad YousefZadeh is a self-taught senior software engineer and an international
conference speaker with an academic background in aerospace engineering and
astrophysics. He lives in Finland with his wife and their cat. He mainly works with
JavaScript and TypeScript on different platforms, but he is most passionate about client-
side applications, thriving to solve UI development challenges by studying revolutionary
approaches. He is fascinated by tooling around with development
experience and automation. He is an active member of the open source community by
constantly contributing to OSS, public technical speaking, and volunteering in
free educational programs.

Kirill Ezhemenskii is an experienced software engineer, a frontend and mobile developer,
a solution architect, and the CTO at a healthcare company. He's a functional programming
advocate and an expert in the React stack, GraphQL, and TypeScript. He's also a React
native mentor.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Introduction to Hooks
Chapter 1: Introducing React and React Hooks 8

Technical requirements 9
Principles of React 9
Motivation for using React Hooks 10

Confusing classes 11
Wrapper hell 13
Hooks to the rescue! 14

Getting started with React Hooks 15
Initializing a project with create-react-app 16

Creating a new project 16
Starting a project 17
Deploying a project 17

Starting with a class component 18
Setting up the project 18
Defining the class component 19
Example code 21

Using Hooks instead 21
Setting up the project 21
Defining the function component 21
Example code 23

Comparing the solutions 24
Class component 24
Function component with Hook 25

Advantages of Hooks 25
Migrating to Hooks 26
The Hooks mindset 26
Rules of Hooks 27

Overview of various Hooks 27
Hooks provided by React 27

Basic Hooks 28
useState 28
useEffect 28
useContext 29

Additional Hooks 29
useRef 29
useReducer 30
useMemo 30
useCallback 30
useLayoutEffect 31

Table of Contents

[ii]

useDebugValue 31
Community Hooks 31

useInput 32
useResource 32
Navigation Hooks 32
Life cycle Hooks 33
Timer Hooks 33
Other community Hooks 34

Summary 34
Questions 34
Further reading 35

Chapter 2: Using the State Hook 36
Technical requirements 36
Reimplementing the useState function 37
Problems with our simple Hook implementation 39

Using a global variable 39
Defining multiple Hooks 39

Adding multiple Hooks to our component 40
Implementing multiple Hooks 40
Example code 42

Can we define conditional Hooks? 42
Example code 45

Comparing our reimplementation with real Hooks 45
Alternative Hook APIs 46

Named Hooks 46
Hook factories 46
Other alternatives 47

Solving common problems with Hooks 48
Solving conditional Hooks 48

Always defining the Hook 48
Splitting up components 48

Solving Hooks in loops 49
Using an array 49
Splitting up components 50

Solving problems with conditional Hooks 50
Example code 51

Summary 51
Questions 52
Further reading 52

Chapter 3: Writing Your First Application with React Hooks 53
Technical requirements 53
Structuring React projects 54

Folder structure 54
Choosing the features 55
Coming up with an initial structure 55

Table of Contents

[iii]

Component structure 56
Implementing static components 58

Setting up the project 59
Implementing users 59

The Login component 60
Testing out our component 61
The Logout component 62
The Register component 63
The UserBar component 64
Example code 66

Implementing posts 67
The Post component 67
The CreatePost component 68
The PostList component 69

Putting the app together 72
Example code 74

Implementing stateful components with Hooks 74
Adding Hooks for the users feature 74

Adjusting UserBar 74
Adjusting the Login and Register components 75

Login 75
Register 76

Adjusting Logout 78
Passing the user to CreatePost 78

Adding Hooks for the posts feature 80
Adjusting the App component 80
Adjusting the CreatePost component 80

Example code 83
Summary 83
Questions 83
Further reading 84

Section 2: Section 2: Understanding Hooks in Depth
Chapter 4: Using the Reducer and Effect Hooks 86

Technical requirements 86
Reducer Hooks versus State Hooks 87

Problems with the State Hook 87
Actions 88
Reducers 89
The Reducer Hook 91

Implementing Reducer Hooks 91
Turning a State Hook into a Reducer Hook 92

Replacing the user State Hook 92
Defining actions 93
Defining the reducer 93
Defining the Reducer Hook 94

Replacing the posts State Hook 96

Table of Contents

[iv]

Defining actions 96
Defining the reducer 97
Defining the Reducer Hook 97

Example code 98
Merging Reducer Hooks 98

Ignoring unhandled actions 100
Example code 101

Using Effect Hooks 101
Remember componentDidMount and componentDidUpdate? 101
Using an Effect Hook 103

Trigger effect only when certain props change 104
Trigger effect only on mount 104
Cleaning up effects 105

Implementing an Effect Hook in our blog app 105
Example code 107

Summary 108
Questions 108
Further reading 109

Chapter 5: Implementing React Context 110
Technical requirements 110
Introducing React context 111

Passing down props 111
Introducing React context 112

Defining the context 113
Defining the consumer 113
Using Hooks 114
Defining the provider 115
Nested providers 116

Example code 118
Alternative to contexts 118

Implementing themes 118
Defining the context 119
Defining the Context Hooks 119

Creating the Header component 119
Using the Header component 120
Implementing the Context Hook for the Post component 121

Defining the provider 122
Dynamically changing the theme 123

Using a State Hook with the context provider 123
Implementing the ChangeTheme component 124

Example code 126
Using context for global state 127

Defining StateContext 127
Defining the context provider 127
Using StateContext 128

Refactoring user components 129

Table of Contents

[v]

Refactoring post components 130
Example code 131

Summary 131
Questions 132
Further reading 132

Chapter 6: Implementing Requests and React Suspense 133
Technical requirements 133
Requesting resources with Hooks 134

Setting up a dummy server 134
Creating the db.json file 134
Installing the json-server tool 136
Configuring package.json 137
Configuring a proxy 138
Defining routes 139
Example code 140

Implementing requests using Effect and State/Reducer Hooks 140
Requests with Effect and State Hooks 141
Requests with Effect and Reducer Hooks 143
Example code 144

Using axios and react-request-hook 144
Setting up the libraries 145
Using the useResource Hook 146
Using useResource with a Reducer Hook 147
Handling error state 148
Implementing post creation 150
Implementing registration 151
Implementing login 153

Example code 155
Preventing unnecessary re-rendering with React.memo 156

Implementing React.memo for the Post component 156
Example code 158

Implementing lazy loading with React Suspense 158
Implementing React.Suspense 159
Implementing React.lazy 159
Example code 161

Summary 161
Questions 161
Further reading 162

Chapter 7: Using Hooks for Routing 163
Technical requirements 163
Creating multiple pages 164

Creating the HeaderBar component 164
Creating the HomePage component 166
Creating the PostPage component 167

Testing out the PostPage 169

Table of Contents

[vi]

Example code 169
Implementing routing 169

Defining routes 170
Defining links 171

Defining links to the posts 171
Defining the links to the main page 173

Adjusting the CREATE_POST action 174
Example code 175

Using routing Hooks 175
Overview of Navi's Hooks 175

The useNavigation Hook 175
The useCurrentRoute Hook 176
The useLoadingRoute Hook 177

Programmatic navigation 177
Accessing route information 178
Example code 179

Summary 179
Questions 180
Further reading 180

Chapter 8: Using Community Hooks 181
Technical requirements 181
Exploring the input handling Hook 182

Implementing Input Hooks in our blog app 183
The Login component 184
The Register component 185
The CreatePost component 186

Example code 187
React life cycles with Hooks 188

The useOnMount Hook 188
The useOnUnmount Hook 189
The useLifecycleHooks Hook 190
The useMergeState Hook 191
Example code 192

Various useful Hooks 193
The usePrevious Hook 193
Timer Hooks 194

The useInterval Hook 195
useTimeout Hook 196

The Online Status Hook 197
Data manipulation Hooks 198

The useBoolean Hook 198
The useArray Hook 199
The useCounter Hook 200

Focus and Hover Hooks 202
The useFocus Hook 202
The useHover Hook 203

Table of Contents

[vii]

Example code 203
Responsive design with Hooks 203

Responsively hiding components 205
Example code 206

Undo/Redo with Hooks 206
Implementing Undo/Redo in our post editor 207
Debouncing with Hooks 209
Debouncing changes in our post editor 210
Example code 212

Finding other Hooks 212
Summary 213
Questions 213
Further reading 214

Chapter 9: Rules of Hooks 215
Technical requirements 215
Calling Hooks 216
Order of Hooks 216
Names of Hooks 220
Enforcing the rules of Hooks 220

Setting up eslint-plugin-react-hooks 221
Example code 224

Dealing with useEffect dependencies 224
Automatically fixing warnings with eslint 224
Example code 225

Summary 225
Questions 226
Further reading 226

Chapter 10: Building Your Own Hooks 227
Technical requirements 228
Extracting custom Hooks 228

Creating a useTheme Hook 229
Creating global state Hooks 230

Defining the useUserState Hook 230
Defining the usePostsState Hook 230

Creating a useDispatch Hook 231
Creating API Hooks 232
Creating a useDebouncedUndo Hook 233
Exporting our custom Hooks 235
Example code 235

Using our custom Hooks 236
Using the useTheme Hook 236
Using the global state Hooks 237

Adjusting the UserBar component 237

Table of Contents

[viii]

Adjusting the Login component 238
Adjusting the Register component 238
Adjusting the Logout component 239
Adjusting the CreatePost component 239
Adjusting the PostList component 239

Using the API Hooks 240
Adjusting the ChangeTheme component 240
Adjusting the Register component 241
Adjusting the Login component 241
Adjusting the CreatePost component 241

Using the useDebouncedUndo Hook 242
Example code 243

Interactions between Hooks 243
Creating a local Register Effect Hook 244
Creating a local Login Effect Hook 245
Example code 246

Testing Hooks 246
Using the React Hooks Testing Library 246
Testing simple Hooks 247

Creating the useCounter Hook 247
Testing the useCounter Hook result 248
Testing useCounter Hook actions 249
Testing the useCounter initial value 250
Testing reset and forcing re-rendering 250

Testing Context Hooks 251
Creating the ThemeContextWrapper 252
Testing the useTheme Hook 252
Creating the StateContextWrapper 253
Testing the useDispatch Hook 254
Testing the useUserState Hook 255
Testing the usePostsState Hook 256

Testing async Hooks 258
The async/await construct 258
Testing the useDebouncedUndo Hook 259

Running the tests 261
Example code 261

Exploring the React Hooks API 262
The useState Hook 262
The useEffect Hook 263
The useContext Hook 264
The useReducer Hook 264
The useMemo Hook 265
The useCallback Hook 265
The useRef Hook 266
The useImperativeHandle Hook 267
The useLayoutEffect Hook 268
The useDebugValue Hook 268

Table of Contents

[ix]

Summary 269
Questions 270
Further reading 270

Section 3: Section 3: Integration and Migration
Chapter 11: Migrating from React Class Components 272

Technical requirements 273
Handling state with class components 273

Designing the app structure 273
Initializing the project 275
Defining the app structure 276
Defining the components 277

Defining the Header component 277
Defining the AddTodo component 278
Defining the TodoList component 278
Defining the TodoItem component 279
Defining the TodoFilter component 280

Implementing dynamic code 281
Defining the API code 282
Defining the StateContext 282
Making the App component dynamic 283
Making the AddTodo component dynamic 287
Making the TodoList component dynamic 289
Making the TodoItem component dynamic 290
Making the TodoFilter component dynamic 291

Example code 292
Migrating from React class components 292

Migrating the TodoItem component 293
Migrating the TodoList component 294
Migrating the TodoFilter component 295

Migrating TodoFilterItem 295
Migrating TodoFilter 296

Migrating the AddTodo component 296
Migrating the App component 298

Defining the actions 298
Defining the reducers 299

Defining the filter reducer 299
Defining the todos reducer 299
Defining the app reducer 301

Migrating the component 301
Example code 303

Trade-offs of class components 303
Summary 305
Questions 306
Further reading 306

Chapter 12: Redux and Hooks 307

Table of Contents

[x]

Technical requirements 308
What is Redux? 308

The three principles of Redux 310
Single source of truth 310
Read-only state 310
State changes are processed with pure functions 310

Handling state with Redux 311
Installing Redux 312
Defining state, actions, and reducers 312

State 313
Actions 313
Reducers 313

Setting up the Redux store 314
Example code 315

Defining action types 315
Defining action creators 316

Defining synchronous action creators 316
Defining asynchronous action creators 317

Adjusting the store 318
Adjusting reducers 318

Setting the initial state in Redux reducers 319
Connecting components 319

Connecting the AddTodo component 320
Connecting the TodoItem component 321
Connecting the TodoList component 322
Adjusting the TodoList component 323
Connecting the TodoFilter component 325
Connecting the App component 326

Setting up the Provider component 327
Example code 328

Using Redux with Hooks 328
Using the dispatch Hook 329

Using Hooks for the AddTodo component 329
Using Hooks for the App component 330
Using Hooks for the TodoItem component 332

Using the Selector Hook 333
Using Hooks for the TodoList component 333
Using Hooks for the TodoFilter component 334

Example code 336
Creating reusable selectors 336

Setting up reselect 336
Memoizing selectors that only depend on state 336
Example code 338

Using the store Hook 338
Migrating a Redux application 338
Trade-offs of Redux 339
Summary 340

Table of Contents

[xi]

Questions 341
Further reading 341

Chapter 13: MobX and Hooks 342
Technical requirements 342
What is MobX? 343
Handling state with MobX 345

Installing MobX 345
Setting up the MobX store 345
Defining the Provider component 349
Connecting components 349

Connecting the App component 350
Connecting the TodoList component 351
Connecting the TodoItem component 352
Connecting the AddTodo component 352
Connecting the TodoFilter component 353

Example code 354
Using MobX with Hooks 354

Defining a store Hook 355
Upgrading components to Hooks 356

Using Hooks for the App component 356
Using Hooks for the TodoList component 357
Using Hooks for the TodoItem component 358
Using Hooks for the AddTodo component 360
Using Hooks for the TodoFilter component 360

Example code 361
Using the local store Hook 362
Example code 364

Migrating a MobX application 364
The trade-offs of MobX 364
Summary 366
Questions 366
Further reading 367

Assessments 368

Other Books You May Enjoy 384

Index 387

Preface
React is a JavaScript library for building efficient and extensible web applications. React is
developed by Facebook and is used in many large-scale web applications, such as
Facebook, Instagram, Netflix, and WhatsApp Web.

React Hooks were introduced in the React 16.8 release and solve many common problems
with React projects. Hooks make components less complex, more concise, and easier to
read and refactor. Furthermore, they make many React features much easier to use and
understand, and we avoid having to use wrapper components.

This book is the definitive guide to learning React Hooks. You are going to learn all the
facets of React Hooks for managing state and effects in React components, as well as using
other React features, such as context, via Hooks. With practical examples, you are going to
learn how to develop large-scale and efficient applications with code that is extensible and
easy to understand.

The book also delves into advanced concepts, such as using Hooks in combination with
libraries like Redux and MobX. Furthermore, you are going to learn when and how existing
projects can be efficiently migrated to React Hooks.

Who this book is for
The book is intended for web developers at any level of expertise with JavaScript and the
React framework. The book will also cater to developers who have been migrating to React
for its advanced feature set and capabilities.

What this book covers
Chapter 1, Introducing React and React Hooks, covers the fundamental principles of React
and React Hooks, what they are and why to use them. We then learn about the
functionality of Hooks by introducing the State Hook as an alternative to React state in class
components. Finally, we introduce the kinds of Hooks React provides and introduce a
couple of Hooks that we are going to learn about throughout the book.

Preface

[2]

Chapter 2, Using the State Hook, explains how Hooks work in depth by reimplementing the
useState Hook. By doing so, we find out that there are certain limitations of Hooks. We
are then going to compare our reimplementation of a Hook with real Hooks. Furthermore,
we introduce alternative Hook APIs and discuss the problems they have. Finally, we learn
how to solve common problems with Hooks, such as conditional Hooks and Hooks in
loops.

Chapter 3, Writing Your First Application with React Hooks, takes what we learned from the
first two chapters and puts it into practice by developing a blog application using React
Hooks, specifically the State Hook. In this chapter, we also learn how to structure React
projects in a way that scales well.

Chapter 4, Using the Reducer and Effect Hooks, moves on from learning about the simple
State Hook and using it in practice. We are going to learn about the other two main Hooks
predefined by the React library: the Reducer and Effect Hooks. We first learn when we
should use a Reducer Hook instead of a State Hook. Then we learn how to turn our existing
State Hook into a Reducer Hook to get an idea of the concept. Finally, we learn how to use
Effect Hooks for more advanced functionality.

Chapter 5, Implementing React Context, explains React context and how it can be used in our
application. Then we implement React context in our blog application to provide theming
functionality and global state using Context Hooks.

Chapter 6, Implementing Requests and React Suspense, covers requesting resources from a
server with Hooks using an Effect Hook and a State or Reducer Hook. Then we learn how
to use React.memo to prevent unnecessary component re-renders. Finally, we learn about
React Suspense, which can be used to defer rendering until a condition is met, also called
lazy loading.

Chapter 7, Using Hooks for Routing, explains how to use Hooks to implement routing in our
blog application. We learn about Navi, a routing library for React that makes use of Hooks
and Suspense. We start by implementing pages in our application, then define routes, and
finally move on to implementing routing Hooks.

Chapter 8, Using Community Hooks, explains that the React community has already
developed various libraries that make use of Hooks. In this chapter, we learn about
implementing various Hooks from the community, as well as where to find more of them.
We first learn about the input handling Hook. Next, we learn how to replace React life cycle
methods with Hooks. Then, we learn about various useful Hooks and responsive design
with Hooks. Furthermore, we learn how to implement undo/redo functionality using
Hooks. Finally, we learn where to find other Hooks provided by the community.

Preface

[3]

Chapter 9, Rules of Hooks, covers the rules of Hooks. Having a grasp on the rules of Hooks
is very important for building our own Hooks, which we are going to do in the next
chapter. We also learn about the limitations of Hooks in depth and discover what we need
to watch out for. Finally, we learn how to enforce the rules of Hooks using a linter.

Chapter 10, Building Your Own Hooks, moves on from the basic concepts of Hooks. We are
now going to build our own Hooks. We start by extracting a custom Hook from an existing
function of our blog application, and then we learn how to use our custom Hook. Next, we
learn about passing information between Hooks. Finally, we learn about the React Hooks
API and additional Hooks we can use to build our own Hooks. At the end of this chapter,
our application will be fully powered by Hooks!

Chapter 11, Migrating from React Class Components, covers state handling with React class
components. We start by implementing a simple ToDo application with class components.
Then, we learn how to migrate an existing project using class components to a Hook-based
implementation. Finally, we learn about the trade-offs of using class components versus
Hooks and a strategy to efficiently migrate existing projects.

Chapter 12, Redux and Hooks, explains state handling with Redux. We start by migrating
our existing ToDo application to Redux, and then we learn how to use Redux with Hooks.
Furthermore, we learn how to migrate an existing Redux application to Hooks. Finally, we
learn about the trade-offs of using Redux.

Chapter 13, MobX and Hooks, covers state handling with MobX. We start by migrating our
existing ToDo application to MobX. Then we learn how to use MobX with Hooks.
Furthermore, we learn how to migrate an existing MobX application to Hooks. Finally, we
learn about the trade-offs of using MobX.

To get the most out of this book
We assume that you have already worked with React in some way, although this book
should be understandable for complete beginners of React as well.

Please note that it is highly recommended that you write the code on your own. Do not
simply run the code examples that are provided. It is important to write the code yourself
in order to learn and understand it properly. However, if you run into any issues, you can
always refer to the code example.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Learn- React- Hooks. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781838641443_ColorImages. pdf.

Code in Action
Visit the following link to check out videos of the code being run:

http://bit.ly/2Mm9yoC

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/Learn-React-Hooks
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641443_ColorImages.pdf
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, folder names, filenames, file extensions,
pathnames, dummy URLs, and user input. Here is an example: "JavaScript classes provide
a render method, which returns the user interface (usually via JSX)."

A block of code is set as follows:

class Example extends React.Component {

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 constructor (props) {
 super(props)
 this.state = { name: '' }
 this.handleChange = this.handleChange.bind(this)
 }

Any command-line input or output is written as follows:

> npm run-script build

Bold: Indicates a new term, an important word, or words that you see onscreen. Here is an
example: " Throughout this chapter, we are also going to learn about JSX, and new
JavaScript features that have been introduced in ES6, up to ES2018."

In blocks of code, we use bold formatting to highlight changes in the code. Usually, we
highlight new code using bold. If specified, we might also indicate which parts of code
should be deleted by using bold formatting.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction to Hooks
In the first part of the book, we will introduce and cover the basics of React and React
Hooks, including why and how to use them. Following this, we will use our
knowledge gained in a practical setting, to create a blog application using React Hooks.

In this section, we will cover the following chapters:

Chapter 1, Introducing React and React Hooks
Chapter 2, Using the State Hook
Chapter 3, Writing Your First Application with React Hooks

1
Introducing React and React

Hooks
React is a JavaScript library that can be used to build efficient and extensible web
applications. React was developed by Facebook, and is used in many large-scale web
applications, such as Facebook, Instagram, Netflix, and WhatsApp Web.

In this book, we are going to learn how to build complex and efficient user interfaces with
React, while keeping the code simple and extensible. Using the new paradigm of React
Hooks, we can greatly simplify dealing with state management and side effects in web
applications, ensuring the potential for growing and extending the application later on. We
are also going to learn about React context and React Suspense, as well as how they can be
used with Hooks. Afterward, we are going to learn how to integrate Redux and MobX with
React Hooks. Finally, we are going to learn how to migrate from existing React class
components, Redux, and MobX web applications, to React Hooks.

In the first chapter of this book, we are going to learn about the fundamental principles of
React and React Hooks. We start by learning what React and React Hooks are, and why we
should use them. Then, we move on to learn about the functionality of Hooks. Finally, we
give an introduction to the kinds of Hooks that are provided by React, and a couple of
Hooks that we are going to learn about throughout the book. By learning the fundamentals
of React and React Hooks, we will be better able to understand the concepts that will be
introduced in this book.

The following topics will be covered in this chapter:

Learning about the fundamental principles of React
Motivating the need for React Hooks
Getting started with React Hooks
Giving an overview of various Hooks

Introducing React and React Hooks Chapter 1

[9]

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0, or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter01.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that were previously
provided. It is important to write the code yourself in order to learn and
understand it properly. However, if you run into any issues, you can
always refer to the code example.

Now, let's get started with the chapter.

Principles of React
Before we start learning about React Hooks, we are going to learn about the three
fundamental principles of React. These principles allow us to easily write scalable web
applications. The fundamental principles are important to know, as they will help us to
understand how and why Hooks fit into the React ecosystem.

React is based on three fundamental principles:

Declarative: Instead of telling React how to do things, we tell it what we want it
to do. As a result, we can easily design our applications and React will efficiently
update and render just the right components when the data changes. For
example, the following code, which duplicates strings in an array is imperative,
which is the opposite of declarative:

const input = ['a', 'b', 'c']
let result = []
for (let i = 0; i < input.length; i++) {
 result.push(input[i] + input[i])
}
console.log(result) // prints: ['aa', 'bb', 'cc']

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter01
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Introducing React and React Hooks Chapter 1

[10]

As we can see, in imperative code, we need to tell the computer exactly what to
do, step by step. However, with declarative code, we can simply tell the computer
what we want, as follows:

const input = ['a', 'b', 'c']
let result = input.map(str => str + str)
console.log(result) // prints: ['aa', 'bb', 'cc']

In the previous declarative code, we tell the computer that we want to map each
element of the input array from str to str + str. As we can see, declarative
code is much more concise.

Component-based: React encapsulates components that manage their own state
and views, and then allows us to compose them in order to create complex user
interfaces.
Learn once, write anywhere: React does not make assumptions about your
technology stack, and tries to ensure that you can develop apps without
rewriting existing code as much as possible.

We just mentioned that React is component-based. In React, there are two types of
components:

Function components: JavaScript functions that take the props as an argument,
and return the user interface (usually via JSX)
Class components: JavaScript classes that provide a render method, which
returns the user interface (usually via JSX)

While function components are easier to define and understand, class components were
needed to deal with state, contexts, and many more of React's advanced features. However,
with React Hooks, we can deal with React's advanced features without needing a class
component!

Motivation for using React Hooks
React's three fundamental principles make it easy to write code, encapsulate components,
and share code across multiple platforms. Instead of reinventing the wheel, React always
tries to make use of existing JavaScript features as much as possible. As a result, we are
going to learn software design patterns that will be applicable in many more cases than just
designing user interfaces.

Introducing React and React Hooks Chapter 1

[11]

React always strives to make the developer experience as smooth as possible, while
ensuring that it is kept performant enough, without the developer having to worry too
much about how to optimize performance. However, throughout the years of using React, a
couple of problems have been identified.

Let's take a look at these problems in detail in the following sections.

Confusing classes
In the past, we had to use class components with special functions called life cycle methods,
such as componentDidUpdate, and special state-handling methods, such as
this.setState, in order to deal with state changes. React classes, and especially
the this context, which is a JavaScript object, are hard to read and understand for both
humans and machines.

this is a special keyword in JavaScript that always refers to the object that it belongs to:

In a method, this refers to the class object (instance of the class).
In an event handler, this refers to the element that received the event.
In a function or when standing alone, this refers to the global object. For
example, in a browser, the global object is the Window object.
In strict mode, this is undefined in a function.
Additionally, methods such as call() and apply() can change the object that
this refers to, so it can refer to any object.

For humans, classes are hard because this always refers to different things, so sometimes
(for example, in event handlers) we need to manually rebind it to the class object. For
machines, classes are hard, because the machines do not know which methods in a class
will be called, and how this will be modified, making it hard to optimize performance and
remove unused code.

Furthermore, classes sometimes require us to write code in multiple places at once. For
example, if we want to fetch data when the component renders, or the data updates, we
need to do this using two methods: once in componentDidMount, and once in
componentDidUpdate.

Introducing React and React Hooks Chapter 1

[12]

To give an example, let's define a class component that fetches data from an Application
Programming Interface (API):

First, we define our class component by extending the React.Component class:1.

class Example extends React.Component {

Then, we define the componentDidMount life cycle method, where we pull data2.
from an API:

 componentDidMount () {
 fetch(`http://my.api/${this.props.name}`)
 .then(...)
 }

However, we also need to define the componentDidUpdate life cycle method in3.
case the name prop changes. Additionally, we need to add a manual check here,
in order to ensure that we only re-fetch data if the name prop changed, and not
when other props change:

 componentDidUpdate (prevProps) {
 if (this.props.name !== prevProps.name) {
 fetch(`http://my.api/${this.props.name}`)
 .then(...)
 }
 }
}

To make our code less repetitive, we could define a separate method4.
called fetchData, in order to fetch our data, as follows:

 fetchData () {
 fetch(`http://my.api/${this.props.name}`)
 .then(...)
 }

Then, we could call the method in componentDidMount and5.
componentDidUpdate:

 componentDidMount () {
 this.fetchData()
 }

 componentDidUpdate (prevProps) {
 if (this.props.name !== prevProps.name) {
 this.fetchData()

Introducing React and React Hooks Chapter 1

[13]

 }
 }

However, even then we still need to call fetchData in two places. Whenever we update
arguments that are passed to the method, we need to update them in two places, which
makes this pattern very prone to errors and future bugs.

Wrapper hell
Before Hooks, if we wanted to encapsulate state management logic, we had to use higher-
order components and render props. For example, we create a React component that uses
contexts to deal with user authentication as follows:

We start by importing the authenticateUser function in order to wrap our1.
component with the context, and the AuthenticationContext component in
order to access the context:

import authenticateUser, { AuthenticationContext } from
'./auth'

Then, we define our App component, where we make use of the2.
AuthenticationContext.Consumer component and the user render prop:

const App = () => (
 <AuthenticationContext.Consumer>
 {user =>

Now, we display different texts depending on whether the user is logged in or3.
not:

 user ? `${user} logged in` : 'not logged in'

 Here, we used two JavaScript concepts:

A ternary operator, which is an inline version of the if
conditional. It looks as follows: ifThisIsTrue ? returnThis :
otherwiseReturnThis.
A template string, which can be used to insert variables into a
string. It is defined with backticks (`) instead of normal single
quotes ('). Variables can be inserted via the ${variableName}
syntax. We can also use any JavaScript expressions within the ${}
brackets, for example, ${someValue + 1}.

Introducing React and React Hooks Chapter 1

[14]

Finally, we export our component after wrapping it with the4.
authenticateUser context:

 }
 </AuthenticationContext.Consumer>
)

export default authenticateUser(App)

In the previous example, we used the higher-order authenticateUser component to add
authentication logic to our existing component. We then used
AuthenticationContext.Consumer to inject the user object into our component
through its render props.

As you can imagine, using many contexts will result in a large tree with many sub-trees,
also called wrapper hell. For example, when we want to use three contexts, the wrapper
hell looks as follows:

<AuthenticationContext.Consumer>
 {user => (
 <LanguageContext.Consumer>
 {language => (
 <StatusContext.Consumer>
 {status => (
 ...
)}
 </StatusContext.Consumer>
)}
 </LanguageContext.Consumer>
)}
</AuthenticationContext.Consumer>

This is not very easy to read or write, and it is also prone to errors if we need to change
something later on. Furthermore, the wrapper hell makes debugging hard, because we
need to look at a large component tree, with many components just acting as wrappers.

Hooks to the rescue!
React Hooks are based on the same fundamental principles as React. They try to
encapsulate state management by using existing JavaScript features. As a result, we do not
need to learn and understand specialized React features anymore; we can simply tap into
our existing JavaScript knowledge in order to use Hooks.

Introducing React and React Hooks Chapter 1

[15]

Using Hooks, we can solve all the previously mentioned problems. We do not need to use
class components anymore, because Hooks are simply functions that can be called in
function components. We also do not need to use higher-order components and render
props for contexts anymore, because we can simply use a Context Hook to get the data that
we need. Furthermore, Hooks allow us to reuse stateful logic between components, without
creating higher-order components.

For example, the aforementioned problems with life cycle methods could be solved using
Hooks, as follows:

function Example ({ name }) {
 useEffect(() => {
 fetch(`http://my.api/${this.props.name}`)
 .then(...)
 }, [name])
 // ...
}

The Effect Hook that was implemented here will automatically trigger when the component
mounts, and whenever the name prop changes.

Furthermore, the wrapper hell that was mentioned earlier could also be solved using
Hooks, as follows:

 const user = useContext(AuthenticationContext)
 const language = useContext(LanguageContext)
 const status = useContext(StatusContext)

Now that we know which problems Hooks can solve, let's get started using Hooks in
practice!

Getting started with React Hooks
As we can see, React Hooks solve many problems, especially of larger web applications.
Hooks were added in React 16.8, and they allow us to use state, and various other React
features, without writing a class. In this section, we are going to start out by initializing a
project with create-react-app, then we will define a class component, and finally we
will write the same component as a function component using Hooks. By the end of this
section, we will have talked about the advantages of Hooks, and how we would go about
migrating to a Hook-based solution.

Introducing React and React Hooks Chapter 1

[16]

Initializing a project with create-react-app
To initialize a React project, we can use the create-react-app tool, which sets up the
environment for React development, including the following:

Babel, so that we can use the JSX and ES6 syntaxes
It even includes language extras beyond ES6, such as the object spread operator,
which we are going to make use of later
Additionally, we could even use TypeScript and Flow syntax

Furthermore, create-react-app sets up the following:

Autoprefixed Cascading Style Sheets (CSS), so that we do not need browser-
specific prefixes such as -webkit
A fast interactive unit test runner with code coverage reporting
A live development server, which warns us about common mistakes
A build script, which bundles JavaScript, CSS, and images for production,
including hashes and sourcemaps
An offline-first service worker and a web app manifest to meet all criteria of a
Progressive Web App (PWA)
Hassle-free updates for all the tools that have been previously listed

As we can see, the create-react-app tool makes React development a lot easier for us. It
is the perfect tool for us to use in order to learn about React, as well as for deploying React
applications in production.

Creating a new project
In order to set up a new project, we run the following command, which creates a new
directory named <app-name>:

> npx create-react-app <app-name>

If you prefer using the yarn package manager, you can run yarn create
react-app <app-name> instead.

Introducing React and React Hooks Chapter 1

[17]

We are now going to create a new project using create-react-app. Run the following
command to create a new React project for the first example of the first chapter:

> npx create-react-app chapter1_1

Now that we have initialized our project, let's move on to starting the project.

Starting a project
In order to start a project in development mode, we have to run the npm start command.
Run the following command:

> npm start

Now, we can access our project by opening http://localhost:3000 in our browser:

Our first React app!

As we can see, with create-react-app, it is quite easy to set up a new React project!

Deploying a project
To build a project for production deployments, we simply run the build script:

Run the following command to build the project for production deployment:1.

> npm run-script build

Introducing React and React Hooks Chapter 1

[18]

Using yarn, we can simply run yarn build. Actually, we can run any
package script that does not conflict with the name of an internal yarn
command in this way: yarn <script-name>, instead of npm run-
script <script-name>.

We can then serve our static build folder with a web server, or by using the2.
serve tool. First, we have to install it:

> npm install -g serve

Then, we can run the serve command, as follows:3.

> serve -s build

The -s flag of the serve command rewrites all not-found requests to
index.html, allowing for client-side routing.

Now, we can access the same app by opening http://localhost:5000 in our browser.
Please note that the serve tool does not automatically open the page in your browser.

After learning about create-react-app, we are now going to write our first component
with React.

Starting with a class component
First, we start out with a traditional React class component, which lets us enter a name,
which we then display in our app.

Setting up the project
As mentioned before, we are going to use create-react-app to initialize our project. If
you have not done so already, run the following command now:

> npx create-react-app chapter1_1

Next we are going to define our app as a class component.

Introducing React and React Hooks Chapter 1

[19]

Defining the class component
We first write our app as a traditional class component, as follows:

First, we remove all code from the src/App.js file.1.
Next, in src/App.js, we import React:2.

import React from 'react'

We then start defining our own class component—MyName:3.

class MyName extends React.Component {

Next, we have to define a constructor method, where we set the initial4.
state object, which will be an empty string. Here, we also need to make sure to
call super(props), in order to let the React.Component constructor know
about the props object:

 constructor (props) {
 super(props)
 this.state = { name: '' }
 }

Now, we define a method to set the name variable, by using this.setState. As5.
we will be using this method to handle input from a text field, we need to use
evt.target.value to get the value from the input field:

 handleChange (evt) {
 this.setState({ name: evt.target.value })
 }

Then, we define the render method, where we are going to display an input6.
field and the name:

 render () {

To get the name variable from the this.state object, we are going to use7.
destructuring:

 const { name } = this.state

The previous statement is the equivalent of doing the following:

 const name = this.state.name

Introducing React and React Hooks Chapter 1

[20]

Then, we display the currently entered name state variable:8.

 return (
 <div>
 <h1>My name is: {name}</h1>

We display an input field, passing the handler method to it:9.

 <input type="text" value={name}
onChange={this.handleChange} />
 </div>
)
 }
}

Finally, we export our class component:10.

export default MyName

If we were to run this code now, we would get the following error when entering
text, because passing the handler method to onChange changes the this context:

Uncaught TypeError: Cannot read property 'setState' of undefined

So, now we need to adjust the constructor method and rebind the this11.
context of our handler method to the class:

 constructor (props) {
 super(props)
 this.state = { name: '' }
 this.handleChange = this.handleChange.bind(this)
 }

There is the possibility of using arrow functions as class methods, to avoid
having to re-bind the this context. However, to use this feature we need
to install the Babel compiler plugin, @babel/plugin-proposal-class-
properties, as it is not a released JavaScript feature yet.

Finally, our component works! As you can see, there is a lot of code required to get state
handling to work properly with class components. We also had to rebind the this context,
because otherwise our handler method would not work. This is not very intuitive, and is
easy to miss while developing, resulting in an annoying developer experience.

Introducing React and React Hooks Chapter 1

[21]

Example code
The example code can be found in the Chapter01/chapter1_1 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using Hooks instead
After using a traditional class component to write our app, we are going to write the same
app using Hooks. As before, our app is going to let us enter a name, which we then display
in our app.

Please note that it is only possible to use Hooks in React function
components. You cannot use Hooks in a React class component!

We now start by setting up the project.

Setting up the project
Again, we use create-react-app to set up our project:

> npx create-react-app chapter1_2

Let's get started with defining a function component using Hooks now.

Defining the function component
Now, we define the same component as a function component:

First, we remove all code from the src/App.js file.1.
Next, in src/App.js, we import React, and the useState Hook:2.

 import React, { useState } from 'react'

Introducing React and React Hooks Chapter 1

[22]

We start with the function definition. In our case, we do not pass any arguments,3.
because our component does not have any props:

 function MyName () {

The next step would be to get the name variable from the component state.
However, we cannot use this.state in function components. We have already
learned that Hooks are just JavaScript functions, but what does that really mean?
It means that we can simply use Hooks from function components, just like any
other JavaScript function!

To use state via Hooks, we call useState() with our initial state as the
argument. This function returns an array with two elements:

The current state
A setter function to set the state

We can use destructuring to store these two elements in separate variables, as4.
follows:

 const [name, setName] = useState('')

The previous code is equivalent to the following:

 const nameHook = useState('')
 const name = nameHook[0]
 const setName = nameHook[1]

Now, we define the input handler function, where we make use of5.
the setName setter function:

 function handleChange (evt) {
 setName(evt.target.value)
 }

As we are not dealing with classes now, there is no need to rebind this
anymore!

Introducing React and React Hooks Chapter 1

[23]

Finally, we render our user interface by returning it from the function. Then, we6.
export the function component:

 return (
 <div>
 <h1>My name is: {name}</h1>
 <input type="text" value={name}
onChange={handleChange} />
 </div>
)
}

export default MyName

And that's it—we have successfully used Hooks for the first time! As you can see, the
useState Hook is a drop-in replacement for this.state and this.setState.

Let's run our app by executing npm start, and opening http://localhost:3000 in our
browser:

Our first React app with Hooks

After implementing the same app with a class component and a function component, let's
compare the solutions.

Example code
The example code can be found in the Chapter01/chapter1_2 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Introducing React and React Hooks Chapter 1

[24]

Comparing the solutions
Let's compare our two solutions, in order to see the differences between class components,
and function components using Hooks.

Class component
The class component makes use of the constructor method in order to define state, and
needs to rebind this in order to pass the handler method to the input field. The full class
component code looks as follows:

import React from 'react'

class MyName extends React.Component {
 constructor (props) {
 super(props)
 this.state = { name: '' }

 this.handleChange = this.handleChange.bind(this)
 }

 handleChange (evt) {
 this.setState({ name: evt.target.value })
 }

 render () {
 const { name } = this.state
 return (
 <div>
 <h1>My name is: {name}</h1>
 <input type="text" value={name}
onChange={this.handleChange} />
 </div>
)
 }
}

export default MyName

As we can see, the class component needs a lot of boilerplate code to initialize the state
object and handler functions.

Now, let's take a look at the function component.

Introducing React and React Hooks Chapter 1

[25]

Function component with Hook
The function component makes use of the useState Hook instead, so we do not need to
deal with this or a constructor method. The full function component code looks as
follows:

import React, { useState } from 'react'

function MyName () {
 const [name, setName] = useState('')

 function handleChange (evt) {
 setName(evt.target.value)
 }

 return (
 <div>
 <h1>My name is: {name}</h1>
 <input type="text" value={name} onChange={handleChange} />
 </div>
)
}

export default MyName

As we can see, Hooks make our code much more concise and easier to reason about. We do
not need to worry about how things work internally anymore; we can simply use state, by
accessing the useState function!

Advantages of Hooks
Let's remind ourselves about the first principle of React:

Declarative: Instead of telling React how to do things, we tell it what we
want it to do. As a result, we can easily design our applications, and React
will efficiently update and render just the right components when the data
changes.

As we have learned in this chapter, Hooks allow us to write code that tells React what we
want. With class components, however, we need to tell React how to do things. As a result,
Hooks are much more declarative than class components, making them a better fit in the
React ecosystem.

Introducing React and React Hooks Chapter 1

[26]

Hooks being declarative also means that React can do various optimizations on our code,
since it is easier to analyze functions and function calls rather than classes and their
complex this behavior. Furthermore, Hooks make it easier to abstract and share common
stateful logic between components. By using Hooks, we can avoid render props and higher-
order components.

We can see that Hooks not only make our code more concise, and are easier to reason about
for developers, but they also make the code easier to optimize for React.

Migrating to Hooks
Now, you might be wondering: does that mean class components are deprecated, and we
need to migrate everything to Hooks now? Of course not—Hooks are completely opt-in.
You can try Hooks in some of your components without rewriting any of your other code.
The React team also does not plan on removing class components at the moment.

There is no rush to migrate everything to Hooks right now. It is recommended that you
gradually adopt Hooks in certain components where they will be most useful. For example,
if you have many components that deal with similar logic, you can extract the logic to a
Hook. You can also use function components with Hooks side by side with class
components.

Furthermore, Hooks are 100% backward-compatible, and provide a direct API to all the
React concepts that you already know about: props, state, context, refs, and life cycle.
Furthermore, Hooks offer new ways to combine these concepts and encapsulate their logic
in a much better way that does not lead to wrapper hell or similar problems. We are going
to learn more about this later in the book.

The Hooks mindset
The main goal of Hooks is to decouple stateful logic from rendering logic. They allow us to
define logic in separate functions and reuse them across multiple components. With Hooks,
we do not need to change our component hierarchy in order to implement stateful logic.
There is no need to define a separate component that provides the state logic to multiple
components anymore, we can simply use a Hook instead!

Introducing React and React Hooks Chapter 1

[27]

However, Hooks require a completely different mindset from classic React development.
We should not think about the life cycle of components anymore. Instead, we should think
about data flow. For example, we can tell Hooks to trigger when certain props or values
from other Hooks change. We are going to learn more about this concept in Chapter 4,
Using the Reducer and Effect Hooks. We should also not split components based on life cycle
anymore. Instead, we can use Hooks to deal with common functionalities, such as fetching
data, or setting up a subscription.

Rules of Hooks
Hooks are very flexible. However, there are certain limitations to using Hooks, which we
should always keep in mind:

Hooks can only be used in function components, not in class components
The order of Hook definitions matters, and needs to stay the same; thus, we
cannot put Hooks in if conditionals, loops, or nested functions

We are going to discuss these limitations in more detail, as well as how to work around
them, throughout this book.

Overview of various Hooks
As we learned in the previous section, Hooks provide a direct API to all React concepts.
Furthermore, we can define our own Hooks in order to encapsulate logic without having to
write a higher-order component, which causes a wrapper hell. In this section, we are going
to give an overview of various Hooks, which we are going to learn about throughout the
book.

Hooks provided by React
React already provides various Hooks for different functionalities. There are three basic
Hooks, and a handful of additional Hooks.

Introducing React and React Hooks Chapter 1

[28]

Basic Hooks
Basic Hooks provide the most commonly needed functionalities in stateful React apps.
They are as follows:

useState

useEffect

useContext

Let's take a look at each of these in the following sections.

useState
We have already used this Hook. It returns a stateful value (state) and a setter function
(setState) in order to update the value.

The useState Hook is used to deal with state in React. We can use it as follows:

import { useState } from 'react'

const [state, setState] = useState(initialState)

The useState Hook replaces this.state and this.setState().

useEffect
This Hook works similarly to adding a function on
componentDidMount and componentDidUpdate. Furthermore, the Effect Hook allows for
returning a cleanup function from it, which works similarly to adding a function to
componentWillUnmount.

The useEffect Hook is used to deal with effectful code, such as timers, subscriptions,
requests, and so on. We can use it as follows:

import { useEffect } from 'react'

useEffect(didUpdate)

The useEffect Hook replaces the componentDidMount, componentDidUpdate, and
componentWillUnmount methods.

Introducing React and React Hooks Chapter 1

[29]

useContext
This Hook accepts a context object and returns the current context value.

The useContext Hook is used to deal with context in React. We can use it as follows:

import { useContext } from 'react'

const value = useContext(MyContext)

The useContext Hook replaces context consumers.

Additional Hooks
Additional Hooks are either more generic variants of basic Hooks or are needed for certain
edge cases. The additional Hooks we are going to look at are as follows:

useRef

useReducer

useMemo

useCallback

useLayoutEffect

useDebugValue

Let's dive deeper into these additional Hooks in the following sections.

useRef
This Hook returns a mutable ref object, where the .current property is initialized to the
passed argument (initialValue). We can use it as follows:

import { useRef } from 'react'

const refContainer = useRef(initialValue)

The useRef Hook is used to deal with references to elements and components in React. We
can set a reference by passing the ref prop to an element or a component, as follows:
<ComponentName ref={refContainer} />

Introducing React and React Hooks Chapter 1

[30]

useReducer
This Hook is an alternative to useState, and works similarly to the Redux library. We can
use it as follows:

import { useReducer } from 'react'

const [state, dispatch] = useReducer(reducer, initialArg, init)

The useReducer Hook is used to deal with complex state logic.

useMemo
Memoization is an optimization technique where the result of a function call is cached, and
is then returned when the same input occurs again. The useMemo Hook allows us to
compute a value and memoize it. We can use it as follows:

import { useMemo } from 'react'

const memoizedValue = useMemo(() => computeExpensiveValue(a, b), [a, b])

The useMemo Hook is useful for optimization when we want to avoid re-executing
expensive operations.

useCallback
This Hook allows us to pass an inline callback function, and an array of dependencies, and
will return a memoized version of the callback function. We can use it as follows:

import { useCallback } from 'react'

const memoizedCallback = useCallback(
 () => {
 doSomething(a, b)
 },
 [a, b]
)

The useCallback Hook is useful when passing callbacks to optimized child components.
It works similarly to the useMemo Hook, but for callback functions.

Introducing React and React Hooks Chapter 1

[31]

useLayoutEffect
This Hook is identical to useEffect, but it only fires after all Document Object Model
(DOM) mutations. We can use it as follows:

import { useLayoutEffect } from 'react'

useLayoutEffect(didUpdate)

The useLayoutEffect Hook can be used to read information from the DOM.

Use the useEffect Hook when possible, because useLayoutEffect will
block visual updates and slow down your application.

Finally, we are going to take a look at the last Hook provided by React at the time of
writing.

useDebugValue
This Hook can be used to display a label in React DevTools when creating custom Hooks.
We can use it as follows:

import { useDebugValue } from 'react'

useDebugValue(value)

Make sure to use this Hook in custom Hooks to display the current state of your Hooks, as
it will make it easier to debug them.

Community Hooks
In addition to all the Hooks that React provides, there are already plenty of libraries that
have been published by the community. These libraries also provide Hooks. The Hooks we
are going to look into are as follows:

useInput

useResource

useDimensions

Navigation Hooks

Introducing React and React Hooks Chapter 1

[32]

Life cycle Hooks
Timer Hooks

Let's see an overview of what these Hooks are in the following sections.

useInput
This Hook is used to easily implement input handling, and to synchronize the state of an
input field with a variable. It can be used as follows:

import { useInput } from 'react-hookedup'

function App () {
 const { value, onChange } = useInput('')
 return <input value={value} onChange={onChange} />
}

As we can see, Hooks greatly simplify dealing with input fields in React.

useResource
This Hook can be used to implement asynchronous data loading via requests in our
application. We can use it as follows:

import { useRequest } from 'react-request-hook'

const [profile, getProfile] = useResource(id => ({
 url: `/user/${id}`,
 method: 'GET'
})

As we can see, using a special Hook for dealing with fetching data is quite simple.

Navigation Hooks
These Hooks are part of the Navi library, and are used to implement routing via Hooks in
React. The Navi library provides many more routing-related Hooks. We are going to learn
about routing via Hooks, in depth, later on in the book. We can use them as follows:

import { useCurrentRoute, useNavigation } from 'react-navi'

const { views, url, data, status } = useCurrentRoute()
const { navigate } = useNavigation()

Introducing React and React Hooks Chapter 1

[33]

As we can see, Hooks make routing much easier to deal with.

Life cycle Hooks
The react-hookedup library provides various Hooks, including all life cycle listeners for
React.

Please note that it is not recommended to think in terms of a component
life cycle when developing with Hooks. These Hooks just provide a quick
way to refactor existing components to Hooks. However, when
developing new components, it is recommended that you think about
data flow and dependencies, rather than life cycles.

Here, we list two of them, but the library actually provides many more Hooks, which we
will learn about later on. We can use the Hooks provided by react-hookedup as follows:

import { useOnMount, useOnUnmount } from 'react-hookedup'

useOnMount(() => { ... })
useOnUnmount(() => { ... })

As we can see, Hooks can directly replace life cycle methods in class components.

Timer Hooks
The react-hookedup library also provides Hooks for setInterval and setTimeout.
These work similarly to calling setTimeout or setInterval directly, but as a React Hook,
which will persist between re-renders. If we directly defined timers in our function
component without Hooks, we would be resetting the timer every time the component re-
renders.

We can pass the time in milliseconds as a second argument. We can use them as follows:

import { useInterval, useTimeout } from 'react-hookedup'

useInterval(() => { ... }, 1000)
useTimeout(() => { ... }, 1000)

As we can see, Hooks greatly simplify how we deal with intervals and timeouts in React.

Introducing React and React Hooks Chapter 1

[34]

Other community Hooks
As you can imagine, there are many more Hooks that are provided by the community. We
will learn about the previously mentioned community Hooks in depth, and various other
community Hooks in Chapter 8: Using Community Hooks.

Summary
In this first chapter of the book, we started out by learning the fundamental principles of
React and which types of components it provides. We then moved on to learning about
common problems with class components, and using existing features of React, and how
they break the fundamental principles. Next, we implemented a simple application using
class components and function components with Hooks, in order to be able to compare the
differences between the two solutions. As we found out, function components with Hooks
are a much better fit for React's fundamental principles, as they do not suffer from the same
problems as class components, and they make our code much more
concise and easy to understand! Finally, we got our first glimpse of the various Hooks that
we are going to learn about throughout this book. After this chapter, the basics of React and
React Hooks are clear. We can now move on to more advanced concepts of Hooks.

In the next chapter, we are going to gain an in-depth knowledge of how the State Hook
works, by reimplementing it from scratch. By doing so, we are going to get a grasp on how
Hooks work internally, and what their limitations are. Afterward, we are going to create a
small blog application using the State Hook!

Questions
To recap what we have learned in this chapter, try answering the following questions:

What are React's three fundamental principles?1.
What are the two types of components in React?2.
What are the problems with class components in React?3.
What is the problem of using higher-order components in React?4.

Introducing React and React Hooks Chapter 1

[35]

Which tool can we use to set up a React project, and what is the command that5.
we need to run to use it?
What do we need to do if we get the following error with class6.
components: TypeError: undefined is not an object (evaluating 'this.setState')?
How do we access and set React state using Hooks?7.
What are the advantages of using function components with Hooks, in8.
comparison to class components?
Do we need to replace all class components with function components using9.
Hooks when updating React?
What are the three basic Hooks that are provided by React?10.

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

Create React App on GitHub: https:/ /github. com/ facebook/ create- react-
app#create- react- app- -

RFC for React Hooks: https:/ /github. com/ reactjs/ rfcs/ blob/ master/ text/
0068-react- hooks. md

Handling input with React: https:/ /reactjs. org/docs/ forms. html

State and life cycle in React with class components: https:/ /reactjs. org/ docs/
state-and- lifecycle. html

Destructuring: http:/ / exploringjs. com/es6/ ch_ destructuring. html

Template strings: https:/ /developer. mozilla. org/ en- US/docs/ Web/
JavaScript/ Reference/ Template_ literals

Ternary operator: https:/ /developer. mozilla. org/ en- US/docs/ Web/
JavaScript/ Reference/ Operators/ Conditional_ Operator

https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/facebook/create-react-app#create-react-app--
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://github.com/reactjs/rfcs/blob/master/text/0068-react-hooks.md
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
http://exploringjs.com/es6/ch_destructuring.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

2
Using the State Hook

Now that you've learned about the principles of React and had an introduction to Hooks,
we are going to learn about the State Hook in depth. We will start by learning how the State
Hook works internally by reimplementing it ourselves. Next, we learn about some of the
limitations of Hooks, and why they exist. Then, we will learn about possible alternative
Hook APIs and their associated problems. Finally, we learn how to solve the common
problems that result from the limitations of Hooks. By the end of this chapter, we will know
how to use the State Hook in order to implement stateful function components in React.

The following topics will be covered in this chapter:

Reimplementing the useState Hook as a simple function, which accesses the
global state
Comparing our reimplementation to real React Hooks and learning about the
differences
Learning about possible alternative Hook APIs and their trade-offs
Solving common problems resulting from the limitations of Hooks
Solving problems with conditional Hooks

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found in the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter02.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter02
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Using the State Hook Chapter 2

[37]

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been previously
provided. It is important that you write the code yourself so that you learn
and understand it properly. However, if you run into any issues, you can
always refer to the code example.

Now, let's get started with the chapter.

Reimplementing the useState function
In order to get a better understanding of how Hooks work internally, we are going to
reimplement the useState Hook from scratch. However, we are not going to implement it
as an actual React Hook, but as a simple JavaScript function—just to get an idea of what
Hooks are actually doing.

Please note that this reimplementation is not exactly how React Hooks
work internally. The actual implementation is similar, and thus, it has
similar constraints. However, the real implementation is much more
complicated than what we will be implementing here.

We are now going to start reimplementing the State Hook:

First, we copy the code from chapter1_2, where we are going to replace the1.
current useState Hook with our own implementation.
Open src/App.js and remove the import of the Hook by removing the2.
following line:

import React, { useState } from 'react'

Replace it with these lines of code:

import React from 'react'
import ReactDOM from 'react-dom'

We are going to need ReactDOM in order to force rerendering of the
component in our reimplementation of the useState Hook. If we used
actual React Hooks, this would be dealt with internally.

Using the State Hook Chapter 2

[38]

Now, we define our own useState function. As we already know, the3.
useState function takes the initialState as an argument:

function useState (initialState) {

Then, we define a value, where we will store our state. At first, this value will be4.
set to initialState, which is passed as an argument to the function:

 let value = initialState

Next, we define the setState function, where we will set the value to something5.
different, and force the rerendering of our MyName component:

 function setState (nextValue) {
 value = nextValue
 ReactDOM.render(<MyName />,
document.getElementById('root'))
 }

Finally, we return the value and the setState function as an array:6.

 return [value, setState]
}

The reason why we use an array, and not an object, is that we usually want to rename the
value and setState variables. Using an array makes it easy to rename the variables
through destructuring:

const [name, setName] = useState('')

As we can see, Hooks are simple JavaScript functions that deal with side effects, such as
setting a stateful value.

Our Hook function uses a closure to store the current value. The closure is an environment
where variables exist and are stored. In our case, the function provides the closure, and the
value variable is stored within that closure. The setState function is also defined within
the same closure, which is why we can access the value variable within that function.
Outside of the useState function, we cannot directly access the value variable unless we
return it from the function.

Using the State Hook Chapter 2

[39]

Problems with our simple Hook
implementation
If we run our Hook implementation now, we are going to notice that when our component
rerenders, the state gets reset, so we cannot enter any text in the field. This is due to the
reinitialization of the value variable every time our component gets rendered, which
happens because we call useState each time we render the component.

In the upcoming sections, we are going to solve this problem by using a global variable and
then turn the simple value into an array, allowing us to define multiple Hooks.

Using a global variable
As we have learned, the value is stored within the closure that is defined by the useState
function. Every time the component rerenders, the closure is reinitialized, which means that
our value will be reset. To solve this, we need to store the value in a global variable, outside
of the function. That way, the value variable will be in the closure outside of the function,
which means that when the function gets called again, the closure will not be reinitialized.

We can define a global variable as follows:

First, we add the following line (in bold) above the useState function definition:1.

let value

function useState (initialState) {

Then, we replace the first line in our function with the following code:2.

 if (typeof value === 'undefined') value = initialState

Now, our useState function uses the global value variable, instead of defining the
value variable within its closure, so it will not be reinitialized when the function gets
called again.

Defining multiple Hooks
Our Hook function works! However, if we wanted to add another Hook, we would run
into another problem: all the Hooks write to the same global value variable!

Let's take a closer look at this problem by adding a second Hook to our component.

Using the State Hook Chapter 2

[40]

Adding multiple Hooks to our component
Let's say we want to create a second field for the last name of the user, as follows:

We start by creating a new Hook at the beginning of our function, after the1.
current Hook:

 const [name, setName] = useState('')
 const [lastName, setLastName] = useState('')

Then, we define another handleChange function:2.

 function handleLastNameChange (evt) {
 setLastName(evt.target.value)
 }

Next, we place the lastName variable after the first name:3.

 <h1>My name is: {name} {lastName}</h1>

Finally, we add another input field:4.

 <input type="text" value={lastName}
onChange={handleLastNameChange}
 />

When we try this out, we are going to notice that our reimplemented Hook function uses
the same value for both states, so we are always changing both fields at once.

Implementing multiple Hooks
In order to implement multiple Hooks, instead of having a single global variable, we
should have an array of Hook values.

We are now going to refactor the value variable to a values array so that we can define
multiple Hooks:

Remove the following line of code:1.

let value

Replace it with the following code snippet:

let values = []
let currentHook = 0

Using the State Hook Chapter 2

[41]

Then, edit the first line of the useState function where we now initialize the2.
value at the currentHook index of the values array:

 if (typeof values[currentHook] === 'undefined')
values[currentHook] = initialState

We also need to update the setter function, so that only the corresponding state3.
value is updated. Here, we need to store the currentHook value in a separate
hookIndex variable, because the currentHook value will change later. This
ensures that a copy of the currentHook variable is created within the closure of
the useState function. Otherwise, the useState function would access the
currentHook variable from the outer closure, which gets modified with each
call to useState:

 let hookIndex = currentHook
 function setState (nextValue) {
 values[hookIndex] = nextValue
 ReactDOM.render(<MyName />,
document.getElementById('root'))
 }

Edit the final line of the useState function, as follows:4.

 return [values[currentHook++], setState]

Using values[currentHook++], we pass the current value of currentHook as
an index to the values array, and then increase currentHook by one. This
means that currentHook will be increased after returning from the function.

If we wanted to first increment a value and then use it, we could use the
arr[++indexToBeIncremented] syntax, which first increments, and then
passes the result to the array.

We still need to reset the currentHook counter when we start rendering our5.
component. Add the following line (in bold) right after the component definition:

function Name () {
 currentHook = 0

Using the State Hook Chapter 2

[42]

Finally, our simple reimplementation of the useState Hook works! The following
screenshot highlights this:

Our custom Hook reimplementation works

As we can see, using a global array to store our Hook values solved the problems that we
had when defining multiple Hooks.

Example code
The example code for the simple Hook reimplementation can be found in the
Chapter02/chapter2_1 folder.

Just run npm install in order to install all the dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Can we define conditional Hooks?
What if we wanted to add a checkbox that toggles the use of the first name field?

Let's find out by implementing such a checkbox:

First, we add a new Hook in order to store the state of our checkbox:1.

 const [enableFirstName, setEnableFirstName] = useState(false)

Then, we define a handler function:2.

 function handleEnableChange (evt) {
 setEnableFirstName(!enableFirstName)
 }

Using the State Hook Chapter 2

[43]

Next, we render a checkbox:3.

 <input type="checkbox" value={enableFirstName}
onChange={handleEnableChange} />

We do not want to show the first name if it is disabled. Edit the following4.
existing line in order to add a check for the enableFirstName variable:

 <h1>My name is: {enableFirstName ? name : ''}
{lastName}</h1>

Could we put the Hook definition into an if condition, or a ternary expression,5.
like we are in the following code snippet?

 const [name, setName] = enableFirstName
 ? useState('')
 : ['', () => {}]

The latest version of react-scripts actually throws an error when defining6.
conditional Hooks, so we need to downgrade the library for this example, by
running the following command:

> npm install --save react-scripts@^2.1.8

Here, we either use the Hook, or if the first name is disabled, we return the initial state and
an empty setter function so that editing the input field will not work.

If we now try out this code, we are going to notice that editing the last name still works, but
editing the first name does not work, which is what we wanted. As we can see in the
following screenshot, only editing the last name works now:

State of the app before checking the checkbox

Using the State Hook Chapter 2

[44]

When we click the checkbox, something strange happens:

The checkbox is checked
The first name input field is enabled
The value of the last name field is now the value of the first name field

We can see the result of clicking the checkbox in the following screenshot:

State of the app after checking the checkbox

We can see that the last name state is now in the first name field. The values have been
swapped because the order of Hooks matters. As we know from our implementation, we
use the currentHook index in order to know where the state of each Hook is stored.
However, when we insert an additional Hook in-between two existing Hooks, the order
gets messed up.

Before checking the checkbox, the values array was as follows:

[false, '']

Hook order: enableFirstName, lastName

Then, we entered some text in the lastName field:

[false, 'Hook']

Hook order: enableFirstName, lastName

Next, we toggled the checkbox, which activated our new Hook:

[true, 'Hook', '']

Hook order: enableFirstName, name, lastName

Using the State Hook Chapter 2

[45]

As we can see, inserting a new Hook in-between two existing Hooks makes the name Hook
steal the state from the next Hook (lastName) because it now has the same index that
the lastName Hook previously had. Now, the lastName Hook does not have a value,
which causes it to set the initial value (an empty string). As a result, toggling the checkbox
puts the value of the lastName field into the name field.

Example code
The example code for the problem of the conditional Hook of our simple Hook
reimplementation can be found in the Chapter02/chapter2_2 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Comparing our reimplementation with real
Hooks
Our simple Hook implementation already gives us an idea about how Hooks work
internally. However, in reality, Hooks do not use global variables. Instead, they store state
within the React component. They also deal with the Hook counter internally, so we do not
need to manually reset the count in our function component. Furthermore, real Hooks
automatically trigger rerenders of our component when the state changes. To be able to do
this, however, Hooks need to be called from a React function component. React Hooks
cannot be called outside of React, or inside React class components.

By reimplementing the useState Hook, we have learned a couple things:

Hooks are simply functions that access React features
Hooks deal with side effects that persist across rerenders
The order of Hook definitions matters

The last point is especially important because it means that we cannot conditionally define
Hooks. We should always have all the Hook definitions at the beginning of our function
component, and never nest them within if or other constructs.

Using the State Hook Chapter 2

[46]

Here we have also learned the following:

React Hooks need to be called inside React function components
React Hooks cannot be defined conditionally, or in loops

We are now going to look at alternative Hook APIs that allow conditional Hooks.

Alternative Hook APIs
Sometimes, it would be nice to define Hooks conditionally or in loops, but why did the
React team decide to implement Hooks like this? What are the alternatives? Let's go
through a few of them.

Named Hooks
We could give each Hook a name and then store the Hooks in an object instead of an array.
However, this would not make for a nice API, and we would also always have to think of
coming up with unique names for Hooks:

// NOTE: Not the actual React Hook API
const [name, setName] = useState('nameHook', '')

Furthermore, what would happen when the conditional is set to false, or an item is
removed from the loop? Would we clear the Hook state? If we do not clear the Hook state,
we might be causing memory leaks.

Even if we solved all these problems, there would still be the problem of name collisions. If
we, for example, create a custom Hook that makes use of the useState Hook, and call it
nameHook, then we cannot call any other Hook nameHook in our component anymore, or
we will cause a name collision. This is even the case for Hook names from libraries, so we
need to make sure we avoid name collisions with Hooks that have been defined by libraries
as well!

Hook factories
Alternatively, we could also create a Hook factory function, which uses Symbol internally,
in order to give each Hook a unique key name:

function createUseState () {
 const keyName = Symbol()

Using the State Hook Chapter 2

[47]

 return function useState () {
 // ... use unique key name to handle hook state ...
 }
}

Then, we could use the factory function as follows:

// NOTE: Not the actual React Hook API
const useNameState = createUseState()

function MyName () {
 const [name, setName] = useNameState('')
 // ...
}

However, this means that we will need to instantiate each Hook twice: once outside of our
component and once inside the function component. This creates more room for errors. For
example, if we create two Hooks and copy and paste the boilerplate code, then we might
make a mistake in the name of our Hook resulting from the factory function, or we might
make a mistake when using the Hook inside the component.

This approach also makes it much harder to create custom Hooks, which forces us to write
wrapper functions. Furthermore, it is harder to debug these wrapped functions than it is to
debug a simple function.

Other alternatives
There were many proposed alternative APIs for React Hooks, but each of them suffered
from similar problems: either making the API harder to use, harder to debug, or
introducing the possibility of name collisions.

In the end, the React team decided that the simplest API was to keep track of Hooks by
counting the order in which they are called. This approach comes with its own downsides,
such as not being able to call Hooks conditionally or in loops. However, this approach
makes it very easy for us to create custom Hooks, and it is simple to use and debug. We
also do not need to worry about naming Hooks, name collisions, or writing wrapper
functions. The final approach for Hooks lets us use Hooks just like any other function!

Using the State Hook Chapter 2

[48]

Solving common problems with Hooks
As we found out, implementing Hooks with the official API also has its own trade-offs and
limitations. We are now going to learn how to overcome these common problems, which
stem from the limitations of React Hooks.

We will take a look at solutions that can be used to overcome these two problems:

Solving conditional Hooks
Solving Hooks in loops

Solving conditional Hooks
So, how do we implement conditional Hooks? Instead of making the Hook conditional, we
can always define the Hook and use it whenever we need it. If this is not an option, we
need to split up our components, which is usually better anyway!

Always defining the Hook
For simple cases, such as the first and last name example that we had previously, we can
just always keep the Hook defined, as follows:

const [name, setName] = useState('')

Always defining the Hook is usually a good solution for simple cases.

Splitting up components
Another way to solve conditional Hooks is to split up one component into multiple
components and then conditionally render the components. For example, let's say we want
to fetch user information from a database after the user logs in.

We cannot do the following, as using an if conditional could change the order of the
Hooks:

function UserInfo ({ username }) {
 if (username) {
 const info = useFetchUserInfo(username)
 return <div>{info}</div>
 }
 return <div>Not logged in</div>
}

Using the State Hook Chapter 2

[49]

Instead, we have to create a separate component for when the user is logged in, as follows:

function LoggedInUserInfo ({ username }) {
 const info = useFetchUserInfo(username)
 return <div>{info}</div>
}

function UserInfo ({ username }) {
 if (username) {
 return <LoggedInUserInfo username={username} />
 }
 return <div>Not logged in</div>
}

Using two separate components for the non-logged in and logged in state makes sense
anyway, because we want to stick to the principle of having one functionality per
component. So, usually, not being able to have conditional Hooks is not much of a
limitation if we stick to best practices.

Solving Hooks in loops
As for Hooks in loops, we can either use a single State Hook containing an array, or we can
split up our components. For example, let's say we want to display all the users that are
online.

Using an array
We could simply use an array that contains all users, as follows:

function OnlineUsers ({ users }) {
 const [userInfos, setUserInfos] = useState([])
 // ... fetch & keep userInfos up to date ...
 return (
 <div>
 {users.map(username => {
 const user = userInfos.find(u => u.username === username)
 return <UserInfo {...user} />
 })}
 </div>
)
}

Using the State Hook Chapter 2

[50]

However, this might not always make sense. For example, we might not want to update the
user state through the OnlineUsers component because we would have to select the
correct user state from the array, and then modify the array. This might work, but it is
quite tedious.

Splitting up components
A better solution would be to use the Hook in the UserInfo component instead. That way,
we can keep the state for each user up to date, without having to deal with array logic:

function OnlineUsers ({ users }) {
 return (
 <div>
 {users.map(username => <UserInfo username={username} />)}
 </div>
)
}

function UserInfo ({ username }) {
 const info = useFetchUserInfo(username)
 // ... keep user info up to date ...
 return <div>{info}</div>
}

As we can see, using one component for each functionality keeps our code simple and
concise, and also avoids the limitations of React Hooks.

Solving problems with conditional Hooks
Now that we have learned about the different alternatives to conditional Hooks, we are
going to solve the problem that we had in our small example project earlier. The simplest
solution to this problem would be to always define the Hook, instead of conditionally
defining it. In a simple project like this one, always defining the Hook makes the most
sense.

Edit src/App.js and remove the following conditional Hook:

 const [name, setName] = enableFirstName
 ? useState('')
 : ['', () => {}]

Using the State Hook Chapter 2

[51]

Replace it with a normal Hook, such as the following:

 const [name, setName] = useState('')

Now, our example works fine! In more complex cases, it might not be feasible to always
define the Hook. In that case, we would need to create a new component, define the Hook
there, and then conditionally render the component.

Example code
The example code for the simple solution to the conditional Hooks problem can be found in
the Chapter02/chapter2_3 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Summary
In this chapter, we started out by reimplementing the useState function, by making use of
global state and closures. We then learned that in order to implement multiple Hooks, we
need to use a state array instead. By using a state array, however, we were forced to keep
the order of Hooks consistent across function calls. This limitation made conditional Hooks
and Hooks in loops impossible. We then learned about possible alternatives to the Hook
API, their trade-offs, and why the final API was chosen. Finally, we learned how to solve
the common problems that stem from the limitations of Hooks. We now have a solid
understanding of the inner workings and limitations of Hooks. Furthermore, we learned
about the State Hook in depth.

In the next chapter, we are going to create a blog application using the State Hook, and
learn how to combine multiple Hooks.

Using the State Hook Chapter 2

[52]

Questions
To recap what we have learned in this chapter, try to answer the following questions:

What problems did we run into while developing our own reimplementation of1.
the useState Hook? How did we solve these problems?
Why are conditional Hooks not possible in the React implementation of Hooks?2.
What are Hooks, and what do they deal with?3.
What do we need to watch out for when using Hooks?4.
What are the common problems of alternative API ideas for Hooks?5.
How do we implement conditional Hooks?6.
How do we implement Hooks in loops?7.

Further reading
If you are interested in finding out more about the concepts that we have learned in this
chapter, take a look at the following reading material:

More information on flaws of alternative Hook APIs: https:/ /overreacted. io/
why-do- hooks- rely- on- call- order/

Official comment on alternative Hook APIs: https:/ /github. com/ reactjs/
rfcs/pull/ 68#issuecomment- 439314884

Official documentation on why conditional Hooks do not work: https:/ /
reactjs. org/ docs/ hooks- rules. html#explanation

https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://overreacted.io/why-do-hooks-rely-on-call-order/
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://github.com/reactjs/rfcs/pull/68#issuecomment-439314884
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation
https://reactjs.org/docs/hooks-rules.html#explanation

3
Writing Your First Application

with React Hooks
After learning about the State Hook in depth, we are now going to make use of it by
creating a blog application from scratch. Throughout this chapter, we are going to learn
how to structure React apps in a way that scales well, how to use multiple Hooks, where to
store state, and how to solve common use cases with Hooks. At the end of this chapter, we
are going to have a basic blog application, where we can log in, register, and create posts.

The following topics will be covered in this chapter:

Structuring React projects in a scalable way
Implementing static React components from a mock-up
Implementing stateful components with Hooks

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found in the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter03.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter03
http://bit.ly/2Mm9yoC

Writing Your First Application with React Hooks Chapter 3

[54]

Please note that it is highly recommended that you write the code on your
own. Do not simply run the previously provided code examples. It is
important that you write the code yourself in order to be able to learn and
understand properly. However, if you run into any issues, you can always
refer to the code example.

Now, let's get started with the chapter.

Structuring React projects
After learning about the principles of React, how to use the useState Hook, and how
Hooks work internally, we are now going to make use of the real useState Hook in order
to develop a blog application. First, we are going to create a new project, and structure the
folders in a way that will allow us to scale the project later on. Then, we are going to define
the components that we are going to need in order to cover the basic features of a blog
application. Finally, we are going to use Hooks to introduce state to our application!
Throughout this chapter, we are also going to learn about JSX, and new JavaScript features
that have been introduced in ES6, up to ES2018.

Folder structure
There are many ways that projects can be structured, and different structures can do well
for different projects. Usually, we create a src/ folder, and group our files there by
features. Another popular way to structure projects is to group them by routes. For some
projects, it might make sense to additionally separate by the kind of code, such
as src/api/ and src/components/. However, for our project, we are mainly going to
focus on the user interface (UI). As a result, we are going to group our files by features in
the src/ folder.

It is a good idea to start with a simple structure at first, and only nest
more deeply when you actually need it. Do not spend too much time
thinking about the file structure when starting a project, because usually,
you do not know up front how files should be grouped.

Writing Your First Application with React Hooks Chapter 3

[55]

Choosing the features
We first have to think about which features we are going to implement in our blog
application. At the bare minimum, we want to implement the following features:

Registering users
Logging in/out
Viewing a single post
Creating a new post
Listing posts

Now that we have chosen the features, let's come up with an initial folder structure.

Coming up with an initial structure
From our previous functionalities, we can abstract a couple of feature groups:

User (registering, log in/log out)
Post (creating, viewing, listing)

We could now just keep it very simple, and create all of the components in the src/ folder,
without any nesting. However, since we already have quite a clear picture on the features
that a blog application is going to need, we can come up with a simple folder structure
now:

src/

src/user/

src/post/

After defining the folder structure, we can move on to the component structure.

Writing Your First Application with React Hooks Chapter 3

[56]

Component structure
The idea of components in React is to have each component deal with a single task or
UI element. We should try to make components as fine-grained as possible, in order to be
able to reuse code. If we find ourselves copying and pasting code from one component to
another, it might be a good idea to create a new component, and reuse it in multiple other
components.

Usually, when developing software, we start with a UI mock-up. For our blog application, a
mock-up would look as follows:

Initial mock-up of our blog application

Writing Your First Application with React Hooks Chapter 3

[57]

When splitting components, we use the single responsibility principle, which states that
every module should have responsibility over a single encapsulated part of the
functionality.

In this mock-up, we can draw boxes around each component and subcomponent, and give
them names. Keep in mind that each component should have exactly one responsibility. We
start with the fundamental components that make up this app:

Defining the fundamental components from our mock-up

We defined a Logout component for the logout feature, a CreatePost component, which
contains the form to create a new post, and a Post component to display the actual posts.

Writing Your First Application with React Hooks Chapter 3

[58]

Now that we have defined our fundamental components, we are going to look at which
components logically belong together, thereby forming a group. To do so, we now define
the container components, which we need in order to group the components together:

Defining the container components from our mock-up

We defined a PostList component in order to group posts together, then a UserBar
component in order to deal with login/logout and registration. Finally, we defined an App
component in order to group everything together, and define the structure of our app.

Now that we are done with structuring our React project, we can move on to implementing
the static components.

Implementing static components
Before we start adding state via Hooks to our blog application, we are going to model the
basic features of our application as static React components. Doing this means that we have
to deal with the static view structure of our application.

Writing Your First Application with React Hooks Chapter 3

[59]

It makes sense to deal with the static structure first, so as to avoid having to move dynamic
code to different components later on. Furthermore, it is easier to deal only with Hypertext
Markup Language (HTML) and CSS first—helping us to get started with projects quickly.
Then, we can move on to implementing dynamic code and handling state.

Doing this step by step, instead of implementing everything at once, helps us to quickly get
started with new projects without having to think about too much at once, and lets us avoid
having to restructure projects later!

Setting up the project
We have already learned how to set up a new React project. As we have learned, we can
use the create-react-app tool to easily initialize a new project. We are going to do so
now:

First, we use create-react-app to initialize our project:1.

> npx create-react-app chapter3_1

Then, we create folders for our features:2.

Create folder: src/user/
Create folder: src/post/

Now that our project structure is set up, we can start implementing components.

Implementing users
We are going to start with the simplest feature in terms of static components: implementing
user-related functionality. As we have seen from our mock-up, we are going to need four
components here:

A Login component, which we are going to show when the user is not logged in
yet
A Register component, which we are also going to show when the user is not
logged in yet
A Logout component, which is going to be shown after the user is logged in
A UserBar component, which will display the other components conditionally

Writing Your First Application with React Hooks Chapter 3

[60]

We are going to start by defining the first three components, which are all stand-alone
components. Lastly, we will define the UserBar component, because it depends on the
other components being defined.

The Login component
First, we define the Login component, where we show two fields: a Username field, and a
Password field. Furthermore, we show a Login button:

We start by creating a new file for our component: src/user/Login.js1.
In the newly created src/user/Login.js file, we import React:2.

import React from 'react'

Then, we define our function component. For now, the Login component will3.
not accept any props:

export default function Login () {

Finally, we return the two fields and the Login button, via JSX. We also define4.
a form container element to wrap them in. To avoid a page refresh when the
form is submitted, we have to define an onSubmit handler and call
e.preventDefault() on the event object:

 return (
 <form onSubmit={e => e.preventDefault()}>
 <label htmlFor="login-username">Username:</label>
 <input type="text" name="login-username" id="login-
username" />
 <label htmlFor="login-password">Password:</label>
 <input type="password" name="login-password" id="login-
password" />
 <input type="submit" value="Login" />
 </form>
)
}

Here, we are using an anonymous function to define the onSubmit handler. Anonymous
functions are defined as follows, if they do not have any arguments: () => { ... },
instead of function () { ... }. With arguments, we could write (arg1, arg2) => {
... }, instead of function (arg1, arg2) { ... }. We can omit the () brackets if we
only have a single argument. Additionally, we can omit the {} brackets if we only have a
single statement in our function, like this: e => e.preventDefault().

Writing Your First Application with React Hooks Chapter 3

[61]

Using semantic HTML elements such as <form> and <label> make your
app easier to navigate for people using accessibility assistance software,
such as screen readers. Furthermore, when using semantic HTML,
keyboard shortcuts, such as submitting forms by pressing the return key,
automatically work.

Our Login component is implemented, and is now ready to be tested.

Testing out our component
Now that we have defined our first component, let's render it and see what it looks like:

First, we edit src/App.js, and remove all its contents.1.
Then, we start by importing React and the Login component:2.

import React from 'react'

import Login from './user/Login'

It is a good idea to group imports in blocks of code that belong together.
In this case, we separate external imports, such as React, from local
imports, such as our Login component, by adding an empty line in
between. Doing so keeps our code readable, especially when we add more
import statements later.

Finally, we define the App component, and return the Login component:3.

export default function App () {
 return <Login />
}

If we are only returning a single component, we can omit the brackets in
the return statement. Instead of writing return (<Login />), we can
simply write return <Login />.

Writing Your First Application with React Hooks Chapter 3

[62]

Open http://localhost:3000 in your browser, and you should see the Login4.
component being rendered. If you already had the page open in your browser, it
should refresh automatically when you change the code:

The first component of our blog application: logging in by username and password

As we can see, the static Login component renders fine in React. We can now move on to
the Logout component.

The Logout component
Next, we define the Logout component, which is going to display the currently logged in
user, and a button to log out:

Create a new file: src/user/Logout.js1.
Import React, as follows:2.

import React from 'react'

This time, our function is going to take a user prop, which we are going to use to3.
display the currently logged-in user:

export default function Logout ({ user }) {

Here we use destructuring in order to extract the user key from the
props object. React passes all component props, in a single object, as the
first argument to a function. Using destructuring on the first argument is
similar to doing const { user } = this.props in a class component.

Finally, we return a text that shows the currently logged-in user and the Logout4.
button:

 return (
 <form onSubmit={e => e.preventDefault()}>
 Logged in as: {user}
 <input type="submit" value="Logout" />

Writing Your First Application with React Hooks Chapter 3

[63]

 </form>
)
}

We can now replace the Login component with the Logout component5.
in src/App.js, in order to see our newly defined component (do not forget to
pass the user prop to it!):

import React from 'react'

import Logout from './user/Logout'

export default function App () {
 return <Logout user="Daniel Bugl" />
}

Now, the Logout component is defined, and we can move on to the Register component.

The Register component
The static Register component will be very similar to the Login component, with an
additional field to repeat the password. You might get the idea to merge them into one
component if they are so similar, and add a prop to toggle the Repeat password field.
However, it is best to stick to the single responsibility principle, and to have each
component deal with only one functionality. Later on, we are going to extend the static
components with dynamic code, and then Register and Login will have vastly different
code. As a result, we would need to split them up again later.

Nevertheless, let's start working on the code for the Register component:

We start by creating a new src/user/Register.js file, and copying the code1.
from the Login component, as the static components are very similar, after all.
Make sure to change the name of the component to Register:

import React from 'react'

export default function Register () {
 return (
 <form onSubmit={e => e.preventDefault()}>
 <label htmlFor="register-username">Username:</label>
 <input type="text" name="register-username"
id="register-username" />
 <label htmlFor="register-password">Password:</label>
 <input type="password" name="register-password"
id="register-password" />

Writing Your First Application with React Hooks Chapter 3

[64]

Next, we add the Repeat password field, right below the Password field code:2.

 <label htmlFor="register-password-repeat">Repeat
password:</label>
 <input type="password" name="register-password-repeat"
id="register-password-repeat" />

Finally, we also change the value of the submit button to Register:3.

 <input type="submit" value="Register" />
 </form>
)
}

Again, we can edit src/App.js in order to show our component, in a similar4.
way to how we did with the Login component:

import React from 'react'

import Register from './user/Register'

export default function App () {
 return <Register />
}

As we can see, our Register component looks very similar to the Login component.

The UserBar component
Now it is time to put our user-related components together into a UserBar component.
Here we are going to conditionally show either the Login and Register components, or
the Logout component, depending on whether the user is already logged in or not.

Let's start implementing the UserBar component:

First, we create a new src/user/UserBar.js file, and import React as well as1.
the three components that we defined:

import React from 'react'

import Login from './Login'
import Logout from './Logout'
import Register from './Register'

Writing Your First Application with React Hooks Chapter 3

[65]

Next, we define our function component, and a value for the user. For now, we2.
just save it in a static variable:

export default function UserBar () {
 const user = ''

Then, we check whether the user is logged in or not. If the user is logged in, we3.
display the Logout component, and pass the user value to it:

 if (user) {
 return <Logout user={user} />

Otherwise, we show the Login and Register components. Here, we can use4.
React.Fragment instead of a <div> container element. This keeps our UI tree
clean, as the components will simply be rendered side by side, instead of being
wrapped in another element:

 } else {
 return (
 <React.Fragment>
 <Login />
 <Register />
 </React.Fragment>
)
 }
}

Again, we edit src/App.js, and now we show our UserBar component:5.

import React from 'react'

import UserBar from './user/UserBar'

export default function App () {
 return <UserBar />
}

Writing Your First Application with React Hooks Chapter 3

[66]

As we can see, it works! We now show both the Login and Register6.
components:

Our UserBar component, showing both the Login and Register components

Next, we can edit the src/user/UserBar.js file, and set the user value to a7.
string:

 const user = 'Daniel Bugl'

After doing so, our app now shows the Logout component:8.

Our app showing the Logout component after defining the user value

Later on in this chapter, we are going to add Hooks to our application, so that we can log in
and have the state change dynamically without having to edit the code!

Example code
The example code for the user-related components can be found in
the Chapter03/chapter3_1 folder.

Just run npm install to install all dependencies, and npm start to start the application,
then visit http://localhost:3000 in your browser (if it did not open automatically).

Writing Your First Application with React Hooks Chapter 3

[67]

Implementing posts
After implementing all the user-related components, we move on to implementing posts in
our blog app. We are going to define the following components:

A Post component to display a single post
A CreatePost component for creating new posts
A PostList component to show multiple posts

Let's get started implementing the post related components now.

The Post component
We have already thought about which elements a post has when creating the mock-up. A
post should have a title, content, and an author (the user who wrote the post).

Let's implement the Post component now:

First, we create a new file: src/post/Post.js1.
Then, we import React, and define our function component, accepting three2.
props: title, content, and author:

import React from 'react'

export default function Post ({ title, content, author }) {

Next, we render all props in a way that resembles the mock-up:3.

 return (
 <div>
 <h3>{title}</h3>
 <div>{content}</div>

 <i>Written by {author}</i>
 </div>
)
}

Writing Your First Application with React Hooks Chapter 3

[68]

As always, we can test our component by editing the src/App.js file:4.

import React from 'react'

import Post from './post/Post'

export default function App () {
 return <Post title="React Hooks" content="The greatest thing
since sliced bread!" author="Daniel Bugl" />
}

Now, the static Post component has been implemented, and we can move on to the
CreatePost component.

The CreatePost component
Next, we implement a form to allow for the creation of new posts. Here, we pass
the user value as a prop to the component, as the author should always be the currently
logged-in user. Then, we show the author, and provide an input field for the title, and
a <textarea> element for the content of the blog post.

Let's implement the CreatePost component now:

Create a new file: src/post/CreatePost.js1.
Define the following component:2.

import React from 'react'

export default function CreatePost ({ user }) {
 return (
 <form onSubmit={e => e.preventDefault()}>
 <div>Author: {user}</div>
 <div>
 <label htmlFor="create-title">Title:</label>
 <input type="text" name="create-title" id="create-
title" />
 </div>
 <textarea />
 <input type="submit" value="Create" />
 </form>
)
}

Writing Your First Application with React Hooks Chapter 3

[69]

As always, we can test our component by editing the src/App.js file:3.

import React from 'react'

import CreatePost from './post/CreatePost'

export default function App () {
 return <CreatePost />
}

As we can see, the CreatePost component renders fine. We can now move on to the
PostList component.

The PostList component
After implementing the other post-related components, we can now implement the most
important part of our blog app: the feed of blog posts. For now, the feed is simply going to
show a list of blog posts.

Let's start implementing the PostList component now:

We start by importing React and the Post component:1.

import React from 'react'

import Post from './Post'

Then, we define our PostList function component, accepting a posts array as a2.
prop. If posts is not defined, we set it to an empty array, by default:

export default function PostList ({ posts = [] }) {

Next, we render all posts by using the .map function and the spread syntax:3.

 return (
 <div>
 {posts.map((p, i) => <Post {...p} key={'post-' + i}
/>)}
 </div>
)
}

Writing Your First Application with React Hooks Chapter 3

[70]

If we are rendering a list of elements, we have to give each element a
unique key prop. React uses this key prop to efficiently compute the
difference of two lists, when the data has changed.

Here, we use the map function, which applies a function to all the elements of an
array. This is similar to using a for loop, and storing all the results, but it is much
more concise, declarative, and easier to read! Alternatively, we could do the
following instead of using the map function:

let renderedPosts = []
let i = 0
for (let p of posts) {
 renderedPosts.push(<Post {...p} key={'post-' + i} />)
 i++
}

return (
 <div>
 {renderedPosts}
 </div>
)

We then return the <Post> component for each post, and pass all the keys from
the post object, p, to the component as props. We do this by using the spread
syntax, which has the same effect as listing all the keys from the object manually
as props, as follows: <Post title={p.title} content={p.content}
author={p.author} />

In the mock-up, we have a horizontal line after each blog post. We can4.
implement this without an additional <div> container element, by using
React.Fragment:

{posts.map((p, i) => (
 <React.Fragment key={'post-' + i} >
 <Post {...p} />
 <hr />
 </React.Fragment>
))}

The key prop always has to be added to the uppermost parent element
that is rendered within the map function. In this case, we had to move the
key prop from the Post component to the React.Fragment component.

Writing Your First Application with React Hooks Chapter 3

[71]

Again, we test our component by editing the src/App.js file:5.

import React from 'react'

import PostList from './post/PostList'

const posts = [
 { title: 'React Hooks', content: 'The greatest thing since
sliced bread!', author: 'Daniel Bugl' },
 { title: 'Using React Fragments', content: 'Keeping the DOM
tree clean!', author: 'Daniel Bugl' }
]

export default function App () {
 return <PostList posts={posts} />
}

Now, we can see that our app lists all the posts that we defined in the posts
array:

Showing multiple posts using the PostList component

As we can see, listing multiple posts via the PostList component works fine. We can now
move on to putting the app together.

Writing Your First Application with React Hooks Chapter 3

[72]

Putting the app together
After implementing all components, in order to reproduce the mock-up, we now only have
to put everything together in the App component. Then, we will have successfully
reproduced the mock-up!

Let's start modifying the App component, and putting our app together:

Edit src/App.js, and remove all of the current code.1.
First, we import React, PostList, CreatePost, and the UserBar components:2.

import React from 'react'

import PostList from './post/PostList'
import CreatePost from './post/CreatePost'
import UserBar from './user/UserBar'

Then, we define some mock data for our app:3.

const user = 'Daniel Bugl'
const posts = [
 { title: 'React Hooks', content: 'The greatest thing since
sliced bread!', author: 'Daniel Bugl' },
 { title: 'Using React Fragments', content: 'Keeping the DOM
tree clean!', author: 'Daniel Bugl' }
]

Next, we define the App component, and return a <div> container element,4.
where we set some padding:

export default function App () {
 return (
 <div style={{ padding: 8 }}>

Now, we insert the UserBar and CreatePost components, passing5.
the user prop to the CreatePost component:

 <UserBar />

 <CreatePost user={user} />

 <hr />

Writing Your First Application with React Hooks Chapter 3

[73]

Please note that you should always prefer spacing via CSS, rather than
using the
 HTML tag. However, at the moment, we are focusing
on the UI, rather than its style, so we simply use HTML whenever
possible.

Finally, we display the PostList component, listing all posts:6.

 <PostList posts={posts} />
 </div>
)
}

After saving the file, http://localhost:3000 should automatically refresh,7.
and we can now see the full UI:

Full implementation of our static blog app, according to the mock-up

As we can see, all of the static components that we defined earlier are rendered together in
one App component. Our app now looks just like the mock-up. Next, we can move on to
making all of the components dynamic.

Writing Your First Application with React Hooks Chapter 3

[74]

Example code
The example code for the static implementation of our blog app can be found in
the Chapter03/chapter3_2 folder.

Just run npm install to install all dependencies and npm start to start the application,
then visit http://localhost:3000 in your browser (if it did not open automatically).

Implementing stateful components with
Hooks
Now that we have implemented the static structure of our application, we are going to
add useState Hooks to it, in order to be able to handle state and dynamic interactions!

Adding Hooks for the users feature
To add Hooks for the users feature, we are going to have to replace the static user value
with a State Hook. Then, we need to adjust the value when we log in, register and log out.

Adjusting UserBar
Recall that when we created the UserBar component, we statically defined the user value.
We are now going to replace this value with a State Hook!

Let's start modifying the UserBar component to make it dynamic:

Edit src/user/UserBar.js, and import the useState Hook by adjusting the1.
React import statement, as follows:

import React, { useState } from 'react'

Remove the following line of code:2.

 const user = 'Daniel Bugl'

Replace it with a State Hook, using an empty user '' as the default value:

 const [user, setUser] = useState('')

Writing Your First Application with React Hooks Chapter 3

[75]

Then, we pass the setUser function to the Login, Register, and Logout3.
components:

 if (user) {
 return <Logout user={user} setUser={setUser} />
 } else {
 return (
 <React.Fragment>
 <Login setUser={setUser} />
 <Register setUser={setUser} />
 </React.Fragment>
)
 }

Now, the UserBar component provides a setUser function, which can be used in the
Login, Register, and Logout components to set or unset the user value.

Adjusting the Login and Register components
In the Login and Register components, we need to use the setUser function to set the
value of user accordingly, when we log in or register.

Login
In the Login component, we just ignore the Password field for now, and only process
the Username field.

Let's start by modifying the Login component in order to make it dynamic:

Edit src/user/Login.js, and import the useState Hook:1.

import React, { useState } from 'react'

Then, adjust the function definition to accept the setUser prop:2.

export default function Login ({ setUser }) {

Now, we define a new State Hook for the value of the Username field:3.

 const [username, setUsername] = useState('')

Writing Your First Application with React Hooks Chapter 3

[76]

Next, we define a handler function:4.

 function handleUsername (evt) {
 setUsername(evt.target.value)
 }

Then, we adjust the input field, in order to use the username value, and call5.
the handleUsername function when the input changes:

 <input type="text" value={username}
onChange={handleUsername} name="login-username" id="login-username"
/>

Finally, we need to call the setUser function when the Login button is pressed,6.
and thus the form is submitted:

 <form onSubmit={e => { e.preventDefault();
setUser(username) }} />

Additionally, we can disable the Login button when the username value is7.
empty:

 <input type="submit" value="Login"
disabled={username.length === 0} />

And it works—we can now enter a username, press the Login button, and then our
UserBar component will change its state, and show the Logout component!

Register
For registration, we are additionally going to check whether the entered passwords are the
same, and only then will we set the user value.

Let's start by modifying the Register component in order to make it dynamic:

First, we do the same steps as we did for Login, in order to handle the username1.
field:

import React, { useState } from 'react'

export default function Register ({ setUser }) {
 const [username, setUsername] = useState('')

 function handleUsername (evt) {
 setUsername(evt.target.value)
 }

Writing Your First Application with React Hooks Chapter 3

[77]

 return (
 <form onSubmit={e => { e.preventDefault();
setUser(username) }}>
 <label htmlFor="register-username">Username:</label>
 <input type="text" value={username}
onChange={handleUsername} name="register-username" id="register-
username" />
 <label htmlFor="register-password">Password:</label>
 <input type="password" name="register-password"
id="register-password" />
 <label htmlFor="register-password-repeat">Repeat
password:</label>
 <input type="password" name="register-password-repeat"
id="register-password-repeat" />
 <input type="submit" value="Register"
disabled={username.length === 0} />
 </form>
)
}

Now, we define two new State Hooks for the Password and Repeat2.
password fields:

 const [password, setPassword] = useState('')
 const [passwordRepeat, setPasswordRepeat] = useState('')

Then, we define two handler functions for them:3.

 function handlePassword (evt) {
 setPassword(evt.target.value)
 }

 function handlePasswordRepeat (evt) {
 setPasswordRepeat(evt.target.value)
 }

You might have noticed that we are always writing similar handler
functions for input fields. Actually, this is the perfect use case for creating
a custom Hook! We are going to learn how to do that in a future chapter.

Next, we assign the value and onChange handler functions to the input fields:4.

 <label htmlFor="register-password">Password:</label>
 <input type="password" value={password}
onChange={handlePassword} name="register-password" id="register-
password" />
 <label htmlFor="register-password-repeat">Repeat

Writing Your First Application with React Hooks Chapter 3

[78]

password:</label>
 <input type="password" value={passwordRepeat}
onChange={handlePasswordRepeat} name="register-password-repeat"
id="register-password-repeat" />

Finally, we check if the passwords match, and if they do not, we keep the button5.
disabled:

 <input type="submit" value="Register"
disabled={username.length === 0 || password.length === 0 ||
password !== passwordRepeat} />

And now we have successfully implemented a check on whether the passwords are equal,
and we implemented registration!

Adjusting Logout
There is still one thing missing for the users feature—we cannot log out yet.

Let's make the Logout component dynamic now:

Edit src/user/Logout.js, and add the setUser prop:1.

export default function Logout ({ user, setUser }) {

Then, adjust the onSubmit handler of form and set the user to '':2.

 <form onSubmit={e => { e.preventDefault(); setUser('')
}} />

As we are not creating a new Hook here, we do not need to import
the useState Hook from React. We can simply use the setUser function
passed to the Logout component as a prop.

Now, the Logout component sets the user value to '' when we click on the Logout
button.

Passing the user to CreatePost
As you might have noticed, the CreatePost component still uses the hardcoded username.
To be able to access the user value there, we need to move the Hook from the UserBar
component, to the App component.

Writing Your First Application with React Hooks Chapter 3

[79]

Let's refactor the definition of the user State Hook now:

Edit src/user/UserBar.js, and cut/remove the Hook definition that is there:1.

 const [user, setUser] = useState('')

Then, we edit the function definition, and accept these two values as props:2.

export default function UserBar ({ user, setUser }) {

Now, we edit src/App.js, and import the useState Hook there:3.

import React, { useState } from 'react'

Next, we remove the static user value definition:4.

 const user = 'Daniel Bugl'

Then, we insert the user State Hook that we cut earlier into the App component5.
function:

 const [user, setUser] = useState('')

Now, we can pass user and setUser as props to the UserBar component:6.

 <UserBar user={user} setUser={setUser} />

The user state is a global state, so we are going to need it in many
components across the app. At the moment, this means that we need to
pass down the user value and the setUser function to each component
that needs it. In a future chapter, we are going to learn about React
Context Hooks, which solve the problem of having to pass down props in
such a way.

Finally, we only show the CreatePost component when the user is logged in.7.
To do this, we use a pattern, which allows us to show a component based on a
condition:

 {user && <CreatePost user={user} />}

Now, the users feature is fully implemented—we can use the Login and Register
components, and the user value also gets passed to the CreatePost component!

Writing Your First Application with React Hooks Chapter 3

[80]

Adding Hooks for the posts feature
After implementing the users feature, we are now going to implement the dynamic creation
of posts. We do so by first adjusting the App component and then modifying the
CreatePost component, in order to be able to insert new posts.

Let's get started by adjusting the App component.

Adjusting the App component
As we know from the users feature, posts are also going to be global state, so we should
define it in the App component.

Let's implement the posts value as global state now:

Edit src/App.js, and rename the current posts array to defaultPosts:1.

const defaultPosts = [
 { title: 'React Hooks', content: 'The greatest thing since
sliced bread!', author: 'Daniel Bugl' },
 { title: 'Using React Fragments', content: 'Keeping the DOM
tree clean!', author: 'Daniel Bugl' }
]

Then, define a new State Hook for the posts state:2.

 const [posts, setPosts] = useState(defaultPosts)

Now, we pass the posts value and setPosts function as props to the3.
CreatePost component:

 {user && <CreatePost user={user} posts={posts}
setPosts={setPosts} />}

Now, our App component provides the posts array, and a setPosts function to the
CreatePost component. Let's move on to adjusting the CreatePost component.

Adjusting the CreatePost component
Next, we need to use the setPosts function in order to insert a new post, when we press
the Create button.

Writing Your First Application with React Hooks Chapter 3

[81]

Let's start modifying the CreatePost component in order to make it dynamic:

Edit src/posts/CreatePost.js, and import the useState Hook:1.

import React, { useState } from 'react'

Then, adjust the function definition to accept the posts and setPosts props:2.

export default function CreatePost ({ user, posts, setPosts }) {

Next, we define two new State Hooks—one for the title value, and one for3.
the content value:

 const [title, setTitle] = useState('')
 const [content, setContent] = useState('')

Now, we define two handler functions—one for the input field, and one for4.
the textarea:

 function handleTitle (evt) {
 setTitle(evt.target.value)
 }

 function handleContent (evt) {
 setContent(evt.target.value)
 }

We also define a handler function for the Create button:5.

 function handleCreate () {

In this function, we first create a newPost object from the input field values:6.

 const newPost = { title, content, author: user }

In newer JavaScript versions, we can shorten the following object
assignment: { title: title }, to { title }, and it will have the
same effect. So, instead of doing { title: title, contents:
contents }, we can simply do { title, contents }.

Then, we set the new posts array by first adding newPost to the array, then7.
using the spread syntax to list all of the existing posts:

 setPosts([newPost, ...posts])
 }

Writing Your First Application with React Hooks Chapter 3

[82]

Next, we add the value and handler functions to the input field and8.
textarea element:

 <div>
 <label htmlFor="create-title">Title:</label>
 <input type="text" value={title}
onChange={handleTitle} name="create-title"
 id="create-title" />
 </div>
 <textarea value={content} onChange={handleContent} />

Usually in HTML, we put the value of textarea as its children. However,
in React, textarea can be handled like any other input field, by
using the value and onChange props.

Finally, we pass the handleCreate function to the onSubmit handler of the9.
form element:

 <form onSubmit={e => { e.preventDefault(); handleCreate()
}}>

Now, we can log in and create a new post, and it will be inserted at the beginning10.
of the feed:

Our first version of the blog app using Hooks, after inserting a new blog post

Writing Your First Application with React Hooks Chapter 3

[83]

As we can see, now our application is fully dynamic, and we can use all of its features!

Example code
The example code for the dynamic implementation of our blog app with Hooks can be
found in the Chapter03/chapter3_3 folder.

Just run npm install to install all dependencies, and npm start to start the application,
then visit http://localhost:3000 in your browser (if it did not open automatically).

Summary
In this chapter, we developed our own blog application from scratch! We started with a
mock-up, then created static components to resemble it. Afterward, we implemented
Hooks, to allow for dynamic behavior. Throughout the chapter, we learned how to deal
with local and global states, using Hooks. Furthermore, we learned how to use multiple
Hooks, and in which components to define Hooks and store state. We also learned how to
solve common use cases, such as handling input fields with the use of Hooks.

In the next chapter, we are going to learn about the useReducer Hook, which allows us to
deal with certain state changes more easily. Furthermore, we are going to learn about the
useEffect Hook, which allows us to run code with side effects.

Questions
To recap what we have learned in this chapter, try to answer the following questions:

What is the best practice for folder structures in React?1.
Which principle should we use when splitting up React components?2.
What does the map function do?3.
How does destructuring work, and when do we use it?4.
How does the spread operator work, and when do we use it?5.
How do we deal with input fields using React Hooks?6.
Where should local State Hooks be defined?7.
What is global state?8.
Where should global State Hooks be defined?9.

Writing Your First Application with React Hooks Chapter 3

[84]

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

Official docs on Thinking in React: https:/ /reactjs. org/ docs/ thinking- in-
react.html

Handling input fields with React: https:/ /reactjs. org/ docs/ forms. html

https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html

2
Section 2: Understanding

Hooks in Depth
In this part of the book, we will learn about various React Hooks and how to use them.
Additionally, we will learn about the rules of Hooks and how to write our own Hooks.

In this section, we will cover the following chapters:

Chapter 4, Using the Reducer and Effect Hooks
Chapter 5, Implementing React Context
Chapter 6, Implementing Requests and React Suspense
Chapter 7, Using Hooks for Routing
Chapter 8, Using Community Hooks
Chapter 9, Rules of Hooks
Chapter 10, Building Your Own Hooks

4
Using the Reducer and Effect

Hooks
After developing our own blog application using the State Hook, we are now going to learn
about two other very important Hooks that are provided by React: the Reducer and
Effect Hooks. We are first going to learn when we should use a Reducer Hook instead of a
State Hook. Then, we learn how to turn an existing State Hook into a Reducer Hook in
order to get a grasp on the concept in practice. Next, we are going to learn about Effect
Hooks and what they are used for. Finally, we are going to implement them in our blog
application.

The following topics will be covered in this chapter:

Learning about the differences between Reducer Hooks and State Hooks
Implementing Reducer Hooks in our blog app
Using Effect Hooks in our blog app

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter04.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter04
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Using the Reducer and Effect Hooks Chapter 4

[87]

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order for you to be able to
learn and understand properly. However, if you run into any issues, you
can always refer to the code example.

Now, let's get started with the chapter.

Reducer Hooks versus State Hooks
In the previous chapter, we learned about dealing with local and global states. We used
State Hooks for both cases, which is fine for simple state changes. However, when our state
logic becomes more complicated, we are going to need to ensure that we keep the state
consistent. In order to do so, we should use a Reducer Hook instead of multiple State
Hooks, because it is harder to maintain synchronicity between multiple State Hooks that
depend on each other. As an alternative, we could keep all state in one State Hook, but then
we have to make sure that we do not accidentally overwrite parts of our state.

Problems with the State Hook
The State Hook already supports passing complex objects and arrays to it, and it can handle
their state changes perfectly well. However, we are always going to have to change the
state directly, which means that we need to use a lot of spread syntax, in order to make sure
that we are not overwriting other parts of the state. For example, imagine that we have a
state object like this:

const [config, setConfig] = useState({ filter: 'all', expandPosts: true
})

Now, we want to change the filter:

setConfig({ filter: { byAuthor: 'Daniel Bugl', fromDate: '2019-04-29' } })

If we simply ran the preceding code, we would be removing the expandPosts part of our
state! So, we need to do the following:

setConfig({ ...config, filter: { byAuthor: 'Daniel Bugl', fromDate:
'2019-04-29' } })

Using the Reducer and Effect Hooks Chapter 4

[88]

Now, if we wanted to change the fromDate filter to a different date, we would need to use
spread syntax twice, to avoid removing the byAuthor filter:

setConfig({ ...config, filter: { ...config.filter, fromDate: '2019-04-30' }
})

But, what happens if we do this when the filter state is still a string? We are going to get
the following result:

{ filter: { '0': 'a', '1': 'l', '2': 'l', fromDate: '2019-04-30' },
 expandPosts: true }

What? Why are there suddenly three new keys—0, 1, and 2? This is because spread syntax
also works on strings, which are spread in such a way that each letter gets a key, based on
its index in the string.

As you can imagine, using spread syntax and changing the state object directly can become
very tedious for larger state objects. Furthermore, we always need to make sure that we do
not introduce any bugs, and we need to check for bugs in multiple places all across our
app.

Actions
Instead of changing the state directly, we could make a function that deals with state
changes. Such a function would only allow state changes via certain actions, such as a
CHANGE_FILTER or a TOGGLE_EXPAND action.

Actions are simply objects that have a type key, telling us which action we are dealing
with, and additional keys more closely describing the action.

The TOGGLE_EXPAND action is quite simple. It is simply an object with the action type
defined:

{ type: 'TOGGLE_EXPAND' }

The CHANGE_FILTER action could deal with the complex state changes that we had
problems with earlier, as follows:

{ type: 'CHANGE_FILTER', all: true }
{ type: 'CHANGE_FILTER', fromDate: '2019-04-29' }
{ type: 'CHANGE_FILTER', byAuthor: 'Daniel Bugl' }
{ type: 'CHANGE_FILTER', fromDate: '2019-04-30' }

Using the Reducer and Effect Hooks Chapter 4

[89]

The second, third, and fourth actions would change the filter state from a string to an
object, and then set the respective key. If the object already exists, we would simply adjust
the keys that were defined in the action. After each action, the state would change as
follows:

{ expandPosts: true, filter: 'all' }

{ expandPosts: true, filter: { fromDate: '2019-04-29' } }

{ expandPosts: true, filter: { fromDate: '2019-04-29',
byAuthor: 'Daniel Bugl' } }

{ expandPosts: true, filter: { fromDate: '2019-04-30',
byAuthor: 'Daniel Bugl' } }

Now, take a look at the following code:

{ type: 'CHANGE_FILTER', all: true }

If we dispatched another action, as in the preceding code, then the state would go back to
being the all string, as it was in the initial state.

Reducers
Now, we still need to define the function that handles these state changes. Such a function
is known as a reducer function. It takes the current state and action as arguments, and
returns a new state.

If you are aware of the Redux library, you will already be very familiar
with the concept of state, actions, and reducers.

Now, we are going to define our reducer function:

We start with the function definition of our reducer:1.

function reducer (state, action) {

Then, we check for action.type using a switch statement:2.

 switch (action.type) {

Using the Reducer and Effect Hooks Chapter 4

[90]

Now, we are going to handle the TOGGLE_EXPAND action, where we simply3.
toggle the current expandPosts state:

 case 'TOGGLE_EXPAND':
 return { ...state, expandPosts: !state.expandPosts }

Next, we are going to handle the CHANGE_FILTER action. Here, we first need to4.
check if all is set to true, and, in that case, simply set our filter to the 'all'
string:

 case 'CHANGE_FILTER':
 if (action.all) {
 return { ...state, filter: 'all' }
 }

Now, we have to handle the other filter options. First, we check if5.
the filter variable is already an object. If not, we create a new one.
Otherwise, we use the existing object:

 let filter = typeof state.filter === 'object' ?
state.filter : {}

Then, we define the handlers for the various filters, allowing for multiple filters6.
to be set at once, by not immediately returning the new state:

 if (action.fromDate) {
 filter = { ...filter, fromDate: action.fromDate }
 }
 if (action.byAuthor) {
 filter = { ...filter, byAuthor: action.byAuthor }
 }

Finally, we return the new state:7.

 return { ...state, filter }

For the default case, we throw an error, because this is an unknown action:8.

 default:
 throw new Error()
 }
}

Using the Reducer and Effect Hooks Chapter 4

[91]

Throwing an error in the default case is different to what is best practice
with Redux reducers, where we would simply return the current state in
the default case. Because React Reducer Hooks do not store all state in one
object, we are only going to handle certain actions for certain state objects,
so we can throw an error for unknown actions.

Now, our reducer function has been defined, and we can move on to defining the Reducer
Hook.

The Reducer Hook
Now that we have defined actions and the reducer function, we can create a Reducer
Hook from the reducer. The signature for the useReducer Hook is as follows:

const [state, dispatch] = useReducer(reducer, initialState)

The only thing that we still need to define is the initialState; then we can define a
Reducer Hook:

const initialState = { all: true }

Now, we can access the state by using the state object that was returned from the Reducer
Hook, and dispatch actions via the dispatch function, as follows:

dispatch({ type: 'TOGGLE_EXPAND' })

If we want to add additional options to the action, we simply add them to the action object:

dispatch({ type: 'CHANGE_FILTER', fromDate: '2019-04-30' })

As we can see, dealing with state changes using actions and reducers is much easier than
having to adjust the state object directly.

Implementing Reducer Hooks
After learning about actions, reducers, and the Reducer Hook, we are going to implement
them in our blog app. Any existing State Hook can be turned into a Reducer Hook, when
the state object or state changes become too complex.

Using the Reducer and Effect Hooks Chapter 4

[92]

If there are multiple setState functions that are always called at the
same time, it is a good hint that they should be grouped together in a
single Reducer Hook.

Global state is usually a good candidate for using a Reducer Hook, rather than a State
Hook, because global-state changes can happen anywhere in the app. Then, it is much
easier to deal with actions, and update the state-changing logic only in one place. Having
all the state-changing logic in one place makes it easier to maintain and fix bugs, without
introducing new ones by forgetting to update the logic everywhere.

We are now going to turn some of the existing State Hooks in our blog app into Reducer
Hooks.

Turning a State Hook into a Reducer Hook
In our blog app, we have two global State Hooks, which we are going to replace with
Reducer Hooks:

user state
posts state

We start by replacing the user State Hook.

Replacing the user State Hook
We are going to start with the user State Hook, because it is simpler than the posts State
Hook. Later on, the user state will contain complex state changes, so it makes sense to use
a Reducer Hook here.

First, we are going to define our actions, then we are going to define the reducer function.
Finally, we are going to replace the State Hook with a Reducer Hook.

Using the Reducer and Effect Hooks Chapter 4

[93]

Defining actions
We start by defining our actions, as these will be important when defining the reducer
function.

Let's define the actions now:

First, we are going to need an action to allow a user to log in, by providing1.
a username value and a password value:

{ type: 'LOGIN', username: 'Daniel Bugl', password: 'notsosecure' }

Then, we are also going to need a REGISTER action, which, in our case, is going2.
to be similar to the LOGIN action, because we did not implement any registration
logic yet:

{ type: 'REGISTER', username: 'Daniel Bugl', password:
'notsosecure', passwordRepeat: 'notsosecure' }

Finally, we are going to need a LOGOUT action, which is simply going to log out3.
the currently logged-in user:

{ type: 'LOGOUT' }

Now, we have defined all the required user-related actions and we can move on to defining
the reducer function.

Defining the reducer
Next, we define a reducer function for the user state. For now, we are going to place our
reducers in the src/App.js file.

Later on, it might make sense to create a separate src/reducers.js file,
or even a separate src/reducers/ directory, with separate files for each
reducer function.

Let's start defining the userReducer function:

In the src/App.js file, before the App function definition, create a userReducer1.
function for the user state:

function userReducer (state, action) {

Using the Reducer and Effect Hooks Chapter 4

[94]

Again, we use a switch statement for the action type:2.

 switch (action.type) {

Then, we handle the LOGIN and REGISTER actions, where we set the user state3.
to the given username value. In our case, we simply return the username value
from the action object for now:

 case 'LOGIN':
 case 'REGISTER':
 return action.username

Next, we handle the LOGOUT action, where we set the state to an empty string:4.

 case 'LOGOUT':
 return ''

Finally, we throw an error when we encounter an unhandled action:5.

 default:
 throw new Error()
 }
}

Now, the userReducer function is defined, and we can move on to defining the Reducer
Hook.

Defining the Reducer Hook
After defining the actions and the reducer function, we are going to define the Reducer
Hook, and pass its state and the dispatch function to the components that need it.

Let's start implementing the Reducer Hook:

First, we have to import the useReducer Hook, by adjusting the following1.
import statement in src/App.js:

import React, { useState, useReducer } from 'react'

Edit src/App.js, and remove the following State Hook:2.

 const [user, setUser] = useState('')

Using the Reducer and Effect Hooks Chapter 4

[95]

Replace the preceding State Hook with a Reducer Hook—the initial state is an
empty string, as we had it before:

 const [user, dispatchUser] = useReducer(userReducer, '')

Now, pass the user state and the dispatchUser function to the UserBar3.
component, as a dispatch prop:

 <UserBar user={user} dispatch={dispatchUser} />

We do not need to modify the CreatePost component, as we are only passing4.
the user state to it, and that part did not change.
Next, we edit the UserBar component in src/user/UserBar.js, and replace5.
the setUser prop with the dispatch function:

export default function UserBar ({ user, dispatch }) {
 if (user) {
 return <Logout user={user} dispatch={dispatch} />
 } else {
 return (
 <React.Fragment>
 <Login dispatch={dispatch} />
 <Register dispatch={dispatch} />
 </React.Fragment>
)
 }
}

Now, we can edit the Login component in src/user/Login.js, and replace6.
the setUser function with the dispatch function:

export default function Login ({ dispatch }) {

Then, we replace the call to setUser with a call to the dispatch function,7.
dispatching a LOGIN action:

 <form onSubmit={e => { e.preventDefault(); dispatch({
type: 'LOGIN', username }) }}>

We could also make functions that return actions—so-called action
creators. Instead of manually creating the action object every time, we
could simply call loginAction('username') instead, which returns the
corresponding LOGIN action object.

Using the Reducer and Effect Hooks Chapter 4

[96]

We repeat the same process for the Register component in8.
src/user/Register.js:

export default function Register ({ dispatch }) {
 // ...
 <form onSubmit={e => { e.preventDefault(); dispatch({
type: 'REGISTER', username }) }}>

Finally, we also repeat the same process for the Logout component in9.
src/user/Logout.js:

export default function Logout ({ user, dispatch }) {
 // ...
 <form onSubmit={e => { e.preventDefault(); dispatch({
type: 'LOGOUT' }) }}>

Now, our app should work the same way as before, but it uses the Reducer Hook instead of
a simple State Hook!

Replacing the posts State Hook
It also makes sense to use a Reducer Hook for the posts state, because, later on, we are
going to have features that can be used to delete and edit posts, so it makes a lot of sense to
keep these complex state changes contained. Let's now get started replacing the posts State
Hook with a Reducer Hook.

Defining actions
Again, we start by defining actions. At the moment, we are only going to consider a
CREATE_POST action:

{ type: 'CREATE_POST', title: 'React Hooks', content: 'The greatest thing
since sliced bread!', author: 'Daniel Bugl' }

That is the only action we are going to need for posts, at the moment.

Using the Reducer and Effect Hooks Chapter 4

[97]

Defining the reducer
Next, we are going to define the reducer function in a similar way that we did for the user
state:

We start by editing src/App.js, and defining the reducer function there. The1.
following code defines the postsReducer function:

function postsReducer (state, action) {
 switch (action.type) {

In this function, we are going to handle the CREATE_POST action. We first create2.
a newPost object, and then we insert it at the beginning of the current posts
state by using spread syntax, in a similar way to how we did it in the
src/post/CreatePost.js component earlier:

 case 'CREATE_POST':
 const newPost = { title: action.title, content:
action.content, author: action.author }
 return [newPost, ...state]

For now, this will be the only action that we handle in this reducer, so we can3.
now define the default statement:

 default:
 throw new Error()
 }
}

Now, the postsReducer function is defined, and we can move on to creating the Reducer
Hook.

Defining the Reducer Hook
Finally, we are going to define and use the Reducer Hook for the posts state:

We start by removing the following State Hook in src/App.js:1.

 const [posts, setPosts] = useState(defaultPosts)

We replace it with the following Reducer Hook:

 const [posts, dispatchPosts] = useReducer(postsReducer,
defaultPosts)

Using the Reducer and Effect Hooks Chapter 4

[98]

Then, we pass the dispatchPosts function to the CreatePost component, as a2.
dispatch prop:

 {user && <CreatePost user={user} posts={posts}
dispatch={dispatchPosts} />}

Next, we edit the CreatePost component in src/post/CreatePost.js, and3.
replace the setPosts function with the dispatch function:

export default function CreatePost ({ user, posts, dispatch }) {

Finally, we use the dispatch function in the handleCreate function:4.

 function handleCreate () {
 dispatch({ type: 'CREATE_POST', title, content, author:
user })
 }

Now, the posts state also uses a Reducer Hook instead of a State Hook, and it works in the
same way as before! However, if we want to add more logic for managing posts, such as
searching, filtering, deleting, and editing, later on, it will be much easier to do so.

Example code
The example code for using Reducer Hooks in our blog app can be found in the
Chapter04/chapter4_1 folder.

Just run npm install in order to install all dependencies and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Merging Reducer Hooks
Currently, we have two different dispatch functions: one for the user state, and one for the
posts state. In our case, it makes sense to combine the two reducers into one, which then
calls further reducers, in order to deal with the sub-state.

This pattern is similar to the way in which reducers work in Redux, where
we only have one object containing the whole state tree of the application,
which in the case of the global state, makes sense. However, for complex
local state changes, it might make more sense to keep the reducers
separate.

Using the Reducer and Effect Hooks Chapter 4

[99]

Let's start merging our reducer functions into one reducer function. While we are at it, let's
refactor all the reducers into a src/reducers.js file, in order to keep the src/App.js file
more readable:

Create a new src/reducers.js file.1.
Cut the following code from the src/App.js file, and paste it into the2.
src/reducers.js file:

function userReducer (state, action) {
 switch (action.type) {
 case 'LOGIN':
 case 'REGISTER':
 return action.username

 case 'LOGOUT':
 return ''

 default:
 throw new Error()
 }
}

function postsReducer (state, action) {
 switch (action.type) {
 case 'CREATE_POST':
 const newPost = { title: action.title, content:
action.content, author: action.author }
 return [newPost, ...state]

 default:
 throw new Error()
 }
}

Edit src/reducers.js, and define a new reducer function below the existing3.
reducer functions, called appReducer:

export default function appReducer (state, action) {

In this appReducer function, we are going to call the other two reducer4.
functions, and return the full state tree:

 return {
 user: userReducer(state.user, action),
 posts: postsReducer(state.posts, action)
 }
}

Using the Reducer and Effect Hooks Chapter 4

[100]

Edit src/App.js, and import the appReducer there:5.

import appReducer from './reducers'

Then, we remove the following two Reducer Hook definitions:6.

 const [user, dispatchUser] = useReducer(userReducer,
 '')
 const [posts, dispatchPosts = useReducer(postsReducer,
 defaultPosts)

We replace the preceding Reducer Hook definitions with a single Reducer Hook
definition for the appReducer:

 const [state, dispatch] = useReducer(appReducer, { user: '',
posts: defaultPosts })

Next, we extract the user and posts values from our state object, using7.
destructuring:

 const { user, posts } = state

Now, we still need to replace the dispatchUser and dispatchPosts functions8.
that we passed to the other components with the dispatch function:

 <UserBar user={user} dispatch={dispatch} />

 {user && <CreatePost user={user} posts={posts}
dispatch={dispatch} />}

As we can see, now there is only one dispatch function, and a single state object.

Ignoring unhandled actions
However, if we try logging in now, we are going to see an error from the postsReducer.
This is because we are still throwing an error on unhandled actions. In order to avoid this,
we have to instead ignore unhandled actions, and simply return the current state:

Edit the userReducer and postsReducer functions in src/reducers.js, and remove
the following code:

 default:
 throw new Error()

Using the Reducer and Effect Hooks Chapter 4

[101]

Replace the preceding code with a return statement that returns the current state:

 default:
 return state

As we can see, now our app still works in exactly the same way as before, but we are using
a single reducer for our whole app state!

Example code
The example code for using a single Reducer Hook in our blog app can be found in
the Chapter04/chapter4_2 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using Effect Hooks
The last essential Hook that we are going to be using frequently is the Effect Hook. Using
the Effect Hook, we can perform side effects from our components, such as fetching data
when the component mounts or updates.

In the case of our blog, we are going to implement a feature that updates the title of our
web page when we log in, so that it contains the username of the currently logged-in user.

Remember componentDidMount and
componentDidUpdate?
If you have worked with React before, you have probably used the componentDidMount
and componentDidUpdate life cycle methods. For example, we can set the document
title to a given prop as follows, using a React class component. In the following code
section, the life cycle method is highlighted in bold:

import React from 'react'

class App extends React.Component {
 componentDidMount () {
 const { title } = this.props

Using the Reducer and Effect Hooks Chapter 4

[102]

 document.title = title
 }

 render () {
 return (
 <div>Test App</div>
)
 }
}

This works fine. However, when the title prop updates, the change does not get reflected
in the title of our web page. To solve this problem, we need to define the
componentDidUpdate life cycle method (new code in bold), as follows:

import React from 'react'

class App extends React.Component {
 componentDidMount () {
 const { title } = this.props
 document.title = title
 }

 componentDidUpdate (prevProps) {
 const { title } = this.props
 if (title !== prevProps.title) {
 document.title = title
 }
 }

 render () {
 return (
 <div>Test App</div>
)
 }
}

You might have noticed that we are writing almost the same code twice; therefore, we
could create a new method to deal with updates to title, and then call it from both life
cycle methods. In the following code section, the updated code is highlighted in bold:

import React from 'react'

class App extends React.Component {
 updateTitle () {
 const { title } = this.props
 document.title = title
 }

Using the Reducer and Effect Hooks Chapter 4

[103]

 componentDidMount () {
 this.updateTitle()
 }

 componentDidUpdate (prevProps) {
 if (this.props.title !== prevProps.title) {
 this.updateTitle()
 }
 }

 render () {
 return (
 <div>Test App</div>
)
 }
}

However, we still need to call this.updateTitle() twice. When we update the code later
on, and, for example, pass an argument to this.updateTitle(), we always need to
remember to pass it in both calls to the method. If we forget to update one of the life cycle
methods, we might introduce bugs. Furthermore, we need to add an if condition to
componentDidUpdate, in order to avoid calling this.updateTitle() when the title
prop did not change.

Using an Effect Hook
In the world of Hooks, the componentDidMount and componentDidUpdate life cycle
methods are combined in the useEffect Hook, which—when not specifying a
dependency array—triggers whenever any props in the component change.

So, instead of using a class component, we can now define a function component with an
Effect Hook, which does the same thing as before. The function passed to the Effect Hook is
called "effect function":

import React, { useEffect } from 'react'

function App ({ title }) {
 useEffect(() => {
 document.title = title
 })

 return (
 <div>Test App</div>
)
}

Using the Reducer and Effect Hooks Chapter 4

[104]

And that's all we need to do! The Hook that we have defined will call our effect function
every time any props change.

Trigger effect only when certain props change
If we want to make sure that our effect function only gets called when the title prop
changes, for example, for performance reasons, we can specify which values should trigger
the changes, as a second argument to the useEffect Hook:

 useEffect(() => {
 document.title = title
 }, [title])

And this is not just restricted to props, we can use any value here, even values from other
Hooks, such as a State Hook or a Reducer Hook:

 const [title, setTitle] = useState('')
 useEffect(() => {
 document.title = title
 }, [title])

As we can see, using an Effect Hook is much more straightforward than using life cycle
methods when dealing with changing values.

Trigger effect only on mount
If we want to replicate the behavior of only adding a componentDidMount life cycle
method, without triggering when the props change, we can do this by passing an empty
array as the second argument to the useEffect Hook:

 useEffect(() => {
 document.title = title
 }, [])

Passing an empty array means that our effect function will only trigger once when the
component mounts, and it will not trigger when props change. However, instead of
thinking about the mounting of components, with Hooks, we should think about the
dependencies of effects. In this case, the effect does not have any dependencies, which
means it will only trigger once. If an effect has dependencies specified, it will trigger again
when any of the dependencies change.

Using the Reducer and Effect Hooks Chapter 4

[105]

Cleaning up effects
Sometimes effects need to be cleaned up when the component unmounts. To do so, we can
return a function from the effect function of the Effect Hook. This returned function works
similarly to the componentWillUnmount life cycle method:

 useEffect(() => {
 const updateInterval = setInterval(() => console.log('fetching
update'), updateTime)

 return () => clearInterval(updateInterval)
 }, [updateTime])

The code marked in bold above is called the cleanup function. The cleanup function will be
called when the component unmounts and before running the effect again. This avoids
bugs when, for example, the updateTime prop changes. In that case, the previous effect
will be cleaned up and a new interval with the updated updateTime value will be defined.

Implementing an Effect Hook in our blog app
Now that we have learned how the Effect Hook works, we are going to use it in our blog
app, to implement the title changing when we log in/log out (when the user state changes).

Let's get started implementing an Effect Hook in our blog app:

Edit src/App.js, and import the useEffect Hook:1.

import React, { useReducer, useEffect } from 'react'

After defining our useReducer Hook and the state destructuring, define a2.
useEffect Hook that adjusts the document.title variable, based on
the username value:

 useEffect(() => {

If the user is logged in, we set the document.title to <username> - React3.
Hooks Blog. We use template strings for this, which allow us to include
variables, or JavaScript expressions, in a string via the ${ } syntax. Template
strings are defined using `:

 if (user) {
 document.title = `${user} - React Hooks Blog`

Using the Reducer and Effect Hooks Chapter 4

[106]

Otherwise, if the user is not logged in, we simply set the document.title to4.
React Hooks Blog:

 } else {
 document.title = 'React Hooks Blog'
 }

Finally, we pass the user value as the second argument to the Effect Hook, in5.
order to ensure that whenever the user value updates, our effect function
triggers again:

 }, [user])

If we start our app now, we can see that the document.title gets set to React Hooks
Blog, because the Effect Hook triggers when the App component mounts, and the user
value is not defined yet:

The effect of our Effect Hook: changing the web page title

Using the Reducer and Effect Hooks Chapter 4

[107]

After logging in with Test User, we can see that the document.title changes to Test
User - React Hooks Blog:

The effect of our Effect Hook re-triggering, after the user value changes

As we can see, our Effect Hook re-triggers successfully after the user value changes!

Example code
The example code for implementing Effect Hooks in our blog app can be found in
the Chapter04/chapter4_3 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using the Reducer and Effect Hooks Chapter 4

[108]

Summary
In this chapter, we first learned about actions, reducers, and Reducer Hooks. We also
learned when we should use Reducer Hooks instead of State Hooks. Then, we replaced our
existing global State Hooks for the user and posts states, with two Reducer Hooks. Next,
we merged the two Reducer Hooks into a single app Reducer Hook. Finally, we learned
about Effect Hooks, and how they can be used instead of componentDidMount and
componentDidUpdate.

In the next chapter, we are going to learn about React context, and how to use it with
Hooks. Then, we are going to add Context Hooks to our app, in order to avoid having to
pass down props over multiple layers of components.

Questions
In order to recap what we have learned in this chapter, try to answer the following
questions:

What are the common problems with State Hooks?1.
What are actions?2.
What are reducers?3.
When should we use a Reducer Hook instead of a State Hook?4.
Which steps are needed in order to turn a State Hook into a Reducer Hook?5.
How can we create actions more easily?6.
When should we merge Reducer Hooks?7.
What do we need to watch out for when merging Reducer Hooks?8.
What is the equivalent of an Effect Hook in class components?9.
What are the advantages of using an Effect Hook, versus class components?10.

Using the Reducer and Effect Hooks Chapter 4

[109]

Further reading
If you are interested in more information about the concepts that we have explored in this
chapter, take a look at the following reading material:

Official docs regarding the Reducer Hook: https:/ / reactjs. org/ docs/ hooks-
reference. html#usereducer

Official docs and tips for using Effect Hooks: https:/ /reactjs. org/docs/ hooks-
effect.html

Learning Redux published by Packt for more in-depth information about actions,
reducers, and managing the app state: https:/ /www. packtpub. com/web-
development/ learning- redux

https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-reference.html#usereducer
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux

5
Implementing React Context

In the previous chapters, we learned about the most fundamental Hooks, such as the State
Hook, the Reducer Hook, and the Effect Hook. We developed a small blog application
using these Hooks. We have noticed during the development of our blog app, that we have
to pass down the user state from the App component to the UserBar component, and from
the UserBar component to the Login, Register, and Logout components. To avoid
having to pass down the state like this, we are now going to learn about React context and
Context Hooks.

We are going to begin by learning what React context is, and what providers and
consumers are. Then, we are going to use Context Hooks as a context consumer, and
discuss when context should be used. Finally, we are going to implement themes and
global state via contexts.

The following topics will be covered in this chapter:

Introducing React context as an alternative to passing down props
Implementing themes via context
Using context for global state

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: hhttps:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter05

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter05
http://bit.ly/2Mm9yoC

Implementing React Context Chapter 5

[111]

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order for you to be able to
learn and understand properly. However, if you run into any issues, you
can always refer to the code example.

Now, let's get started with the chapter.

Introducing React context
In the previous chapters, we passed down the user state and dispatch function from the
App component, to the UserBar component; and then from the UserBar component to the
Logout, Login, and Register components. React context provides a solution to this
cumbersome way of passing down props over multiple levels of components, by allowing
us to share values between components, without having to explicitly pass them down via
props. As we are going to see, React context is perfect for sharing values across the whole
application.

First, we are going to have a closer look at the problem of passing down props. Then, we
are going to introduce React context as a solution to the problem.

Passing down props
Before learning about React context in depth, let's recap what we implemented in the earlier
chapters, in order to get a feeling for the problem that contexts solve:

In src/App.js, we defined the user state and the dispatch function:1.

 const [state, dispatch] = useReducer(appReducer, { user: '',
posts: defaultPosts })
 const { user, posts } = state

Then, we passed the user state and the dispatch function to the UserBar2.
component (and the CreatePost component):

 return (
 <div style={{ padding: 8 }}>
 <UserBar user={user} dispatch={dispatch} />

 {user && <CreatePost user={user} posts={posts}
dispatch={dispatch} />}

Implementing React Context Chapter 5

[112]

 <hr />
 <PostList posts={posts} />
 </div>
)

In the src/user/UserBar.js component, we took the user state as a prop, and3.
then passed it down to the Logout component. We also took the dispatch
function as a prop, and passed it to the Logout, Login, and Register
components:

export default function UserBar ({ user, dispatch }) {
 if (user) {
 return <Logout user={user} dispatch={dispatch} />
 } else {
 return (
 <React.Fragment>
 <Login dispatch={dispatch} />
 <Register dispatch={dispatch} />
 </React.Fragment>
)
 }
}

Finally, we used the dispatch and user props in the Logout, Login, and4.
Register components.

React context allows us to skip steps 2 and 3, and jump straight from step 1 to step 4. As
you can imagine, with larger apps, context becomes even more useful, because we might
have to pass down props over many levels.

Introducing React context
React context is used to share values across a tree of React components. Usually, we want to
share global values, such as the user state and the dispatch function, the theme of our
app, or the chosen language.

React context consists of two parts:

The provider, which provides (sets) the value
The consumer, which consumes (uses) the value

Implementing React Context Chapter 5

[113]

We are first going to look at how contexts work, using a simple example, and, in the next
section, we are going to implement them in our blog app. We create a new project with
the create-react-app tool. In our simple example, we are going to define a theme
context, containing the primary color of an app.

Defining the context
First, we have to define the context. The way this works has not changed since Hooks were
introduced.

We simply use the React.createContext(defaultValue) function to create a new
context object. We set the default value to { primaryColor: 'deepskyblue' }, so our
default primary color, when no provider is defined, will be 'deepskyblue'.

In src/App.js, add the following definition before the App function:

export const ThemeContext = React.createContext({ primaryColor:
'deepskyblue' })

Note how we are exporting ThemeContext here, because we are going to
need to import it for the consumer.

That is all we need to do to define a context with React. Now we just need to define the
consumer.

Defining the consumer
Now, we have to define the consumer in our Header component. We are going to do this in
the traditional way for now, and in the next steps use Hooks to define the consumer:

Create a new src/Header.js file1.
First, we have to import ThemeContext from the App.js file:2.

import React from 'react'
import { ThemeContext } from './App'

Implementing React Context Chapter 5

[114]

Now, we can define our component, where we use the3.
ThemeContext.Consumer component and a render function as children
prop, in order to make use of the context value:

const Header = ({ text }) => (
 <ThemeContext.Consumer>
 {theme => (

Inside the render function, we can now make use of the context value to set the4.
color style of our Header component:

 <h1 style={{ color: theme.primaryColor }}>{text}</h1>
)}
 </ThemeContext.Consumer>
)

export default Header

Now, we still need to import the Header component in src/App.js, by adding5.
the following import statement:

import Header from './Header'

Then, we replace the current App function with the following code:6.

const App = () => (
 <Header text="Hello World" />
)

export default App

Using contexts like this works, but, as we have learned in the first chapter, using
components with render function props in this way clutters our UI tree, and makes our
app harder to debug and maintain.

Using Hooks
A better way to use contexts is with the useContext Hook! That way, we can use context
values like any other value, in a similar way to the useState Hook:

Edit src/Header.js. First, we import the useContext Hook from React, and1.
the ThemeContext object from src/App.js:

import React, { useContext } from 'react'
import { ThemeContext } from './App'

Implementing React Context Chapter 5

[115]

Then, we create our Header component, where we now define the2.
useContext Hook:

const Header = ({ text }) => {
 const theme = useContext(ThemeContext)

The rest of our component will be the same as before, except that, now, we can3.
simply return our Header component, without using an additional component
for the consumer:

 return <h1 style={{ color: theme.primaryColor }}>{text}</h1>
}

export default Header

As we can see, using Hooks makes our context consumer code much more concise.
Furthermore, it will be easier to read, maintain, and debug.

We can see that the header now has the color deepskyblue:

A simple app with a Context Hook!

As we can see, our theme context successfully provides the theme for the header.

Defining the provider
Contexts use the default value that is passed to React.createContext, when there is no
provider defined. This is useful for debugging the components when they are not
embedded in the app. For example, we could debug a single component as a standalone
component. In an app, we usually want to use a provider to provide the value for the
context, which we are going to define now.

Implementing React Context Chapter 5

[116]

Edit src/App.js, and in our App function, we simply wrap the Header component with
a <ThemeContext.Provider> component, where we pass coral as primaryColor:

const App = () => (
 <ThemeContext.Provider value={{ primaryColor: 'coral' }}>
 <Header text="Hello World" />
 </ThemeContext.Provider>
)

export default App

We can now see that our header color changed from deepskyblue to coral:

Our provider changed the color of the header

If we want to change the value of our context, we can simply adjust the value prop that is
passed to the Provider component.

Please note that the default value of a context is not used when we define
a provider without passing the value prop to it! If we define a provider
without a value prop, then the value of the context will be undefined.

Now that we have defined a single provider for our context, let's move on to defining
multiple, nested providers.

Nested providers
With React context, it is also possible to define multiple providers for the same context.
Using this technique, we can override the context value in certain parts of our app. Let's
consider the earlier example, and add a second header to it:

Edit src/App.js, and add a second Header component:1.

const App = () => (
 <ThemeContext.Provider value={{ primaryColor: 'coral' }}>

Implementing React Context Chapter 5

[117]

 <Header text="Hello World" />
 <Header text="This is a test" />
 </ThemeContext.Provider>
)

export default App

Now, define a second Provider component with a different primaryColor:2.

const App = () => (
 <ThemeContext.Provider value={{ primaryColor: 'coral' }}>
 <Header text="Hello World" />
 <ThemeContext.Provider value={{ primaryColor: 'deepskyblue'
}}>
 <Header text="This is a test" />
 </ThemeContext.Provider>
 </ThemeContext.Provider>
)

export default App

If we open the app in our browser, the second header now has a different color from the
first one:

Overriding context values with nested providers

As we can see, we can override React context values by defining providers. Providers can
also be nested, therefore overriding the values of other providers that are higher up in the
component tree.

Implementing React Context Chapter 5

[118]

Example code
The example code for the small theme context example can be found in
the Chapter05/chapter5_1 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Alternative to contexts
However, we should be careful, and not use React context too often, because it makes
reusing components more difficult. We should only use contexts when we need to access
data in many components, which are at different nesting levels. Furthermore, we need to
make sure that we only use contexts for non-frequently changing data. Frequently changing
values of contexts can cause our whole component tree to re-render, resulting in
performance problems. That is why, for frequently changing values, we should use a state
management solution such as Redux or MobX, instead.

If we only want to avoid having to pass down props, we can pass down the rendered
component instead of the data. For example, let's say we have a Page component, which
renders a Header component, which renders a Profile component, which then renders an
Avatar component. We get a headerSize prop passed to the Page component, which we
need in the Header component, but also in the Avatar component. Instead of passing
down props through multiple levels, we could do the following:

function Page ({ headerSize }) {
 const profile = (
 <Profile>
 <Avatar size={headerSize} />
 </Profile>
)
 return <Header size={headerSize} profile={profile} />
}

Now, only the Page component needs to know about the headerSize prop, and there is
no need to pass it down further in the tree. In this case, contexts are not necessary.

Such a pattern is called inversion of control, and it can make your code much cleaner than
passing down props or using a context. However, we should not always use this pattern
either, because it makes the higher-level component more complicated.

Implementing React Context Chapter 5

[119]

Implementing themes
After learning how to implement themes in a small example, we are now going to
implement themes in our blog app, using React context and Hooks.

Defining the context
First, we have to define the context. Instead of defining it in the src/App.js file, in our
blog app, we are going to create a separate file for the context. Having a separate file for
contexts makes it easier to maintain them later on. Furthermore, we always know where to
import the contexts from, because it is clear from the filename.

Let's start defining a theme context:

Create a new src/contexts.js file.1.
Then, we import React:2.

import React from 'react'

Next, we define the ThemeContext. As before in our small example, we set the3.
default primaryColor to deepskyblue. Additionally, we set
the secondaryColor to coral:

export const ThemeContext = React.createContext({
 primaryColor: 'deepskyblue',
 secondaryColor: 'coral'
})

Now that we have defined our context, we can move on to defining the Context Hooks.

Defining the Context Hooks
After defining the context, we are going to define our consumers, using Context Hooks. We
start by creating a new component for the header, then define a Context Hook for our
existing Post component.

Creating the Header component
First, we create a new Header component, which is going to display React Hooks
Blog in the primaryColor of our app.

Implementing React Context Chapter 5

[120]

Let's create the Header component now:

Create a new src/Header.js file.1.
In this file, we import React, and the useContext Hook:2.

import React, { useContext } from 'react'

Next, we import the ThemeContext from the previously created3.
src/contexts.js file:

import { ThemeContext } from `'./contexts'

Then, we define our Header component, and the Context Hook. Instead of4.
storing the context value in a theme variable, we use destructuring to directly
extract the primaryColor value:

const Header = ({ text }) => {
 const { primaryColor } = useContext(ThemeContext)

Finally, we return the h1 element, as we did before in our small example, and5.
export the Header component:

 return <h1 style={{ color: primaryColor }}>{text}</h1>
}

export default Header

Now our Header component is defined, and we can use it.

Using the Header component
After creating the Header component, we are going to use it in the App component, as
follows:

Edit src/App.js, and import the Header component:1.

import Header from './Header'

Then, render the Header component before the UserBar component:2.

 return (
 <div style={{ padding: 8 }}>
 <Header text="React Hooks Blog" />
 <UserBar user={user} dispatch={dispatch} />

Implementing React Context Chapter 5

[121]

You might want to refactor the React Hooks Blog value into a prop that
is passed to the App component (app config), because we are already
using it three times in this component.

Now, our Header component will be rendered in the app and we can move on to
implementing the Context Hook in the Post component.

Implementing the Context Hook for the Post component
Next, we want to display the Post headers in the secondary color. To do this, we need to
define a Context Hook for the Post component, as follows:

Edit src/post/Post.js, and adjust the import statement to import the1.
useContext Hook:

import React, { useContext } from 'react'

Next, we import the ThemeContext:2.

import { ThemeContext } from '../contexts'

Then, we define a Context Hook in the Post component, and get3.
the secondaryColor value from the theme, via destructuring:

export default function Post ({ title, content, author }) {
 const { secondaryColor } = useContext(ThemeContext)

Finally, we use the secondaryColor value to style our h3 element:4.

 return (
 <div>
 <h3 style={{ color: secondaryColor }}>{title}</h3>

Implementing React Context Chapter 5

[122]

If we look at our app now, we can see that both colors are used properly from
the ThemeContext:

Our ThemeContext in action

As we can see, our app now uses the primary color for the main header, and the secondary
color for the post titles.

Defining the provider
Right now, our Context Hooks use the default value that is specified by the context, when
no provider is defined. To be able to change the value, we need to define a provider.

Let's start defining the provider:

Edit src/App.js, and import the ThemeContext:1.

import { ThemeContext } from './contexts'

Implementing React Context Chapter 5

[123]

Wrap the whole app with the ThemeContext.Provider component, providing2.
the same theme that we set as the default value earlier:

 return (
 <ThemeContext.Provider value={{ primaryColor:
'deepskyblue', secondaryColor: 'coral' }}>
 <div style={{ padding: 8 }}>
 <Header text="React Hooks Blog" />
 ...
 <PostList posts={posts} />
 </div>
 </ThemeContext.Provider>
)

Our app should look exactly the same way as before, but now we are using the value from
the provider!

Dynamically changing the theme
Now that we have defined a provider, we can use it to dynamically change the theme.
Instead of passing a static value to the provider, we are going to use a State Hook that
defines the current theme. Then, we are going to implement a component that changes the
theme.

Using a State Hook with the context provider
First, we are going to define a new State Hook, which we are going to use to set the value
for the context provider.

Let's define a State Hook, and use it in the context provider:

Edit src/App.js, and import the useState Hook:1.

import React, { useReducer, useEffect, useState } from 'react'

Define a new State Hook at the beginning of the App component; here we set the2.
default value to our default theme:

export default function App () {
 const [theme, setTheme] = useState({
 primaryColor: 'deepskyblue',
 secondaryColor: 'coral'
 })

Implementing React Context Chapter 5

[124]

Then, we pass the theme value to the ThemeContext.Provider component:3.

 return (
 <ThemeContext.Provider value={theme}>

Our app is still going to look the same way as before, but we are now ready to dynamically
change our theme!

Implementing the ChangeTheme component
The final part of our theme feature is a component that can be used to change the theme
dynamically, by making use of the State Hook that we defined earlier. The State Hook is
going to re-render the App component, which will change the value that is passed to
the ThemeContext.Provider, which, in turn, is going to re-render all the components that
make use of the ThemeContext Context Hook.

Let's start implementing the ChangeTheme component:

Create a new src/ChangeTheme.js file.1.
As always, we have to import React first, before we can define a component:2.

import React from 'react'

In order to be able to easily add new themes later on, we are going to create a3.
constant THEMES array, instead of manually copying and pasting the code for the
different themes. This is going to make our code much more concise, and easier
to read:

const THEMES = [
 { primaryColor: 'deepskyblue', secondaryColor: 'coral' },
 { primaryColor: 'orchid', secondaryColor: 'mediumseagreen' }
]

It is a good idea to give constant values that are hardcoded a special
name, such as writing the whole variable name in caps. Later on, it might
make sense to put all these configurable hardcoded values in a separate
src/config.js file.

Next, we define a component to render a single theme:4.

function ThemeItem ({ theme, active, onClick }) {

Implementing React Context Chapter 5

[125]

Here, we render a link, and display a small preview of the theme, by showing the5.
Primary and Secondary colors:

 return (
 <span onClick={onClick} style={{ cursor: 'pointer',
paddingLeft: 8, fontWeight: active ? 'bold' : 'normal' }}>
 <span style={{ color: theme.primaryColor
}}>Primary / <span style={{ color: theme.secondaryColor
}}>Secondary

)
}

Here, we set the cursor to pointer, in order to make the element appear
clickable. We could also use an <a> element; however, this is not
recommended if we do not have a valid link target, such as a separate
page.

Then, we define the ChangeTheme component, which accepts the theme and6.
setTheme props:

export default function ChangeTheme ({ theme, setTheme }) {

Next, we define a function to check if a theme object is the currently active theme:7.

 function isActive (t) {
 return t.primaryColor === theme.primaryColor &&
t.secondaryColor === theme.secondaryColor
 }

Now, we use the .map function to render all of the available themes, and call the8.
setTheme function when clicking on them:

 return (
 <div>
 Change theme:
 {THEMES.map((t, i) =>
 <ThemeItem key={'theme-' + i} theme={t}
active={isActive(t)} onClick={() => setTheme(t)} />
)}
 </div>
)
}

Implementing React Context Chapter 5

[126]

Finally, we can import and render the ChangeTheme component, after the9.
Header component in src/App.js:

import ChangeTheme from './ChangeTheme'
// ...
 return (
 <ThemeContext.Provider value={theme}>
 <div style={{ padding: 8 }}>
 <Header text="React Hooks Blog" />
 <ChangeTheme theme={theme} setTheme={setTheme} />

As we can see, we now have a way to change the theme in our app:

Our app after changing the theme, using Context Hooks in combination with a State Hook

Now, we have a context that is consumed via Hooks, which can also be changed via Hooks!

Implementing React Context Chapter 5

[127]

Example code
The example code for the theme feature in our blog app can be found in
the Chapter05/chapter5_2 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using context for global state
After learning how to use React context to implement themes in our blog app, we are now
going to use a context to avoid having to manually pass down the state and dispatch
props for our global app state.

Defining StateContext
We start by defining the context in our src/contexts.js file.

In src/contexts.js, we define the StateContext, which is going to store the state
value and the dispatch function:

export const StateContext = React.createContext({
 state: {},
 dispatch: () => {}
})

We initialized the state value as an empty object, and the dispatch function as an empty
function, which will be used when no provider is defined.

Defining the context provider
Now, we are going to define the context provider in our src/App.js file, which is going to
get the values from the existing Reducer Hook.

Implementing React Context Chapter 5

[128]

Let's define the context provider for global state now:

In src/App.js, import the StateContext by adjusting the existing import1.
statement:

import { ThemeContext, StateContext } from './contexts'

Then, we define a new context provider, by returning it from our App function:2.

 return (
 <StateContext.Provider value={{ state, dispatch }}>
 <ThemeContext.Provider value={theme}>
 ...
 </ThemeContext.Provider>
 </StateContext.Provider>
)

Now, our context provider provides the state object and the dispatch function to the rest
of our app, and we can move on to consuming the context value.

Using StateContext
Now that we have defined our context and provider, we can use the state object and the
dispatch function in various components.

We start by removing the props that we manually passed to our components in
src/App.js. Delete the following code segments marked in bold:

 <div style={{ padding: 8 }}>
 <Header text="React Hooks Blog" />
 <ChangeTheme theme={theme} setTheme={setTheme} />

 <UserBar user={user} dispatch={dispatch} />

 {user && <CreatePost user={user} posts={posts}
dispatch={dispatch} />}

 <hr />
 <PostList posts={posts} />
 </div>

Implementing React Context Chapter 5

[129]

As we are using contexts, there is no need to pass down props manually anymore. We can
now move on to refactoring the components.

Refactoring user components
First, we refactor the user components, and then we move on to the post components.

Let's refactor the user-related components now:

Edit src/user/UserBar.js, and also remove the props there (code marked in1.
bold should be removed), since we do not need to manually pass them down
anymore:

export default function UserBar ({ user, dispatch }) {
 if (user) {
 return <Logout user={user} dispatch={dispatch} />
 } else {
 return (
 <React.Fragment>
 <Login dispatch={dispatch} />
 <Register dispatch={dispatch} />
 </React.Fragment>
)
 }
}

Then, we import the useContext Hook and the StateContext in2.
src/user/UserBar.js, in order to be able to tell whether the user is logged in
or not:

import React, { useContext } from 'react'
import { StateContext } from '../contexts'

Now, we can use the Context Hook to get the user state from our state object:3.

export default function UserBar () {
 const { state } = useContext(StateContext)
 const { user } = state

Again, we import useContext and StateContext in src/user/Login.js:4.

import React, { useState, useContext } from 'react'
import { StateContext } from '../contexts'

Implementing React Context Chapter 5

[130]

Then, we remove the dispatch prop, and use the Context Hook instead:5.

export default function Login () {
 const { dispatch } = useContext(StateContext)

We repeat the same process in the src/user/Register.js component:6.

import React, { useState, useContext } from 'react'
import { StateContext } from '../contexts'

export default function Register () {
 const { dispatch } = useContext(StateContext)

In the src/user/Logout.js component, we do the same, but also get the user7.
state from the state object:

import React, { useContext } from 'react'
import { StateContext } from '../contexts'

export default function Logout () {
 const { state, dispatch } = useContext(StateContext)
 const { user } = state

Our user-related components now use a context instead of props. Let's move on to
refactoring the post-related components.

Refactoring post components
Now, all that is left to do is refactoring the post components; then our whole app will be
using React context for global state:

We start with the src/post/PostList.js component, where we import1.
useContext and StateContext, remove the props, and use the Context Hook
instead:

import React, { useContext } from 'react'
import { StateContext } from '../contexts'

import Post from './Post'

export default function PostList () {
 const { state } = useContext(StateContext)
 const { posts } = state

Implementing React Context Chapter 5

[131]

We do the same for the CreatePost component, which is the last component2.
that we need to refactor:

import React, { useState, useContext } from 'react'
import { StateContext } from '../contexts'

export default function CreatePost () {
 const { state, dispatch } = useContext(StateContext)
 const { user } = state

Our app works in the same way as before, but now we use a context for global state, which
makes our code much cleaner, and avoids having to pass down props!

Example code
The example code for the global state context in our blog app can be found in
the Chapter05/chapter5_3 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Summary
In this chapter, we first learned about React context as an alternative to passing down props
over multiple levels of React components. We then learned about context providers and
consumers, and the new way to define consumers, via Hooks. Next, we learned when it
does not make sense to use contexts, and when we should use inversion of control instead.
Then, we used what we learned in practice, by implementing themes in our blog app.
Finally, we used React context for the global state in our blog app.

In the next chapter, we are going to learn how to request data from a server, using React
and Hooks. Then, we are going to learn about React.memo to prevent unnecessary re-
rendering of components, and React Suspense to lazily load components when they are
needed.

Implementing React Context Chapter 5

[132]

Questions
In order to recap what we have learned in this chapter, try to answer the following
questions:

Which problem do contexts avoid?1.
What are the two parts that contexts consist of?2.
Are both parts required to be defined in order to use contexts?3.
What is the advantage of using Hooks, instead of traditional context consumers?4.
What is an alternative to contexts, and when should we use it?5.
How can we implement dynamically changing contexts?6.
When does it make sense to use contexts for state?7.

Further reading
If you are interested in more information about the concepts that we have explored in this
chapter, take a look at the following reading material:

Official docs on React context: https:/ / reactjs. org/ docs/ context. html

More information on composition versus inheritance: https:/ / reactjs. org/
docs/composition- vs- inheritance. html

List of HTML color codes (if you want to define new themes): https:/ /www.
rapidtables. com/ web/ color/ html-color- codes. html.

https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html
https://www.rapidtables.com/web/color/html-color-codes.html

6
Implementing Requests and

React Suspense
In the previous chapters, we learned how to use React context as an alternative to manually
passing down props. We learned about context providers, consumers, and how to use
Hooks as a context consumer. Next, we learned about inversion of control as an alternative
to contexts. Finally, we implemented themes and global state, using contexts in our blog
app.

In this chapter, we are going to set up a simple backend server, which will be
generated from a JavaScript Object Notation (JSON) file, using the json-server tool.
Then, we are going to implement requesting resources, by using an Effect Hook in
combination with a State Hook. Next, we are going to do the same, using the axios and
react-request-hook libraries. Finally, we are going to take a look at preventing
unnecessary re-rendering, using React.memo, and lazily loading components through the
use of React Suspense.

The following topics will be covered in this chapter:

Requesting resources using Hooks
Preventing unnecessary re-rendering with React.memo
Implementing lazy loading using React Suspense

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

Implementing Requests and React Suspense Chapter 6

[134]

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter06.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order for you to be able to
learn and understand properly. However, if you run into any issues, you
can always refer to the code example.

Now, let's get started with the chapter.

Requesting resources with Hooks
In this section, we are going to learn how to request resources from a server, using Hooks.
First, we are going to implement requests by only using the JavaScript fetch function, and
the useEffect/useState Hooks. Then, we are going to learn how to request resources,
using the axios library in combination with react-request-hook.

Setting up a dummy server
Before we can implement requests, we need to create a backend server. Since we are
focusing on the user interface at the moment, we are going to set up a dummy server,
which will allow us to test out requests. We are going to use the json-server tool to
create a full Representational State Transfer (REST) API from a JSON file.

Creating the db.json file
To be able to use the json-server tool, first we need to create a db.json file, which is
going to contain our full database for the server. The json-server tool will allow you to
make the following:

GET requests, to fetch data from the file
POST requests, to insert new data into the file

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter06
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Implementing Requests and React Suspense Chapter 6

[135]

PUT and PATCH requests, to adjust existing data
DELETE requests, to remove data

For all modifying actions (POST, PUT, PATCH, and DELETE), the updated file will
automatically be saved by the tool.

We can use our existing structure for posts, which we defined as the default state of the
posts reducer. However, we need to make sure that we provide an id value, so that we can
query the database later:

[
 { "id": "react-hooks", "title": "React Hooks", "content": "The greatest
thing since sliced bread!", "author": "Daniel Bugl" },
 { "id": "react-fragments", "title": "Using React Fragments", "content":
"Keeping the DOM tree clean!", "author": "Daniel Bugl" }
]

As for the users, we need to come up with a way to store usernames and passwords. For
simplicity, we just store the password in plain text (do not do this in a production
environment!). Here, we also need to provide an id value:

[
 { "id": 1, "username": "Daniel Bugl", "password": "supersecure42" }
]

Additionally, we are going to store themes in our database. In order to investigate whether
pulling themes from our database works properly, we are now going to define a third
theme. As always, each theme needs an id value:

[
 { "id": 1, "primaryColor": "deepskyblue", "secondaryColor": "coral" },
 { "id": 2, "primaryColor": "orchid", "secondaryColor": "mediumseagreen"
},
 { "id": 3, "primaryColor": "darkslategray", "secondaryColor":
"slategray" }
]

Now, all that is left to do is to combine these three arrays into a single JSON object, by
storing the posts array under a posts key, the users array under a users key, and the
themes array under a themes key.

Implementing Requests and React Suspense Chapter 6

[136]

Let's start creating the JSON file that is used as a database for our backend server:

Create a new server/ directory in the root of our application folder.1.
Create a server/db.json file with the following contents. We can use the2.
existing state from our Reducer Hook. However, since this is a database, we need
to give each element an id value (marked in bold):

{
 "posts": [
 { "id": "react-hooks", "title": "React Hooks", "content":
"The greatest thing since sliced bread!", "author": "Daniel Bugl"
},
 { "id": "react-fragments", "title": "Using React
Fragments", "content": "Keeping the DOM tree clean!", "author":
"Daniel Bugl" }
],
 "users": [
 { "id": 1, "username": "Daniel Bugl", "password":
"supersecure42" }
],
 "themes": [
 { "id": 1, "primaryColor": "deepskyblue", "secondaryColor":
"coral" },
 { "id": 2, "primaryColor": "orchid", "secondaryColor":
"mediumseagreen" },
 { "id": 3, "primaryColor": "darkslategray",
"secondaryColor": "slategray" }
]
}

For the json-server tool, we simply need a JSON file as the database, and the tool will
create a full REST API for us.

Installing the json-server tool
Now, we are going to install and start our backend server by using the json-server tool:

First, we are going to install the json-server tool via npm:1.

> npm install --save json-server

Now, we can start our backend server, by calling the following command:2.

> npx json-server --watch server/db.json

Implementing Requests and React Suspense Chapter 6

[137]

The npx command executes commands that were installed locally in a project. We need to
use npx here, because we did not globally install the json-server tool (via npm install
-g json-server).

We executed the json-server tool, and made it watch the server/db.json file that we
created earlier. The --watch flag means that it will listen to changes to the file, and refresh
automatically.

Now, we can go to http://localhost:3000/posts/react-hooks in order to see our
post object:

Our simple JSON server working and serving a post!

As we can see, the tool created a full REST API from the database JSON file for us!

Configuring package.json
Next, we need to adjust our package.json file, in order to start the server, in addition to
our client (running via webpack-dev-server).

Let's start adjusting the package.json file:

First, we create a new package script called start:server, by inserting it in the1.
scripts section of the package.json file. We also make sure that we change
the port, so that it does not run on the same port as our client:

 "scripts": {
 "start:server": "npx json-server --watch server/db.json --
port 4000",
 "start": "react-scripts start",

Implementing Requests and React Suspense Chapter 6

[138]

Then, we rename the start script to start:client:2.

 "scripts": {
 "start:server": "npx json-server --watch server/db.json",
 "start:client": "react-scripts start",

Next, we install a tool called concurrently, which lets us start the server and3.
the client at the same time:

> npm install --save concurrently

Now, we can define a new start script by using the concurrently command,4.
and then passing the server and client commands as arguments to it:

 "scripts": {
 "start": "npx concurrently \"npm run start:server\" \"npm
run start:client\"",

Now, running npm start will run the client, as well as the backend server.

Configuring a proxy
Finally, we have to define a proxy, to make sure that we can request our API from the same
Uniform Resource Locator (URL) as the client. This is needed because, otherwise, we
would have to deal with cross-site requests, which are a bit more complicated to handle.
We are going to define a proxy that will forward requests from
http://localhost:3000/api/ to http://localhost:4000/.

Now, let's configure the proxy:

First, we have to install the http-proxy-middleware package:1.

> npm install --save http-proxy-middleware

Then, we create a new src/setupProxy.js file, with the following contents:2.

const proxy = require('http-proxy-middleware')

module.exports = function (app) {
 app.use(proxy('/api', {

Next, we have to define the target of our proxy, which will be the backend3.
server, running at http://localhost:4000:

 target: 'http://localhost:4000',

Implementing Requests and React Suspense Chapter 6

[139]

Finally, we have to define a path-rewrite rule, which removes the /api prefix4.
before forwarding the request to our server:

 pathRewrite: { '^/api': '' }
 }))
}

The preceding proxy configuration will link /api to our backend server; therefore, we can
now start both the server and the client via the following command:

> npm start

Then, we can access the API by opening
http://localhost:3000/api/posts/react-hooks!

Defining routes
By default, the json-server tool defines the following routes: https:/ / github. com/
typicode/json-server#routes.

We can also define our own routes, by creating a routes.json file, where we can rewrite
existing routes to other routes: https:/ / github. com/ typicode/ json- server#add- custom-
routes.

For our blog app, we are going to define a single custom route:
/login/:username/:password. We are going to link this to a
/users?username=:username&password=:password query, in order to find a user with
the given username and password combination.

We are now going to define the custom login route for our app:

Create a new server/routes.json file with the following contents:1.

{
 "/login/:username/:password":
"/users?username=:username&password=:password"
}

Then, adjust the start:server script in the package.json file, and add the --2.
routes option, as follows:

 "start:server": "npx json-server --watch server/db.json --
port 4000 --routes server/routes.json",

https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes
https://github.com/typicode/json-server#add-custom-routes

Implementing Requests and React Suspense Chapter 6

[140]

Now, our server will be serving our custom login route, which we are going to use later on
in this chapter! We can try logging in by opening the following URL in our
browser: http://localhost:3000/api/login/Daniel%20Bugl/supersecure42. This
returns a user object; therefore, the login was successful!

We can see the user object being returned as text in our browser:

Accessing our custom route directly in the browser

As we can see, accessing our custom route works! We can now use it to log in users.

Example code
The example code can be found in the Chapter06/chapter6_1 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Implementing requests using Effect and
State/Reducer Hooks
Before we use a library to implement requests using Hooks, we are going to implement
them manually, using an Effect Hook to trigger the request, and State/Reducer Hooks to
store the result.

Implementing Requests and React Suspense Chapter 6

[141]

Requests with Effect and State Hooks
First, we are going to request themes from our server, instead of hardcoding the list of
themes.

Let's implement requesting themes using an Effect Hook and a State Hook:

In the src/ChangeTheme.js file, adjust the React import statement in order to1.
import the useEffect and useState Hooks:

import React, { useEffect, useState } from 'react'

Remove the THEMES constant, which is all of the following code:2.

const THEMES = [
 { primaryColor: 'deepskyblue', secondaryColor: 'coral' },
 { primaryColor: 'orchid', secondaryColor: 'mediumseagreen' }
]

In the ChangeTheme component, define a new useState Hook in order to store3.
the themes:

export default function ChangeTheme ({ theme, setTheme }) {
 const [themes, setThemes] = useState([])

Then define a useEffect Hook, where we are going to make the request:4.

 useEffect(() => {

In this Hook, we use fetch to request a resource; in this case, we5.
request /api/themes:

 fetch('/api/themes')

Fetch makes use of the Promise API; therefore, we can use .then() in order to6.
work with the result. First, we have to parse the result as JSON:

 .then(result => result.json())

Finally, we call setThemes with the themes array from our request:7.

 .then(themes => setThemes(themes))

We can also shorten the preceding function to .then(setThemes), as we
are only passing down the themes argument from .then().

Implementing Requests and React Suspense Chapter 6

[142]

For now, this Effect Hook should only trigger when the component mounts, so8.
we pass an empty array as the second argument to useEffect. This ensures that
the Effect Hook has no dependencies, and thus will only trigger when the
component mounts:

 }, [])

Now, all that is left to do is to replace the THEMES constant with our themes9.
value from the Hook:

 {themes.map(t =>

As we can see, there are now three themes available, all loaded from our database through
our server:

Three themes loaded from our server by using hooks!

Our themes are now loaded from the backend server and we can move on to requesting
posts via Hooks.

Implementing Requests and React Suspense Chapter 6

[143]

Requests with Effect and Reducer Hooks
We are now going to use our backend server to request the posts array, instead of
hardcoding it as the default value for the postsReducer.

Let's implement requesting posts using an Effect Hook and a Reducer Hook:

Remove the defaultPosts constant definition from src/App.js, which is all of1.
the following code:

const defaultPosts = [
 { title: 'React Hooks', content: 'The greatest thing since
sliced bread!', author: 'Daniel Bugl' },
 { title: 'Using React Fragments', content: 'Keeping the DOM
tree clean!', author: 'Daniel Bugl' }
]

Replace the defaultPosts constant in the useReducer function with an empty2.
array:

 const [state, dispatch] = useReducer(appReducer, { user: '',
posts: [] })

In src/reducers.js, define a new action type, called FETCH_POSTS, in the3.
postsReducer function. This action type will replace the current state with a
new posts array:

function postsReducer (state, action) {
 switch (action.type) {
 case 'FETCH_POSTS':
 return action.posts

In src/App.js, define a new useEffect Hook, which precedes the current one:4.

 useEffect(() => {

In this Hook, we again use fetch in order to request a resource; in this case, we5.
request /api/posts:

 fetch('/api/posts')
 .then(result => result.json())

Finally, we dispatch a FETCH_POSTS action with the posts array from our6.
request:

 .then(posts => dispatch({ type: 'FETCH_POSTS', posts
}))

Implementing Requests and React Suspense Chapter 6

[144]

For now, this Effect Hook should only trigger when the component mounts, so7.
we pass an empty array as the second argument to useEffect:

 }, [])

As we can see, the posts now get requested from the server! We can have a look at the
DevTools Network tab to see the request:

Posts being requested from our server!

The posts are now being requested from the backend server. In the next section, we are
going to use axios and the react-request-hook to request resources from our server.

Example code
The example code can be found in the Chapter06/chapter6_2 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using axios and react-request-hook
In the previous section, we used an Effect Hook to trigger the request, and a Reducer/State
Hook to update the state, using the result from the request. Instead of manually
implementing requests like this, we can use the axios and react-request-hook libraries
to easily implement requests using Hooks.

Implementing Requests and React Suspense Chapter 6

[145]

Setting up the libraries
Before we can start using axios and react-request-hook, we have to set up an axios
instance and a RequestProvider component.

Let's get started setting up the libraries:

First, we install the libraries:1.

> npm install --save react-request-hook axios

Then, we import them in src/index.js:2.

import { RequestProvider } from 'react-request-hook'
import axios from 'axios'

Now, we define an axios instance, where we set the baseURL to3.
http://localhost:3000/api/—our backend server:

const axiosInstance = axios.create({
 baseURL: 'http://localhost:3000/api/'
})

In the config for our axios instance, we can also define other options,
such as a default timeout for requests, or custom headers. For more
information, check out the axios documentation: https:/ /github. com/
axios/ axios#axioscreateconfig.

Finally, we wrap our <App /> component with4.
the <RequestProvider> component. Remove the following line of code:

ReactDOM.render(<App />, document.getElementById('root'));

Replace it with this code:

ReactDOM.render(
 <RequestProvider value={axiosInstance}>
 <App />
 </RequestProvider>,
 document.getElementById('root')
)

Now, our app is ready to use Resource Hooks!

https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig
https://github.com/axios/axios#axioscreateconfig

Implementing Requests and React Suspense Chapter 6

[146]

Using the useResource Hook
A more powerful way of dealing with requests, is using the axios and react-request-
hook libraries. Using these libraries, we have access to features that can cancel a single
request, or even clear all pending requests. Furthermore, using these libraries makes it
easier to deal with errors and loading states.

We are now going to implement the useResource Hook in order to request themes from
our server:

In src/ChangeTheme.js, import the useResource Hook from the react-1.
request-hook library:

import { useResource } from 'react-request-hook'

Remove the previously defined State and Effect Hooks.2.

Then, we define a useResource Hook within the ChangeTheme component. The3.
Hook returns a value and a getter function. Calling the getter function will
request the resource:

export default function ChangeTheme ({ theme, setTheme }) {
 const [themes, getThemes] = useResource(() => ({

Here, we are using the shorthand syntax for () => { return { } },
which is () => ({ }). Using this shorthand syntax allows us to
concisely write functions that only return an object.

In this Hook we pass a function, which returns an object with information about4.
the request:

 url: '/themes',
 method: 'get'
 }))

With axios, we only need to pass /themes as the url, because we
already defined the baseURL, which contains /api/.

Implementing Requests and React Suspense Chapter 6

[147]

The Resource Hook returns an object with a data value, an isLoading boolean,5.
an error object, and a cancel function to cancel the pending request. Now, we
pull out the data value and the isLoading boolean from the themes object:

 const { data, isLoading } = themes

Then, we define a useEffect Hook to trigger the getThemes function. We only6.
want it to trigger once, when the component mounts; therefore, we pass an
empty array as the second argument:

 useEffect(getThemes, [])

Additionally, we use the isLoading flag to display a loading message while7.
waiting for the server to respond:

 {isLoading && ' Loading themes...'}

Finally, we rename the themes value to the data value that is returned from the8.
useResource Hook, and add a conditional check to ensure the data value is
already available:

 {data && data.map(t =>

If we have a look at our app now, we can see that the Loading themes... message gets
displayed for a very short time, and, then the themes from our database get displayed! We
can now move on to requesting posts using the Resource Hook.

Using useResource with a Reducer Hook
The useResource Hook already handles the state for the result of our request, so we do
not need an additional useState Hook to store the state. If we already have an existing
Reducer Hook, however, we can use it in combination with the useResource Hook.

We are now going to implement the useResource Hook in combination with a Reducer
Hook in our app:

In src/App.js, import the useResource Hook from the react-request-hook1.
library:

import { useResource } from 'react-request-hook'

Implementing Requests and React Suspense Chapter 6

[148]

Remove the previously defined useEffect Hook that uses fetch to request2.
/api/posts.
Define a new useResource Hook, where we request /posts:3.

 const [posts, getPosts] = useResource(() => ({
 url: '/posts',
 method: 'get'
 }))

Define a new useEffect Hook, which simply calls getPosts:4.

 useEffect(getPosts, [])

Finally, define a useEffect Hook, which dispatches the FETCH_POSTS action,5.
after checking if the data already exists:

 useEffect(() => {
 if (posts && posts.data) {
 dispatch({ type: 'FETCH_POSTS', posts: posts.data })
 }

We make sure that this Effect Hook triggers every time the posts object updates:6.

 }, [posts])

Now, when we fetch new posts, a FETCH_POSTS action will be dispatched. Next, we move
on to handling errors during requests.

Handling error state
We have already handled the loading state in the ChangeTheme component. Now, we are
going to implement the error state for posts.

Let's get started handling the error state for posts:

In src/reducers.js, define a new errorReducer function with a new action1.
type, POSTS_ERROR:

function errorReducer (state, action) {
 switch (action.type) {
 case 'POSTS_ERROR':
 return 'Failed to fetch posts'

 default:
 return state

Implementing Requests and React Suspense Chapter 6

[149]

 }
}

Add the errorReducer function to our appReducer function:2.

export default function appReducer (state, action) {
 return {
 user: userReducer(state.user, action),
 posts: postsReducer(state.posts, action),
 error: errorReducer(state.error, action)
 }
}

In src/App.js, adjust the default state of our Reducer Hook:3.

 const [state, dispatch] = useReducer(appReducer, { user: '',
posts: [], error: '' })

Pull the error value out of the state object:4.

 const { user, error } = state

Now, we can adjust the existing Effect Hook that handles new data from the5.
posts resource, by dispatching a POSTS_ERROR action in the case of an error:

 useEffect(() => {
 if (posts && posts.error) {
 dispatch({ type: 'POSTS_ERROR' })
 }
 if (posts && posts.data) {
 dispatch({ type: 'FETCH_POSTS', posts: posts.data })
 }
 }, [posts])

Finally, we display the error message before the PostList component:6.

 {error && {error}}
 <PostList />

Implementing Requests and React Suspense Chapter 6

[150]

If we only start the client now (via npm run start:client), the error will be displayed:

Displaying an error when the request fails!

As we can see, the Failed to fetch posts error gets displayed in our app, because the server
is not running. We can now move on to implementing post creation via requests.

Implementing post creation
Now that we have a good grasp on how to request data from an API, we are going to use
the useResource Hook for the creation of new data.

Let's get started implementing post creation using the Resource Hook:

Edit src/post/CreatePost.js, and import the useResource Hook:1.

import { useResource } from 'react-request-hook'

Then, define a new Resource Hook, below the other Hooks, but before our2.
handler function definitions. Here, we set the method to post (creates new data)
and we pass the data from the createPost function, to the request config:

 const [, createPost] = useResource(({ title, content, author
}) => ({
 url: '/posts',
 method: 'post',
 data: { title, content, author }
 }))

Implementing Requests and React Suspense Chapter 6

[151]

Here, we are using a shorthand syntax for array destructuring: we are
ignoring the first element of the array, by not specifying a value name.
Instead of writing const [post, createPost], and then not using
post, we just put a comma, as follows: const [, createPost].

Now, we can use the createPost function in our handleCreate handler3.
function. We make sure that we keep the call to the dispatch function there, so
that we immediately insert the new post client-side, while waiting for the server
to respond. The added code is highlighted in bold:

 function handleCreate () {
 createPost({ title, content, author: user })
 dispatch({ type: 'CREATE_POST', title, content, author:
user })
 }

Please note that, in this simple example, we do not expect, or handle the
failure of post creations. In this case, we dispatch the action even before
the request completes. However, when implementing login, we are going
to handle error states from the request, in order to check whether the user
was logged in successfully. It is best practice to always handle error states
in real-world applications.

Note that when we insert a post now, the post will first be at the beginning of the4.
list; however, after refreshing, it will be at the end of the list. Unfortunately, our
server inserts new posts at the end of the list. Therefore, we are going to reverse
the order, after fetching posts from the server. Edit src/App.js, and adjust the
following code:

 if (posts && posts.data) {
 dispatch({ type: 'FETCH_POSTS', posts:
posts.data.reverse() })
 }

Now, inserting a new post via the server works fine and we can move on to implementing
registration!

Implementing registration
Next, we are going to implement registration, which is going to work in very similar way to
creating posts.

Implementing Requests and React Suspense Chapter 6

[152]

Let's get started implementing registration:

First, import the useEffect and useResource Hooks in1.
src/user/Register.js:

import React, { useState, useContext, useEffect } from 'react'
import { useResource } from 'react-request-hook'

Then, define a new useResource Hook, below the other Hooks, and before the2.
handler functions. Unlike we did in the post creation, we now want to also store
the resulting user object:

 const [user, register] = useResource((username, password) =>
({
 url: '/users',
 method: 'post',
 data: { username, password }
 }))

Next, define a new useEffect Hook below the useResource Hook, which will3.
dispatch a REGISTER action when the request completes:

 useEffect(() => {
 if (user && user.data) {
 dispatch({ type: 'REGISTER', username:
user.data.username })
 }
 }, [user])

Please note that, in this simple example, we do not expect, or handle the
failure of registrations. In this case, we dispatch the action only after the
successful creation of the user. However, when implementing login, we
are going to handle error states from the request, in order to check
whether the user was logged in successfully. It is best practice to always
handle error states in real-world applications.

Finally, we adjust the form submit handler in order to call the register4.
function, instead of directly dispatching the action:

 <form onSubmit={e => { e.preventDefault();
register(username, password) }}>

Now, if we enter a Username and Password, and press Register, a new user will be
inserted into our db.json file and, just like before, we will be logged in. We now move on
to implementing login via Resource Hooks.

Implementing Requests and React Suspense Chapter 6

[153]

Implementing login
Finally, we are going to implement login, via requests using our custom route. After doing
so, our blog app will be fully connected to the server.

Let's get started implementing login:

First, edit src/user/Login.js and import the useEffect and useResource1.
Hooks:

import React, { useState, useContext, useEffect } from 'react'
import { useResource } from 'react-request-hook'

We define a new State Hook that will store a boolean to check if the login failed:2.

 const [loginFailed, setLoginFailed] = useState(false)

Then, we define a new State Hook for the Password field, because we did not3.
handle it before:

 const [password, setPassword] = useState('')

Now, we define a handler function for the Password field, below the4.
handleUsername function:

 function handlePassword (evt) {
 setPassword(evt.target.value)
 }

Next, we handle the value change in the input field:5.

 <input type="password" value={password}
onChange={handlePassword} name="login-username" id="login-username"
/>

Now, we can define our Resource Hook below the State Hooks, where we are6.
going to pass username and password to the /login route. Since we are
passing them as part of the URL, we need to make sure that we encode them
properly first:

 const [user, login] = useResource((username, password) => ({
 url:
`/login/${encodeURI(username)}/${encodeURI(password)}`,
 method: 'get'
 }))

Implementing Requests and React Suspense Chapter 6

[154]

Please note that it is not secure to send the password in cleartext via a GET
request. We only do this for the sake of simplicity when configuring our
dummy server. In a real world application, use a POST request for login
instead and send the password as part of the POST data. Also make sure
to use Hypertext Transfer Protocol Secure (HTTPS) so that the POST
data will be encrypted.

Next, we define an Effect Hook, which will dispatch the LOGIN action if the7.
request completes successfully:

 useEffect(() => {
 if (user && user.data) {

Because the login route returns either an empty array (login failed), or an array8.
with a single user, we need to check whether the array contains at least one
element:

 if (user.data.length > 0) {
 setLoginFailed(false)
 dispatch({ type: 'LOGIN', username:
user.data[0].username })
 } else {

If the array was empty, we set loginFailed to true:9.

 setLoginFailed(true)
 }
 }

If we get an error response from the server, we also set the login state to failed:10.

 if (user && user.error) {
 setLoginFailed(true)
 }

We make sure that the Effect Hook triggers whenever the user object from the11.
Resource Hook updates:

 }, [user])

Implementing Requests and React Suspense Chapter 6

[155]

Then, we adjust the onSubmit function of form, in order to call the login12.
function:

 <form onSubmit={e => { e.preventDefault();
login(username, password) }}>

Finally, below the Submit button, we display the Invalid username or password13.
message, in case loginFailed was set to true:

 {loginFailed && Invalid
username or password}

As we can see, entering a wrong Username or Password (or no Password) will result in an
error, while entering the correct Username/Password combination will log us in:

Displaying an error message when the login failed

Now, our app is fully connected to the backend server!

Example code
The example code can be found in the Chapter06/chapter6_3 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Implementing Requests and React Suspense Chapter 6

[156]

Preventing unnecessary re-rendering with
React.memo
With class components we had shouldComponentUpdate, which would prevent
components from re-rendering if the props did not change.

With function components, we can do the same using React.memo, which is a higher-order
component. React.memo memoizes the result, which means that it will remember the last
rendered result, and, in cases where the props did not change, it will skip re-rendering the
component:

const SomeComponent = () => ...

export default React.memo(SomeComponent)

By default, React.memo will act like the default definition of shouldComponentUpdate,
and it will only shallowly compare the props object. If we want to do a special comparison,
we can pass a function as a second argument to React.memo:

export default React.memo(SomeComponent, (prevProps, nextProps) => {
 // compare props and return true if the props are equal and we should
not update
})

Unlike shouldComponentUpdate, the function that is passed to React.memo returns true
when the props are equal, and thus it should not update, which is the opposite of
how shouldComponentUpdate works! After learning about React.memo, let's try it out in
practice by implementing React.memo for the Post component.

Implementing React.memo for the Post
component
First, let's find out when the Post component re-renders. To do this, we are going to add a
console.log statement to our Post component, as follows:

Edit src/post/Post.js, and add the following debug output when the1.
component renders:

export default function Post ({ title, content, author }) {
 console.log('rendering Post')

Implementing Requests and React Suspense Chapter 6

[157]

Now, open the app at http://localhost:3000, and open the DevTools (on2.
most browsers: right-click | Inspect on the page). Go to the Console tab, and you
should see the output twice, because we are rendering two posts:

The debug output when rendering two posts

So far, so good. Now, let's try logging in, and see what happens:3.

Posts re-rendering after logging in

As we can see, the Post components unnecessarily re-render after logging in, although their
props did not change. We can use React.memo to prevent this, as follows:

Edit src/post/Post.js, and remove the export default part of the function1.
definition (marked in bold):

export default function Post ({ title, content, author }) {

Then, at the bottom of the file, export the Post component, after wrapping it with2.
React.memo():

export default React.memo(Post)

Implementing Requests and React Suspense Chapter 6

[158]

Now, refresh the page and log in again. We can see that the two posts get3.
rendered, which produces the initial debug output. However, logging in now
does not cause the Post components to re-render anymore!

If we wanted to do a custom check on whether the posts are equal, we could, for example,
compare title, content, and author, as follows:

export default React.memo(Post,
 (prev, next) => prev.title === next.title && prev.content ===
next.content && prev.author === next.author
)

In our case, doing this will have the same effect, because React already does a shallow
comparison of all props, by default. This function only becomes useful when we have deep
objects to compare, or when we want to ignore changes in certain props. Please note that
we should not prematurely optimize our code. Re-renders can be fine, since React is
intelligent, and does not paint to the browser if nothing changed. Therefore, it might be
overkill to optimize all re-renders, unless a certain case has already been identified as a
performance bottleneck.

Example code
The example code can be found in the Chapter06/chapter6_4 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Implementing lazy loading with React
Suspense
React Suspense allows us to let components wait before rendering. At the moment, React
Suspense only allows us to dynamically load components with React.lazy. In the future,
Suspense will support other use cases, such as data fetching.

React.lazy is another form of performance optimization. It lets us load a component
dynamically in order to reduce the bundle size. Sometimes we want to avoid loading all of
the components during the initial render, and only request certain components when they
are needed.

Implementing Requests and React Suspense Chapter 6

[159]

For example, if our blog has a member area, we only need to load it after the user has
logged in. Doing this will reduce the bundle size for guests who only visit our blog to read
blog posts. To learn about React Suspense, we are going to lazily load the Logout
component in our blog app.

Implementing React.Suspense
First, we have to specify a loading indicator, which will be shown when our lazily-loaded
component is loading. In our example, we are going to wrap the UserBar component with
React Suspense.

Edit src/App.js, and replace the <UserBar /> component with the following code:

 <React.Suspense fallback={"Loading..."}>
 <UserBar />
 </React.Suspense>

Now, our app is ready for implementing lazy loading.

Implementing React.lazy
Next, we are going to implement lazy loading for the Logout component by wrapping it
with React.lazy(), as follows:

Edit src/user/UserBar.js, and remove the import statement for the Logout1.
component:

import Logout from './Logout'

Then, define the Logout component via lazy loading:2.

const Logout = React.lazy(() => import('./Logout'))

The import() function dynamically loads the Logout component from
the Logout.js file. In contrast to the static import statement, this
function only gets called when React.lazy triggers it, which means it
will only be imported when the component is needed.

Implementing Requests and React Suspense Chapter 6

[160]

If we want to see lazy loading in action, we can set Network Throttling to Slow 3G in
Google Chrome:

Setting Network Throttling to Slow 3G in Google Chrome

In Firefox, we can do the same by setting Network Throttling to GPRS.
Safari unfortunately does not offer such a feature right now, but we can
use the Network Link Conditioner tool from Apple's "Hardware IO
tools": https:/ / developer. apple.com/ download/ more/

If we refresh the page now, and then log in, we can first see the Loading... message, and
then the Logout component will be shown. If we take a look at the Network logs, we can
see that the Logout component was requested via the network:

The Logout component being loaded via the network

https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/
https://developer.apple.com/download/more/

Implementing Requests and React Suspense Chapter 6

[161]

As we can see, the Logout component is now lazily loaded, which means that it will only
be requested when needed.

Example code
The example code can be found in the Chapter06/chapter6_5 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application; then visit http://localhost:3000 in your browser (if it did not open
automatically).

Summary
In this chapter, we first learned how to set up an API server from a JSON file. Then, we
learned how to request resources using Effect and State/Reducer Hooks. Next, we learned
how to request resources using the axios and react-request-hook libraries. Finally, we
learned how to prevent unnecessary re-rendering using React.memo, and how to lazily-
load components with React Suspense.

In the next chapter, we are going to add routes to our application, and learn how to use
Hooks for routing.

Questions
In order to recap what we have learned in this chapter, try to answer the following
questions:

How can we easily create a full REST API from a simple JSON file?1.
What are the advantages of using a proxy to access our backend server during2.
development?
Which combinations of Hooks can we use to implement requests?3.
Which libraries can we use to implement requests?4.
How can we deal with loading states using react-request-hook?5.
How can we deal with errors using react-request-hook?6.
How can we prevent the unnecessary re-rendering of components?7.
How can we reduce the bundle size of our app?8.

Implementing Requests and React Suspense Chapter 6

[162]

Further reading
If you are interested in more information about the concepts that we have explored in this
chapter, take a look at the following reading material:

Official documentation of json-server: https:/ /github. com/ typicode/ json-
server.
Official documentation of concurrently: https:/ /github. com/
kimmobrunfeldt/ concurrently.
Official documentation of axios: https:/ /github. com/ axios/ axios.
Official documentation of react-request-hook: https:/ /github. com/
schettino/ react- request- hook.
Create React App documentation on configuring proxies: https:/ /facebook.
github.io/ create- react- app/ docs/ proxying- api- requests- in-
development#configuring- the- proxy- manually.
Fetching data with React Hooks: https:/ /www. robinwieruch. de/react- hooks-
fetch-data

When to use useMemo: https:/ / kentcdodds. com/ blog/ usememo- and-
usecallback

https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/typicode/json-server
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/kimmobrunfeldt/concurrently
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://github.com/schettino/react-request-hook
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://facebook.github.io/create-react-app/docs/proxying-api-requests-in-development#configuring-the-proxy-manually
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://www.robinwieruch.de/react-hooks-fetch-data
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback

7
Using Hooks for Routing

In the previous chapter, we learned how to request resources with Hooks. We first
implemented requesting resources using State/Reducer and Effect Hooks. Then, we learned
about the axios and react-request-hook libraries.

In this chapter, we are going to create multiple pages and implement routing in our app.
Routing is important in almost every application. To implement routing, we are going to
learn how to use use the Navi library, a Hook-based navigation system. Finally, we are also
going to learn about dynamic links, and how to access routing information using Hooks.

The following topics will be covered in this chapter:

Creating multiple pages
Implementing routing
Using routing Hooks

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter07.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter07
http://bit.ly/2Mm9yoC

Using Hooks for Routing Chapter 7

[164]

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order to be able to learn and
understand properly. However, if you run into any issues, you can always
refer to the code example.

Now, let's get started with the chapter.

Creating multiple pages
At the moment, our blog application is a so-called single-page application. However, most
larger apps consist of multiple pages. In a blog app, we at least want to have a separate
page for each blog post.

Before we can set up routing, we need to create the various pages that we want to render.
In our blog app, we are going to define the following pages:

A home page, which will display a list of all posts
A post page, which will display a single post

All pages will show a HeaderBar, which renders the Header, UserBar, ChangeTheme, and
CreatePost components. We are now going to start by creating a component for
the HeaderBar. Afterward, we are going to implement the page components.

Creating the HeaderBar component
First of all, we are going to refactor some contents of our App component into a HeaderBar
component. The HeaderBar component will contain everything that we want to display on
every page: the Header, UserBar, ChangeTheme, and CreatePost components.

Let's start creating the HeaderBar component:

Create a new folder: src/pages/.1.
Create a new file, src/pages/HeaderBar.js, import React (with the2.
useContext Hook), and define the component there. It will accept the setTheme
function as prop:

import React, { useContext } from 'react'

export default function HeaderBar ({ setTheme }) {
 return (

Using Hooks for Routing Chapter 7

[165]

 <div>
 </div>
)
}

Now, cut the following code from the src/App.js component, and insert it3.
between the <div> tags of the HeaderBar component:

 <Header text="React Hooks Blog" />
 <ChangeTheme theme={theme} setTheme={setTheme} />

 <React.Suspense fallback={"Loading..."}>
 <UserBar />
 </React.Suspense>

 {user && <CreatePost />}

Also, cut the following import statements (and adjust the paths) from4.
src/App.js and insert them at the beginning of the src/pages/HeaderBar.js
file, after the import React from 'react' statement:

import CreatePost from '../post/CreatePost'
import UserBar from '../user/UserBar'
import Header from '../Header'
import ChangeTheme from '../ChangeTheme'

Additionally, import the ThemeContext and the StateContext:5.

import { ThemeContext, StateContext } from '../contexts'

Then, define two Context Hooks for the theme and state, and pull the user6.
variable out of the state object in src/pages/HeaderBar.js, as we need it for
a conditional check to determine whether we should render the CreatePost
component:

export default function HeaderBar ({ setTheme }) {
 const theme = useContext(ThemeContext)

 const { state } = useContext(StateContext)
 const { user } = state

 return (

Now, we import the HeaderBar component in src/App.js:7.

import HeaderBar from './pages/HeaderBar'

Using Hooks for Routing Chapter 7

[166]

Finally, we render the HeaderBar component in src/App.js:8.

 <div style={{ padding: 8 }}>
 <HeaderBar setTheme={setTheme} />
 <hr />

Now, we have a separate component for the HeaderBar, which will be shown on all pages.
Next, we move on to creating the HomePage component.

Creating the HomePage component
Now, we are going to create the HomePage component from the PostList component and
the Resource Hook that is concerned with the posts. Again, we are going to refactor
src/App.js, in order to create a new component.

Let's start creating the HomePage component:

Create a new file, src/pages/HomePage.js, import React with the useEffect1.
and useContext Hooks, and define the component there. We also define a
Context Hook and pull out the state object and dispatch function:

import React, { useEffect, useContext } from 'react'
import { StateContext } from '../contexts'

export default function HomePage () {
 const { state, dispatch } = useContext(StateContext)
 const { error } = state

 return (
 <div>
 </div>
)
}

Then, cut the following import statements (and adjust the paths) from2.
src/App.js, and add them after the import React from 'react' statement
in src/pages/HomePage.js:

import { useResource } from 'react-request-hook'
import PostList from '../post/PostList'

Using Hooks for Routing Chapter 7

[167]

Next, cut the following Hook definitions from src/App.js, and insert them3.
before the return statement of the HomePage function:

 const [posts, getPosts] = useResource(() => ({
 url: '/posts',
 method: 'get'
 }))
 useEffect(getPosts, [])
 useEffect(() => {
 if (posts && posts.error) {
 dispatch({ type: 'POSTS_ERROR' })
 }
 if (posts && posts.data) {
 dispatch({ type: 'FETCH_POSTS', posts:
posts.data.reverse() })
 }
 }, [posts])

Now, cut the following rendered code from src/App.js, and insert it in4.
between the <div> tags of src/pages/HomePage.js:

 {error && {error}}
 <PostList />

Then, import the HomePage component in src/App.js:5.

import HomePage from './pages/HomePage'

Finally, render the HomePage component below the <hr /> tag:6.

 <hr />
 <HomePage />

Now, we have successfully refactored our current code into a HomePage component. Next,
we move on to creating the PostPage component.

Creating the PostPage component
We are now going to define a new page component, where we will only fetch a single post
from our API and display it.

Using Hooks for Routing Chapter 7

[168]

Let's start creating the PostPage component now:

Create a new src/pages/PostPage.js file.1.
Import React, the useEffect and useResource Hooks and the Post2.
component:

import React, { useEffect } from 'react'
import { useResource } from 'react-request-hook'

import Post from '../post/Post'

Now, define the PostPage component, which is going to accept the post id as3.
prop:

export default function PostPage ({ id }) {

Here, we define a Resource Hook that will fetch the corresponding post object.4.
We pass the id as dependency to the Effect Hook so that our resource re-fetches
when the id changes:

 const [post, getPost] = useResource(() => ({
 url: `/posts/${id}`,
 method: 'get'
 }))
 useEffect(getPost, [id])

Finally, we render the Post component:5.

 return (
 <div>
 {(post && post.data)
 ? <Post {...post.data} />
 : 'Loading...'
 }
 <hr />
 </div>
)
}

We now also have a separate page for single posts.

Using Hooks for Routing Chapter 7

[169]

Testing out the PostPage
To test out the new page, we are going to replace the HomePage component in
src/App.js with the PostPage component, as follows:

Import the PostPage component in src/App.js:1.

import PostPage from './pages/PostPage'

Now, replace the HomePage component with the PostPage component:2.

 <PostPage id={'react-hooks'} />

As we can see, now only one post, the React Hooks post, gets rendered.

Example code
The example code can be found in the Chapter07/chapter7_1 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Implementing routing
We are going to use the Navi library for routing. Navi supports React Suspense, Hooks, and
error boundary APIs of React natively, which makes it the perfect fit to implement routing
through the use of Hooks. To implement routing, we are first going to define routes from
the pages that we defined in the previous section. Finally, we are going to define links from
the main page to the corresponding post pages, and from these pages back to the main
page.

Toward the end of this chapter, we are going to extend our routing functionality by
implementing routing Hooks.

Using Hooks for Routing Chapter 7

[170]

Defining routes
The first step when implementing routing is to install the navi and react-navi libraries.
Then, we define the routes. Follow the given steps to do so:

First, we have to install the libraries using npm:1.

> npm install --save navi react-navi

Then, in src/App.js, we import the Router and View components and the2.
mount and route functions from the Navi library:

import { Router, View } from 'react-navi'
import { mount, route } from 'navi'

Make sure that the HomePage component is imported:3.

import HomePage from './pages/HomePage'

Now, we can define the routes object using the mount function:4.

const routes = mount({

In this function, we define our routes, starting with the main route:5.

 '/': route({ view: <HomePage /> }),

Next, we define the route for a single post, here we use URL parameters (:id),6.
and a function to dynamically create the view:

 '/view/:id': route(req => {
 return { view: <PostPage id={req.params.id} /> }
 }),
})

Finally, we wrap our rendered code with the <Router> component, and replace7.
the <PostPage> component with the <View> component in order to
dynamically render the current page:

 <Router routes={routes}>
 <div style={{ padding: 8 }}>
 <HeaderBar setTheme={setTheme} />
 <hr />
 <View />
 </div>
 </Router>

Using Hooks for Routing Chapter 7

[171]

Now, if we go to http://localhost:3000, we can see a list of all posts, and when we go
to http://localhost:3000/view/react-hooks, we can see a single post: the React
Hooks post.

Defining links
Now, we are going to define links from each post to the page of the corresponding single
post, and then back to the main page from the post page. The links will be used to access
the various routes that have been defined in our app. First, we are going to define links
from the home page to the single post pages. Next, we are going to define links from the
single post pages back to the main page.

Defining links to the posts
We start by shortening the post content in the list, and defining links from the PostList
to the corresponding post pages. To do so, we have to define static links from the PostList
on the home page to the specific post pages.

Let's define those links now:

Edit src/post/Post.js, and import the Link component from react-navi:1.

import { Link } from 'react-navi'

Then, we are going to add two new props to the Post component: id and short,2.
which will be set to true when we want to display the shortened version of the
post. Later, we are going to set short to true in the PostList component:

function Post ({ id, title, content, author, short = false }) {

Next, we are going to add some logic to trim the post content to 30 characters3.
when listing it:

 let processedContent = content
 if (short) {
 if (content.length > 30) {
 processedContent = content.substring(0, 30) + '...'
 }
 }

Using Hooks for Routing Chapter 7

[172]

Now, we can display the processedContent value instead of4.
the content value, and a Link to view the full post:

 <div>{processedContent}</div>
 {short &&
 <div>

 <Link href={`/view/${id}`}>View full
post</Link>
 </div>
 }

Finally, we set the short prop to true within the PostList component. Edit5.
src/post/PostList.js, and adjust the following code:

 <Post {...p} short={true} />

Now we can see that each post on the main page is trimmed to 30 characters, and has a link
to the corresponding single post page:

Displaying a link in the PostList

Using Hooks for Routing Chapter 7

[173]

As we can see, routing is quite simple. Now, each post has a link to its corresponding full
post page.

Defining the links to the main page
Now, we just need a way to get back to the main page from a single post page. We are
going to repeat a similar process to what we have done previously. Let's define the links
back to the main page now:

Edit src/pages/PostPage.js, and import the Link component there:1.

import { Link } from 'react-navi'

Then, insert a new link back to the main page, before displaying the post:2.

 return (
 <div>
 <div><Link href="/">Go back</Link></div>

After going to a page, we can now use the Go back link in order to return to the3.
main page:

Displaying a link on the single post page

Now, our app also provides a way back to the home page.

Using Hooks for Routing Chapter 7

[174]

Adjusting the CREATE_POST action
Previously, we dispatched a CREATE_POST action when a new post gets created. However,
this action does not contain the post id, which means that links to newly created posts will
not work.

We are now going to adjust the code to pass the post id to the CREATE_POST action:

Edit src/post/CreatePost.js, and import the useEffect Hook:1.

import React, { useState, useContext, useEffect } from 'react'

Next, adjust the existing Resource Hook to pull out the post object after the2.
creation of the post finishes:

 const [post, createPost] = useResource(({ title, content,
author }) => ({

Now, we can create a new Effect Hook after the Resource Hook, and dispatch the3.
CREATE_POST action once the result of the create post request becomes available:

 useEffect(() => {
 if (post && post.data) {
 dispatch({ type: 'CREATE_POST', ...post.data })
 }
 }, [post])

Next, we remove the call to the dispatch function in the handleCreate4.
handler function:

 function handleCreate () {
 createPost({ title, content, author: user })
 dispatch({ type: 'CREATE_POST', title, content, author:
user })
 }

Finally, we edit src/reducers.js, and adjust the postsReducer as follows:5.

function postsReducer (state, action) {
 switch (action.type) {
 case 'FETCH_POSTS':
 return action.posts

 case 'CREATE_POST':
 const newPost = { title: action.title, content:
action.content, author: action.author, id: action.id }
 return [newPost, ...state]

Using Hooks for Routing Chapter 7

[175]

Now, links to the newly created posts work fine, because the id value is added to the
inserted post object.

Example code
The example code can be found in the Chapter07/chapter7_2 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using routing Hooks
After implementing basic routing using navi and react-navi, we are now going to
implement more advanced use cases using routing Hooks, which are provided by react-
navi. Routing Hooks can be used to make routing more dynamic. For example, by
allowing navigation to different routes from other Hooks. Furthermore, we can use Hooks
to access all route-related information within a component.

Overview of Navi's Hooks
First, we will have a look at three of the Hooks that are provided by the Navi library:

The useNavigation Hook
The useCurrentRoute Hook
The useLoadingRoute Hook

The useNavigation Hook
The useNavigation Hook has the following signature:

const navigation = useNavigation()

Using Hooks for Routing Chapter 7

[176]

It returns the navigation object of Navi, which contains the following functions to
manage the navigation state of the app:

extractState(): Returns the current value of window.history.state; this is
useful when dealing with server-side rendering.
getCurrentValue() : Returns the Route object that corresponds to the current
URL.
getRoute(): Returns a promise to the fully loaded Route object that
corresponds to the current URL. The promise will only resolve once the Route
object is fully loaded.
goBack(): Goes back one page; this is similar to how pressing the back button of
the browser works.
navigate(url, options): Navigates to the provided URL using the provided
options (body, headers, method, replace, and state). More information about
the options can be found on the official Navi documentation: https:/ / frontarm.
com/navi/ en/ reference/ navigation/ #navigationnavigate.

The useCurrentRoute Hook
The useCurrentRoute Hook has the following signature:

const route = useCurrentRoute()

It returns the latest non-busy route, which contains all information that Navi knows about
the current page:

data: Contains merged values from all data chunks.
title: Contains the title value that should be set on document.title.
url: Contains information about the current route, such as the href, query, and
hash.
views: Contains an array of components or elements that will be rendered in the
route's view.

https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate
https://frontarm.com/navi/en/reference/navigation/#navigationnavigate

Using Hooks for Routing Chapter 7

[177]

The useLoadingRoute Hook
The useLoadingRoute Hook has the following signature:

const loadingRoute = useLoadingRoute()

It returns the Route object for the page that is currently being fetched. If no page is
currently being fetched, it outputs undefined. The object looks the same as the Route
object of the useCurrentRoute Hook.

Programmatic navigation
First, we are going to use the useNavigation Hook to implement programmatic
navigation. We want to automatically redirect to the corresponding post page after creating
a new post.

Let's implement programmatic navigation in the CreatePost component using Hooks:

Edit src/post/CreatePost.js, and import the useNavigation Hook there:1.

import { useNavigation } from 'react-navi'

Now, define a Navigation Hook after the existing Resource Hook:2.

 const navigation = useNavigation()

Finally, we adjust the Effect Hook to call navigation.navigate(), once the3.
result of the create post request becomes available:

 useEffect(() => {
 if (post && post.data) {
 dispatch({ type: 'CREATE_POST', ...post.data })
 navigation.navigate(`/view/${post.data.id}`)
 }
 }, [post])

If we create a new post object now, we can see that after pressing the Create button, we
automatically get redirected to the page of the corresponding post. We can now move on to
accessing route information using Hooks.

Using Hooks for Routing Chapter 7

[178]

Accessing route information
Next, we are going to use the useCurrentRoute Hook to access information about the
current route/URL. We are going to use this Hook to implement a footer, which will display
the href value of the current route.

Let's get started implementing the footer now:

First, we create a new component for the footer. Create a new1.
src/pages/FooterBar.js file, and import React, as well as the
useCurrentRoute Hook from react-navi:

import React from 'react'
import { useCurrentRoute } from 'react-navi'

Then, we define a new FooterBar component:2.

export default function FooterBar () {

We use the useCurrentRoute Hook, and pull out the url object to be able to3.
show the current href value in the footer:

 const { url } = useCurrentRoute()

Finally, we render a link to the current href value in the footer:4.

 return (
 <div>
 {url.href}
 </div>
)
}

Now, when we, for example, open a post page, we can see the href value of the current
post in the footer:

Using Hooks for Routing Chapter 7

[179]

Displaying a footer with the current href value

As we can see, our footer works properly—it always shows the href value of the current
page.

Example code
The example code can be found in the Chapter07/chapter7_3 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it did not open
automatically).

Summary
In this chapter, we first defined two pages for our blog: the home page and a page for single
posts. We also created a component for the HeaderBar. Afterward, we implemented
routing by defining routes, links to the single posts, and links back to the main page.
Finally, we used routing Hooks to implement dynamic navigation when creating a new
post, and implemented a footer that shows the current URL.

Using Hooks for Routing Chapter 7

[180]

Routing is very important, and is used in almost every application. We now know how to
define separate pages and how to link between them. Furthermore, we learned how to
dynamically navigate between pages using Hooks. We also learned how to access routing
information with Hooks for more advanced use cases.

There are many more things that the Navi library can do. However, this book focuses on
Hooks, so most features of Navi are out of scope. For example, we can fetch data using
Navi, implement error pages (for example, a 404 page), lazy loading and compose routes.
Feel free to read up on those features in the official documentation of Navi.

In the next chapter, we are going to learn about the various Hooks that are provided by the
React community: for input handling, for responsive design, to implement undo/redo, and
to implement various data structures and React life cycle methods using Hooks. We are
also going to learn where to find more Hooks provided by the community.

Questions
In order to recap what we have learned in this chapter, try answering the following
questions:

Why do we need to define separate pages?1.
How do we define routes using the Navi library?2.
How do we define routes with URL parameters?3.
How are static links defined with Navi?4.
How can we implement dynamic navigation?5.
Which Hook is used to access the route information of the current route?6.
Which Hook is used to access the route information of the currently loading7.
route?

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the official documentation of the Navi library: https:/ /frontarm.
com/navi/en/.

https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/
https://frontarm.com/navi/en/

8
Using Community Hooks

In the previous chapter, we implemented routing using the Navi library. We started by
implementing pages, then defining routes and static links. Finally, we implemented
dynamic links and accessed route information using Hooks.

In this chapter, we are going to learn about various Hooks that are provided by the
React community. These Hooks can be used to simplify input handling, and implement
React life cycles in order to simplify migration from React class components. Furthermore,
there are Hooks that implement various behaviors such as timers, checking if the client is
online, hover and focus events, and data manipulation. Finally, we are going to learn about
responsive design and implementing undo/redo functionality using Hooks.

The following topics will be covered in this chapter:

Simplifying input handling using the Input Hook
Implementing React life cycles with Hooks
Learning about various useful Hooks (usePrevious, timer, online, focus, hover,
and data manipulation Hooks)
Implementing responsive design with Hooks
Implementing undo/redo functionality and debouncing with Hooks
Learning where to find other Hooks

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter08.

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Web-Development-with-Hooks/tree/master/Chapter08

Using Community Hooks Chapter 8

[182]

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order to be able to learn and
understand properly. However, if you run into any issues, you can always
refer to the code example.

Now, let's get started with the chapter.

Exploring the input handling Hook
A very common use case when dealing with Hooks, is to store the current value of an
input field using State and Effect Hooks. We have already done this many times
throughout this book.

The useInput Hook greatly simplifies this use case, by providing a single Hook that deals
with the value variable of an input field. It works as follows:

import React from 'react'
import { useInput } from 'react-hookedup'

export default function App () {
 const { value, onChange } = useInput('')

 return <input value={value} onChange={onChange} />
}

This code will bind an onChange handler function and value to the input field. This
means that whenever we enter text into the input field, the value will automatically be
updated.

Additionally, there is a function that will clear the input field. This clear function is also
returned from the Hook:

 const { clear } = useInput('')

Calling the clear function will set the value to an empty value, and clear all text from the
input field.

http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Using Community Hooks Chapter 8

[183]

Furthermore, the Hook provides two ways to bind an input field:

bindToInput: Binds the value and onChange props to an input field
using e.target.value as the value argument for the onChange function. This
is useful when dealing with HTML input fields.
bind: Binds the value and onChange props to an input field using only e as the
value for the onChange function. This is useful for React components that
directly pass the value to the onChange function.

The bind and bindToInput objects can be used with the spread operator, as follows:

import React from 'react'
import { useInput } from 'react-hookedup'

const ToggleButton = ({ value, onChange }) => { ... } // custom component
that renders a toggle button

export default function App () {
 const { bind, bindToInput } = useInput('')

 return (
 <div>
 <input {...bindToInput} />
 <ToggleButton {...bind} />
 </div>
)
}

As we can see, for the input field we can use the {...bindToInput} props to assign the
value and onChange functions. For ToggleButton, we need to use the {...bind} props
instead, because we are not dealing with input events here, and the value is directly passed
to the change handler (not via e.target.value).

Now that we have learned about the Input Hook, we can move on to implementing it in
our blog app.

Implementing Input Hooks in our blog app
Now that we have learned about the Input Hook, and how it simplifies dealing with
the input field state, we are going to implement Input Hooks in our blog app.

First, we have to install the react-hookedup library in our blog app project:

> npm install --save react-hookedup

Using Community Hooks Chapter 8

[184]

We are now going to implement Input Hooks in the following components:

The Login component
The Register component
The CreatePost component

Let's get started implementing Input Hooks.

The Login component
We have two input fields in the Login component: the Username and Password fields.
We are now going to replace the State Hooks with Input Hooks.

Let's start implementing Input Hooks in the Login component now:

Import the useInput Hook at the beginning of the src/user/Login.js file:1.

import { useInput } from 'react-hookedup'

Then, we remove the following username State Hook:2.

 const [username, setUsername] = useState('')

It is replaced with an Input Hook, as follows:

 const { value: username, bindToInput: bindUsername } =
useInput('')

Since we are using two Input Hooks, in order to avoid name collisions, we
are using the rename syntax ({ from: to }) in object destructuring to
rename the value key to username, and bindToInput key to
bindUsername.

We also remove the following password State Hook:3.

 const [password, setPassword] = useState('')

It is replaced with an Input Hook, as follows:

 const { value: password, bindToInput: bindPassword } =
useInput('')

Using Community Hooks Chapter 8

[185]

We can now remove the following handler functions:4.

 function handleUsername (evt) {
 setUsername(evt.target.value)
 }

 function handlePassword (evt) {
 setPassword(evt.target.value)
 }

Finally, instead of passing the onChange handlers manually, we use the bind5.
objects from the Input Hooks:

 <input type="text" value={username} {...bindUsername}
name="login-username" id="login-username" />
 <input type="password" value={password}
{...bindPassword} name="login-password" id="login-password" />

The login functionality will still work in exactly the same way as before, but we are now
using the much more concise Input Hook, instead of the generic State Hook. We also do not
have to define the same kind of handler function for each input field anymore. As we can
see, using community Hooks can greatly simplify the implementation of common use-
cases, such as input handling. We are now going to repeat the same process for the
Register component.

The Register component
The Register component works similarly to the Login component. However, it has three
input fields: Username, Password, and Repeat Password.

Let's implement Input Hooks in the Register component now:

Import the useInput Hook at the beginning of the src/user/Register.js file:1.

import { useInput } from 'react-hookedup'

Then, we remove the following State Hooks:2.

 const [username, setUsername] = useState('')
 const [password, setPassword] = useState('')
 const [passwordRepeat, setPasswordRepeat] = useState('')

Using Community Hooks Chapter 8

[186]

They are replaced with the corresponding Input Hooks:

 const { value: username, bindToInput: bindUsername } =
useInput('')
 const { value: password, bindToInput: bindPassword } =
useInput('')
 const { value: passwordRepeat, bindToInput: bindPasswordRepeat
} = useInput('')

Again, we can remove all of the handler functions:3.

 function handleUsername (evt) {
 setUsername(evt.target.value)
 }

 function handlePassword (evt) {
 setPassword(evt.target.value)
 }

 function handlePasswordRepeat (evt) {
 setPasswordRepeat(evt.target.value)
 }

Finally, we replace all of the onChange handlers with the corresponding bind4.
objects:

 <input type="text" value={username} {...bindUsername}
name="register-username" id="register-username" />
 <input type="password" value={password}
{...bindPassword} name="register-password" id="register-password"
/>
 <input type="password" value={passwordRepeat}
{...bindPasswordRepeat} name="register-password-repeat"
id="register-password-repeat/>

The register functionality will also still work in the same way, but now using Input Hooks.
Next up is the CreatePost component, where we are going to implement Input Hooks as
well.

The CreatePost component
The CreatePost component uses two input fields: one for the title, and one for
the content. We are going to replace both of them with Input Hooks.

Using Community Hooks Chapter 8

[187]

Let's implement Input Hooks in the CreatePost component now:

Import the useInput Hook at the beginning of1.
the src/user/CreatePost.js file:

import { useInput } from 'react-hookedup'

Then, we remove the following State Hooks:2.

 const [title, setTitle] = useState('')
 const [content, setContent] = useState('')

We replace them with the corresponding Input Hooks:

 const { value: title, bindToInput: bindTitle } = useInput('')
 const { value: content, bindToInput: bindContent } =
useInput('')

Again, we can remove the following input handler functions:3.

 function handleTitle (evt) {
 setTitle(evt.target.value)
 }

 function handleContent (evt) {
 setContent(evt.target.value)
 }

Finally, we replace all of the onChange handlers with the corresponding bind4.
objects:

 <input type="text" value={title} {...bindTitle}
name="create-title" id="create-title" />
 </div>
 <textarea value={content} {...bindContent} />

The create post functionality will also work in the same way with Input Hooks.

Example code
The example code can be found in the Chapter08/chapter8_1 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http:/ /localhost:3000 in your browser (if it does not open
automatically).

Using Community Hooks Chapter 8

[188]

React life cycles with Hooks
As we have learned in the previous chapters, we can use the useEffect Hook to model
most of React's life cycle methods. However, if you prefer dealing with React life cycle
directly, instead of using Effect Hooks, there is a library called react-hookedup, which
provides various Hooks, including Hooks for the various React life cycles. Additionally, the
library provides a merging State Hook, which works similarly to this.setState() in
React's class components.

The useOnMount Hook
The useOnMount Hook has a similar effect to the componentDidMount life cycle. It is used
as follows:

import React from 'react'
import { useOnMount } from 'react-hookedup'

export default function UseOnMount () {
 useOnMount(() => console.log('mounted'))

 return <div>look at the console :)</div>
}

The preceding code will output mounted to the console when the component gets mounted
(when the React component is rendered for the first time). It will not be called again when
the component re-renders due to, for example, a prop change.

Alternatively, we could just use a useEffect Hook with an empty array as the second
argument, which will have the same effect:

import React, { useEffect } from 'react'

export default function OnMountWithEffect () {
 useEffect(() => console.log('mounted with effect'), [])

 return <div>look at the console :)</div>
}

As we can see, using an Effect Hook with an empty array as the second argument results in
the same behavior as the useOnMount Hook or the componentDidMount life cycle method.

Using Community Hooks Chapter 8

[189]

The useOnUnmount Hook
The useOnUnmount Hook has a similar effect to the componentWillUnmount life cycle. It
is used as follows:

import React from 'react'
import { useOnUnmount } from 'react-hookedup'

export default function UseOnUnmount () {
 useOnUnmount(() => console.log('unmounting'))

 return <div>click the "unmount" button above and look at the
console</div>
}

The preceding code will output unmounting to the console when the component gets
unmounted (before the React component is removed from the DOM).

If you remember from Chapter 4, Using the Reducer and Effect Hooks, we can return a
cleanup function from the useEffect Hook, which will be called when the component
unmounts. This means that we could alternatively implement the useOnMount Hook
using useEffect, as follows:

import React, { useEffect } from 'react'

export default function OnUnmountWithEffect () {
 useEffect(() => {
 return () => console.log('unmounting with effect')
 }, [])

 return <div>click the "unmount" button above and look at the
console</div>
}

As we can see, using the cleanup function that is returned from an Effect Hook, with an
empty array as the second argument, has the same effect as the useOnUnmount Hook, or
the componentWillUnmount life cycle method.

Using Community Hooks Chapter 8

[190]

The useLifecycleHooks Hook
The useLifecycleHooks Hook combines the previous two Hooks into one. We can
combine the useOnMount and useOnUnmount Hooks as follows:

import React from 'react'
import { useLifecycleHooks } from 'react-hookedup'

export default function UseLifecycleHooks () {
 useLifecycleHooks({
 onMount: () => console.log('lifecycle mounted'),
 onUnmount: () => console.log('lifecycle unmounting')
 })

 return <div>look at the console and click the button</div>
}

Alternatively, we could use the two Hooks separately:

import React from 'react'
import { useOnMount, useOnUnmount } from 'react-hookedup'

export default function UseLifecycleHooksSeparate () {
 useOnMount(() => console.log('separate lifecycle mounted'))
 useOnUnmount(() => console.log('separate lifecycle unmounting'))

 return <div>look at the console and click the button</div>
}

However, if you have this kind of pattern, I would recommend simply using
the useEffect Hook, as follows:

import React, { useEffect } from 'react'

export default function LifecycleHooksWithEffect () {
 useEffect(() => {
 console.log('lifecycle mounted with effect')
 return () => console.log('lifecycle unmounting with effect')
 }, [])

 return <div>look at the console and click the button</div>
}

Using useEffect, we can put our whole effect into a single function, and then simply
return a function for cleanup. This pattern is especially useful when we learn about making
our own Hooks in the next chapters.

Using Community Hooks Chapter 8

[191]

Effects make us think differently about React components. We do not have to think about
the life cycle of a component at all. Instead, we think about effects, dependencies, and the
cleanup of effects.

The useMergeState Hook
The useMergeState Hook works similarly to the useState Hook. However, it does not
replace the current state, but instead merges the current state with the new state, just
like this.setState() works in React class components.

The Merge State Hook returns the following objects:

state: The current state
setState: A function to merge the current state with the given state object

For example, let's consider the following component:

First, we import the useState Hook:1.

import React, { useState } from 'react'

Then, we define our app component and a State Hook with an object containing2.
a loaded value and a counter value:

export default function MergeState () {
 const [state, setState] = useState({ loaded: true, counter: 0
})

Next, we define a handleClick function, where we set the new state,3.
increasing the current counter value by 1:

 function handleClick () {
 setState({ counter: state.counter + 1 })
 }

Finally, we render the current counter value and a +1 button in order to increase4.
the counter value by 1. The button will be disabled
if state.loaded is false or undefined:

 return (
 <div>
 Count: {state.counter}
 <button onClick={handleClick}
disabled={!state.loaded}>+1</button>

Using Community Hooks Chapter 8

[192]

 </div>
)
}

As we can see, we have a simple counter app, showing the current count and a +1 button.
The +1 button will only be enabled when the loaded value is set to true.

If we now click on the +1 button, counter will increase from 0 to 1, but the button will get
disabled, because we have overwritten the current state object with a new state object.

To solve this problem, we would have to adjust the handleClick function as follows:

 function handleClick () {
 setState({ ...state, counter: state.counter + 1 })
 }

Alternatively, we could use the useMergeState Hook in order to avoid this problem
altogether, and get the same behavior that we had with this.setState() in class
components:

import React from 'react'
import { useMergeState } from 'react-hookedup'

export default function UseMergeState () {
 const { state, setState } = useMergeState({ loaded: true, counter: 0 })

As we can see, by using the useMergeState Hook, we can reproduce the same behavior
that we had with this.setState() in class components. So, we do not need to use spread
syntax anymore. However, often, it is better to simply use multiple State Hooks or a
Reducer Hook instead.

Example code
The example code can be found in the Chapter08/chapter8_2 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Using Community Hooks Chapter 8

[193]

Various useful Hooks
In addition to life cycle Hooks, react-hookedup also provides Hooks for timers, checking
the network status, and various other useful Hooks for dealing with, for example, arrays
and input fields. We are now going to cover the rest of the Hooks that react-hookedup
provides.

These Hooks are as follows:

The usePrevious Hook, to get the previous value of a Hook or prop
Timer Hooks, to implement intervals and timeouts
The useOnline Hook, to check whether the client has an active internet
connection
Various data manipulation Hooks for dealing with booleans, arrays, and
counters
Hooks to deal with focus and hover events

The usePrevious Hook
The usePrevious Hook is a simple Hook that lets us get the previous value of a prop or
Hook value. It will always store and return the previous value of any given variable, and it
works as follows:

First, we import the useState and usePrevious Hooks:1.

import React, { useState } from 'react'
import { usePrevious } from 'react-hookedup'

Then, we define our App component, and a Hook in which we store the current2.
count state:

export default function UsePrevious () {
 const [count, setCount] = useState(0)

Now, we define the usePrevious Hook, passing the count value from the State3.
Hook to it:

 const prevCount = usePrevious(count)

Using Community Hooks Chapter 8

[194]

The usePrevious Hook works with any variable, including component
props and values from other Hooks.

Next, we define a handler function, which will increase count by 1:4.

 function handleClick () {
 setCount(count + 1)
 }

Finally, we render the previous value of count, the current value of count, and a5.
button to increase count:

 return (
 <div>
 Count was {prevCount} and is {count} now.
 <button onClick={handleClick}>+1</button>
 </div>
)
}

The previously defined component will first show Count was and is 0 now., because the
default value for the Previous Hook is null. When clicking the button once, it will show
the following: Count was 0 and is 1 now..

Timer Hooks
The react-hookedup library also provides Hooks for dealing with timers. If we simply
create a timer using setTimeout or setInterval in our component, it will get
instantiated again every time the component is re-rendered. This not only causes bugs and
unpredictability, but can also cause a memory leak if the old timers are not freed properly.
Using timer Hooks, we can avoid these problems completely, and easily use intervals and
timeouts.

The following timer Hooks are provided by the library:

The useInterval Hook, which is used to define setInterval timers (timers
that trigger multiple times) in React components
The useTimeout Hook, which is used to define setTimeout timers (timers that
trigger only once after a certain amount of time)

Using Community Hooks Chapter 8

[195]

The useInterval Hook
The useInterval Hook can be used just like setInterval. We are now going to
implement a small counter that counts the number of seconds since mounting the
component:

First, import the useState and useInterval Hooks:1.

import React, { useState } from 'react'
import { useInterval } from 'react-hookedup'

Then, we define our component and a State Hook:2.

export default function UseInterval () {
 const [count, setCount] = useState(0)

Next, we define the useInterval Hook, which is going to increase the count by3.
1 every 1000 ms, which is equal to 1 second:

 useInterval(() => setCount(count + 1), 1000)

Finally, we display the current count value:4.

 return <div>{count} seconds passed</div>
}

Alternatively, we could use an Effect Hook in combination with setInterval, instead of
the useInterval Hook, as follows:

import React, { useState, useEffect } from 'react'

export default function IntervalWithEffect () {
 const [count, setCount] = useState(0)
 useEffect(() => {
 const interval = setInterval(() => setCount(count + 1), 1000)
 return () => clearInterval(interval)
 })

 return <div>{count} seconds passed</div>
}

As we can see, the useInterval Hook makes our code much more concise and easily
readable.

Using Community Hooks Chapter 8

[196]

useTimeout Hook
The useTimeout Hook can be used just like setTimeout. We are now going to implement
a component that triggers after 10 seconds have passed:

First, import the useState and useTimeout Hooks:1.

import React, { useState } from 'react'
import { useTimeout } from 'react-hookedup'

Then, we define our component and a State Hook:2.

export default function UseTimeout () {
 const [ready, setReady] = useState(false)

Next, we define the useTimeout Hook, which is going to set ready to3.
true, after 10000 ms (10 seconds):

 useTimeout(() => setReady(true), 10000)

Finally, we display whether we are ready or not:4.

 return <div>{ready ? 'ready' : 'waiting...'}</div>
}

Alternatively, we could use an Effect Hook in combination with setTimeout, instead of
the useTimeout Hook, as follows:

import React, { useState, useEffect } from 'react'

export default function TimeoutWithEffect () {
 const [ready, setReady] = useState(false)
 useEffect(() => {
 const timeout = setTimeout(() => setReady(true), 10000)
 return () => clearTimeout(timeout)
 })

 return <div>{ready ? 'ready' : 'waiting...'}</div>
}

As we can see, the useTimeout Hook makes our code much more concise and easily
readable.

Using Community Hooks Chapter 8

[197]

The Online Status Hook
In some web apps, it makes sense to implement an offline mode; for example, if we want to
be able to edit and save drafts for posts locally, and sync them to the server whenever we
are online again. To be able to implement this use case, we can use the
useOnlineStatus Hook.

The Online Status Hook returns an object with an online value, which contains true if the
client is online; otherwise, it contains false. It works as follows:

import React from 'react'
import { useOnlineStatus } from 'react-hookedup'

export default function App () {
 const { online } = useOnlineStatus()

 return <div>You are {online ? 'online' : 'offline'}!</div>
}

The previous component will display You are online!, when an internet connection is
available, or You are offline!, otherwise.

We could then use a Previous Hook, in combination with an Effect Hook, in order to sync
data to the server when we are online again:

import React, { useEffect } from 'react'
import { useOnlineStatus, usePrevious } from 'react-hookedup'

export default function App () {
 const { online } = useOnlineStatus()
 const prevOnline = usePrevious(online)

 useEffect(() => {
 if (prevOnline === false && online === true) {
 alert('syncing data')
 }
 }, [prevOnline, online])

 return <div>You are {online ? 'online' : 'offline'}!</div>
}

Now, we have an Effect Hook that triggers whenever the value of online changes. It then
checks whether the previous value of online was false, and the current one is true. If
that is the case, it means we were offline, and are now online again, so we need to sync our
updated data to the server.

Using Community Hooks Chapter 8

[198]

As a result, our app will show an alert displaying syncing data when we go offline and
then online again.

Data manipulation Hooks
The react-hookedup library provides various utility Hooks for dealing with data. These
Hooks simplify dealing with common data structures and provide an abstraction over the
State Hook.

The following data manipulation Hooks are provided:

The useBoolean Hook: To deal with toggling boolean values
The useArray Hook: To deal with handling arrays
The useCounter Hook: To deal with counters

The useBoolean Hook
The useBoolean Hook is used to deal with toggling boolean values (true/false), and
provides functions to set the value to true/false, and a toggle function to toggle the
value.

The Hook returns an object with the following:

value: The current value of the boolean
toggle: A function to toggle the current value (sets true if currently false, and
false if currently true)
setTrue: Sets the current value to true
setFalse: Sets the current value to false

The Boolean Hook works as follows:

First, we import the useBoolean Hook from react-hookedup:1.

import React from 'react'
import { useBoolean } from 'react-hookedup'

Then, we define our component and the Boolean Hook, which returns an object2.
with the toggle function and value. We pass false as the default value:

export default function UseBoolean () {
 const { toggle, value } = useBoolean(false)

Using Community Hooks Chapter 8

[199]

Finally, we render a button, which can be turned on/off:3.

 return (
 <div>
 <button onClick={toggle}>{value ? 'on' :
'off'}</button>
 </div>
)
}

The button will initially be rendered with the text off. When clicking the button, it will
show the text on. When clicking again, it will be off again.

The useArray Hook
The useArray Hook is used to easily deal with arrays, without having to use the
rest/spread syntax.

The Array Hook returns an object with the following:

value: The current array
setValue: Sets a new array as the value
add: Adds a given element to the array
clear: Removes all elements from the array
removeIndex: Removes an element from the array by its index
removeById: Removes an element from the array by its id (assuming that the
elements in the array are objects with an id key)

It works as follows:

First, we import the useArray Hook from react-hookedup:1.

import React from 'react'
import { useArray } from 'react-hookedup'

Then, we define the component and the Array Hook, with the default value2.
of ['one', 'two', 'three']:

export default function UseArray () {
 const { value, add, clear, removeIndex } = useArray(['one',
'two', 'three'])

Using Community Hooks Chapter 8

[200]

Now, we display the current array as JSON:3.

 return (
 <div>
 <p>current array: {JSON.stringify(value)}</p>

Then, we display a button to add an element:4.

 <button onClick={() => add('test')}>add
element</button>

Next, we display a button to remove the first element by index:5.

 <button onClick={() => removeIndex(0)}>remove first
element</button>

Finally, we add a button to clear all elements:6.

 <button onClick={() => clear()}>clear elements</button>
 </div>
)
}

As we can see, using the useArray Hook makes dealing with arrays much simpler.

The useCounter Hook
The useCounter Hook can be used to define various kinds of counters. We can define a
lower/upper limit, specify whether the counter should loop or not, and specify the step
amount by which we increase/decrease the counter. Furthermore, the Counter Hook
provides functions in order to increase/decrease the counter.

It accepts the following configuration options:

upperLimit: Defines the upper limit (maximum value) of our counter
lowerLimit: Defines the lower limit (minimum value) of our counter
loop: Specifies whether the counter should loop (for example, when the
maximum value is reached, we go back to the minimum value)
step: Sets the default step amount for the increase and decrease functions

Using Community Hooks Chapter 8

[201]

It returns the following object:

value: The current value of our counter.
setValue: Sets the current value of our counter.
increase: Increases the value by a given step amount. If no amount is specified,
then the default step amount is used.
decrease: Decreases the value by a given step amount. If no amount is specified,
then the default step amount is used.

The Counter Hook can be used as follows:

First, we import the useCounter Hook from react-hookedup:1.

import React from 'react'
import { useCounter } from 'react-hookedup'

Then, we define our component and the Hook, specifying 0 as the default value.2.
We also specify upperLimit, lowerLimit, and loop:

export default function UseCounter () {
 const { value, increase, decrease } = useCounter(0, {
upperLimit: 3, lowerLimit: 0, loop: true })

Finally, we render the current value and two buttons to increase/decrease the3.
value:

 return (
 <div>
 {value}
 <button onClick={increase}>+</button>
 <button onClick={decrease}>-</button>
 </div>
)
}

As we can see, the Counter Hook makes implementing counters much simpler.

Using Community Hooks Chapter 8

[202]

Focus and Hover Hooks
Sometimes, we want to check whether the user has hovered over an element or focused on
an input field. To do so, we can use the Focus and Hover Hooks that are provided by the
react-hookedup library.

The library provides two Hooks for these features:

The useFocus Hook: To handle focus events (for example, a selected input
field)
The useHover Hook: To deal with hover events (for example, when hovering the
mouse pointer over an area)

The useFocus Hook
In order to know whether an element is currently focused, we can use the useFocus Hook
as follows:

First, we import the useFocus Hook:1.

import React from 'react'
import { useFocus } from 'react-hookedup'

Then, we define our component and the Focus Hook, which returns the focused2.
value and a bind function, to bind the Hook to an element:

export default function UseFocus () {
 const { focused, bind } = useFocus()

Finally, we render an input field, and bind the Focus Hook to it:3.

 return (
 <div>
 <input {...bind} value={focused ? 'focused' : 'not
focused'} />
 </div>
)
}

As we can see, the Focus Hook makes it much easier to handle focus events. There is no
need to define our own handler functions anymore.

Using Community Hooks Chapter 8

[203]

The useHover Hook
In order to know whether the user is currently hovering over an element, we can use
the useHover Hook, as follows:

First, we import the useHover Hook:1.

import React from 'react'
import { useHover } from 'react-hookedup'

Then, we define our component and the Hover Hook, which returns2.
the hovered value and a bind function, to bind the Hook to an element:

export default function UseHover () {
 const { hovered, bind } = useHover()

Finally, we render an element, and bind the Hover Hook to it:3.

 return (
 <div {...bind}>Hover me {hovered && 'THANKS!!!'}</div>
)
}

As we can see, the Hover Hook makes it much easier to handle hover events. There is no
need to define our own handler functions anymore.

Example code
The example code can be found in the Chapter08/chapter8_3 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Responsive design with Hooks
In web apps, it is often important to have a responsive design. Responsive design makes
your web app render well on various devices and window/screen sizes. Our blog app
might be viewed on a desktop, a mobile phone, a tablet, or maybe even a very large screen,
such as a TV.

Using Community Hooks Chapter 8

[204]

Often, it makes the most sense to simply use CSS media queries for responsive design.
However, sometimes that is not possible, for example, when we render elements within a
canvas or Web Graphics Library (WebGL). Sometimes, we also want to use the window
size in order to decide whether to load a component or not, instead of simply rendering it
and then hiding it via CSS later.

The @rehooks/window-size library provides the useWindowSize Hook, which returns
the following values:

innerWidth: Equal to the window.innerWidth value
innerHeight: Equal to the window.innerHeight value
outerWidth: Equal to the window.outerWidth value
outerHeight: Equal to the window.outerHeight value

To show the difference between outerWidth/outerHeight, and
innerWidth/innerHeight, take a look at the following diagram:

Visualization of the window width/height properties

Using Community Hooks Chapter 8

[205]

As we can see, innerHeight and innerWidth specify the innermost part of the browser
window, while outerHeight and outerWidth specify the full dimensions of the browser
window, including the URL bar, scroll bars, and so on.

We are now going to hide components based on the window size in our blog app.

Responsively hiding components
In our blog app, we are going to hide the UserBar and ChangeTheme components
completely when the screen size is very small so that, when reading a post on a mobile
phone, we can focus on the content.

Let's get started implementing the Window Size Hook:

First, we have to install the @rehooks/window-size library:1.

> npm install --save @rehooks/window-size

Then, we import the useWindowSize Hook at the start of the2.
src/pages/HeaderBar.js file:

import useWindowSize from '@rehooks/window-size'

Next, we define the following Window Size Hook after the existing Context3.
Hooks:

 const { innerWidth } = useWindowSize()

If the window width is smaller than 640 pixels, we assume that the device is a4.
mobile phone:

 const mobilePhone = innerWidth < 640

Finally, we only show the ChangeTheme and UserBar components when we are5.
not on a mobile phone:

 {!mobilePhone && <ChangeTheme theme={theme}
setTheme={setTheme} />}
 {!mobilePhone &&
}
 {!mobilePhone && <React.Suspense
fallback={"Loading..."}>
 <UserBar />
 </React.Suspense>}
 {!mobilePhone &&
}

Using Community Hooks Chapter 8

[206]

If we now resize our browser window to a width smaller than 640 pixels, we can see that
the ChangeTheme and UserBar components will not be rendered anymore:

Hiding the ChangeTheme and UserBar components on smaller screen sizes

Using the Window Size Hook, we can avoid rendering elements on smaller screen sizes.

Example code
The example code can be found in the Chapter08/chapter8_4 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Undo/Redo with Hooks
In some apps, we want to implement undo/redo functionality, which means that we can go
back and forth in the state of our app. For example, if we have a text editor in our blog app,
we want to provide a feature to undo/redo changes. If you learned about Redux, you might
already be familiar with this kind of functionality. Since React now provides a Reducer
Hook, we can reimplement the same functionality using only React. The use-undo library
provides exactly this functionality.

Using Community Hooks Chapter 8

[207]

The useUndo Hook takes the default state object as an argument, and returns an array
with the following contents: [state, functions].

The state object looks as follows:

present: The current state
past: Array of past states (when we undo, we go here)
future: Array of future states (after undoing, we can redo to go here)

The functions object returns various functions to interact with the Undo Hook:

set: Sets the current state, and assigns a new value to present.
reset: Resets the current state, clears the past and future arrays (undo/redo
history), and assigns a new value to present.
undo: Undoes to the previous state (goes through the elements of
the past array).
redo: Redoes to the next state (goes through the elements of the future array).
canUndo: Equals true if it is possible to do an undo action (past array not
empty).
canRedo: Equals true if it is possible to do a redo action (future array not
empty).

We are now going to implement undo/redo functionality in our post editor.

Implementing Undo/Redo in our post editor
In the simple post editor of our blog app, we have a textarea where we can write the
contents of a blog post. We are now going to implement the useUndo Hook there, so that
we can undo/redo any changes that we made to the text:

First, we have to install the use-undo library via npm:1.

> npm install --save use-undo

Then, we import the useUndo Hook from the library in2.
src/post/CreatePost.js:

import useUndo from 'use-undo'

Using Community Hooks Chapter 8

[208]

Next, we define the Undo Hook by replacing the current useInput Hook.3.
Remove the following line of code:

 const { value: content, bindToInput: bindContent } =
useInput('')

Replace it with the useUndo Hook, as follows. We set the default state to ''. We
also save the state to undoContent, and get the setContent, undo, and redo
functions, as well as the canUndo and canRedo values:

 const [undoContent, {
 set: setContent,
 undo,
 redo,
 canUndo,
 canRedo
 }] = useUndo('')

Now, we assign the undoContent.present state to the content variable:4.

 const content = undoContent.present

Next, we define a new handler function in order to update the content value5.
using the setContent function:

 function handleContent (e) {
 setContent(e.target.value)
 }

Then, we have to replace the bindContent object with the handleContent6.
function, as follows:

 <textarea value={content} onChange={handleContent} />

Finally, we define buttons to Undo/Redo our changes, after the textarea7.
element:

 <button type="button" onClick={undo}
disabled={!canUndo}>Undo</button>
 <button type="button" onClick={redo}
disabled={!canRedo}>Redo</button>

It is important that <button> elements in a <form> element have a type
attribute defined. If the type attribute is not defined, buttons are assumed
to be type="submit", which means that they will trigger the onSubmit
handler function when clicked.

Using Community Hooks Chapter 8

[209]

Now, after entering text we can press Undo to remove one character at a time, and Redo to
add the characters again. Next, we are going to implement debouncing, which means that
our changes will only be added to the undo history after a certain amount of time, not after
every character that we entered.

Debouncing with Hooks
As we have seen in the previous section, when we press Undo, it undoes a single character
at a time. Sometimes, we do not want to store every change in our undo history. To avoid
storing every change, we need to implement debouncing, which means that the function
that stores our content to the undo history is only called after a certain amount of time.

The use-debounce library provides the useDebounce Hook, which can be used, as
follows, for simple values:

const [text, setText] = useState('')
const [value] = useDebounce(text, 1000)

Now, if we change the text via setText, the text value will be updated instantly, but
the value variable will only be updated after 1000 ms (1 second).

However, for our use case, this is not enough. We are going to need debounced callbacks in
order to implement debouncing in combination with use-undo. The use-
debounce library also provides the useDebouncedCallback Hook, which can be used as
follows:

const [text, setText] = useState('')
const [debouncedSet, cancelDebounce] = useDebouncedCallback(
 (value) => setText(value),
 1000
)

Now, if we call debouncedSet('text'), the text value will be updated after 1000 ms (1
second). If debouncedSet is called multiple times, the timeout will get reset every time, so
that only after 1000 ms of no further calls to the debouncedSet function, the setText
function will be called. Next, we are going to move on to implementing debouncing in our
post editor.

Using Community Hooks Chapter 8

[210]

Debouncing changes in our post editor
Now that we have learned about debouncing, we are going to implement it in combination
with the Undo Hook in our post editor, as follows:

First, we have to install the use-debounce library via npm:1.

> npm install --save use-debounce

In src/post/CreatePost.js, first make sure that you import the2.
useState Hook, if it is not imported already:

import React, { useState, useContext, useEffect } from 'react'

Next, import the useDebouncedCallback Hook from the use-debounce3.
library:

import { useDebouncedCallback } from 'use-debounce'

Now, before the Undo Hook, define a new State Hook, which we are going to use4.
for the non-debounced value, to update the input field:

 const [content, setInput] = useState('')

After the Undo Hook, we remove the assignment of the content value. Remove5.
the following code:

 const content = undoContent.present

Now, after the Undo Hook, define the Debounced Callback Hook:6.

 const [setDebounce, cancelDebounce] = useDebouncedCallback(

Within the Debounced Callback Hook, we define a function in order to set the7.
content of the Undo Hook:

 (value) => {
 setContent(value)
 },

Using Community Hooks Chapter 8

[211]

We trigger the setContent function after 200 ms:8.

 200
)

Next, we have to define an Effect Hook, which will trigger whenever the undo9.
state changes. In this Effect Hook, we cancel the current debouncing, and set the
content value to the current present value:

 useEffect(() => {
 cancelDebounce()
 setInput(undoContent.present)
 }, [undoContent])

Finally, we adjust the handleContent function in order to trigger the10.
setInput function, as well as the setDebounce function:

 function handleContent (e)
 const { value } = e.target
 setInput(value)
 setDebounce(value)
 }

As a result, we instantly set the input value, but we do not store anything to the undo
history yet. After the debouncing callback triggers (after 200 ms), we store the current
value to the undo history. Whenever the undo state updates, for example, when we press
the Undo/Redo buttons, we cancel the current debouncing to avoid overwriting the value
after undoing/redoing. Then, we set the content value to the new present value of the
Undo Hook.

If we now type some text into our editor, we can see that the Undo button only activates
after a while. It then looks like this:

Undo button activated after typing some text

Using Community Hooks Chapter 8

[212]

If we now press the Undo button, we can see that we will not undo character by character,
but more text at once. For example, if we press Undo three times, we get the following
result:

Going back in time using the Undo button

As we can see, Undo/Redo and debouncing now work perfectly fine!

Example code
The example code can be found in the Chapter08/chapter8_5 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Finding other Hooks
There are many other Hooks that are provided by the community. You can find a
searchable list of various Hooks on the following page: https:/ /nikgraf. github. io/
react-hooks/.

To give you an idea of which other Hooks are out there, the following features are provided
by community Hooks. We now list a couple more interesting Hooks provided by the
community. Of course, there are many more Hooks to be found:

use-events (https:/ / github. com/ sandiiarov/ use- events): Various JavaScript
events that have been turned into Hooks, such as mouse position, touch events,
clicking outside, and so on.
react-apollo-hooks (https:/ /github. com/ trojanowski/ react- apollo-
hooks): Use Apollo Client (a caching GraphQL client) with React Hooks.

https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/sandiiarov/use-events
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks
https://github.com/trojanowski/react-apollo-hooks

Using Community Hooks Chapter 8

[213]

react-use (https:/ / github. com/ streamich/ react- use): Various Hooks to deal
with sensors (useBattery, useIdle, useGeolocation, and so on), UI
(useAudio, useCss, useFullscreen, and so on), animations (useSpring,
useTween, useRaf, and so on), and side effects (useAsync, useDebounce,
useFavicon, and so on).
react-use-clipboard (https:/ /github. com/ danoc/ react- use- clipboard):
Clipboard functionality to copy text.

Summary
In this chapter, we first learned about the react-hookedup library. We used this library to
simplify input handling with Hooks in our blog app. Then, we had a look at implementing
various React life cycles with Hooks. Next, we covered various useful Hooks, such as the
usePrevious Hook, Interval/Timeout Hooks, the Online Status Hook, data manipulation
Hooks, and the Focus and Hover Hooks. Afterward, we covered responsive design using
Hooks, by not rendering certain components on mobile phones. Finally, we learned about
implementing undo/redo functionality and debouncing using Hooks.

Using community Hooks is a very important skill, as React only provides a handful of
Hooks out of the box. In real applications, you will probably be using many Hooks that are
provided by the community, from various libraries and frameworks. We also learned about
various community Hooks that will make our life so much easier when writing React
applications.

In the next chapter, we will gain an in-depth knowledge about the rules of Hooks, which
are important to know before we can start writing our own Hooks.

Questions
In order to recap what we have learned in this chapter, try answering the following
questions:

Which Hook can we use to simplify input field handling?1.
How are the componentDidMount and componentWillUnmount life cycles2.
implemented using Effect Hooks?
How can we use Hooks to get the behavior of this.setState()?3.

https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/streamich/react-use
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard
https://github.com/danoc/react-use-clipboard

Using Community Hooks Chapter 8

[214]

Why should we use timer Hooks instead of calling setTimeout and4.
setInterval directly?
Which Hooks can we use to simplify dealing with common data structures?5.
When should we use responsive design with Hooks, versus simply using CSS6.
media queries?
Which Hook can we use to implement undo/redo functionality?7.
What is debouncing? Why do we need to do it?8.
Which Hooks can we use for debouncing?9.

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

react-hookedup library documentation: https:/ / github. com/ zakariaharti/
react-hookedup

window-size library documentation: https:/ / github. com/ rehooks/ window-
size

use-undo library documentation: https:/ / github. com/ xxhomey19/ use- undo

use-debounce library documentation: https:/ / github. com/ xnimorz/ use-
debounce.

Collection of React Hooks: https:/ / nikgraf. github. io/react- hooks/

Learning Redux book published by Packt for more in-depth information about
undo/redo functionality: https:/ /www. packtpub. com/ web-development/
learning- redux

https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/zakariaharti/react-hookedup
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/rehooks/window-size
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xxhomey19/use-undo
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://github.com/xnimorz/use-debounce
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://nikgraf.github.io/react-hooks/
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux
https://www.packtpub.com/web-development/learning-redux

9
Rules of Hooks

In the previous chapter, we learned about using various Hooks that have been developed
by the React community, as well as where to find more of them. We learned about
replacing React life cycle methods with Hooks, utility and data management Hooks,
responsive design with Hooks, and implementing undo/redo functionality with Hooks.
Finally, we learned where to find other Hooks.

In this chapter, we are going to learn about everything that there is to know about using
Hooks, and what to watch out for when using and developing our own Hooks. Hooks have
certain limitations regarding the order that they are called. Violating the rules of Hooks can
cause bugs or unexpected behavior, so we need to make sure that we learn and enforce the
rules.

The following topics will be covered in this chapter:

Calling Hooks
Order of Hooks
Names of Hooks
Enforcing the rules of Hooks
Dealing with useEffect dependencies

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter09.

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter09

Rules of Hooks Chapter 9

[216]

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important to write the code yourself in order to learn and understand
properly. However, if you run into any issues, you can always refer to the
code example.

Now, let's get started with the chapter.

Calling Hooks
Hooks should only be called in React function components or custom Hooks. They cannot be
used in class components or regular JavaScript functions.

Hooks can be called at the top level of the following:

React function components
Custom Hooks (we are going to learn about creating custom Hooks in the next
chapter)

As we can see, Hooks are mostly normal JavaScript functions, except that they rely on being
defined in a React function component. Of course, custom Hooks that use other Hooks can
be defined outside of React function components, but when using Hooks, we always need to
make sure that we call them inside a React function component. Next, we are going to learn
about the rules regarding the order of Hooks.

Order of Hooks
Only call Hooks at the top level/beginning of function components or custom Hooks.

Do not call Hooks inside conditions, loops, or nested functions—doing so changes the order
of Hooks, which causes bugs. We have already learned that changing the order of Hooks
causes the state to get mixed up between multiple Hooks.

http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Rules of Hooks Chapter 9

[217]

In Chapter 2, Using the State Hook, we learned that we cannot do the following:

const [enableFirstName, setEnableFirstName] = useState(false)
const [name, setName] = enableFirstName
 ? useState('')
 : ['', () => {}]
const [lastName, setLastName] = useState('')

We rendered a checkbox and two input fields for the firstName and lastName, and then
we entered some text in the lastName field:

Revisiting our example from Chapter 2, Using the State Hook

At the moment, the order of Hooks is as follows:

enableFirstName1.
lastName2.

Next, we clicked on the checkbox to enable the firstName field. Doing so changed the
order of Hooks, because now our Hook definitions look like this:

enableFirstName1.
firstName2.
lastName3.

Rules of Hooks Chapter 9

[218]

Since React solely relies on the order of Hooks to manage their state, the firstName field is
now the second Hook, so it gets the state from the lastName field:

Problem of changing the order of Hooks from Chapter 2, Using the State Hook

If we use the real useState Hook from React in example 2 Can we define conditional
Hooks? from Chapter 2, Using the State Hook, we can see that React automatically detects
when the order of Hooks has changed, and it will show a warning:

React printing a warning when detecting that the order of Hooks has changed

When running React in development mode, it will additionally crash with an Uncaught
Invariant Violation error message when rendering more Hooks than in the previous
render:

Rules of Hooks Chapter 9

[219]

React crashing in development mode when the number of Hooks changed

Rules of Hooks Chapter 9

[220]

As we can see, changing the order of Hooks or conditionally enabling Hooks is not
possible, as React internally uses the order of Hooks to keep track of which data belongs to
which Hook.

Names of Hooks
There is a convention that Hook functions should always be prefixed with use, followed by
the Hook name starting with a capital letter; for example: useState, useEffect, and
useResource. This is important, because otherwise we would not know which JavaScript
functions are Hooks, and which are not. Especially when enforcing the rules of Hooks, we
need to know which functions are Hooks so that we can make sure they are not being
called conditionally or in loops.

As we can see, naming conventions are not technically required, but they make life a lot
easier for developers. Knowing the difference between normal functions and Hooks makes
it very easy to automatically enforce the rules of Hooks. In the next section, we are going to
learn how to automatically enforce the rules using the eslint tool.

Enforcing the rules of Hooks
If we stick to the convention of prefixing Hook functions with use, we can automatically
enforce the other two rules:

Only call Hooks from React function components or custom Hooks
Only call Hooks at the top level (not inside loops, conditions, or nested functions)

In order to enforce the rules automatically, React provides an eslint plugin called
eslint-plugin-react-hooks, which will automatically detect when Hooks are used,
and will ensure that the rules are not broken. ESLint is a linter, which is a tool that analyzes
source code and finds problems such as stylistic mistakes, potential bugs, and
programming errors.

In the future, create-react-app is going to include this plugin by
default.

Rules of Hooks Chapter 9

[221]

Setting up eslint-plugin-react-hooks
We are now going to set up the React Hooks eslint plugin to automatically enforce the
rules of Hooks.

Let's start installing and enabling the eslint plugin:

First, we have to install the plugin via npm:1.

> npm install --save-dev eslint-plugin-react-hooks

We use the --save-dev flag here, because eslint and its plugins are not
required to be installed when deploying the app. We only need them
during the development of our app.

Then, we create a new .eslintrc.json file in the root of our project folder,2.
with the following contents. We start by extending from the react-app ESLint
configuration:

{
 "extends": "react-app",

Next, we include the react-hooks plugin that we installed earlier:3.

 "plugins": [
 "react-hooks"
],

Now we enable two rules. First, we tell eslint to show an error when we violate4.
the rules-of-hooks rule. Additionally, we enable the exhaustive-deps rule
as a warning:

 "rules": {
 "react-hooks/rules-of-hooks": "error",
 "react-hooks/exhaustive-deps": "warn"
 }
}

Finally, we adjust package.json to define a new lint script, which is going to5.
call eslint:

 "scripts": {
 "lint": "npx eslint src/",

Rules of Hooks Chapter 9

[222]

Now, we can execute npm run lint, and we are going to see that there are 5 warnings
and 0 errors:

Executing ESLint with the react-hooks plugin

Rules of Hooks Chapter 9

[223]

We will now try to break the rules of Hooks; for example, by editing
src/user/Login.js and making the second Input Hook conditional:

 const { value: password, bindToInput: bindPassword } = loginFailed ?
useInput('') : ['', () => {}]

When we execute npm run lint again, we can see that there is now an error:

Executing ESLint after breaking the rules of Hooks

Rules of Hooks Chapter 9

[224]

As we can see, eslint helps us by forcing us to stick to the rules of Hooks. The linter will
throw an error when we violate any rules, and show warnings when Effect Hooks have
missing dependencies. Listening to eslint will help us to avoid bugs and unexpected
behavior, so we should never ignore its errors or warnings.

Example code
The example code can be found in the Chapter09/chapter9_1 folder.

Just run npm install in order to install all dependencies and execute npm run lint to
run the linter.

Dealing with useEffect dependencies
In addition to enforcing the rules of Hooks, we are also checking whether all the variables
that are used in an Effect Hook are passed to its dependency array. This exhaustive
dependencies rule ensures that whenever something that is used inside the Effect Hook
changes (a function, value, and so on), the Hook will trigger again.

As we have seen in the previous section, there are a couple warnings related to the
exhaustive dependencies rule when running the linter with npm run lint. Often, it has to
do with the dispatch function or other functions not being part of the dependency array.
Usually, these functions should not change, but we can never be sure, so it is better to just
add them to the dependencies.

Automatically fixing warnings with eslint
As the exhaustive dependencies rule is quite simple and straightforward to fix, we can
automatically let eslint fix it.

To do so, we need to pass the --fix flag to eslint. Using npm run, we can pass flags by
using an additional -- as a separator, as follows:

> npm run lint -- --fix

Rules of Hooks Chapter 9

[225]

After running the preceding command, we can run npm run lint again, and we are going
to see that all warnings have automatically been fixed:

No warnings after letting eslint fix them

As we can see, eslint not only warns us about problems, it can even fix some of them
automatically for us!

Example code
The example code can be found in the Chapter09/chapter9_2 folder.

Just run npm install in order to install all dependencies and execute npm run lint to
run the linter.

Summary
In this chapter, we first learned about two rules of Hooks: that we should only call Hooks
from React function components, and that we need to ensure that the order of Hooks stays
the same. Furthermore, we learned about the naming convention of Hooks, and that they
should always start with the use prefix. Then, we learned how to enforce the rules of
Hooks using eslint. Finally, we learned about useEffect dependencies, and how to fix
missing dependencies automatically using eslint.

Knowing about the rules of Hooks, and enforcing them, is very important in order to avoid
bugs and unexpected behavior. These rules will be especially important when creating our
own Hooks. Now that we have a good grasp on how Hooks work, including their rules and
conventions, in the next chapter, we are going to learn how to create our own Hooks!

Rules of Hooks Chapter 9

[226]

Questions
In order to recap what we have learned in this chapter, try answering the following
questions:

Where can Hooks be called?1.
Can we use Hooks in React class components?2.
What do we need to watch out for regarding the order of Hooks?3.
Can Hooks be called inside conditions, loops, or nested functions?4.
What is the naming convention for Hooks?5.
How can we automatically enforce the rules of Hooks?6.
What is the exhaustive dependencies rule?7.
How can we automatically fix linter warnings?8.

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

Rules of Hooks in the official React documentation: https:/ / reactjs. org/ docs/
hooks-rules. html.
Official website of ESLint: https:/ / eslint. org/ .

https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://reactjs.org/docs/hooks-rules.html
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/

10
Building Your Own Hooks

In the previous chapter, we learned about the limitations and rules of Hooks. We learned
where to call Hooks, why the order of Hooks matters, and the naming conventions for
Hooks. Finally, we learned about enforcing the rules of Hooks and dealing with
useEffect dependencies.

In this chapter, we are going to learn how to create custom Hooks by extracting existing
code from our components. We are also going to learn how to use custom Hooks and how
Hooks can interact with each other. Then, we are going to learn how to write tests for our
custom Hooks. Finally, we are going to learn about the full React Hooks API.

The following topics will be covered in this chapter:

Extracting custom Hooks
Using custom Hooks
Interactions between Hooks
Testing Hooks
Exploring the React Hooks API

Building Your Own Hooks Chapter 10

[228]

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on GitHub: https:/ / github. com/ PacktPublishing/
Learn-React-Hooks/ tree/ master/ Chapter10.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples provided previously. It is
important to write the code yourself in order to learn and understand
properly. However, if you run into any issues, you can always refer to the
code example.

Now let's get started with the chapter.

Extracting custom Hooks
After getting a good grasp on the concept of Hooks by learning about the State and Effect
Hooks, community Hooks, and the rules of Hooks, we are now going to build our own
Hooks. We start by extracting custom Hooks from existing functionalities of our blog
application. Usually, it makes the most sense to first write the component, and then later
extract a custom Hook from it if we notice that we use similar code across multiple
components. Doing so avoids prematurely defining custom Hooks and making our project
unnecessarily complex.

We are going to extract the following Hooks in this section:

A useTheme Hook
The useUserState and usePostsState Hooks
A useDispatch Hook
API Hooks
A useDebouncedUndo Hook

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter10
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Building Your Own Hooks Chapter 10

[229]

Creating a useTheme Hook
In many components, we use the ThemeContext to style our blog app. Functionality that is
used across multiple components is usually a good opportunity for creating a custom
Hook. As you might have noticed, we often do the following:

import { ThemeContext } from '../contexts'

export default function SomeComponent () {
 const theme = useContext(ThemeContext)

 // ...

We could abstract this functionality into a useTheme Hook, which will get the theme object
from the ThemeContext.

Let's start creating a custom useTheme Hook:

Create a new src/hooks/ directory, which is where we are going to put our1.
custom Hooks.
Create a new src/hooks/useTheme.js file.2.
In this newly created file, we first import the useContext Hook and the3.
ThemeContext as follows:

import { useContext } from 'react'
import { ThemeContext } from '../contexts'

Next, we export a new function called useTheme; this will be our custom Hook.4.
Remember, Hooks are just functions prefixed with the use keyword:

export default function useTheme () {

In our custom Hook, we can now use the essential Hooks provided by React to5.
build our own Hook. In our case, we simply return the useContext Hook:

 return useContext(ThemeContext)
}

As we can see, custom Hooks can be quite simple. In this case, the custom Hook only
returns a Context Hook with the ThemeContext passed to it. Nevertheless, this makes our
code more concise and easier to change later. Furthermore, by using a useTheme Hook, it is
clear that we want to access the theme, which means our code will be easier to read and
reason about.

Building Your Own Hooks Chapter 10

[230]

Creating global state Hooks
Another thing that we often do is access the global state. For example, some components
need the user state and some need the posts state. To abstract this functionality, which
will also make it easier to adjust the state structure later on, we can create custom Hooks to
get certain parts of the state:

useUserState: Gets the user part of the state object
usePostsState: Gets the posts part of the state object

Defining the useUserState Hook
Repeating a similar process to what we did for the useTheme Hook, we import the
useContext Hook from React and the StateContext. However, instead of returning the
result of the Context Hook, we now pull out the state object via destructuring and then
return state.user.

Create a new src/hooks/useUserState.js file with the following contents:

import { useContext } from 'react'
import { StateContext } from '../contexts'

export default function useUserState () {
 const { state } = useContext(StateContext)
 return state.user
}

Similarly to the useTheme Hook, the useUserState Hook makes our code more concise,
easier to change later, and improves readability.

Defining the usePostsState Hook
We repeat the same process for the posts state. Create a
new src/hooks/usePostsState.js file with the following contents:

import { useContext } from 'react'
import { StateContext } from '../contexts'

export default function usePostsState () {
 const { state } = useContext(StateContext)
 return state.posts
}

Building Your Own Hooks Chapter 10

[231]

Similarly to the useTheme and useUserState Hooks, the usePostsState Hook makes
our code more concise, easier to change later, and improves readability.

Creating a useDispatch Hook
In many components, we need the dispatch function to do certain actions, so we often
have to do the following:

import { StateContext } from '../contexts'

export default function SomeComponent () {
 const { dispatch } = useContext(StateContext)

 // ...

We can abstract this functionality into a useDispatch Hook, which will get the dispatch
function from our global state context. Doing this will also make it easier to replace the state
management implementation later on. For example, later on, we could replace our simple
Reducer Hook with a state management library such as Redux or MobX.

Let's define the useDispatch Hook now using the following steps:

Create a new src/hooks/useDispatch.js file.1.
Import the useContext Hook from React and the StateContext as follows:2.

import { useContext } from 'react'
import { StateContext } from '../contexts'

Next, we define and export the useDispatch function; here, we allow passing a3.
different context as an argument for making the Hook more generic (in case we
want to use the dispatch function from a local state context later on). However,
we set the default value of the context argument to the StateContext like so:

export default function useDispatch (context = StateContext) {

Finally, we pull out the dispatch function from the Context Hook via4.
destructuring and return it with the following code:

 const { dispatch } = useContext(context)
 return dispatch
}

Building Your Own Hooks Chapter 10

[232]

As we can see, creating a custom Dispatch Hook makes our code easier to change later on,
as we only need to adjust the dispatch function in one place.

Creating API Hooks
We can also create Hooks for the various API calls. Putting these Hooks in a single file
allows us to adjust the API calls easily later on. We are going to prefix our custom API
Hooks with useAPI so it is easy to tell which functions are API Hooks.

Let's create custom Hooks for our API now using the following steps:

Create a new src/hooks/api.js file.1.
Import the useResource Hook from the react-request-hook library as2.
follows:

import { useResource } from 'react-request-hook'

First, we define a useAPILogin Hook to log in a user; we simply cut and paste3.
the existing code from the src/user/Login.js file like so:

export function useAPILogin () {
 return useResource((username, password) => ({
 url:
`/login/${encodeURI(username)}/${encodeURI(password)}`,
 method: 'get'
 }))
}

Next, we define a useAPIRegister Hook; we simply cut and paste the existing4.
code from the src/user/Register.js file as follows:

export function useAPIRegister () {
 return useResource((username, password) => ({
 url: '/users',
 method: 'post',
 data: { username, password }
 }))
}

Building Your Own Hooks Chapter 10

[233]

Now we define a useAPICreatePost Hook, cutting and pasting the existing5.
code from the src/post/CreatePost.js file, as follows:

export function useAPICreatePost () {
 return useResource(({ title, content, author }) => ({
 url: '/posts',
 method: 'post',
 data: { title, content, author }
 }))
}

Finally, we define a useAPIThemes Hook, cutting and pasting the existing code6.
from the src/ChangeTheme.js file as follows:

export function useAPIThemes () {
 return useResource(() => ({
 url: '/themes',
 method: 'get'
 }))
}

As we can see, having all API-related functionality in one place makes it easier to adjust our
API code later on.

Creating a useDebouncedUndo Hook
We are now going to create a slightly more advanced Hook for debounced undo
functionality. We already implemented this functionality in the CreatePost component.
Now, we are going to extract this functionality into a custom useDebouncedUndo Hook.

Let's create the useDebouncedUndo Hook with the following steps:

Create a new src/hooks/useDebouncedUndo.js file.1.
Import the useState, useEffect, and useCallback Hooks from React, as well2.
as the useUndo Hook and the useDebouncedCallback Hook:

import { useState, useEffect, useCallback } from 'react'
import useUndo from 'use-undo'
import { useDebouncedCallback } from 'use-debounce'

Now we are going to define the useDebouncedUndo function, which accepts a3.
timeout argument for the debounced callback:

export default function useDebouncedUndo (timeout = 200) {

Building Your Own Hooks Chapter 10

[234]

In this function, we copy over the useState Hook from the previous4.
implementation, as shown here:

 const [content, setInput] = useState('')

Next, we copy over the useUndo Hook; however, this time, we store all other5.
undo-related functions in an undoRest object:

 const [undoContent, { set: setContent, ...undoRest }] =
useUndo('')

Then we copy over the useDebouncedCallback Hook, replacing the fixed 2006.
value with our timeout argument:

 const [setDebounce, cancelDebounce] = useDebouncedCallback(
 (value) => {
 setContent(value)
 },
 timeout
)

Now we copy over the Effect Hook, as shown in the following code:7.

 useEffect(() => {
 cancelDebounce()
 setInput(undoContent.present)
 }, [cancelDebounce, undoContent])

Then, we define a setter function, which is going to set a new input value and8.
call setDebounce. We can wrap the setter function with a useCallback Hook
here to return a memoized version of the function and avoid recreating the
function every time the component that uses the Hook re-renders. Similar to the
useEffect and useMemo Hooks, we also pass a dependency array as the second
argument of the useCallback Hook:

 const setter = useCallback(function setterFn (value) {
 setInput(value)
 setDebounce(value)
 }, [setInput, setDebounce])

Finally, we return the content variable (containing the current input value), the9.
setter function, and the undoRest object (which contains the undo/redo
functions and the canUndo/canRedo booleans):

 return [content, setter, undoRest]
}

Building Your Own Hooks Chapter 10

[235]

Creating a custom Hook for debounced undo means that we can reuse that functionality
across multiple components. We could even provide this Hook as a public library, allowing
others to easily implement debounced undo/redo functionality.

Exporting our custom Hooks
After creating all our custom Hooks, we are going to create an index.js file in our Hooks
directory and re-export our Hooks there, so that we can import our custom Hooks as
follows: import { useTheme } from './hooks'

Let's export all our custom Hooks now using the following steps:

Create a new src/hooks/index.js file.1.
In this file, we first import our custom Hooks as follows:2.

import useTheme from './useTheme'
import useDispatch from './useDispatch'
import usePostsState from './usePostsState'
import useUserState from './useUserState'
import useDebouncedUndo from './useDebouncedUndo'

Then, we re-export these imported Hooks with the following code:3.

export { useTheme, useDispatch, usePostsState, useUserState,
useDebouncedUndo }

Finally, we re-export all Hooks from the api.js file as follows:4.

export * from './api'

Now that we have exported all our custom Hooks, we can simply import Hooks directly
from the hooks folder, making it easier to import multiple custom Hooks at once.

Example code
The example code can be found in the Chapter10/chapter10_1 folder.

Just run npm install to install all dependencies and npm start to start the application,
and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Building Your Own Hooks Chapter 10

[236]

Using our custom Hooks
After creating our custom Hooks, we can now start using them throughout our blog
application. Using custom Hooks is quite straightforward as they are similar to community
Hooks. Just like all other Hooks, custom Hooks are simply JavaScript functions.

We created the following Hooks:

useTheme

useDispatch

usePostsState

useUserState

useDebouncedUndo

useAPILogin

useAPIRegister

useAPICreatePost

useAPIThemes

In this section, we are going to refactor our app to use all of our custom Hooks.

Using the useTheme Hook
Instead of using the useContext Hook with the ThemeContext, we can now use the
useTheme Hook directly! If we end up changing the theming system later on, we can
simply modify the useTheme Hook and our new system will be implemented throughout
our application.

Let's refactor our app to use the useTheme Hook:

Edit src/Header.js and replace the existing imports with an import of the1.
useTheme Hook. The ThemeContext and useContext imports can be removed:

import { useTheme } from './hooks'

Then, replace the current Context Hook definition with the useTheme Hook, as2.
shown here:

 const { primaryColor } = useTheme()

Building Your Own Hooks Chapter 10

[237]

Now edit src/post/Post.js and adjust the imports similarly there:3.

import { useTheme } from './hooks'

Then, replace the useContext Hook with the useTheme Hook as follows:4.

 const { secondaryColor } = useTheme()

As we can see, using a custom Hook makes our code much more concise and easier to read.
We now move on to using the global state Hooks.

Using the global state Hooks
Similarly to what we did with the ThemeContext, we can also replace our state Context
Hooks with the usePostsState, useUserState, and useDispatch Hooks. This is
optimal if we want to change the state logic later. For example, if our state grows and we
want to use a more sophisticated system such as Redux or MobX, then we can simply
adjust the existing Hooks and everything will work the same way as before.

In this section, we are going to adjust the following components:

UserBar

Login

Register

Logout

CreatePost

PostList

Adjusting the UserBar component
First, we are going to adjust the UserBar component. Here, we can use the
useUserState Hook by following these steps:

Edit src/user/UserBar.js and import the useUserState Hook:1.

import { useUserState } from '../hooks'

Then, we remove the following Hook definition:2.

 const { state } = useContext(StateContext)
 const { user } = state

Building Your Own Hooks Chapter 10

[238]

We replace it with our custom useUserState Hook:3.

 const user = useUserState()

Now the UserBar component makes use of our custom Hook instead of directly accessing
the user state.

Adjusting the Login component
Next, we are going to adjust the Login component, where we can use the useDispatch
Hook. This process is outlined in the following steps:

Edit src/user/Login.js and import the useDispatch Hook, as follows:1.

import { useDispatch } from '../hooks'

Then remove the following Context Hook:2.

 const { dispatch } = useContext(StateContext)

Replace it with our custom useDispatch Hook:3.

 const dispatch = useDispatch()

Now the Login component makes use of our custom Hook instead of directly accessing the
dispatch function. Next, we are going to adjust the Register component.

Adjusting the Register component
Similarly to the Login component, we can also use the useDispatch Hook in the
Register component, as shown in the following steps:

Edit src/user/Register.js and import the useDispatch Hook:1.

import { useDispatch } from '../hooks'

Then, replace the current Context Hook with our custom Dispatch Hook, as2.
shown here:

 const dispatch = useDispatch()

Now the Register component also makes use of our custom Hook instead of directly
accessing the dispatch function.

Building Your Own Hooks Chapter 10

[239]

Adjusting the Logout component
Then, we are going to adjust the Logout component to use both the useUserState and the
useDispatch Hooks with the following steps:

Edit src/user/Logout.js and import the useUserState and1.
useDispatch Hooks:

import { useDispatch, useUserState } from '../hooks'

Then, replace the current Hook definitions with the following:2.

 const dispatch = useDispatch()
 const user = useUserState()

Now the Logout component makes use of our custom Hooks instead of directly accessing
the user state and the dispatch function.

Adjusting the CreatePost component
Next we are going to adjust the CreatePost component, which is similar to what we did
with the Logout component. This process is outlined in the following steps:

Edit src/post/CreatePost.js and import the useUserState and1.
useDispatch Hooks:

import { useUserState, useDispatch } from '../hooks'

Then, replace the current Context Hook definition with the following:2.

 const user = useUserState()
 const dispatch = useDispatch()

Now the CreatePost component makes use of our custom Hooks instead of directly
accessing the user state and the dispatch function.

Adjusting the PostList component
Finally, we are going to use the usePostsState Hook to render the PostList component,
as follows:

Edit src/post/PostList.js and import the usePostsState Hook:1.

import { usePostsState } from '../hooks'

Building Your Own Hooks Chapter 10

[240]

Then replace the current Hook definition with the following:2.

 const posts = usePostsState()

Now the PostList component makes use of our custom Hook instead of directly accessing
the posts state.

Using the API Hooks
Next, we are going to replace all the useResource Hooks with our custom API Hooks.
Doing so allows us to have all the API calls in one file so that we can easily adjust them
later on, in case the API changes.

In this section, we are going to adjust the following components:

ChangeTheme

Register

Login

CreatePost

Let's get started.

Adjusting the ChangeTheme component
First, we are going to adjust the ChangeTheme component and replace the Resource Hook,
accessing /themes with our custom useAPIThemes Hook in the following steps:

In src/ChangeTheme.js, remove the following useResource Hook import1.
statement:

import { useResource } from 'react-request-hook'

Replace it with our custom useAPIThemes Hook:

import { useAPIThemes } from './hooks'

Then, replace the useResource Hook definition with the following custom2.
Hook:

 const [themes, getThemes] = useAPIThemes()

Now the ChangeTheme component uses our custom API Hook to pull themes from the API.

Building Your Own Hooks Chapter 10

[241]

Adjusting the Register component
Next, we are going to adjust the Register component with the following steps:

Edit src/user/Register.js and adjust the import statement to also import the1.
useAPIRegister Hook:

import { useDispatch, useAPIRegister } from '../hooks'

Then, replace the current Resource Hook with the following:2.

 const [user, register] = useAPIRegister()

Now the Register component uses our custom API Hook to register users via the API.

Adjusting the Login component
Similar to the Register component, we are also going to adjust the Login component:

Edit src/user/Login.js and adjust the import statement to also import the1.
useAPILogin Hook:

import { useDispatch, useAPILogin } from '../hooks'

Then, replace the current Resource Hook with the following:2.

 const [user, login] = useAPILogin()

Now the Login component uses our custom API Hook to log in users via the API.

Adjusting the CreatePost component
Finally, we are going to adjust the CreatePost component by following these steps:

Edit src/post/CreatePost.js and adjust the import statement to also import1.
the useAPICreatePost Hook:

import { useUserState, useDispatch, useAPICreatePost } from
'../hooks'

Then, replace the current Resource Hook with the following:2.

 const [post, createPost] = useAPICreatePost()

Building Your Own Hooks Chapter 10

[242]

Now the CreatePost component uses our custom API Hook to create new posts via the
API.

Using the useDebouncedUndo Hook
Finally, we are going to replace all debounced undo logic in the
src/post/CreatePost.js file with our custom useDebouncedUndo Hook. Doing so will
make our component code much cleaner and easier to read. Furthermore, we can reuse the
same debounced undo functionality in other components later.

Let's get started using the Debounced Undo Hook in the CreatePost component by
following these steps:

Edit src/post/CreatePost.js and import the useDebouncedUndo Hook:1.

import { useUserState, useDispatch, useDebouncedUndo,
useAPICreatePost } from '../hooks'

Then, remove the following code related to debounced undo handling:2.

 const [content, setInput] = useState('')
 const [undoContent, {
 set: setContent,
 undo,
 redo,
 canUndo,
 canRedo
 }] = useUndo('')

 const [setDebounce, cancelDebounce] = useDebouncedCallback(
 (value) => {
 setContent(value)
 },
 200
)
 useEffect(() => {
 cancelDebounce()
 setInput(undoContent.present)
 }, [cancelDebounce, undoContent])

Replace it with our custom useDebouncedUndo Hook, as follows:

 const [content, setContent, { undo, redo, canUndo, canRedo }]
= useDebouncedUndo()

Building Your Own Hooks Chapter 10

[243]

Finally, remove the following setter functions in our handleContent function3.
(marked in bold):

 function handleContent (e) {
 const { value } = e.target
 setInput(value)
 setDebounce(value)
 }

We can now use the setContent function provided by our custom Hook instead:

 function handleContent (e) {
 const { value } = e.target
 setContent(value)
 }

As you can see, our code is much cleaner, more concise, and easier to read now.
Furthermore, we can reuse the Debounced Undo Hook in other components later on.

Example code
The example code can be found in the Chapter10/chapter10_2 folder.

Just run npm install to install all dependencies and npm start to start the application,
and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Interactions between Hooks
Our whole blog app now works in the same way as before, but it uses our custom Hooks!
Until now, we have always had Hooks that encapsulated the whole logic, with only
constant values being passed as arguments to our custom Hooks. However, we can also
pass values of other Hooks into custom Hooks!

Since Hooks are simply JavaScript functions, all Hooks can accept any
value as arguments and work with them: constant values, component
props, or even values from other Hooks.

Building Your Own Hooks Chapter 10

[244]

We are now going to create local Hooks, which means that they will be placed in the same
file as the component, because they are not needed anywhere else. However, they will still
make our code easier to read and maintain. These local Hooks will accept values from other
Hooks as arguments.

The following local Hooks will be created:

A local Register Effect Hook
A local Login Effect Hook

Let's see how to create them in the following subsections.

Creating a local Register Effect Hook
First of all, we are going to extract the Effect Hook from our Login component to a
separate useRegisterEffect Hook function. This function will accept the following
values from other Hooks as arguments: user and dispatch.

Let's create a local Effect Hook for the Register component now using the following steps:

Edit src/user/Register.js and define a new function outside of the1.
component function, right after the import statements:

function useRegisterEffect (user, dispatch) {

For the contents of the function, cut the existing Effect Hook from the Register2.
component and paste it here:

 useEffect(() => {
 if (user && user.data) {
 dispatch({ type: 'REGISTER', username:
user.data.username })
 }
 }, [dispatch, user])
}

Finally, define our custom useLoginEffect Hook where we cut out the3.
previous Effect Hook, and pass the values from the other Hooks to it:

 useRegisterEffect(user, dispatch)

As we can see, extracting an effect into a separate function makes our code easier to read
and maintain.

Building Your Own Hooks Chapter 10

[245]

Creating a local Login Effect Hook
Repeating a similar process to the local Register Effect Hook, we are also going to extract
the Effect Hook from our Login component to a separate useLoginEffect Hook function.
This function will accept the following values from other Hooks as arguments: user,
dispatch, and setLoginFailed.

Let's create a local Hook for the Login component now using the following steps:

Edit src/user/Login.js and define a new function outside of the component1.
function, right after the import statements:

function useLoginEffect (user, dispatch, setLoginFailed) {

For the contents of the function, cut the existing Effect Hook from the Login2.
component and paste it here:

 useEffect(() => {
 if (user && user.data) {
 if (user.data.length > 0) {
 setLoginFailed(false)
 dispatch({ type: 'LOGIN', username:
user.data[0].username })
 } else {
 setLoginFailed(true)
 }
 }
 if (user && user.error) {
 setLoginFailed(true)
 }
 }, [dispatch, user, setLoginFailed])
}

Here, we also added setLoginFailed to the Effect Hook dependencies.
This is to make sure that whenever the setter function changes (which
could happen eventually when using the Hook) the Hook triggers again.
Always passing all dependencies of an Effect Hook, including functions,
prevents bugs and unexpected behavior later on.

Finally, define our custom useLoginEffect Hook, where we cut out the3.
previous Effect Hook, and pass the values from the other Hooks to it:

 useLoginEffect(user, dispatch, setLoginFailed)

As we can see, extracting an effect into a separate function makes our code easier to read
and maintain.

Building Your Own Hooks Chapter 10

[246]

Example code
The example code can be found in the Chapter10/chapter10_3 folder.

Just run npm install to install all dependencies and npm start to start the application,
and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Testing Hooks
Now our blog application makes full use of Hooks! We even defined custom Hooks for
various functions to make our code more reusable, concise, and easy to read.

When defining custom Hooks, it makes sense to write tests for them to ensure they work
properly, even when we change them later on or add more options.

To test our Hooks, we are going to use the Jest test runner, which is included in our
create-react-app project. However, as a result of the rules of Hooks, we cannot call
Hooks from the test functions because they can only be called inside the body of a function
component.

Because we do not want to create a component specifically for each test, we are going to use
the React Hooks Testing Library to test Hooks directly. This library actually creates a test
component and provides various utility functions to interact with the Hook.

Using the React Hooks Testing Library
In addition to the React Hooks Testing Library, we also need a special renderer for React.
To render React components to the DOM, we used react-dom; for tests, we can use
the react-test-renderer. We are now going to install the React Hooks Testing Library
and the react-test-renderer via npm:

> npm install --save-dev @testing-library/react-hooks react-test-renderer

The React Hooks Testing Library should be used in the following circumstances:

When writing libraries that define Hooks
When you have Hooks that are used throughout multiple components (global
Hooks)

Building Your Own Hooks Chapter 10

[247]

However, the library should not be used when a Hook is only defined and used in a single
component (local Hooks).

In that case, we should test the component directly using the React Testing Library.
However, testing React components is beyond the scope of this book. More information
about testing components can be found on the library website: https:/ /testing- library.
com/docs/react-testing- library/ intro.

Testing simple Hooks
First of all, we are going to test a very simple Hook that does not make use of contexts or
asynchronous code such as timeouts. To do this, we are going to create a new Hook called
useCounter. Then, we are going to test various parts of the Hook.

The following tasks will be covered in this section:

Creating the useCounter Hook
Testing the result
Testing Hook actions
Testing the initial value
Testing reset and forcing re-rendering

Let's get started now.

Creating the useCounter Hook
The useCounter Hook is going to provide a current count and functions
to increment and reset the counter.

Let's create the useCounter Hook now using the following steps:

Create a new src/hooks/useCounter.js file.1.
Import the useState and useCallback Hooks from React as follows:2.

import { useState, useCallback } from 'react'

We define a new useCounter Hook function with an argument for3.
the initialCount:

export default function useCounter (initialCount = 0) {

https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro

Building Your Own Hooks Chapter 10

[248]

Then, we define a new State Hook for the count value with the following code:4.

 const [count, setCount] = useState(initialCount)

Next, we define functions for incrementing and resetting the count, as shown5.
here:

 const increment = useCallback(() => setCount(count + 1), [])
 const reset = useCallback(() => setCount(initialCount),
[initialCount])

Finally, we return the current count and the two functions:6.

 return { count, increment, reset }
}

Now that we have defined a simple Hook, we can start testing it.

Testing the useCounter Hook result
Let's now write tests for the useCounter Hook we created, by following these steps:

Create a new src/hooks/useCounter.test.js file.1.
Import the renderHook and act functions from the React Hooks Testing2.
Library, as we are going to use these later:

import { renderHook, act } from '@testing-library/react-hooks'

Also, import the to-be-tested useCounter Hook, as shown here:3.

import useCounter from './useCounter'

Now we can write our first test. To define a test, we use the test function from4.
Jest. The first argument is the name of the test and the second argument is a
function to be run as the test:

test('should use counter', () => {

Building Your Own Hooks Chapter 10

[249]

In this test, we use the renderHook function to define our Hook. This function5.
returns an object with a result key, which is going to contain the result of our
Hook:

 const { result } = renderHook(() => useCounter())

Now we can check the values of the result object using expect from Jest. The6.
result object contains a current key, which will contain the current result from
the Hook:

 expect(result.current.count).toBe(0)
 expect(typeof result.current.increment).toBe('function')
})

As we can see, writing tests for Hook results is quite simple! When creating custom Hooks,
especially when they are going to be used publicly, we should always write tests to ensure
they work correctly.

Testing useCounter Hook actions
Using the act function from the React Hooks Testing Library, we can execute functions
from the Hook and then check the new result.

Let's now test actions of our Counter Hook:

Write a new test function, as shown in the following code:1.

test('should increment counter', () => {
 const { result } = renderHook(() => useCounter())

Call the increment function of the Hook within the act function:2.

 act(() => result.current.increment())

Finally, we check whether the new count is now 1:3.

 expect(result.current.count).toBe(1)
})

As we can see, we can simply use the act function to trigger actions in our Hook and then
test the value just like we did before.

Building Your Own Hooks Chapter 10

[250]

Testing the useCounter initial value
We can also check the result before and after calling act and pass an initial value to our
Hook.

Let's now test the initial value of our Hook:

Define a new test function, passing the initial value 123 to the Hook:1.

test('should use initial value', () => {
 const { result } = renderHook(() => useCounter(123))

Now we can check if the current value equals the initial value, call increment,2.
and ensure the count was increased from the initial value:

 expect(result.current.count).toBe(123)
 act(() => result.current.increment())
 expect(result.current.count).toBe(124)
})

As we can see, we can simply pass the initial value to the Hook and check whether the
value is the same.

Testing reset and forcing re-rendering
We are now going to simulate the props of a component changing. Imagine the initial value
for our Hook is a prop and it is initially 0, which then changes to 123 later on. If we reset
our counter now, it should reset to 123 and not 0. However, to do so, we need to force the
re-rendering of our test component after changing the value.

Let's now test resetting and forcing the component to re-render:

Define the test function and a variable for the initial value:1.

test('should reset to initial value', () => {
 let initial = 0

Next, we are going to render our Hook, but this time, we also pull out the2.
rerender function via destructuring:

 const { result, rerender } = renderHook(() =>
useCounter(initial))

Building Your Own Hooks Chapter 10

[251]

Now we set a new initial value and call the rerender function:3.

 initial = 123
 rerender()

Our initial value should now have changed, so when we call reset, the4.
count will be set to 123:

 act(() => result.current.reset())
 expect(result.current.count).toBe(123)
})

As we can see, the testing library creates a dummy component, which is used for testing the
Hook. We can force this dummy component to re-render in order to simulate what would
happen when props change in a real component.

Testing Context Hooks
Using the React Hooks Testing Library, we can also test more complex Hooks, such as
Hooks making use of React context. Most of the custom Hooks we created for our blog app
make use of contexts, so we are now going to test those. To test Hooks that use context, we
first have to create a context wrapper, and then we can test the Hook.

In this section, we are going to perform the following:

Create a ThemeContextWrapper component
Test the useTheme Hook
Create a StateContextWrapper component
Test the useDispatch Hook
Test the useUserState Hook
Test the usePostsState Hook

Let's get started.

Building Your Own Hooks Chapter 10

[252]

Creating the ThemeContextWrapper
To be able to test the Theme Hook, we first have to set up the context and provide a
wrapper component for the Hook's test component.

Let's now create the ThemeContextWrapper component:

Create a new src/hooks/testUtils.js file.1.
Import React and the ThemeContext, as follows:2.

import React from 'react'
import { ThemeContext } from '../contexts'

Define a new function component called ThemeContextWrapper; it will accept3.
children as props:

export function ThemeContextWrapper ({ children }) {

children is a special prop of React components. It will contain all other
components passed to it as children; for
example, <ThemeContextWrapper>{children}</ThemeContextWrapp
er>.

We return a ThemeContext.Provider with our default theme, and then pass4.
children to it:

 return (
 <ThemeContext.Provider value={{ primaryColor:
'deepskyblue', secondaryColor: 'coral' }}>
 {children}
 </ThemeContext.Provider>
)
}

As we can see, a context wrapper simply returns a context provider component.

Testing the useTheme Hook
Now that we have defined the ThemeContextWrapper component, we can make use of it
while testing the useTheme Hook.

Building Your Own Hooks Chapter 10

[253]

Let's now test the useTheme Hook as outlined in the following steps:

Create a new src/hooks/useTheme.test.js file.1.
Import the renderHook function as well as the ThemeContextWrapper and2.
the useTheme Hook:

import { renderHook } from '@testing-library/react-hooks'
import { ThemeContextWrapper } from './testUtils'
import useTheme from './useTheme'

Next, define the test using the renderHook function and pass the wrapper as a3.
second argument to it. Doing this will wrap the test component with the defined
wrapper component, which means that we will be able to use the provided
context in the Hook:

test('should use theme', () => {
 const { result } = renderHook(
 () => useTheme(),
 { wrapper: ThemeContextWrapper }
)

Now we can check the result of our Hook, which should contain the colors4.
defined in the ThemeContextWrapper:

 expect(result.current.primaryColor).toBe('deepskyblue')
 expect(result.current.secondaryColor).toBe('coral')

As we can see, after providing the context wrapper, we can test Hooks that use context just
like we tested our simple Counter Hook.

Creating the StateContextWrapper
For the other Hooks, which make use of the StateContext, we have to define another
wrapper to provide the StateContext to the Hooks.

Let's now define the StateContextWrapper component with the following steps:

Edit src/hooks/testUtils.js and adjust the import statements to import the1.
useReducer Hook, the StateContext, and the appReducer function:

import React, { useReducer } from 'react'
import { StateContext, ThemeContext } from '../contexts'
import appReducer from '../reducers'

Building Your Own Hooks Chapter 10

[254]

Define a new function component called StateContextWrapper. Here we are2.
going to use the useReducer Hook to define the app state, which is similar to
what we did in the src/App.js file:

export function StateContextWrapper ({ children }) {
 const [state, dispatch] = useReducer(appReducer, { user: '',
posts: [], error: '' })

Next, define and return the StateContext.Provider, which is similar to what3.
we did for the ThemeContextWrapper:

 return (
 <StateContext.Provider value={{ state, dispatch }}>
 {children}
 </StateContext.Provider>
)
}

As we can see, creating a context wrapper always works similarly. However, this time, we
are also defining a Reducer Hook in our wrapper component.

Testing the useDispatch Hook
Now that we have defined the StateContextWrapper, we can use it to test the
useDispatch Hook.

Let's test the useDispatch Hook with the following steps:

Create a new src/hooks/useDispatch.test.js file.1.
Import the renderHook function, the StateContextWrapper component, and2.
the useDispatch Hook:

import { renderHook } from '@testing-library/react-hooks'
import { StateContextWrapper } from './testUtils'
import useDispatch from './useDispatch'

Then, define the test function, passing the StateContextWrapper component3.
to it:

test('should use dispatch', () => {
 const { result } = renderHook(
 () => useDispatch(),
 { wrapper: StateContextWrapper }
)

Building Your Own Hooks Chapter 10

[255]

Finally, check whether the result of the Dispatch Hook is a function (the4.
dispatch function):

 expect(typeof result.current).toBe('function')
})

As we can see, using a wrapper component always works the same way, even if we use
other Hooks within the wrapper component.

Testing the useUserState Hook
Using the StateContextWrapper and the Dispatch Hook, we can now test the
useUserState Hook by dispatching LOGIN and REGISTER actions and checking the result.
To dispatch these actions, we use the act function from the testing library.

Let's test the useUserState Hook:

Create a new src/hooks/useUserState.test.js file.1.
Import the necessary functions, the useDispatch and useUserState Hooks,2.
and the StateContextWrapper:

import { renderHook, act } from '@testing-library/react-hooks'
import { StateContextWrapper } from './testUtils'
import useDispatch from './useDispatch'
import useUserState from './useUserState'

Next, we write a test that checks the initial user state:3.

test('should use user state', () => {
 const { result } = renderHook(
 () => useUserState(),
 { wrapper: StateContextWrapper }
)

 expect(result.current).toBe('')
})

Then, we write a test that dispatches a LOGIN action and then checks the new4.
state. Instead of returning a single Hook, we now return an object with the
results of both Hooks:

test('should update user state on login', () => {
 const { result } = renderHook(
 () => ({ state: useUserState(), dispatch: useDispatch() }),
 { wrapper: StateContextWrapper }

Building Your Own Hooks Chapter 10

[256]

)

 act(() => result.current.dispatch({ type: 'LOGIN', username:
'Test User' }))
 expect(result.current.state).toBe('Test User')
})

Finally, we write a test that dispatches a REGISTER action and then checks the5.
new state:

test('should update user state on register', () => {
 const { result } = renderHook(
 () => ({ state: useUserState(), dispatch: useDispatch() }),
 { wrapper: StateContextWrapper }
)

 act(() => result.current.dispatch({ type: 'REGISTER', username:
'Test User' }))
 expect(result.current.state).toBe('Test User')
})

As we can see, we can access both the state object and the dispatch function from our
tests.

Testing the usePostsState Hook
Similarly to how we tested the useUserState Hook, we can also test the
usePostsState Hook.

Let's test the usePostsState Hook now:

Create a new src/hooks/usePostsState.test.js file.1.
Import the necessary functions, the useDispatch and usePostsState Hooks,2.
and the StateContextWrapper:

import { renderHook, act } from '@testing-library/react-hooks'
import { StateContextWrapper } from './testUtils'
import useDispatch from './useDispatch'
import usePostsState from './usePostsState'

Then, we test the initial state of the posts array:3.

test('should use posts state', () => {
 const { result } = renderHook(
 () => usePostsState(),

Building Your Own Hooks Chapter 10

[257]

 { wrapper: StateContextWrapper }
)

 expect(result.current).toEqual([])
})

Next, we test whether a FETCH_POSTS action replaces the current posts array:4.

test('should update posts state on fetch action', () => {
 const { result } = renderHook(
 () => ({ state: usePostsState(), dispatch: useDispatch()
}),
 { wrapper: StateContextWrapper }
)

 const samplePosts = [{ id: 'test' }, { id: 'test2' }]
 act(() => result.current.dispatch({ type: 'FETCH_POSTS', posts:
samplePosts }))
 expect(result.current.state).toEqual(samplePosts)
})

Finally, we test whether a new post gets inserted on a CREATE_POST action:5.

test('should update posts state on insert action', () => {
 const { result } = renderHook(
 () => ({ state: usePostsState(), dispatch: useDispatch()
}),
 { wrapper: StateContextWrapper }
)

 const post = { title: 'Hello World', content: 'This is a test',
author: 'Test User' }
 act(() => result.current.dispatch({ type: 'CREATE_POST',
...post }))
 expect(result.current.state[0]).toEqual(post)
})

As we can see, the tests for the posts state are similar to the user state, but with different
actions being dispatched.

Building Your Own Hooks Chapter 10

[258]

Testing async Hooks
Sometimes, we need to test Hooks that do asynchronous actions. This means that we need
to wait a certain period of time until we check the result. To implement tests for these kind
of Hooks, we can use the waitForNextUpdate function from the React Hooks Testing
Library.

Before we can test async Hooks, we need to learn about the new JavaScript construct called
async/await.

The async/await construct
Normal functions are defined as follows:

function doSomething () {
 // ...
}

Normal anonymous functions are defined as follows:

() => {
 // ...
}

Asynchronous functions are defined by adding the async keyword:

async function doSomething () {
 // ...
}

We can also make anonymous functions asynchronous:

async () => {
 // ...
}

Within async functions, we can use the await keyword to resolve promises. We do not
have to do the following anymore:

() => {
 fetchAPITodos()
 .then(todos => dispatch({ type: FETCH_TODOS, todos }))
}

Building Your Own Hooks Chapter 10

[259]

Instead, we can now do this:

async () => {
 const todos = await fetchAPITodos()
 dispatch({ type: FETCH_TODOS, todos })
}

As we can see, async functions make our code much more concise and easier to read! Now
that we have learned about the async/await construct, we can start testing the
useDebouncedUndo Hook.

Testing the useDebouncedUndo Hook
We are going to use the waitForNextUpdate function to test debouncing in our
useDebouncedUndo Hook by following these steps:

Create a new src/hooks/useDebouncedUndo.test.js file.1.
Import the renderHook and act functions as well as the2.
useDebouncedUndo Hook:

import { renderHook, act } from '@testing-library/react-hooks'
import useDebouncedUndo from './useDebouncedUndo'

First of all, we test whether the Hook returns a proper result, including the3.
content value, setter function, and the undoRest object:

test('should use debounced undo', () => {
 const { result } = renderHook(() => useDebouncedUndo())
 const [content, setter, undoRest] = result.current

 expect(content).toBe('')
 expect(typeof setter).toBe('function')
 expect(typeof undoRest.undo).toBe('function')
 expect(typeof undoRest.redo).toBe('function')
 expect(undoRest.canUndo).toBe(false)
 expect(undoRest.canRedo).toBe(false)
})

Building Your Own Hooks Chapter 10

[260]

Next, we test whether the content value gets updated immediately:4.

test('should update content immediately', () => {
 const { result } = renderHook(() => useDebouncedUndo())
 const [content, setter] = result.current

 expect(content).toBe('')
 act(() => setter('test'))
 const [newContent] = result.current
 expect(newContent).toBe('test')
})

Remember that we can give any name to variables we pull out from an
array using destructuring. In this case, we first name the content variable
as content, then, later, we name it newContent.

Finally, we use waitForNextUpdate to wait for the debounced effect to trigger.5.
After debouncing, we should now be able to undo our change:

test('should debounce undo history update', async () => {
 const { result, waitForNextUpdate } = renderHook(() =>
useDebouncedUndo())
 const [, setter] = result.current

 act(() => setter('test'))

 const [, , undoRest] = result.current
 expect(undoRest.canUndo).toBe(false)

 await act(async () => await waitForNextUpdate())

 const [, , newUndoRest] = result.current
 expect(newUndoRest.canUndo).toBe(true)
})

As we can see, we can use async/await in combination with the waitForNextUpdate
function to easily handle testing asynchronous operations in our Hooks.

Building Your Own Hooks Chapter 10

[261]

Running the tests
To run the tests, simply execute the following command:

> npm test

As we can see from the following screenshot, all our tests are passing successfully:

All Hook tests passing successfully

The test suite actually watches for changes in our files and automatically reruns tests. We
can use various commands to manually trigger test reruns and we can press Q to quit the
test runner.

Example code
The example code can be found in the Chapter10/chapter10_4 folder.

Just run npm install to install all dependencies and npm start to start the application,
and then visit http://localhost:3000 in your browser (if it does not open
automatically).

Building Your Own Hooks Chapter 10

[262]

Exploring the React Hooks API
The official React library provides certain built-in Hooks, which can be used to create
custom Hooks. We have already learned about the three basic Hooks that React provides:

useState

useEffect

useContext

Additionally, React provides more advanced Hooks, which can be very useful in certain
use cases:

useReducer

useCallback

useMemo

useRef

useImperativeHandle

useLayoutEffect

useDebugValue

The useState Hook
The useState Hook returns a value that will persist across re-renders, and a function to
update it. A value for the initialState can be passed to it as an argument:

const [state, setState] = useState(initialState)

Calling setState updates the value and re-renders the component with the updated
value. If the value did not change, React will not re-render the component.

A function can also be passed to the setState function, with the first argument being the
current value. For example, consider the following code:

setState(val => val + 1)

Building Your Own Hooks Chapter 10

[263]

Furthermore, a function can be passed to the first argument of the Hook if the initial state is
the result of a complex computation. In that case, the function will only be called once
during the initialization of the Hook:

const [state, setState] = useState(() => {
 return computeInitialState()
})

The State Hook is the most basic and ubiquitous Hook provided by React.

The useEffect Hook
The useEffect Hook accepts a function that contains code with side effects, such as timers
and subscriptions. The function passed to the Hook will run after the render is done and
the component is on the screen:

useEffect(() => {
 // do something
})

A cleanup function can be returned from the Hook, which will be called when the
component unmounts and is used to, for example, clean up timers or subscriptions:

useEffect(() => {
 const interval = setInterval(() => {}, 100)
 return () => {
 clearInterval(interval)
 }
})

The cleanup function will also be called before the effect is triggered again, when
dependencies of the effect update.

To avoid triggering the effect on every re-render, we can specify an array of values as the
second argument to the Hook. Only when any of these values change, the effect will get
triggered again:

useEffect(() => {
 // do something when state changes
}, [state])

This array passed as the second argument is called the dependency array of the effect. If
you want the effect to only trigger during mounting, and the cleanup function during
unmounting, we can pass an empty array as the second argument.

Building Your Own Hooks Chapter 10

[264]

The useContext Hook
The useContext Hook accepts a context object and returns the current value for the
context. When the context provider updates its value, the Hook will trigger a re-render
with the latest value:

const value = useContext(NameOfTheContext)

It is important to note that the context object itself needs to be passed to the Hook, not the
consumer or provider.

The useReducer Hook
The useReducer Hook is an advanced version of the useState Hook. It accepts
a reducer as the first argument, which is a function with two arguments: state and
action. The reducer function then returns the updated state computed from the current
state and the action. If a reducer returns the same value as the previous state, React will not
re-render components or trigger effects:

const [state, dispatch] = useReducer(reducer, initialState, initFn)

We should use the useReducer Hook instead of the useState Hook when dealing with
complex state changes. Furthermore, it is easier to deal with global state because we can
simply pass down the dispatch function instead of multiple setter functions.

The dispatch function is stable and will not change on re-renders, so it is
safe to omit it from useEffect or the useCallback dependencies.

We can specify the initial state by setting the initialState value or specifying an
initFn function as the third argument. Specifying such a function makes sense when
computing the initial state takes a long time or when we want to reuse the function to
reset state through an action.

Building Your Own Hooks Chapter 10

[265]

The useMemo Hook
The useMemo Hook takes a result of a function and memoizes it. This means that it will not
be recomputed every time. This Hook can be used for performance optimizations:

const memoizedVal = useMemo(
 () => computeVal(a, b, c),
 [a, b, c]
)

In the previous example, computeVal is a performance-heavy function that computes a
result from a, b, and c.

useMemo runs during rendering, so make sure the computation function
does not cause any side effects, such as resource requests. Side effects
should be put into a useEffect Hook.

The array passed as the second argument specifies the dependencies of the function. If any
of these values change, the function will be recomputed; otherwise, the stored result will be
used. If no array is provided, a new value will be computed on every render. If an empty
array is passed, the value will only be computed once.

Do not rely on useMemo to only compute things once. React may forget
some previously memoized values if they are not used for a long time, for
example, to free up memory. Use it only for performance optimizations.

The useMemo Hook is used for performance optimizations in React components.

The useCallback Hook
The useCallback Hook works similarly to the useMemo Hook. However, it returns a
memoized callback function instead of a value:

const memoizedCallback = useCallback(
 () => doSomething(a, b, c),
 [a, b, c]
)

Building Your Own Hooks Chapter 10

[266]

The previous code is similar to the following useMemo Hook:

const memoizedCallback = useMemo(
 () => () => doSomething(a, b, c),
 [a, b, c]
)

The function returned will only be redefined if one of the dependency values passed in the
array of the second argument changes.

The useRef Hook
The useRef Hook returns a ref object that can be assigned to a component or element via
the ref prop. Refs can be used to deal with references to elements and components in
React:

const refContainer = useRef(initialValue)

After assigning the ref to an element or component, the ref can be accessed via
refContainer.current. If InitialValue is set, refContainer.current will be set to
this value before assignment.

The following example defines an input field that will automatically be focused when
rendered:

function AutoFocusField () {
 const inputRef = useRef(null)
 useEffect(() => inputRef.current.focus(), [])
 return <input ref={inputRef} type="text" />
}

It is important to note that mutating the current value of a ref does not cause a re-render. If
this is needed, we should use a ref callback using useCallback as follows:

function WidthMeasure () {
 const [width, setWidth] = useState(0)

 const measureRef = useCallback(node => {
 if (node !== null) {
 setWidth(node.getBoundingClientRect().width)
 }
 }, [])

 return <div ref={measureRef}>I am {Math.round(width)}px wide</div>
}

Building Your Own Hooks Chapter 10

[267]

Refs can be used to access the DOM, but also to keep mutable values around, such as
storing references to intervals:

function Timer () {
 const intervalRef = useRef(null)

 useEffect(() => {
 intervalRef.current = setInterval(doSomething, 100)
 return () => clearInterval(intervalRef.current)
 })

 // ...
}

Using refs like in the previous example makes them similar to instance variables in classes,
such as this.intervalRef.

The useImperativeHandle Hook
The useImperativeHandle Hook can be used to customize instance values that are
exposed to other components when pointing a ref to it. Doing this should be avoided as
much as possible, however, as it tightly couples components together, which harms
reusability.

The useImperativeHandle Hook has the following signature:

useImperativeHandle(ref, createHandle, [dependencies])

We can use this Hook to, for example, expose a focus function that other components can
trigger via a ref to the component. This Hook should be used in combination
with forwardRef as follows:

function FocusableInput (props, ref) {
 const inputRef = useRef()
 useImperativeHandle(ref, () => ({
 focus: () => inputRef.current.focus()
 }))
 return <input {...props} ref={inputRef} />
}
FocusableInput = forwardRef(FocusableInput)

Building Your Own Hooks Chapter 10

[268]

Then, we can access the focus function as follows:

function AutoFocus () {
 const inputRef = useRef()
 useEffect(() => inputRef.current.focus(), [])
 return <FocusableInput ref={inputRef} />
}

As we can see, using refs means that we can directly access elements and components.

The useLayoutEffect Hook
The useLayoutEffect Hook is identical to the useEffect Hook, but it fires
synchronously after all DOM mutations are completed and before the component is
rendered in the browser. It can be used to read information from the DOM and adjust the
appearance of components before rendering. Updates inside this Hook will be processed
synchronously before the browser renders the component.

Do not use this Hook unless it is really needed, which is only in certain edge cases.
useLayoutEffect will block visual updates in the browser, and thus, is slower than
useEffect.

The rule here is to use useEffect first. If your mutation changes the appearance of the
DOM node, which can cause it to flicker, you should use useLayoutEffect instead.

The useDebugValue Hook
The useDebugValue Hook is useful for developing custom Hooks that are part of shared
libraries. It can be used to show certain values for debugging in React DevTools.

For example, in our useDebouncedUndo custom Hook, we could do the following:

export default function useDebouncedUndo (timeout = 200) {
 const [content, setInput] = useState('')
 const [undoContent, { set: setContent, ...undoRest }] = useUndo('')

 useDebugValue('init')

 const [setDebounce, cancelDebounce] = useDebouncedCallback(
 (value) => {
 setContent(value)
 useDebugValue('added to history')
 },

Building Your Own Hooks Chapter 10

[269]

 timeout
)
 useEffect(() => {
 cancelDebounce()
 setInput(undoContent.present)
 useDebugValue(`waiting ${timeout}ms`)
 }, [cancelDebounce, undoContent])

 function setter (value) {
 setInput(value)
 setDebounce(value)
 }

 return [content, setter, undoRest]
}

Adding these useDebugValue Hooks will show the following in the React DevTools:

When the Hook is initialized: DebouncedUndo: init
When a value was entered: DebouncedUndo: waiting 200 ms
After debouncing (after 200 ms): DebouncedUndo: added to history

Summary
In this chapter, we first learned how to extract custom Hooks from existing code in our blog
app. We extracted various Context Hooks into custom Hooks, then created API Hooks and
a more advanced Hook for debounced undo functionality. Next, we learned about
interactions between Hooks and how we can use values from other Hooks in custom
Hooks. We then created local Hooks for our blog app. Then, we learned about testing
various Hooks with Jest and the React Hooks Testing Library. Finally, we learned about all
the Hooks provided by the React Hooks API, at the time of writing.

Knowing when and how to extract custom Hooks is a very important skill in React
development. In a larger project, we are probably going to define many custom Hooks,
specifically tailored to our project's needs. Custom Hooks can also make it easier to
maintain our application, as we only need to adjust functionality in one place. Testing
custom Hooks is very important, because if we refactor our custom Hooks later on, we
want to make sure that they still work properly. Now that we know the full React Hooks
API, we can make use of all the Hooks that React provides to create our own custom
Hooks.

Building Your Own Hooks Chapter 10

[270]

In the next chapter, we are going to learn how to migrate from React class components to a
Hook-based system. We will first create a small project using class components and then
we will replace them with function components using Hooks, taking a closer look at the
differences between the two solutions.

Questions
To recap what we have learned in this chapter, try answering the following questions:

How can we extract a custom Hook from existing code?1.
What is the advantage of creating API Hooks?2.
When should we extract functionality into a custom Hook?3.
How do we use custom Hooks?4.
When should we create local Hooks?5.
Which interactions between Hooks are possible?6.
Which library can we use to test Hooks?7.
How can we test Hook actions?8.
How can we test contexts?9.
How can we test asynchronous code?10.

Further reading
If you are interested in more information about the concepts we learned in this chapter,
take a look at the following reading material:

Creating custom Hooks: https:/ /reactjs. org/ docs/ hooks- custom. html

React Hooks Testing Library: https:/ / react- hooks- testing- library. com/

React Testing Library (for testing components): https:/ /testing- library. com/
react

React Hooks API Reference: https:/ /reactjs. org/docs/ hooks- reference. html

When to use useCallback: https:/ /kentcdodds. com/ blog/ usememo- and-
usecallback

https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://reactjs.org/docs/hooks-custom.html
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://react-hooks-testing-library.com/
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://testing-library.com/react
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://reactjs.org/docs/hooks-reference.html
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback
https://kentcdodds.com/blog/usememo-and-usecallback

3
Section 3: Integration and

Migration
In the final part of the book, we will learn how to use existing state management solutions
in combination with Hooks. Additionally, we will demonstrate how to migrate React class
components, as well as existing Redux and MobX applications to Hooks.

In this section, we will cover the following chapters:

Chapter 11, Migrating from React Class Components
Chapter 12, Redux and Hooks
Chapter 13, MobX and Hooks

11
Migrating from React Class

Components
In the previous chapter we learned how to build our own Hooks by extracting custom
Hooks from existing code. Then, we used our own Hooks in the blog app and learned
about local Hooks and the interactions between Hooks. Finally, we learned how to write
tests for Hooks using the React Hooks Testing Library, and implemented tests for our
custom Hooks.

In this chapter, we are going to start by implementing a ToDo app using React class
components. In the next step, we are going to learn how to migrate an existing React class
component application to Hooks. Seeing the differences between function components
using Hooks and class components in practice will deepen our understanding about the
trade-offs of using either solution. Furthermore, by the end of this chapter we will be able
to migrate existing React applications to Hooks.

The following topics will be covered in this chapter:

Handling state with class components
Migrating an app from class components to Hooks
Learning about the trade-offs of class components versus Hooks

Migrating from React Class Components Chapter 11

[273]

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter11.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order to be able to learn and
understand properly. However, if you run into any issues, you can always
refer to the code example.

Now, let's get started with the chapter.

Handling state with class components
Before we start migrating from class components to Hooks, we are going to create a small
ToDo list app using React class components. In the next section, we are going to turn these
class components into function components using Hooks. Finally, we are going to compare
the two solutions.

Designing the app structure
As we did before with the blog app, we are going to start by thinking about the basic
structure of our app. For this app, we are going to need the following features:

A header
A way to add new todo items
A way to show all todo items in a list
A filter for the todo items

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter11
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Migrating from React Class Components Chapter 11

[274]

It is always a good idea to start with a mock-up. So, let's begin:

We start by drawing a mock-up of an interface for our ToDo app:1.

Mock-up of our ToDo app

Next, we define the fundamental components, in a similar way to how we did it2.
with the blog app:

Defining fundamental components in our app mock-up

Migrating from React Class Components Chapter 11

[275]

Now we can define the container components:3.

Defining container components in our app mock-up

As we can see, we are going to need the following components:

App

Header

AddTodo

TodoList

TodoItem

TodoFilter (+ TodoFilterItem)

The TodoList component makes use of a TodoItem component, which is used to show an
item, with a checkbox to complete and a button to remove it. The TodoFilter component
internally uses a TodoFilterItem component to show the various filters.

Initializing the project
We are going to use create-react-app in order to create a new project. Let's initialize the
project now:

Run the following command:1.

> npx create-react-app chapter11_1

Migrating from React Class Components Chapter 11

[276]

Then, remove src/App.css, as we are not going to need it.2.
Next, edit src/index.css, and adjust the margin as follows:3.

 margin: 20px;

Finally, remove the current src/App.js file, as we are going to create a new one4.
in the next step.

Now, our project has been initialized, and we can start defining the app structure.

Defining the app structure
We already know what the basic structure of our app is going to be like from the mock-up,
so let's start by defining the App component:

Create a new src/App.js file.1.
Import React and the Header, AddTodo, TodoList, and2.
TodoFilter components:

import React from 'react'

import Header from './Header'
import AddTodo from './AddTodo'
import TodoList from './TodoList'
import TodoFilter from './TodoFilter'

Now define the App component as a class component. For now, we are only3.
going to define the render method:

export default class App extends React.Component {
 render () {
 return (
 <div style={{ width: 400 }}>
 <Header />
 <AddTodo />
 <hr />
 <TodoList />
 <hr />
 <TodoFilter />
 </div>
)
 }
}

Migrating from React Class Components Chapter 11

[277]

The App component defines the basic structure of our app. It will consist of a header, a way
to add new todo items, a list of todo items, and a filter.

Defining the components
Now, we are going to define the components as static components. Later in this chapter, we
are going to implement dynamic functionality to them. For now, we are going to
implement the following static components:

Header

AddTodo

TodoList

TodoItem

TodoFilter

Let's get started implementing the components now.

Defining the Header component
We are going to start with the Header component, as it is the most simple out of all the
components:

Create a new src/Header.js file.1.
Import React and define the class component with a render method:2.

import React from 'react'

export default class Header extends React.Component {
 render () {
 return <h1>ToDo</h1>
 }
}

Now, the Header component for our app is defined.

Migrating from React Class Components Chapter 11

[278]

Defining the AddTodo component
Next, we are going to define the AddTodo component, which renders an input field and a
button.

Let's implement the AddTodo component now:

Create a new src/AddTodo.js file.1.
Import React and define the class component and a render method:2.

import React from 'react'

export default class AddTodo extends React.Component {
 render () {
 return (

In the render method, we return a form that contains an input field and an add3.
button:

 <form>
 <input type="text" placeholder="enter new task..."
style={{ width: 350, height: 15 }} />
 <input type="submit" style={{ float: 'right',
marginTop: 2 }} value="add" />
 </form>
)
 }
}

As we can see, the AddTodo component consists of an input field and a button.

Defining the TodoList component
Now, we define the TodoList component, which is going to make use of the TodoItem
component. For now, we are going to statically define two todo items in this component.

Let's start defining the TodoList component:

Create a new src/TodoList.js file.1.
Import React and the TodoItem component:2.

import React from 'react'

import TodoItem from './TodoItem'

Migrating from React Class Components Chapter 11

[279]

Then, define the class component and a render method:3.

export default class TodoList extends React.Component {
 render () {

In this render method, we statically define two todo items:4.

 const items = [
 { id: 1, title: 'Write React Hooks book', completed:
true },
 { id: 2, title: 'Promote book', completed: false }
]

Finally, we are going to render the items using the map function:5.

 return items.map(item =>
 <TodoItem {...item} key={item.id} />
)
 }
}

As we can see, the TodoList component renders a list of TodoItem components.

Defining the TodoItem component
After defining the TodoList component, we are now going to define the TodoItem
component, in order to render single items.

Let's start defining the TodoItem component:

Create a new src/TodoItem.js component.1.
Import React, and define the component, as well as the render method:2.

import React from 'react'

export default class TodoItem extends React.Component {
 render () {

Now, we are going to use destructuring in order to get the title and3.
completed props:

 const { title, completed } = this.props

Migrating from React Class Components Chapter 11

[280]

Finally, we are going to render a div element containing a checkbox, a title,4.
and a button to delete the item:

 return (
 <div style={{ width: 400, height: 25 }}>
 <input type="checkbox" checked={completed} />
 {title}
 <button style={{ float: 'right' }}>x</button>
 </div>
)
 }
}

The TodoItem component consists of a checkbox, a title, and a button to delete the item.

Defining the TodoFilter component
Finally, we are going to define the TodoFilter component. In the same file, we are going
to define another component for the TodoFilterItem.

Let's start defining the TodoFilterItem and TodoFilter components:

Create a new src/TodoFilter.js file.1.
Define a class component for the TodoFilterItem:2.

class TodoFilterItem extends React.Component {
 render () {

In this render method, we use destructuring in order to get the name prop:3.

 const { name } = this.props

Next, we are going to define an object for the style:4.

 const style = {
 color: 'blue',
 cursor: 'pointer'
 }

Then, we return a span element with the name value of the filter, and use the5.
defined style object:

 return {name}
 }
}

Migrating from React Class Components Chapter 11

[281]

Finally, we can define the actual TodoFilter component, which is going to6.
render three TodoFilterItem components, as follows:

export default class TodoFilter extends React.Component {
 render () {
 return (
 <div>
 <TodoFilterItem name="all" />{' / '}
 <TodoFilterItem name="active" />{' / '}
 <TodoFilterItem name="completed" />
 </div>
)
 }
}

Now, we have a component that lists the three different filter possibilities: all, active,
and completed.

Implementing dynamic code
Now that we have defined all of the static components, our app should look just like the
mock-up. The next step is to implement dynamic code using React state, life cycle, and
handler methods.

In this section, we are going to do the following:

Define a mock API
Define a StateContext
Make the App component dynamic
Make the AddTodo component dynamic
Make the TodoList component dynamic
Make the TodoItem component dynamic
Make the TodoFilter component dynamic

Let's get started.

Migrating from React Class Components Chapter 11

[282]

Defining the API code
First of all, we are going to define an API that will fetch todo items. In our case, we are
simply going to return an array of todo items, after a short delay.

Let's start implementing the mock API:

Create a new src/api.js file.1.
We are going to define a function that will generate a random ID for our todo2.
items based on the Universally Unique Identifier (UUID) function:

export const generateID = () => {
 const S4 = ()
=>(((1+Math.random())*0x10000)|0).toString(16).substring(1)
 return (S4()+S4()+"-"+S4()+"-"+S4()+"-"+S4()+"-
"+S4()+S4()+S4())
}

Then, we define the fetchAPITodos function, which returns a Promise, which3.
resolves after a short delay:

export const fetchAPITodos = () =>
 new Promise((resolve) =>
 setTimeout(() => resolve([
 { id: generateID(), title: 'Write React Hooks book',
completed: true },
 { id: generateID(), title: 'Promote book', completed:
false }
]), 100)
)

Now, we have a function that simulates fetching todo items from an API, by returning an
array after a delay of 100 ms.

Defining the StateContext
Next, we are going to define a context that will keep our current list of todo items. We are
going to call this context StateContext.

Let's start implementing the StateContext now:

Create a new src/StateContext.js file.1.
Import React, as follows:2.

import React from 'react'

Migrating from React Class Components Chapter 11

[283]

Now, define the StateContext and set an empty array as the fallback value:3.

const StateContext = React.createContext([])

Finally, export the StateContext:4.

export default StateContext

Now, we have a context where we can store our array of todo items.

Making the App component dynamic
We are now going to make the App component dynamic by adding functionality to fetch,
add, toggle, filter, and remove todo items. Furthermore, we are going to define a
StateContext provider.

Let's start making the App component dynamic:

In src/App.js, import the StateContext, after the other import statements:1.

import StateContext from './StateContext'

Then, import the fetchAPITodos and generateID functions from the2.
src/api.js file:

import { fetchAPITodos, generateID } from './api'

Next, we are going to modify our App class code, implementing a constructor,3.
which will set the initial state:

export default class App extends React.Component {
 constructor (props) {

In this constructor, we need to first call super, to make sure that the parent4.
class (React.Component) constructor gets called, and the component gets
initialized properly:

 super(props)

Migrating from React Class Components Chapter 11

[284]

Now, we can set the initial state by setting this.state. Initially, there will be no5.
todo items, and the filter value will be set to 'all':

 this.state = { todos: [], filteredTodos: [], filter: 'all'
}
 }

Then, we define the componentDidMount life cycle method, which is going to6.
fetch todo items when the component first renders:

 componentDidMount () {
 this.fetchTodos()
 }

Now, we are going to define the actual fetchTodos method, which in our case,7.
is simply going to set the state, because we are not going to connect this simple
app to a backend. We are also going to call this.filterTodos() in order to
update the filteredTodos array after fetching todos:

 fetchTodos () {
 fetchAPITodos().then((todos) => {
 this.setState({ todos })
 this.filterTodos()
 })
 }

Next, we define the addTodo method, which creates a new item, and adds it to8.
the state array, similar to what we did in our blog app using Hooks:

 addTodo (title) {
 const { todos } = this.state

 const newTodo = { id: generateID(), title, completed: false
}

 this.setState({ todos: [newTodo, ...todos] })
 this.filterTodos()
 }

Then, we define the toggleTodo method, which uses the map function to find9.
and modify a certain todo item:

 toggleTodo (id) {
 const { todos } = this.state

 const newTodos = todos.map(t => {
 if (t.id === id) {

Migrating from React Class Components Chapter 11

[285]

 return { ...t, completed: !t.completed }
 }
 return t
 }, [])

 this.setState({ todos: newTodos })
 this.filterTodos()
 }

Now, we define the removeTodo method, which uses the filter function to10.
find and remove a certain todo item:

 removeTodo (id) {
 const { todos } = this.state
 const newTodos = todos.filter(t => {
 if (t.id === id) {
 return false
 }
 return true
 })

 this.setState({ todos: newTodos })
 this.filterTodos()
 }

Then, we define a method to apply a certain filter to our todo items:11.

 applyFilter (todos, filter) {
 switch (filter) {
 case 'active':
 return todos.filter(t => t.completed === false)
 case 'completed':
 return todos.filter(t => t.completed === true)
 default:
 case 'all':
 return todos
 }
 }

Now, we can define the filterTodos method, which is going to call the12.
applyFilter method, and update the filteredTodos array and the
filter value:

 filterTodos (filterArg) {
 this.setState(({ todos, filter }) => ({
 filter: filterArg || filter,
 filteredTodos: this.applyFilter(todos, filterArg ||
filter)

Migrating from React Class Components Chapter 11

[286]

 }))
 }

We are using filterTodos in order to re-filter todos after
adding/removing items, as well as changing the filter. To allow both
functionalities to work correctly, we need to check whether the filter
argument, filterArg, was passed. If not, we fall back to the current
filter argument from the state.

Then, we adjust the render method in order to use state to provide a value for13.
the StateContext, and we pass certain methods to the components:

 render () {
 const { filter, filteredTodos } = this.state
 return (
 <StateContext.Provider value={filteredTodos}>
 <div style={{ width: 400 }}>
 <Header />
 <AddTodo addTodo={this.addTodo} />
 <hr />
 <TodoList toggleTodo={this.toggleTodo}
removeTodo={this.removeTodo} />
 <hr />
 <TodoFilter filter={filter}
filterTodos={this.filterTodos} />
 </div>
 </StateContext.Provider>
)
 }

Finally, we need to re-bind this to the class, so that we can pass the methods to14.
our components without the this context changing. Adjust the constructor as
follows:

 constructor () {
 super(props)
 this.state = { todos: [], filteredTodos: [], filter:
 'all' }

 this.fetchTodos = this.fetchTodos.bind(this)
 this.addTodo = this.addTodo.bind(this)
 this.toggleTodo = this.toggleTodo.bind(this)
 this.removeTodo = this.removeTodo.bind(this)
 this.filterTodos = this.filterTodos.bind(this)
 }

Migrating from React Class Components Chapter 11

[287]

Now, our App component can dynamically fetch, add, toggle, remove, and filter todo items.
As we can see, when we use class components, we need to re-bind the this context of the
handler functions to the class.

Making the AddTodo component dynamic
After making our App component dynamic, it is time to make all of our other components
dynamic as well. We are going to start from the top, with the AddTodo component.

Let's make the AddTodo component dynamic now:

In src/AddTodo.js, we first define a constructor, which sets the initial state1.
for the input field:

export default class AddTodo extends React.Component {
 constructor (props) {
 super(props)
 this.state = {
 input: ''
 }
 }

Then, we define a method for handling changes in the input field:2.

 handleInput (e) {
 this.setState({ input: e.target.value })
 }

Now, we are going to define a method that can handle a new todo item being3.
added:

 handleAdd () {
 const { input } = this.state
 const { addTodo } = this.props
 if (input) {
 addTodo(input)
 this.setState({ input: '' })
 }
 }

Migrating from React Class Components Chapter 11

[288]

Next, we can assign the state value and handler methods to the input field and4.
button:

 render () {
 const { input } = this.state
 return (
 <form onSubmit={e => { e.preventDefault();
this.handleAdd() }}>
 <input
 type="text"
 placeholder="enter new task..."
 style={{ width: 350, height: 15 }}
 value={input}
 onChange={this.handleInput}
 />
 <input
 type="submit"
 style={{ float: 'right', marginTop: 2 }}
 disabled={!input}
 value="add"
 />
 </form>
)
 }

Finally, we need to adjust the constructor in order to re-bind the this context5.
for all of the handler methods:

 constructor () {
 super(props)

 this.state = {
 input: ''
 }

 this.handleInput = this.handleInput.bind(this)
 this.handleAdd = this.handleAdd.bind(this)
 }

Now, our AddTodo component will show a disabled button as long as no text is entered.
When activated, clicking the button will trigger the handleAdd function that has been
passed down from the App component.

Migrating from React Class Components Chapter 11

[289]

Making the TodoList component dynamic
The next component in our ToDo app is the TodoList component. Here, we just need to
get the todo items from the StateContext.

Let's make the TodoList component dynamic now:

In src/TodoList.js, we first import the StateContext, below the TodoItem1.
import statement:

import StateContext from './StateContext'

Then, we set the contextType to the StateContext, which will allow us to2.
access the context via this.context:

export default class TodoList extends React.Component {
 static contextType = StateContext

With class components, if we want to use multiple contexts, we have to
use the StateContext.Consumer component, as follows:
<StateContext.Consumer>{value => <div>State is:

{value}</div>}</StateContext.Consumer>.

As you can imagine, using multiple contexts like this, will result in a very
deep component tree (wrapper hell), and our code will be hard to read
and refactor.

Now, we can get the items from this.context instead of statically defining3.
them:

 render () {
 const items = this.context

Finally, we pass all props to the TodoItem component so that we can use the4.
removeTodo and toggleTodo methods there:

 return items.map(item =>
 <TodoItem {...item} {...this.props} key={item.id} />
)
 }

Now, our TodoList component gets the items from the StateContext instead of statically
defining them.

Migrating from React Class Components Chapter 11

[290]

Making the TodoItem component dynamic
Now that we have passed on the removeTodo and toggleTodo methods as props to the
TodoItem component, we can implement these features there.

Let's make the TodoItem component dynamic now:

In src/TodoItem.js, we start by defining the handler methods for the1.
toggleTodo and removeTodo functions:

 handleToggle () {
 const { toggleTodo, id } = this.props
 toggleTodo(id)
 }

 handleRemove () {
 const { removeTodo, id } = this.props
 removeTodo(id)
 }

Then, we assign the handler methods to the checkbox and button, respectively:2.

 render () {
 const { title, completed } = this.props
 return (
 <div style={{ width: 400, height: 25 }}>
 <input type="checkbox" checked={completed}
onChange={this.handleToggle} />
 {title}
 <button style={{ float: 'right' }}
onClick={this.handleRemove}>x</button>
 </div>
)
 }

Finally, we need to re-bind the this context for the handler methods. Create a3.
new constructor, as follows:

export default class TodoItem extends React.Component {
 constructor (props) {
 super(props)

 this.handleToggle = this.handleToggle.bind(this)
 this.handleRemove = this.handleRemove.bind(this)
 }

Now, the TodoItem component triggers the toggle and remove handler functions.

Migrating from React Class Components Chapter 11

[291]

Making the TodoFilter component dynamic
Lastly, we are going to use the filterTodos method to dynamically filter our todo item
list.

Let's start making the TodoFilter component dynamic:

In src/TodoFilter.js, in the TodoFilter class, we pass all props down to the1.
TodoFilterItem components:

export default class TodoFilter extends React.Component {
 render () {
 return (
 <div>
 <TodoFilterItem {...this.props} name="all" />{' /
'}
 <TodoFilterItem {...this.props} name="active" />{'
/ '}
 <TodoFilterItem {...this.props} name="completed" />
 </div>
)
 }
}

In src/TodoFilter.js, in the TodoFilterItem class, we first define a handler2.
method for setting the filter:

 handleFilter () {
 const { name, filterTodos } = this.props
 filterTodos(name)
 }

We then get the filter prop from TodoFilter:3.

 render () {
 const { name, filter = 'all' } = this.props

Next, we use the filter prop to display the currently selected filter in bold:4.

 const style = {
 color: 'blue',
 cursor: 'pointer',
 fontWeight: (filter === name) ? 'bold' : 'normal'
 }

Migrating from React Class Components Chapter 11

[292]

Then, we bind the handler method—via onClick—to the filter item:5.

 return <span style={style}
onClick={this.handleFilter}>{name}
 }

Finally, we create a new constructor for the TodoFilterItem class, and re-6.
bind the this context of the handler method:

class TodoFilterItem extends React.Component {
 constructor (props) {
 super(props)
 this.handleFilter = this.handleFilter.bind(this)
 }

Now, our TodoFilter component triggers the handleFilter method in order to change
the filter. Our whole app is dynamic now, and we can use all of its functionalities.

Example code
The example code can be found in the Chapter11/chapter11_1 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Migrating from React class components
After setting up our example project with React class components, we are now going to
migrate this project to React Hooks. We are going to show how to migrate side effects, such
as fetching todos when the component mounts, as well as state management, which we
used for the inputs.

In this section, we are going to migrate the following components:

TodoItem

TodoList

TodoFilterItem

TodoFilter

Migrating from React Class Components Chapter 11

[293]

AddTodo

App

Migrating the TodoItem component
One of the simplest components to migrate is the TodoItem component. It does not use any
state or side effects so we can simply convert it to a function component.

Let's start migrating the TodoItem component:

Edit src/TodoItem.js and remove the class component code. We are going to1.
define a function component instead now.
We start by defining the function, which accepts five props—the title value,2.
the completed boolean, the id value, the toggleTodo function, and
the removeTodo function:

export default function TodoItem ({ title, completed, id,
toggleTodo, removeTodo }) {

Next, we define our two handler functions:3.

 function handleToggle () {
 toggleTodo(id)
 }

 function handleRemove () {
 removeTodo(id)
 }

Finally, we return JSX code in order to render our component:4.

 return (
 <div style={{ width: 400, height: 25 }}>
 <input type="checkbox" checked={completed}
onChange={handleToggle} />
 {title}
 <button style={{ float: 'right' }}
onClick={handleRemove}>x</button>
 </div>
)
}

Migrating from React Class Components Chapter 11

[294]

Try to keep your function components small, and combine them by
creating new function components that wrap them. It is always a good
idea to have many small components, rather than one large component.
They are much easier to maintain, reuse, and refactor.

As we can see, function components do not require us to re-bind this, or to define
constructors at all. Furthermore, we do not need to destructure from this.props multiple
times. We can simply define all props in the header of our function.

Migrating the TodoList component
Next, we are going to migrate the TodoList component, which wraps the TodoItem
component. Here, we use a context, which means that we can now use a Context Hook.

Let's migrate the TodoList component now:

Edit src/TodoList.js and import the useContext Hook from React:1.

import React, { useContext } from 'react'

Remove the class component code. We are going to define a function component2.
instead now.
We start by defining the header of our function. In this case, we do not3.
destructure props, but simply store them in a props object:

export default function TodoList (props) {

Now we define the Context Hook:4.

 const items = useContext(StateContext)

Finally, we return the list of rendered items, passing the item and props objects5.
to it using destructuring:

 return items.map(item =>
 <TodoItem {...item} {...props} key={item.id} />
)
}

We define the key prop last, in order to avoid overwriting it with the
destructuring of the item and props objects.

Migrating from React Class Components Chapter 11

[295]

As we can see, using contexts with Hooks is much more straightforward. We can simply
call a function, and use the return value. No magical assignment of this.context or
wrapper hell when using multiple contexts!

Furthermore, we can see that we can gradually migrate components to React Hooks, and
our app will still work. There is no need to migrate all components to Hooks at once. React
class components can work well together with function React components that use Hooks.
The only limitation is that we cannot use Hooks in class components. Therefore, we need to
migrate a whole component at a time.

Migrating the TodoFilter component
Next up is the TodoFilter component, which is not going to use any Hooks. However, we
are going to replace the TodoFilterItem and TodoFilter components with two function
components: one for the TodoFilterItem, and one for the TodoFilter component.

Migrating TodoFilterItem
First of all, we are going to migrate the TodoFilterItem component. Let's start migrating
the component now:

Edit src/TodoFilter.js and remove the class component code. We are going1.
to define a function component instead now.
Define a function for the TodoFilterItem component, which is going to accept2.
three props—the name value, the filterTodos function, and the filter value:

function TodoFilterItem ({ name, filterTodos, filter = 'all' }) {

In this function, we define a handler function for changing the filter:3.

 function handleFilter () {
 filterTodos(name)
 }

Next, we define a style object for our span element:4.

 const style = {
 color: 'blue',
 cursor: 'pointer',
 fontWeight: (filter === name) ? 'bold' : 'normal'
 }

Migrating from React Class Components Chapter 11

[296]

Finally, we return and render the span element:5.

 return {name}
}

As we can see, a function component requires much less boilerplate code than the
corresponding class component.

Migrating TodoFilter
Now that we have migrated the TodoFilterItem component, we can migrate the
TodoFilter component. Let's migrate it now:

Edit src/TodoFilter.js and remove the class component code. We are going1.
to define a function component instead now.
Define a function for the TodoFilter component. We are not going to use2.
destructuring on the props here:

export default function TodoFilter (props) {

In this component, we only return and render three TodoFilterItem3.
components—passing the props down to them:

 return (
 <div>
 <TodoFilterItem {...props} name="all" />{' / '}
 <TodoFilterItem {...props} name="active" />{' / '}
 <TodoFilterItem {...props} name="completed" />
 </div>
)
}

Now, our TodoFilter component has been successfully migrated.

Migrating the AddTodo component
Next, we are going to migrate the AddTodo component. Here, we are going to use a State
Hook to handle the input field state.

Migrating from React Class Components Chapter 11

[297]

Let's migrate the AddTodo component now:

Edit src/AddTodo.js and adjust the import statement to import the1.
useState Hook from React:

import React, { useState } from 'react'

Remove the class component code. We are going to define a function component2.
instead now.
First, we define the function, which accepts only one prop—the addTodo3.
function:

export default function AddTodo ({ addTodo }) {

Next, we define a State Hook for the input field state:4.

 const [input, setInput] = useState('')

Now we can define the handler functions for the input field and the add button:5.

 function handleInput (e) {
 setInput(e.target.value)
 }

 function handleAdd () {
 if (input) {
 addTodo(input)
 setInput('')
 }
 }

Finally, we return and render the input field and the add button:6.

 return (
 <form onSubmit={e => { e.preventDefault(); handleAdd() }}>
 <input
 type="text"
 placeholder="enter new task..."
 style={{ width: 350, height: 15 }}
 value={input}
 onChange={handleInput}
 />
 <input
 type="submit"
 style={{ float: 'right', marginTop: 2 }}
 disabled={!input}
 value="add"

Migrating from React Class Components Chapter 11

[298]

 />
 </form>
)
}

As we can see, using the State Hook makes state management much simpler. We can define
a separate value and setter function for each state value, instead of having to deal with a
state object. Furthermore, we do not need to destructure from this.state all the time. As
a result, our code is much more clean and concise.

Migrating the App component
Lastly, all that is left to do is migrating the App component. Then, our whole ToDo app will
have been migrated to React Hooks. Here, we are going to use a Reducer Hook to manage
the state, an Effect Hook to fetch todos when the component mounts, and a Memo Hook to
store the filtered todos list.

In this section, we are going to do the following:

Define the actions
Define the reducers
Migrate the App component

Defining the actions
Our app is going to accept five actions:

FETCH_TODOS: To fetch a new list of todo items—{ type: 'FETCH_TODOS',
todos: [] }

ADD_TODO: To insert a new todo item—{ type: 'ADD_TODO', title: 'Test
ToDo app' }

TOGGLE_TODO: To toggle the completed value of a todo item—{ type:
'TOGGLE_TODO', id: 'xxx' }

REMOVE_TODO: To remove a todo item—{ type: 'REMOVE_TODO', id:
'xxx' }

FILTER_TODOS: To filter todo items—{ type: 'FILTER_TODOS', filter:
'completed' }

After defining the actions, we can move on to defining the reducers.

Migrating from React Class Components Chapter 11

[299]

Defining the reducers
We are now going to define the reducers for our state. We are going to need one app
reducer and two sub-reducers: one for the todos and one for the filter.

The filtered todos list is going to be computed on the fly by the App component. We can
later use a Memo Hook to cache the result and avoid unnecessary re-computation of the
filtered todos list.

Defining the filter reducer
We are going to start by defining the reducer for the filter value. Let's define the filter
reducer now:

Create a new src/reducers.js file and import the generateID function from1.
the src/api.js file:

import { generateID } from './api'

In the src/reducers.js file, define a new function, which is going to handle2.
the FILTER_TODOS action, and set the value accordingly:

function filterReducer (state, action) {
 if (action.type === 'FILTER_TODOS') {
 return action.filter
 } else {
 return state
 }
}

Now, the filterReducer function is defined, and we can handle the FILTER_TODOS
action properly.

Defining the todos reducer
Next, we are going to define a function for the todo items. Here, we are going to handle the
FETCH_TODOS, ADD_TODO, TOGGLE_TODO and REMOVE_TODO actions.

Let's define the todosReducer function now:

In the src/reducers.js file, define a new function, which is going to handle1.
these actions:

function todosReducer (state, action) {
 switch (action.type) {

Migrating from React Class Components Chapter 11

[300]

For the FETCH_TODOS action, we simply replace the current state with the new2.
todos array:

 case 'FETCH_TODOS':
 return action.todos

For the ADD_TODO action, we are going to insert a new item at the beginning of3.
the current state array:

 case 'ADD_TODO':
 const newTodo = {
 id: generateID(),
 title: action.title,
 completed: false
 }
 return [newTodo, ...state]

For the TOGGLE_TODO action, we are going to use the map function to update a4.
single todo item:

 case 'TOGGLE_TODO':
 return state.map(t => {
 if (t.id === action.id) {
 return { ...t, completed: !t.completed }
 }
 return t
 }, [])

For the REMOVE_TODO action, we are going to use the filter function to remove5.
a single todo item:

 case 'REMOVE_TODO':
 return state.filter(t => {
 if (t.id === action.id) {
 return false
 }
 return true
 })

By default (for all other actions), we simply return the current state:6.

 default:
 return state
 }
}

Migrating from React Class Components Chapter 11

[301]

Now, the todos reducer is defined, and we can handle the FETCH_TODOS, ADD_TODO,
TOGGLE_TODO and REMOVE_TODO actions.

Defining the app reducer
Finally, we need to combine our other reducers into a single reducer for our app state. Let's
define the appReducer function now:

In the src/reducers.js file, define a new function for the appReducer:1.

export default function appReducer (state, action) {

In this function, we return an object with the values from the other reducers. We2.
simply pass the sub-state and action down to the other reducers:

 return {
 todos: todosReducer(state.todos, action),
 filter: filterReducer(state.filter, action)
 }
}

Now, our reducers are grouped together. So, we only have one state object and one
dispatch function.

Migrating the component
Now that we have defined our reducers, we can start migrating the App component. Let's
migrate it now:

Edit src/App.js and adjust the import statement to import1.
useReducer, useEffect, and useMemo from React:

import React, { useReducer, useEffect, useMemo } from 'react'

Import the appReducer function from src/reducers.js:2.

import appReducer from './reducers'

Remove the class component code. We are going to define a function component3.
instead now.

Migrating from React Class Components Chapter 11

[302]

First, we define the function, which is not going to accept any props:4.

export default function App () {

Now, we define a Reducer Hook using the appReducer function:5.

 const [state, dispatch] = useReducer(appReducer, { todos: [],
filter: 'all' })

Next, we define an Effect Hook, which is going to fetch todos via the API6.
function, and then a FETCH_TODOS action will be dispatched:

 useEffect(() => {
 fetchAPITodos().then((todos) =>
 dispatch({ type: 'FETCH_TODOS', todos })
)
 }, [])

Then, we implement the filter mechanism using a Memo Hook, in order to7.
optimize performance and avoid re-computing the filtered todos list when
nothing changes:

 const filteredTodos = useMemo(() => {
 const { filter, todos } = state
 switch (filter) {
 case 'active':
 return todos.filter(t => t.completed === false)
 case 'completed':
 return todos.filter(t => t.completed === true)

 default:
 case 'all':
 return todos
 }
 }, [state])

Now, we define various functions that are going to dispatch actions and change8.
the state:

 function addTodo (title) {
 dispatch({ type: 'ADD_TODO', title })
 }

 function toggleTodo (id) {
 dispatch({ type: 'TOGGLE_TODO', id })
 }

 function removeTodo (id) {

Migrating from React Class Components Chapter 11

[303]

 dispatch({ type: 'REMOVE_TODO', id })
 }

 function filterTodos (filter) {
 dispatch({ type: 'FILTER_TODOS', filter })
 }

Finally, we return and render all the components that are needed for our ToDo9.
app:

 return (
 <StateContext.Provider value={filteredTodos}>
 <div style={{ width: 400 }}>
 <Header />
 <AddTodo addTodo={addTodo} />
 <hr />
 <TodoList toggleTodo={toggleTodo}
removeTodo={removeTodo} />
 <hr />
 <TodoFilter filter={state.filter}
filterTodos={filterTodos} />
 </div>
 </StateContext.Provider>
)
}

As we can see, using a reducer to handle complex state changes makes our code much more
concise and easier to maintain. Our app is now fully migrated to Hooks!

Example code
The example code can be found in the Chapter11/chapter11_2 folder.

Just run npm install in order to install all dependencies and run npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Trade-offs of class components
Now that we have finished our migration from class components to Hooks, let's revise and
sum up what we have learned.

Migrating from React Class Components Chapter 11

[304]

Counting the lines of code, we can see that with 392 total lines of JavaScript code, function
components with Hooks are more concise than class components, which required 430 total
lines of JavaScript code. Additionally, the function components with Hooks are easier to
understand and test since they simply use JavaScript functions instead of complex React
constructs. Furthermore, we were able to refactor all of the state-changing logic into a
separate reducers.js file, thus decoupling it from the App component and making it
easier to refactor and test. This reduced the file size of App.js from 109 lines to 64 lines,
with an additional 50 lines in the reducers.js file.

We can see the reduced lines of code in the following table:

Comparison: lines of JavaScript code
Class components Function components with Hooks

36 ./TodoFilter.js
15 ./TodoList.js
59 ./AddTodo.js
12 ./index.js
7 ./Header.js
5 ./StateContext.js
9 ./App.test.js
135 ./serviceWorker.js
12 ./api.js
109 ./App.js
31 ./TodoItem.js

25 ./TodoFilter.js
12 ./TodoList.js
42 ./AddTodo.js
12 ./index.js
7 ./Header.js
50 ./reducers.js
5 ./StateContext.js
9 ./App.test.js
135 ./serviceWorker.js
12 ./api.js
64 ./App.js
19 ./TodoItem.js

430 total 392 total

With function components and Hooks, the following points do not need to be taken into
consideration:

No need to deal with constructors
No confusing this context (this re-binding)
No need to destructure the same values over and over again
No magic when dealing with contexts, props, and state
No need to define componentDidMount and componentDidUpdate if we want
to re-fetch data when the props change

Migrating from React Class Components Chapter 11

[305]

Furthermore, function components have the following advantages:

Encourage making small and simple components
Are easier to refactor
Are easier to test
Require less code
Are easier to understand for beginners
Are more declarative

However, class components can be fine in the following situations:

When sticking to certain conventions.
When using the latest JavaScript features to avoid this re-binding.
Are possibly easier to understand for the team because of existing knowledge.
Many projects still use classes. For libraries, this is not such a problem, because
they can work well together with function components. At work, you might need
to use classes, though.
Are not going to be removed from React anytime soon (according to the React
team).

In the end, it is a matter of preference, but Hooks do have many advantages over classes! If
you are starting a new project, definitely go for Hooks. If you are working on an existing
project, consider whether it might make sense to refactor certain components to Hook-
based components in order to make them simpler. However, you should not immediately
port all your projects to Hooks, as refactoring can always introduce new bugs. The best way
to adopt Hooks is to slowly but surely replace old class components with Hook-based
function components when appropriate. For example, if you are already refactoring a
component, you can refactor it to use Hooks!

Summary
In this chapter, we first built a ToDo app using React class components. We started by
designing the app structure, then implemented static components, and finally, we made
them dynamic. In the next section, we learned how to migrate an existing project using
class components, to function components using Hooks. Finally, we learned about the
trade-offs of class components, when class components or Hooks should be used, and how
one should go about migrating an existing project to Hooks.

Migrating from React Class Components Chapter 11

[306]

We have now seen in practice how React class components differ to function components
with Hooks. Hooks make our code much more concise and easier to read and maintain. We
have also learned that we should gradually migrate our components from class
components to function components with Hooks—there is no need to immediately migrate
the whole application.

In the next chapter, we are going to learn about handling state with Redux, the trade-offs of
using Redux versus just function components with Hooks, how to use Redux with Hooks,
and how to migrate an existing Redux application to a Hook-based setup.

Questions
In order to recap what we have learned in this chapter, try to answer the following
questions:

How are React class components defined?1.
What do we need to call when using a constructor with class components?2.
Why?
How do we set the initial state with class components?3.
How do we change the state with class components?4.
Why do we need to re-bind the this context with class component methods?5.
How can we re-bind the this context?6.
How can we use React context with class components?7.
What can we replace state management with when migrating to Hooks?8.
What are the trade-offs of using Hooks versus class components?9.
When and how should an existing project be migrated to Hooks?10.

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

ES6 classes: https:/ /developer. mozilla. org/ en/ docs/ Web/JavaScript/
Reference/ Classes

React class components: https:/ /www. robinwieruch. de/ react- component-
types/#react- class- components

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components
https://www.robinwieruch.de/react-component-types/#react-class-components

12
Redux and Hooks

In the previous chapter we learned about React class components, and how to migrate from
an existing class component-based project to a Hook-based one. Then, we learned about the
trade-offs between the two solutions, and we discussed when and how existing projects
should be migrated.

In this chapter, we are going to turn the ToDo application that we created in the previous
chapter into a Redux application. First, we are going to learn what Redux is, including the
three principles of Redux. We are also going to learn when it makes sense to use Redux in
an app, and that it is not appropriate for every app. Furthermore, we are going to learn how
to handle state with Redux. Afterward, we are going to learn how to use Redux with
Hooks, and how to migrate an existing Redux application to Hooks. Finally, we are going
to learn the trade-offs of Redux, in order to be able to decide which solution would be best
for a certain use case. By the end of this chapter, you will fully understand how to write
Redux applications using Hooks.

The following topics will be covered in this chapter:

What Redux is and when and why it should be used
Handling state with Redux
Using Redux with Hooks
Migrating a Redux application
Learning the trade-offs of Redux

Redux and Hooks Chapter 12

[308]

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found on the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter12.

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that write the code yourself in order for you to be able to learn
and understand properly. However, if you run into any issues, you can
always refer to the code example.

Now, let's get started with the chapter.

What is Redux?
As we have previously learned, there are two kinds of state in an application:

Local state: For example, to handle input field data
Global state: For example, to store the currently logged-in user

Previously in this book, we handled local state by using a State Hook, and more complex
state (often global state) using a Reducer Hook.

Redux is a solution that can be used to handle all kinds of state in React applications. It
provides a single state tree object, which contains all application state. This is similar to
what we did with the Reducer Hook in our blog application. Traditionally, Redux was also
often used to store local state, which makes the state tree very complex.

Redux essentially consists of five elements:

Store: Contains state, which is an object that describes the full state of our
application—{ todos: [], filter: 'all' }

Actions: Objects that describe a state modification—{ type:
'FILTER_TODOS', filter: 'completed' }

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter12
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

Redux and Hooks Chapter 12

[309]

Action creators: Functions that create action objects—(filter) => ({ type:
'FILTER_TODOS', filter })

Reducers: Functions that take the current state value and an action object, and
return a new state—(state, action) => { ... }

Connectors: Higher-order components that connect an existing component to
Redux, by injecting the Redux state and action creators as
props—connect(mapStateToProps, mapDispatchToProps)(Component)

In the Redux life cycle, the Store contains state, which defines the UI. The UI is connected to
the Redux store, via Connectors. User interactions with the UI then trigger Actions, which
are sent to the Reducer. The Reducer then updates the state in the Store.

We can see a visualization of the Redux life cycle in the following diagram:

Visualization of the Redux life cycle

As you can see, we have already learned about three of these components: the store (state
tree), actions, and reducers. Redux is like a more advanced version of the Reducer Hook.
The difference is that with Redux, we always dispatch state to a single reducer, therefore
changing a single state. There should not be more than one instance of Redux. Through this
restriction, we can be sure that our whole application state is contained in a single object,
which allows us to reconstruct the whole application state, just from the Redux store.

As a result of having a single store containing all state, we can easily debug faulty states by
saving the Redux store in a crash report, or we can automatically replay certain actions
during debugging so that we do not need to manually enter text and click on buttons, over
and over again. Additionally, Redux offers middleware that simplifies how we deal with
asynchronous requests, such as fetching data from a server. Now that we understand what
Redux is, in the next section, we will learn the three fundamental principles of Redux.

Redux and Hooks Chapter 12

[310]

The three principles of Redux
The Redux API is very small, and actually only consists of a handful of functions. What
makes Redux so powerful is a certain set of rules that are applied to your code when using
the library. These rules allow for the writing of scalable applications that are easy to extend,
test, and debug.

Redux is based on three fundamental principles:

Single source of truth
Read-only state
State changes are processed with pure functions

Single source of truth
This Redux principle states that data should always have a single source of truth. This
means that global data comes from a single Redux store, and local data comes from, for
example, a certain State Hook. Each kind of data only has a single source. As a result,
applications become easier to debug, and are less prone to errors.

Read-only state
With Redux, it is not possible to modify the application state directly. It is only possible to
change the state by dispatching actions. This principle makes state changes predictable: if
no action happened, the application state will not change. Furthermore, actions are
processed one at a time, so we do not have to deal with race conditions. Finally, actions are
plain JavaScript objects, which makes them easy to serialize, log, store, or replay. As a
result, debugging and testing a Redux application becomes very easy to do.

State changes are processed with pure functions
Pure functions are functions that, given the same input, will always return the same output.
Reducer functions in Redux are pure, so, given the same state and action, they will always
return the same new state.

For example, the following reducer is an impure function, because calling the function
multiple times with the same input results in a different output:

let i = 0
function counterReducer (state, action) {
 if (action.type === 'INCREMENT') {

Redux and Hooks Chapter 12

[311]

 i++
 }
 return i
}

console.log(counterReducer(0, { type: 'INCREMENT' })) // prints 1
console.log(counterReducer(0, { type: 'INCREMENT' })) // prints 2

To turn this reducer into a pure function, we have to make sure it does not depend on an
outside state, and only uses its arguments for the computation:

function counterReducer (state, action) {
 if (action.type === 'INCREMENT') {
 return state + 1
 }
 return state
}

console.log(counterReducer(0, { type: 'INCREMENT' })) // prints 1
console.log(counterReducer(0, { type: 'INCREMENT' })) // prints 1

Using pure functions for reducers makes them predictable, and easy to test and debug.
With Redux, we need to be careful to always return a new state, and not modify the
existing one. So, for example, we cannot use Array.push() on an array state, as it would
modify the existing array; we have to use Array.concat() in order to create a new array.
The same goes for objects, where we have to use rest/spread syntax to create new objects,
instead of modifying existing ones. For example, { ...state, completed: true }.

Now that we have learned about the three fundamental principles of Redux, we can move
on to using Redux in practice, by implementing state handling with Redux in our ToDo
application.

Handling state with Redux
State management with Redux is actually really similar to using a Reducer Hook. We first
define the state object, then actions, and finally, our reducers. An additional pattern in
Redux is to create functions that return action objects, so-called action creators.
Furthermore, we need to wrap our whole app with a Provider component, and connect
components to the Redux store in order to be able to use Redux state and action creators.

Redux and Hooks Chapter 12

[312]

Installing Redux
First of all, we have to install Redux, React Redux, and Redux Thunk. Let us look at what
each one does individually:

Redux itself just deals with JavaScript objects, so it provides the store, deals with
actions and action creators, and handles reducers.
React Redux provides connectors in order to connect Redux to our React
components.
Redux Thunk is a middleware that allows us to deal with asynchronous requests
in Redux.

Using Redux in combination with React offloads global state management to Redux, while
React deals with rendering the application and local state:

Illustration of how React and Redux work together

To install Redux and React Redux, we are going to use npm. Execute the following
command:

> npm install --save redux react-redux redux-thunk

Now that all of the required libraries are installed, we can start setting up our Redux store.

Defining state, actions, and reducers
The first step in developing a Redux application is defining the state, then the actions that
are going to change the state, and finally, the reducer functions, which carry out the state
modification. In our ToDo application, we have already defined the state, the actions, and
the reducers, in order to use the Reducer Hook. Here, we simply recap what we defined in
the previous chapter.

Redux and Hooks Chapter 12

[313]

State
The full state object of our ToDo app consists of two keys: an array of todo items, and a
string, which specifies the currently selected filter value. The initial state looks as
follows:

{
 "todos": [
 { "id": 1, "title": "Write React Hooks book", "completed": true },
 { "id": 2, "title": "Promote book", "completed": false }
],
 "filter": "all"
}

As we can see, in Redux, the state object contains all of the state that is important to our
app. In this case, the application state consists of an array of todos and a filter.

Actions
Our app accepts the following five actions:

FETCH_TODOS: To fetch a new list of todo items—{ type: 'FETCH_TODOS',
todos: [] }

ADD_TODO: To insert a new todo item—{ type: 'ADD_TODO', title: 'Test
ToDo app' }

TOGGLE_TODO: To toggle the completed value of a todo item—{ type:
'TOGGLE_TODO', id: 'xxx' }

REMOVE_TODO: To remove a todo item—{ type: 'REMOVE_TODO', id:
'xxx' }

FILTER_TODOS: To filter todo items—{ type: 'FILTER_TODOS', filter:
'completed' }

Reducers
We defined three reducers—one for each part of our state—and an app reducer to combine
the other two reducers. The filter reducer waits for a FILTER_TODOS action, and then sets
the new filter accordingly. The todos reducer listens to the other todo-related actions, and
adjusts the todos array by adding, removing, or modifying elements. The app reducer then
combines both reducers, and passes actions down to them. After defining all the elements
that are needed to create a Redux application, we can now set up the Redux store.

Redux and Hooks Chapter 12

[314]

Setting up the Redux store
In order to keep things simple initially, and to show how Redux works, we are not going to
use connectors for now. We are simply going to replace the state object, and the
dispatch function that was previously provided by a Reducer Hook, with Redux.

Let's set up the Redux store now:

Edit src/App.js, and import the useState Hook, as well as the createStore1.
function from the Redux library:

import React, { useState, useEffect, useMemo } from 'react'
import { createStore } from 'redux'

Below the import statements and before the App function definition, we are going2.
to initialize the Redux store. We start by defining the initial state:

const initialState = { todos: [], filter: 'all' }

Next, we are going to use the createStore function in order to define the3.
Redux store, by using the existing appReducer function and passing
the initialState object:

const store = createStore(appReducer, initialState)

Please note that in Redux, it is not best practice to initialize the state by
passing it to createStore. However, with a Reducer Hook, we need to
do it this way. In Redux, we usually initialize state by setting default
values in the reducer functions. We are going to learn more about
initializing state via Redux reducers later in this chapter.

Now, we can get the dispatch function from the store:4.

const { dispatch } = store

The next step is removing the following Reducer Hook definition within the App5.
function:

 const [state, dispatch] = useReducer(appReducer, { todos: [],
filter: 'all' })

It is replaced with a simple State Hook, which is going to store our Redux state:

 const [state, setState] = useState(initialState)

Redux and Hooks Chapter 12

[315]

Finally, we define an Effect Hook, in order to keep the State Hook in sync with6.
the Redux store state:

 useEffect(() => {
 const unsubscribe = store.subscribe(() =>
setState(store.getState()))
 return unsubscribe
 }, [])

As we can see, the app still runs in exactly the same way as before. Redux works very
similarly to the Reducer Hook, but with more functionality. However, there are slight
differences in how actions and reducers should be defined, which we are going to learn
about in the following sections.

Example code
The example code can be found in the Chapter12/chapter12_1 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Defining action types
The first step when creating a full Redux application is to define so-called action types.
They will be used to create actions in action creators and to handle actions in reducers. The
idea here is to avoid making typos when defining, or comparing, the type property of
actions.

Let's define the action types now:

Create a new src/actionTypes.js file.1.
Define and export the following constants in the newly created file:2.

export const FETCH_TODOS = 'FETCH_TODOS'
export const ADD_TODO = 'ADD_TODO'
export const TOGGLE_TODO = 'TOGGLE_TODO'
export const REMOVE_TODO = 'REMOVE_TODO'
export const FILTER_TODOS = 'FILTER_TODOS'

Redux and Hooks Chapter 12

[316]

Now that we have defined our action types, we can start using them in action creators and
reducers.

Defining action creators
After defining the action types, we need to define the actions themselves. In doing so, we
are going to define the functions that will return the action objects. These functions are
called action creators, of which there are two types:

Synchronous action creators: These simply return an action object
Asynchronous action creators: These return an async function, which will later
dispatch an action

We are going to start by defining synchronous action creators, then we are going to
learn how to define asynchronous action creators.

Defining synchronous action creators
We have already defined the action creator functions earlier, in src/App.js. We can now
copy them from our App component, making sure that we adjust the type property in
order to use the action type constants, instead of a static string.

Let's define the synchronous action creators now:

Create a new src/actions.js file.1.
Import all action types, which we are going to need to create our actions:2.

import {
 ADD_TODO, TOGGLE_TODO, REMOVE_TODO, FILTER_TODOS
} from './actionTypes'

Now, we can define and export our action creator functions:3.

export function addTodo (title) {
 return { type: ADD_TODO, title }
}

export function toggleTodo (id) {
 return { type: TOGGLE_TODO, id }
}

export function removeTodo (id) {
 return { type: REMOVE_TODO, id }

Redux and Hooks Chapter 12

[317]

}

export function filterTodos (filter) {
 return { type: FILTER_TODOS, filter }
}

As we can see, synchronous action creators simply create and return action objects.

Defining asynchronous action creators
The next step is defining an asynchronous action creator for the fetchTodos action. Here,
we are going to use the async/await construct.

We are now going to use an async function to define the fetchTodos action creator:

In src/actions.js, first import the FETCH_TODOS action type and the1.
fetchAPITodos function:

import {
 FETCH_TODOS, ADD_TODO, TOGGLE_TODO, REMOVE_TODO, FILTER_TODOS
} from './actionTypes'
import { fetchAPITodos } from './api'

Then, define a new action creator function, which will return an async function2.
that is going to get the dispatch function as an argument:

export function fetchTodos () {
 return async (dispatch) => {

In this async function, we are now going to call the API function, and dispatch3.
our action:

 const todos = await fetchAPITodos()
 dispatch({ type: FETCH_TODOS, todos })
 }
}

As we can see, asynchronous action creators return a function that will dispatch actions at a
later time.

Redux and Hooks Chapter 12

[318]

Adjusting the store
In order for us to be able to use asynchronous action creator functions in Redux, we are
going to need to load the redux-thunk middleware. This middleware checks if an action
creator returned a function, rather than a plain object, and if that is the case, it executes that
function, while passing the dispatch function to it as an argument.

Let's adjust the store to allow for asynchronous action creators now:

Create a new src/configureStore.js file.1.
Import the createStore and applyMiddleware functions from Redux:2.

import { createStore, applyMiddleware } from 'redux'

Next, import the thunk middleware and appReducer function:3.

import thunk from 'redux-thunk'

import appReducer from './reducers'

Now, we can define the store and apply the thunk middleware to it:4.

const store = createStore(appReducer, applyMiddleware(thunk))

Finally, we export the store:5.

export default store

Using the redux-thunk middleware, we can now dispatch functions that will later
dispatch actions, which means that our asynchronous action creator is going to work fine
now.

Adjusting reducers
As previously mentioned, Redux reducers differ from Reducer Hooks in that they have
certain conventions:

Each reducer needs to set its initial state by defining a default value in the
function definition
Each reducer needs to return the current state for unhandled actions

We are now going to adjust our existing reducers so that they follow these conventions. The
second convention is already implemented, because we defined a single app reducer
earlier, in order to avoid having multiple dispatch functions.

Redux and Hooks Chapter 12

[319]

Setting the initial state in Redux reducers
So, we are going to focus on the first convention—to set the initial state by defining a
default value in the function arguments, as follows:

Edit src/reducers.js and import the combineReducers function from1.
Redux:

import { combineReducers } from 'redux'

Then, rename filterReducer to filter, and set a default value:2.

function filter (state = 'all', action) {

Next, edit todosReducer and repeat the same process there:3.

function todos (state = [], action) {

Finally, we are going to use the combineReducers function to create our4.
appReducer function. Instead of creating the function manually, we can now do
the following:

const appReducer = combineReducers({ todos, filter })
export default appReducer

As we can see, Redux reducers are very similar to Reducer Hooks. Redux even provides a
function that allows us to combine multiple reducer functions into a single app reducer!

Connecting components
Now, it is time to introduce connectors and container components. In Redux we can use
the connect higher-order component to connect existing components to Redux, through
injecting state and action creators as props into them.

Redux defines two different kinds of components:

Presentational components: React components, as we have been defining them
until now
Container components: React components that connect presentational
components to Redux

Redux and Hooks Chapter 12

[320]

Container components use a connector to connect Redux to a presentational component.
This connector accepts two functions:

mapStateToProps(state): Takes the current Redux state, and returns an object
of props to be passed to the component; used to pass state to the component
mapDispatchToProps(dispatch): Takes the dispatch function from the
Redux store, and returns an object of props to be passed to the component; used
to pass action creators to the component

We are now going to define container components for our existing presentational
components:

First, we create a new src/components/ folder for all our presentational1.
components.
Then, we copy all of the existing component files to the src/components/2.
folder, and adjust the import statements for the following files: AddTodo.js,
App.js, Header.js, TodoFilter.js, TodoItem.js, and TodoList.js.

Connecting the AddTodo component
We are now going to start connecting our components to the Redux store. The
presentational components can stay the same as before. We only create new
components—container components—that wrap the presentational components, and pass
certain props to them.

Let's connect the AddTodo component now:

Create a new src/containers/ folder for all our container components.1.
Create a new src/containers/ConnectedAddTodo.js file.2.
In this file, we import the connect function from react-redux, and the3.
bindActionCreators function from redux:

import { connect } from 'react-redux'
import { bindActionCreators } from 'redux'

Next, we import the addTodo action creator and the AddTodo component:4.

import { addTodo } from '../actions'
import AddTodo from '../components/AddTodo'

Redux and Hooks Chapter 12

[321]

Now, we are going to define the mapStateToProps function. Since this5.
component does not deal with any state from Redux, we can simply return an
empty object here:

function mapStateToProps (state) {
 return {}
}

Then, we define the mapDispatchToProps function. Here we use6.
bindActionCreators to wrap the action creator with the dispatch function:

function mapDispatchToProps (dispatch) {
 return bindActionCreators({ addTodo }, dispatch)
}

This code is essentially the same as manually wrapping the action creators, as
follows:

function mapDispatchToProps (dispatch) {
 return {
 addTodo: (...args) => dispatch(addTodo(...args))
 }
}

Finally, we use the connect function to connect the AddTodo component to7.
Redux:

export default connect(mapStateToProps,
mapDispatchToProps)(AddTodo)

Now, our AddTodo component is successfully connected to the Redux store.

Connecting the TodoItem component
Next, we are going to connect the TodoItem component, so that we can use it in the
TodoList component in the next step.

Let's connect the TodoItem component now:

Create a new src/containers/ConnectedTodoItem.js file.1.
In this file, we import the connect function from react-redux, and2.
the bindActionCreators function from redux:

import { connect } from 'react-redux'
import { bindActionCreators } from 'redux'

Redux and Hooks Chapter 12

[322]

Next, we import the toggleTodo and removeTodo action creators, and3.
the TodoItem component:

import { toggleTodo, removeTodo } from '../actions'
import TodoItem from '../components/TodoItem'

Again, we only return an empty object from mapStateToProps:4.

function mapStateToProps (state) {
 return {}
}

This time, we bind two action creators to the dispatch function:5.

function mapDispatchToProps (dispatch) {
 return bindActionCreators({ toggleTodo, removeTodo }, dispatch)
}

Finally, we connect the component, and export it:6.

export default connect(mapStateToProps,
mapDispatchToProps)(TodoItem)

Now, our TodoItem component is successfully connected to the Redux store.

Connecting the TodoList component
After connecting the TodoItem component, we can now use the ConnectedTodoItem
component in the TodoList component.

Let's connect the TodoList component now:

Edit src/components/TodoList.js, and adjust the import statement as1.
follows:

import ConnectedTodoItem from '../containers/ConnectedTodoItem'

Then, rename the component that is returned from the function to2.
ConnectedTodoItem:

 return filteredTodos.map(item =>
 <ConnectedTodoItem {...item} key={item.id} />
)

Redux and Hooks Chapter 12

[323]

Now, create a new src/containers/ConnectedTodoList.js file.3.
In this file, we import only the connect function from react-redux, as we are4.
not going to bind the action creators this time:

import { connect } from 'react-redux'

Next, we import the TodoList component:5.

import TodoList from '../components/TodoList'

Now, we define the mapStateToProps function. This time, we use destructuring6.
to get todos and filter from the state object, and return them:

function mapStateToProps (state) {
 const { filter, todos } = state
 return { filter, todos }
}

Next, we define the mapDispatchToProps function, where we only return an7.
empty object, since we are not going to pass any action creators to the TodoList
component:

function mapDispatchToProps (dispatch) {
 return {}
}

Finally, we connect and export the connected TodoList component:8.

export default connect(mapStateToProps,
mapDispatchToProps)(TodoList)

Now, our TodoList component is successfully connected to the Redux store.

Adjusting the TodoList component
Now that we have connected the TodoList component, we can move the filter logic from
the App component to the TodoList component, as follows:

Import the useMemo Hook in src/components/TodoList.js:1.

import React, { useMemo } from 'react'

Redux and Hooks Chapter 12

[324]

Edit src/components/App.js, and remove the following code:2.

 const filteredTodos = useMemo(() => {
 const { filter, todos } = state
 switch (filter) {
 case 'active':
 return todos.filter(t => t.completed === false)

 case 'completed':
 return todos.filter(t => t.completed === true)

 default:
 case 'all':
 return todos
 }
 }, [state])

Now, edit src/components/TodoList.js, and add the filteredTodos code3.
here. Please note that we removed the destructuring from the state object, as the
component already receives the filter and todos values as props. We also
adjusted the dependency array accordingly:

 const filteredTodos = useMemo(() => {
 switch (filter) {
 case 'active':
 return todos.filter(t => t.completed === false)

 case 'completed':
 return todos.filter(t => t.completed === true)

 default:
 case 'all':
 return todos
 }
 }, [filter, todos])

Now, our filtering logic is in the TodoList component, instead of the App component. Let's
move on to connecting the rest of our components.

Redux and Hooks Chapter 12

[325]

Connecting the TodoFilter component
Next up is the TodoFilter component. Here, we are going to use both mapStateToProps
and mapDispatchToProps.

Let's connect the TodoFilter component now:

Create a new src/containers/ConnectedTodoFilter.js file.1.
In this file, we import the connect function from react-redux and2.
the bindActionCreators function from redux:

import { connect } from 'react-redux'
import { bindActionCreators } from 'redux'

Next, we import the filterTodos action creator and3.
the TodoFilter component:

import { filterTodos } from '../actions'
import TodoFilter from '../components/TodoFilter'

We use destructuring to get the filter from our state object, and then we4.
return it:

function mapStateToProps (state) {
 const { filter } = state
 return { filter }
}

Next, we bind and return the filterTodos action creator:5.

function mapDispatchToProps (dispatch) {
 return bindActionCreators({ filterTodos }, dispatch)
}

Finally, we connect the component and export it:6.

export default connect(mapStateToProps,
mapDispatchToProps)(TodoFilter)

Now, our TodoFilter component is successfully connected to the Redux store.

Redux and Hooks Chapter 12

[326]

Connecting the App component
The only component that still needs to be connected now, is the App component. Here, we
are going to inject the fetchTodos action creator, and update the component so that it uses
the connected versions of all the other components.

Let's connect the App component now:

Edit src/components/App.js, and adjust the following import statements:1.

import ConnectedAddTodo from '../containers/ConnectedAddTodo'
import ConnectedTodoList from '../containers/ConnectedTodoList'
import ConnectedTodoFilter from '../containers/ConnectedTodoFilter'

Also, adjust the following components that are returned from the function:2.

 return (
 <div style={{ width: 400 }}>
 <Header />
 <ConnectedAddTodo />
 <hr />
 <ConnectedTodoList />
 <hr />
 <ConnectedTodoFilter />
 </div>
)

Now, we can create the connected component. Create a new3.
src/containers/ConnectedApp.js file.
In this newly created file, we import the connect function from react-redux,4.
and the bindActionCreators function from redux:

import { connect } from 'react-redux'
import { bindActionCreators } from 'redux'

Next, we import the fetchTodos action creator, and the App component:5.

import { fetchTodos } from '../actions'
import App from '../components/App'

We already deal with the various parts of our state in other components, so there6.
is no need to inject any state into our App component:

function mapStateToProps (state) {
 return {}
}

Redux and Hooks Chapter 12

[327]

Then, we bind and return the fetchTodos action creator:7.

function mapDispatchToProps (dispatch) {
 return bindActionCreators({ fetchTodos }, dispatch)
}

Finally, we connect the App component and export it:8.

export default connect(mapStateToProps, mapDispatchToProps)(App)

Now, our App component is successfully connected to the Redux store.

Setting up the Provider component
Finally, we have to set up a Provider component, which is going to provide a context for
the Redux store, which will be used by the connectors.

Let's set up the Provider component now:

Edit src/index.js, and import the Provider component from react-redux:1.

import { Provider } from 'react-redux'

Now, import the ConnectedApp component from the containers folder and2.
import the Redux store that was created by configureStore.js:

import ConnectedApp from './containers/ConnectedApp'
import store from './configureStore'

Finally, adjust the first argument to ReactDOM.render, by wrapping the3.
ConnectedApp component with the Provider component, as follows:

ReactDOM.render(
 <Provider store={store}>
 <ConnectedApp />
 </Provider>,
 document.getElementById('root')
)

Redux and Hooks Chapter 12

[328]

Now, our application will work in the same way as before, but everything is connected to
the Redux store! As we can see, Redux requires a bit more boilerplate code than simply
using React, but it comes with a lot of advantages:

Easier handling of asynchronous actions (using the redux-thunk middleware)
Centralized action handling (no need to define action creators in the
components)
Useful functions for binding action creators and combining reducers
Reduced possibilities for errors (for example, by using action types, we can
ensure that we did not make a typo)

However, there are also disadvantages, which are as follows:

A lot of boilerplate code is required (action types, action creators, and connected
components)
Mapping of state/action creators in separate files (not in the components, where
they are needed)

The first point is an advantage and disadvantage at the same time; action types and action
creators do require more boilerplate code, but they also make it easier to update action-
related code at a later stage. The second point, and the boilerplate code that is required for
the connected components, can be solved by using Hooks to connect our components to
Redux. We are going to use Hooks with Redux in the next section of this chapter.

Example code
The example code can be found in the Chapter12/chapter12_2 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using Redux with Hooks
After turning our todo application into a Redux-based application, we are now using
higher-order components, instead of Hooks, in order to get access to the Redux state and
action creators. This is the traditional way to develop a Redux application. However, in the
latest versions of Redux, it is possible to use Hooks instead of higher-order components!
We are now going to replace the existing connectors with Hooks.

Redux and Hooks Chapter 12

[329]

Even with Hooks, the Provider component is still required in order to
provide the Redux store to other components. The definition of the store
and the provider can stay the same when refactoring from connect() to
Hooks.

The latest version of React Redux offers various Hooks as an alternative to the connect()
higher-order component. With these Hooks, you can subscribe to the Redux store, and
dispatch actions without having to wrap your components.

Using the dispatch Hook
The useDispatch Hook returns a reference to the dispatch function that is provided by
the Redux store. It can be used to dispatch actions that are returned from action creators. Its
API looks as follows:

const dispatch = useDispatch()

We are now going to use the Dispatch Hook to replace the existing container components
with Hooks.

You do not need to migrate your whole Redux application at once in
order to use Hooks. It is possible to selectively refactor certain
components—meaning that they will use Hooks—while still using
connect() for other components.

After learning how to use the Dispatch Hook, let's move on to migrating our existing
components so that they use the Dispatch Hook.

Using Hooks for the AddTodo component
Now that we have learned about the Dispatch Hook, let's see it in action by implementing it
in our AddTodo component.

Let's migrate the AddTodo component to Hooks now:

First delete the src/containers/ConnectedAddTodo.js file.1.
Now, edit the src/components/AddTodo.js file and import the2.
useDispatch Hook from react-redux:

import { useDispatch } from 'react-redux'

Redux and Hooks Chapter 12

[330]

Additionally, import the addTodo action creator:3.

import { addTodo } from '../actions'

Now, we can remove the props from the function definition:4.

export default function AddTodo () {

Then, define the Dispatch Hook:5.

 const dispatch = useDispatch()

Finally, adjust the handler function and call dispatch():6.

 function handleAdd () {
 if (input) {
 dispatch(addTodo(input))
 setInput('')
 }
 }

Now, all that is left to do is to replace the ConnectedAddTodo component with7.
the AddTodo component in src/components/App.js. First, adjust the import
statement:

import AddTodo from './AddTodo'

Then, adjust the rendered component:8.

 return (
 <div style={{ width: 400 }}>
 <Header />
 <AddTodo />

As you can see, our app still works in the same way as before, but we are now using Hooks
in order to connect the component to Redux!

Using Hooks for the App component
Next, we are going to update our App component so that it directly dispatches the
fetchTodos action. Let's migrate the App component to Hooks now:

First delete the src/containers/ConnectedApp.js file.1.

Redux and Hooks Chapter 12

[331]

Now, edit the src/components/App.js file and import2.
the useDispatch Hook from react-redux:

import { useDispatch } from 'react-redux'

Additionally, import the fetchTodos action creator:3.

import { fetchTodos } from '../actions'

Now, we can remove the props from the function definition:4.

export default function App () {

Then, define the Dispatch Hook:5.

 const dispatch = useDispatch()

Finally, adjust the Effect Hook and call dispatch():6.

 useEffect(() => {
 dispatch(fetchTodos())
 }, [dispatch])

Now, all that is left to do is to replace the ConnectedApp component with the7.
App component in src/index.js. First, adjust the import statement:

import App from './components/App'

Then, adjust the rendered component:8.

ReactDOM.render(
 <Provider store={store}>
 <App />
 </Provider>,
 document.getElementById('root')
)

As we can see, using Hooks is much simpler and more concise than defining a separate
container component.

Redux and Hooks Chapter 12

[332]

Using Hooks for the TodoItem component
Now, we are going to upgrade the TodoItem component to use Hooks. Let's migrate it
now:

First delete the src/containers/ConnectedTodoItem.js file.1.
Now, edit the src/components/TodoItem.js file, and import2.
the useDispatch Hook from react-redux:

import { useDispatch } from 'react-redux'

Additionally, import the toggleTodo and removeTodo action creators:3.

import { toggleTodo, removeTodo } from '../actions'

Now, we can remove the action creator-related props from the function4.
definition. The new code should look as follows:

export default function TodoItem ({ title, completed, id }) {

Then, define the Dispatch Hook:5.

 const dispatch = useDispatch()

Finally, adjust the handler functions to call dispatch():6.

 function handleToggle () {
 dispatch(toggleTodo(id))
 }

 function handleRemove () {
 dispatch(removeTodo(id))
 }

Now, all that is left to do is to replace the ConnectedTodoItem component with7.
the TodoItem component in src/components/TodoList.js. First, adjust the
import statement:

import TodoItem from './TodoItem'

Then, adjust the rendered component:8.

 return filteredTodos.map(item =>
 <TodoItem {...item} key={item.id} />
)

Redux and Hooks Chapter 12

[333]

Now the TodoItem component uses Hooks instead of a container component. Next, we are
going to learn about the Selector Hook.

Using the Selector Hook
Another very important Hook that is provided by Redux is the Selector Hook. It allows us
to get data from the Redux store state, by defining a selector function. The API for this
Hook is as follows:

const result = useSelector(selectorFn, equalityFn)

selectorFn is a function that works similarly to the mapStateToProps function. It will
get the full state object as its only argument. The selector function gets executed whenever
the component renders, and whenever an action is dispatched (and the state is different
than the previous state).

It is important to note that returning an object with multiple parts of the state from one
Selector Hook will force a re-render every time an action is dispatched. If multiple values
from the store need to be requested, we can do the following:

Use multiple Selector Hooks, each one returning a single field from the state
object
Use reselect, or a similar library, to create a memoized selector (we are going
to cover this in the next section)
Use the shallowEqual function from react-redux as equalityFn

We are now going to implement the Selector Hook in our ToDo application, specifically in
the TodoList and TodoFilter components.

Using Hooks for the TodoList component
First, we are going to implement a Selector Hook to get all todos for the TodoList
component, as follows:

First delete the src/containers/ConnectedTodoList.js file.1.
Now, edit the src/components/TodoList.js file, and import2.
the useSelector Hook from react-redux:

import { useSelector } from 'react-redux'

Redux and Hooks Chapter 12

[334]

Now, we can remove all the props from the function definition:3.

export default function TodoList () {

Then, we define two Selector Hooks, one for the filter value, and one for the4.
todos value:

 const filter = useSelector(state => state.filter)
 const todos = useSelector(state => state.todos)

Now, all that is left to do is to replace the ConnectedTodoList component with5.
the TodoList component in src/components/App.js. First, adjust the import
statement:

import TodoList from './TodoList'

Then, adjust the rendered component:6.

 return (
 <div style={{ width: 400 }}>
 <Header />
 <AddTodo />
 <hr />
 <TodoList />

The rest of the component can stay the same, because the values where we store the parts of
the state have the same names as before.

Using Hooks for the TodoFilter component
Finally, we are going to implement both the Selector and Dispatch Hooks in the
TodoFilter component, because we need to highlight the current filter (state from the
Selector Hook) and dispatch an action to change the filter (the Dispatch Hook).

Let's implement Hooks for the TodoFilter component now:

First, delete the src/containers/ConnectedTodoFilter.js file.1.
We can also delete the src/containers/ folder, as it is empty now.2.
Now, edit the src/components/TodoFilter.js file, and import the3.
useSelector and useDispatch Hooks from react-redux:

import { useSelector, useDispatch } from 'react-redux'

Redux and Hooks Chapter 12

[335]

Additionally, import the filterTodos action creator:4.

import { filterTodos } from '../actions'

Now, we can remove all the props from the function definition:5.

export default function TodoFilter () {

Then, define the Dispatch and Selector Hooks:6.

 const dispatch = useDispatch()
 const filter = useSelector(state => state.filter)

Finally, adjust the handler function to call dispatch():7.

 function handleFilter () {
 dispatch(filterTodos(name))
 }

Now, all that is left to do is to replace the ConnectedTodoFilter component8.
with the TodoFilter component in src/components/App.js. First, adjust the
import statement:

import TodoFilter from './TodoFilter'

Then, adjust the rendered component:9.

 return (
 <div style={{ width: 400 }}>
 <Header />
 <AddTodo />
 <hr />
 <TodoList />
 <hr />
 <TodoFilter />
 </div>
)

Now, our Redux application makes full use of Hooks instead of container components!

Redux and Hooks Chapter 12

[336]

Example code
The example code can be found in the Chapter12/chapter12_3 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Creating reusable selectors
When defining selectors as we have done until now, a new instance of the selector is
created every time the component is rendered. This is fine, if the selector function does not
do any complex operations and does not maintain internal state. Otherwise, we need to use
reusable selectors, which we are going to learn about now.

Setting up reselect
In order to create reusable selectors, we can use the createSelector function from the
reselect library. First, we have to install the library via npm. Execute the following
command:

> npm install --save reselect

Now, the reselect library has been installed, and we can use it to create reusable
selectors.

Memoizing selectors that only depend on state
If we want to memoize selectors, and the selector only depends on the state (not props), we
can declare the selector outside of the component, as follows:

Edit the src/components/TodoList.js file, and import the createSelector1.
function from reselect:

import { createSelector } from 'reselect'

Redux and Hooks Chapter 12

[337]

Then, we define selectors for the todos and filter parts of the state, before the2.
component definition:

const todosSelector = state => state.todos
const filterSelector = state => state.filter

If selectors are used by many components, it might make sense to put
them in a separate selectors.js file, and import them from there. For
example, we could put the filterSelector in a separate file, and then
import it in TodoList.js, as well as TodoFilter.js.

Now, we define a selector for the filtered todos, before the component is defined,3.
as follows:

const selectFilteredTodos = createSelector(

First, we specify the other two selectors that we want to reuse:4.

 todosSelector,
 filterSelector,

Now, we specify a filtering selector, copying the code from the useMemo Hook:5.

 (todos, filter) => {
 switch (filter) {
 case 'active':
 return todos.filter(t => t.completed === false)
 case 'completed':
 return todos.filter(t => t.completed === true)
 default:
 case 'all':
 return todos
 }
 }
)

Finally, we use our defined selector in the Selector Hook:6.

export default function TodoList () {
 const filteredTodos = useSelector(selectFilteredTodos)

Now that we have defined a reusable selector for the filtered todos, the result of filtering
the todos will be memoized, and will not be re-computed if the state did not change.

Redux and Hooks Chapter 12

[338]

Example code
The example code can be found in the Chapter12/chapter12_4 folder.

Just run npm install in order to install all dependencies and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Using the store Hook
React Redux also provides a useStore Hook, which returns a reference to the Redux store
itself. This is the same store object that was passed to the Provider component. Its API
looks like this:

const store = useStore()

It is best practice to avoid using the Store Hook directly. It usually makes more sense to use
Dispatch or Selector Hooks instead. However, there are special use cases, such as replacing
reducers, where using this Hook may be required.

In this section, we have learned how to replace connectors with Hooks in existing Redux
applications. Now, we are going to learn a strategy that will allow us to effectively migrate
existing Redux applications to Hooks.

Migrating a Redux application
In some Redux applications, local state was also stored in the Redux state tree. In others,
React class component state was used to store local state. In either case, the way to migrate
an existing Redux application is as follows:

Replace simple local state, such as input field values, with State Hooks
Replace complex local state with Reducer Hooks
Keep global state (state that is used across multiple components) in the Redux
store

We have already learned how to migrate React class components in the previous chapter. In
the previous section, we learned how to migrate from Redux connectors to using Selector
and Dispatch Hooks. We are now going to show an example of migrating Redux local state
to a Hook-based approach.

Redux and Hooks Chapter 12

[339]

Let us assume that our existing todo application stores the input field state in Redux, as
follows:

{
 "todos": [],
 "filter": "all",
 "newTodo": ""
}

Right now, whenever text is entered, we need to dispatch an action, compute the new state
by calling all reducers, and then update the Redux store state. As you can imagine, this can
get quite performance heavy if we have many input fields. Instead of storing
the newTodo field in Redux, we should use a State Hook to store this local state, as it is only
used internally by one component. We have already done this correctly during the
implementation of the AddTodo component in our example app.

Now that we have learned how to migrate existing Redux applications to Hooks, we can
move on to discussing the trade-offs of Redux.

Trade-offs of Redux
To wrap up, let us summarize the pros and cons of using Redux in a web application. First,
let us start with the positives:

Provides a certain project structure that allows us to easily extend and modify
code later on
Fewer possibilities for errors in our code
Better performance than using React Context for state
Makes the App component much simpler (offloads state management and action
creators to Redux)

Redux is a perfect fit for larger projects that deal with complex state changes, and state that
is used across many components.

However, there are also downsides to using Redux:

Writing boilerplate code required
Project structure becomes more complicated
Redux requires a wrapper component (Provider) to connect the app to the store

Redux and Hooks Chapter 12

[340]

As a result, Redux should not be used for simple projects. In these cases, a Reducer Hook
might be enough. With a Reducer Hook, there is no need for wrapper components in order
to connect our app to the state store. Furthermore, if we use multiple Reducer Hooks, it is
slightly more performant to send actions to a specific reducer, instead of a global app
reducer. However, the downside lies in having to deal with multiple dispatch functions,
and keeping the various states synchronized. We also cannot use middleware,
including support for asynchronous actions, with a Reducer Hook. If state changes are
complex but only local to a certain component, it might make sense to use a Reducer Hook,
but if the state is used throughout multiple components, or it is relevant for the whole app,
we should definitely store it in Redux.

You might not need Redux if your component does not do the following:

Use the network
Save or load state
Share state with other non-child components

In that case, it makes sense to use a State or Reducer Hook, instead of Redux.

Summary
In this chapter we first learned what Redux is, as well as when and why it should be used.
Then, we learned about the three principles of Redux. Next, we used Redux in practice to
handle state in our ToDo application. We also learned about synchronous and
asynchronous action creators. Then, we learned how to use Redux with Hooks, and how to
migrate an existing Redux application to a Hook-based solution. Finally, we learned about
the trade-offs of using Redux and Reducer Hooks.

In the next and final chapter, we are going to learn about handling state with MobX. We are
going to learn what MobX is and how to use it the traditional way with React. Then, we are
going to learn how to use MobX with Hooks, and we will also understand how to migrate
an existing MobX application to a Hook-based solution.

Redux and Hooks Chapter 12

[341]

Questions
In order to recap what we have learned in this chapter, try to answer the following
questions:

What kind of state should Redux be used for?1.
Which elements does Redux consist of?2.
What are the three principles of Redux?3.
Why do we define action types?4.
How can we connect components to Redux?5.
Which Hooks can we use with Redux?6.
Why should we create reusable selectors?7.
How can we migrate a Redux application?8.
What are the trade-offs of Redux?9.
When should we use Redux?10.

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

Learning Redux, published by
Packt: https://www.packtpub.com/web-development/learning-redux
Official Redux docs: https:/ / redux. js.org

Official React-Redux docs: https:/ /react- redux. js.org/

Information about Hooks and Redux: https:/ /react- redux. js.org/ next/ api/
hooks

Reselect library on GitHub: https:/ /github. com/ reduxjs/ reselect

https://www.packtpub.com/web-development/learning-redux
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://redux.js.org
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://react-redux.js.org/next/api/hooks
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect

13
MobX and Hooks

In the previous chapter, we learned about Redux and how to use Redux in combination
with Hooks. We also learned how to migrate existing Redux applications to a Hook-based
solution. Furthermore, we learned about the trade-offs of using Reducer Hooks versus
Redux, and when to use either one of them.

In this chapter, we are going to learn how to use MobX in combination with Hooks. We are
going to start by learning how to handle state with MobX, then move on to using MobX
with Hooks. Furthermore, we will learn how to migrate an existing MobX application to
Hooks. Finally, we are going to discuss the pros and cons of using MobX. By the end of this
chapter, you will fully understand how to write MobX applications using Hooks.

The following topics will be covered in this chapter:

Learning what MobX is and how it works
Handling state with MobX
Using MobX with Hooks
Migrating a MobX application
Learning about the trade-offs of MobX

Technical requirements
A fairly recent version of Node.js should already be installed (v11.12.0 or higher). The npm
package manager for Node.js also needs to be installed.

The code for this chapter can be found in the GitHub repository: https:/ /github. com/
PacktPublishing/Learn- React- Hooks/ tree/ master/ Chapter13.

https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13
https://github.com/PacktPublishing/Learn-React-Hooks/tree/master/Chapter13

MobX and Hooks Chapter 13

[343]

Check out the following video to see the code in action:

http://bit.ly/2Mm9yoC

Please note that it is highly recommended that you write the code on your
own. Do not simply run the code examples that have been provided. It is
important that you write the code yourself in order to be able to learn and
understand it properly. However, if you run into any issues, you can
always refer to the code example.

Now, let's get started with the chapter.

What is MobX?
MobX takes a different approach than Redux. Rather than applying restrictions to make
state changes predictable, it aims to automatically update anything that is derived from the
application state. Rather than dispatching actions, in MobX we can directly modify the state
object and MobX will take care of updating anything that uses the state.

The MobX life cycle works as follows:

Events (such as onClick) invoke actions, which are the only things that can1.
modify state:

@action onClick = () => {
 this.props.todo.completed = true
}

State is observable, and should not contain redundant or derivable data. State is2.
very flexible—it can contain classes, arrays, references, or it can even be a graph:

@observable todos = [
 { title: 'Learn MobX', completed: false }
]

Computed values are derived from state through a pure function. These will be3.
automatically updated by MobX:

@computed get activeTodos () {
 return this.todos.filter(todo => !todo.completed)
}

http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC
http://bit.ly/2Mm9yoC

MobX and Hooks Chapter 13

[344]

Reactions are like computed values, but they can also produce a side effect4.
instead of a value, such as updating the user interface in React:

const TodoList = observer(({ todos }) => (
 <div>
 {todos.map(todo => <TodoItem {...todo} />)}
 </div>
)

We can see a visualization of the MobX life cycle in the following diagram:

Visualization of the MobX life cycle

MobX and React work very well together. Whenever MobX detects that state has changed,
it will cause a re-render of the appropriate components.

Unlike Redux, there are not many restrictions to learn about in order to use MobX. We only
need to learn about a handful of core concepts, such as observables, computed values, and
reactions.

Now that we know about the MobX life cycle, let's move on to handling state with MobX in
practice.

MobX and Hooks Chapter 13

[345]

Handling state with MobX
The best way to learn about MobX is by using it in practice and seeing how it works. So,
let's start by porting our ToDo application from Chapter 11, Migrating from React Class
Components, to MobX. We start by copying the code example
from Chapter11/chapter11_2/.

Installing MobX
The first step is to install MobX and MobX React, via npm. Execute the following command:

> npm install --save mobx mobx-react

Now that MobX and MobX React are installed, we can start setting up the store.

Setting up the MobX store
After installing MobX, it is time to set up our MobX store. The store will store all state, and
the related computed values and actions. It is usually defined with a class.

Let's define the MobX store now:

Create a new src/store.js file.1.
Import the observable, action, and computed decorators, as well as the2.
decorate function from MobX. These will be used to tag various functions and
values in our store:

import { observable, action, computed, decorate } from 'mobx'

Also import the fetchAPITodos and generateID functions from our API code:3.

import { fetchAPITodos, generateID } from './api'

Now, we define the store by using a class:4.

export default class TodoStore {

In this store, we store a todos array, and the filter string value. These two5.
values are observables. We are going to tag them as such later on:

 todos = []
 filter = 'all'

MobX and Hooks Chapter 13

[346]

With a special project setup, we could use an experimental JavaScript
feature, known as decorators, to tag our values as observables by writing
@observable todos = []. However, this syntax is not supported by
create-react-app, since it is not part of the JavaScript standard yet.

Next, we define a computed value in order to get all of the filtered todos from6.
our store. The function will be similar to the one that we had in src/App.js, but
now we will use this.filter and this.todos. Again, we have to tag the
function as computed later on. MobX will automatically trigger this function
when needed, and store the result until the state that it depends on changes:

 get filteredTodos () {
 switch (this.filter) {
 case 'active':
 return this.todos.filter(t => t.completed ===
false)
 case 'completed':
 return this.todos.filter(t => t.completed === true)

 default:
 case 'all':
 return this.todos
 }
 }

Now, we define our actions. We start with the fetch action. As before, we have7.
to tag our action functions with the action decorator at a later point. In MobX,
we can directly modify our state by setting this.todos. Because the todos
value is observable, any changes to it will be automatically tracked by MobX:

 fetch () {
 fetchAPITodos().then((fetchedTodos) => {
 this.todos = fetchedTodos
 })
 }

Then, we define our addTodo action. In MobX, we do not use immutable values,8.
so we should not create a new array. Instead, we always modify the existing
this.todos value:

 addTodo (title) {
 this.todos.push({ id: generateID(), title, completed: false
})
 }

MobX and Hooks Chapter 13

[347]

As you can see, MobX takes a more imperative approach, where values
are directly modified, and MobX automatically keeps track of the changes.
We do not need to use the rest/spread syntax to create new arrays;
instead, we modify the existing state array directly.

Next up is the toggleTodo action. Here, we loop through all of the todos and9.
modify the item with a matching id. Note how we can modify items within an
array, and the change will still be tracked by MobX. In fact, MobX will even
notice that only one value of the array has changed. In combination with React,
this means that the list component will not re-render; only the item component of
the item that changed is going to re-render. Please note that for this to be
possible, we have to split up our components appropriately, such as making
separate list and item components:

 toggleTodo (id) {
 for (let todo of this.todos) {
 if (todo.id === id) {
 todo.completed = !todo.completed
 break
 }
 }
 }

The for (let .. of ..) { construct will loop through all items of an
array, or any other iterable value.

Now, we define the removeTodo action. First, we find the index of the todo10.
item that we want to remove:

 removeTodo (id) {
 let index = 0
 for (let todo of this.todos) {
 if (todo.id === id) {
 break
 } else {
 index++
 }
 }

MobX and Hooks Chapter 13

[348]

Then, we use splice to remove one element—starting from the index of the11.
found element. This means that we cut out the item with the given id from our
array:

 this.todos.splice(index, 1)
 }

The last action that we define, is the filterTodos action. Here, we simply set12.
the this.filter value to the new filter:

 filterTodos (filterName) {
 this.filter = filterName
 }
}

Finally, we have to decorate our store with the various decorators that we13.
mentioned earlier. We do this by calling the decorate function on our store class
and passing an object mapping values and methods to decorators:

decorate(TodoStore, {

We start with the todos and filter values, which are observables:14.

 todos: observable,
 filter: observable,

Then, we decorate the computed value—filteredTodos:15.

 filteredTodos: computed,

Last but not least, we decorate our actions:16.

 fetch: action,
 addTodo: action,
 toggleTodo: action,
 removeTodo: action,
 filterTodos: action
})

Now, our MobX store is decorated properly and ready to be used!

MobX and Hooks Chapter 13

[349]

Defining the Provider component
We could now initialize the store in our App component, and pass it down to all of the other
components. However, it is a better idea to use React Context. That way, we can access the
store from anywhere in our app. MobX React offers a Provider component, which
provides the store in a context.

Let's get started using the Provider component now:

Edit src/index.js, and import the Provider component from mobx-react:1.

import { Provider } from 'mobx-react'

Then, import the TodoStore from our store.js file:2.

import TodoStore from './store'

Now, we create a new instance of the TodoStore class:3.

const store = new TodoStore()

Finally, we have to adjust the first argument to ReactDOM.render(), in order to4.
wrap the App component with the Provider component:

ReactDOM.render(
 <Provider todoStore={store}>
 <App />
 </Provider>,
 document.getElementById('root')
)

Unlike Redux, with MobX, it is possible to provide multiple stores in our
app. However, here, we only provide one store, and we call it todoStore.

Now, our store is initialized and ready to be used in all other components.

Connecting components
Now that our MobX store is available as a context, we can start connecting our components
to it. To do so, MobX React provides the inject higher-order component, which we can
use to inject the store into our components.

MobX and Hooks Chapter 13

[350]

In this section, we are going to connect the following components to our MobX store:

App

TodoList

TodoItem

AddTodo

TodoFilter

Connecting the App component
We are going to start by connecting our App component, where we will use the fetch
action to fetch all todos from our API, when the app initializes.

Let's connect the App component now:

Edit src/App.js, and import the inject function from mobx-react:1.

import { inject } from 'mobx-react'

Then, wrap the App component with inject. The inject function is used to2.
inject the store (or multiple stores) as props to the component:

export default inject('todoStore')(function App ({ todoStore }) {

It is possible to specify multiple stores in the inject function, as follows:
inject('todoStore', 'otherStore'). Then, two props will be
injected: todoStore and otherStore.

Now that we have the todoStore available, we can use it to call the fetch3.
action within our Effect Hook:

 useEffect(() => {
 todoStore.fetch()
 }, [todoStore])

We can now remove the filteredTodos Memo Hook, the handler functions, the4.
StateContext.Provider component, and all of the props that we passed down
to the other components:

 return (
 <div style={{ width: 400 }}>
 <Header />

MobX and Hooks Chapter 13

[351]

 <AddTodo />
 <hr />
 <TodoList />
 <hr />
 <TodoFilter />
 </div>
)
})

Now, our App component will fetch todos from the API, and then they will be stored in
the TodoStore.

Connecting the TodoList component
After storing the todos in our store, we can get them from the store, and then we can list all
of the todo items in the TodoList component.

Let's connect the TodoList component now:

Edit src/TodoList.js and import the inject and observer functions:1.

import { inject, observer } from 'mobx-react'

Remove all context-related imports and Hooks. 2.
As before, we use the inject function to wrap the component. Additionally, we3.
now wrap our component with the observer function. The observer function
tells MobX that this component should re-render when the store updates:

export default inject('todoStore')(observer(function TodoList ({
todoStore }) {

We can now use the filteredTodos computed value from our store, to list all4.
todo items with the filter applied. To make sure that MobX can still track when
changes to the item object occur, we do not use the spread syntax here. If we used
the spread syntax, all of the todo items would re-render, even if only one
changed:

 return todoStore.filteredTodos.map(item =>
 <TodoItem key={item.id} item={item} />
)
}))

MobX and Hooks Chapter 13

[352]

Now, our app will already list all of the todo items. However, we cannot toggle or remove
the todo items yet.

Connecting the TodoItem component
To be able to toggle or remove todo items, we have to connect the TodoItem component.
We also define the TodoItem component as an observer, so that MobX knows it will have
to re-render the component when the item object changes.

Let's connect the TodoItem component now:

Edit src/TodoItem.js, and import the inject and observer functions1.
from mobx-react:

import { inject, observer } from 'mobx-react'

Then, wrap the TodoItem component with inject and observer:2.

export default inject('todoStore')(observer(function TodoItem ({
item, todoStore }) {

We can now use destructuring of the item object within the component. As it is3.
defined as an observer, MobX will be able to track changes to the item object,
even after destructuring:

 const { title, completed, id } = item

Now that we have the todoStore available, we can use it to adjust our handler4.
functions, and to call the corresponding actions:

 function handleToggle () {
 todoStore.toggleTodo(id)
 }

 function handleRemove () {
 todoStore.removeTodo(id)
 }

Now, our TodoItem component will call the toggleTodo and removeTodo actions from
our todoStore, so we can now toggle and remove the todo items!

MobX and Hooks Chapter 13

[353]

Connecting the AddTodo component
To be able to add new todo items, we have to connect the AddTodo component.

Let's connect the AddTodo component now:

Edit src/AddTodo.js and import the inject function from mobx-react:1.

import { inject } from 'mobx-react'

Then, wrap the AddTodo component with inject:2.

export default inject('todoStore')(function AddTodo ({ todoStore })
{

Now that we have the todoStore available, we can use it to adjust our handler3.
function, and to call the addTodo action:

 function handleAdd () {
 if (input) {
 todoStore.addTodo(input)
 setInput('')
 }
 }

Now, our AddTodo component will call the addTodo action from our todoStore, so we
can now add new todo items!

Connecting the TodoFilter component
Lastly, we have to connect the TodoFilter component in order to be able to select
different filters. We also want to show the currently selected filter, so this component needs
to be an observer.

Let's connect the TodoFilter component now:

Edit src/TodoFilter.js and import the inject and observer functions:1.

import { inject, observer } from 'mobx-react'

We use the inject and observer functions to wrap the component:2.

const TodoFilterItem = inject('todoStore')(observer(function
TodoFilterItemWrapped ({ name, todoStore }) {

MobX and Hooks Chapter 13

[354]

We now adjust our handler function to call the filterTodos action from the3.
store:

 function handleFilter () {
 todoStore.filterTodos(name)
 }

Finally, we adjust the style object to use the filter value from todoStore, in4.
order to check whether the filter is currently selected:

 const style = {
 color: 'blue',
 cursor: 'pointer',
 fontWeight: (todoStore.filter === name) ? 'bold': 'normal'
 }

Furthermore, we can now get rid of passing down the props in the FilterItem5.
component. Remove the following parts that are marked in bold:

export default function TodoFilter (props) {
 return (
 <div>
 <TodoFilterItem {...props} name="all" />{' / '}
 <TodoFilterItem {...props} name="active" />{' / '}
 <TodoFilterItem {...props} name="completed" />
 </div>
)
}

Now, we can select new filters, which will be marked as selected, in bold. The todo list will
also automatically be filtered, because MobX detects a change in the filter value, which
causes the filteredTodos computed value to update, and the TodoList observer
component to re-render.

Example code
The example code can be found in the Chapter13/chapter13_1 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

MobX and Hooks Chapter 13

[355]

Using MobX with Hooks
In the previous section, we learned how to use MobX with React. As we have seen, to be
able to connect our components to the MobX store, we need to wrap them with the inject
function, and in some cases, also with the observer function. Instead of using these
higher-order components to wrap our components, since the release of v6 of mobx-react,
we can also use Hooks to connect our components to the MobX store. We are now going to
use MobX with Hooks!

Defining a store Hook
First of all, we have to define a Hook in order to access our own store. As we have learned
before, MobX uses React Context to provide, and inject, state into various components. We
can get the MobXProviderContext from mobx-react and create our own custom context
Hook in order to access all stores. Then, we can create another Hook, to specifically access
our TodoStore.

So, let's begin defining a store Hook:

Create a new src/hooks.js file.1.
Import the useContext Hook from react, and the MobXProviderContext2.
from mobx-react:

import { useContext } from 'react'
import { MobXProviderContext } from 'mobx-react'

Now, we define and export a useStores Hook, which returns a Context Hook3.
for the MobXProviderContext:

export function useStores () {
 return useContext(MobXProviderContext)
}

Finally, we define a useTodoStore Hook, which gets the todoStore from our4.
previous Hook, and then returns it:

export function useTodoStore () {
 const { todoStore } = useStores()
 return todoStore
}

MobX and Hooks Chapter 13

[356]

Now, we have a general Hook, to access all stores from MobX, and a specific Hook to access
the TodoStore. If we need to, we can also define more Hooks for other stores at a later
point.

Upgrading components to Hooks
After creating a Hook to access our store, we can use it instead of wrapping our
components with the inject higher-order component function. In the upcoming sections,
we will see how we can use Hooks to upgrade our various components.

Using Hooks for the App component
We are going to start by upgrading our App component. It is possible to gradually refactor
components so that they use Hooks instead. We do not need to refactor every component at
once.

Let's use Hooks for the App component now:

Edit src/App.js and remove the following import statement:1.

import { inject } from 'mobx-react'

Then, import the useTodoStore Hook from our hooks.js file:2.

import { useTodoStore } from './hooks'

Now, remove the inject function that is wrapping the App component, and3.
remove all props. The App function definition should now look as follows:

export default function App () {

Finally, use our Todo Store Hook to get the todoStore object:4.

 const todoStore = useTodoStore()

As you can see, our app still works in the same way as before! However, we are now using
Hooks in the App component, which makes the code much more clean and concise.

MobX and Hooks Chapter 13

[357]

Using Hooks for the TodoList component
Next, we are going to upgrade our TodoList component. Additionally, we are also going
to use the useObserver Hook, which replaces the observer higher-order component.

Let's use Hooks for the TodoList component now:

Edit src/TodoList.js, and remove the following import statement:1.

import { inject, observer } from 'mobx-react'

Then, import the useObserver Hook from mobx-react and2.
the useTodoStore Hook from our hooks.js file:

import { useObserver } from 'mobx-react'
import { useTodoStore } from './hooks'

Now, remove the inject and observer functions that are wrapping the3.
TodoList component, and also remove all props. The TodoList function
definition should now look as follows:

export default function TodoList () {

Again, we use the Todo Store Hook to get the todoStore object:4.

 const todoStore = useTodoStore()

Finally, we wrap the returned elements with the useObserver Hook. Everything5.
within the Observer Hook will be recomputed when the state that is used within
the Hook changes:

 return useObserver(() =>
 todoStore.filteredTodos.map(item =>
 <TodoItem key={item.id} item={item} />
)
)
}

In our case, MobX will detect that the observer that was defined via the
useObserver Hook depends on todoStore.filteredTodos, and filteredTodos
depends on the filter and todos values. As a result, the list will be re-rendered
whenever either the filter value or the todos array changes.

MobX and Hooks Chapter 13

[358]

Using Hooks for the TodoItem component
Next, we are going to upgrade the TodoItem component, which will be a similar process to
what we did with the TodoList component.

Let's use Hooks for the TodoItem component now:

Edit src/TodoItem.js and remove the following import statement:1.

import { inject, observer } from 'mobx-react'

Then, import the useObserver Hook from mobx-react, and2.
the useTodoStore Hook from our hooks.js file:

import { useObserver } from 'mobx-react'

import { useTodoStore } from './hooks'

Now, remove the inject and observer functions that are wrapping the3.
TodoItem component, and also remove the todoStore prop. The TodoItem
function definition should now look as follows:

export default function TodoItem ({ item }) {

Next, we have to remove the destructuring (the code in bold) because our whole4.
component is not defined as observable anymore, so MobX will not be able to
track the changes to the item object:

 const { title, completed, id } = item

Then, use the Todo Store Hook to get the todoStore object:5.

 const todoStore = useTodoStore()

Now, we have to adjust the handler functions so that they use item.id instead6.
of id directly. Please note that we assume that the id does not change, therefore,
it is not wrapped within an Observer Hook:

 function handleToggle () {
 todoStore.toggleTodo(item.id)
 }

 function handleRemove () {
 todoStore.removeTodo(item.id)
 }

MobX and Hooks Chapter 13

[359]

Finally, we wrap the return statement with an Observer Hook and do the7.
destructuring there. This ensures that changes to the item object are tracked by
MobX, and that the component will re-render accordingly when the properties of
the object change:

 return useObserver(() => {
 const { title, completed } = item
 return (
 <div style={{ width: 400, height: 25 }}>
 <input type="checkbox" checked={completed}
onChange={handleToggle} />
 {title}
 <button style={{ float: 'right' }}
onClick={handleRemove}>x</button>
 </div>
)
 })
}

Now, our TodoItem component is properly connected to the MobX store.

If the item.id property changes, we would have to wrap the handler functions, and the
return function, within a single useObserver Hook, as follows:

 return useObserver(() => {
 const { title, completed, id } = item

 function handleToggle () {
 todoStore.toggleTodo(id)
 }

 function handleRemove () {
 todoStore.removeTodo(id)
 }

 return (
 <div style={{ width: 400, height: 25 }}>
 <input type="checkbox" checked={completed}
onChange={handleToggle} />
 {title}
 <button style={{ float: 'right' }}
onClick={handleRemove}>x</button>
 </div>
)
 })

MobX and Hooks Chapter 13

[360]

Note that we cannot wrap the handler functions and the return statement in separate
Observer Hooks, because then the handler functions would only be defined within the
closure of the first Observer Hook. This would mean that we would not be able to access
the handler functions from within the second Observer Hook.

Next, we are going to continue to upgrade our components by using Hooks for the
AddTodo component.

Using Hooks for the AddTodo component
We repeat the same upgrade process as we did in the App component for the AddTodo
component, as follows:

Edit src/AddTodo.js and remove the following import statement:1.

import { inject } from 'mobx-react'

Then, import the useTodoStore Hook from our hooks.js file:2.

import { useTodoStore } from './hooks'

Now, remove the inject function that is wrapping the AddTodo component,3.
and also remove all props. The AddTodo function definition should now look as
follows:

export default function AddTodo () {

Finally, use the Todo Store Hook to get the todoStore object:4.

 const todoStore = useTodoStore()

Now, our AddTodo component is connected to the MobX store and we can move on to
upgrading the TodoFilter component.

Using Hooks for the TodoFilter component
For the TodoFilter component, we are going to use a similar process to the one that we
used for the TodoList component. We are going to use our useTodoStore Hook and the
useObserver Hook.

MobX and Hooks Chapter 13

[361]

Let's use Hooks for the TodoFilter component now:

Edit src/TodoFilter.js and remove the following import statement:1.

import { inject, observer } from 'mobx-react'

Then, import the useObserver Hook from mobx-react, and2.
the useTodoStore Hook from our hooks.js file:

import { useObserver } from 'mobx-react'
import { useTodoStore } from './hooks'

Now, remove the inject and observer functions that are wrapping the3.
TodoFilterItem component, and also remove the todoStore prop. The
TodoFilterItem function definition should now look as follows:

function TodoFilterItem ({ name }) {

Again, we use the Todo Store Hook to get the todoStore object:4.

 const todoStore = useTodoStore()

Finally, we wrap the style object with the useObserver Hook. Remember,5.
everything within the Observer Hook will be re-computed when the state that is
used within the Hook changes:

 const style = useObserver(() => ({
 color: 'blue',
 cursor: 'pointer',
 fontWeight: (todoStore.filter === name) ? 'bold' : 'normal'
 }))

In this case, the style object will be re-computed whenever the todoStore.filter value
changes, which will cause the element to re-render, and change the font weight when a
different filter is selected.

Example code
The example code can be found in the Chapter13/chapter13_2 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

MobX and Hooks Chapter 13

[362]

Using the local store Hook
In addition to providing global stores to store application-wide state, MobX also provides
local stores to store local state. To create a local store, we can use the
useLocalStore Hook.

We are now going to implement the Local Store Hook in the AddTodo component:

Edit src/AddTodo.js and import the useLocalStore Hook, as well as the1.
useObserver Hook from mobx-react:

import { useLocalStore, useObserver } from 'mobx-react'

Then, remove the following State Hook:2.

 const [input, setInput] = useState('')

Replace it with a Local Store Hook:

 const inputStore = useLocalStore(() => ({

In this local store, we can define state values, computed values, and actions. The
useLocalStore Hook will automatically decorate values as observable, getter
functions (the get prefix) as computed values, and normal functions as actions.

We start with a value state for the input field:3.

 value: '',

Then, we define a computed value, which will tell us whether the add button4.
should be disabled or not:

 get disabled () {
 return !this.value
 },

Next, we define the actions. The first action updates the value from an input5.
event:

 updateFromInput (e) {
 this.value = e.target.value
 },

MobX and Hooks Chapter 13

[363]

Then, we define another action to update the value from a simple string:6.

 update (val) {
 this.value = val
 }
 }))

Now, we can adjust the input handler function, and call the updateFromInput7.
action:

 function handleInput (e) {
 inputStore.updateFromInput(e)
 }

We also have to adjust the handleAdd function:8.

 function handleAdd () {
 if (inputStore.value) {
 todoStore.addTodo(inputStore.value)
 inputStore.update('')
 }
 }

Finally, we wrap the elements with a useObserver Hook, in order to make sure9.
that the input field value gets updated when it changes, and we adjust the
disabled and value props:

 return useObserver(() => (
 <form onSubmit={e => { e.preventDefault(); handleAdd() }}>
 <input
 type="text"
 placeholder="enter new task..."
 style={{ width: 350, height: 15 }}
 value={inputStore.value}
 onChange={handleInput}
 />
 <input
 type="submit"
 style={{ float: 'right', marginTop: 2 }}
 disabled={inputStore.disabled}
 value="add"
 />
 </form>
))
}

MobX and Hooks Chapter 13

[364]

Now, our AddTodo component uses a local MobX store in order to handle its input value,
and to disable/enable the button. As you can see, with MobX, it is possible to use multiple
stores, for local as well as global states. The hard part is deciding how to split up and group
your stores in a way that makes sense for the given application.

Example code
The example code can be found in the Chapter13/chapter13_3 folder.

Just run npm install in order to install all dependencies, and npm start to start the
application, then visit http://localhost:3000 in your browser (if it did not open
automatically).

Migrating a MobX application
In the previous section, we learned how to replace MobX higher-order components, such as
inject and observer in existing MobX applications with Hooks. Now, we are going to
learn how to migrate local state to Hooks in existing MobX applications.

An existing MobX application can be migrated to a Hook-based solution by following three
steps:

Using a State Hook for simple local state
Using the useLocalState Hook for complex local state
Keeping global state in separate MobX stores

We have already learned how to use a State Hook in the early chapters of this book. State
Hooks make sense for simple state, such as the current state of a checkbox.

We have already learned how to use the useLocalState Hook in this chapter. We can use
the Local State Hook for complex local state, such as complex forms where multiple fields
interact with each other. Then, we can replace multiple State and Effect Hooks with a single
Local State Hook and computed values and actions.

Lastly, global state should be stored in separate MobX stores, such as the TodoStore,
which we defined in this chapter. In MobX, multiple stores can be created and passed down
to components using the Provider component. We can then create a separate custom
Hook for each of the stores.

MobX and Hooks Chapter 13

[365]

The trade-offs of MobX
To wrap up, let's summarize the pros and cons of using MobX in a web application. First,
let's start with the positives:

It provides a simple way of dealing with state changes
Less boilerplate code is required
It offers flexibility in how our application code is structured
Multiple global and local stores can be used
It makes the App component much simpler (it offloads state management and
actions to MobX)

MobX is perfect for small—and large projects—that deal with complex state changes, and
state that is used across many components.

However, there are also downsides to using MobX:

State changes could happen anywhere, not just in a single store
Its flexibility means that it is possible to structure the project in a bad way, which
could cause errors or bugs
MobX requires a wrapper component (Provider) in order to connect the app to
the store, if we want to get all the features (we could directly import and use the
MobX store, but it would break features such as server-side rendering)

If state changes are simple, and only local state within components is needed, MobX should
not be used. In that case, a State or a Reducer Hook might be enough. With Reducer and
State Hooks, there is no need for wrapper components in order to connect our app to the
store.

Flexibility is a good thing, but it can also cause us to structure a project badly. However,
MobX provides a project called mobx-state-tree, which allows us to make our MobX
applications more structured and enforce a certain kind of architecture. More information
can be found on the project page in the following GitHub repository: https:/ /github. com/
mobxjs/mobx-state- tree.

https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree

MobX and Hooks Chapter 13

[366]

Summary
In this chapter, we first learned what MobX is, which elements it consists of, and how they
work together. Then, we learned how to use MobX for state management in practice. We
also learned how to connect a MobX store to React components, by using the inject and
observer higher-order components. Next, we replaced the higher-order components with
Hooks, which made our code much more clean and concise. We also learned how to use a
Local Store Hook to deal with complex local state in MobX. Finally, we learned how to
migrate an existing MobX application to Hooks, and we recapped what the trade-offs of
using MobX are.

This chapter marks the end of this book. In this book, we started out with a motivation to
use Hooks. We learned that there are common problems in React apps that cannot be easily
solved without Hooks. Then, we created our first component using Hooks and compared it
to a class-component-based solution. Next, we learned about various Hooks in depth,
starting with the State Hook, which is the most ubiquitous of them all. We also learned
about solving common problems with Hooks, such as conditional Hooks and Hooks in
loops.

After learning about the State Hook in depth, we developed a small blog app using Hooks.
We then learned about Reducer Hooks, Effect Hooks, and Context Hooks, in order to be
able to implement more features in our app. Next, we learned how to request resources
efficiently using Hooks. Furthermore, we learned how to prevent unnecessary re-rendering
with React.memo, and how to implement lazy-loading with React Suspense. Then, we
implemented routes in our blog app, and we learned how Hooks can make dynamic
routing much easier.

We also learned about various Hooks that are provided by the community, which make
dealing with input fields, various data structures, responsive design, and undo/redo
functionality so much easier. Furthermore, we learned about the rules of Hooks, how to
create our own custom Hooks, and how interactions between Hooks work. Toward the end,
we learned how to effectively migrate from existing class-component-based apps, to a
Hook-based solution. Finally, we learned how to use Hooks with Redux and MobX, and
how to migrate existing Redux and MobX applications to Hooks.

Now that we have learned about Hooks in depth, we are ready to use them in our
applications! We have also learned how to migrate existing projects to Hooks, so we can
start doing that now. I hope you enjoyed learning about React Hooks, and that you are
looking forward to implementing Hooks in your applications! I am sure that using Hooks
will make coding much more enjoyable for you, just like they did for me.

MobX and Hooks Chapter 13

[367]

Questions
In order to recap what we have learned in this chapter, try to answer the following
questions:

Which elements form the MobX life cycle?1.
Which decorators does MobX provide?2.
How can we connect components to MobX?3.
Which Hooks does MobX provide?4.
How can we access the MobX store using Hooks?5.
Can we store local state using MobX?6.
How should we go about migrating an existing MobX application to Hooks?7.
What are the advantages of using MobX?8.
What are the disadvantages of using MobX?9.
When should MobX not be used?10.

Further reading
If you are interested in more information about the concepts that we have learned in this
chapter, take a look at the following reading material:

An introduction to MobX from the official MobX docs: https:/ /mobx. js. org/
getting- started. html

The official MobX docs: https:/ /mobx. js. org

A video course on the basics of MobX: https:/ /egghead. io/lessons/ react-
sync-the- ui- with- the- app- state- using- mobx- observable- and- observer- in-
react

The official MobX React docs: https:/ /mobx- react. js. org/

The mobx project on GitHub: https:/ /github. com/ mobxjs/ mobx

The mobx-react project on GitHub: https:/ /github. com/ mobxjs/ mobx- react

The mobx-state-tree project on GitHub: https:/ /github. com/ mobxjs/ mobx-
state-tree

https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org/getting-started.html
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://mobx.js.org
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://egghead.io/lessons/react-sync-the-ui-with-the-app-state-using-mobx-observable-and-observer-in-react
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://mobx-react.js.org/
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-react
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree
https://github.com/mobxjs/mobx-state-tree

Assessments

Answers to questions
Here, we answer all the questions asked at the end of each chapter. You can use these
questions to review what you have learned throughout the book.

Chapter 1: Introducing React and React Hooks
What are React's three fundamental principles? 1.

Declarative: Instead of telling React how to do things, we tell
it what we want. As a result, we can easily design our applications and
React will efficiently update and render just the right components
when data changes.
Component-based: React encapsulates components that manage their
own state and views, then allows us to compose them to create
complex user interfaces.
Learn once, write anywhere: React does not make assumptions about
your technology stack and tries to ensure you can develop without
rewriting existing code as much as possible.

What are the two types of components in React?2.
Function components: JavaScript functions that take the props as an
argument and return the user interface (usually via JSX)
Class components: JavaScript classes that provide a render method,
which returns the user interface (usually via JSX)

What are the problems with class components in React?3.
JavaScript classes are hard to understand for developers: The this
context can be confusing, and we sometimes have to write code in
multiple places at once
They are also hard to understand for machines: It is hard to tell which
methods will be called and, as such, performance optimizations are not
really possible

Assessments

[369]

They are not declarative and thus go against React's fundamental
principles: To use React features, we have to write code that tells
React what to do, not how to do it

What is the problem of using higher-order components in React?4.
Using higher-order components introduces components to our view
tree that do not actually matter in terms of view structure. Having
many higher-order components causes the so-called wrapper hell.

Which tool can we use to set up a React project, and what is the command that5.
we need to run to use it?

We can use create-react-app. To create a new project, we have to
run npx create-react-app <app-name> or yarn create react-
app <app-name>.

What do we need to do if we get the following error with class6.
components: TypeError: undefined is not an object (evaluating 'this.setState')?

We forgot to re-bind the this context of the method in the
constructor of our class. As a result, this is not pointing to the class
but, instead, to the context of the input field.

How do we access and set React state using Hooks?7.
We make use of the useState() Hook as follows: const [name,
setName] = useState('')

What are the advantages of using function components with Hooks, in8.
comparison to class components?

Function components with Hooks do not suffer from the same
problems as classes. They are declarative and thus fit React's
fundamental principles better. Hooks also make our code more concise
and easier to understand.

Do we need to replace all class components with function components using9.
Hooks when updating React?

No, we do not need to replace all class components. Function
components with Hooks can work side-by-side with existing class
components and are 100% backward-compatible. We can simply write
new components using Hooks or upgrade existing components at our
own pace.

Assessments

[370]

What are the three basic hooks provided by React?10.
The useState, useEffect, and useContext Hooks are the basic
Hooks provided by React and used very frequently in projects.
However, React also provides some more advanced Hooks out of the
box.

Chapter 2: Using the State Hook
What problems did we run into while developing our own reimplementation of1.
the useState hook? How did we solve these problems?

One problem was the initialization of the value every time the
component gets rendered. We solved this problem by using a global
variable to store the value.
Then, we had the problem that multiple Hooks write to the same
global variable. To solve this problem, we stored the values in an array
and kept track of the current Hook by assigning an index to each
Hook.

Why are conditional Hooks not possible in the React implementation of Hooks?2.
Conditional Hooks are not possible, because React uses the order of
Hook definitions to keep track of the values. If we change the order of
Hooks later on, the values will be assigned to different Hooks.

What are Hooks and what do they deal with?3.
Hooks are functions that deal with state and effects in a React
application

What do we need to watch out for when using Hooks?4.
We need to ensure that the order of Hooks always stays the same, so
we cannot use Hooks in loops or conditionals

What are the common problems of alternative API ideas for Hooks?5.
Named Hooks have the problem of name collisions. Each Hook would
have to have a unique name, even when using Hooks within libraries.
Hook factories require more boilerplate code, mainly instantiating
each Hook twice, once outside of the component and once inside.
Furthermore, they make it much harder to create custom Hooks.

How do we implement conditional Hooks?6.
In simple cases, we can always define the Hook. Otherwise, we have to
split up the components and conditionally render a separate
component instead of conditionally rendering the Hook.

Assessments

[371]

How do we implement Hooks in loops?7.
In simple cases, we can store an array in the State Hook. Otherwise, we
have to split up the components and render a separate component in a
loop.

Chapter 3: Writing Your First Application with
React Hooks

What is the best practice for folder structures in React?1.
Start with a simple structure at first and nest more deeply when
needed. Do not spend too much time thinking about the file structure
when starting a project.

Which principle should we use when splitting up React components?2.
The single responsibility principle, which states that every component
should have responsibility over a single encapsulated part of the
functionality

What does the map function do?3.
The map function applies a given function to all elements of an array
and returns a new array with the results

How does destructuring work, and when do we use it?4.
With destructuring, we can get properties from an object or elements
from an array by specifying the structure and variable names on the
left side of the assignment. We can use destructuring to get certain
props in React components.

How does the spread operator work, and when do we use it?5.
The spread operator inserts all properties of an object or all elements of
an array at a certain point in another object/array. It can be used to
create new arrays or objects or to pass on all properties of an object as
props to a React component.

How do we deal with input fields using React Hooks?6.
We create a State Hook for the input field value and define a handler
function that sets the value

Where should local State Hooks be defined?7.
Local State Hooks should always be defined in the component where
they are used

Assessments

[372]

What is global state?8.
Global state is state that is used across multiple components
throughout the whole application

Where should global State Hooks be defined?9.
Global State Hooks should be defined as high up in the component
tree as possible. In our case, we defined them in the App component.

Chapter 4: Using the Reducer and Effect Hooks
What are common problems with State Hooks?1.

Complex state changes are hard to do with State Hooks
What are actions?2.

Actions are objects that describe a state change, for example, { type:
'CHANGE_FILTER', byAuthor: 'Daniel Bugl' }

What are reducers?3.
Reducers are functions that process state changes. They accept the
current state and an action object and return a new state.

When should we use a Reducer Hook instead of a State Hook?4.
Reducer Hooks should be used when complex state changes are
needed. Usually, this is the case for global state.
When setter functions of multiple State Hooks are called together, this
is a good indicator for using a Reducer Hook instead.

Which steps are needed in order to turn a State Hook into a Reducer Hook?5.
We first need to define actions, then the reducer function, and finally a
Reducer Hook

How can we create actions more easily?6.
We could define functions that return action objects, so called action
creators

When should we merge Reducer Hooks?7.
When we want to avoid having two separate dispatch functions or
when the same action modifies state in multiple reducers

What do we need to watch out for when merging Reducer Hooks?8.
We need to make sure that each reducer returns the current state for
unhandled actions

Assessments

[373]

What is the equivalent of an Effect Hook in class components?9.
In React class components we would use componentDidMount and
componentDidUpdate to deal with effects

What are the advantages of using an Effect Hook versus class components?10.
With Effect Hooks we do not need to define both
componentDidMount and componentDidUpdate. Furthermore, Effect
Hooks are much easier to understand, and we do not need to know
how React works internally to be able to use them.

Chapter 5: Implementing React Context
Which problem do contexts avoid?1.

Contexts avoid having to pass down props through multiple levels of
components

What are the two parts that contexts consist of?2.
React contexts consist of a provider and a consumer

Are both parts required to be defined in order to use contexts?3.
The provider is not required, as contexts will use the default value
passed to React.createContext when no provider is defined

What is the advantage of using Hooks instead of traditional context consumers?4.
Hooks do not require using a component and render props for the
consumer. Using multiple contexts with consumer components makes
our component tree very deep and our app harder to debug and
maintain. Hooks avoid this problem by allowing us to consume
contexts by simply calling a Hook function.

What is an alternative to contexts, and when should we use it?5.
Contexts make reusing components more difficult. Contexts should
only be used when we need to access data in multiple components at
different nesting levels. Otherwise, we can either pass down props or
pass down the rendered component, using a technique called
inversion of control.

How can we implement dynamically changing contexts?6.
We need to use a State Hook to provide the value for the context
provider

Assessments

[374]

When does it make sense to use contexts for state?7.
Usually, it makes sense to use contexts for global state, which is used
across multiple components at different nesting levels

Chapter 6: Implementing Requests and React
Suspense

How can we easily create a full REST API from a simple JSON file?1.
We can use the json-server tool to create a full REST API from a
JSON file for development and testing

What are the advantages of using a proxy to access our backend server during2.
development?

When using a proxy, we do not need to deal with cross-site restrictions
during development

Which combinations of Hooks can we use to implement requests?3.
We can implement requests using an Effect and a State or Reducer
Hook

Which libraries can we use to implement requests?4.
We can also use the axios and react-request-hook libraries to
implement requests

How can we deal with loading states using react-request-hook?5.
We can use the result.isLoading flag returned from the
useResource Hook and conditionally display a loading message

How can we deal with errors using react-request-hook?6.
We can use the result.error object returned from the
useResource Hook and dispatch an error action

How can we prevent unnecessary re-rendering of components?7.
Using React.memo, we can prevent unnecessary re-rendering,
similarly to shouldComponentUpdate

How can we reduce the bundle size of our app?8.
We can use React.Suspense to lazily load certain components, which
means that they will only be requested from the server when needed

Assessments

[375]

Chapter 7: Using Hooks for Routing
Why do we need to define separate pages?1.

Most large apps consist of multiple pages. For example, a separate
page for each blog post

How do we define routes using the Navi library?2.
We use the mount function and pass an object mapping path to route
functions

How do we define routes with URL parameters?3.
We can use the :parameter syntax to specify URL parameters within
the path

How are static links defined with Navi?4.
Static links can be defined using the Link component from react-
navi

How can we implement dynamic navigation?5.
Dynamic navigation can be implemented using the
useNavigation Hook and calling navigation.navigate()

Which Hook is used to access route information of the current route?6.
The useCurrentRoute Hook gives us all information about the
current route

Which Hook is used to access route information of the currently loading route?7.
The useLoadingRoute Hook gives us all information about the route
that is currently being loaded

Chapter 8: Using Community Hooks
Which Hook can we use to simplify input field handling?1.

We can use the useInput Hook from the react-hookedup library
How are the componentDidMount and componentWillUnmount life cycles2.
implemented using Effect Hooks?

componentDidMount can be implemented by using an Effect Hook
with an empty array passed as the second argument. For
example, useEffect(() => console.log('did mount'), []).

Assessments

[376]

componentWillUnmount can be implemented by returning a
function from an Effect Hook with an empty array passed as the
second argument, for example, useEffect(() => { return ()
=> console.log('will unmount') }, []).

How can we use Hooks to get the behavior of this.setState()?3.
this.setState() merges the existing state object with the given state
object. We can get the same behavior by using the
useMergeState Hook instead of a simple State Hook.

Why should we use timer Hooks instead of4.
calling setTimeout and setInterval directly?

When defining simple timeouts or intervals they are going to reset
when the component re-renders. To prevent this resetting from
happening, we have to use the useTimeout and useInterval Hooks
from react-hookedup instead.

Which Hooks can we use to simplify dealing with common data structures?5.
We can use the useBoolean, useArray, and useCounter Hooks from
react-hookedup

When should we use responsive design with Hooks versus simply using CSS6.
media queries?

We should use Hooks for responsive design when rendering elements
within a canvas or WebGL, or when we dynamically want to decide
whether to load components based on the window size

Which Hook can we use to implement undo/redo functionality?7.
We can use the useUndo Hook from the use-undo library to
implement simple undo/redo functionality in our app

What is debouncing? Why do we need to do it?8.
Debouncing means that a function will only be called after a certain
amount of time, not every time an event triggers it. Using debouncing,
we can store a value entered in a text field in the undo history only
after each second, not after every typed character.

Which Hook can we use for debouncing?9.
We can use the useDebounce or the useDebouncedCallback Hook
from the use-debounce library

Assessments

[377]

Chapter 9: Rules of Hooks
Where can Hooks be called?1.

Hooks can only be called at the beginning of React function
components or custom Hooks

Can we use Hooks in React class components?2.
No, it is not possible to use Hooks in React class components

What do we need to watch out for regarding the order of Hooks?3.
The order of Hooks should never change, as it is used to track the
values of various Hooks

Can hooks be called inside conditions, loops, or nested functions?4.
No, Hooks cannot be called inside conditionals, loops, or nested
functions, because that would change the order of Hooks

What is the naming convention for Hooks?5.
Hook function names should always start with a use prefix and then a
name in CamelCase. For example: useSomeHookName.

How can we automatically enforce the rules of Hooks?6.
We can use eslint with eslint-plugin-react-hooks to enforce
the rules of Hooks

What is the exhaustive dependencies rule?7.
The exhaustive dependencies rule ensures that in an Effect Hook all
variables that are used are listed as dependencies via the second
argument

How can we automatically fix linter warnings?8.
We can run the npm run lint -- --fix command to automatically
fix linter warnings. Running this command will, for example,
automatically enter all variables used in an Effect Hook as
dependencies.

Chapter 10: Building Your Own Hooks
How can we extract a custom Hook from existing code?1.

We can simply put our code into a separate function. In custom Hook
functions other Hook functions can be used, but we need to make sure
not to violate the rules of Hooks.

Assessments

[378]

What is the advantage of creating API Hooks?2.
When defining separate functions for the various API calls, we can
easily adjust them if the API changes later on, because we have all the
API-related code in one place

When should we extract functionality into a custom Hook?3.
We should create a custom Hook when a certain functionality is used
in multiple places or when it could be re-used later on

How do we use custom Hooks?4.
We can simply call custom Hooks just like we would call official React
Hooks or Hooks from libraries

When should we create local Hooks?5.
Local Hooks can be used when we want to encapsulate a certain
functionality in a separate function, but it will only be used in a single
component

Which interactions between Hooks are possible?6.
We can use other Hooks in Hook functions and we can pass values
from other Hooks to Hooks

Which library can we use to test Hooks?7.
We can use the jest test runner in combination with the React Hooks
Testing Library (@testing-library/react-hooks) and the react-
test-renderer to test Hooks

How can we test Hook actions?8.
Hook actions can be tested by using the act function. For
example, act(() => result.current.increment()).

How can we test contexts?9.
Contexts can be tested by writing a context wrapper function, which
returns the provider. The wrapper function can then be passed to the
renderHook function. For example, const { result } =
renderHook(() => useTheme(), { wrapper:

ThemeContextWrapper }).
How can we test asynchronous code?10.

We can use the async/await construct in combination with the
waitForNextUpdate function returned from renderHook to wait for
asynchronous code to finish running

Assessments

[379]

Chapter 11: Migrating from React Class
Components

How are React class components defined?1.
React class components are defined by using class ComponentName
extends React.Component {

What do we need to call when using a constructor with class components?2.
Why?

We first need to call super(props) to ensure that the props get
passed on to the React.Component class

How do we set the initial state with class components?3.
We can set the initial state in class components by defining the
this.state object in the constructor

How do we change the state with class components?4.
In class components, we use this.setState() to change the state

Why do we need to re-bind the this context with class component methods?5.
When passing a method to an element as event handler, the this
context changes to the element that triggered the event. We need to re-
bind the this context to the class to prevent this from happening.

How can we re-bind the this context?6.
We need to use .bind(this) on the method in the constructor. For
example, this.handleInput = this.handleInput.bind(this).

How can we use React context with class components?7.
We can set the contextType and then access this.context. For
example, static contextType = StateContext.
If we want to use multiple contexts, we can use context consumers. For
example, <StateContext.Consumer>{value => <div>State is:
{value}</div>}</StateContext.Consumer>.

What can we replace state management with when migrating to Hooks?8.
We can replace this.state and this.setState with a State Hook

Assessments

[380]

What are the trade-offs of using Hooks versus class components?9.
Function components with Hooks are simpler (no need to deal with
constructors, this, or destructuring the same values multiple times,
no magic when dealing with contexts, props, and state, no need to
define both componentDidMount and componentDidUpdate).
Function components also encourage making small and simple
components, are easier to refactor and test, require less code, are easier
to understand for beginners, and are more declarative.
However, class components can be fine when sticking to certain
conventions and using the latest JavaScript features to avoid this re-
binding. Furthermore, class components might be easier to understand
for the team, because of existing knowledge.

When and how should an existing project be migrated to Hooks?10.
Slowly replace old class components with Hook-based function
components when appropriate. For example, when you are already
refactoring a component.

Chapter 12: Redux and Hooks
What kind of state should Redux be used for?1.

Redux should be used for global state, which is state that is used in
multiple components across our app

Which elements does Redux consist of?2.
Redux consists of the store (an object that describes the full state of our
application), actions (objects that describe state modifications), action
creators (functions that create action objects), reducers (functions that
take the current state and an action object and return a new state), and
connectors (higher-order components that connect an existing
component to Redux)

What are the three principles of Redux?3.
Single source of truth (data should always have a single source)
Read-only state (it is not possible to modify state directly, only through
dispatching actions)
State changes are processed with pure functions (given the same state
and action, reducers will always return the same new state)

Assessments

[381]

Why do we define action types?4.
Action types avoid making typos when defining or comparing the
type property of actions

How can we connect components to Redux?5.
We can either use the connect higher-order component, or Dispatch
and Selector Hooks

Which Hooks can we use with Redux?6.
useDispatch to get the dispatch function, useSelector to get a
certain part of the state, and useStore to get the Redux store (for
special use cases, such as replacing reducers)

Why should we create reusable selectors?7.
Reusable selectors can be used in multiple components. Furthermore,
they memoize the result and only recompute it when the state changes.

How can we migrate a Redux application?8.
We should first replace simple local state, such as input field values,
with State Hooks. Then replace complex local state with Reducer
Hooks. We keep global state, which is used across multiple
components, in the Redux store. Finally, we use the Selector and
Dispatch Hooks instead of the connect higher-order component.

What are the trade-offs of Redux?9.
The pros of using Redux are: It provides a certain project structure that
allows us to easily extend and modify code later on, there are fewer
possibilities for errors in our code, it has better performance than
simply using React context for state, and it makes our App component
much simpler by offloading state management and action creators to
Redux
The downsides of using Redux are: It requires a lot of boilerplate code,
the project structure becomes more complicated, and it requires a
wrapper component (Provider) to connect the app to the store

When should we use Redux?10.
We should use Redux only for applications that require complex state
changes. For simple projects, Reducer Hooks or even just State Hooks
might be enough.

Assessments

[382]

Chapter 13: MobX and Hooks
Which elements form the MobX life cycle?1.

Events invoke actions, which modify state. State is observable and
should not contain redundant or derivable data. Computed values are
derived from the state through pure functions. Reactions are like
computed values, but they can also produce a side-effect, such as
updating the user interface in React.

Which decorators does MobX provide?2.
MobX provides decorators for the various elements:
observer, observable, computed, and action

How can we connect components to MobX?3.
We can connect our app to the MobX store by using the Provider
component and then connect components via the inject higher-order
component. If we want a component to automatically re-render on
state changes, we also need to wrap it with the observer decorator
function.

Which Hooks does MobX provide?4.
We can use the useObserver Hook to define parts of our component
that should re-compute when the state changes

How can we access the MobX store using Hooks?5.
MobX provides a context, which can be used to create custom Hooks
that access the MobX stores. We can use a normal Context Hook to
access the MobXProviderContext from mobx-react.

Can we store local state using MobX?6.
Yes, with MobX we can create as many stores as we want. MobX even
provides a useLocalStore Hook to create local stores.

How should we go about migrating an existing MobX application to Hooks?7.
We can slowly upgrade certain parts of our MobX applications.
Instead of the inject higher-order component, we can use a custom
Hook that accesses a part of the context. Instead of the
observer higher-order component, we can use the
useObserver Hook.
We should first use a State Hook for simple local state, then a
useLocalState Hook for complex local state, and finally keep global
state in separate MobX stores.

Assessments

[383]

What are the advantages of using MobX?8.
It provides a simple way of dealing with state changes, requires less
boilerplate code, provides more flexibility in how our application code
is structured, allows using multiple global and local stores, and makes
the App component much simpler by offloading state management and
actions to MobX

What are the disadvantages of using MobX?9.
It allows state changes to happen anywhere, not just in a single store,
which could make our app more unpredictable. More flexibility also
means it is possible to structure the project in a bad way and cause
errors or bugs. Furthermore, MobX requires a wrapper component to
connect the app to the store if we want to get all features (we could
directly import and use the MobX store, but it would break features
such as server-side rendering).

When should MobX not be used?10.
MobX should not be used if state changes are simple and only local
state within components is used. In that case, State and Reducer Hooks
might be enough.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React Design Patterns and Best Practices - Second Edition
Carlos Santana Roldán

ISBN: 978-1-78953-017-9

Get familiar with the new React features,like context API and React
Hooks
Learn the techniques of styling and optimizing React components
Make components communicate with each other by applying
consolidate patterns
Use server-side rendering to make applications load faster
Write a comprehensive set of tests to create robust and
maintainable code
Build high-performing applications by optimizing components

https://www.packtpub.com/in/web-development/react-design-patterns-and-best-practices-second-edition

Other Books You May Enjoy

[385]

Mastering React Test-Driven Development
Daniel Irvine

ISBN: 978-1-78913-341-7

Build test-driven applications using React 16.9+ and Jest
Build complete web applications using a variety of HTML input elements
Understand the different types of test double and when to apply them
Test-drive the Integration of libraries such as React Router, Redux, and Relay
(GraphQL)
Learn when to be pragmatic and how to apply TDD shortcuts
Test-drive interaction with browser APIs including fetch and WebSockets
Use Cucumber.js and Puppeteer to build BDD-style acceptance tests for your
applications
Build and test async Redux code using redux-saga and expect-redux

https://www.packtpub.com/in/web-development/mastering-react-test-driven-development

Other Books You May Enjoy

[386]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
action creators
 about 311
 asynchronous action creators 316
 asynchronous action creators, defining 317
 defining 316
 synchronous action creators 316
 synchronous action creators, defining 316
action types
 defining 315, 316
actions
 defining 298, 312, 313
additional Hooks
 useCallback Hook 30
 useDebugValue Hook 31
 useLayoutEffect Hook 31
 useMemo Hook 30
 useReducer Hook 30
 useRef Hook 29
AddTodo component
 connecting 320, 321
 defining 278
 dynamic, creating 287, 288
 migrating 297, 298
 useDispatch Hook, using 329, 330
alternative Hook APIs
 about 46
 factory function, creating 46
 for React Hooks 47
 named Hooks 46
API code
 defining 282
API Hooks
 ChangeTheme component, adjusting 240
 CreatePost component, adjusting 241, 242
 creating 232, 233

 Login component, adjusting 241
 Register component, adjusting 241
 using 240
App component dynamic
 creating 286
App component
 actions, defining 298
 adjusting 80
 connecting 326, 327
 dynamic, creating 283, 284, 285
 migrating 298, 301, 302, 303
 reducers, defining 299
 useDispatch Hook, using 330, 331
app reducer
 defining 301
app structure
 defining 276, 277
 designing 273, 274, 275
Application Programming Interface (API) 134
array
 using 49, 50
async Hooks
 async/await construct 258, 259
 testing 258
 useDebouncedUndo Hook, testing 259, 260
asynchronous action creators
 about 316
 defining 317
axios libraries
 error state, handling 148, 150
 login, implementing 153, 155
 post creation, implementing 150
 registration, implementing 151, 152
 setting up 145
 useResource Hook, using 146, 147
 useResource Hook, using with Reducer Hook

147, 148

[388]

 using 144

B
basic Hooks
 about 28
 useContext Hook 29
 useEffect Hook 28
 useState 28
bind 183
bindToInput 183
blog app
 Effect Hook, implementing 105, 106, 107
blog application, implementing with Hooks
 example code 83

C
Cascading Style Sheets (CSS) 16
ChangeTheme component
 adjusting 240
 implementing 124, 125, 126
class component
 about 24
 app structure, defining 276, 277
 app structure, designing 273, 274, 275
 create-react-app project, initializing 275
 defining 12, 19, 20
 dynamic code, implementing 281
 example code 292
 initiating 18
 project, setting up 18
 static components, defining 277
 trade-offs 303, 305
 used, for handling state 273
 versus function component 24
community Hooks
 about 31, 34
 life cycle 33
 navigation 32
 react-apollo-hooks 212
 react-use 213
 react-use-clipboard 213
 timer 33
 use-events 212
 useInput 32
 useResource Hook 32

componentDidMount 101
componentDidUpdate 101
components
 connecting 319
 splitting up 50
concurrently tool 138
conditional Hook
 example code 45
 solving 48
conditional Hooks
 components, setting up 48, 49
 defining 42, 43, 44, 45, 48
 example code 51
 problem solving 50, 51
container components
 about 319
 mapDispatchToProps(dispatch) 320
 mapStateToProps(state) 320
Context Hooks
 defining 119
 Header component, creating 119
 Header component, using 120
 implementing, for post 121, 122
 StateContextWrapper, creating 253, 254
 testing 251
 ThemeContextWrapper, creating 252
 useDispatch Hook, testing 254, 255
 usePostsState Hook, testing 256
 useTheme Hook, testing 252, 253
 useUserState Hook, testing 255
context provider
 defining 127, 128
context
 about 26
 used, for global app state 127
create-react-app project
 initializing 275
CREATE_POST action
 adjusting 174, 175
CreatePost component
 about 186, 187
 adjusting 80, 82, 83, 239, 241, 242
 user, passing 78, 79
custom Hooks
 about 216

[389]

 API Hooks, creating 232, 233
 API Hooks, using 240
 example code 235, 243
 exporting 235
 extracting 228
 global state Hooks, creating 230
 global state Hooks, using 237
 useDebouncedUndo Hook, creating 233, 234,

235

 useDebouncedUndo Hook, using 242, 243
 useDispatch Hook, creating 231, 232
 useTheme Hook, creating 229
 useTheme Hook, using 236, 237
 using 236

D
data manipulation Hooks
 about 198
 useArray Hook 199, 200
 useBoolean Hook 198, 199
 useCounter Hook 200, 201
db.json file
 creating 134, 135, 136
debouncing
 changes, in post editor 210, 211, 212
 implementing, with Hooks 209
decorators 345
dummy server
 example code 140
 setting up 134
dynamic code
 AddTodo component dynamic, creating 287,

288

 API code, defining 282
 App component dynamic, creating 283, 284,

285, 286
 implementing 281
 StateContext, defining 282
 TodoFilter component dynamic, creating 291,

292

 TodoItem component dynamic, creating 290
 TodoList component dynamic, creating 289

E
Effect Hook
 example code 107
 implementing, in blog app 106, 107
Effect Hooks
 componentDidMount 101
 componentDidUpdate 101
 effect, cleaning up 105
 implementing, in blog app 105
 trigger effect, on mount 104
 trigger effect, on props changing 104
 used, for implementing requests 140
 using 101, 103, 104
error state
 handling 148, 150
eslint-plugin-react-hooks
 setting up 221, 222, 223, 224
eslint
 used, for fixing warnings automatically 224, 225

F
factory function
 creating 46
filter reducer
 defining 299
focus Hooks
 about 202
 useFocus Hook 202
function component
 advantages 305
 versus class component 24
 with React Hooks 25

G
global app state
 context provider, defining 127, 128
 context, using 127
 example code 131
 StateContext, defining 127
 StateContext, using 128, 129
global state 308
global state Hooks
 CreatePost component, adjusting 239
 creating 230

[390]

 Login component, adjusting 238
 Logout component, adjusting 239
 PostList component, adjusting 239, 240
 Register component, adjusting 238
 UserBar component, adding 237, 238
 useUserState Hook, defining 230, 231
 using 237
global variable
 using 39

H
Header component
 creating 120
 defining 277
 using 120
HeaderBar component
 creating 164, 166
HomePage component
 creating 166, 167
Hook implementation
 global variable, using 39
 multiple Hook, defining 39
 problem 39
Hook store
 defining 355
Hooks, for posts feature
 adding 80
 App component, adjusting 80
 CreatePost component, adjusting 80, 82, 83
Hooks, for users feature
 adding 74
 Login components, adjusting 75
 Logout component, adjusting 78
 Register components, adjusting 75
 user, passing to CreatePost 78, 79
 UserBar component, adjusting 74, 75
Hooks
 about 193
 async Hooks, testing 258
 calling 216
 components, upgrading to 356
 Context Hooks, testing 251
 data manipulation Hooks 198
 example code 203, 246, 261
 finding 212

 focus Hooks 202
 hover Hooks 202
 interactions between 243, 244
 local Login Effect Hook, creating 245
 local Register Effect Hook, creating 244
 MobX, using 355
 online status Hook 197, 198
 Redux, using 328
 reimplementation, comparing 45, 46
 resources, requesting with 134
 stateful components, implementing 74
 testing 246
 testing, with React Hooks Testing Library 246,

247

 tests, executing 261
 timer Hooks 194
 used, for AddTodo component 360
 used, for App component 356
 used, for TodoFilter component 360, 361
 used, for TodoItem component 358, 359, 360
 used, for TodoList component 357
 used, in responsive design 203, 204, 205
 used, in Undo/Redo functionality 206, 207
 usePrevious Hook 193, 194
hover Hooks
 about 202
 useHover Hook 203
Hypertext Markup Language (HTML) 59
Hypertext Transfer Protocol Secure (HTTPS) 154

I
input Hook
 example code 187
 exploring 182, 183
 implementing, in blog app 183, 184
 implementing, in CreatePost component 186,

187

 implementing, in Login component 184, 185
 implementing, in Register component 185, 186
inversion of control 118

J
JavaScript code
 comparison 304
JavaScript Object Notation (JSON) 133

[391]

json-server tool
 installing 136

L
lazy loading
 implementing, with React Suspense 158, 159
life cycle 26
life cycle methods 11
links
 defining 171
 defining, to main page 173
 defining, to post 171, 172, 173
local Login Effect Hook
 creating 245
local Register Effect Hook
 creating 244
local state 308
Login component
 about 75, 76, 184, 185
 adjusting 238, 241
login
 implementing 153
Logout component
 adjusting 78, 239

M
MobX application
 migrating 364
MobX, components
 AddTodo component, connecting 353
 App component, connecting 350
 example code 354
 TodoFilter component, connecting 353, 354
 TodoItem component, connecting 352
 TodoList component, connecting 351, 352
MobX
 about 343, 344
 advantages 365
 components, connecting 349
 components, upgrading to Hooks 356
 disadvantages 365
 example code 361, 364
 Hook store, defining 355, 356
 installing 345
 life cycle 344

 local store Hook, using 362, 363, 364
 Provider component, defining 349
 store, setting up 345, 348
 trade-offs 365
 used, for handling state 345
 using, with Hooks 355
multiple Hook
 adding, to component 40
 defining 39
 example code 42
 implementing 40, 41, 42
multiple pages
 creating 164
 example code 169
 HeaderBar component, creating 164, 166
 HomePage component, creating 166, 167
 PostPage component, creating 167, 168

N
named Hooks 46, 220
Navi's Hooks
 overview 175
 useCurrentRoute Hook 176
 useLoadingRoute Hook 177
 useNavigation Hook 175
Navi
 URL 176
navigation 32

O
online status Hook 197, 198
order of Hooks 216, 217, 218, 219, 220

P
package.json
 configuring 137
 installing 138
Post component
 React.memo, implementing 156, 157, 158
 refactoring 130, 131
post creation
 implementing 150
PostList component
 adjusting 239, 240
PostPage component

[392]

 creating 167, 168
 testing 169
posts State Hook
 actions, defining 96
 Reducer Hook, defining 97, 98
 reducer, defining 97
 replacing 96
presentational components 319
programmatic navigation 177
Progressive Web App (PWA) 16
props 26
Provider component
 setting up 327, 328
proxy
 configuring 138, 139

R
React class components
 AddTodo component, migrating 297, 298
 App component, migrating 298
 example code 303
 migrating 292
 TodoItem component, migrating 293, 294
 TodoList component, migrating 294, 295
React Context
 about 111, 112, 113
 alternative 118
 consumer 112
 consumer, defining 113, 114
 defining 113
 example code 118
 Hook, using 114, 115
 nested providers 116
 props, passing down 111
 provider 112
 provider, defining 115, 116
React function components 216
React Hooks API
 exploring 262
 useCallback Hook 265, 266
 useContext Hook 264
 useDebugValue Hook 268
 useEffect Hook 263
 useImperativeHandle Hook 267, 268
 useLayoutEffect Hook 268

 useMemo Hook 265
 useReducer Hook 264
 useRef Hook 266, 267
 useState Hook 262, 263
React Hooks Testing Library
 using 246, 247
React Hooks, in loops
 array, using 49, 50
 components, splitting up 50
 solving 49
React Hooks
 about 15, 27
 additional Hooks 29
 advantages 25
 basic Hooks 28
 class component and function component,

comparing 24
 class component, initiating 18
 classes 11, 12, 13
 common problems, solving 48
 conditional Hooks, solving 48
 function component, defining 21, 22, 23
 migrating to 26
 mindset 26
 overview 27
 project, creating 16, 17
 project, deploying 17, 18
 project, initializing with create-react-app 16
 project, initiating 17
 project, setting up 21
 rescuing 14, 15
 rules 27
 using 10, 11, 21
 wrapper hell 13, 14
React life cycle Hooks
 about 188
 useLifecycleHooks Hook 190, 191
 useMergeState Hook 191
 useOnMount Hook 188
 useOnUnmount Hook 189
React projects, folder structure
 features, selecting 55
 initial structure 55
React projects
 component structure 56, 57, 58

[393]

 folder structure 54
 structuring 54
React Suspense
 lazy loading, implementing 158, 159
React Testing Library
 reference link 247
React's life cycle Hooks
 example code 192
React, components
 class component 10
 function components 10
react-apollo-hooks
 reference link 212
react-request-hook libraries
 error state, handling 148, 150
 example code 155
 login, implementing 153, 155
 post creation, implementing 150
 registration, implementing 151, 152
 setting up 145
 useResource Hook, using 146, 147
 useResource Hook, using with Reducer Hook

147, 148
 using 144
react-use
 reference link 213
React.lazy
 implementing 159, 160, 161
React.memo
 about 156
 example code 158
 implementing, for Post component 156, 157,

158

 re-rendering, preventing 156
React.Suspense
 implementing 159
React
 code, writing 10
 component-based 10
 declarative 9
 principles 9, 10
Reducer Hook
 about 91
 example code 98, 101
 implementing 91

 merging 98, 99, 100
 State Hook, turning into 92
 unhandled actions, ignoring 100, 101
 used, for implementing requests 140
 versus State Hook 87
reducers
 adjusting 318
 app reducer, defining 301
 defining 299, 312, 313
 filter reducer, defining 299
 todos reducer, defining 299, 300, 301
Redux application
 migrating 338, 339
Redux reducers
 initial state, setting 319
Redux store
 example code 315
 setting up 314, 315
Redux, elements
 Action creators 309
 Actions 308
 Connectors 309
 Reducers 309
 Store 308
Redux, principles
 about 310
 read-only state 310
 single source of truth 310
 state changes, processing with pure functions

310

Redux
 about 308, 309
 action creators, defining 316
 action types, defining 315, 316
 actions, defining 312
 benefits 339
 components, connecting 319, 320
 example code 328, 336
 installing 312
 limitations 339
 Provider component, setting up 327, 328
 reducers, adjusting 318
 reducers, defining 312
 reusable selectors, creating 336
 state, defining 312

[394]

 store, adjusting 318
 trade-offs 339, 340
 used, for handling state 311
 useDispatch Hook, using 329
 useSelector Hook, using 333
 useStore Hook, using 338
 using, with Hooks 328
refs 26
Register component
 about 185, 186
 adjusting 238, 241
Register components 76, 77
registration
 implementing 152
Representational State Transfer (REST) 134
requests
 example code 21, 23, 144
 implementing, with Effect and State/Reducer

Hooks 140
 with Effect and Reducer Hook 143, 144
 with Effect and State Hook 141, 142
reselect library
 setting up 336
resources
 requesting, with Hooks 134
responsive design
 components, hiding 205, 206
 example code 206
 with Hooks 203, 204, 205
reusable selectors
 creating 336
 example code 338
 memoizing, on state 336, 337
 reselect library, setting up 336
route information
 accessing 178, 179
routes
 about 139, 140
 defining 170, 171
routing Hooks
 example code 179
 Navi's Hooks, overview 175
 programmatic navigation 177
 route information, accessing 178, 179
 using 175

routing
 CREATE_POST action, adjusting 174, 175
 example code 175
 implementing 169
 links, defining 171
 routes, defining 170, 171
rules of Hooks
 enforcing 220
 eslint-plugin-react-hooks, setting up 221, 222,

223, 224
 example code 224

S
simple Hooks, testing
 re-rendering, forcing 250
 rerendering, forcing 251
 reset, testing 250, 251
 useCounter Hook actions, testing 249
 useCounter Hook result, testing 248, 249
 useCounter Hook, creating 247, 248
 useCounter initial value, testing 250
simple Hooks
 testing 247
single-page application 164
start serve package script 137
State Hook
 actions 88, 89
 posts State Hook, replacing 96
 problem 87, 88
 reducer function 89, 90
 turning, into Reducer Hook 92
 used, for implementing requests 140
 used, with context provider 123, 124
 user State Hook 92
 versus Reducer Hooks 87
state
 about 26
 defining 312, 313
 handling, with class components 273
 handling, with MobX 345
 handling, with Redux 311
StateContext
 defining 127, 282
 Post components, refactoring 130, 131
 user components, refactoring 129, 130

[395]

 using 128, 129
StateContextWrapper
 creating 253, 254
stateful components
 implementing, with Hooks 74
static components
 AddTodo component, defining 278
 defining 277
 Header component, defining 277
 TodoFilter component, defining 280, 281
 TodoItem component, defining 279, 280
 TodoList component, defining 278, 279
static React components, posts
 CreatePost component 68
 Post component 67, 68
 PostList component 69, 70, 71
static React components, users
 component, testing 61, 62
 example code 66
 Login component 60, 61
 Logout component 62
 Register component 63, 64
 UserBar component 64, 65, 66
static React components
 App component, modifying 72, 73
 example code 74
 implementing 58, 59
 posts, implementing 67
 project, setting up 59
 users, implementing 59, 60
store
 adjusting 318
synchronous action creators
 about 316
 defining 316

T
ThemeContextWrapper
 creating 252
themes
 ChangeTheme component, implementing 124,

125, 126
 Context Hooks, defining 119
 context, defining 119
 dynamically, changing 123

 example code 127
 implementing 119
 provider, defining 122, 123
 State Hook, used with context provider 123, 124
timer 33
timer Hooks
 about 194
 useInterval Hook 195
 useTimeout Hook 196
TodoFilter component
 connecting 325
 defining 280, 281
 dynamic, creating 291, 292
 migrating 295, 296
 TodoFilterItem, migrating 295, 296
 useSelector Hook, using 334, 335
TodoFilterItem
 migrating 295, 296
TodoItem component
 connecting 321, 322
 defining 279, 280
 dynamic, creating 290
 migrating 293, 294
 used, for TodoItem component, using 333
 useDispatch Hook, using 332
TodoList component
 adjusting 323, 324
 connecting 322, 323
 defining 278, 279
 dynamic, creating 289
 migrating 294, 295
 useSelector Hook, using 333, 334
todos reducer
 defining 299, 300, 301

U
Undo/Redo functionality
 debouncing changes, in post editor 210, 211,

212

 debouncing, implementation with Hooks 209
 example code 212
 implementing, in post editor 207, 208
 with Hooks 206, 207
Uniform Resource Locator (URL) 138
Universally Unique Identifier (UUID) 282

use-events
 reference link 212
useArray Hook
 about 199, 200
 object, returning 199
 working 199
useBoolean Hook 198, 199
useCallback Hook 30, 265, 266
useContext Hook 29, 264
useCounter Hook
 about 200, 201
 configuration object 200
 object, returning 201
useCurrentRoute Hook 176
useDebouncedUndo Hook
 creating 233, 234, 235
 using 242, 243
useDebugValue Hook 31, 268
useDispatch Hook
 creating 231, 232
 testing 254, 255
 used, for AddTodo component 329, 330
 used, for App component 330, 331
 used, for TodoItem component 332, 333
 using 329
useEffect dependencies
 dealing with 224
 example code 225
 warnings, automatically fixing with eslint 224,

225

useEffect Hook 28, 263
useFocus Hook 202
useHover Hook 203
useImperativeHandle Hook 267, 268
useInput 32
useInterval Hook 195
useLayoutEffect Hook 31, 268
useLifecycleHooks Hook 190, 191
useLoadingRoute Hook 177
useMemo Hook 30, 265
useMergeState Hook 191
useNavigation Hook 176
useOnMount Hook 188

useOnUnmount Hook 189
usePostsState Hook
 testing 256
usePrevious Hook 193, 194
user components
 refactoring 129, 130
user interface (UI) 54
user State Hook
 actions, defining 93
 Reducer Hook, defining 94, 95, 96
 reducer, defining 93, 94
 replacing 92
UserBar component
 adding 237, 238
 adjusting 74, 75
useReducer Hook 30, 264
useRef Hook 29, 266, 267
useResource Hook
 about 32
 using 146, 147
 using, with Reducer Hook 147, 148
useSelector Hook
 used, for TodoFilter component 334, 335
 used, for TodoList component 333, 334
 using 333
useState function
 reimplementing 37, 38
useState Hook 28, 262, 263
useStore Hook
 using 338
useTheme Hook
 creating 229
 testing 252, 253
 using 236, 237
useTimeout Hook 196
useUserState Hook
 defining 230, 231
 testing 255

W
warnings
 automatically, fixing with eslint 224, 225
Web Graphics Library (WebGL) 204

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction to Hooks
	Chapter 1: Introducing React and React Hooks
	Technical requirements
	Principles of React
	Motivation for using React Hooks
	Confusing classes
	Wrapper hell
	Hooks to the rescue!

	Getting started with React Hooks
	Initializing a project with create-react-app
	Creating a new project
	Starting a project
	Deploying a project

	Starting with a class component
	Setting up the project
	Defining the class component
	Example code

	Using Hooks instead
	Setting up the project
	Defining the function component
	Example code

	Comparing the solutions
	Class component
	Function component with Hook

	Advantages of Hooks
	Migrating to Hooks
	The Hooks mindset
	Rules of Hooks

	Overview of various Hooks
	Hooks provided by React
	Basic Hooks
	useState
	useEffect
	useContext

	Additional Hooks
	useRef
	useReducer
	useMemo
	useCallback
	useLayoutEffect
	useDebugValue

	Community Hooks
	useInput
	useResource
	Navigation Hooks
	Life cycle Hooks
	Timer Hooks
	Other community Hooks

	Summary
	Questions
	Further reading

	Chapter 2: Using the State Hook
	Technical requirements
	Reimplementing the useState function
	Problems with our simple Hook implementation
	Using a global variable
	Defining multiple Hooks
	Adding multiple Hooks to our component
	Implementing multiple Hooks
	Example code

	Can we define conditional Hooks?
	Example code

	Comparing our reimplementation with real Hooks
	Alternative Hook APIs
	Named Hooks
	Hook factories
	Other alternatives

	Solving common problems with Hooks
	Solving conditional Hooks
	Always defining the Hook
	Splitting up components

	Solving Hooks in loops
	Using an array
	Splitting up components

	Solving problems with conditional Hooks
	Example code

	Summary
	Questions
	Further reading

	Chapter 3: Writing Your First Application with React Hooks
	Technical requirements
	Structuring React projects
	Folder structure
	Choosing the features
	Coming up with an initial structure

	Component structure

	Implementing static components
	Setting up the project
	Implementing users
	The Login component
	Testing out our component
	The Logout component
	The Register component
	The UserBar component
	Example code

	Implementing posts
	The Post component
	The CreatePost component
	The PostList component

	Putting the app together
	Example code

	Implementing stateful components with Hooks
	Adding Hooks for the users feature
	Adjusting UserBar
	Adjusting the Login and Register components
	Login
	Register

	Adjusting Logout
	Passing the user to CreatePost

	Adding Hooks for the posts feature
	Adjusting the App component
	Adjusting the CreatePost component

	Example code

	Summary
	Questions
	Further reading

	Section 2: Understanding Hooks in Depth
	Chapter 4: Using the Reducer and Effect Hooks
	Technical requirements
	Reducer Hooks versus State Hooks
	Problems with the State Hook
	Actions
	Reducers
	The Reducer Hook

	Implementing Reducer Hooks
	Turning a State Hook into a Reducer Hook
	Replacing the user State Hook
	Defining actions
	Defining the reducer
	Defining the Reducer Hook

	Replacing the posts State Hook
	Defining actions
	Defining the reducer
	Defining the Reducer Hook

	Example code
	Merging Reducer Hooks
	Ignoring unhandled actions

	Example code

	Using Effect Hooks
	Remember componentDidMount and componentDidUpdate?
	Using an Effect Hook
	Trigger effect only when certain props change
	Trigger effect only on mount
	Cleaning up effects

	Implementing an Effect Hook in our blog app
	Example code

	Summary
	Questions
	Further reading

	Chapter 5: Implementing React Context
	Technical requirements
	Introducing React context
	Passing down props
	Introducing React context
	Defining the context
	Defining the consumer
	Using Hooks
	Defining the provider
	Nested providers

	Example code
	Alternative to contexts

	Implementing themes
	Defining the context
	Defining the Context Hooks
	Creating the Header component
	Using the Header component
	Implementing the Context Hook for the Post component

	Defining the provider
	Dynamically changing the theme
	Using a State Hook with the context provider
	Implementing the ChangeTheme component

	Example code

	Using context for global state
	Defining StateContext
	Defining the context provider
	Using StateContext
	Refactoring user components
	Refactoring post components

	Example code

	Summary
	Questions
	Further reading

	Chapter 6: Implementing Requests and React Suspense
	Technical requirements
	Requesting resources with Hooks
	Setting up a dummy server
	Creating the db.json file
	Installing the json-server tool
	Configuring package.json
	Configuring a proxy
	Defining routes
	Example code

	Implementing requests using Effect and State/Reducer Hooks
	Requests with Effect and State Hooks
	Requests with Effect and Reducer Hooks
	Example code

	Using axios and react-request-hook
	Setting up the libraries
	Using the useResource Hook
	Using useResource with a Reducer Hook
	Handling error state
	Implementing post creation
	Implementing registration
	Implementing login

	Example code

	Preventing unnecessary re-rendering with React.memo
	Implementing React.memo for the Post component
	Example code

	Implementing lazy loading with React Suspense
	Implementing React.Suspense
	Implementing React.lazy
	Example code

	Summary
	Questions
	Further reading

	Chapter 7: Using Hooks for Routing
	Technical requirements
	Creating multiple pages
	Creating the HeaderBar component
	Creating the HomePage component
	Creating the PostPage component
	Testing out the PostPage

	Example code

	Implementing routing
	Defining routes
	Defining links
	Defining links to the posts
	Defining the links to the main page

	Adjusting the CREATE_POST action
	Example code

	Using routing Hooks
	Overview of Navi's Hooks
	The useNavigation Hook
	The useCurrentRoute Hook
	The useLoadingRoute Hook

	Programmatic navigation
	Accessing route information
	Example code

	Summary
	Questions
	Further reading

	Chapter 8: Using Community Hooks
	Technical requirements
	Exploring the input handling Hook
	Implementing Input Hooks in our blog app
	The Login component
	The Register component
	The CreatePost component

	Example code

	React life cycles with Hooks
	The useOnMount Hook
	The useOnUnmount Hook
	The useLifecycleHooks Hook
	The useMergeState Hook
	Example code

	Various useful Hooks
	The usePrevious Hook
	Timer Hooks
	The useInterval Hook
	useTimeout Hook

	The Online Status Hook
	Data manipulation Hooks
	The useBoolean Hook
	The useArray Hook
	The useCounter Hook

	Focus and Hover Hooks
	The useFocus Hook
	The useHover Hook

	Example code

	Responsive design with Hooks
	Responsively hiding components
	Example code

	Undo/Redo with Hooks
	Implementing Undo/Redo in our post editor
	Debouncing with Hooks
	Debouncing changes in our post editor
	Example code

	Finding other Hooks
	Summary
	Questions
	Further reading

	Chapter 9: Rules of Hooks
	Technical requirements
	Calling Hooks
	Order of Hooks
	Names of Hooks
	Enforcing the rules of Hooks
	Setting up eslint-plugin-react-hooks
	Example code

	Dealing with useEffect dependencies
	Automatically fixing warnings with eslint
	Example code

	Summary
	Questions
	Further reading

	Chapter 10: Building Your Own Hooks
	Technical requirements
	Extracting custom Hooks
	Creating a useTheme Hook
	Creating global state Hooks
	Defining the useUserState Hook
	Defining the usePostsState Hook

	Creating a useDispatch Hook
	Creating API Hooks
	Creating a useDebouncedUndo Hook
	Exporting our custom Hooks
	Example code

	Using our custom Hooks
	Using the useTheme Hook
	Using the global state Hooks
	Adjusting the UserBar component
	Adjusting the Login component
	Adjusting the Register component
	Adjusting the Logout component
	Adjusting the CreatePost component
	Adjusting the PostList component

	Using the API Hooks
	Adjusting the ChangeTheme component
	Adjusting the Register component
	Adjusting the Login component
	Adjusting the CreatePost component

	Using the useDebouncedUndo Hook
	Example code

	Interactions between Hooks
	Creating a local Register Effect Hook
	Creating a local Login Effect Hook
	Example code

	Testing Hooks
	Using the React Hooks Testing Library
	Testing simple Hooks
	Creating the useCounter Hook
	Testing the useCounter Hook result
	Testing useCounter Hook actions
	Testing the useCounter initial value
	Testing reset and forcing re-rendering

	Testing Context Hooks
	Creating the ThemeContextWrapper
	Testing the useTheme Hook
	Creating the StateContextWrapper
	Testing the useDispatch Hook
	Testing the useUserState Hook
	Testing the usePostsState Hook

	Testing async Hooks
	The async/await construct
	Testing the useDebouncedUndo Hook

	Running the tests
	Example code

	Exploring the React Hooks API
	The useState Hook
	The useEffect Hook
	The useContext Hook
	The useReducer Hook
	The useMemo Hook
	The useCallback Hook
	The useRef Hook
	The useImperativeHandle Hook
	The useLayoutEffect Hook
	The useDebugValue Hook

	Summary
	Questions
	Further reading

	Section 3: Integration and Migration
	Chapter 11: Migrating from React Class Components
	Technical requirements
	Handling state with class components
	Designing the app structure
	Initializing the project
	Defining the app structure
	Defining the components
	Defining the Header component
	Defining the AddTodo component
	Defining the TodoList component
	Defining the TodoItem component
	Defining the TodoFilter component

	Implementing dynamic code
	Defining the API code
	Defining the StateContext
	Making the App component dynamic
	Making the AddTodo component dynamic
	Making the TodoList component dynamic
	Making the TodoItem component dynamic
	Making the TodoFilter component dynamic

	Example code

	Migrating from React class components
	Migrating the TodoItem component
	Migrating the TodoList component
	Migrating the TodoFilter component
	Migrating TodoFilterItem
	Migrating TodoFilter

	Migrating the AddTodo component
	Migrating the App component
	Defining the actions
	Defining the reducers
	Defining the filter reducer
	Defining the todos reducer
	Defining the app reducer

	Migrating the component

	Example code

	Trade-offs of class components
	Summary
	Questions
	Further reading

	Chapter 12: Redux and Hooks
	Technical requirements
	What is Redux?
	The three principles of Redux
	Single source of truth
	Read-only state
	State changes are processed with pure functions

	Handling state with Redux
	Installing Redux
	Defining state, actions, and reducers
	State
	Actions
	Reducers

	Setting up the Redux store
	Example code

	Defining action types
	Defining action creators
	Defining synchronous action creators
	Defining asynchronous action creators

	Adjusting the store
	Adjusting reducers
	Setting the initial state in Redux reducers

	Connecting components
	Connecting the AddTodo component
	Connecting the TodoItem component
	Connecting the TodoList component
	Adjusting the TodoList component
	Connecting the TodoFilter component
	Connecting the App component

	Setting up the Provider component
	Example code

	Using Redux with Hooks
	Using the dispatch Hook
	Using Hooks for the AddTodo component
	Using Hooks for the App component
	Using Hooks for the TodoItem component

	Using the Selector Hook
	Using Hooks for the TodoList component
	Using Hooks for the TodoFilter component

	Example code
	Creating reusable selectors
	Setting up reselect
	Memoizing selectors that only depend on state
	Example code

	Using the store Hook

	Migrating a Redux application
	Trade-offs of Redux
	Summary
	Questions
	Further reading

	Chapter 13: MobX and Hooks
	Technical requirements
	What is MobX?
	Handling state with MobX
	Installing MobX
	Setting up the MobX store
	Defining the Provider component
	Connecting components
	Connecting the App component
	Connecting the TodoList component
	Connecting the TodoItem component
	Connecting the AddTodo component
	Connecting the TodoFilter component

	Example code

	Using MobX with Hooks
	Defining a store Hook
	Upgrading components to Hooks
	Using Hooks for the App component
	Using Hooks for the TodoList component
	Using Hooks for the TodoItem component
	Using Hooks for the AddTodo component
	Using Hooks for the TodoFilter component

	Example code
	Using the local store Hook
	Example code

	Migrating a MobX application
	The trade-offs of MobX
	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

