Join the discussion @ p2p.wrox.com Wrox Programmer to Programmer™

Beginning

Perl

Curtis “Ovid”

BEGINNING PERL

INTRODUCTION e e XXiii
CHAPTER1 What Is Perl? . . 1
CHAPTER 2 Understandingthe CPAN. i, 25
CHAPTER 3 Variableso e e e 41
CHAPTER4 Workingwith Data ... i 83
CHAPTERS5 Control FIOWo e e 125
CHAPTER 6 ReferencCeso e e 157
CHAPTER 7 Subroutines. e 175
CHAPTER 8 Regular EXpressionsot ieiaean 219
CHAPTER9 Filesand Directorieso e 249
CHAPTER 10 sort,map, and grep . oo ov v ettt e e et et 287
CHAPTER 11 PackagesandModules......... 315
CHAPTER 12 ObjectOriented Perl. i 353
CHAPTER 13 MOOSE ...ttt et e e e e e e e e 399
CHAPTER 14 TeStinNg ..ottt ettt e et e ettt e e 439
CHAPTER15 Thelnterwebs. 481
CHAPTER16 Databases........ e 523
CHAPTER 17 Plays WellwithOthers...... i 545
CHAPTER18 CommoONn TasKS.ttt e e 567
CHAPTER19 The Next Steps. e 611
APPENDIX Answersto EXercises ... 655

BEGINNING
Perl

-
0000000000000000000000 ¢
B & B & & & & & & - S o =

Curtis “Ovid” Poe

WILEY
John Wiley & Sons, Inc.

Beginning Perl

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-01384-7

ISBN: 978-1-118-22187-7 (ebk)
ISBN: 978-1-118-23563-8 (ebk)
ISBN: 978-1-118-26051-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012944681

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

This book is dedicated to my wife, Leila, and our
daughter, Lilly-Rose.

When I first had the opportunity to write this book,

[was going to turn it down because 1 had a newborn
daughter. Leila, however, insisted I write it. She
knows how much I love writing and was adamant that
she would be supportive while I wrote this book. She
has been more than supportive: She has kept me going
through a long, painful process. Leila, I love you. And
beaucoup. You know what I mean.

CREDITS

Acquisitions Editor
Mary James

Project Editor
Maureen Spears

Technical Editor
chromatic

Production Editor
Christine Mugnolo

Copy Editor
San Dee Phillips

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Associate Director of Marketing

David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher

Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
James Saturnio, Word One New York

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

Cover Image
© RTimages / iStockPhoto

ABOUT THE AUTHOR

CURTIS “OVID” POE started programming back in 1982 and has been programming Perl almost
exclusively for 13 years. He currently sits on the Board of Directors for the Perl Foundation, speaks
at conferences in many countries, but is most proud of being a husband and father.

ABOUT THE TECHNICAL EDITOR

CHROMATIC is a prolific writer and developer. He is most recently the author of Modern Perl, from
Onyx Neon Press (http://onyxneon.com/).

ACKNOWLEDGMENTS

AS WITH MANY BOOKS, this one would not have been possible without many people helping me
along the way. In particular, I want to thank Michael Rasmussen, my “secret reviewer” who, despite
not being one of the official reviewers, nonetheless diligently reviewed every chapter and came back
with many helpful comments that made this a far better book.

I also have to thank chromatic, my technical reviewer, who managed to annoy me time and time
again by pointing out subtle issues that I should have caught but didn’t. He’s a better programmer
than I am, damn it.

Mary James and Maureen Spears, my primary contacts at Wiley, Wrox imprint, were a joy to work
with and really helped keep my spirits up when this book seemed to drag on far longer than

I thought. Their senses of humor and help through the editorial process were invaluable. I also have
to thank San Dee, whoever the heck she is. Her name kept popping up through the editorial process
and her work catching many issues in this book is much appreciated.

I also need to thank Adrian Howard, Avar Arnfjord Bjarmason, Alejandro Lopez, Andy
Armstrong, Aristotle, Michael Schwern, Ricardo Signes, Sean T Lewis, and Simon Cozens for
foolishly agreeing to review a book of this length.

Finally, I’d like to thank the people working on the Open Feedback Publishing System at O’Reilly
and for engendering a review community (http://ofps.oreilly.com/titles/9781118013847/) for
this book and for all the helpful comments this site generated.

There are far too many to name and I apologize in advance for not mentioning all of you here.

On a personal note, I have to say that many times I’ve read the comment “and all errors are mine”
and I’ve thought, “But that’s what reviewers are for, right?” The reality is far different. When you
write a book, the reviewers will catch a huge number of issues, as mine did, but they can’t catch all
of them. I now realize that in a work of this scope, I have to take responsibility for any flaws. The
reviewers are generally not paid for this work and they’re not going to sit there, hours every night,
months on end, worrying over every paragraph as I did. They caught most issues, but the remaining
flaws in this work are mine and mine alone. Mea Culpa.

CONTENTS

INTRODUCTION Xxiii
CHAPTER 1: WHAT IS PERL? 1
Perl Today 2
Getting Perl 3
Working with Non-Windows Platforms: perlbrew 4
Using Windows 6
The Perl Community 8
IRC 8
PerIMonks 9
Perl Mongers 9
StackOverflow 9
Using perldoc 1"
Understanding the Structure of perldoc 1
Getting Started with perldoc 1
Using Tutorials and FAQs 12
Using the perldoc -f function 14
Using a Terminal Window 14
Using the Command Line 15
Creating a Work Directory 16
Creating Hello, World! 18
Writing Your First Program 18
Shebang Lines 21
Summary 22
CHAPTER 2: UNDERSTANDING THE CPAN 25
CPAN and METACPAN 26
Finding and Evaluating Modules 27
Downloading and Installing 29
CPAN Clients 33
Using the CPAN.pm Client 33
Using the Cpanm Client 35
PPM 36
CPAN::Mini 36
Summary 39

CONTENTS

CHAPTER 3: VARIABLES 41
What Is Programming? 42
A Few Things to Note Before Getting Started 43

strict, warnings, and diagnostics 43
The my Function 43
Sigils 44
Identifiers 45
Scalars 46
Strings 47
Numbers 51
Arrays 53
Breaking Down the Code 54
Accessing Elements 55
Iterating over Arrays 58
Hashes 58
Accessing Elements 59
Iterating Over Hashes 60
Adding Data to Hashes 60
Slices 61
Array Slices 62
Hash Slices 62
Context 63
Scalar Context 63
List Context 64
Scope 67
my Variables 67
Package Variables 69
Strict, Warnings, and Diagnostics 72
strict 74
warnings 74
diagnostics 75
Working Without a Net 76
Perl’s Built-in Variables 78
$_ 78
%ENV 79
@ARGV 79
Other Special Variables 80
Summary 81

CHAPTER 4: WORKING WITH DATA 83

Using Scalars 84
Working with Strings 85

Xiv

CONTENTS

Using String Operators 94
Scalar::Util 97
Numeric Builtins 98
Bitwise Operators 103
Understanding Booleans 103
Assignment Operators 108
Precedence and Associativity 109
Array and List Functions M
Built-in Array Functions m
List::Util 16
Built-in Hash Functions 16
delete() 116
exists() 17
keys() 17
values() 17
each() 17
Scoping Keywords 19
my() 19
local() 19
our() 120
state() 120
Summary 121
CHAPTER 5: CONTROL FLOW 125
Using the if Statement 126
Understanding Basic Conditionals 126
else/elsif/unless 128
The Ternary Operator ?: 131
for/foreach loops 132
Arrays 132
Lists 135
C-Style 136
Using while/until Loops 142
Lists 143
last/next/redo/continue 144
Labels 146
Statement Modifiers 147
Types of Statement Modifiers 147
do while/do until 149
given/when 151
Basic Syntax 151
The Switch Module 153
Summary 154

XV

CONTENTS

CHAPTER 6: REFERENCES 157
References 101 158
Array References 158
Hash References 159
Anonymous References 160
Other References 163
Working with References 166
Debugging 166
Copying 169
Slices 172
Summary 173
CHAPTER 7: SUBROUTINES 175
Subroutine Syntax 176
Argument Handling 177
Multiple Arguments 178
Named Arguments 179
Aliasing 181
State Variables (Pre- and Post-5.10) 181
Passing a List, Hash, or Hashref? 184
Returning Data 186
Returning True/False 186
Returning Single and Multiple Values 188
wantarray 189
FAIL! 190
“Wake Up! Time to Die!” 191
carp and croak 192
eval 192
evalGotchas 194
Try:Tiny 195
Subroutine References 196
Existing Subroutines 196
Anonymous Subroutines 197
Closures 197
Prototypes 200
Argument Coercion 200
More Prototype Tricks 202
Mimicking Builtins 204
Forward Declarations 206

Prototype Summary 207

XVi

CONTENTS

Recursion 209
Basic Recursion 209
Divide and Conquer 210
Memoization 21

Things to Watch For 215
Argument Aliasing 215
Scope Issues 216
Doing Too Much 216
Too Many Arguments 217

Summary 217

CHAPTER 8: REGULAR EXPRESSIONS 219

Basic Matching 220
Quantifiers 221
Escape Sequences 223
Extracting Data 226
Modifiers and Anchors 228
Character Classes 231
Grouping 232

Advanced Matching 235
Substitutions 235
Lookahead/Lookbehind Anchors 236
Named Subexpressions (5.10) 238

Common Regular Expression Issues 241
Regexp::Common 241
E-mail Addresses 242
HTML 242
Composing Regular Expressions 243

Summary 245

CHAPTER 9: FILES AND DIRECTORIES 249

Basic File Handling 250
Opening and Reading a File 250
File Test Operators 258
The Diamond Operator 260
Temporary Files 260
DATA as a File 261
binmode 262

Directories 265
Reading Directories 265
Globbing 265

Xvii

CONTENTS

Unicode 266
What Is Unicode? 267
Two Simple Rules 267
Lots of Complicated Rules 271

Useful Modules 276
File:Find 276
File::Path 278
File::Find::Rule 279

Summary 284

CHAPTER 10: SORT, MAP, AND GREP 287

Basic Sorting 288
Sorting Alphabetically 288
Sorting Numerically 289
Reverse Sorting 290
Complex Sort Conditions 290
Writing a sort Subroutine 292
Sorting and Unicode Fun! 293

map and grep 297
Using grep 298
Using map 303
Aliasing Issues 305
Trying to Do Too Much 306
Trying to Be Clever 307

Putting It All Together 308
Schwartzian Transform (aka decorate, sort, undecorate) 308
Guttman-Rosler Transform 310

Summary 31

CHAPTER 11: PACKAGES AND MODULES 315

Namespaces and Packages 316
use Versus require 321
Package Variables 323
Version Numbers 326

Subroutines in Other Packages 327
Exporting 327
Naming Conventions 330

BEGIN, UNITCHECK, CHECK, INIT, and END 335
BEGIN blocks 336
END Blocks 337

xviii

CONTENTS

INIT, CHECK, and UNITCHECK Blocks 337
Plain Old Documentation (POD) 338
Documentation Structure 340
Headings 340
Paragraphs 341
Lists 341
Verbatim 342
Miscellaneous 342
Creating and Installing Modules 344
Creating a Simple Module 344
Makefile.PL or Module::Build? 349
Summary 349
CHAPTER 12: OBJECT ORIENTED PERL 353
What Are Objects? The &Lvar the Personal Shopper 354
Three Rules of Perl OO 355
Class Is a Package 355
An Object Is a Reference That Knows Its Class 356

A Method Is a Subroutine 358
Objects — Another View 371
Using TV::Episode 37
Subclassing 374
Using TV::Episode::Broadcast 375
Class Versus Instance Data 379

A Brief Recap 381
Overloading Objects 381
Using UNIVERSAL 385
Understanding Private Methods 387
Gotchas 393
Unnecessary Methods 393
“Reaching Inside” 394
Multiple Inheritance 394
Summary 397
CHAPTER 13: MOOSE 399
Understanding Basic Moose Syntax 400
Using Attributes 402
Using Constructors 405
Understanding Inheritance 408
Taking Care of Your Moose 409

Xix

CONTENTS

Advanced Moose Syntax 413
Using Type Constraints 414
Using Method Modifiers 417
Understanding and Using Roles 420
Exploring MooseX 425
Rewriting Television::Episode 428

Moose Best Practices 433
Use namespace::autoclean and Make Your Class Immutable 434
Never Override new() 434
Always Call Your Parent BUILDARGS Method 434
Provide Defaults if an Attribute is Not Required 434
Default to Read-Only 434
Put Your Custom Types in One Module and
Give Them a Namespace 435
Don’t Use Multiple Inheritance 435
Always Consume All Your Roles at Once 435

Summary 436

CHAPTER 14: TESTING 439

Basic Tests 440
Using Test::More 440
Writing Your Tests 442
Understanding the prove Utility 443

Understanding Test::More Test Functions 444
Using ok 445
Using is 445
Using like 448
Using is_deeply 449
Using SKIP 450
Using TODO 450
Using eval {} 451
Using use_ok and require_ok 452
Working with Miscellaneous Test Functions 453

Using Other Testing Modules 457
Using Test::Differences 457
Using Test::Exception 459
Using Test:Warn 460
Using Test::Most 460

Understanding xUnit Style Using Testing 461
Using Test::Class 461
A Basic Test Class 463

Extending a Test Class 467

XX

CONTENTS

Using Test Control Methods 471
Calling Parent Test Control Methods 473
Summary 477
CHAPTER 15: THE INTERWEBS 481
A Brief Introduction to HTTP 482
Plack 484
Hello, World! 484
Handling Parameters 490
Templates 492
Handling POST Requests 496
Sessions 500
Web Clients 511
Extracting Links from Web Pages 512
Extracting Comments from Web Pages 514
Filling Out Forms Programmatically 515
Summary 520
CHAPTER 16: DATABASES 523
Using the DBI 524
Connecting to a Database 524
Using SQLite 527
Using DBD::SQLite 527
Selecting Basic Data 533
Using SELECT Statements 533
Using Bind Parameters 536
Inserting and Updating Data 539
Creating Transactions 540
Handling Errors 541
Summary 542
CHAPTER 17: PLAYS WELL WITH OTHERS 545
The Command Line 546
Reading User Input 546
Handling Command-Line Arguments 548
perlrun 551
Other Programs 556
Running an External Program 556
Reading Another Program’s Output 559
Writing to Another Program’s Input 560
STDERR 562
Summary 565

XXi

CONTENTS

CHAPTER 18: COMMON TASKS 567
Using CSV Data 568
Reading CSV Data 569
Writing CSV Data 570
Understanding Basic XML 571
Reading CSV Data 572
Writing CSV Data 576
Handling Dates 580
Using the DateTime Module 580
Using Date:Tiny and DateTime:Tiny 581
Understanding Your Program 587
Using the Debugger 587
Profiling 594
Perl::Critic 604
Summary 608
CHAPTER 19: THE NEXT STEPS 611
What Next? 612
What This Book Covers 612
What This Book Leaves Out 613
Understanding Object-Relational Mappers 613
Understanding DBIx::Class 614
Understanding Basic DBIx::Class Usage 614
Understanding the Pros and Cons of an ORM 618
Using DBIx::Class::Schema::Loader 624
Using the Template Toolkit 625
Why Use Templates? 625
An Introduction to Template Toolkit 626
Using Catalyst to Build Apps 634
The Beauty of MVC 635
Setting Up a Catalyst Application 635
Using Catalyst Views 641
Using Catalyst Models 643
Using Catalyst Controllers 646
CRUD: Create, Read, Update, and Delete 648
Summary 651
APPENDIX: ANSWERS TO EXERCISES 655

INDEX

xxii

695

INTRODUCTION

“Get a job, hippy!”

That was the subtitle for this book that was sadly, but wisely, rejected. However, it conveys two
things about this book that I've tried to focus on: getting a job and having fun while learning the
skills you need. Well, as much fun as you can reasonably have while learning how to program.

Although many books aren’t explicit in this intent, I’ll say it up front: This book is about money.
Information Technology (IT) workers are in high demand, even during the current economic down-
turn, and this book draws not only on your author’s 13 years of experience with the Perl program-
ming language, but also on surveys that have been conducted regarding “Perl in the wild.” That’s
why you’ll find an astonishing decision in this book: We focus on Perl versions 5.8 and 5.10. They’re
no longer officially supported, but these are the versions of Perl that most companies still use.
Fortunately, the Perl 5 Porters (also known as P5P) strive hard to maintain backward compatibility,
so the code in this book still runs on the latest versions of Perl. As a result of this focus, by the time
you finish this book, you’ll have the skills necessary to accept many Perl jobs.

I first conceived of a Perl book aimed at developing job skills when I was living in Portland, Oregon.
Later, I moved to London and made a few inquiries about working on it, but to no avail. Then I
moved to Amsterdam and started working with Wrox to create this book. I’'m now living in Paris
and am finishing this book. The common thread in all those cities is that Perl opened up the door
for jobs. With many other excellent dynamic programming languages, such as PHP, Python, and
Ruby fighting for the same slice of the pie, some Perl developers moved to other languages, leaving
companies in need of developers to maintain their code and build new systems in Perl. Perl develop-
ers are in high demand, and this book is about meeting that demand.

Lest you think that Perl is just for maintaining legacy code, I can assure you that plenty of com-
panies, large and small, are still turning to Perl as their first choice of programming language. It’s
powerful, solid, and the Comprehensive Perl Archive Network (CPAN) is still the largest collection
of open source code dedicated to a single language. Many times you’ll find that rather than need-
ing to write new code to solve a tricky problem, you can turn to the CPAN and find that someone’s
already written that code.

I’ve been paid to program in many languages, including 6809 Assembler (boy, did I just date myself,
or what?), BASIC, C, Java, COBOL, FOCUS, JCL (Job Control Language), VBA, and JavaScript,
but I keep coming back to Perl. Why? Well, why not? It’s a powerful language. If your programming
needs are CPU-bound, such as in real-time ray tracing, then Perl may not be the best choice, but oth-
erwise, it’s an excellent language. I tend to work on large-scale database-driven applications, and the
performance issues there are usually located in the network, the database, or the file system. Youd
have the same performance issues regardless of the programming language, so you may as well
choose a language that you enjoy.

INTRODUCTION

So what have I done with Perl? Probably the most prominent example is movies. If you read in
the paper that your favorite movie made x millions of dollars over the weekend, there’s a good
chance that I worked on the Perl software that processes those numbers (in real time, I might add)
because those numbers are often reported by a single company.

I also worked for several years on the central metadata repository for the BBC, the world’s largest
broadcaster. When another team in the BBC needs data about programs (if you’re in the UK,

you may have heard of this little thing called iPlayer), it probably called the Perl software that

I worked on.

I also worked for the world’s largest online hotel reservation firm. When I started, the firm was busy
converting many of its Java programs to Perl because Perl was just so darned useful. Almost all its
backend code is written in Perl, which is a large part of its huge success.

I currently work for Weborama, one of the pioneers of online marketing technologies in Europe.

I deal with insane amounts of traffic and data, all of which Perl handles quite nicely. In fact,
Weborama ditched some other popular programming languages in favor of Perl because, well, Perl
just gets the job done.

At the end of the day, Perl is so much fun to use that although I still dabble in other languages
(mostly JavaScript, but Erlang is looking particularly interesting right now), I’'m happy to keep hack-
ing in Perl. I dash out a quick bash script from time to time and then kick myself when I find it’s
easier to write in Perl as soon as it starts getting complicated. Perl has been very good to me.

WHO THIS BOOK IS FOR

Is this book for you? I’ve tried hard to ensure that even someone with no programming experience
can pick up this book and learn Perl.

If You Have No Programming Experience

However, if you have no programming experience, you’re going to want to pay a lot of attention to
Chapter 1, where I describe many different resources available to help a new programmer. You’ll
generally find the Perl community to be a friendly place, always happy to help someone learn.
Without a background in computers, you might struggle with Chapter 2, which is about installing
Perl code from the CPAN, but just turn back to Chapter 1 for a many excellent resources on where
to turn for help (including local user groups where you can meet other Perl programmers). After you
get over the learning curve in Chapter 2, you’ll find the rest of the book to be as straightforward as
a programming book can be.

If You’re An Experienced Programmer

XXiv

If you’re an experienced programmer looking for a comprehensive resource into a language, this

is that book. Chapter 1 mostly covers where to look for help, but you probably already know how
to find programming answers by now. Chapter 2 is about installing Perl modules from the CPAN
and that’s worth at least skimming, but you’re going to want to start paying attention at Chapter 3,
where we discuss Perl’s variables. Perl doesn’t focus much on the kinds of data you use, but how you

INTRODUCTION

organize that data. Perl makes the assumption that you’re competent and know what your data is
and makes it easy to organize your data they way you need it.

WHAT THIS BOOK COVERS

Though this will come as a surprise to some, we focus on two unsupported versions of Perl: 5.8

and 5.10. This is because multiple surveys and your author’s personal experience working for and
consulting with multiple companies show that they’re conservative about upgrading programming
languages and tend to use older versions. Fortunately, PSP focuses heavily on ensuring that newer
versions of Perl are backward compatible, so all of the examples in this book should work on the
newest versions of Perl. When appropriate, we do discuss some newer features that you may encoun-
ter and clearly indicate when this happens.

We focus on the core of the Perl language, and then move to working with databases, with a focus
on web technologies. Why web technologies? Money. This book is about getting a job. If you don’t
already know SQL or HTML, it will eventually (by Chapter 15) be worth hitting some online tuto-
rials to learn a bit of SQL and HTML. You won’t need much to use to use this book, but it will be
worth understanding the basics to make some examples easier to understand.

HOW THIS BOOK IS STRUCTURED

This book is written so that each chapter builds on previous chapters.

> Chapters 1 and 2: The first two chapters of this book (cunningly referred to as Chapters 1
and 2), are mostly background information. They tell you where to look for extra help and
how to set up a CPAN client to install additional Perl modules.

> Chapters 3 through 10: These chapters cover the core of the Perl language. By the time
you’re done with them, you should find it easy to write Perl to handle many common tasks.
They are actually the “Beginning Perl” this book’s title refers to.

> Chapters 11 through 13: These chapters start covering modules (a way to organize your
code) and object-oriented programming (a powerful way to create reusable “experts”
that can handle common programming tasks).

> Chapter 14: This chapter covers testing, a subject near and dear to my heart. Many pro-
grammers suffer from fear-driven programming. This is a problem when you work with
large systems and are afraid to change something because you don’t know what it will
break. Done right, testing can free you from that fear and give you the confidence to make
any changes you might need, even on large systems.

> Chapters 15 through 18: These are somewhat optional, but don’t skip them. They’re the
chapters that can give you a smattering of skills that mid- to high-level Perl programmers
need. You learn how easy it is to build websites in Perl, how to work with databases, how to
handle many common tasks (such as working with dates), and how to work with command
line applications.

XXV

INTRODUCTION

» Chapter 19: This chapter finishes up by summarizing what you’ve covered and what you
still have to learn. You also build a web application to manage multimedia rights data to
fight DMCA takedown notices. It’s an ambitious task, but you can see how easy it is to do
with Perl and the CPAN.

» Appendix: Each chapter in this book ends with a set of exercises to further sharpen the
skills you’ve learned throughout the chapter. This appendix gives the answers to those exer-
cises. Don’t cheat and read them first because that would be, uh, cheating.

WHAT YOU NEED TO USE THIS BOOK

Perl code, fortunately, runs on almost every operating system and often requires no changes when
switching from, say, Windows to Linux. The only thing you will need to use the examples in this
book is Perl version 5.8 or newer. Later chapters require that you install code from the CPAN, but
Chapter 2 covers using the CPAN thoroughly.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.
1. They usually consist of a set of steps.
2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

WARNING Boxes with a warning icon like this one hold important, not-to-be
forgotten information that is directly relevant to the surrounding text.

NOTE The pencil icon indicates notes, tips, hints, tricks, or and asides to the cur-
rent discussion.

XXVi

INTRODUCTION

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
» We show filenames, URLs, and code within the text like so: persistence.properties.
>

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that's particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually or to use the source code files that accompany the book. All the source code used in this book
is available for download at http://www.wrox.com. A file name is provided for each code snippet or
listing presented in the book and this file name corresponds to the source code on the www.wrox.com
site. When at the site, simply locate the book’s title (either by using the Search box or by using one
of the title lists) and click the Download Code link on the book’s detail page to obtain all the source
code for the book.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-01384-7.

After you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no
one is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling
mistake or faulty piece of code, we would be grateful for your feedback. By sending in errata you
may save another reader hours of frustration and at the same time you can help us provide even
higher quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at http: //www.wrox.com/
misc-pages/booklist.shtml.

Xxvii

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to http: //www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fix the problem in subse-
quent editions of the book.

P2P.WROX.COM

xxviii

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you can find a number of different forums to help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P but to post
your own messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you want new messages from a particular forum e-mailed to
you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

For Instructors: Classroom and training support material are available for this book.

What Is Perl?

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Getting Perl
Learning about the community
Understanding the Perl documentation

Using a terminal

Yy YyYVvYYy

Writing your first Hello, World! program

My goodness, where to start? To even begin to cover a language with such a rich history and
huge influence over the world of computing and the web is a daunting task, so this chapter just
touches on the highlights.

By the time you finish with this chapter, you’ll have a good understanding of the history of
Perl and where to go to get more help when you need to know more than this book offers.
Learning how to find the answers to your questions is probably one of the most valuable skills
you can develop.

Before you install Perl, a word about Perl terminology — information that you need to know
to converse intelligently with other Perl users.

The name of the language is Perl. It is not PERL. Larry Wall, the creator of Perl, originally
wanted a name with positive connotations and named the language Pearl, but before its
release, he discovered another programming language named Pearl, so he shortened the
name to Perl.

The name of the language causes a bit of confusion. When people write Perl (uppercase), they
are referring to the programming language you learn in this book. When people write per1
(lowercase), they are referring to the binary executable used to run Perl, the language.

2

CHAPTER1 WHAT IS PERL?

So perl is the binary and Perl is the language. The former parses and runs the latter: per1 parses
and runs Perl. If someone writes PERL, you know immediately that they’re not familiar with the
Perl language. This is why sometimes you see experienced programmers use PERL to refer to poorly
written Perl programs.

Due to the wording of the original documentation that shipped with Perl, many programmers
assume that PERL is an acronym for Practical Extraction and Report Language. However
perlfagl — the documentation that shipped with Perl — sets the record straight:

. never write "PERL", because perl is not an acronym, apocryphal
folklore and post-facto expansions notwithstanding.

Remember, there is no such thing as PERL. It’s Perl, the language, or per1, the executable.

DYNAMIC PROGRAMMING LANGUAGES

Perl, Python, Ruby, and PHP are all examples of dynamic programming languages.
In contrast to languages such as Java, C++, and other static programming
languages, the dynamic languages often delay certain things until run time that
static languages might decide at compile time, such as determining which class a
method will dispatch to. Without going into detail beyond the scope of this book,
dynamic languages tend to be rapid to develop in, but have certain kinds of errors
that are less common in static languages.

Discussions about dynamic and static typing are about type theory, and the
terms are poorly defined. However, there is one solid rule you should remember:
Computer scientists have reasonable disagreements about type theory,

whereas computer programmers have unreasonable ones. If you get into “static
versus dynamic languages” debates, and you don’t understand type theory, you’re
going to sound like a fool to those who do. So don’t do that.

PERL TODAY

Today, Perl is widely used throughout the world. It comes standard on every major operating system
apart from Windows and is still extensively used in web development, thus driving many websites.
New startups choose Perl as their language of choice for data processing, system administration,
web development, and other uses.

As of this writing, Ricardo Signes, a long time Perl hacker, is overseeing the development of
Perl. Perl 6, a new language with roots in Perl 3, is being actively worked on with several interesting
implementations, including a Niecza, which runs on Mono/.NET.

Getting Perl | 3

PERL JOB OPPORTUNITIES

A quick search of many job sites shows plenty of opportunities, but there are fewer
competent developers vying for these roles. If a career in Perl interests you, you can
also check out http://jobs.perl.org/ for a website dedicated to listing jobs that
have Perl as their major technology, compared to jobs where Perl is merely used
incidentally.

This book mostly focuses on 5.8.x and 5.10.x versions of Perl, even though support for both of these
has officially been discontinued. Why? This was a difficult decision to make, but there were several
reasons for this decision. An important consideration is that surveys show most businesses still run
these versions of Perl. It’s a strange thing for a book author to stand up and say, “This book

targets an unsupported version of the language,” but you go to war with the Perl you have, not the
Perl you want.

Fortunately, this choice isn’t as bad as it might sound. The Perl 5 Porters (known as “P5P”) work
hard to keep new releases of Perl backward compatible. Perl 5.14.2 ships with almost half a million
tests (455,832, to be exact) to ensure that Perl works exactly as intended. Thus, what you learn to
write throughout this book generally works unmodified on later versions of Perl.

GETTING PERL

Obviously, it’s difficult to program Perl if you don’t have it installed on your computer; this section
covers several methods for doing this. Even if you already have Perl installed, you should to read this
section anyway because if your system depends on your Perl installation, you might want to install

a separate version to avoid changing behavior that your system requires.

So how do you get Perl? Well, you’re in luck. Almost every major operating system aside from
Windows ships with Perl by default. This is often referred to as the system Perl. You can test
whether you already have Perl installed by opening up a terminal and typing perl -v at the
command line. Currently, on my MacBook Pro, this prints the following:

$ perl -v

This is perl 5, version 14, subversion 2 (v5.14.2) built for darwin-2level
Copyright 1987-2011, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.
Complete documentation for Perl, including FAQ lists, should be found on

this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

Perl is supported on more than 100 platforms — did you even know there were that many? If you
want a different version of Perl than what you already have installed, go to http: //www.perl.org/
get.html.

a

CHAPTER1 WHAT IS PERL?

NOTE |If you use OS X, you already have Perl installed. However, you will
eventually build modules or install other modules. To do this, you need to install
the Developer Tools found on your OS X install DVD or in Apple’s AppStore.
Only the UNIX Development Support tools are required, but there’s no harm
(other than disk space) in installing all of them. Why Apple built a wonderful
computer for developers and made the development tools optional is one of
life’s many inscrutable mysteries.

Working with Non-Windows Platforms: perlbrew

If you do not run Windows, check out perlbrew (http: //www.perlbrew.pl/). This tool enables
you to install multiple and run different versions of Perl.

Running different Perl installations is important because there’s a good chance that some of your
operating system depends on the behavior of the system Perl. Therefore, using perlbrew to install
your own versions of Perl not only ensures that you don’t need to worry about breaking your system
Perl, but you also can play with different versions.

That being said, so long as you’re not overwriting any modules that your system Perl uses, it’s

fine to use your system Perl for learning Perl. It’s also usually fine to upgrade your system modules,
but it’s not recommended. If a core module your system depends on changes in an incompatible
way, the results are unpredictable. Windows does not have this problem because it does not
depend on Perl.

If your system has both bash and curl installed, you can try to install per1brew with the following
command-line command:

curl -kL http://xrl.us/perlbrewinstall | bash
If you don’t have curl installed but you do have wget, you can install perlbrew with this:
wget --no-check-certificate -0 - http://install.perlbrew.pl | bash

If that works on your system, it should enable you to easily install multiple versions of Perl without
superuser (root, or administrator) permissions. It’s then easy to switch between those versions.
This has many benefits, including the following:

> It’s easy to try new versions of Perl.
» You don’t risk breaking your system’s Perl.

> You don’t need superuser permission to install Comprebensive Perl Archive Network
(CPAN) modules.

> You can test production code on newer versions of Perl.

Getting Perl |

To install and use Perl version 5.14.2, type the following (but see the perlbrew available
command below):

perlbrew install perl-5.14.2
perlbrew switch perl-5.14.2

The installation takes a while because perlbrew needs to download and build the version of
Perl you’re asking for.

After perlbrew installs, you can use the following commands:

>

>

perlbrew help: Typing perlbrew help shows you how to use perlbrew. It’s quite easy.

Installing an older Perl version: If you want to install an older version of Perl, you can
run the following:

perlbrew install perl-5.8.3

Switching versions: You can run perlbrew list to see which versions of Perl you have
installed and can switch to a different version. Following is the author’s setup:

$ perlbrew list
perl-5.10.1
perl-5.12.3
perl-5.14.0

* perl-5.14.2
perl-5.8.3

The asterisk before the version indicates which version of Perl you’re running at the moment.

Testing code: To test your code against different versions of Perl, use the following:
perlbrew exec myprogram.pl

The author used this command extensively while writing this book because it’s extremely
useful when you want to find out if your code is compatible with different versions of Perl.

Available versions: As of this writing, following are the Perl versions available to install on
the author’s computer. The perlbrew available command lists all available versions:

$ perlbrew available
perl-5.15.4

i perl-5.14.2
perl-5.12.4

i perl-5.10.1
perl-5.8.9
perl-5.6.2
perl5.005_04
perl5.004_05
perl5.003_07

The leading i indicates which versions of Perl you have installed, and the list of available
versions will grow over time.

If you can use perlbrew, it will make your programming life much more pleasant.

6

| CHAPTER1 WHAT IS PERL?

NOTE Using perlbrew is great, but it requires that you already have Perl 5.8 or
newer installed on your system. However, as because version 5.8 was released
in July of 2002 (see as shown in Table 1-1), this is generally not a problem.

Using Windows

Windows is one of the few operating systems that does not include Perl by default. This makes
things a bit more difficult, but you have a wide variety of options here. Your author recommends
Strawberry Perl, but ActivePerl is also an excellent choice. Cygwin is only recommended only if you
want a Linux emulation layer.

Strawberry Perl

Strawberry Perl (http://strawberryperl.com) is the newest option for Windows, but it’s the one
many developers prefer today. It’s also free and it’s the choice of Perl that Larry Wall utilizes when
he uses Windows. Strawberry Perl does not offer commercial support. Like many open source
projects, support is excellent — but on a volunteer basis.

When you install Strawberry Perl, the following software is installed with it:

>

Y Y Y VY Y VY Y

Mingw GCC C/C++ compiler

dmake make tool

ExtUtils::CBuilder and ExtUtils: :ParseXs

Bundle: : CPAN

Bundle: : LwP (which provides more reliable HTTP CPAN repository support)
XML: : Parser and XML: : LibxML, which enables most CPAN XML modules
DBI and DBD drivers for SQLite, ODBC, MySQL, and Postgres

Additional minor modules to enhance the stability of Win32 Perl.

Don’t worry about what all this means for now. As you move further along in the book, these items
will start to make sense. Just know that they make Perl on Windows easy enough to use that it

rivals Perl on Linux for many tasks. Unless you have a particular reason to use another version of
Perl, the author recommends Strawberry Perl. Some things to remember with Strawberry Perl follow:

>

Pros: Strawberry Perl “just works.” Almost everything you need to develop Perl is bundled
with it, including many tools that are usually mandatory in a work environment.

Cons: It’s relatively new and companies that rely on Windows are sometimes uncomfortable
with software that lacks commercial support.

Getting Perl | 7

ActiveState Perl

Another strong alternative for Windows is ActivePerl (http: //www.activestate.com/
activeperl). It’s free, but commercial support is provided. ActivePerl has been available for more
than a decade and is probably the most popular Perl for Windows. When considering ActivePerl,
remember the following:

> Pros: ActivePerl has been around for more than a decade, and it is maintained by a company
with a strong history of supporting Perl and dynamic languages. It’s also often updated
faster than Strawberry Perl. Additionally, some binary packages are easier to install with
ActiveState than with Strawberry Perl.

» Cons: ActivePerl does not ship with the full set of tools with which Strawberry Perl ships.
Further, it contains some non-open source utilities and, unlike Strawberry Perl, it cannot be
embedded in other open source projects.

Cygwin

One way to run Perl on Windows is to install Cygwin, a free Linux emulator for Windows. You can
download Cygwin from http://www.cygwin.com/. Click the Install Cygwin link for instructions.

By default, Cygwin does not install Perl. You can easily find instructions on the web for installing
and running Perl under Cygwin, including many useful YouTube videos. If you go this route,
make sure that when you install Cygwin, you select both Perl and the GCC/C++ packages from
Development menu when you’re given a choice on which packages to install. However, to get the
most out of Perl on Cygwin, make sure you have the following packages installed:

> perl
gcc/C++
gnupg
gzip
1lynx
make
ncftp
ncftpget
tar

unzip

Y Y Y VY VY Y VY VY VY'Y

wget

This list should cover most of what you need. Keep the following in mind:

» Pros: With Cygwin, you get a Linux environment, which means that most Perl programs
can run unchanged.

» Cons: As an emulation layer, it tends to be a bit slow. It’s also a bit difficult to install
everything correctly if you’re not used to it.

CHAPTER1 WHAT IS PERL?

NOTE |If you have issues getting Perl to run on Windows, go to http://win32
.perl.org/. Your easiest (and best) options are to go with the ActiveState or
Strawberry Perl options, but win32.perl.org gives you plenty of answers to
questions you may encounter.

THE PERL COMMUNITY

You didn’t read detailed instructions on how to install Perl for Windows or how to install alterna-
tive versions of Perl on your operating system of choice. As mentioned previously, Perl is supported
on more than 100 platforms, and although the author has tried writing instructions on how to

do this in the past, the impossibility of handling that obscure error that someone inevitably has
makes this difficult. Fortunately, Perl is easy to install on Windows, and the language has a strong
community supporting it; this community can help you work through even the most unusual issues.

Because the Wrox “Programmer to Programmer” series targets experienced developers looking to
expand their skills, you, the developer, will likely be familiar with software installation. If you’re
new to programming, you might need a bit more help. Either way, the following sections discuss a
variety of resources to help you start.

NOTE Consult these sources regularly when you get stuck on a particular
problem. This is one of the lovely things about the open source community:
Quality help is widely available, and it’s free. There’s no need to struggle on
your own when so many people can help you learn Perl.

IRC

Internet Relay Chat (IRC) has been around since 1988, and it’s often a great way to get questions
answered “in real time.” With IRC, you have several options:

> mIRC (http://www.mirc.net/): For Windows, this is probably the most popular IRC
client, but it’s shareware, and you can use it only for 30 days before paying.

» KVIrc (http://www.kvirc.net/): This is a good, free choice for a graphical IRC client,
and it’s available for most platforms.

» Colloquy (http://colloquy.info/): For OS X, the author uses this.

» Chatzilla (http://chatzilla.hacksrus.com/): If you use the Firefox browser, it has the capa-
ble Chatzilla add-on, which this should work regardless of which operating system you choose.

> freenode: You can also access freenode with any browser via http: //webchat. freenode
.net/.

Actually, any IRC client you’re comfortable with is fine.

The Perl Community | 9

When you get on IRC, connect to the irc. freenode.net server and join #perl. The #perl channel
generally has plenty of users, and you can get many Perl questions answered quickly and easily — or
at least get told where to RTFM, which stands for Read The Manual. (the “F” is silent.)

If you’re not familiar with IRC, hit you favorite search engine and search for list of IRC commands.
You can also consult the Wikipedia page for IRC (http://en.wikipedia.org/wiki/Irc) for more
information, including lists of other IRC clients.

PerlMonks

PerlMonks (http: //www.perlmonks.org/) is a fantastically useful Perl site that’s been around for
more than a decade. Your author joined in 2000, unsurprisingly as “Ovid,” and has been a regular
contributor for years.

In the top right corner of the site, you see many useful links. Seekers of Perl Wisdom is probably
the most useful when you need an answer to a problem. When you first post a question, it shows in
Newest Nodes, and many people follow that to try to help answer the new questions. Fortunately,
the regular users at PerlMonks generally don’t suffer as much from the “first post” silliness you
often find at other sites.

In addition to answering questions, PerIMonks has book reviews, Meditations (a section for
people who just want to muse about Perl-related things), tutorials, Perl news, site discussion, and a
chatterbox for those who just want casual conversation or have a quick question.

If you’re serious about learning Perl, PerIMonks is a good place to start. Many of the top minds in
Perl hang out there, and it’s a good resource with plenty of history to search through. PerIMonks is
“all Perl, all the time.” Joe Bob says, “Check it out.”

Perl Mongers

For those who like a bit of real-life interaction (and who doesn’t?), there’s also Perl Mongers
(http://www.pm.org/). Founded by brian d foy in 1997, Perl Mongers is an organization of Perl
hackers in different cities who meet periodically to, well, do whatever they want. Your author ran
the Perl Mongers group in Portland, Oregon (Portland.pm) for several years, and has attended
Perl Mongers meetings in a number of countries.

The local Perl Mongers user groups are Perl enthusiasts who enjoy hanging out together and talking
about stuff. Sometimes that stuff is Perl. The Portland.pm group generally schedules technical talks
followed by a “social” at a local pub, often the excellent Lucky Lab in Portland, Oregon. If you ever
visit Portland, check out that pub.

There are Perl Mongers groups on every continent except Antarctica, but there was discussion of an
Antarctica group starting up when Mongers found out there was a Perl programmer there. If you live
near a major city, there’s a good chance there’s a Perl Mongers group close to you. If not, create one!

StackOverflow

StackOverflow (http: //stackoverflow.com/) was created in 2008 by Joel Spolsky and Jeff Atwood as
an “open” site for anyone to ask programming-related questions. It has spun off numerous related sites
and has become extremely popular as the site where you can ask just about any technology question.

10 |

CHAPTER1 WHAT IS PERL?

Perl questions are answered quickly with solid information, and you can easily see the “rating” of
the users who respond to your questions. Because of how questions are tagged, it’s easy to quickly
drill down to questions that might be relevant to your situation.

LEARNING HOW TO ASK EFFECTIVE QUESTIONS

Quite often on PerlMonks, StackOverflow, or other sites, you see a question like
“I tried to use module XYZ, but when I tried to print with it, it didn’t work. What
am I doing wrong?”

That’s it. “Didn’t work” isn’t explained. No code sample is provided. Nothing.
Here’s how to ask an effective question:

1. State what you’re trying to do.

2. Explain how you tried to do it.

3. Explain what result you expected.

4. Explain what result you had instead.

“How you tried to do it” often involves posting a minimal code sample. Posting

no code is just as bad as posting 500 lines of code. Just give people an idea of what
you’re trying to do, and answer any follow-up questions they have (if any).

It’s also a good idea to indicate how you already tried to find an answer. People are often
more helpful if it looks like you’ve already tried to find an answer to a basic question.

LA ERellhl Register for a Free Account at PerlIMonks

Every chapter, has “Try It Out™ sections, but for this first chapter, there’s not much to “try out.” After
the “Try It Out” sections, there is usually a “How It Works” section explaining what you’ve just done,
but this first one is self-explanatory, so “How It Works” is skipped this time. Instead, this Try It Out is
to nudge you to PerIMonks and get you started on your journey to Perl. Just do the following;:

1.

2.
3.

Go to http: //www.perlmonks.org/ and click Create a New User. (The link is on the right,
below the login box.)

Read some of the useful information, such as “Don’t create a username people can’t type.”

Fill out the small form and wait for your confirmation e-mail.

I encourage you to click the Newest Nodes or Seekers of Perl Wisdom links and read through some of
the material there. Much, if not most, of the information might seem foreign to you, but by the time
you finish this book, you’ll be answering questions for newcomers. Or you should be: Answering
questions is one of the best ways to learn new material.

Using perldoc |

"

USING PERLDOC

Now that you’ve installed Perl, the first thing you should do is get acquainted with the extensive Perl
documentation that ships with the language. As this book covers various topics, a perldoc tip often
prefixes sections, like this:

perldoc perlnumber

If you type perldoc perlnumber into your terminal, you receive an introduction to how numbers
are used in Perl. If you prefer a web browser, go to http: //perldoc.perl.org/, select your Perl
Verﬁon,andthmlgoto:http://perldoc.perl.org/perlnumber.html

By constantly reinforcing perldoc throughout this text, you get the tools to find answers to most

questions yourself. This is one bit of advice the author would have liked to received when starting
his Perl journey in the ‘90s. You don’t need to memorize the material in the documentation, but as
you become more familiar with it, you’ll find it easier to remember where to look it up later.

Understanding the Structure of perldoc

The Perl documentation is written in POD, short for Plain Old Documentation. POD is an easy-to-
learn markup language for documenting Perl. It’s easy enough to learn (and you will in Chapter 11),
but flexible enough, that many authors write their books in POD.

When you type perldoc <documentation name>,the program searches through parts of your system
where it thinks the documentation may be found, looking for a file with a .pod or .pm extension. The
.pod extension is preferred, and .pm is used if the file with the .pm extension has embedded POD and
the .pod extension is not found. The program then formats the POD and displays it. For earlier versions
of perldoc, you could add the -v switch to see where the per1doc command is looking for your POD:

perldoc -v perldoc

If your version of perldoc supports (see perldoc perldoc) this, use the -D switch to see where
perldoc is looking for the documentation. The -v switch now displays the description of Perl’s
built-in variables:

perldoc -v '$_"
perldoc -v '@ARGV'

You can also type perldoc perlvar to see all of Perl’s built-in variables.

You can read perldoc perldoc for more information about how to customize perldoc output or
to see what other command-line switches it supports.

Getting Started with perldoc

The first thing you want to do is type perldoc perl. This gives you a brief description of some of
what Perl can do and quickly directs you to

perldoc perlintro

12

CHAPTER1 WHAT IS PERL?

That’s a gentle introduction to Perl. If you’re dedicated, you could start there and not buy this or
any other Perl book. That approach works if you have lots of time and patience. This book presents
what you need to know most, including where to get more information.

The perlintro is clear but terse. It assumes that you already know how to program and rushes
through the basic features of the language. As a result, there are many bits and pieces you should be
aware of but won’t be. So to follow up on the perlintro, you’ll want:

perldoc perltoc

As you might expect, that’s the Table of Contents for the Perl documentation. For Perl 5.14.2, that
Table of Contents is more than 20,000 lines! That’s a huge amount of documentation. It’s longer than
many of the chapters in this book, and your author hopes his publisher doesn’t notice. In contrast,
Perl 5.8.3’ Table of Contents weighs in at a measly 11,911 lines. However, this book mostly focuses
on 5.8 and 5.10, and it won’t actually talk (much) about what’s in those newer documents.

Using Tutorials and FAQs

Perl comes bundled with many tutorials you can read with peridoc. Table 1-1 lists the tutorials that
are some of the popular ones included in Perl version 5.8.3. You can type perldoc <tutorialname>
to read these tutorials.

TABLE 1-1: perldoc Tutorials

TUTORIAL DESCRIPTION

perlreftut Tutorial on references

perldsc Data structures cookbook
perllol Data structures: arrays of arrays
perlrequick Regular expression quickstart
perlretut Regular expression tutorial
perlboot Object Oriented (OO) Perl for beginners
perltoot OO tutorial, part 1

perltooc OO tutorial, part 2

perlbot OO tricks and examples
perlstyle Style guide

perlcheat Cheat sheet

perltrap Traps for the unwary

perldebtut Debugger tutorial

Using perldoc

13

NOTE The object oriented (OO) Perl documentation which ships with Perl

5.8 and 5.10 was very useful in its day but is now considered to be rather out of
date. Its examples and recommended practices should be considered suspect.
We’'ll be covering OO starting in chapter 12.

Because the author had so much fun cutting and pasting from the documentation and padding the

page count, Table 1-2 lists the Frequently Asked Questions (FAQs) that ship with Perl.

TABLE 1-2: perlfaq

FAQ
perlfaqg
perlfaqgl
perlfaqg?2
perlfaqg3
perlfaqg4
perlfagb
perlfagb
perlfaqg’
perlfag8

perlfaqg9

DESCRIPTION

Perl FAQs

General questions about Perl
Obtaining and learning about Perl
Programming tools

Data manipulation

Files and formats

Regexes (regular expressions)
Perl language issues

System interaction

Networking

These FAQs are extensive. For example, the following are some of the questions addressed

in perlfag2:

» What machines support Perl? Where do I get Perl?

How can I get a binary version of Perl?

>
» Idon’t have a C compiler on my system. How can I compile Perl?
>

I copied the Perl binary from one machine to another, but scripts don’t work. Why?

What’s nice is that for any of these questions, you can type perldoc -q "something I'm
looking for" and perldoc will spit out the sections from any FAQ that matches the term you
give it. (Actually, perldoc matches against regular expressions, which aren’t covering until
Chapter 8, so pretend you didn’t read that bit.)

14 | CHAPTER1

WHAT IS PERL?

A full reference manual also ships with the Perl documentation along with extensive information

about the internals of Perl (not for the faint of heart), linking Perl to C and C++ programs, platform-

specific information, and other things that aren’t covered in this book.

Using the perldoc -f function

One of the most useful perldoc commands is perldoc -f . When you type perldoc -£, followed
by a function name, you can see a complete description of the function in question and quite
possibly far more than you ever need to know. For example, perldoc -f my displays the following;:

my EXPR
my TYPE

my EXPR :

my TYPE

EXPR

ATTRS

EXPR : ATTRS

A "my" declares the listed variables to be local (lexically) to
the enclosing block, file, or "eval". If more than one value
is listed, the list must be placed in parentheses.

The exact semantics and interface of TYPE and ATTRS are still
evolving. TYPE is currently bound to the use of the "fields"
pragma, and attributes are handled using the "attributes"
pragma, or starting from Perl 5.8.0 also via the
"Attribute::Handlers" module. See "Private Variables via my()"
in perlsub for details, and fields, attributes, and
Attribute::Handlers.

It starts with the grammar for the function and then a brief (and sometimes verbose) explanation
of that function. In the preceding example, the grammar could represent any of the following:

my $dog;

my Dog $spot;

my $dog

HasSpots;

my Dog $spot : HasSpots;

NOTE |In real-world Perl, you almost always see the first form from the previous
code, my $dog, and not the three that follow it. The semantics of the last three
forms were never well defined and caused confusion, so people don’t use them.

This is an example where the docs show you what you can do, not what you
should do.

USING A TERMINAL WINDOW

You can skip this section if you already know how to use a terminal window. Otherwise, this
section will explain the absolute minimum you need to know about opening and using a terminal
window. As with a number of other languages, if you want to program in Perl, much of your
professional life will be spent in a terminal window.

Using a Terminal Window | 15

Using the Command Line

Perl comes from a UNIX background and, as a result, is often run from a terminal window. Unlike
many graphical user interface (GUI) systems, terminals enable you to type commands directly into
the system rather than clicking an icon on a screen or selecting items from menus. Getting used

to the command line not only gives you all the power of a GUI system, but also leverages the consid-
erable power of the command line. If you’re not familiar with this method, hit your favorite search
engine for how to use the command line on your system, but for now, this section concentrates

on getting a terminal window open.

This isn’t difficult, but ask a geek friend for help if you get stuck.

Working with the Terminal Window in Linux

If you’re familiar with Linux, you probably already know about the terminal window.
Unfortunately, because there are more than 100 Linux distributions and many different window
managers, it’s impossible to tell you how to do this on your system. However, following are some
general tips:

1. Look for an icon on your desktop that looks like a computer screen. It may say Terminal or
Console next to it. Try double-clicking that. You can also often right-click your desktop and
look for open terminal or something similar.

2. In the menu system under the Systen folder, you may also find the konsole or
Gnome Terminal program.

3. Search your desktop menu for the words terminal or console. Many Linux systems have
icons on their menus, and you may see a terminal icon there.

Working with the Terminal Window in Mac OS X

If you’re on a Mac, you can follow these steps:

1. Go to your desktop and press Command-Shift-G (in other words, hit all those keys at the
same time). This brings up a Go fo folder dialog.

2. Type /applications/Utilities in the text window, and click Go.

3. Scroll through the applications until you see the Terminal icon.

4. Drag this to the dock. You’ll use the terminal a lot in this book, so you want to have this handy.
A quick check of a search engine for mac command line or learning os x terminal should bring you

up to speed on some of the basic commands. When you use the Mac command line, you’ll find that
most standard UNIX/Linux commands operate the same way.

NOTE Alternatively, go to iTerm2 (http://www.iterm2.com/)to download
their free terminal application. The author uses iTerm2, which is an excellent
replacement for Terminal . app that is included with OS X.

16 | CHAPTER1 WHAT IS PERL?

Working with the Terminal Window in Windows

For Windows, you have a couple options:

» If you’ve installed Cygwin, you can double-click the Cygwin desktop icon (not the installer!)
and youw’ll automatically be at a command-line prompt ready to go.

> Press the Windows key and r at the same time. This should bring up a Run dialog box. Type
emd (short for command) into the box, click OK, and a terminal window pops up.

» You can bring up the Run dialog box by clicking Start; then you should see Run as one
of the menu items. Click that and it’s the same procedure: type emd into that box and
click OK.

If you don’t like the standard terminal on Windows, some people prefer console, available via free
download at http://sourceforge.net/projects/console/.

For Windows, the terminal window is sometimes referred to as a DOS window. DOS stands for
Disk Operating System and earlier versions of Windows were based on DOS with a Window
manager on top. Today, Windows is a GUI system, and the DOS window is an emulation layer, but
the commands have not changed much over time.

If you’re unfamiliar with the Windows command line, search the Internet for list of DOS commands
to learn more about this environment.

Creating a Work Directory

Now that you have a terminal window open, you might want to find out where you are on your
system. To see the current directory you are in, you can type pwd (print working directory) on Linux
or OS X, or ed (with no arguments) on Windows. You can type Is on Linux or OS X to see a list of
files in the current directory or dir if you’re on Windows.

NOTE A folder in Windows or OS X is what most other operating systems refer
to as a directory. This text says directory.

Create a folder named wroxper1l and change to it. For most major operating systems, type this:

mkdir wroxperl
cd wroxperl

You should now be in an empty directory, suitable for creating your sample programs. When you
create them, make them in separate directories named chapterl, chapter2, and so on. This makes
it easier to organize and refer back to them. So go ahead and create a chapter1 directory now and
change to it:

mkdir chapterl
cd chapterl

Using a Terminal Window

17

You won’t need this until you get to the “Hello, World!” section (it’s a law that all programming
books start with this), but stay in the terminal for now to get used to the perldoc command.

INSTALLING THE PERLDOC COMMAND

You probably have peridoc installed. You can verify this by typing perldoc -h to
bring up a help page for perldoc. Annoyingly enough, some systems that include
Perl by default don’t include the peridoc command even though it is installed by
default when you install Perl manually. If your system uses apt, you can install
perldoc with:

sudo apt-get install perl-doc

Unfortunately, that won’t work on systems that don’t use apt, and because Perl
is available on more than 100 platforms, this book can’t cover them all. Thus,

in the event that you don’t have perldoc installed, try hitting IRC, PerlMonks,
StackOverflow, or your favorite search engine to find out how to install perldoc.
Or ask your geek friend to do it for you. Pizza is a great payment.

Getting Used to perldoc

You don’t want to just read about the command line; you must get used to it, too. You’ll see a lot of
Perl’s internal documentation here. You don’t actually have to read it right now, but you should be
familiar enough with seeing it to know where to look for more information.

1. Open a terminal. Actually, you should already have one open by this time. To navigate, try the
following commands by typing the following:

> q: To exit (quit) perldoc

> Spacebar or the down arrow: This enables you to scroll through the pages

» Forward slash (/) and some letters: Enables you to search through the documentation
Unfortunately, most of those commands depend on you having a sane pager program, such as less.

You can set the PAGER environment variable to your desired pager or just play around with your
perldoc to see which commands it accepts.

2. See which perldoc version you’re using.
perldoc -V
3. Read about what the perldoc command can do on your version of Perl.

perldoc perldoc

18 |

CHAPTER1 WHAT IS PERL?

Read (skim) about Perl.

perldoc perl

Read the Table of Contents. (Actually, there’s probably too much here to read).
perldoc perltoc

Search for information in the FAQs, which provide a wealth of information.

perldoc -g variable
perldoc -qg file

Read about some Perl functions.

perldoc -f print
perldoc -f map

If your Perl is new enough (5.12 or better), you can read about some built-in Perl variables. Older
versions of Perl use the -v to “verbosely” show you where perldoc is searching for your
documentation. Newer versions of Perl use the -D switch for this.

perldoc -v 'S_"'
perldoc -v '@ARGV'

How It Works

The perldoc command searches all places where it thinks Perl documentation may be living and reads
likely files it finds to determine if they contain the information you need. If you are curious to know,
you can run the following command to see for yourself where it’s (mostly) searching:

perl -le 'print join "\n", @INC, map {split /:/} @ENV{gw/PERL5LIB PATH/}'

If you understand that command and what it’s doing, there’s a good chance you don’t need this book.
By the time you’re done with this book, you’ll understand it.

CREATING HELLO, WORLD!

Now that you’ve read far too much documentation (who am I kidding? You skimmed it), it is time
for that traditional rite (write?) of passage, “Hello, World!” As one friend explained to me, he
was proud that he could write “Hello, World!” in 15 programming languages — though he could
program in none. Try to avoid that, okay?

Writing Your First Program

First, open your terminal and type this:

perl -e 'print "Hello, Wrox!\n"'

Creating Hello, World! | 19

Oh, wait. Sorry Windows people. You have to type this:
perl -e "print \"Hello, Wrox!\n\""

Except that it might not work, depending on your version of Windows. See perldoc perlfag3 and
read the section “Why don’t Perl one-liners work on my DOS/Mac/VMS system?” to understand
why your life is difficult. If you have a Mac, the “Mac” section likely does not apply to you because
OS X handles Perl and the command line quite well, thank you.

Aside from your author blatantly patronizing the publisher, the “Hello, Wrox!” snippet shows some-
thing common about Perl: running Perl from the command line. This won’t be covered much in the
book, but as you get more familiar with Perl, you’ll see people doing things like this:

perl -pi.bak -e 's/version = 13/version = 14/' <list of files>

That changes all strings in <list of files> matching “version = 13” to “version = 14”
and create backups of all those files with a .bak extension. That’s more or less equivalent to the
following Perl program that is also listed in perldoc perlrun. (Although it’s been cleaned up to
be “safer.”)

#!/usr/bin/perl
my $extension = '.bak';
my $oldargv;
LINE: while (<>) {
if (SARGV ne S$Soldargv) {
my S$backup;
if ($extension !~ /*/) {
Sbackup = SARGV . Sextension;
}
else {
(Sbackup = $extension) =~ s/*/S$ARGV/g;
}
rename ($SARGV, S$backup) ;
open (ARGVOUT, ">", SARGV)
or die "Cannot open '$ARGV' for writing: $!";;
select (ARGVOUT) ;
Soldargv = $ARGV;
}
s/version = 13/version = 14/;
}
continue {
print; # this prints to original filename
}
select (STDOUT) ;

As you can see, using Perl on the command line effectively gives you a lot of power to get things
done quickly. You can read perldoc perlrun to understand some of this, but search for per1
one-liners online to see what you can do if you’re interested in this area.

Getting back to “Hello, World!”, the general way you write a Perl program is to save a file with
the program code and then type perl <programnames. The first line of the program is often the

20

CHAPTER1 WHAT IS PERL?

shebang line, which you learn more about in a bit. After that is your program text. All you need
to do to get a basic Perl program running is to type up your program, save it (usually with a .p1
eXIenﬁon),andthentypeperl <programname>

Listing 1-1 is a short Perl program that shows how a simple program may look. You learn more
aboutthestrict,warnings,and<iiagnosticsin(:haptmf3.

LISTING 1-1: Hello, World!

#!perl

use strict;

use warnings;

use diagnostics;

this is a comment

print "Hello, World!\n"; # so is this

Your First Perl Program

This is a simple example to demonstrate writing a Perl program, saving it, and running it.

1.

Type the following code into your favorite editor, and save it as bonjour.pl.
#!/usr/bin/perl
"Hello world!, in French

print "Bonjour, tout le monde!\n";

From the command line type ed (change directory) into the directory where you saved your
program, and type perl bonjour.pl. You should see this output:

Bonjour, tout le monde!

How It Works

On the command line, when you type per1 followed by the name of a file containing a Perl program,
Perl reads that file, parses the code, and executes it. The sharp (#) begins a comment. It can be on its
own line or embedded in a line after some code.

NOTE People sometimes mistakenly refer to Perl as an interpreted language,
but it’s not quite a compiled one, either. Like many modern languages, it falls
somewhere in between the two. When you run a program with perl
programname.pl, Perl first compiles your Perl down to a set of opcodes and then
executes those. Because there is generally no complicated compile/link phase
for executing a Perl program, it’s very easy to quickly make and test changes

to programs.

Creating Hello, World! |

21

WINDOWS AND THE .PL EXTENSION

On Windows, when you install Perl, you’ll often find that the .p1 extension is
associated with Perl in the registry. New Perl programmers on Windows often
double-click a Perl program icon and then wonder why they see a brief flash of a
console before it disappears, taking their program output with it. That’s because
Perl is usually run from the command line. One trick to work around this is to add
the following code as the last line of your program:

<STDIN>;

That causes Perl to hang, waiting for you to enter some input, leaving the console
up. Just pressing Enter makes the console disappear. This is explained more when
you cover user interaction in Chapter 17, but for now do not use this trick. Get used
to running Perl from the command line.

Shebang Lines

The first line of a Perl program often starts with a shebang line. A shebang line starts with “sharp”
(#) and an exclamation point, also known as a “bang” (1), hence the term shebang. The line is
followed by a path telling the shell where to find the interpreter that is used to execute the program.

On a system that understands the chmod command, you can type chmod +x programname to make
the program directly executable. If it’s in your path, you can then type programname to run the
program. Otherwise, you can type the full or relative path to the program to execute it.

For example, if you'’re in /Users/ovid/wroxperl/chapterl and you create a program called runme
in that directory, you could run it like this:

$. /runme
$ /Users/ovid/wroxperl/chapterl/runme

For now, you can just type perl programname to run the programs.

The shebang line might take one of a number of different forms. On a Linux system, this often looks
like one of the following:

#!/usr/bin/perl
#!/usr/local/bin/perl
#!/usr/bin/perl -w
#!/usr/bin/env perl

The first two lines point directly to the Perl executable that should run the program. The third line,
with the -w switch, tells Perl to run the program with global warnings. The final line tells Perl to use

22

CHAPTER1 WHAT IS PERL?

the env program to find out which per1 is currently set as the default per1 for your system. This is
useful if you have different versions of Perl installed and want your program to always run with the
Perl you’re currently using.

Some people just do the following:
#!/perl

And that generally does what you want.

On Windows you might see the following;:

#!C:\Perl\bin\perl.exe
#1C:\strawberry\perl\bin\perl.exe

The first line is often found when running with ActiveState Perl. The line version is found when
running with Strawberry Perl.

When per1 sees the shebang line, it attempts to run your program using whatever it finds after the
#1. Generally, this isn’t a problem, but if you want to run the script on more than one machine, even
with the same architecture, you could have a problem if someone installs Perl in a different location.

Fortunately, there is one simple trick you can follow to ensure you don’t have problems with
shebang lines: Don’t install modules and scripts by hand. Instead, package them as proper
distributions and install them with the standard Perl toolchain (such as cpan or cpanm). You learn
module installation in Chapter 2 and module writing in Chapter 11.

For the Perl code that can be downloaded with this book, you will not be using shebang lines
because they tend not to be portable. You will need to run the programs by explicitly typing
perl programname.

SUMMARY

By this time you’ve learned a bit about the history of Perl, where to go to get more information,
installing Perl, and running a simple Perl program. This isn’t a huge amount of information, but it’s
the foundation you need to progress in Perl.

Summary | 23

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

History

Getting Perl

Community

perldoc

Using a terminal

KEY CONCEPTS
The basic history of the Perl language, its releases, and common use.

About system Perl and perlbrew for those who use UNIX-style systems.
Cygwin, ActivePerl, and Strawberry Perl are compared as options for
Windows users.

Perlmonks, IRC, Perl Mongers, and StackOverflow are all valuable
resources for learning Perl.

Perl comes with extensive documentation. You learned the basic structure
of the docs and how to look up basic information.

You use a terminal extensively when programming Perl. You learned how
to launch a terminal and run a program from the command line.

Understanding the CPAN

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Understanding the CPAN
» Using CPAN clients to install modules

This is the end of Chapter 10. Or it was. Many Perl books, if they include information about the
Comprehensive Perl Archive Network (CPAN), mention it almost as an afterthought, just as your
author was going to. However, CPAN is the soul of Perl. Its use is so common that your author
repeatedly found it hard to create compelling examples of Perl without duplicating code already
on the CPAN. Thus, the CPAN is now not only near the front of the book, it has an entire
chapter all to itself. You cannot be a real Perl programmer without understanding the CPAN.

It’s been said that the best way to make a technology popular is to release a killer app that
requires it. VisiCalc, a precursor to spreadsheets, made the Apple II computer popular. Ruby
on Rails is the killer app that made the Ruby programming language famous.

Perl has the CPAN. Though many have tried, nothing compares to the CPAN.

THE HISTORY OF THE CPAN

In 1994, on the Perl-packrats mailing list, an idea was born. The idea was simple:
Make a single place for Perl authors to upload their modules and for others to
download them. That idea became the Comprehensive Perl Archive Network
(CPAN) and was launched in 1995. Since then, it has grown to an enormous size.
By October of 2011, the CPAN had this to say for itself http: //www.cpan.org/

The Comprehensive Perl Archive Network (CPAN) currently has 100,649
Perl modules in 23,600 distributions, written by 9,282 authors, mirrored
on 269 servers.

26 | CHAPTER2 UNDERSTANDING THE CPAN

The breadth of modules available on the CPAN is amazing. Following is an overview of what’s
available:

>

>
>
>

\

>

Many popular Web frameworks: Including catalyst, Dancer, and Mojolicious.
DBI, the standard database interface: Or if you prefer ORMs (Object-Relational Mappers).
DBIx: :Class and Rose: :DB: These classes make working with databases much easier.

Artificial intelligence modules in the AT: : namespace: You can find out about namespaces a
bit more in Chapter 3, “Variables.”

More testing modules than you can imagine in the Test: : namespace: They’re great for
testing your code to make sure it’s not misbehaving.

An entire bioperl distribution: This is available because Perl is used heavily in biology
research.

An Acme: : namespace: This is where people upload humorous modules just for fun.

The author has more than 40 modules on the CPAN at http://search.cpan.org/~ovid/;
although, many of them are for rather obscure problems.

That’s part of what makes the CPAN so great. When you have a relatively obscure problem, there’s
a good chance there’s a CPAN module for it. Today, many are surprised when they have a problem
and there’s 7ot a CPAN module for it. Whenever possible, don’t reinvent the wheel. Look for a solu-
tion on the CPAN to see if you can save a lot of time and effort by using someone else’s code. That’s
why it’s there.

Oh, and did I mention that most code on the CPAN is both free and open source?

WARNING You see many differences between Windows and other operating
systems. That’s unfortunate, but those differences are minimized as much as
possible. The short description: Use the automated tools recommend (for CPAN
clients, for example) and don’t try to do this stuff manually. You’ll probably get it
wrong until you understand what’s happening here. Fortunately, this is probably
your biggest hurdle if you use Windows.

CPAN AND METACPAN

The following are two main websites (and many mirrors) that Perl developers currently use to find
modules:

>

http://search.cpan.org/: The search interface to the original CPAN and currently
the one that most people think of when they think of the CPAN website. It enables you to
browse distributions, search distributions, check test results on modules, and read reviews
of said modules.

CPAN and METACPAN | 27

> http://www.cpan.org/: When writing a book, you always face a danger in describing
new technology because it may change or cease to exist by the time the book is printed,
but this site has enough developers working on it and seems stable enough that it’s worth
including in this book. It has a search engine with autocomplete driven by the excellent
ElasticSearch search engine (http://www.elasticsearch.org/). In addition to offering
everything that cpan.org offers, it also has an API where you can write your own CPAN
tools. You can sign up for a free account with metacpan and add modules as favorites,
link other accounts to your metacpan account, and even accept PayPal donations by
e-mail address. In short, it’s social networking for the CPAN. Add the API on top of it,
and the author expects that metacpan is the future of the CPAN. (Your author has also
been wrong before.)

> http://kobesearch.cpan.org and http://cpan.uwinnipeg.ca: Alternatively, some
people like these sites, but they’re less popular.

NOTE Sadly, the maintainer of http: //kobesearch.cpan.org and http://
cpan.uwinnipeg.ca, Randy Kobes, has passed away. The future of these sites
is uncertain. Our condolences to his family and friends.

In 1994, on the Perl-packrats mailing list, an idea was born. The idea was simple: Make a single place
for Perl authors to upload their modules and for others to download them. “That idea became the
CPAN. You won’t actually use much of this information when you first start learning Perl, but the
further you go in your Perl journey, the more crucial CPAN will be. You will repeatedly face a hard
problem and then find that someone else has done the work for you and has uploaded it to the CPAN.

Finding and Evaluating Modules

For nttp: //www.cpan.org, you can browse the modules at http: //www.cpan.org/modules/
index.html. You can browse by author, module name, recent modules, and so on. However, many
people look for modules to handle a problem they need to solve, not for a particular author or mod-
ule name. Given the size of the CPAN, browsing is somewhat impractical. You want to search for a
module and not just browse them. For that, you want to use http://search.cpan.org/.

The front page of http://search.cpan.org has a list of module categories you can browse
through, but given the size of the CPAN, this list is not well maintained. Instead, use the search
box. Say you need to write some software that displays the weather forecast. Searching for weather
brings up something like this:

> weather
> Weather: :Bug: :Weather

> App::Dataninja: :Bot::Plugin: :Weather

| CHAPTER2 UNDERSTANDING THE CPAN

Weather: :Com: :Base
Geo: :Weather
Yahoo: :Weather
Weather: :Com

Weather: :Google

Y Y Y VY Y Y

Weather: :Underground
> Weather: :Bug: : CompactWeather
And that’s just the first page of search results!

Each result actually has a bit more detail. For example, the weather: :Google module has this:

Weather: :Google
Perl interface to Google's Weather API
Weather-Google-0.05 (2 Reviews) - 26 Jan 2010 - Daniel LeWarne

The first line is the name of the module and also a link to the module documentation. After that is

a short description, its current distribution name, a link to reviews (if any), the date of its release, and
the author name. As you get more familiar with the CPAN and the Perl community, you can recognize
author names, which may help you decide whether a given distribution is worth looking at.

If you click the weather: :Google link, you see a page, as shown in Figure 2-1.

enon Daniel LeWarne / Weather-Google - search.cpan.org
4| > + hhltp:,f,rsearch.cpan.nrg,fdlst[Weather—Ccogle,f Ec¢ ‘Q‘ Google
N
C P N Home - Authors - Recent - News - Mirrors - FAQ - Feedback
in [an %] (cPan search)
Daniel LeWarne > Weather-Google permalink

Weather-Google
Weather-Google-0.05 [Download] [Browse] 26 Jan 2010

['Weather-Google-0.04 —- 11 Sep 2009 | 4]

[Discussion Forum] [View/Report Bugs (5)] [Dependencies] [Other Tools]
PASS (337) FAIL (32) [View Reports] [Perl/Platform Version Matrix]
Yoot (2 Reviews) [Rate this distribution]

The Perl 5 License (Artistic 1 & GPL 1

Build.PL INSTALL META.yml README

Changes MANIFEST Makefile.PL

Weather:Google Perl interface to Google's Weather API 0.05

Hosted by craftsmen
digital craftsmen(c] 77

3
>

FIGURE 2-1

There’s a lot of information on this page, so the following list just covers the highlights.

CPAN and METACPAN | 29

» Standard format: In reading through the documentation, you can see that most Perl modules
have a standard format with sections for NAME, SYNOPSIS, DESCRIPTION, and so on.
Reading through those three sections should tell you if the module in question satisfies
your needs.

> Weather: :Google link: Clicking this link, which is found in the Modules section on the
bottom of the page, shows you the main documentation for the module. Larger modules,
such as DBIx: :Class, often have many modules bundled together, so read through the list
carefully to understand which ones give you the most useful information. You might even
find a Documentation section below the Modules section.

» CPAN Testers: Refer to Figure 2-1 to see that Weather: :Google has a CPAN Testers section
with PASS (337) FAIL (32). When users upload a module to the CPAN (well, to PAUSE, that
isn’t covered), many people download that module and attempt to build it on their system.
As you can see, Weather: :Google fails to build on approximately 10 percent of the systems.
This is a rather high failure rate, so you might want to click the [view Reports 1 link
and browse through some of the test failures to find out what’s going on.

> Rating: Most modules do not have user ratings attached, but in Figure 2-1, you see that
there are two five-star (good) ratings. You can click through to read what the ratings say.

There is, of course, much more information available on this page, and you should play around with
it to try to learn a bit more about it.

Downloading and Installing

You’ve searched for a module, found one you want, and now you want to install it. That’s usually
fairly simple after you do it one or two times, but getting to that first module to install can be
problematic if you’re on Windows.

Following is an explanation of how to do this manually because, you need to know this when you
eventually start writing your own modules. Later, you learn how to use various CPAN tools, which
make most of this automatic. After you’ve read about manual installation, you’ll be grateful that
there’s an automatic procedure that does all of this work for you. However, you’ll sometimes

find that you need to install modules by hand, or maybe you’re just a masochist and like doing
things the hard way. It’s up to you.

To download and install a module, follow these steps:

1. Click the download link next to the module name to download the distribution.
For example, for the weather: :Google distribution (see Figure 2-1), you’ll download a file
nankxiWeather—Google—0.0S.tar.gz.

Most CPAN distributions (exceptions tend to be old distributions) end in with .tar.gz or
.tgz. These are tarred, gzipped files. There’s some old UNIX history going on behind the
names, but you can ignore that.

2. Unpack the distribution. How you do this depends on your platform:

> If you’re a OS X or Linux user: You can unpack the distribution with this
command:

tar zxf Weather-Google-0.05.tar.gz

30 | CHAPTER2 UNDERSTANDING THE CPAN

WARNING |[f you have the tar command, you can type man tar for more infor-
mation about the tar command. Warning: it’s a long, complicated page and if
you’re unfamiliar with man output, it can be daunting. A web search may prove
more useful.

> If you’re a Windows user: You’ll generally find a WinZip or other zip program that
enables you to unpack .tar.gz and .tgz files. If you don’t have a command line
interface, double-click the distribution icon to unpack it. Make sure it’s unpacked
into the correct directory. The distribution might come with a . zip extension. If
your tar command is new, you should be able to just use tar zxf filename.zip.
Otherwise, use a zip program to handle it. You won’t find these distributions often,
and they’re usually from Windows users.

3. When unpackaged, change to the directory that’s created and list the files. If you’re on
Windows, use the dir command instead of 1s.

cd Weather-Google-0.05/
1s

You should see a list of files like the following;:

Build.PL
Changes
INSTALL
MANIFEST
META.yml
Makefile.PL
README

1lib

t

You can ignore most of those for now. The README file usually contains instructions for installing,
but in this case, it’s merely a copy of the documentation that ships with the distribution. That’s fine.
What you are interested in are two files:

Build.PL
Makefile.PL

» If you see Build.PL you can build, test, and install your distribution with this:

perl Build.PL
./Build

./Build test
./Build install

» For aMakefile.PL, you can do this:

perl Makefile.PL
make

make test

make install

CPAN and METACPAN | 31

Read the output of each of those steps carefully to make sure they’re doing what you want. In this
case, when you run . /Build (or perl Build) it has output similar to the following:

$ perl Build.PL
Checking prerequisites...
requires:
! XML::Simple is not installed
build_requires:
! Test::Pod is not installed
ERRORS/WARNINGS FOUND IN PREREQUISITES. You may wish to install the versions
of the modules indicated above before proceeding with this installation
Run 'Build installdeps' to install missing prerequisites.
Created MYMETA.yml and MYMETA.json
Creating new 'Build' script for 'Weather-Google' version '0.05'

This means you need:
$ perl Build installdeps

And hope all the dependencies install correctly. This may fail due to not having sufficient
permissions or simply because some dependencies fail their tests. If your module has a Makefile.PL
and no Build.PL, it might not even allow you to automatically install these dependencies (it depends
on how the Makefile.PL is written), thus forcing you to download and install all dependencies by
hand, possibly repeating this procedure over and over.

The ./Build test or make test steps are completely optional. They merely run any tests included
with the distribution. If you run this, you’ll see similar output:

$./Build test

t/00-load.t 1/1 # Testing Weather::Google 0.05
t/00-load.t ok
t/0linit.t ... i ok
t/02current_conditions.t ok
t/03forecast_conditions.t ... ok
t/04forecast_information.t .. ok
t/05language.t ok
t/pod-coverage.t ok
t/pod.t ... e ok

All tests successful.
Files=8, Tests=388, 4 wallclock secs
Result: PASS

NOTE wieather: :Google requires an Internet connection for the tests to run.
This is not surprising because it contacts Google for the results, but it’s problem-
atic because you won’t always have an Internet connection when running tests.
It’s one of many subtle issues that can occur when testing.

32

CHAPTER 2 UNDERSTANDING THE CPAN

There’s also a problem with the . /Build install and make install commands. They often
require root access and must be run like this:

sudo ./Build install
sudo make install

(If you’re a Windows user, this probably won’t apply because you’ll probably have Administrator
access to your box.)

That’s because the default installation is usually in a directory that your regular user accounts won’t
have access to. You can install your modules to some place you do have access to if you want:

perl ./Build.pl --install_base /path/to/install/modules
#or
perl Makefile.PL INSTALL_BASE=/path/to/your/home/dir

WHY ARE BOTH BUILD.PL AND MAKEFILE.PL REQUIRED TO BUILD PERL
MODULES?

A long time ago, in a garage far, far away, Makefile.PL was created to allow
creation of a Makefile to build your Perl module. Unfortunately, with more than
100 supported platforms and many different and conflicting make programs, it was
difficult to write portable makefiles. Plus, some systems don’t support make at all!

Thus, Build.PL was created. Makefile.PL relies on ExtUtils: :MakeMaker to
create makefiles. Build.PL relies only on Perl to install itself. Because Perl is

far more portable than make, it was considered by some to be a better solution.
ExtUtils::MakeMaker turns out to be far too difficult to extend for new

features. Unfortunately, Module: : Build has historically had a few bugs and many
developers rejected it. It offers more features, but some of the same features needed
to be implemented differently.

The battle between the two formats rages to this day and you’re rather stuck with
the mess.

Now you need to understand a lot about how to tell Perl where to find these modules, which can get
annoying if you’re not familiar with Perl. If you don’t use Windows, use perlbrew if possible. You’ll
install the modules in a subdirectory off your home directory, and per1brew can magically handle
making sure that Perl knows where your modules are.

If you do use Windows, you might want to use Strawberry Perl because the CPAN module (and
thus, module installation) magically works out-of-the-box. However, if you prefer to use ActivePerl,
read the ppm section later in this chapter. Fortunately, ActiveState Perl has been updated to make
using the CPAN much easier. Make sure you use a recent version of ActiveState Perl version 5.10.1
or better. The CPAN client bundled with it is preconfigured, and when you first run it, it notes that

CPAN Clients | 33

you’re missing dmake and a compiler and downloads, builds, and installs them for you. You see a
message similar to the following when you first run cpan:

C:\>cpan

It looks like you don't have a C compiler and make utility installed. Trying
to install dmake and the MinGW gcc compiler using the Perl Package Manager.
This may take a few minutes...

Then just wait a few minutes while it handles downloads and installs everything. After that is done,
everywhere that you see instructions to run the make command, type dmake.

Or you can install Strawberry Perl, which is not an issue because it comes bundled with everything
you need.

And now to have you really hate your author: all of the above can mostly be ignored unless you’re
debugging why a module didn’t install correctly. That’s because CPAN clients will take care of all of
that for you.

CPAN CLIENTS

Have you been scared enough to not do install modules on your own? To be fair, so far this book
has skimmed the surface of things that can go wrong if you try to install modules manually. The
author has been doing this for years and is quite used to it, but prefers the clients. Essentially, when
you want to install a module, clients take care of finding that module, downloading and building its
dependencies along with the module itself, and then installing the module where your Perl code can
find it. Because this is automated, it’s much faster and easier than doing it by hand.

Using the CPAN.pm Client

The CPAN.pm module that comes bundled with Perl is the oldest of the CPAN clients. To run it,
type cpan, which puts you in the CPAN shell. If you use Strawberry Perl for Windows (sense a
theme here?), the CPAN client is configured for you already. Otherwise, when you first run cpan, it,
prompts you for basic information. The prompt message may vary. Older versions ask the following;:

Are you ready for manual configuration? [yes]
Newer versions ask the following:
Would you like to configure as much as possible automatically? [yes]

The sense of the question has been reversed. If you’re asked to configure as much as possible
automatically, press Enter, and cpan sets everything up for you, except for your urllist. The urllist
tells the client where to find and download CPAN modules from CPAN mirrors all over the world.
Follow the instructions carefully, choosing the continent you’re on, then your country, and finally
a few mirrors that are hopefully close to you. Don’t stress too much about getting these mirrors
perfect; newer CPAN clients ask you if you want it to automatically pick the mirrors for you,
making this much easier than it used to be. Starting with a CPAN client is a breeze compared to
what it used to be.

34

CHAPTER2 UNDERSTANDING THE CPAN

If you choose to go the manual configuration route, you will be asked many questions about the
CPAN build and cache directory, the cache size, what you want to cache, terminal settings, whether
to follow prerequisites, where various programs are installed, and so on. Most of these questions
have defaults, and if you don’t understand the question, pressing Enter and accepting the default is
usually fine.

After configuring the CPAN, you probably want to install Bundle: : CPAN to ensure that your CPAN
is updated to the latest version. To install a module, type install module: :name at the cpan
prompt.

cpan > install Bundle: :CPAN

This takes a while for the first time, but it updates your CPAN client to the latest version. It also
adds a few extra features, such as readline support, that are not available by default due to license
issues.

For the weather: :Google module discussed earlier in the chapter (refer to Figure 2-1), you use this
code:

cpan > install Weather::Google

When you do this, the client
> Finds the latest version of the module
Downloads it
Unpacks it
Builds it

Follows dependencies (optional)

Y VYV VY Y Y

Tests it
» Installs it

If any dependencies exist, the CPAN client either prompts you if you want to install them, or if
you’ve configured it to follow dependencies automatically, it goes through its find, download,
unpack, build, follow, test, and install steps for every dependency. For Weather: :Google, you have
dependencies on both Lwp: : simple and XML: : Simple (both, in turn, having other dependencies).
Having your client do all this automatically for you is a huge timesaver and means it’s more likely to
get it right than you will.

NOTE |If any tests fail, the client does not install the module. You can either
choose a different module, or if you’ve investigated the tests and don’t think
they apply to you, you can force the module to install anyway:

cpan > force install Weather::Google

CPAN Clients

35

To better understand what you can do with your cpan client, a small amount of help is available.

cpan> help

The output varies considerably depending on the CPAN version you installed.

NOTE If you use a Linux/OS X computer and you decided to install modules in
directories to which your regular user does not have access, you may need to
type sudo cpan to allow your modules to install. If feasible, you should install it
as a non-root user. Otherwise, rather than having the entire package download
and configuration running as root, you may elect to only have sudo run during
the installation. You can do this by altering the make_install_make_command
in the CPAN client. You type o conf make_install_make_command to see the
current value.

cpan[2]> o conf make_install_make_command
make_install _make_command [/usr/bin/make]

And you type the same command, followed by its new value, in quotes. You
prefix the value with sudo to ensure that the CPAN client will only prompt
you for your password during module installation.

cpan[3]> o conf make_install_make_command 'sudo /usr/bin/make'
make_install_make_command [sudo /usr/bin/make]

If you do this, you will want to do the same for the Module: :Build install
command:

o conf mbuild_install_build_ command 'sudo ./Build'

You will need to type o conf commit to save this change. Otherwise it will only
be in effect for your current CPAN session.

Using the Cpanm Client

A new and popular CPAN client is cpanm, also known as app: : cpanminus. It’s fast, requires no
configuration, and has no dependencies on other modules. This makes it easy to install. If you use a
package management system such as Debian, FreeBSD ports, and so on, search for cpanminus and

attempt to install it that way.

You can also install it using the following steps:

1.

Type this option:

curl -L http://cpanmin.us | perl - --sudo App::cpanminus

36

CHAPTER2 UNDERSTANDING THE CPAN

2. If you use perlbrew, local: : 1ib, or some other method to ensure your Perl modules do
not require root access to install, you can omit the --sudo switch:

curl -L http://cpanmin.us | perl - App::cpanminus

3. Click the download link at http://search.cpan.org/dist/App-cpanminus/ and install it
manually, as explained previously.

tar zxf App-cpanminus-1.5004.tar.gz
cd App-cpanminus-1.5004/

perl Makefile.PL

make

make test

make install

As previously mentioned, the make install step may need to be changed to sudo make install.

If you’re on Windows and using nmake, change the last three lines:

nmake
nmake test
nmake install

4. Toinstall a module, type cpanm module. The cpanm program attempts to install the module
for you, quickly and easily. It produces little output beyond “downloading this, configuring
that,” and related messages. Many modules ask questions such as “Do you want to install
X?” cpanm attempts to do the right thing without bothering you. Large, complicated
modules with many dependencies can be a hassle to install even with the cpan client; cpanm
usually makes it easy.

PPM

If you use ActivePerl, you’re probably on Windows, and if you have trouble with a CPAN client, you
can use ppm or the Perl Package Manager that ships with ActivePerl. This uses a large set of prebuilt
modules that work. Want to install Text : :csv_xs?

ppm install Text::CSV_XS

If you run ppm without any arguments, a GUI launches and you can browse installed packages or
upgrade, remove, or install new packages. The GUI enables you to do anything the command-line
version of ppm does, and you may find it a more comfortable environment to work in. However, you
cannot upgrade core modules (modules that ship with Perl) with ppm. As a result, you cannot install
any module that requires a core module to be upgraded.

CPAN::Mini

CPAN: :Mini isn’t actually a client, but it’s so useful that you need to know about it. Sometimes
you’ll find that you want to install a CPAN module, but you have no Internet connection or a slow
Internet connection. CPAN: :Mini enables you to create a “mini” CPAN mirror on your computer,
complete with the latest versions of all modules.

CPAN Clients |

37

To use CPAN: :Mini, follow these steps:

1. Open your favorite text editor, and type the following:

local: ~/minicpan/
remote: http://cpan.pair.com/pub/CPAN/

2. Save this in your home directory as .minicpanrc.

3. The local: key should point to where you want your miniature copy of CPAN to be store.

If you prefer, you can use a full path to a particular directory:

local: C:\home\users\ovid

NOTE Windows uses a backslash instead of a forward slash for directory
separators, but Perl is smart enough to do the right thing, even if you use
forward slashes instead:

local: C:/home/users/ovid

4. The remote: key should point to a close CPAN mirror. You can see a list of CPAN mirrors
at http://www.cpan.org/SITES.html.

5. Theninstall cPAN: :Mini:
cpanm CPAN: :Mini

6. From there run the minicpan command periodically to update your local copy.

NOTE The first time you run this command, it takes a long time because it
needs to fetch the latest version of every CPAN module. If you run it regularly,
subsequent updates are much faster.

7. To install modules from your local cPaAN: :Mini mirror, configure your CPAN client to use
this mirror:

S cpan

cpan shell -- CPAN exploration and modules installation (v1.9800)
Enter 'h' for help.

cpan> o conf urllist unshift file:///Users/ovid/minicpan

Please use 'o conf commit' to make the conflg permanent!

As noted in the output, use o conf commit if you want this change to be permanent.

38 | CHAPTER2 UNDERSTANDING THE CPAN

When this is done and when you attempt to install a module, the module is fetched from your local
mirror instead of using the Internet.

8. You can tell cpanm to only look for modules in your mirror and only the mirror:
cpanm --mirror ~/minicpan/ --mirror-only Weather::Google
9. If you make heavy use of shell aliases, add the following to your list of aliases:
alias minicpanm='cpanm --mirror ~/minicpan/ --mirror-only'
10. When you’re without an Internet connection, use the following code:

minicpanm Weather::Google

Configure a CPAN Client and Install File::Find::Rule

You’re now going to configure a CPAN client and install File: :Find: :Rule. Once this is done, you’ll
find it easy to download and install new modules from the CPAN.

This example requires an Internet connection. This example will use App: : cpanminus because it’s one
of the easiest ways to install Perl modules. App: : cpanminus also has no dependencies, which makes it
easy to install. Install it manually because this is the most portable option.

1. DPoint your Web browser to http://search.cpan.org/dist/App-cpanminus/ and click the
download link.

2. Unpack, build, and install the application:

tar zxf App-cpanminus-1.5004.tar.gz
cd App-cpanminus-1.5004/

perl Makefile.PL

make

make test

make install

Remember, if you’re on Windows, you may need to type nmake instead of make.

Alternatively, if you have the curl executable installed, you can try to install app: : cpanminus with one
of the following commands:

curl -L http://cpanmin.us | perl - App::cpanminus
curl -L http://cpanmin.us | perl - --sudo App::cpanminus

The first time you install App: : cpanminus, it may take a while because it downloads, builds, and
installs a number of useful modules.

3. Install the File: :Find: :Rule module.
cpanm File::Find: :Rule

You’ll likely get output similar to the following:

Summary | 39

$ cpanm File::Find::Rule

--> Working on File::Find::Rule

Fetching authors/id/R/RC/RCLAMP/File-Find-Rule-0.33.tar.gz ... OK
Configuring File-Find-Rule-0.33 ... OK

==> Found dependencies: Text::Glob, Number::Compare

--> Working on Text::Glob

Fetching authors/id/R/RC/RCLAMP/Text-Glob-0.09.tar.gz ... OK
Configuring Text-Glob-0.09 ... OK
Building and testing Text-Glob-0.09 ... OK

Successfully installed Text-Glob-0.09
--> Working on Number::Compare

Fetching authors/id/R/RC/RCLAMP/Number-Compare-0.03.tar.gz ... OK
Configuring Number-Compare-0.03 ... OK

Building and testing Number-Compare-0.03 ... OK

Successfully installed Number-Compare-0.03

Building and testing File-Find-Rule-0.33 ... OK

Successfully installed File-Find-Rule-0.33
3 distributions installed

If you previously installed File: :Find: :Rule, it may say that the module is up to date, or it may tell
you that it’s upgraded from a previous version.

How It Works

When you try to install a module, cpanm inspects the package to figure out if the module depends on
other modules being installed. According to the Makefile.PL that ships with File: :Find: :Rule, this
module depends on five other modules:

> File: :Spec
> File::Find
> Test::More
> Number::Compare
> Text::Glob

The first three modules, File: : Spec, File: :Find, and Test: :More are included with Perl. The
Number : : Compare and Text : : Glob modules, however, need to be downloaded, unpacked, built, and
installed. The cpanm installer does this for you. Because those two modules require only Test : :More as
a dependency, they do not require more modules to be downloaded and built.

After those are built and installed, File: :Find: :Rule is then built and installed for you.

SUMMARY

Congratulations! You now know how to find and install modules from the CPAN! In this chapter
you learned about the CPAN, the world’s largest collection of open source code dedicated to a single
programming language. You learned the cpan and cpanm clients, how to create a miniature CPAN
mirror, and you installed your first module, File: :Find: :Rule.

40 | CHAPTER2 UNDERSTANDING THE CPAN

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

CPAN

http://www.cpan
.org

CPAN.pm

App: :cpanminus

PPM

CPAN: :Mini

KEY CONCEPTS

The world’s largest collection of open source code for a single language.
This makes it very easy to find code you need rather than writing it
yourself.

The website for the CPAN. Use this to search for modules that solve prob-
lems you face.

The original client program for downloading and installing CPAN modules

A new and excellent alternative to CPAN.pm. Itis much less verbose than
the origina CPAN client.

The CPAN client bundled with ActivePerl.

How to create a local CPAN mirror. It’s useful when installing modules
when you don’t have an internet connection.

Variables

WHAT YOU WILL LEARN IN THIS CHAPTER:

\

Understanding programming in Perl

General things to remember as you work with variables
Understanding scalars

Using data in arrays and hashes

Working with array and hash slices

Implementing scalar and list content

Understanding the scope of variables

Working with strict, warnings, and diagnostics

YYYVYYVYYVYYVYY

Using Perl’s context feature

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapterare found at http: //www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into
the following major examples:

> example_3_1 variable.pl
» example_3_2_diagnostics.pl

» exercise_3_2a_array.pl

42 | CHAPTER3 VARIABLES

exercise_3_2b_array.pl
exercise_3_3_ fruit.pl
listing 3_1_scope.pl
listing_ 3_2_ vars.pl
listing_3_3_our.pl

listing_ 3_4_diagnostics.pl

Y Y Y VY VY VY Y

listing_3_5_hello.pl

This chapter examines the three primary data types of Perl: scalars, arrays, and hashes. Unlike
many other languages that focus on things such as strings, integers, floats, and so on, Perl’s types
focus on how you organize your data, rather than what the data is. It’s an approach to data
types that is unusual to those who think of “types” as restricting data to certain values, but in
practice, it’s a robust, powerful approach that many other programming languages follow.

Don’t worry about the size of this chapter because you won’t need to memorize it. Most of this
information will be reinforced in subsequent chapters. Primarily, you need to understand how to
create and assign values to Perl’s three primary data types (scalars, arrays, and hashes). You also
need to ensure that you understand context because it will come up repeatedly in your career as a
Perl programmer. Many inexperienced Perl programmers struggle to understand bugs in context
because it’s often treated as an afterthought.

WHAT IS PROGRAMMING?

You've already received quite a bit of background about Perl, but now is the time to start programming.
For those new to programming, a Perl program is a file — often many files — of text instructions
telling the computer what to do with some data. For example, pretend that the following is a
program to send cucumber recipes to a cucumber fetish mailing list. This program uses pseudocode,
a made-up language designed to explain programming ideas.

read_list_of_email_addresses()
read_new_recipe ()

email_addresses
cuke_recipe

for each address in email_addresses
email_to(address, cuke_recipe)

Even if you have never programmed before, you can probably guess what each line in this
“program” does. At its core, there’s nothing mysterious about programming. Take some data and
do something with it.

But where is this data? Usually, when you have data in a program, you keep it in a variable, a named
container for data, and variables are the little beasties everyone loves and hates. They’re the things
you always get wrong but you must get oh so right. As you program, many of your errors will be the
wrong data in the wrong variable. Have fun!

A Few Things to Note Before Getting Started | 43

A FEW THINGS TO NOTE BEFORE GETTING STARTED

The following sections discuss a few general concepts that make this chapter much easier to follow.
We’re going to explain a few things that you will see throughout this book, such as making your
programs safer and how to recognize variables. You’ll want to be familiar with these concepts as
you will use them extensively in your career.

strict, warnings, and diagnostics

You learn more detail about this later, but for now, assume that every code snippet begins like this:

use strict;
use warnings;
use diagnostics;

Those three statements can save you a lot of pain. They force you to properly declare most

variables and subroutines, and warn you when you’re doing silly things. And if you include the use
diagnostics line, they actually give you an extended description of what you did wrong, along
with suggestions on how to fix it. Experienced programmers generally omit diagnostics, but when
you start, they’re invaluable.

NOTE These three lines won'’t be listed for every code snippet because it
would just be useless noise. When you don’t see them, assume they’re there
unless you are told otherwise, although they will be slipped in from time to time
as a reminder.

Next, look at a few variables:

my Snick_name = 'Ovid';
my @cats = ('Valentin', 'Arthur');
my $nick = $nick_name;

print $nick;

That example assigns values to some variables. The statement in the third line copies the string ovid
from the variable $nick_name to the variable $nick. The print statement prints the word ovid to
your console.

If you’re an experienced programmer, you already understand much of what’s going on here, and you
can probably guess a lot more. But for now, let's cover some common ground that applies to most
variables you work with in Perl.

The my Function

Each variable in the preceding code is declared with the my function. When you declare a variable,
you’re telling Perl “hey, we have a variable we’re going to start using.” This makes Perl happy. The
my function in Perl is the most common way to declare a variable, and it also makes the variable

44

CHAPTER 3 VARIABLES

visible only to the current scope (which is covered later in this chapter) to hide it from other parts
of your program. That’s important to ensure that a distant part of your program doesn’t silently
change your data.

NOTE For more information, see perldoc -f my. (Remember that the —f switch
is used to list functions.)

You can declare variables inother ways; actually, the variable declaration is sometimes optional. You’ll
learn more about that in the “Scope” section in this chapter, but for now, be sure to declare
your variables with my, as shown here:

my S$nick_name = 'Ovid';

This protects this part of your program from being accidentally changed by another part where you
used the same variable name. That kind of self-inflicted bug is too easy to create and extremely
difficult to find and fix. Use my and you can make your programming life easier.

NOTE Even experienced Perl programmers object to describing my as a func-
tion. However, Perl’s distinction between functions, operators, and keywords
is a bit fuzzy at times; it’s understandable that this is a point of disagreement
for some people. The key takeaway here is simple: Don’t get hung up on
terminology.

Sigils

Moving a bit further to the right in the sample code presented at the beginning of this discussion,
you see punctuation before each variable name — in this case the dollar sign, s, as shown here:

my S$nick_name = 'Ovid';

In Perl, this leading punctuation is called a sigil because, like the word scalar, it is a common word
that has been repurposed. A sigil was originally a carved or painted symbol of great power. So, in
Perl, a sigil is a punctuation symbol that tells you something about the variable you use.

Getting back to that dollar sign sigil, in Perl, when you see a variable beginning with a dollar sign,
you know that you’re accessing a $calar value. The “S” shape of the dollar sign is a (theoretically)
handy mnemonic for scalar. Or maybe it’s a handy mnemonic for $ingle value.

Note the phrase, “You’re accessing a $calar value.” That does not read, “contains a scalar value.”
When you learn about arrays and hashes (or containers that can contain multiple values), the leading
“$” shows you when you’re accessing a $ingle value of the array or hash, instead of multiple values.
You learn more that when you discover arrays and hashes.

A Few Things to Note Before Getting Started | 45

NOTE For more information, see perldoc perldata.

Identifiers

Variables usually have names. Actually, many things in Perl have names, also called identifiers.
These are things such as subroutines (discussed in Chapter 7), file handles (discussed in Chapter 9),
packages (discussed in Chapter 11), and a few others. Just about anything you can pick a name for
in Perl follows fairly simple naming rules.

NOTE For more information, see perldoc perlglossary.

Per] names must start with a leading letter or underscore. You can optionally follow that with one
or more letters, numbers, or underscores. The following are all valid variable names:

my S$x;

my $foo;

my $_some_1;

my $DontMakeVariableNamesLikeThis;

my S$make_names_like_this_instead;

my Sitem_3;

my Sverily I_say_unto_you_the_number_of_the_tr_tag_shall_be;

(The author used that last one in anger in a project several years ago, and somewhere out there is a
maintenance programmer who wants to kill him.)

As a matter of style in Perl (yes, Perl has a style, as you can see at perldoc perlstyle), don’t use
camelCaseWords. Instead, use words_separated_by_underscores. This is because the latter is eas-
ier to read, particularly for those who do not speak English as a first language. The practice of using
camelCase is merely a holdover from older programming languages that didn’t allow underscores in
identifiers. Perl programmers are not down with arbitrary limitations imposed by archaic
programming conventions. They have enough arbitrary limitations already, thank you.

The following are not valid variable names:

my Sanswer-to-life;
my S~destructor;
my $3rd_times_the_charm;

As with all things in life and Perl, there are some caveats, the biggest of which is that Perl is allowed
to violate the rules it sets for you. So, in Perl programs, you sometimes see things the following;:
my $host = $1;

my $this_perl = $7X;
my Staint_mode S{"TAINT};

46 | CHAPTER3 VARIABLES

You can read about these and other special variables in peridoc perlvar. the most common ones
are covered in this book as they appear.

NOTE All the previous names use ASCII characters. Although it is generally not
recommended, you can use UTF8 characters in your identifiers by including use
utf 8 in your program as shown here:

use utf8;
my $cédille = 'French letter';
print S$Scédille;

Even though you can do this, you shouldn’t, given that many programmers
cannot type these characters.

SCALARS
In Perl, a scalar is merely a single value. The following are some scalars:

my Scelsius_temp = 37;
my $nick_name = 'Ovid’';

A scalar can be a number, a string, or a reference. (You learn more about references in Chapter 6). If
you have a math or physics background, forget that you might know another definition for scalar. In
Perl, it just means a single value.

NOTE For more information, see perldoc intro.

In the previous example, my is a function declaring the variable, followed by the variable itself,
followed by the assignment operator (=), followed by a numeric literal (37) or a string literal
(rovia).

NOTE A literal is a hard-coded value in a program, as opposed to a variable
containing that value. See perldoc perlglossary for this and other terms you
may be unfamiliar with.

Scalars | 47

If you don’t assign anything to the variable, it has a special value called undeft.
my $var; # its value is undef

As you progress through this book, you’ll see that a variable with an undef value often causes
“uninitialized” warnings in your code. You’ll see some of those warnings later and you’ll discover
tips on how to avoid them.

BEING SELECTIVE WITH VARIABLE NAMES

Unlike some other programming languages, Perl enables you to assign just about any
kind of data to a variable. Perl focuses on making data structures easy and expects
you to know what kind of data you’re working with. Many programmers who prefer
“bondage and discipline” languages are keen to disagree, in the hands of an experi-
enced programmer, you tend not to get the type of data wrong as often as you might
think. Sadly, this is more a matter of experience than proof, so it’s time to pull the
“appeal to authority” fallacy out of the hat and say “Trust me on this.”

This means that you can do the following, but it’s not a good idea:

37;
ovid';
Snick_name;

my Scelsius_temp
my S$nick_name
Scelsius_temp

Picking intelligent variable names can help you realize when you’ve done something
silly.

If you prefer, you can declare several scalars at once by putting parentheses around them, as shown
here:

my ($celsius_temp, $nick_name);

And you can even assign values to them when you declare them by putting parentheses around the
right side, as shown here:

my (Scelsius_temp, S$nick_name) = (37, 'Ovid');
As you might expect, that assigns 37 to $celsius_temp and “ovid” to $nick_name.
Strings
Assigning a string to a scalar is simple:

my Sperson = 'Leila';
my Swife = "lovely";

48

CHAPTER 3 VARIABLES

Both these lines of code are valid ways to assign a string to a scalar. When using single quotes, what
you see inside of the quotes is generally exactly what you get. However, when you use double
quotes, you can use escape characters (“\n” for newline, “\t” for tab, and so on) and interpolate
(embed) other variables in the string. Following is an example that prints out “lovely Leila” with a
newline at the end:

my $person = 'Leila’';
my Swife = "lovely S$Sperson";
print "Swife\n";

Sometimes you need to include quotes in your quotes. You can escape the quotes or use a different
set of quotes, as shown here:

my $city = 'R\'lyeh’';
my $city = "R'lyeh";
print Scity;

Quotes and Quote Operators

Sometimes, though, you must interpolate something and use double quotes at the same time, as
shown here:

my Sreviewer = 'Adrian';
my Sreview = "Sreviewer wrote \"This book is awful\"";

That can be painful and confusing to read, so Perl provides rich quotelike- operators. (See peridoc
perlop and search for “Quote-like Operators”). The q{} replaces single quotes and gq{} replaces
double-quotes. This can eliminate much painful escaping.

my Sreviewer = 'Adrian';
my Sreview = gg{$Sreviewer wrote "This book is wonderful"};

Also, the actual delimiter used with g and gg does not need to be curly braces ({}). It could be
almost any pair of delimiters you choose, such as shown in the following examples:

my Sreview = qq!Sreviewer wrote "This book is awful"!;
my Sreview = gg<S$Sreviewer wrote "This book is awful">;
my Sreview = ggl[Sreviewer wrote "This book is awful"];
my Sreview = gg(Sreviewer wrote "This book is awful");
my Sreview = gg@Sreviewer wrote "This book is awful"@;

You can even use quotes over multiple lines, as shown here:

my $letter = qgg{
Dear $editor,

I really liked the subtitle that you rejected and beg you to reconsider.
It was brilliant and perfectly conveyed the tone of this book. In case
you want to reconsider, it's:

Scalars | 49

"Get a job, hippy!"

Sincerely,
ovid
Y

However, if you go that route, it’s generally considered better to use “here-docs.” These types of
strings require a << followed by a string literal of your choosing. All following text will be included
in the string until the string literal is found again:

my $Sletter = <<"END_APOLOGY";
Dear $editor,

I'm very sorry for mocking you in the last email. I promise it won't
happen again. Can I still get paid?

Sincerely,
ovid
END_APOLOGY

You can use just about any string literal.

my S$Sget_customers_with_orders = <<"SQL";
SELECT c.id

FROM customers c

JOIN orders o ON c.id = o.customer_id
SQL

Just be sure to pick a descriptive literal (END is a popular one) for the here-doc. Yes, you can use a
single dot (.) or even an empty string, but this is considered bad style, which can lead to confusing
code or even strange errors.

WARNING The final string literal in a here-doc must have a newline at the end
of it, or Perl won'’t see it, and you’ll get an error like this:

Can't find string terminator "END_APOLOGY" anywhere before EOF.

It’s a confusing thing that trips up a few people.

NOTE You can also use here-docs with single quotes, in which case nothing
inside of the here-doc will be interpolated.

50 | CHAPTER3 VARIABLES

Escape Sequences

Many times when creating strings you come across characters that can be awkward to type. The
full list can be seen with perldoc perlop, but Table 3-1 shows the main escape sequences you’ll
encounter.

TABLE 3-1: Main Escape Sequences

SEQUENCE DESCRIPTION

\t Tab

\n Newline

\r Carriage return

\x{263a} Wide hex character
\N{name} Named Unicode character

Now consider the following:
print "I mean it!\nI'm really sorry for mocking you!\n";
This line of code prints the following:

I mean it!
I'm really sorry for mocking you!

Table 3-2 shows a few special escape sequences that are less common but are sometimes used to con-
trol the “case” of characters.

TABLE 3-2: Special Escape Sequences

SEQUENCE DESCRIPTION

\1 Lowercase next character
\u Uppercase next character
\L Lowercase until \E

\U Uppercase until \E

\E End case modification

Scalars |

51

You can use these just as you would other escape characters. For example, the following prints
“E.E. cummings” and offends your literature professor:

print "\Ue.e. c\Eummings\n";

Numbers

Manipulating strings is fine, but much of your work as a programmer will deal with numbers such
as integers, floating point numbers, hexadecimal numbers and other beasties. It’s not very useful
to have a programming language that doesn’t do math, so this section shows you several ways of
declaring numbers in Perl.

Integers and Floats

Scalars can hold numbers, too. Just assign the numbers to them:

my Sanswer = 42;
my S$body_temp_fahrenheit = 98.6;

You can use integers or floats as needed. Internally, Perl stores these numbers; however, the C com-
piler that built Perl supports them.

Integers are represented exactly, but as with other programming languages, floating point numbers
are only an approximation because of how computers store numbers internally. For example, the
int function takes the integer value of a number, but this can lead to unpleasant surprises:

print int(4.39 * 100);

Depending on your Perl, that will likely print 438 instead of 439. That’s because 4.39 is represented
internally as something like 4.3899999999999 and when you multiply it by 100 and drop the
decimal part, you get 438. This is a general limitation with programming languages, not just Perl.

WHY PERL DOESN’T REPRESENT FLOATING POINT NUMBERS CORRECTLY

The reason Perl often doesn’t represent floating point numbers correctly is because
not all numbers can be stored in a finite amount of memory. For example, 1/3 is
.3333... (with an infinite number of 3s after it). Internally, a floating point number
is actually stored as the number and a “floating point” that explains where the deci-

mal should be.

The number is stored in binary (ones and zeros) format. Each binary digit covers

a base two fraction such as 1/2, 1/4, 1/8 ... 1/number of bits. All fractions whose
binary digit corresponds to 1 are added together. For example, a standard floating
point number is 32 bits long and the number .75 can be represented exactly as 110
00000000000000000000000000000. The first two digits mean that .75 is

considered to be 1/2 + 1/4 (in this case, an exact match). _
continues

52 | CHAPTER3 VARIABLES

(continued)

However, the number 1/3 can only be approximated as 01010101010101010101010
101010101. That is 1/4 + 1/16 + ... + 1/4294967296 (yes, we skipped many
numbers). This means that with a 4 byte (32 bit) float, the closest approximation of
1/3 is 0.333333333255723.

If you want to explore this more, the following program will print out the
fractions, the binary number and something close to the internal equivalent of the
$num that you have chosen. You can alter $bits to change the number of bits of
representation of the number to better see how these approximations change.

use strict;
use warnings;

L3
3¢

my S$Snum
my Sbits

don't touch anything below this line
my Saccumulator = 0;
my Sbitstring = "0¢

my @fractions;
for (1 .. $bits) {
my S$denominator = 2 ** $§_;
my Sfraction = 1 / S$denominator;
if (Saccumulator + S$fraction <= $num) {
push @fractions, "1/$denominator";
Sbitstring .= "1";
Saccumulator += $fraction;

}
else {
Sbitstring .= "0";
}
}
my S$fractions = join " + ", @fractions;

print <<"END";
Fractions: S$fractions

Bits: Sbitstring
Result: Saccumulator
END

Note that this is not a perfect description of what’s going on, but it’s gives you the
general idea. By the end of chapter 5, you should understand that entire program.

Octal, Hex, and Exponential Notation

If you need to, you can designate integer numbers (and only integer numbers) as octal or hex by
prepending them with a 0 or 0x respectively:

Arrays | 53

my S$answer = 052; # 42 in decimal
my Shex_number = 0xFF; # 255 in decimal
my S$hex_number = 0xff; # also 255 in decimal

You can also use exponential notation if needed, and like many other languages, Perl is rather
flexible about how you write it. The following are all equivalent:

my Snumber_of_stars_in_universe = 3e23;
my $number_of_stars_in_universe = 3E+23;
my $Snumber_of_stars_in_universe = 3.0e+23;

Naturally, you can represent small numbers with this, too.
my $electron_mass = 9.1093822e-31;

Perl doesn’t “remember” the format of the number you used, so if you assign a hex or octal value to
a number, Perl prints the integer equivalent, but if you print a number using an exponential format,
Perl will printonly the integer equivalent if it can be represented without exponential notation (in
other words, when it’s small enough).

You see more about working with numbers in Chapter 4.

NOTE For more information, see perldoc perlnumber and perldoc perlfagd
(Date Manipulation).

ARRAYS

In Perl, an array is an ordered list of scalars. The following is how you might assign a few numbers
to an array:

my @even = (2, 4, 6, 8, 10);

NOTE For more information, see perldoc perlintro.

For an array, the variable is preceded by an @ (at) sign, so the mnemonic for this is an “erray.” And
when you have a list of items, separate them with a comma and use parentheses () around them.
For now, just take my word for it. In Chapter 4, you learn more about this in detail when you
discover precedence.

54 | CHAPTER3 VARIABLES

So, the preceding code has an array on the left and a list on the right, and you’re assigning the list to
the array.

Of course, just as with scalars, you can use any kind of data you need to use. You can even assign
lists with a mix of strings or other scalars to an array:

my $nine = 9;
my @stuff = (7, 'of', S$Snine);

If you just print the array as shown in the following example, what happens?
my $nine = 9;
my @stuff = (7, 'of', S$Snine);
print @stuff, "\n";

print "@stuffin";

Although there are ways you can tweak this, the code just presented will probably print the
following:

70f9
7 of 9

Breaking Down the Code

In the previous example, the print function takes a list of arguments. Consider the first print
statement in the example:

print @stuff, "\n";

This tells Perl to dutifully print every item in the list, one after another, with the newline being
printed last. Because no item in the list contains a space, they run together as they’re being printed.

The second version has the array being interpolated into a string:
print "@stuff\n";

When an array is interpolated into a string, the individual elements are, by default, separated with a
single space, generating the “7 of 9” output.

NOTE Although an array interpolated into a string is separated by default by a
single space, this is actually controlled by the value of the $" special variable.
Read perldoc perlvar to understand this better. Some sloppy programmers
like to abuse that variable, and you’ll see it in code from time to time.

The array @stuff has two integers and one string. Because Perl is more focused on data structures
than strict limitations on the kinds of data they contain, you can generally use whatever kinds of
data you want.

Arrays | 55

Accessing Elements

Now printing out an array is all fine and dandy, but often when you’re working with an array, you
are trying to work with one element of the array or all elements. (Sometimes you work with a few
elements called a slice, and you’ll learn more about that in a bit.)

You may remember earlier in this chapter the discussion said that, “in Perl, when you see a
variable beginning with a dollar sign, you know that you’re accessing a $calar value.” It’s the same
with arrays. Arrays are indexed by numbers, with the first element of the array being indexed by 0
(zero). Getting that first element looks like this:

my @words = ("and", "another", "thing");
print Swords[0];

Remember that the sigil before the variable name indicates how you’re accessing it, not the type
of variable. This is a frequent source of confusion for newer Perl programmers, so you need to pay
careful attention to this.

On the right side of the variable name, square brackets appear around the index. When you’re using
square brackets in Perl, it usually means you’re dealing with an array.

Naturally, if you want to access all the elements, you can do this:

my @words = ("and", "another", "thing");
my $first Swords [0] ;
my $second = Swords[1l];
my Sthird = S$Swords[2];

As you might expect, you can also assign to individual elements of the array this way:

Swords[1l] = "one more";
print "@words\n";

That prints and one more thing.

When accessing an individual element of an array, you have a dollar sign on the left and square
brackets on the right. This will be repeated quite a bit. It’s one of the classic stumbling blocks for
new Perl programmers. If your eyes glaze over and you stop reading about the sigils and things like
that, it’s your own darn fault when you get them wrong!

Sometimes you’ll find that you want some trailing elements of an array, but you’re not sure of the
length. It’s easy to find out the length of the array, but there’s actually an interesting trick here. If
you access an array with a negative number, you access array elements from the end of the list going
backward, starting with -1 (because 0 would be the first element).

my @words = ("and", "another", "thing");
my $last = Swords[-1];
print S$last;

That prints thing. Of course, $words[-2] would be another and $words [-3] would be and.

56 | CHAPTER3 VARIABLES

LENGTHS OF ARRAYS

In Perl, arrays are not of a fixed size. Consider the following array:

use strict;

use warnings;

use diagnostics;

my @words;

my Sword = Swords[8];

Perl will allow you to try to access an element beyond the end of the array, and it
will not issue any sort of warning. When you try to do something with the $words
variable, you’ll probably get a warning about using an “uninitialized” value. And if
you’re not careful, you’ll have a hard time trying to track it down because the warn-
ing will occur when you use the variable even though the actual problem stems
from the actual assignment.

Naturally, this also means that you can access array elements with nonexistent
negative elements, as shown here:

my @words = ("this", "that");
my $no_such_word = Swords[-17];

Again, no warning occurs unless you do something with $no_such_word, which
causes an uninitialized warning.

When you do this you don’t actually change the length of the array. It still has the
same number of elements. However, if you assign past the end of the array, any
uninitialized elements up to that assignment will have the undef value.

use strict;

use warnings;

use diagnostics;

my @words = ("this", "that");
Swords[5] = "bad idea";

With this code, you now have an array with six elements:
'this', 'that', undef, undef, undef, 'bad idea'

The only safety you get here is if you try to assign to a nonexistent negative
element, as shown here:

use strict;

use warnings;

use diagnostics;

my @words = ("this", "that");
Swords[-5] = "bad idea";

Arrays | 57

That generates the following output:

Modification of non-creatable array value attempted, subscript -5

at bad.pl line 5 (#1)

(F) You tried to make an array value spring into existence, and the
subscript was probably negative, even counting from end of the array
backwards.

Uncaught exception from user code:

Modification of non-creatable array value attempted, subscript -5

at bad.pl line 5.

Needless to say, this is one area you want to be careful with. Pay attention to your
data.

As a handy shortcut, so long as you assign literals to the array and not variables, you can use the

«

aw () operator (as in “q”uote “w”ords) like this:
my @odds = gw(1 3 5 charlie);

The qw () operator takes a string and automatically separates it on whitespace, so this line of code is
equivalent to the following:

my @odds = (1, 3, 5, 'charlie');
Sometimes you see something like this:
my @odds = gw(1, 3, 5, 'charlie');

That’s probably not what you want, and if you have warnings on, it will warn about a “Possible
attempt to separate words with commas.” Because the string in the qw () operator is separated by
whitespace, the commas will be included in the values and not be used as a list separator.

As with the gq () operator, qw () enables just about any pair of balanced delimiters. Some common
ones include the following:

my @odds = gw! 1 3 5 charlie !;
my @odds = qgw<l 3 5 charlie >;
my @Qodds = gw{ 1 3 5 charlie };
my @odds = gw[1 3 5 charlie];

Those are useful cases when one of the words in the string might contain a delimiter, as shown here:

my @punctuation = gwl[. ; ! () { } 1;

58 | CHAPTER3 VARIABLES

Iterating over Arrays

Naturally, you don’t want to always access array data by assigning the value of different elements
to different variables. You often want to iterate over the elements and do something with them. The
following is one way to do this (Chapter 5 goes into more detail during a discussion of control flow):

my @array = ('this', 'is', 'an', 'array');
for my Selement (@array) {
print "S$element\n";

}
That should print the following:

this
is

an
array

HASHES

One of the reasons Perl is so popular is because of how easy it is to sling data around. Hashes are a
perfect example of this. A hash is similar to an array, except that instead of indexing into the hash
using integers, you use strings. You refer to the strings you index into the hash as keys, and the
values they return are, well, values.

The following is a hash with three keys and their values:

my %people = (
"Alice", 1,
"Bob", 2,
"ovid", "idiot",

) ;
print Speople{'Alice'};

You could simulate that with an array, but it would be clumsy and require many almost useless

variable declarations:
my @people = 1, 2, 'idiot');
my $alice
my Sbob =
my Sovid =
print Speople

— NP O~

7

’

Salicel;

NOTE Please refer to perldoc perlintro for more information.

Hashes | 59

Accessing Elements

As you have already seen, accessing data in a hash is simple:

my %$people = (

"Alice", 1,
"Bob" , 2,
"ovid", "idiot",

)

my Snumber Speople{'Bob'};
print "Bob Snumber\n";
print "Bob = S$people{'Bob'}\n";

You’ll immediately notice a few things here. First, you can see that to access an individual element of
the hash, you have a dollar sign for the sigil (see a pattern?) and curly brackets (curly braces, curlies,
squiggly braces, or whatever you call ‘em) around the index.

Second, as mentioned, the “keys” of the hash correspond to an array’s numeric indices. You could
do that if you wanted to like this:

my %french_word_for = (

1, 'un',
2, 'deux',
3, 'trois',

)

print "The French word for '3' is S$french_word_for{3}\n";

That can be confusing, and you probably just want an array itself, although sometimes a hash might
be a good choice if the integers are widely separated (which would otherwise be a sparse array with
many empty elements).

You can also note that you retrieved the hash value without quoting the key:

my $french word = $silly example{3};
my Sother_data = $another_example{some_key};

When accessing a single value, you are not required to quote the key, so long as it follows the rule of
an identifier. So, this is wrong, and you must quote the key:

my $other_data = $another_example{-some_key};

NOTE Autoquoting hash keys even applies if the key appears to be a builtin or
subroutine name.

60 | CHAPTER3 VARIABLES

Iterating Over Hashes

Iterating over a hash is fairly simple. One way to do this is to use the keys function. This returns the
list of keys from the hash, as shown in the following example:

my %people = (
"Alice", 1,
"Bob", 2
"ovid", "idiot",

’

)
for my $name (keys %people) {
print "S$name is $people{S$name}\n";

}
That might print something like this:

Oovid is idiot
Bob is 2
Alice is 1

The order of the hash keys is effectively random, so there’s no guarantee that your version of Perl
will print those lines in this order. It’s actually not random, but the reasons for that are beyond the
scope of this book. Just remember that you should never rely on hash order. However, you’ll learn
more about that in Chapter 10 during a discussion of sorting.

There is a corresponding values function that returns the values of the hash — again without any
predictable order.

Adding Data to Hashes

To add a new value to a hash, simply assign the new value to a key:
Speople{Austen} = 'Jane';

That adds a new value to the hash or overwrites the value for the key austen if it exists.

You can add multiple key/value pairs by assigning the hash and a list:
%people = (%people, Austen => 'Jane', Lincoln => 'Abraham');

If any of the keys in the list match keys in the original hash, the original values is replaced with the
new ones.

IDIOMATIC PERL

When you write Perl code, it’s generally considered nice to follow the peristyle
document (perldoc perlstyle), but not everything is contained in there. This
section provides some tips to write hashes in a “Perlish” way.

The way the hashes were written before builds more or less on your previous
knowledge. But in Perl code you’ll usually find hashes written like this:

Slices

61

SLICES

Sometimes you’ll get a data structure with a lot of data, but you don’t want all of it. In Perl, a slice is
a way to select a few elements of an array, list, or hash instead of the entire set of data.

my %people = (
Alice => 1,
Bob = 2
Ovid => "idiot",

’

) 8

Or you may find them written like this:

my %people = (
'Alice' => 1,
'Bob' = 2,
'Ovid' => "idiot",
) 8

Those last two hash declarations are the same thing. The => operator in Perl is

sometimes known as the “fat comma” (no “fat comma” jokes, please). It generally
acts just like a normal comma, but it has the side benefit of automatically quoting
whatever is on the left side of the fat comma, but only if it matches the rules of an

identifier. The following is a syntax error because 2Bob would not be a valid identi-

fier (because it begins with a digit):

my %people = (
Alice => 1,
2Bob => 2,
Oovid => "idiot",

) g

You are not required to use the fat comma in hashes, but they’re a common way of

writing a hash because they make the key/value pairs more obvious. For example,
compare the following two hashes and think about which one is easier to read:

my $%vegetables
my %vegetables = ('celery',

('celery' =>

'yuck',

'yuck', 'spinach'

'spinach',

=> 'delicious'

'delicious"

) 5

) 7

As you might imagine, if you declare a large hash, the fat comma can tremendously

improve readability.

Also, the trailing comma after the last key/value is not required, but it makes is

easier to avoid syntax errors if you decide to re-order how you wrote the hash, or if
you add more key/value pairs. It’s difficult to forget a comma you’ve already added.

There is no requirement to line up the key/value pairs when declaring a hash
because whitespace is usually not significant. However, it’s generally considered

good style because it is easier to read.

62 | CHAPTER3 VARIABLES

Array Slices

You’ve already learned that “the sigil that starts the variable indicates how you’re accessing it,” so as
you might guess, to take several elements out of an array at once, you use the @ sign at the front. The
following is an example:

my @names = ('Alice', 'Bill', 'Cathy', 'Doug');
my @men = @names[1, 3]; # Bill and Doug
my @women = @names[0, 2]; # Alice and Cathy

NOTE For more information, see perldoc perlintro.

It’s the square brackets ([1) that tell you what type of variable you’re indexing into (an array, in
this case), not the leading sigil. Again, this is a concept you need to get used to because it’s core to
understanding the Perl language. And, yes, this drum is being beaten repeatedly because everyone
gets it wrong sooner or later.

Generally, it doesn’t make sense to take a single-element slice. So, if you do this, you get a warning
(if you have warnings enabled, which you learn more about in a bit).

use warnings;
my @stuff = ('bits', 'and', 'bobs');
my S$item = @stuffll];
print Sitem;
That issues the following warning;:

Scalar value @stuff[l] better written as S$stuff[l] at stuff.pl line 3.

Make that recommended change and the warning goes away.

Hash Slices

Naturally, you can take a slice of a hash. Because you use the leading sigil to indicate how you’re
accessing the variable, you use the @ sign again, but with curly braces. The following is an example:

my %$nationality_of = (

‘ovid' => 'Greek',
'John Davidson' => 'Scottish',
'Tennyson' => 'English',
'Poe' => 'Tacky"', # Geek?
) ;
my @nationalities = @nationality of{ 'Ovid', 'Tennyson' };

print "@nationalities";

That prints “Greek English,” despite the fact that Ovid was actually a Roman poet. Garbage in,
garbage out.

Context | 63

CONTEXT

Context is one of the more useful features of Perl. Context means an expression can change its
value based on what the calling code expects to receive. This sounds strange, and some new
programmers — not you, of course — get confused by it. When you get used to it, you’ll find it easy
and natural. Take care to understand this concept because you’ll see it constantly in Perl programs.

NOTE For more information, see perldoc perlglossary.

There are three main types of context: scalar, list, and void. They often mean “what the left side of
an expression wants to get.” Rather than belabor this, the following are some examples of this
beautiful craziness.

Scalar Context

This is an example of scalar context:

my $number_of_things = @things_in_common;

my S$number_of_things = scalar @things_in_common;

my Snumber_of_things = ('liars', 'fools', 'certain politicians');
my $number_of_things = %$hash_example;

When dealing with assigning values to variables, what you have on the left side of the = determines
the “context” on which you’re evaluating the right side. So, if you have a scalar on the left, you have
scalar context.

Arrays in Scalar Context

Following is an example of an array in scalar context:

my @things_in_common = ('liars', 'fools', 'certain politicians');
my $number_of_things = @things_in_common;

As you might guess from the variable name, $number_of_things is equal to 3, the number of
elements in @things_in_common. That’s because the scalar context value of an array returns the
number of elements in that array.

If you want to force scalar context, you can use the scalar keyword, as shown here:

my @things_in_common ('liars', 'fools', 'certain politicians');
my Snumber_of_things = scalar @things_in_common;

That last line has exactly the same meaning with or without the scalar keyword, but it does make
it explicit that you meant scalar context and weren’t trying to assign an element of the array to
Snumber_of_things.

64 | CHAPTER3 VARIABLES

The scalar keyword is also essential when you want to force scalar context and not list context. So,
the following is probably not correct:

my @things_in common = ('liars', 'fools', 'certain politicians');
my %count_for = (useless_things => @things_in_common) ;
print $Scount_for{useless_things};

With a comma operator, whether you deal with the regular comma or the fat comma (=>), you are
using list context, so you can fix the previous snippet with the scalar keyword, as shown here:

my @things_in_common = ('liars', 'fools', 'certain politicians');
my %count_for = (useless_things => scalar @things_in_common) ;
print Scount_for{useless_things};

NOTE See perldoc -f scalar for more information.

Lists in Scalar Context

If you force scalar context with a list (again, an array is a container for a list), whatever is on the
left side of each comma is evaluated, the result is thrown away, and the right side is evaluated. That
leads to common errors like this:

my Snumber_of_things = ('liars', 'fools', 'certain politicians');
print $number_of_things;

That prints certain politicians instead of the number 3. Thus, you usually don’t want to use a
list in scalar context; use an array instead.

Hashes in Scalar Context
Naturally, you can also use scalar context with a hash, as shown here:

my %hash = (1 => 2);
print scalar %hash;

However, that’s probably going to print something like 1/8, and that’s about as useful as an ashtray
on a motorcycle. In scalar context, you’re actually seeing a bit about the internal structure of the
hash. It has its uses, but they won’t be covered here.

List Context

You have list context when the left-side value expects a list. Here’s how to copy an array to another
array:

my @copy = @old_array;

This is a “shallow” copy in that you’re copying only the top-level elements. Later, when you learn
about references (Chapter 6), you learn about this in more detail.

Context | 65

If you want, you can also assign a hash to an array, as shown here:

my %order_totals = (
Charles => 13.2,
Valerie = 17.9,
'Billy Bob' => 0,

)

my @flattened = %$order_totals;

That “flattens” the key/value pairs in the hash into a list. If you print the resulting array, you might
get something like this:

Billy Bob 0 Charles 13.2 Valerie 17.9

Again, this is because a hash is not ordered. If you need to retrieve the elements of a hash in order,
see Chapter 10, which explores sorting.

One of the nice things about list context is that you can force it with parentheses. For example, if
you want to assign the first element of an array to a scalar, just put parentheses around the scalar, as
shown here:

my @swords = ('katana', 'wakizashi');

my Snumber_of_swords = @swords;
my ($left_hand) = @swords;

However, you aren’t limited to a single scalar. You can assign several scalars at the same time, as
shown here:

my ($Sleft_hand, Sright_hand) = @swords;

This can come in extremely handy when you learn more about subroutines in Perl.

This has an interesting side effect. When you’re facing down Toshiro Mifune and you realize that
your katana and wakizashi swords are in the wrong hands, you’re in trouble. Here’s how you might
do that in C:

other_hand = left_hand;
left_hand = right_hand;
right_hand = other_hand;

Too bad. You’re dead.

In Perl, because you can use list context with those scalars, you can do this to swap those values:
(Sright_hand, S$left_hand) = ($left_hand, Sright_hand);

Pretty handy, eh?

You can mix scalars and other variables with this:

my ($first, @Qextra) = (1, 2, 3, 4);

66

CHAPTER 3 VARIABLES

$first will have the value of 1 and @extra will be 2, 3, and 4. However, the scalars must come
first!

my (@extra, $last) = (1, 2, 3, 4);

That doesn’t do what you want because @extra slurped up all the values and $1ast will be

undefined.

Now it’s time for you to get some experience actually working with these variables.

Printing Scalars, Arrays, and Hashes

This chapter has covered a lot of ground, so now get your hands a bit dirty to see how this works. All
the code for this Try It Out can be found in code file example_3-1_variables.pl.

1.

Type the following program into your favorite editor, and save it as example_3_1 variables.pl:

use strict;
use warnings;
use diagnostics;

my Shero = 'Ovid';
my $fool = S$hero;
print "Shero isn't that much of a hero. $fool is a fool.\n";

Shero = 'anybody else';
print "Shero is probably more of a hero than $fool.\n";

my %$snacks = (
stinky => 'limburger’',
yummy => 'brie',
surprise => 'soap slices',
)i
my @cheese_tray = values $%snacks;
print "Our cheese tray will have: ";
for my $cheese (@cheese_tray) {
print "'Scheese' ";
}

print "\n";

Now that you’ve saved it, run it with perl example_3_1_variables.pl. It will probably print
something similar to the following:

Ovid isn't that much of a hero. Ovid is a fool.
anybody else is probably more of a hero than Ovid.
Our cheese tray will have: 'havarti' 'soap slices' 'brie'

If it didn’t, the inclusion of strict, warnings, and diagnostics will provide clues to where you
mistyped.

Scope | 67

How It Works

Now skip the strict, warnings, and diagnostics because you’ll learn more about those in the clev-
erly named “strict, warnings, and diagnostics” section of this chapter. For now, just know that they
make writing correct code much easier. Instead, look at the first assignments:

my S$hero = 'Ovid';
my $fool = Shero;
print "S$hero isn't that much of a hero. $fool is a fool.\n";

Shero = 'anybody else';
print "S$hero is probably more of a hero than $fool.\n";

That should be clear by now, but with the second assignment to the $hero variable, you can see that
it does not change the value of $fool. Youre copying the values of these variables, not the variables
themselves.

For the rest, the only new thing here is the use of the values keyword. This was mentioned earlier, but
this example shows it in action:

my @cheese_tray = values %snacks;
print "@cheese_tray\n";

That prints limburger brie soap slices and guarantees that you have a memorable (if unpopular)
party.

SCOPE

Now it’s time to talk about scope. No, this is not about the mouthwash, but rather the scope of
variables, or “where you can see them from.” Using scope is a way of ensuring that variables
declared in one part of your program are not available in other portions of the program. This helps
to prevent unrelated code from accidentally changing those values.

NOTE For more information about scope, see perldoc perlintro.

my Variables

Variables declared with my are referred to as lexically scoped. This means that they do not exist
outside of the scope in which they are declared. This generally means file scoped or block scoped.

File scoped means that any my variable declared outside of a block is visible from that point on to
the end of the file in which it is declared. This also means that if you have several packages in a file
(which you learn about in Chapter 11), the my variable in question will be visible to all packages in
that file. You generally want to avoid that.

68 | CHAPTER3 VARIABLES

However, if they are declared inside of a block, they remain scoped to that block. In Perl, a block
scope is simply one or more Perl statements delimited by curly braces. For example, the following is
a bare block:

my $answer = 42;

{
my Sanswer = 'forty-two';
print "$answer\n";

}

print "Sanswer\n";
That prints the following;:

forty-two
42

This is because the my declaration inside of the block “hides” the variable from the scope outside of
the block.

NOTE You cannot declare Perl’s built-in variables like this, with one exception.
Prior to version 5.10, you were not allowed to do the following, even though it
appeared to obey the rules:

my $_;

That was not allowed because s_ is one of Perl’s built-in special variables,
which you learn about in Perl’s Built-In Variables section later in this chapter.
As of version 5.10 and after, this restriction was lifted, and you are now allowed
to use my $_, but not for the other built-ins. See perldoc perl5100delta and
search for Lexical $_ for more information.

Listing 3-1 (code file 1isting_3_1_scope.pl) provides a more real-world example with a block in a
for loop.

LISTING 3-1: Variable Scoping in Blocks

use strict;
use warnings;
use diagnostics;

my @numbers = (1, 2, 3, 4, 5);
for my $number (@numbers) ({
my Sreciprocal = 1 / $number;
print "The reciprocal of $number is $reciprocal\n";
}
print Snumber;
print Sreciprocal;

Scope | 69

The program in Listing 3-1 will not run. Instead, you’ll get a bunch of errors similar to the
following:

Global symbol "$number" requires explicit package name at numbers.pl line 11.
Global symbol "Sreciprocal" requires explicit package name at numbers.pl line 12.
Execution of /var/tmp/eval NAV1.pl aborted due to compilation errors (#1)

(F) You've said "use strict" or "use strict vars", which indicates

that all variables must either be lexically scoped (using "my" or "state"),
declared beforehand using "our", or explicitly qualified to say

which package the global variable is in (using "::").

Uncaught exception from user code:

Global symbol "S$Snumber" requires explicit package name at numbers.pl line 11.
Global symbol "Sreciprocal" requires explicit package name at numbers.pl line 12.
Execution of $numbers.pl aborted due to compilation errors.

The @numbers variable does not appear in the error message because it’s file scoped and thus

visible everywhere in this file. The error occurs because the $reciprocal and $number variables
are declared with my inside of the block and are not available outside of it. Note that the $number
variable is also lexically scoped to that block, even though it might appear to be outside of it. That’s
just how for loops work.

To make the broken code run, simply delete the two print statements after the for loop.

But you may have noted the “requires explicit package name” error highlighted in the previous error
message. What exactly does that mean?

Package Variables

In Perl, a package is just a namespace to keep variables, subroutines, and other things organized. By
default, things live in the package main. You declare what package (namespace) you’re in with the
package keyword. You learn about this more indepth in Chapter 11, but for now, when you write
simple programs, you need to knowonly the basics.

Generally, you’ll find that package variables are globally scoped. A globally scoped variable is
available anywhere in your program.

NOTE A namespace is just a place where any names used won’t show up in
another namespace. They’re a convenient way to organize your code. You'll
find more in-depth coverage of this in Chapter 11.

Consider the following code:

package main;
use strict;
use warnings;

70

CHAPTER 3 VARIABLES

Here, the package main; statement isn’t required because main is the default package. However,
sometimes you see code written like this:

package MyCompany::Stuff;

use strict;
use warnings;

$MyCompany: : Stuff: :department_number_ for = (
finance => 13,
programming => 2,
janitorial => 17,
executive = 0,

);
And later, other code can reference this with the following:
my $department_number = $MyCompany::Stuff::department_number_ for{finance};

It doesn’t matter if that code is in the same package, or even a different file, so long as the
MyCompany: : Stuff package has been loaded. When addressing a package variable with the

full package name included in it, this is known as a fully qualified variable. However, typing
SMyCompany: : Stuff: :department_number_for{finance} can.beannoying.Iﬁsalm)ernnéprone
because the following is legal but probably not what you intended (note the misspelling of “Sutff”):

my S$department_number = S$MyCompany::Sutff::department_number_for{finance};

Thus, you have several options to deal with this. One is to not use the strict pragma. (A pragma
is a special module, the name of which is usually written in all lowercase letters, which alters the
compile or runtime behavior of your program.) Any variable referenced without the my function is
automatically a variable in the current package.

package main;
Sanswer = 42
print "$anwser\n";

That’s legal Perl, but you can see how easy it is to misspell variable names, so you shouldn’t forget
strict because that way lies madness.

The vars Pragma

Moving along, prior to Perl 5.6.0, you had the vars pragma that looked like Listing 3-2 (code file
listing_3_2_vars.pl).

LISTING 3-2: The vars Pragma

package MyCompany::Stuff;

use strict;
use warnings;

Scope | M

use vars (
'%department_number_for',
'$some_other_package_variable',

)

$department_number_for = (
finance => 13,
programming => 2,
janitorial => 17,
executive => 0,
)
$some_other_package_variable = 42;
print S$department_number_for{finance};

Outside of the package, you would still need to refer to those variables by the fully qualified variable
names, and run the risk of typos, but it saves typing inside of the package.

Declaring Package Variables with our

Starting with version 5.6.0, Perl introduced the our function. Unlike the my function that says “this
variable is mine,” the our variable says “this variable is ours.” In other words, it’s like any other
package variable, but it has a cleaner syntax.

Listing 3-3 (code file 1isting_3_3_our.pl) shows an example with the our function.

LISTING 3-3: Declaring Variables with our
package MyCompany: :Stuff;

use strict;
use warnings;

our %department_number_ for;
our $some_other_package_variable;

%department_number_for = (
finance => 13,
programming => 2,
janitorial => 17,
executive => 0,
)
$some_other_package_variable = 42;
print Sdepartment_number_for{finance};

Many people have a habit of declaring variables with the vars pragma or with the our function.
Do not do this unless you need to share that variable outside of your package. When someone else’s
code changes that variable’s value and breaks your code, it can be difficult to track down.

Using Local Variables

Of course, sometimes you want to limit the scope of your package variables. You can’t use the my
keyword to declare them, but you can use local to make it clear that they’re “localized” to a given

72 | CHAPTER3 VARIABLES

scope. They’ll retain their value in the outer scope but you’re free to change them in the inner scope,
if needed. Here is an example:

our Sanswer = 42;
{
local Sanswer = 57;
print "$answer\n";
}

print "Sanswer\n";

That prints the following;:

57
42

Whenever you need to temporarily change the value of a package variable, use the 1ocal function.
Of course, you can do this with fully qualified variable names, too, as shown here:

local $MyCompany::Stuff;

That ensures that you can do just about anything you want with $MyCompany: : Stuff in your local
scope without causing problems for others who rely on the original value.

If you need to keep the original value and change it, assign it to itself with 1ocal, as shown here:

our Sanswer = 42;

{
local Sanswer = $Sanswer;
print "$answer\n";
Sanswer = Sanswer + 2;
print "Sanswer\n";

}

print "Sanswer\n";
That prints the following;:

42
44
42

Be sure you understand why that works because it’s a common idiom in Perl.

STRICT, WARNINGS, AND DIAGNOSTICS

Before going much further, we need to stop for a word from our sponsors: strict, warnings, and

diagnostics.

Strictly speaking you don’t need the my in front of a variable declaration. Or perhaps that should
read “unstrictly” speaking. For most experienced Perl programmers, you’ll see the following two
lines at the top of virtually all their Perl programs:

Strict, Warnings, and Diagnostics | 73

use strict;
use warnings;

And when you’re new to Perl, adding the following line is also recommended:
use diagnostics;

strict, warnings, and diagnostics are pragmas. As mentioned earlier, in Perl, a pragma is a spe-
cial module, the name of which is usually written in all lowercase letters, which alters the compile or
runtime behavior of your program.

Of course, you can leave these pragmas out when writing your software, but it’s a bad idea, and
many Perl developers will not help you if you omit these things. Why? Because they save so much
development by protecting you from silly mistakes, you’d be insane to not use them. You’re not
insane, are you? (Hmm, you are learning Perl, though).

If you actually need to, you can turn these off, as shown here:

no strict;
no warnings;

However, if you do so, it’s recommended that you do so only with two conditions:
> It’s a limited scope.

> You turn off only the bits you need.

no warnings 'uninitialized';
Stotal = Stotal + $some_value;

In the preceding code, $total might be accumulating some of your order total, but sometimes
$some_value might be allowed to be undefined. In that case, you might decide it’s okay to turn off
“uninitialized” warnings in that scope. (Good luck spelling “uninitialized” correctly the first time,
by the way.)

NOTE You should read perldoc strict and perldoc warnings to better
understand how they work and what bits you can turn off. perldoc perllexwarn
goes into extensive detail about how the warnings pragma is structured.

You see more examples later in the book, but there’s no point in covering them in depth now. By the
time you understand them, you’ll be better prepared to understand why to do this.

Now let’s look at the individual pragmas to see the basics.

74

CHAPTER 3 VARIABLES

strict

For strict, you could actually write the following;:

use strict 'vars';
use strict 'subs';
use strict 'refs';

However, you usually just want to write this (which means the same thing):
use strict;

The vast majority of the time, strict means “declare your variables.” If you forget to do so, your
program will not run. For example, say that you try to do this:

my $name = 'Danny’;
my S$nick = $naem;

You get a compile-time error because you misspelled $name (unless you created my $naem for some
reason).

warnings

For warnings, things are a bit different. They’re generally just warning you about bad things
your program is doing. But, in reality, these things might be okay. Your program will run, but
warnings are printed when your code thinks you’re doing something dodgy. You should look at
the warnings closely to find out what they actually mean. For example, if you have warnings
enabled, the following code generates a warning about an uninitialized value in addition:

use warnings;
my $x;
my $y = $x + 2;

For versions of Perl prior to 5.6.0 (and sometimes after, for backward compatibility), you often see
the -w switch (see perldoc perlrun) on the shebang line instead:

#!/usr/bin/perl -w
use strict;

This is because the warnings pragma was introduced in version 5.6.0. If you have the misfortune to
work with an older version of Perl, be aware that 5.6.0 came out in 2000. In terms of technology,
it’s ancient, and is no longer supported.

Strict, Warnings, and Diagnostics |

75

THE DIFFERENCE BETWEEN -W AND WARNINGS

One important difference between the —w switch and warnings is that -w has a
global effect (yes, it will even effect code in other files you’ve loaded), and
warnings affects only the scope in which it is declared. Consider this example:

#!/usr/bin/perl
use strict;
my $x;
{
use warnings;
my $y;
print Sy;
}

print $x;

In this code, you get a warning about the use of an uninitialized value for $y but
not for $x because in this example the warnings pragma affects only the block in
which it is used. To fix this, declare warnings at the top of the file, like so:

#!/usr/bin/perl
use strict;
use warnings;

my $x;
{
ny Sy;
print Sy;
}

print S$x;

diagnostics

If you’re relatively new to Perl, you should also use the diagnostics pragma, as shown in
Listing 3-4 (code file Listing 3-4 diagnostics.pl). This gives long-winded explanations of
why you’ve been so naughty. The masochists will love it.

LISTING 3-4: Using diagnostics

use strict;
use warnings;
use diagnostics;

my $x;
my Sy = $Sx + 2;

76

CHAPTER 3 VARIABLES

The program shown in Listing 3-4 prints out a much longer diagnostic method to help you under-
stand not only what went wrong, but also why. Reading through these diagnostic messages is a great
way to understand what Perl is doing. The following is an example:

Use of uninitialized value $x in addition (+) at diag.pl line 5 (#1)

(W uninitialized) An undefined value was used as if it were already
defined. It was interpreted as a "" or a 0, but maybe it was a mistake.
To suppress this warning assign a defined value to your variables.

To help you figure out what was undefined, perl will try to tell you the
name of the variable (if any) that was undefined. In some cases it cannot
do this, so it also tells you what operation you used the undefined value
in. Note, however, that perl optimizes your program and the operation
displayed in the warning may not necessarily appear literally in your
program. For example, "that $foo" is usually optimized into "that "

$foo, and the warning will refer to the concatenation (.) operator,
even though there is no . in your program.

As you can see, the diagnostic information is fairly good. If you (unlike the vast majority of
programmers out there) actually read your errors and warnings carefully, you’ll have no problem
understanding what happened.

WARNING Unfortunately, for versions of Perl prior to 5.10.0, you won'’t see

the name of the variable in this warning. This meant that warnings from long
strings with many interpolated variables were a nightmare. Now they’re just an
annoyance.

Working Without a Net

You might think that strict and warnings aren’t that important, but consider the following
example:

$disarm_nuclear_weapon = true;

Without strict, a bareword (a string literal without quotes) is just a string. That snippet might
assign the string true to $disarm_nuclear_ weapon. However, some terrorist programmer who has
read Chapter 7 on subroutines might add this above that line:

sub true { 0 }

And now you’ve assigned a false value (see Chapter 5) to $disarm_nuclear_weapon and started
World War III. Thanks a lot, buddy! Just use strict and warnings, and keep the world safe from
terrorism!

Now let’s get some hands-on experience with uninitialized variables.

Strict, Warnings, and Diagnostics |

77

Understanding Uninitialized Variables

This example is simple, but sometimes seeing the warnings in action enables you to be more comfort-
able with them when you encounter real-world code. All the code in this Try It Out can be found in
code file example_3_2_diagnositcs.pl.

1. In your favorite text editor, enter the following code, and save as example_3_2_diagnostics.pl:

use strict;

use warnings;
use diagnostics;
my $x;

print 3 / $x;

2. Now type perl example_3_2_diagnostics.pl from the command line. You should see some-
thing similar to the following.

Use of uninitialized value $x in division (/) at diag.pl line 5 (#1)

(W uninitialized) An undefined value was used as if it were already
defined. It was interpreted as a "" or a 0, but maybe it was a mistake.
To suppress this warning assign a defined value to your variables.

To help you figure out what was undefined, perl will try to tell you the
name of the variable (if any) that was undefined. In some cases it cannot
do this, so it also tells you what operation you used the undefined value
in. Note, however, that perl optimizes your program and the operation
displayed in the warning may not necessarily appear literally in your
program. For example, "that $Sfoo" is usually optimized into "that "

$foo, and the warning will refer to the concatenation (.) operator,
even though there is no . in your program.

Illegal division by zero at diag.pl line 5 (#2)
(F) You tried to divide a number by 0. Either something was wrong in
your logic, or you need to put a conditional in to guard against

meaningless input.

Uncaught exception from user code:
Illegal division by zero at diag.pl line 5.

How It Works

If you removed the three pragmas of strict, warnings, and diagnostics (actually, removing strict
would not alter this), you'd just see the following output:

Illegal division by zero at diag.pl line 5.

An experienced programmer can immediately understand the problem and fix it. However, with
warnings, you'd also get an additional error message:

Use of uninitialized value $x in division (/) at diag.pl line 5

This tells you not that $x is 0, but that you forgot to initialize it. When Perl does math, uninitialized
values are treated as a zero, and you get a warning if you have warnings enabled.

78 | CHAPTER3 VARIABLES

However, as mentioned previously, the diagnostics pragma gives you much more information about
what the problem is, and often gives you recommendations on how to resolve the problem, such as the
following:

(F) You tried to divide a number by 0. Either something was wrong in
your logic, or you need to put a conditional in to guard against
meaningless input.

The (F) means it’s a trappable, fatal error. Trappable means that you can catch the error, handle it, and
try to continue running the program. You learn more about error handling in Chapter 7.

The rest of the diagnostic information informs you that you have a logic error, or perhaps that value is
expected, and you need to check for that value before trying to divide with it. You learn how to do that
in Chapter S.

Over time, you’ll get used to the various error messages that Perl outputs, and you can stop using
diagnostics. You should try deleting the use diagnostics line in the code and running it again to
see the difference.

PERL'S BUILT-IN VARIABLES

Perl has many special built-in variables that are global in scope. Though the number of these vari-
ables can seem bewildering at first, the common built-in variables are easy to memorize and can be
used to make your life simpler, including handling some common tasks that other languages might
require a library or extra code to handle. We will generally introduce these special variable as the
need arises, but a few deserve special mention upfront.

$_

One of the most common special variables is the $_ variable, sometimes referred to as dollar under-
score. This is the “default” variable and many functions automatically operate on this.

NOTE For more information about s_, see perldoc perlvar.

For example, when iterating over an array, you can do this:

for my $element (@array) {
print Selement;

}

Or you can do this:

Perl’s Built-in Variables | 79

for (Qarray) {
print "$_\n";

That’s because, when you use a for loop and you don’t create a variable to assign the elements to,
the $_ variable is automatically populated with the value. the print function, by default, prints the
$_ variable if it doesn’t have any arguments, as shown here:

for (@array) {
print;

That prints all the elements on a single line, and you probably don’t want that. Instead, if you use
Perl 5.10 or newer, you can use the feature pragma to import the say function. say is just like
print, but it automatically adds a newline to whatever you print. Like print, it automatically uses
the value of $_ as an argument if no arguments are provided.

use feature 'say';
for (@array) {
say;

%ENV

The global $Env hash contains environment variables. These are variables generally set outside your
program, but your program can read them to modify its behavior. For example, the $ENV {HOME }
environment variable, on most operating systems, contains the home directory of the current user
who is running the program.

Setting an environment variable in your program will not cause your operating system to see the
new value, but all other parts of your program will see it. Because this is a global variable, use
with care.

@ARGV

Another useful built-in variable is @arav. This built-in array contains the arguments passed in on
the command line. Listing 3-5 (code file Listing 3-5 hello.pl) shows a way you can rewrite
“Hello, World!” but take the arguments from the command line:

LISTING 3-5: Rewriting “Hello, World!” with @ARGV

use strict; # yes, I use these even for short programs
use warnings;

print "Hello, @ARGV";

80 | CHAPTER3 VARIABLES

Save that as hello.pl and type this on the command line:
perl hello.pl John Q. Public

That should print out Hello, John Q. Public.

NOTE |If you pass no argumentsto the hello.pl program, you won’t get an
uninitialized warning because empty arrays are simply empty. There are
no uninitialized values present.

There are plenty of other special variables in Perl, and you learn about some of them as this book
progresses. For now, you can read through perldoc perlvar and weep or laugh. Fortunately, you
won’t encounter most of them.

Other Special Variables

As mentioned, Perl has many special variables built in to the language. Table 3-3 lists a few of them.
Don’t worry about their meaning for now; just be aware they exist. New ones will show up from
time to time throughout the book.

TABLE 3-3: Common Special Variables

VARIABLE DESCRIPTION

@_ Parameters passed to a subroutine

$0 The name of your program

$a, sb Special global variables used in sort subroutines

SENV Hash containing your environment variables

@INC Contains paths to look for files loaded with do, require, or use
%$INC Contains entries for every file loaded with do, require, or use
$*V The current Perl version (Perl 5.6.0 or later)

$°X The executable used to execute your program

$1,8$2, ... Subpatterns extracted from regular expressions (Chapter 8)

St Value of system error calls

se Perl syntax error trapped by eval

Summary |

81

NOTE You should read perldoc perlvar for more information.

SUMMARY

This chapter covered Perl's three primary data types: scalars, arrays and hashes. You learned that
Perl tends to focus on how you organize your data rather than the kind of data you have. You've
learned the basics of declaring new variables and assigning data to them. You've learned how to
iterate over arrays and hashes. You've also been introduced to context, one of the key ideas of how
data is handled in Perl. You've also been introduced to the idea of scope, a concept used to limit
what parts of your program can see which variables.

EXERCISES

1. Whatare some differences between strict and warnings?

2. Create an array with the values “Andrew,” “Andy,” and “Kaufman” (without the quotes). Write a
program that prints Andrew "Andy" Kaufman.

3. Create a hash with the keys being names of fruits and the values being their normal color. Print
every key/value pair as a separate line similar to bananas are yellow.

82 | CHAPTER3 VARIABLES

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Scalars A container for a single value.

Arrays A container for a list of values.

Hashes An unordered container for key/value pairs.

Slices Extracting a subset of data from arrays and hashes.
Scope Where you can “see” variables.

Lexical variables Variables restricted to a given scope.

Package variables Variables associated with a given package.

Built-in variables Special variables built into the language.

Context How a given expression is evaluated.

strict A pragma to require variable declaration. Also used to prevent

certain unsafe behaviors with references and subroutines.
warnings A pragma to warn about unsafe behaviors.

diagnostics A pragma to provide verbose explanations of errors and warnings.

Working with Data

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Working with scalars
» Working with arrays
» Working with hashes

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into
the following major examples:

> example_4_1 names.pl

This chapter shows you much of the basic data manipulation available in Perl to help you Get
Stuff Done. Quite frankly, this chapter is boring. It serves more as a reference chapter that you
can conveniently flip back to when you want to understand how to manipulate data in a par-
ticular way. If you like, you can think of it as an appendix slipped into the front of the book.
The builtins described here are not an exhaustive list. They’re the ones you’re most likely to
encounter in your daily work.

For many languages there is a strong distinction between operators and functions. This dis-
tinction is less clear in Perl. Some things that look like functions are sometimes referred to as
named unary operators (see perldoc perlop). To sidestep the inherent ambiguity, many Perl
developers refer to operators and functions as built-ins (sometimes spelled builtins, as is done
here). This book often uses these terms interchangeably. A builtin, in this context, means an
operator or function built in to the Perl language.

84 | CHAPTER4 WORKING WITH DATA

NOTE Subroutines and functions are considered distinct in some languages.

If you refer to a function as a subroutine, invariably some AD&D rules lawyer
turned programmer will come along and imperiously state, “No, no. That’s a
subroutine,” even if it has no bearing on the discussion at hand. Because Perl is
designed to be a working language, you don’t get bogged down in terminology.
That’s why sometimes you might see my described as a function (as it is in
perldoc perlfunc), even though it’s clearly not behaving like normal functions.
The print () function is sometimes described as a named unary operator when
it’s used with parentheses. Don’t be a rules lawyer and get bogged down in
terminology.

Because Perl’s type system focuses more on how you organize your data than what kind of data that
you have, many string, numeric, bitwise, and boolean operators work on just about any kind of
data you have. Most of the time this “just works,” but you still have a responsibility as a
programmer to understand what type of data you have.

NOTE The parentheses are optional on most builtins. Your author tends to omit
parentheses because he views them as visual clutter, but other developers
prefer to be explicit. Just choose the style you prefer, and stick with it for consis-
tency. This chapter skips back and forth to get you used to each. However, when
a function name is mentioned in the body of the text, the parentheses are usually
included to avoid confusion.

Also, many of these functions and operators are prefix, infix, or postfix.
» prefix: Placed before their operand (! $var)
» infix: Placed between two operands ($var + S$var)
» postfix: Placed after their operand (Svar++)

Sometimes an operator’s meaning may change slightly if you use it as a prefix
operator instead of as an infix operator. I'll describe these conditions as they
arise. They’re actually natural to use this way.

USING SCALARS

In Chapter 2, you learned that a scalar is a variable that contains a single value. Perl actually doesn’t
care what kind of data you have in that value, so stuff anything in there that you need:

my $answer = 'forty two';
my S$num_answer = 42;

Clearly ' forty two' is a string and 42 is an integer, but Perl expects you (mostly) to handle them
with care and not mix them up. If you try to use 42 as a string, Perl treats it as a string composed of

Using Scalars | 85

the characters '4' and '2'. If you try to treat ' forty two' as a number, Perl treats it as the num-
ber 0, and if you have warnings enabled, Perl usually complains loudly when you try to use it as a
number.

This section starts with many of the string builtins first, listed mostly in alphabetical order with
“operators” coming after. Many of these functions automatically operate on the $_ variable if no
variable is specified. In Chapter 5, when you learn about control flow, you see many operations that
set the $_ variable if no variable is declared. This may sound strange, but it becomes clearer when
you see examples. You also see $_ being set in the map() and grep () functions, which are intro-
duced in this chapter.

Builtins are introduced with a snippet of “grammar” that shows more or less how to use it.

The grammar deliberately does not always match what you see in per1func. This is to avoid less
common use cases (as with the my () builtin) or to just make builtins a bit easier to read and see
common usage.

NOTE Remember, you can read more about all the builtins that are “words”
(print (), chomp (), and so on) by using perldoc -f builtin:

perldoc -f chomp
perldoc -f ucfirst

For the operator-like builtins such as +, ==, << and so on, you just have to read
the gory details in perldoc perlop.

Working with Strings

In Perl, just about anything can be coerced into a string merely by treating it as a string. The follow-
ing sections are a list of various functions and their usage in alphabetical order.

chop() and chomp()

chop (defauls to $_)
chop VARIABLE

chop(LIST)

chomp (defaults to $_)
chomp VARIABLE

chomp (LIST)

The chop () builtin removes the last character from a string and returns it.

my Sname ‘ovid';
my Slast = chop $name;

$last is now set to 'd' and $name is 'Ovi'. The chop () function was primarily used to remove the
newline from strings, but for that you now use the chomp () function.

86 | CHAPTER4 WORKING WITH DATA

chomp () removes newlines from the end of strings. It’s particularly useful when you read lines from
a file and want to remove the newline from each record.

NOTE Actually, chomp () removes whatever is stored in the s/ variable, also
known as the input record separator. Most of the time, $/ is equal to a newline,
but sometimes people set it to a different value when they want to change how
to read records from a file. You learn more about this in Chapter 9. Read
perldoc perlvar and look for $INPUT_RECORD_SEPARATOR if you can’t wait.

You can also use both chop () and chomp () with lists, arrays and hashes, but this usage is less com-
monly seen in production code. For lists (and arrays), both chop () and chomp () work their magic
on each individual element, but for hashes they affect only the values of the hash and not its keys.

Both chop () and chomp () modify the variable directly. However, chop () returns whatever charac-
ter was removed from the string, and chomp () returns the number of characters removed, if any. As
a general rule, it’s recommended that you not use chop ().

chr() and ord()

chr (defaults to $_)
chr NUMBER
ord (defaults to S$_)
ord STRING

chr () accepts a number and returns the character associated with that number. For example, the
following code assigns the string "ovid" to the variable $name. The dot operator (.) is used in Perl
for string concatenation.

my Sname = chr(79).chr(118).chr(105).chr(100);

If the number is greater than 255, chr () returns the corresponding Unicode character.

The ord () function does the reverse: It returns the numeric value of the first character in the string
passed to it.

my @values = (ord('0O'), ord('v'), ord('i'), ord('d"));

@values now contains (79, 118, 105, 100).

Although the characters represented by the values 128 through 255 are not ASCII, Perl’s chr ()
function does not return Unicode values for them to maintain backward compatibility.

index() and rindex()

index STR, SUBSTR, POSITION
index STR, SUBSTR

rindex STR, SUBSTR,POSITION
rindex STR, SUBSTR

Using Scalars | 87

Given a string, index () lets you find the first occurrence of a substring within it, with indexing
starting at 0. If the substring is not found, it returns -1. You can also supply a starting position
from which to search. The rindex () function is identical the index () function, but it finds the last
occurrence of the string.

So when the word “miminypiminy” springs to your lips as the perfect description of something (it
means “delicate, mincing, or dainty,” but you knew that), you naturally wonder where the substring
iminy may be found within said word.

012345678901

my $Sword = 'miminypiminy’;

my Sfirst = index $word, 'iminy';

my $second = index Sword, 'iminy',6 S$first + 1;
my $last = rindex S$word, 'iminy';

my Snot_last = rindex Sword, 'iminy', $last - 1;

print "First: Sfirst\n";
print "Second: Ssecond\n";
print "Last: Slast\n";

print "Not last: $not_last\n";
And that prints out:

First: 1
Second: 7
Last: 7
Not last: 1

Now you can tell your friends you’re an expert in miminypiminy, but don’t be surprised when they
laugh.

Ic(), Icfirst(), uc(), and ucfirst()

lc (defaults to $_)

1lc EXPR

lcfirst (defaults to $_)
lcfirst EXPR

uc (defaults to $_)

uc EXPR

ucfirst (defaults to $_)
ucfirst EXPR

These handy little functions are part of the useful suite of tools that Perl provides for manipulating
data. The 1c () function forces an entire string to lowercase. The uc () function forces the string to
uppercase. The 1cfirst () and ucfirst () functions do the same thing, but only on the first charac-
ter. Naturally you can combine all of these functions.

Following is one way to print Per1, for example:

print ucfirst lc 'PERL';

CHAPTER4 WORKING WITH DATA

All these functions respect locale settings. You’ll see more in Chapter 9 when we discuss Unicode.

length()

length (defaults to S$_)
length EXPR

The 1ength() function returns the number of characters in a string. Due to Unicode, this is not nec-
essarily the same as the number of bytes. So the following code prints 6, as you would expect:

print length('danger');

But the following code prints 9 when it tries to figure out the length of Japan when it’s written in
Japanese:

print length (' HA®E");

That’s because each of those characters is composed of 3 octets (bytes, but see the Unicode section
in Chapter 9), and Perl doesn’t know that you have Unicode in your source code. To handle it cor-
rectly, use the ut£8 pragma. The following correctly prints 3:

use utfs8;
print length(‘EjYE');

Many people mistakenly use the length () function to try to determine the length of an array or
hash. Use scalar (@array) or scalar (keys (%hash)) for this, not the length () function. That’s
not what it’s for.

pack() and unpack()

pack TEMPLATE, LIST
unpack TEMPLATE, VARIABLE
unpack TEMPLATE

The pack () and unpack () builtins are two functions that nobody remembers or understands, even
though conceptually they’re simple.

The pack () function accepts a template and a list of values, “packing” that list of values into a
single value according to the template. The unpack () function does the reverse by taking the same
template and “unpacks” a scalar value into a list of values. Unlike pack (), unpack () defaults to the
$_ variable.

Read perldoc -f pack and perldoc -f unpack to understand the templates. They’re not covered
much in this book because they’re not terribly common in production code, but the following code
gives a quick example of reading fixed-length data quickly. The code uses dots in the comment to
show you where each field in the record ends.

Using Scalars | 89

. . ..
my Srecord = '20080417john 39552027"';
my (Shired, Suser, Semp_number, Sdept) = unpack 'A8A8ASA3', S$Srecord;

print "Hired: $hired\nUser: Suser\nEmp#: $emp_number\nDept: $dept\n";
The preceding code prints out:

Hired: 20080417
User: john
Emp#: 39552
Dept: 027

And that’s probably the last you’ll see of these two functions in this book. Just be aware they exist.

NOTE |If you want to know more about pack () and unpack (), see perldoc
perlpacktut.

print()

print (defaults to $_)
print FILEHANDLE LIST
print LIST

This book uses print () quite a bit and you’ve seen examples in Chapter 3, but it’s worth covering
a few things here. First, print () takes a list. With print (), you can think of a scalar variable as a
list with one element, which is why print ($name) works.

my Scustomer = 'Alex';
print "Customer: S$customer\n";

This raises the obvious question of where you’re printing to and that’s where filehandles come in.

The optional FILEHANDLE argument is something covered more in Chapter 9, which discusses files.
For now be aware that a filehandle is usually (not always) one of three things:

> A “handle” to an actual file.
» sTDouT: The default place where a program writes normal output.
» STDERR: The default place where a program writes error output.
If you don’t specify a filehandle, print () defaults to printing to stpouT. The following two

print () statements are identical:

print S$name;
print STDOUT S$name;

20

CHAPTER4 WORKING WITH DATA

WARNING No comma appears after the filehandle argument. If it did,
Perl would assume that the filehandle is one of the list arguments you’re
trying to print:

print STDOUT, S$name; # probably not what you wanted
This code prints something like
No comma allowed after filehandle at myprogram.pl line 1.

However, a filehandle can be stored in a scalar, and then Perl can’t determine
what you mean:

use strict;
use warnings;
my $name = 'foo';
open my $fh, '>', 'somefile.txt'
or die "Can't open somefile.txt for reading: $!";
print $fh, Sname;

In the previous example, Perl tries to print the filehandle and $name to STDOUT
instead of what you probably want:

GLOB (0x100802eb8) foo

Again, Chapter 9 covers filehandles in more detail.

STDOUT, short for standard output, generally goes to your terminal, but you have ways to redirect
it to files, sockets, or other places. Not all of this is covered in this book as it’s a bit advanced. Just
remember that generally sSTDOUT is the “normal” printed stuff you see.

STDERR, short for standard error, also tends to show up on your terminal, but you can also redirect
it to other locations. Error handling functions like die () and warn () direct their output to STDERR.
You learn more about error handling in Chapter 7 when you deal with subroutines. For now, just
be aware that when you run a Perl program from the terminal, you usually see both sTpouT and
STDERR output written there.

sprintf() and printf()

sprintf FORMAT, LIST
printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

The sprintf () and printf () functions format data according to the printf () function of the
underlying C libraries. They are extremely useful for reporting. The sprintf () function formats
and returns the string whereas printf () formats and prints the string and the common formatting
codes are explained in Table 4-1. Any “extra” values in the list are ignored:

Using Scalars

91

my @musketeers = gw(Aramis Athos Portos);

printf "%s,%s\n", @musketeers; # prints "Aramis,Athos"
my $two_musketeers = sprintf "%s,%s", @musketeers;

Stwo_musketeers is now "Aramis,Athos"

TABLE 4-1: Common printf() Formats

FORMAT MEANING

%% Percent sign

%c Character

%s String

%d Signed integer, in decimal

Fu Unsigned integer, in decimal

%0 Unsigned integer, in octal

$x Unsigned integer, in hexadecimal

e Floating-point number, in scientific notation

e
h

Floating-point number, in fixed decimal notation

00
Q

Floating-point number, in $e or $£ notation

TABLE 4-2: Perl-Specific printf() Formats

FORMAT MEANING

o

X Like $x, but using uppercase letters

o
=

Like %e, but using an uppercase “E”

oP
@

Like %g, but with an uppercase “E” (if applicable)

oe
o

An unsigned integer, in binary

3P A pointer (outputs the Perl value’s address in hexadecimal)

parameter list

n Special: stores the number of characters output so far into the next variable in the

In addition to the common formats, Perl also supports several commonly accepted formats that are
not part of the standard list of printf () formats. (See Table 4-2).

92

CHAPTER4 WORKING WITH DATA

When using sprintf () formats, you have a percent sign and a format letter. However, you can con-
trol the output by inserting attributes, also known as flags, between them. For example, inserting an
integer controls the default minimum width:

my Sformatted = sprintf "%20s", 'some name';
print "<$formatted>\n";

This code prints < some name> because the $20s format forces a string to be 20 charac-
ters long. That’s equivalent to:

printf "<%20s>\n", 'some name';

To left-justify the string, insert a - (hyphen) after the leading % symbol:

my $formatted = sprintf "%-20s", 'some name';
print "<$formatted>\n";
<some name >

Conversely, if you want to enforce a maximum width, use a dot followed by a number:
printf "%.7s", 'some name';

That prints some na. You can also combine them, if you want:
printf "%5.10s", S$some_string;

The previous code ensures that you print a minimum of 5 characters (padding with spaces,
if needed), and a maximum of 10. To force every string to be the same length — useful for
reporting — set the minimum and maximum to the same value:

printf "%10.10s", S$some_string;

You can also use the printf () formats to control numeric output, but that’s covered a bit later in
the chapter when you learn about numeric builtins.

Table 4-3 lists some of the common flags used with printf () formats.

TABLE 4-3: Common printf() Flags

FLAG MEANING
Space Prefix non-negative number with a space.
4 Prefix non-negative number with a plus sign.

= Left-justify within the field.
0 Use zeros, not spaces, to right-justify.

Include a leading zero for octal, prefix nonzero hexadecimal with 0x or 0%, and pre-
fix nonzero binary with 0b or 0B.

Using Scalars | 93

NOTE See perldoc -f sprintf for a full description of the format options.

substr()

substr EXPR,OFFSET, LENGTH, REPLACEMENT
substr EXPR,OFFSET, LENGTH
substr EXPR, OFFSET

The substr () function takes an expression (usually a string) and an offset and returns the substring
of the string, starting at the offset. Like the index () and rindex () functions, the offset starts at 0,
not 1. The following code prints hearted:

my $string = 'halfhearted';
my Ssubstr = substr S$string, 4;
print S$substr;

You can also specify an optional length argument after the offset. This limits the returned substring
no more than the specified length. The following code prints heart:

my $string = 'halfhearted’;
my $substr = substr $string, 4, 5;
print S$substr;

An underappreciated use of substr () is its Ivalue property. In Perl, an lvalue is something to which
you can assign. The “1” stands for “left” and is found on the left side of an expression. For
substr (), you can supply a replacement string for the string you return:

my $string = 'halfhearted';
my $substr = substr $string, 0, 4, 'hard';
print "$substr\n$string\n";

The previous code prints:

half
hardhearted

The substr () function is useful, but it’s often overlooked in favor of regular expressions, something
covered in Chapter 8.

tr/// and y///

VARIABLE =~ tr/SEARCHLIST/REPLACEMENTLIST/cds
VARIABLE =~ y/SEARCHLIST/REPLACEMENTLIST/cds

The tr/// and y/// operators are identical. The y/// variant is exactly equivalent to tr/// but is
provided for those who use Perl as a replacement for sed, a stream editor utility provided in
UNIX-like environments.

94

CHAPTER4 WORKING WITH DATA

The tr/// builtin takes a list of characters on the left side and replaces it with the corresponding list
of characters on the right side. It returns the number of characters replaced. The string being altered
must be followed by the binding operator (=~). The binding operator is generally seen when using
regular expressions. (Refer to Chapter 8.)

This might sound strange, so some examples are in order.

To replace all commas in a string with tabs, use the following code:

my S$string = "Aramis,Athos,Portos";
$string =~ tr/,/\t/;
print $string;

If, for some reason, you want to make all vowels lowercase use:
$string =~ tr/AEIOU/aeiou/;

You can also specify a range by adding a hyphen. To make all letters lowercase (though obviously
the 1c () function would be clearer here) use:

$string =~ tr/A-Z/a-z/;

The tr/// builtin also accepts several switches, c, d, and s, but you probably won’t see them much
in day-to-day usage unless you do a heavy amount of text munging (the act of making several incre-
mental changes to an item that combine to destroy it). Read peridoc perlop and see the Quote
and Quote-like Operators section.

Using String Operators

As mentioned, the difference between Perl’s functions and operators is a bit vague at times, but for
convenience, the punctuation bits are referred to as operators.

Repetition Operator: x

STRING x INTEGER
(STRING) x INTEGER

The x operator is for repetition. It’s often used to repeat a string several times:

my S$santa_says = 'ho' x 3.7;
print $santa_says;

The previous code assigns hohoho to $santa_says.

Sometimes you’ll want to assign a single value multiple times to a list. Just put the string in paren-
theses to force list context:

my S$ho = 'ho';
my @santa_says = ($ho) x 3;

@santa_says now contains the three strings ho, ho, and ho.

Using Scalars | 95

NOTE In many places where Perl expects an integer, a floating-point number is
fine. Perl acts as if you've called the int () function on the number. This includes
using floating-point numbers with the x operator, or even accessing array
elements.

Concatenation Operator: .

STRING . STRING

Unlike many other languages, the dot operator (.) is used for string concatenation instead of the +
operator. Not only is this visually distinctive, but also it tells Perl to treat the data as strings instead
of numbers.

my $first =1;
my $second = 2;
my S$Sstring = $first . $second;

my $answer = $first + $second;
print "$string - Sanswer";

The previous code prints 12 - 3. This is because the concatenation operator considers the 1 and 2
to be strings and concatenates (joins) them. The addition operator, +, expects numbers and adds the
1 and 2 together, giving the answer of 3.

You can also “chain” together multiple concatenation operators. The following code shows one way
to join two strings with a space:

my $full_name = $first_name . ' ' . S$last_name;

Autoincrement and Autodecrement Operators: ++ and --

++VARIABLE
--VARIABLE
VARIABLE++
VARIABLE--

The ++ and -- operators are for autoincrement and autodecrement. They return the value of the vari-
able and increase or decrease the variables value by one. They seem rather strange for strings, but they
return the next or previous letter. If they’re used as a prefix operator (++$var), they change the value
before returning it. If they’re used as a postfix operator ($var++), they change the value after return-
ing it. So if you want to find the next character after ‘f’, you can do this with the following code:

my $Sletter = 'f';
Sletter++;
print S$letter;

When you get past the ‘z’, the letters double. If $1etter is ‘z” and then you call $1letter++, the
$letter is now ‘aa’. You won’t see this often in code, but your author has seen it used to create
the prefix letters in code that automatically generated outlines.

96

CHAPTER4 WORKING WITH DATA

In the faint hope of making this clearer, the following code shows exactly what peridoc perlop
has to say on this subject:

If, however, the variable has been used in only string contexts
since it was set, and has a value that is not the empty string
and matches the pattern "/"[a-zA-Z]*[0-9]*\z/", the increment is
done as a string, preserving each character within its range,
with carry:

print ++($foo = '99'); # prints '100'
print ++($foo = 'al'); # prints 'al'
print ++($foo = 'Az'); # prints 'Ba’
print ++($foo = 'zz'); # prints 'aaa'

The “pattern” mentioned in the previous code is a regular expression, covered in Chapter 8. For
now, understand that /~ [a-zA-Z]*[0-9] *\z/ means that the string must match zero or more let-
ters, followed by zero or more numbers.

NOTE For the pedants in the audience, yes, the regular expression described
for autoincrement/autodecrement matching can match a string consisting of zero
letters and zero numbers, but the correct way to write it would have been a bit
more cumbersome and probably obscured this even more:

/™ (?:[a-zA-Z]*[0-9]+| [a-zA-Z]+[0-9]*)\z/

The main reason I mention autoincrement and autodecrement operators for strings is to introduce
the range operators. Understanding that some operators are used with both numbers and strings is
essential to understanding some of the unusual aspects of Perl.

NOTE Be careful when using the ++ and -- operators. perldoc perlop has this
to say on the subject:

Note that just as in C, Perl doesn't define when the variable
is incremented or decremented. You just know it will be done
sometime before or after the value is returned. This also
means that modifying a variable twice in the same statement
will lead to undefined behaviour. Avoid statements like:
$i = $i ++;
print ++ $1 + $1i ++;
Perl will not guarantee what the result of the above statements is.

To use these operators safely, don’t use them more than once with the same vari-
able in the same expression. It’s often safer to place them on a line by
themselves because they modify the variable in place, and you don’t need to use
the return value:

my $i = 7;
Si++;
more code here

Using Scalars | 97

The “Whatever” Operator

STRING .. STRING

The double dots, . ., are the range operator. Although the range operator is usually used for num-
bers, it can also be used for letters. Here’s how to assign the lowercase letters ‘a’ through ‘z’ to an
array:

my @alphabet = ('a' .. 'z');
Of course, you can do this with uppercase letters, too:
my @alphabet = ('A' .. 'Z');

If the left string is greater than the right string, nothing is returned.

Internally, when used with strings, the range operator uses the special autoincrement behavior dis-
cussed with ++ and --.

NOTE The range operators actually have a tremendous amount of power and
are useful in many more ways than shown here. Read the “Range Operators”
section of perldoc perlop to learn more about them.

Scalar::Util

In Perl 5.7.3, the Scalar: :Util module was included in the Perl core. This module implements a
number of useful functions. The two most common are blessed () and looks_like_number (). The
blessed () function is useful to determine if a scalar is actually an object (see Chapter 12) and the
looks_like_number () function returns a boolean (true or false) value indicating whether a string,
well, looks like a number. To use these functions, you must explicitly import them as follows:

use Scalar::Util 'blessed’;

or

use Scalar::Util 'looks_like number';

or both

use Scalar::Util qgw(blessed looks_like_number) ;

my $is_number = looks_like_number ('3fred'); # false
my $is_number = looks_like_number ('3e7'); # true!

Chapter 5 covers boolean values in more detail and discusses conditionals.

NOTE As usual, type perldoc Scalar::Util for more information. If you use a
version of Perl before 5.7.3, you may need to install this module from the CPAN.

98 | CHAPTER4 WORKING WITH DATA

Numeric Builtins
Naturally, Perl has plenty of numeric functions. It wouldn’t be much of a programming language if
it didn’t! Many of the functions are the basic arithmetic operators you’re familiar with.
Arithmetic Operators: +, -, *, /, and **

NUMBER + NUMBER
NUMBER - NUMBER
NUMBER * NUMBER
NUMBER / NUMBER
NUMBER ** NUMBER

The +, -, *, and / operators are for addition, subtraction, multiplication, and division, respectively.
In terms of precedence, multiplication and division are calculated first, left to right, and addition
and subtraction are calculated last, left to right. The following code prints 11:

my Sanswer = 8 + 6 / 4 * 2;
print Sanswer;

Although your author generally avoids parentheses to prevent visual clutter, they are strongly rec-
ommended when you’re doing math to avert confusion. The previous code is equivalent to:

my $answer = 8 + ((6 / 4) * 2);
print Sanswer;

If you want the addition first, followed by the multiplication and then division, just use parentheses
to group things logically:

my $answer = (8 + 6) / (4 * 2);
print Sanswer;

Now you have 1.75 as the answer instead.

Exponentiation is handled with the ** operator. To calculate the cube of 25, use the following code:
print 25 ** 3;

That prints 15625.

NOTE The arithmetic operators are infix operators. This means that they are
placed in between a left and right operand. They have no meaning as postfix
operators, but the + and - operators are special.

You can use the - operator to reverse the sign of a number:

my $numl = -17;
print -$numl;
my S$num2 = 42;
print -Snum2;

Using Scalars | 99

Those two print () statements print 17 and -42, respectively.

A prefix plus (referred to as a unary plus) has no distinct meaning, but it is some-
times placed after a function name and before parentheses to indicate grouping.
For example, the following code doesn’t do what you want; it prints 3 and throws
away the 4:

print (1 + 2) * 4;
Perl will interpret that as:
print (3) * 4;

Instead, use a unary plus to make it clear to Perl that the parentheses are for
grouping and not for the function call.

print +(1 + 2) * 4;

The Modulus Operator: %
INTEGER % INTEGER

The ¢ is the modulus operator. It returns the remainder of the division between the left and right
operands. Like many operators and functions that take integers, if floating-point numbers are used,
their integer value (see the int () function later in this chapter) is used. Thus, because 25 divided by
9 is 2 with a remainder of 7, this means that 25 modulus 9 is 7.

print 25 % 9; # prints 7

abs()

abs (defaults to $_)
abs NUMBER

The abs () function returns the absolute value for a number. Thus, if the number is greater or equal
to zero, you get the number back. If it’s less than zero, you get the number multiplied by -1.

exp()

exp (defaults to $_)
exp NUMBER

The exp () function returns e (approximately 2.718281828) to the power of the number passed to it.
See also: 1og () (later in this chapter).

100 | CHAPTER4 WORKING WITH DATA

hex() and oct()

hex (defaults to $_)
hex STRING
oct (defaults to $_)
oct STRING

Given a string, hex () attempts to interpret the string as a hexadecimal value and to print the base 10
value. For example, the following two lines are equivalent and each prints the decimal number 2363.

print hex("0x93B");
print hex "93B"; # same thing

This works on strings, not numbers. The following code prints 9059:
print hex 0x93B;

Why does it print that? Because 0x93B is a hexadecimal number, and it’s evaluated as 2363.
The hex () function then sees it as the string 2363, which, if interpreted as a hexadecimal number,
15 9059.

The oct () function is almost identical, but it expects strings that it considers to be octal numbers
instead of hexadecimal numbers. This means that each of the following lines print the decimal
number 63:

print oct("77");
print oct ("077");

NOTE If you need to go from decimal to either hexadecimal or octal, use the $h
or %o format for sprintf () and printf (), respectively:

printf "%x", 2363;
printf "%o", 63;

To format the hexadecimal number with a leading 0x, just add it to the string
before the % character:

printf "0x%x", 2363;
0x93b

To format the octal number with a leading 0, use the # flag after the % character:

printf "%#o", 63;
077

Using Scalars | 101

int()

int (defaults to $_)
int NUMBER

The int () function returns the integer value of the number. In other words, it truncates everything
after a decimal point.

print int(73.2); # prints 73

For some programming languages, if all numbers in a mathematical operation are integers, an inte-
ger result is returned. For example, in Ruby, the following code prints 3 instead of 3.5:

print 7/2;

Perl assumes that you don’t want do discard this extra information, so it prints 3.5, as expected. To
force an integer response, you can use the int () function:

print int(7/2); # prints 3

NOTE To force integer math, you can also use the integer pragma. See
perldoc integer for more information.

log()

log (defaults to $_)
log NUMBER

The 1og () function, as with most programming languages, returns the natural logarithm of NUMBER
(the number raised to the power of e). See also exp () (later in this chapter).

rand() and srand()

rand NUMBER
srand NUMBER

The rand () function returns a random fractional number between 0 and the number passed to it. If
no number is passed, it assumes 1. If you prefer integer numbers, use the int () function with
it. Thus, to simulate the roll of a six-sided die, you could do this:

print 1 + int(rand(6));

Adding 1 to it is necessary because if you don’t, you get numbers between 0 and 5.

The srand () function is used to set the seed for the random number generator. As of Perl version
5.004 (released in 1997), Perl calls srand () for you the first time that rand () is called. You want to
set only the seed if you want to generate predictable “random” results for testing or debugging. As
of Perl 5.10, srand () also returns the seed used.

102 | CHAPTER4 WORKING WITH DATA

NOTE The rand () function is for convenience, but it’s not strong enough

for cryptography. The CPAN lists several useful modules, including

Math: :Random: : Secure, Math: :Random: :MT: : Perl, and Math: : TrulyRandom
that are intended for this purpose. Your author has no background in cryptogra-
phy, so he can’t comment on their effectiveness.

sprintf() and printf()

sprintf FORMAT, LIST
printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST

You’ve already seen the sprintf () function in relation to strings and seen that it can be used to
format numbers, but you should know that it can also round numbers when you use it with the %£
template. You merely specify how many digits (optional) you want before the decimal point and how
many digits you want after. Some examples follow:

printf "%$1.0f", 5.2; # prints 5
printf "%1.0f", 5.7; # prints 6
printf "%.2f", 6.248; # prints 6.25

Often you see people recommending that you add .5 to a number and call the int () function to
round off, but this fails with negative numbers. Just use printf () or sprintf ().

sqrt()

sqgrt (defaults to S$_)
sqgrt NUMBER

The preceding code returns the positive square root of the number, which does not work with nega-
tive numbers unless the Math: : Complex module is loaded.

use Math: :Complex;
print sqgrt(-25);

That prints 5i. If you are not familiar with imaginary numbers, you will probably never need (or
want) the Math: : Complex module.

Trigonometric Function: atan2(), cos(), and sin()

atan2 (defaults to $_);
atan2 NUMBER

cos (defaults to S$_)
cos NUMBER

sin (defaults to S$_)
sin NUMBER

Using Scalars | 103

The atan2 (), cos (), and sin () functions return the arcus tangent, cosine, and sine of a number,
respectively. If you need other trigonometric functions, see the Math: : Trig or POSIX modules.

Bitwise Operators

As you might expect, Perl also provides a variety of bitwise operators. Bitwise operators don’t work
directly on the values, but they allow you to manipulate individual bits within those values. We
don’t cover them in this book, but we include them here for completeness.

Table 4-4 explains these operators.

TABLE 4-4: Common printf() Flags

OPERATORS TYPE GRAMMAR DESCRIPTION
& Infix NUMBER & NUMBER Bitwise “and”

Infix NUMBER | NUMBER Bitwise “or”
~ Infix NUMBER ~ NUMBER Bitwise “xor”
~ Prefix ~NUMBER Bitwise negation
<< Infix NUMBER << NUMBER Left shift operator
>> Infix NUMBER >> NUMBER Right shift operator

If you’re familiar with bitwise operators, these behave as you would expect. For example, a quick
check to see if a number is even follows:

print "Even\n" if == ($number & 1);
This is identical to the following modulus check:

print "Even\n" if 0 == ($number % 2);

NOTE See Bitwise String Operators in perldoc perlop if you need to do bit
manipulation. You may also use bitwise operators on strings.

Understanding Booleans

You use boolean operators to determine if a value or expression is true or false. Because Perl lets you
assign strings and numbers to variables, the boolean operators are separated into string and numeric
versions. You learn the string versions first.

Although their use is covered in Chapter 5, you see the if/else statement now just so you can
understand how they work.

104

| CHAPTER4 WORKING WITH DATA

The if statement takes an expression in parentheses and, if it evaluates as true, executes the code in
the block following it. If an else block follows the if block, the else block executes only if the if
expression evaluates as false. For example:

my ($numl, $num2) = (7, 5);
if (Snuml < Snum2) {
print "S$numl is less than $num2\n";

}
else {
print "$numl is not less than S$Snum2\n";

That code prints 7 is not less than 5. The < boolean operator is the boolean “less than” opera-
tor and returns true if the left operand is less than the right operand.

Now that you have this small example out of the way, the following sections discuss the boolean
operators.

eq, ne, I, le, gt, ge, and cmp

All these are infix operators. They are “spelled out” in Perl to make it clear that they are for strings.
Table 4-5 explains them.

TABLE 4-5: Boolean String Operators

OPERATOR MEANING

eq Equal

ne Not equal

1t Less than

le Less than or equal to
gt Greater than

ge Greater than or equal to
cmp String compare

A string is considered “less than” another string if, depending on your current locale settings, an
alphabetical sorting of that string causes it to come before another string. This means that a comes
before b, punctuation tends to come before and numbers and numbers come before letters. Also, zzz
comes before zzza because the first three letters of each match, but zzz is shorter than zzza. This
also means that 100 comes before 99 when doing a string compare because 1 comes before 9. It’s a
frequent trap that inexperienced Perl programmers fall into.

For example, the following prints yes because a comes before bb:

Using Scalars | 105

if ('a' le 'bb') {
print 'yes';

}

else {
print 'no';

}

The special cmp infix operator returns -1 if the left operand is less than the right operand. It returns
0 if the two operands are equal, and it returns 1 if the left operand is greater than the right operand.
The following, for example, prints -1:

print 'a' cmp 'b'

This seems strange, but it comes in handy when you sort lists. Chapter 10 discusses sorting issues in
more detail, but for now be aware that you can sort a list alphabetically with the following code:

my @sorted = sort { $a cmp $Sb } @words;
Actually, the sort () function defaults to sorting alphabetically, so that’s equivalent to this:
my @sorted = sort @words;

Naturally, all these have numeric equivalents, as detailed in Table 4-6.

TABLE 4-6: Boolean Numeric Operators

OPERATOR MEANING

== Equal

I= Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
<=> Numeric compare

The operators in Table 4-6 all behave as you expect. The numeric compare operator, <=> (sometimes
affectionately referred to as the spaceship operator), has the same rules as the cmp operator but does
numeric sorting rather than alphabetical sorting. So to sort a list of numbers in ascending order:

my @sorted = sort { $a <=> $Sb } @numbers;

106 | CHAPTER4 WORKING WITH DATA

NOTE You can sort numbers in reverse order by reversing the $a and $b:

my @descending = sort { $b <=> S$a } @numbers;

Finally, you have the boolean operators which do not compare strings or numbers but simply return
true or false. Table 4-7 explains them:

TABLE 4-7: Boolean Operators

OPERATOR TYPE MEANING
! Prefix Equal

&& Infix And

|| Infix Or

// Infix Defined or
not Infix Not

and Infix And

or Infix Or

Xor Infix Exclusive or

WHAT IS “TRUTH”?

Sometimes people get confused about true/false values in Perl. It’s actually quite
simple. The following scalar values are all false in Perl:

undef

«©»

(the empty string)

>

>

> 0
> 0.0

> “0” (the “string” zero)

Any other scalar value is true.

These operators return true or false depending on the true and false values of their operands. The
following code gives some examples that should make their meaning clear:

if (! svalue) {
print "$value is false";

}

Using Scalars | 107

if ($valuel && S$value2) {
print "both values are true";

}
if ($valuel || $value2) {
print "One or both of the values are true";

}
if ($valuel // $value2) {
print "One or both of the values are defined";
}
if ($valuel xor S$value2) {
print "Either $valuel or S$value2 is true, but not both";

}

The not, and, and or operators are the equivalent of the corresponding !, &&, and | | operators,
but they have a lower precedence. See the section on “Precedence and Associativity” for more
information.

NOTE The // operator is a bit special. Introduced in Perl version 5.10.0, it’s the
defined or operator. The | | operator evaluates the left operand to see if it’s true.
The // operator evaluates the left operand to see if it’s defined (that is, if it has

a value assigned to it) and if the left operand has any value, including one that is
ordinarily considered to be false; then it is returned. Otherwise, the right operand
is returned.

It avoids many bugs where you would ordinarily use the | | operator but might
accidentally ignore a valid value that happens to evaluate as false.

This feature is not available prior to version 5.10.0.

One useful feature is that boolean operators all return the first value evaluated that allows Perl to
determine the condition is satisfied. For example, the && operator returns the left operand if it’s
false. Otherwise, it returns the right operand.

my $zero = 0;
my $two = 2;
my Sthree = 3;
my $x = S$zero && Stwo; # $x is 0

my Sy = Sthree && $zero; # Sy is 0
my $z = Stwo && Sthree; # $z is 3

However, this is more commonly used with the | | and // operators (remember, // is only available
on Perl version 5.10.0 and up) by assigning the first value that is not false (or not defined, in the case
of the // operator):

use 5.10.0;

tell Perl we want the // operator
my $zero = 0;

2

3

7

my $two =
my $Sthree =

’

108 | CHAPTER4 WORKING WITH DATA

my Sundef;
my $w = $zero || $two; # Sw is 2
my $x = $undef || $zero; # $x is 0

my Sy = $zero // Stwo; # Sy is 0!
my $z = Sundef // Sthree; # $z is 3

Assignment Operators

Perl offers a wide variety of assignment operators, including many shortcut operators to handle
common tasks. Table 4-8 lists these operators. The Ivalue is the left hand side of the operator and
the rvalue is the expression on the right.

TABLE 4-8: Assignment Operators

OPERATOR EQUIVALENT EXPRESSION

= Assign rvalue to lvalue

+= Ivalue = Ivalue + rvalue

-= Ivalue = Ivalue - rvalue

*= Ivalue = Ivalue * rvalue

/= Ivalue = Ivalue / rvalue

| |= Ivalue = rvalue if ! lvalue

//= Ivalue = rvalue if | defined Ivalue
&&= Ivalue = Ivalue && rvalue

E Ivalue = Ivalue | rvalue

&= Ivalue = Ivalue & rvalue
*ox= Ivalue = Ivalue ** rvalue
X= Ivalue = Ivalue x rvalue
<<= Ivalue = Ivalue << rvalue
>>= Ivalue = Ivalue >> rvalue

= Ivalue = Ivalue * rvalue

You’ve already seen the = assignment operator. It just tells Perl to evaluate the expression on the
right and assign the resulting value to the variable or variables on the left. However, there are many
shortcut assignment operators available. These operators save you a bit of typing. They’re in the
form of ‘operator’ and the equals sign (=), and they tell Perl to treat the operator like an infix opera-
tor with the value you assign to be the left operand, the value on the right to be the right operand,
and assign the results to the left operand.

Using Scalars | 109

The following examples all have the equivalent expression in the comment after the assignment.

Sx += 4; # Sx = $x + 4;
Sy .= "foo"; # Sy = Sy . "foo";
Sz x= 4; # Sz = Sz x 4;

Precedence and Associativity
What does the following code do?

print -4**.5;

If you remember your math, raising a number to .5 is equivalent to take the square root of the num-
ber. If Perl evaluates the infix exponentiation operator (**) first, it means the following:

print -sqrt(4);
If Perl evaluates the prefix negation operator (-) first, it means this:
print sqrt(-4);

The first version prints -2, but the second version, depending on how you wrote it and which version
of Perl you use, prints something like can't take the sqrt of -4, or perhaps nan (which means
“not a number”).

In this case, the exponentiation operator has a higher precedence than the prefix negation operator
and thus is evaluated first.

The main precedence rules that you need to remember are that math operations generally have the
same precedence you learned in math class. Thus, multiplication and division (* and /) have a higher
precedence than addition and subtraction (+ and -). So the following assigns 13 to $x, not 25.

my $x =3 + 2 * 5;

But what happens when you have several of the same operator in the same expression? That’s when
associativity kicks in. Associativity is the side from which the operations are first evaluated.

For example, subtraction has left associativity, meaning that the leftmost operations are evaluated
first. S0 20 - 5 - 2 means 15 - 2,not20 - 3.

On the other hand, exponentiation is right associative. The following code prints 512 (2 raised to
the 9th power), and not 64 (8 squared).

my $x = 2 ** 3 **x 2.
print S$x;

If you actually want to print 64, use parentheses to force the precedence. Parenthesized items always
have the highest precedence.

my $x = (2 %3) *x 25

10 | CHAPTER4 WORKING WITH DATA

Table 4-9 lists the associativity of various operators, in descending order of precedence. Operators
are separated by spaces rather than commas to avoid confusion with the comma operator.

TABLE 4-9: Operator Associativity

OPERATOR ASSOCIATIVITY

Terms and list operators Left

-> Left

P == Nonassoc

It Right

! ~ \ andunary + and - Right

= = Left

* /) % x Left

* o= Left

<< >> Left

Named unary operators Nonassoc

< > <= >= 1t gt le gr Nonassoc

== l= <=> eqg ne cmp ~~ Nonassoc

& Left

| ~ Left

&& Left

[l 77/ Left
Nonassoc

23 Right

= += -= *= andsoon Right

; => Left

List operators (rightward) Nonassoc

not Right

and Left

or xor left

Array and List Functions | 111

The first item, “Terms and list operators,” might sound strange. Terms are variables, quotes and
quote-like operators, anything in parentheses, and functions that enclose their arguments in
parentheses.

NOTE |[f you're familiar with C, operators found in C retain the same precedence
in Perl, making them a bit easier to learn.

Table 4-9 is a daunting list, and memorizing it might seem like a scary proposition. Many program-
mers recommend memorizing it. That’s not a bad idea, but there are a couple of issues with memo-
rizing precedence levels:

> You may simply forget the precedence levels.

» When the maintenance programmer behind you sees you abusing precedence and associativ-
ity, she’s not going to be happy to stumble across the following;:

print 8**2 / 7 ~ 2 + 3 | 4;
Using parentheses can clarify this code. The following means exactly the same thing:
print((((8**2) / 7) ~ (2 +3)) | 4);

(Both of those lines print 12, by the way).

No, I’'m not advocating making such a complicated bit of code, but even for simple expressions, it
can come in handy to make it clearer exactly what you intended.

ARRAY AND LIST FUNCTIONS

Arrays and lists have a variety of useful functions that make them easy to manipulate. Because Perl
focuses more on data structures than the kinds of data you have, it’s very important to have a rich
variety of tools to make manipulating these data structures as easy as possible.

Built-in Array Functions

Many years ago your author was asked if Perl supports linked lists (a type of data structure that
makes it easy to manipulate lists). I replied “of course it does, but we rarely need them.” This is
because Perl has a wide variety of builtins for array manipulation.

pop() and push()

pop (defaults to @_)
pop ARRAY
push ARRAY, LIST

112

| CHAPTER4 WORKING WITH DATA

The pop () function pops and returns the last value off the end of an array. The array length is
shortened by one element.

my $last_element = pop @array;
The push () function pushes one or more values onto the end of an array, making it longer.

my Garray = (1 .. 5);
push @array, (6 .. 10);

In the preceding example, @array now contains ten elements, the numbers 1 through 10, in the cor-
rect order.

NOTE The e_ special variable hasn’t been covered yet. It contains the argu-
ments to subroutines, which are explained more in Chapter 7.

shift() and unshift()

shift (defaults to @_)
shift ARRAY
unshift ARRAY, LIST

The shift () and unshift () functions behave like the pop () and push () functions, but they oper-
ate on the beginning of the list.

splice()

splice ARRAY,OFFSET, LENGTH,LIST
splice ARRAY,OFFSET, LENGTH
splice ARRAY,OFFSET

splice ARRAY

The splice() function allows you to remove and return items from a list, starting with the OFFSET.
If LENGTH is supplied, only LENGTH elements are removed. If a LIST is supplied, the removed elements
are replaced with the L1ST (possibly changing the length of the array). As usual, OFFSET, starting
with 0, is the first element of the list.

my @writers = qw(Horace Ovid Virgil Asimov Heinlein Dante);
my @contemporary = splice @writers, 3, 2;

The preceding example assigns Asimov and Heinlein to @contemporary and leaves Horace, Ovid,
Virgil, and Dante in ewriters.

If you do not specify an offset, the splice() function removes all elements from the array.

There are also a variety of list functions, some of which are covered in far more depth in
Chapter 10, when you learn about sort, grep, and map in greater detail. Some basics appear a little
later in this chapter, though.

Array and List Functions | 113

join() and split()
join STRING, LIST

split PATTERN, STRING
split PATTERN, STRING, LIMIT

The join () builtin takes a string and a list and joins every element in the list into a single string,
with each element separated by the string value.

my $Sresult = join "-", ('this', 'that', 'other');

NOTE Don’t be confused by the differences between arrays and lists in Perl. A
list is either a list of values literally defined in the code, using the comma opera-
tor, or the return value of something evaluated in list context.

Here, you have an array on the left and a list on the right:
my @words = ('this', 'that', 'other');

And here is the split function splitting a string into a list and assigning it to an
array:

my @array = split '-', S$string;

This sounds silly and pedantic, but as Larry Wall himself has said, “There is no
general rule for converting a list into a scalar.” However, you can safely use sca-
lar context with arrays.

Further more, lists are immutable (they cannot be changed), but arrays are.

This assigns this-that-other to $result. As you might expect, you can use an array for the list.
The following is identical behavior:

my @array = gw(this that other);
my Sresult = join '-', @list;

The opposite of join() is split (). However, the first argument to split is a regular expression pat-
tern, and you won’t be covering those until Chapter 8, so the following just gives you a quick (and
incomplete) example of splitting a string on tabs:

my @fields = split /\t/, @string;

The previous code takes a string, splits it on the tabs (discarding the tab characters), and returns the
individual fields into the efields array. The split () function is powerful due to the power of regu-
lar expressions, but it has traps for the unwary, so it’s not covered for now.

14

CHAPTER4 WORKING WITH DATA

reverse()

reverse LIST

Does what it says on the tin: It reverses a list. However, in scalar context it concatenates the list
elements and prints the reverse of the resulting string. The latter behavior can be confusing in
some cases.

my @Qarray = (7,8, 9);
my @reversed = reverse @array;
my S$scalar = reverse Qarray;

In the preceding example, although the ereversed array now contains 9, 8, and 7 (in that order),
the $scalar variable now contains the string 987. However, this behavior is useful if you want to
reverse a single word:

my $desserts = reverse 'stressed';
Or if you prefer to be explicit:

my Sdesserts = scalar reverse 'stressed';

sort()

sort LIST

Although this chapter briefly touched on sort () earlier, it’s covered it more in-depth in Chapter 10,
but following are a few examples to get your started. In these examples, an optional block occurs
after the sort () function. As the sort function walks through the list, the special variables $a and
$b contain the two elements to be compared while sorting. If you reverse them ($b, then $a), then
the sort occurs in the reverse order than normal.

sorting alphabetically

my @sorted = sort @array;

sorting alphabetically in reverse order
my @sorted = sort { $b <=> $a } Qarray;

sorting numerically

my @sorted = sort { $Sa <=> $b } @array;

sorting numerically in reverse order
my @sorted = sort { $Sb <=> S$a } Qarray;

Reversing the $a and $b to reverse the sort looks strange, and you might be tempted to do this to
sort a list in reverse alphabetical order:

my @sorted_descending = reverse sort @array;

That works and it’s easy to read, but it must sort the entire list and then iterate over the list again
to reverse it (note that this has been fixed in Perl versions 5.10.0 and newer). It’s not as efficient,
particularly for huge lists. That being said, it may not be a big deal. If your program runs fast

Array and List Functions | 115

enough with the “reverse sort” construct, don’t sweat it. Making your programs easy to read is a
good thing.

grep()

grep EXPR, LIST
grep BLOCK, LIST

The grep () function filters a list of values according to whatever is in the BLOCK or EXPR
(EXPRESSTON). The name comes from an old UNIX command of the same name, but it operates a bit
differently in Perl. It’s covered more in Chapter 10, but the basic usage is simple. Each item in the list
is aliased to $_ and you can compare $_ to a value to determine if you want the selected value. For
example, to get all values greater than 5:

my @list = grep { $_ > 5 } Qarray;
You can use this to rewrite an array in place. To remove all values less than 100, use this code:
@array = grep { $_ < 100 } Qarray;

The grep () function is extremely powerful, but I’ll wait until you know more about Perl to show
you the full power of this tool. The preceding syntax is the most common syntax for grep (), but it’s
not the only syntax.

map()

map EXPR, LIST
map BLOCK, LIST

The map () function, like the grep () function, takes a list and creates a new list. However,

unlike the grep () function, it doesn’t filter a list; it applies a function to each element of a list,
returning the result of the function. It aliases each element in a list to $_. To multiply every value in
a list by 2, use this code:

my @doubled = map { $_ * 2 } Qarray;
Or to uppercase every element in a list, use this:
my @upper = map { uc(S$_) @array;

If you remember the uc () function, you know it defaults to operate on $_, so the preceding can be
written as follows:

my @Qupper = map { uc } @array;

The map () and grep () functions can also be chained. If you want to take the square root of all val-
ues in a list that are greater than zero, just use map () and grep () together:

my @roots = map { sqrt } grep { $_ > 0 } @numbers;

116

CHAPTER4 WORKING WITH DATA

Many programmers like to put the map () and grep () on separate lines based on the theory that
it makes the code easier to read. This is true, particularly if your map () and grep () blocks are
complicated.

my @roots = map { sqgrt }
grep { $_ > 0 }
@numbers;

Like grep (), there’s a huge amount of power here that I’ve barely touched upon and will cover more
in Chapter 10.

The map () and grep () functions are often confusing to new Perl programmers, but they are core to
the power of Perl. You must take the time to understand them and know completely how they work.

One caveat about map () and grep () : They operate on every element of a list. If you need to operate
only on a few of the elements or if your map () and grep () statements are complicated, it’s better to
use a for loop with the array. Chapter 5 covers these.

List::Util

Starting with Perl 5.8.0 (released in March 2002), the Tist::Util module was bundled with Perl.
This module includes many list functions that provide even more power when you deal with lists
and arrays. For example, to sum all elements in a list together, you can use the following code:

use List::Util 'sum';
my Stotal = sum @numbers;

Because sum () accepts lists and not just a single array, you can use multiple arrays as follows:
my Stotal = sum @weight_supplies, @weights_food;

See perldoc List::Util for a full list of useful functions. There’s also the List: :MoreUtils mod-
ule, but you need to install that from the CPAN.

BUILT-IN HASH FUNCTIONS

Hashes, of course, also have useful functions to help you work with them. A hash is often called a
dictionary in other languages. Instead of looking up values with numeric indices, you look them up
with strings.

delete()

delete KEY

The delete() function removes a key/value pair from a hash.

Built-in Hash Functions | 117

my %$birth_year_for = (

Virgil => '70 BCE',
Shakespeare => '1564 CE',
'Elizabeth Barrett Browning' => '1806 CE',
'Carrot Top' => '1965 CE',

)
delete $birth_year_for{'Carrot Top'};

That, thankfully, removes carrot Top from your list of birth years.

exists()

exists KEY

But how do you know that you actually deleted a given key/value pair in a hash? You can check it
with the exists () function. The following code prints carrot Top not found! because the string
Ccarrot Top does not exist as a hash key:

my $birth_year_for;

if (exists S$birth_year for{'Carrot Top'}) {
print "Carrot Top not expurgated!";

}

else {
print "Carrot Top not found!";

keys()
keys HASH

Sometimes you just want to iterate over all the keys to the hash. This is easy with the keys () function:

for my Skey (keys %hash) {
if (Shash{Skey} < 10) {
delete Shash{Skey};

values()
values HASH
Or if you want to just inspect the values of a hash, use the values () function:

my @large_enough = grep { $_ >= 10 } values %hash;

each()

each HASH

118

CHAPTER4 WORKING WITH DATA

If you prefer, you can iterate over the keys and values at the same time using the each () function
and a while loop. You’ll learn while loops in Chapter 5, but for now, just know that it looks like
the following code:

while (my (Skey, $value) = each %hash) {
print "Skey: $value\n";
}

In the previous example with keys (), you saw how to delete items from the hash. It is generally
okay to do this even when using the each () function, but do not add key/value pairs to the hash.
This breaks the each () function, and you’ll get unpredictable results. Also, don’t call the each
function if you call other code at the same time (typically via a subroutine — discussed in

Chapter 7) if you can’t guarantee that it won’t also try to iterate over the same hash. This is because
calling each () twice on the same hash at the same time means that the each () function cannot
figure out what you meant to do. When in doubt, just use keys ().

this is always safe

for my $key (keys %hash) {
my $value = Shash{Skey};

}

A4l Printing Your Name in Various Cases

This is a good time to take a break and see how some of the builtins you’ve learned work in actual
code. In this Try It Out, you combine a couple things you learned to build more powerful structures.
In this case, you take uppercase and lowercase versions of a name and both lowercase, but with an
uppercase (initial-capped) first letter. For example, PUBLTUS 0vIDIUS NASO should convert to Publius
ovidius Naso. All the code in this Try It Out can be found in code file example_4_1_names.pl.

1.

2.

In your wrox/chapter4/ directory, enter the following program, and save it as example_4_1_

names.pl:
#!perl
use strict;
use warnings;

use diagnostics;

my @Qupper = qw(PUBLIUS OVIDIUS NASO) ;
my @lower = gw(publius ovidius naso) ;

print join " ", map { ucfirst lc } @upper;

print "\n";

my $name = join ' ', map(ucfirst(lc($_)), @lower);
Sname .= "\n";

print S$name;

Run the program with perl example_4_1_names.pl. You should see the following output:

Scoping Keywords | 119

S perl example_4_1_names.pl

Publius Ovidius Naso
Publius Ovidius Naso

How It Works

Although the eupper and @lower arrays are different, you have virtually identical code manipulating
arrays into the wanted output. You can also see how Perl combines many simple functions together to
make this task easy. The author has deliberately used slighting different syntax with each to show you
different styles of Perl.

As you’ve seen, the map () function applies its changes to every element of a list, returning a new list. In
this example, you can see the code first applying 1c () to every element, but in the first argument, you
don’t even specify the $_ because 1c () defaults to operating on $_.

The ucfirst () function is applied to the value returned by 1c (). Finally, you use join () to join the
resulting values with a space for printing. The second version uses the .= to show appending the new-
line to a variable.

If you are more familiar with lower-level languages such as C, or static languages such as Java, this
code might seem strange, but it shows how to pack a lot of power into a single line of code. When you
get comfortable with the language, you’ll find it easy to read this code and appreciate its power.

SCOPING KEYWORDS

A variety of keywords in Perl can affect the scope of variables or are related to scoping issues.
You’ve already seen some of these, but this section covers them for completeness.

my()

my VARIABLE
my (LIST OF VARIABLES)

The my () builtin declares a new variable or list of variables. They are locally scoped to the file,
block, or eval in which they are declared. Scoped means that code outside of the given file, block or
eval cannot see those variables.

local()

local VARIABLE
local (LIST OF VARIABLES)

The 1ocal () builtin scopes the value of a package variable or list of package variables to the current
file, block, or eval. Any changes made to “localized” variables inside of that scope are forgotten
outside of that scope.

120

| CHAPTER4 WORKING WITH DATA

$Foo::bar = 3;
{
local $Foo::bar = 5;
print $Foo: :bar; # prints 5
}
print S$Foo::bar; # prints 3

As of Perl version 5.10.0, you can use local () to safely make changes hash values and they’ll be
reverted to their original value when the scope ends. Prior to 5.10.0, there were a few bugs with this
feature (namely when using variables as hash keys).

As a general rule, you want to minimize your use of local (), but it’s important to use it when
working with Perl’s global variables, filehandles, globs, or package variables. It’s useful when you
want to temporarily override a value and ensure that called subroutines see your new value, or to
make sure that you don’t accidentally change a global value. You’ll see more of this in subsequent
chapters, particularly the chapter on subroutines, Chapter 7.

our()

our VARIABLE
our (LIST OF VARIABLES)

The our () builtin allows you to declare package variables in the current package without needing to
use the full package name. The following code declares the package variable $Foo: :manchu:

package Foo;
our S$manchu = 'Computer Criminal';

You could do the following, but note how the author accidentally misspelled the package name:

package Foo;
SFu::manchu = 'Computer Criminal';

The our builtin makes package variables safer to use because accidentally misspelling the variable
name will result in a compile time error when you use strict. Be aware that code outside of

the package containing the our variable can still access that variable if it uses the fully qualified
package name.

Many developers use the our keyword to declare package variables at the top of a package. This is a
bad habit. The use of our should be discouraged unless you absolutely need to share a variable value
outside of your package. Even then, it’s better to do this through a subroutine to preserve encapsula-
tion and help avoid typos. Chapter 11 describes packages and modules in more details.

state()

state VARIABLE

Summary | 121

Beginning with Perl version 5.10.0, you could declare state variables. These are like declaring vari-
ables with my (), but they are initialized only once and retain their value. For example, writing a
subroutine (refer to Chapter 7) that tracks how many times it’s been called is easy:

sub counter {
state Scounter = 1;
print "This sub was called S$counter times\n";
Scounter++;

}
for (1..10) { counter() }

Prior to version 5.10.0, you would have had to write that subroutine like the following:

my Scounter = 1;

sub counter {
print "This sub was called S$counter times\n";
Scounter++;

}
for (1..10) { counter() }

That’s ugly and can obscure the intent of what’s going on. The state () builtin makes this clear.

For reasons of backward compatibility, you cannot use the state () builtin unless you ask for it:
use feature 'state';

Or you specify a minimum version of Perl:
use 5.10.0;

The latter syntax asserts that your code can use all features available in that version of Perl.

State variables are generally used in subroutines, so we’ll cover them in Chapter 7.

SUMMARY

In this chapter, you've learned the basics of manipulating data in Perl. You've learned more about the
three primary data types: scalars, arrays and hashes. You've seen the most common functions and
operators used to manipulate those data types. You've also learned the basics of precedence — the
order in which Perl evaluates parts of an expression — and associativity — the order in which multiple
uses of a single operator are evaluated. You've also saw how variables get aliased to other variables,
causing changes in one variable to affect the other.

122

CHAPTER4 WORKING WITH DATA

EXERCISES

1.

Which of the following variables evaluate to true?

my S$first = undef;

my S$second = ' '; # a single space
my S$third 0.0;

my Sfourth = '0.0';

my sAfth = 0;

my $sixth = 'false';

Given the following array of Fahrenheit values, create a new array, @celsius, containing the
Fahrenheit temperatures converted to Celsius. Remember that to convert Fahrenheit to Celsius,
you must first subtract 32 and then multiply the number by 5/9.

(0, 32, 65, 80, 212);

my @fahrenheit
my @celsius

Given an array called eids, create a new array called @upper containing only the values in @ids
that were all uppercase to begin with.

my @ids
my @upper =

aw (AAA bbb Ccc ddD EEE) ;

When you finish, @upper should have only the values AAA and EEE.

What values do $answerl, $answer2, and $answer3 contain after all these statements have been
executed?

3 +5 *5;
9 -2 -1;
10 - Sanswer2++;

my Sanswerl
my Sanswer?2
my Sanswer3

Summary | 123

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

String/Numeric builtins
Bitwise operators
Boolean operators
Assignment operators
Precedence
Associativity

Array and list functions

Hash functions

KEY CONCEPTS

Core data manipulation.

Manipulating binary data.

How “truth” works in Perl.

How to assign data to variables.

The order in which builtins are evaluated.

The direction in which identical operators are evaluated.
Manipulating arrays and lists.

Manipulating hashes.

Control Flow

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Working with if/elsif/else expressions

» What are and when to use for/foreach loops

» Understanding and working with while/until loops

» Understanding the various statement modifiers and how to use do
while/do until

» What are given/when statements and statement modifiers and when

to use them

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into
the following major examples:

> Example_5_1_unique.pl
> Example_5_2_ arrays.pl

From previous chapters, you now understand some of the basics of Perl, but now you get closer
to the heart of programming. When you program, you constantly make decisions loop over
data based on those decisions. That’s what this chapter is all about: how Perl makes decisions
and looping over data.

126 | CHAPTER5 CONTROL FLOW

USING THE IF STATEMENT

This section starts with boolean logic. As explained in Chapter 4, the following values are consid-
ered “false” in Perl:

> undef

> v (the empty string)
> 0

> 0.0

> 0" (the “string” zero)

Some languages have specific boolean objects, or TRUE and FALSE identifiers. Perl does things a
little differently. As you work through the examples, try to see what Perl does and why. If you have
experience with programming languages that have a different approach, consider the strengths and
weaknesses of the different approaches; then you can appreciate what Perl does and why.

Understanding Basic Conditionals

Conditionals are statements that make decisions. You use these statements in real life, for example:
“If T have lemons, make lemonade” and “while I have lemonade, drink it.”

We’ll start with the if statement. A basic if statement looks like if (EXPRESSION) BLOCK:

if (EXPRESSION) {
0 or more statements

}

An expression might have a simple boolean operation in there. The following code guarantees that
sy will be greater than $x by swapping their values if $x < $y evaluates as true.

if (($x < sy) {

(sy, $x) (sx, Sy);

}
You can even put compound conditionals in there if you like:

if ($x < Sy && Sy > 10) {
do something
}

The previous code works because the < and > operators have a higher precedence than the s& opera-
tor (refer to Chapter 4). However, many programmers prefer parentheses to be explicit:

if (($x <8y) && (Sy > 10)) {
do something
}

Using the if Statement | 127

Optionally, you can use the and, or, xor, and not forms of various boolean operations because
those have the lowest precedence of all operations, and you don’t need to memorize the precedence
order:

if ($x < $y and Sy > 10) {

do something

It reads nicer, too. Just remember the golden rule of precedence: When in doubt, consider using
parentheses to force precedence. Even if you get it right, another programmer reading your code
might not.

CURLY BRACES AND THE IF STATEMENT

Some programmers familiar with other languages ask why Perl requires curly braces
around the body of code associated with the i f statement. For some programming
languages, the curly braces are optional if only a single statement is executed:

if (x==y)
X++;

For Perl, the curly braces are always required. A common source of bugs in pro-
gramming languages such as C is when a developer tries to add an extra statement
to an if block, not noticing that no curly braces are delimiting the block:

if (x==vy)
X++;
Sand:

Never again will you try to add an extra statement to an if block and wonder why
your code is broken.

Because this is Perl, you’re not limited to simple boolean constructs in if statements. The expression
inside of the parentheses in the if statement is evaluated in scalar context, and the result is then
evaluated as true or false, This is sometimes referred to as boolean context. Consider the following:

if (@names) {
do something

As you may recall, an array evaluated in scalar context returns the number of elements in the array.
In the case of 1f (@names) BLOCK, if the @names array is empty, the if block does not execute. This
works for hashes, too:

if (%names) {
will not execute if %names is empty

128 | CHAPTER5 CONTROL FLOW

NOTE The if (%names) { ... } constructis a bit weird. Internally, a hash creates
buckets used to determine where a given key’s values are to be found. In scalar con-
text, a hash returns a string with the number of buckets used, followed by a forward
slash, and then followed by the number of buckets allocated for that hash. This is
sometimes useful for debugging hash problems but otherwise has little practical use.

However, if the hash is empty, it returns 0 (zero) in scalar context, allowing the
if (%names) { ... } constructto work. The following prints 3/8 and 0 and
should make it clear what’s happening:

my %$hashl = (foo => 1, bar => 2, baz => 3);
my %hash2;

my $scalarl = %hashl;

my $scalar2 = %hash2;

print "$scalarl and S$scalar2";

You can also use the if statement with assignment. The following evaluates to
false if no customer is returned:

if (my Scustomer = get_customer ($id)) {
only executed if $customer evaluates to true

else/elsif/unless

Sometimes, you want to take a different action depending on whether a value is true or false. You
can follow the if block with an else block.

if (Stemperature > 0) {
print "The temperature is above freezing: S$Stemperature\n";

}

else {
print "The temperature is not above freezing. Exiting the program.";
exit;

Or if you want to test other conditions if the first 1 f fails, you can use an elsif block.

if (Stemperature >= 100) {
print "It's boiling in here!\n";
cool_things_down (Stemperature) ;

}

elsif (Stemperature < 0) {
print "It's freezing in here!. Exiting.\n";
exit;

}

elsif (Stemperature > 13 and Stemperature < 21) {
print "It's perfect weather for outdoor exercise. Impromptu holiday!\n";
exit;

}

else {
print "The temperature is acceptable. Proceed.\n";

Using the if Statement | 129

The final else is optional:

1f (Scustomer_is male) {
redirect_to_male_apparel () ;

}

elsif (Scustomer is_ female) {
redirect_to_female_apparel () ;

Many (including your author) recommend that a final else block be supplied — even if it does
nothing — to make it clear to other programmers who work on your code that you did not make a
mistake and overlook a condition. Adding a comment to that else block makes it even more clear.

if (Scustomer_is_adult) {
redirect_to_adult_apparel () ;

}

elsif (Scustomer_is_teen) {
redirect_to_teen_apparel () ;

}

else {
TODO: implement redirect_to_preteen_apparel ()

You can also use multiple elsif statements:

if (!Scolor) {
print "No color found";
}
elsif ('blue' eqg $color) {
print "#0000FF";
}
elsif ('green' eqg Scolor) {
print "#00FF00";
}
elsif ('red' eq Scolor) {
print "#FF0000";
}
else {
print "I don't know what to do with color (S$color)";

Long iflelsiflelse chains should be avoided, if possible, because they start to make to code harder
to read. For example, with the previous code it’s better to use a hash:

my %color_code_for = (
blue => '#0000FF',
green => '#00FF00',
red => '"$FF0000"',
)
if (!Scolor) {
print "No color found";
}
elsif (my S$code = S$color_code_for{$color}) {
print Scode;

130 | CHAPTER5 CONTROL FLOW

else {
print "I don't have a code for the color 'Scolor'";

Using the hash, if you want to support new color codes, you can just add a new entry to the hash
rather than create new elsif blocks for every color.

my %$color_code_for = (
black => '#000000',
blue => '#0000FF',
green => '#00FF00',
red => '"#FF0000"',
white => '#FFFFFF',
)
if (!$color) {
print "No color found";
}
elsif (my $code = $color_code_for{$color}) {
print Scode;
}
else {
print "I don't know what to do with color ($color)";
print "I don't have a code for color (S$Scolor)";

NOTE As with many languages, the whitespace is not particularly significant.
Your author prefers uncuddled else statements because he finds them easier to
read. Others prefer a more compact format:

if (Stemperature >= 100) {
print "It's boiling in here!\n";
cool_things_down ($temperature) ;
} elsif (Stemperature > 0) {
print "The temperature is acceptable. Proceed.\n";
} else {
print "It's freezing in here!. Exiting.\n";
exit;

Still others prefer all braces to be aligned vertically:

if (Stemperature > 0)
{
print "The temperature is above freezing: S$temperature\n";
}
else
{
print "The temperature is not above freezing. Exiting.";
exit;

All these are perfectly acceptable, and arguments for or against one
notwithstanding, don’t stress about it. Just pick one style and stick with it.

Using the if Statement | 131

Of course, as already seen, you can also reverse the sense of a condition with the ! or not operators:

1f (!$allowed) {
print "You can't do that!";

if (not $found) {
print "I didn't find it!";

Perl also has a rather curious unless statement. It’s the opposite of the if statement. The previous
statements can be rewritten as follows:

unless ($allowed) {
print "You can't do that!";
}
unless (S$found) {
print "I didn't find it!";

As with the if statement, you can use elsif and else, but as you might imagine, it can be
confusing:

unless ($condition) {
#
}

elsif (S$some_other_ condition) {
#

}

else {
#

The use of the unless check is sometimes discouraged. The logic can be confusing, and many

developers cheerfully fantasize about using pliers to extract your fingernails if you abuse the unless
statement.

The Ternary Operator ?:

As with many other programming languages, Perl also provides a ternary operator as a “shortcut”
for an if/else statement. The ternary operator’s syntax looks like the following:

VALUE = CONDITION ? IFTRUE : IFFALSE
You can write this:

my $max = ($Snuml < $num2) ? Snum2 : S$numl;
That’s the same as writing:

my Smax;
1f (Snuml < $num2) {

132 | CHAPTER5 CONTROL FLOW

Smax Snum2 ;

}
else {
Smax = Snuml;

But as you can see, the ternary operator is much more compact. With the ternary operator, you
don’t need to predeclare the $max variable because the ternary operator does not introduce a new
scope.

You can also chain ternary operators:

my Smax = (Snuml < $num3 and $num2 < $num3) ? S$num3
($numl < $Snum2) ? $num?2
Snuml ;

With good formatting this construct is easy to read and has the advantage of the final else being
required, which is a syntax error if you omit it. The only caution is to be careful about abusing ter-
nary operators because said abuse can be hard to read. For example:

my %has_thirty_days = (

4 =>1,
6 =>1,
9 =>1,
11 => 1,
);
my $days_in_month = 2 == $month ? Syear % 100 ? 29
Syear % 400 ? 28
29
Shas_thirty_days{$month} ? 30
31;

Does that work or not? Yes it does (with major caveats about Gregorian and Julian calendars), but
do you really want to maintain that? Don’t write code like that. We only show this to make it clear
that ternary operators are hard to read if you’re not careful.

FOR/FOREACH LOOPS

Often, you need to go through each element in a data structure and decide to do something with
that element. You often use loops to do this, and in Perl you accomplish it in a variety of ways, using
a lot of tips and tricks. This section starts by looking at for/foreach loops with arrays and lists.

Arrays

A for loop iterates over every element in an array or list. A basic for loop in Perl looks like the
following;:

for/foreach Loops | 133

for my S$number (@numbers) {
print "$number\n";

}

There’s also a foreach version:

foreach my $number (@numbers) {
print "$number\n";

}

In Perl, for and foreach are identical. There is no difference aside from the spelling. Your author
likes foreach because he feels it reads better, but it’s a matter of personal preference.

NOTE If you read perldoc perlintro and perldoc perlsyn on this subject,
there’s a strong implication that for and foreach loops are somehow different.
The docs generally describe for as being used with C-style for loops (covered
later) and foreach loops for lists. Unfortunately, the documentation is mislead-
ing on this point (this has been fixed in the documentation for 5.16.0). There is no
difference between the two.

The for/foreach loop is one builtin that assigns to the $_ by default. If you don’t specify a variable
name, $_ is assumed. The following code prints the numbers 5, 6, and 7.

my @numbers = (5, 6, 7);
foreach (@numbers) ({

print "$_\n";
}

When you combine the loop with builtins, which operate on $_ by default, you can shorten your
code a bit. The following code removes newlines from each element and if the element evaluates as

true prints the element.

foreach (@names) {

chomp;
if ($_) |
print;

}
}

By contrast, the following is the same code using a named variable (remember that the foreach here
could be written as for):

foreach my $name (@names) {
chomp $name;
if ($name) {
print Sname;

}

134 | CHAPTER5 CONTROL FLOW

Whichever method you prefer, just be aware that it’s common to see experienced Perl developers
know when to use the $_ variable and take advantage of this fact. If you are not familiar with the
builtins that default to assigning a value to $_, you will find some Perl code harder to read.

One important thing to remember about for loops is that the variable you use to designate each ele-
ment, whether it’s $_ or a named variable, is an alias to the element in question. This allows you to
modify an array in place. For example, if you want all elements in an array that are less than zero
to be set to zero, you can take advantage of aliasing:

my @numbers = (-7, -5, -1, 0, 3, 6, 29);
foreach my S$number (@numbers) {
if (Snumber < 0) {
Snumber = 0;

}

print join ',', @numbers;

The previous code snippet prints 0,0,0,0,3,6,29. If you want to manipulate the value but not
change the original array, just assign the element to a new variable. This is one case in which the
$_ default can be clearer.

, =5, -1, 0, 3, 6, 29);
{

my @numbers = (-7
foreach (@numbers)
my Snumber = $_; # don't use an alias
if (Snumber < 0) {
Snumber = 0;

}

print join ',', @numbers;

Running the previous code shows you that the array has escaped unchanged.

WARNING A subtle trap occurs with for loops when you forget that the list ele-
ments are aliased:

for my S$number (1,2,3) {
Snumber++;

While appearing to be legal Perl, the previous code, generates the following
error at run time:

Modification of a read-only value attempted at ...

Because for loops alias the elements in a list to a variable ($number, in this
case), any changes to that variable effect the list elements themselves. The
numbers 1, 2, and 3 in the list above are hard-coded verbatim values and they
cannot be changed, hence the error message.

for/foreach Loops | 135

Lists

The for loop is useful for arrays, but you can use them with anything that returns a list.

my %economic_description = (
libertarians => 'Anarchists with jobs',

anarchists => 'Libertarians without jobs',
randroids => 'Closet libertarians',
democrats => 'the tax and spend party',

republicans => 'the tax cut and spend party',
) ;
foreach (sort keys %$economic_description) {
my $description = lc S$economic_description{$_};
S_ = ucfirst;
print "$_ are S$description.\n";

And that allows you to offend just about everyone by printing;:

Anarchists are libertarians without jobs.
Democrats are the tax and spend party.
Libertarians are anarchists with jobs.
Randroids are closet libertarians.
Republicans are the tax cut and spend party.

Even though you have the $_ = ucfirst line in there, this code does not change the hash keys;
although the for loop aliases its arguments. This is because keys () (like the sort () function in the
loop) returns a new list.

Range operators, when used in list context, also return a list.

for my $number (-10 .. 10) {
Snumber++;
print Snumber;

The previous code prints the numbers from -9 to 11. Although it may appear that you have numeric
literals here and thus $number++ should throw a Modification of read-only value error, you
don’t have that problem. This is because the range operator returns a list. If the values of the list are
not assigned to anything, they are anonymous variables. This means that you can change them like
any other variable, even if it looks strange.

USING THE DEVEL::PEEK MODULE TO PEEK INTO A SCALAR

Okay; for those who must understand why the range operator works even when
modifying the variable, following is some advanced magic.

perl -MDevel::Peek -e 'Dump (1)

The previous code should output something similar to:
continues

136 | CHAPTER5 CONTROL FLOW

(continued)
SV = IV(0x100827d10) at 0x100827d20
REFCNT = 1
FLAGS = (IOK,READONLY,pIOK)
=1

The Devel : : Peek module was released with Perl in version 5.6.0. It exports a

Dump () function that enables you to “peek” into a scalar to see what it looks like to
Perl. In this case, you call bump () on the literal value 1 and you can notice on the
FLAGS line that it says READONLY.

Now try this again with 1. .1. This range operator returns a 1 element list contain-
ing the number one. The code is as follows:

perl -MDevel::Peek -e 'Dump(l..1)'
And here’s the output:

SV = IV(0x100802£98) at 0x100802fa8

REFCNT = 1
FLAGS = (IOK,pIOK)
v = 1

FLAGS does not contain READONLY and thus can be modified. See perldoc
Devel : : Peek for more information.

C-Style

Of course, there’s also the C-style for loop (how for loops would be written the C language), with
the syntax:

for (EXPRESSION ; EXPRESSION ; EXPRESSION) BLOCK
This, for example, prints the numbers 0 through 9:

for (my $i = 0; $1i < 10; S$i++) {
print "$i\n";

For those not familiar with this style of loop, the three semicolon separated expressions correspond
to loop initialization, the loop test, and the loop change.

All three of these expressions are optional. The following code is almost equivalent to the previous
code, except that the $i variable is no longer lexically scoped to the for loop.

my $i = 0;

for (;%1 < 10;) {
Si++;
print "$i\n";

for/foreach Loops | 137

You can even omit that loop test with a 1ast () command, which you will learn about in this chap-
ter in the section “last/next/redo/continue.”

C-style for loops are not popular in Perl and often not needed. For example, sometimes you need
the index of an array, so you do the following:

for (my $i1i = 0; $1 < @array; S$i++) {
print "$i: Sarray([$il\n";
}

But you can write the previous code cleaner, which is more commonly seen like the following:

for my $i (0 .. S#array) {
print "$i: Sarray([$i]l\n";
}

The special $# syntax at the front of the array name means “the index of the last element of an
array.” So if an array has four elements, $#array returns 3.

WARNING You should use the $#some_array only for iterating over the indexes
of an array, as shown previously. Inexperienced Perl programmers sometimes
write code like the following and wonder why it seems to randomly fail.

if ($#array) {
do something with array

}

The s#array Syntax returns a true value (-1) if there are no elements in the
array; a false value (0) if there is one element in the array; and a true value (1 or
greater) if there is more than one element in the array. The following example
should make this clear:

#!perl -1
print "S#array\n";
@Qarray = ('fail!');

print "S#array\n";
push @array, 'not fail!';
print "S#array\n";

That prints -1, 0, and 1. If you want to know if an array is empty, just use the
array in scalar context:

if (@array) { ... }

An example of a handy C-style for loop is when you must iterate over a range of numbers not easily
generated by the range operator. The following code prints a vertical sine wave in your terminal:

for (my $1 =0 ; $1i <= 25 ; $1i += .25) {
my $amplitude = int(40 + 35 * sin($1i));

138 | CHAPTER5 CONTROL FLOW

print " " x Samplitude;
print ".\n";

}

You can write the previous code without the C-style for loop, but you might find it harder to
understand.

formy $1 (0 .. 100) {

$i = %1 / 4;
my Samplitude = int(40 + 35 * sin($i));
print " " x Samplitude;

print ".\n";

}
Or perhaps the variable increment is set within the program:

for (my $i = 7; $1 < 10; $1i += Suser_choice) {
print "$i\n";

}

Which you prefer in any context is just a matter of preference.

UAANNellil Finding Duplicate Array Elements

Sometimes, an array has repeated elements you want to remove, and preserving the order of the array is
important. Using a hash and a for loop makes this easy. The following is a simple trick to find unique
elements when you don’t care about the order. All the code in this Try It Out is found in code file
example_5_1_unique.pl.

1. Type the following program into your editor as example_5_1_unique.pl:

#!/usr/bin/perl
use strict;

use warnings;
use diagnostics;

my @Qarray = (3, 4, 1, 4, 7, 7, 4, 1, 3, 8);
my $%unordered;
@Qunordered{@array} = undef;

foreach my Skey (keys %unordered) {
print "Unordered: S$key\n";
}

my $%seen;
my @ordered;

foreach my $element (Q@array) {
if (not S$seen{Selement}++) {
push @ordered, S$Selement;

for/foreach Loops | 139

foreach my $Selement (Qordered) {
print "Ordered: Selement\n";

}

2. Run the program with perl example_5_1_unique.pl and you should see something similar to
the following:

Unordered:
Unordered:
Unordered:
Unordered:
Unordered:
Ordered:
Ordered:
Ordered:
Ordered:
Ordered:

~N W s =

0 J P W

How It Works

Look at the unordered code first because it may look a bit strange.

my @array = (3, 4, 1, 4, 7, 7, 4, 1, 3, 8);
my %unordered;
@Qunordered{@array} = undef;

foreach my S$key (keys %unordered) {
print "Unordered: Skey\n";
}

The line @unordered{@array} = undef uses a hash slice as described in Chapter 3. Because you don’t
care about the values and because hashes cannot have unique keys, the right side of the assignment
operator is not important. You now have an array with the keys 1, 3, 4, 7, and 8. However, because
hashes do not have an order, printing the keys shows an apparent random order.

You can, of course, sort the keys:
foreach my Skey (sort { $a <=> S$b } keys %unordered) {

print "Unordered: S$key\n";
}

But that merely prints the keys in ascending numeric order, not in the order of the original array. You
can see how to do that next. The following code puts together many of the concepts you’ve already
learned.

my $%seen;
my @ordered;

foreach my $element (Q@array) {

140 | CHAPTERS5 CONTROL FLOW

if (not $seen{Selement}++) {
push @ordered, Selement;

foreach my Selement (@ordered) {
print "Ordered: S$Selement\n";

The key to this is the not $seen{$element}++ expression. The $seen{$element} when first encoun-
tered has an undefined value. Perl interprets this value as 0 and the ++ postfix operator increments it by
1. However, because it’s the postfix ++ and not the prefix ++, the increment operation happens after the
value is returned, thus ensuring that not $seen{$element}++ is effectively not 0, which evaluates as
true. The next time that $element has a previously seen value, the $seen{$element} already has

a value of 1 or higher, thus causing the not $seen{$element}++ to be the equivalent of not 1

(or a higher number). Because not 1 evaluates as false, the if block does not execute after the first
time the $element appears.

This is a common idiom in Perl and is worth studying and practicing.

DISABLING UNINITIALIZED WARNINGS

You might wonder why $seen{$element}++ does not issue a warning about incre-
menting an uninitialized value. The following three statements have identical behav-
ior, but only the last one issues an uninitialized warning;:

Sseen{Selement}++;
Sseen{Selement} += 1;
Sseen{Selement} = $seen{Selement} + 1;

The first two do not issue a warning as described in the Declarations section of
perldoc perlsyn:

If you enable warnings, you'll be notified of an uninitialized value
whenever you treat undef as a string or a number. Well, usually.
Boolean contexts, such as:

my $a;

if (sa) {}
are exempt from warnings (because they care about truth rather than
definedness). Operators such as "++", "--", "+4=", "-=", and ".=",
that operate on undefined left values such as:

my $a;

Sa++;
are also always exempt from such warnings.

If you must use a statement that might issue a warning and you do not want that
warning, you can do the following:

for/foreach Loops | 141

no warnings 'uninitialized';
Sseen{$Selement} = S$seen{$element} + 1;

The no warnings 'uninitialized' statement disables uninitialized warnings in
the scope of that block. You can deliberately use a block here to ensure that you
don’t suppress other uninitialized warnings that you care about. You could also do
this:

$seen{Selement} ||= 0;
Sseen{$element} = S$seen{Selement} + 1;

In Perl, there are usually multiple ways to get the job done.

LA RReIAE Splitting an Array

Sometimes, you want to split up an array into separate arrays based on the data in the array. This Try It
Out code walks through an array of numbers, creating two new arrays with positive and negative num-
bers and skipping zero. All the code in this Try It Out is found in code file example_5_2_arrays.pl.

1. First, type the following program and save it as example_5_2_arrays.pl:

#!perl

use strict;

use warnings;
use diagnostics;

my @numbers = (-1, 3, 8, -17, 42, 0, 13, -3);
my (@negative, @positive);

foreach my S$number (@numbers) {
if (Snumber < 0) {
push @negative, $number;

}
elsif ($number > 0) {
push @positive, $number;

}
else {
skip zero
}
print "Negative: @negative\nPositive: @positive\n";

2. Run the code with perl example_5_2_arrays.pl. You should have the following output:

Negative: -1 -17 -3
Positive: 3 8 42 13

142 | CHAPTER5 CONTROL FLOW

How It Works

At this point, things should be fairly clear. You walk through the @numbers array and push each ele-
ment on the corresponding @negative or @positive array, depending on whether it is negative or posi-
tive. The trailing else block is not required, but it is a nice hint to future programmers that you did not
accidentally skip the number zero.

NOTE What'’s a future programmer? It might be the person the company hires
after they promote you for having the foresight to read this book. However, that
future programmer might be you! Just because the code is clear now doesn’t
mean it’ll be clear six months from now. This means that your code should be
as clear as possible, and you should try to avoid clever tricks in your code. Many
of the best programmers write code that looks simple because they know that
reading code is just as important as writing it.

USING WHILE/UNTIL LOOPS

The while statement has the general syntax of while (EXPRESSION) BLOCK. The block is exe-
cuted while the EXPRESSTON is true.

my $i = 10;

while ($i > 0) {
if (rand(3) > 2) {
$i++;
}
else {
$i--;
}
print $1i,$/;
}

The previous code gradually lowers the value of $1i until the expression $i > 0 evaluates as false.

The main difference between while loops and for loops is that while loops iterate until a condition
is false, whereas for loops iterate over a list.

You commonly use the while loop in Perl with iterators. The one you know now is the each () itera-
tor for hashes.

my %odd_couples = (
'Abbott' => 'Costello',
'Martin' => 'Lewis',
'Lemmon' => 'Matthau',

Using while/until Loops | 143

while (my ($starl, $star2) = each %odd_couples) {
print "$starl: S$star2\n";

You’ll see more of while loops as you go through the book. Chapter 9 covers iterating over lines in a
file, and you’ll see other forms of iterators as you work through various examples.

The opposite of the while loop is the until loop. The syntax is the same, replacing while with
until. The while loop iterates while its condition is true and the until loop iterates while its con-
dition is false. The following code computes the factorial of the number 5 (5 * 4 * 3 * 2 * 1):

my Sfactorial = 1;
my $counter =1;
until (S$counter > 5) {

Sfactorial *= S$Scounter++;

}

print S$factorial;

Like the unless statement, you should use the until statement cautiously because of the potential
to confuse programmers. The previous code is probably better written as:

my Sfactorial = 1;
my $counter =1;
while (Scounter <= 5) {

Sfactorial *= Scounter++;

}

print S$factorial;

Lists

Programmers often try to use while or until loops with lists instead of iterators or boolean condi-
tions. You can do this but it is fraught with danger and should be avoided. The following are several
ways you can fail spectacularly:

my $total = 0;

while (my S$price = shift @orders) {
Stotal += S$price;

}

print Stotal;

Most of the time, the previous code works just fine until you have a sale item with a price of zero.

my @orders = (5,5,0,5);
my Stotal = 0;

144 | CHAPTER5 CONTROL FLOW

while (my $price = shift @orders) {
Stotal += S$price;

}

print Stotal;

The previous code prints 10 instead of the (probably) wanted 15. So you decide to get clever to
ensure the price is defined:

my @orders = (5, 5, 0, undef, 5);
my Stotal = 0;
while (defined(my S$price = shift Qorders)) {

$total += S$price;
}
print Stotal;

This previous code is also going to fail because you’ve managed to sneak an undefined value into the
array. If you need to use a while loop here, do it like this:

my @orders = (5, 5, 0, undef, 5);
my Stotal = 0;
while (@orders) {
my Sprice = shift Qorders;
Stotal += S$price;
}
print Stotal;

If you insist on using a while/until loop here (perhaps because you want the array empty at the
end), you should still consider rewriting with a for loop.

my Stotal = 0;

for my $price (@Qorders) {
Stotal += S$price;

}

@orders = ();

As you can see, the for loop is shorter and easier to read.

last/next/redo/continue

When you work with loops, it’s often useful to have fine-grained control over how the loops behave.
The 1ast (), next (), redo (), and continue () builtins help with this.

Using last ()

The 1ast () builtin automatically exits a loop. For example, to find the first perfect square (a square
number that is the square of an integer) in an array, you could do the following;:

my @numbers = (3, 7, 9, 99, 25);
my Sfirst;
for my $Snumber (@numbers) {

my Sroot = sqgrt($number) ;

Using while/until Loops | 145

if (int(Sroot) == Sroot) {
Sfirst = Snumber;
last;

}

1f (defined $first) {

print "The first perfect square in the array is $first\n";
}
else {

print "No perfect square found in array\n";

The previous code exits the loop when $number equals 9 and prints the following:
The first perfect square in the array is 9

The 1ast builtin is handy when you want to process a loop until you reach a wanted condition and
then terminate the loop.

Using next()
The next () statement is useful when you want to skip the processing of some elements. You can use

this to rewrite the previous code to find all perfect squares in a loop:

my @numbers = (3, 7, 9, 99, 25);
my @perfect_squares;

for my $number (@numbers) {
my $root = sqgrt($number) ;

if (int(Sroot) != Sroot) {
next; # skip the rest of the loop BLOCK
}

print "Found perfect square: S$number\n";
push @perfect_squares, S$Snumber;

Using the continue Statement
The continue statement is not common, but it’s useful if you have a block of code that must be

executed every time through a loop, before the loop check occurs again. The syntax looks like this:

for (EXPRESSION) BLOCK continue BLOCK
while (EXPRESSION) BLOCK continue BLOCK

Regardless of a next or last statement in the loop body, the continue always executes after the
last statement in the loop body executes:

use strict;
use warnings;

146

| CHAPTER5 CONTROL FLOW

my @numbers = (3, 7, 9, 99, 25);
my @perfect_squares;

for my $number (@numbers) ({
my Sroot = sqgrt(S$number) ;

if (int(Sroot) != Sroot) {
next; # skip the rest of the loop BLOCK
}

print "Found perfect square: S$number\n";
push @perfect_squares, S$number;

}

continue {
print "Processed S$number\n";

The previous example prints the following:

Processed 3

Processed 7

Found perfect square: 9
Processed 9

Processed 99

Found perfect square: 25
Processed 25

Using the redo Statement

The redo statement is even less common. What it does is redo the body of the loop without testing
the condition or executing the continue block. It’s a bit confusing to people, and even the
perldoc -f redo documentation sheds little light on the matter. It’s used seldom enough that I
won’t mention further, aside from using it in one of the exercises at the end of this chapter.

Labels

When I listed examples of the for/foreach/whilefuntil syntax, I omitted labels. Labels can be use-
ful for cleaning up code. A label is a bare identifier followed by a colon. The next, last, and redo
builtins take an optional label as an argument. If that label is present, control jumps to that label.
Labels can be used to make your code a bit more self-documenting:

NUMBER: foreach my S$number (@numbers) {
lots of code
if ($some_condition) {
next NUMBER;
}

more code

However, the real power of labels lies in controlling the behavior of next, 1ast, and redo when you
use nested loops. Say that you have two arrays of strings, @strings1 and e@strings2, and you want

Statement Modifiers | 147

to find any strings in the first array that are substrings of any strings in the second array. The fol-

lowing code shows one way to write that:

my @stringsl =
my @strings2 =
an
intelligent
robber
needs
a
good
ladder
);

aw(aa bb cc dd ee);
qw (

my @found;

DOUBLED_LETTER: foreach my $double
foreach my $Sword (@strings2) {
1f (index(Sword, S$double) != -1) {

push @found, S$double;

next DOUBLED_LETTER;

(@stringsl)

}

print "@found";

{

The previous code prints bb dd ee. If the next DOUBLED_LETTER; statement were not present, the
code would continue searching for words containing the double letter, even if the double letter were
already found. If your arrays were large, this could be extremely inefficient by processing more data

than is needed.

STATEMENT MODIFIERS

As an alternative to the previously described if/while/for blocks, you can add the if/while/for to

the end of a single statement:
print "We can haz cheez" if Strite;
You may find them a bit cleaner:

1f (Strite) {

print "We can haz cheez";

Types of Statement Modifiers

The allowed modifiers follow:

STATEMENT 1if
STATEMENT unless

EXPRESSION;
EXPRESSION;

148 | CHAPTERS5 CONTROL FLOW

STATEMENT while EXPRESSION;
STATEMENT until EXPRESSION;
STATEMENT for LIST;
STATEMENT foreach LIST;

Unlike the block form of these keywords that you’ve already seen, parentheses are optional around
the EXPRESSTON or LIST, for example:

print "We have a valid user: S$user\n" if Suser;

When using a for/foreach loop, $_ is aliased to the variable. The following code prints the num-
bers 1 through 5 on successive lines.

my Garray = (1 .. 5);
print "$_\n" foreach @array;

The while and until loops behave similarly. The EXPRESSTON is evaluated before the statement.
Thus, the following code prints 9 through 0, not 10 to 1.

my Scountdown = 10;
print "$countdown\n" while S$countdown--;

The STATEMENT may be a compound statement. The example from perldoc perlsyn follows:
go_outside() and play() unless $is_raining;

The previous code reads nicely, but it does have a subtle trap. The play () subroutine is not called if
go_outside () returns false. You can replace the and with a comma if you want to avoid this:

go_outside(), play() unless $is_raining;

Statement modifiers should be used sparingly. It’s recommended that you use them when the empha-
sis is to be placed on the statement and not on the modifier.

print "Using config data" if Sconfig;

For the preceding code, printing Using config data is the expected behavior and is what the pro-
grammer should focus on when skimming code. The if $config modifier is easily overlooked. If
if $config is a normal condition that the programmer should be more aware of, avoid using the
modifier.

if ($config) {
print "Using config data";

Use of keyword (EXPRESSION or LIST) BLOCK versus a statement modifier is largely a matter of
preference, but if you have a compound statement or the condition is what needs the emphasis, avoid
the statement modifier.

Statement Modifiers | 149

do while/do until

The do builtin (perldoc -f do)isn’t covered much in this book because the common uses for it
belongs to Perl version 4, which should have been put to death when Perl § was released in 1994, but
there is one form of the do builtin that is still in use:

do BLOCK

This form of do executes the statements in the BLOCK and returns the value of the last executed

EXPRESSION. You most commonly use this form with a while or until statement modifier. The
grammar looks like this:

do BLOCK while EXPRESSION;
do BLOCK until EXPRESSION;

For example:

my $factorial = 1;
my S$counter 1;
do {
Sfactorial *= S$Scounter++;
} while Scounter <= 5;
print S$factorial;

The do/while, do/until syntax has two major differences between while and until statements.
First, it guarantees that the BLOCK executes at least once. Second, it’s not actually a loop. Many peo-
ple mistakenly think it’s a loop, but it’s just a standard do BLOCK statement followed by a statement
modifier. As a result, next, last, redo, and continue statements do not apply.

ARl while versus do {} while

The while versus do {} while difference is subtle; the following small program shows how the differ-
ence can trip you up.

1. SavethefOHOdegaSexample_5_3_while.pl.

use strict;
use warnings;

my $number = 0; # a deliberately false value

while ($Snumber > 0) {

print "You should never see this\n";
}
do {

print "Unfortunately, you do see this\n";
} while S$number > 0;

2. Runthe program with perl example_5_3_while.pl. You should see the following:

Unfortunately, you do see this

150 | CHAPTERS5 CONTROL FLOW

How It Works

The while (EXPRESSION) BLOCK tests the EXPRESSION prior to executing the block. However, the

do BLOCK while EXPRESSION version always executes the block at least once. Thus, subtle logic errors
can creep into your code if you are not careful. Combine that with the fact that do BLOCK while
EXPRESSTON is not actually a loop, and you can get more errors. Consider this while loop:

while (1) {
last 1f Scounter < 0;
if (rand() < .5) {
Scounter--;

The while (1) BLOCK is sometimes used to create an infinite loop; using a last () in the previous code
gives you a chance to break out of that loop. However, you can’t use last with a do/while block:

use strict;

use warnings;

my Scounter = 2;

do {
last if Scounter < 0;
do something else
Scounter--;

} while 1;

The previous code results in a fatal and confusing error because it’s not actually a loop:
Can't "last" outside a loop block at program.pl line 6 (#1)
If you add use diagnostics, you get the following extended error message:

(F) A "last" statement was executed to break out of the current block,
except that there's this itty bitty problem called there isn't a current
block. Note that an "if" or "else" block doesn't count as a "loopish"
block, as doesn't a block given to sort(), map() or grep(). You can
usually double the curlies to get the same effect though, because the
inner curlies will be considered a block that loops once. See

perlfunc/last.

The mention of “double curlies” is unfortunate. It suggests that you can do something like the follow-

ing code:

use strict;

use warnings;

my $counter = 2;

do {{
last 1f Scounter < 0;
do something else
Scounter--;
print $counter,$/1

}} while 1;

given/when | 151

Except that actually is an infinite loop because the 1ast affects the innermost block, but the while 1
is still looping forever over the outermost block. Allowing doubled curly braces to be abused like this is
like pouring a 20-year-old single malt whisky into cola: Just because you can doesn’t mean you should.

If you’re tempted to use double curly braces with 1ast, use a subroutine (Chapter 7) and a return
statement instead.

GIVEN/WHEN

Many languages offer a switch statement. These statements are used to easily choose one or more
of several alternatives. A switch statement tends to look like the following:

switch (number) {

case(0):
printf ("The number is 0");
break;

case(l):
printf ("The number is 1");
break;

case(2):
printf ("The number is 2");
break;

default:
printf ("The number is unexpected");

There are a number of historical reasons why a switch statement tends to be written in this manner,
but I’ll skip over those and go straight to Perl’s given/when statement, which is available in Perl ver-
sion 5.10.0 or better.

Basic Syntax

The syntax of given/when looks like the following code:
given (EXPRESSION) BLOCK

And BLOCK is composed of zero or more when statements:
when (EXPRESSION) BLOCK

Those statements can be followed by a default BLock statement. The previous switch statement can
be written in Perl as follows:

use 5.10.0;
my Snumber = 1;
given ($number) {

152

| CHAPTER5 CONTROL FLOW

0) { print "The number is 0"; }
1) { print "The number is 1"; }
when(2) { print "The number is 2"; }
1t { print "The number is unexpected"; }

If you read the code aloud, it actually reads much better than the switch version. For some lan-
guages, the switch statement can operate only on integers (part of a historical discussion I am side-
stepping). In Perl, the given keyword assigns the value of EXPRESSTON to $_ and the EXPRESSTON in
when (EXPRESSION) BLOCK tests the value of $_. Thus, you can do things like

the following code:

given (Snumber) {
when ($_ < 0) {
print "The number is negative";
}
when (S_ > 0) {
print "The number is positive";
}
default {
print "The number is 0";

WARNING Like say and state, the given/when construct is new for Perl version
5.10.0. To use it, you must explicitly state your minimum required Perl version
number:

use 5.10.0;
Or use the feature pragma:

use feature ":5.10"; # all new features
use feature "switch"; # or only given/when

Why it’'s use feature "switch" and notuse feature "given" is one of life’s
little mysteries.

If you actually want the when statement to test subsequent when statements, you can use the
continue keyword:

given (Sword) {

when (lc $_ eq scalar reverse $_) {
print "'sSword' is a palindrome\n";
continue;

}
when (length($_) > 10) {
print "The length of 'Sword' is greater than 10 characters\n";

}

given/when

153

WARNING Without going into too much detail, you should be cautious about
using given/when for the time being. The following blog post explains more
(though it’s probably a bit advanced for you at this point): http://blogs.perl
.org/users/komarov/2011/09/givenwhen-and-lexical.html.

If you want to avoid bugs, you can usually replace the when with a for and it
works just fine:

for ($number) {
when (S_ < 0) {
print "The number is negative";
}
when ($_ > 0) {
print "The number is positive";
}
default {
print "The number is 0";

Just make sure that you don’t use a variable name with the for loop to ensure
you’re setting the $_ variable.

To understand more about given/when, you can read perldoc persyn if you
have version 5.10.0 or better. Also, if you want to use given/when without the
other useful features of newer versions of Perl, see perldoc feature.

The Switch Module

Don’t use this module.

Added in Perl version 5.7.2 and removed in Perl version 5.13.1, the switch module allowed you to

write switch statements in Perl:

use Switch;
switch ($Sval) {

}

Unfortunately, this was implemented as something known as a source filter. Source filters rewrite
your code before it’s compiled, but due to the heuristic nature of Perl’s parser, they’re considered

case 1

case "a"

case [1..10,42]
case (\@array)
case /\w+/
case qr/\w+/
case (\%hash)
case (\&sub)
else

print "number 1" }

print "string a" }

print "number in list" }

print "number in list" }

print "pattern" }

print "pattern" }

print "entry in hash" }

print "arg to subroutine" }
print "previous case not true" }

i e i i e e T

154

CHAPTER5 CONTROL FLOW

extremely unreliable. In fact, the switch module, though useful, has a variety of bugs and limita-
tions that, although obscure, are nonetheless difficult to work around.

Switch was eventually removed from the Perl core because its functionality is replaced with the
given/when statement. Your author strongly recommends that you do not use the switch module.

SUMMARY

In this chapter you learned the basics of control flow in Perl. The if statement and for and while
loops make up the bulk of control flow for Perl; although, many variations exist. Control flow
enables your programs to make decisions about what to do and how to do it.

EXERCISES

1.

What does the following line of code do? How might you improve it?

print for 1..10;

The following code has a syntax error. Fix it.

my Stemperature = 22;
print Stemperature < 15? "Too cold!\n"
: Stemperature > 35? "Too hot!\n";

Create an array called @numbers and assign some numbers to it. Write the code to print the aver-
age value of the numbers.

Developers new to Perl who have experience with languages such as Java or C might write the
following bit of code. However, it has a logic error. Explain what the logic error is and what

the programmer might have done to see the logic error when running the code. Then rewrite the
code in a simpler format.

my Qarray = qw(fee fie foe fum);
my Snum_elements = @array;

foreach (my $i = 0; $i <= $num_elements; $i++) {
print "Sarray([$i]l\n";
}

You're writing a game and want to randomly generate a character’s statistics for strength, intel-
ligence, and dexterity. Each statistic is determined by summing the values of two rolls of a six-
sided die. For example, if you determine the character’s strength and roll the die twice and get
the values 2 and 6, the characters strength is 8 (2 + 6). Write the code to generate a new char-
acter. Remember that the code to simulate one roll of a six-sided dieis 1 + int(rand(6)) (from
Chapter 4). You use a “heredoc” (see Chapter 3) to print the character’s statistics.

Summary | 155

my %stat_for = (

strength => undef,
intelligence => undef,
dexterity => undef,

)
add your code here

print <<"END_CHARACTER";

Strength: Sstat_for{strength}
Intelligence: S$stat_for{intelligence}
Dexterity: $stat_for{dexterity}

END_CHARACTER

6. For extra credit, imagine that the character is considered “exceptional” and you don’t want to
allow any statistic with a value less than 6. Hint: This is one case in which a redo () statement

can come in handy.

156 | CHAPTERS5 CONTROL FLOW

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

if/elsif/else Do different things based on whether or not something is true or false.

?: The ternary operator is a shortcut for i f/else that some programmers
use.

foreach Used to iterate over a list.

while/until Used for looping while some expression is true or until some expression is
false.

last/next/redo/ Used to control restarting or exiting loops.

continue

Statement if/foreach/while expressions put after a statement to modify its

modifiers behavior.

given/when A clean way of picking one or more statements to execute, based on a

particular condition.

References

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Creating and understanding array, hash, anonymous, and other
references

» Manipulating references

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into
the following major examples:

> example_6_1_complex.pl
> listing 6_1_sales.pl
> listing_6_2_dclone.pl

In Perl, you tend to care more about how you organize your data than the kinds of data
you have. As a result, Perl enables rich, complex data structures and imposes few limits on
how you can organize your data. When you get used to the syntax, you may be pleasantly
surprised. Memory management is handled for you; there is no pointer math to get
wrong; and there are no external libraries to choose from and load. You just use the
references.

158

| CHAPTER6 REFERENCES

REFERENCES 101

In some languages, complex data structures are built up via pointers (something that “points” to a
variable’s location in memory) stored in other data structures, with perhaps pointers to those data
structures, in turn, stored in other data structures. Then you can have fun with pointer math,
memory management, and obscure compiler errors.

Some languages, on the other hand, offer a bewildering array of different classes to implement a
variety of different data structures, depending on what you need and how much time you have to
spend reading obscure documentation.

Perl makes it simple. Put any kind of data in any kind of data structure. You, the programmer, are
expected to know what to do with it, and Perl (usually) handles the garbage collection and pointer
math for you. Like many things in Perl, it just works. A reference in Perl doesn’t directly contain
dataj it is just a scalar variable that tells Perl where some data is kept. To access that data, you need
to dereference it.

There are two ways of creating a reference in Perl. You can take a reference to an existing variable
by putting a backslash, \, in front of it. The other way is to create an anonymous reference and
assign it to a variable.

NOTE There’s actually a third way to take a reference. It’s called the

*foo {THING} Syntax. (Apparently because Perl doesn’t have enough weird
names for things.) It accesses the value of a typeglob, which isn’t discussed here
because it’s somewhat advanced magic. See perldoc perlref. Typeglobs
should not be confused with the glob () function (Chapter 9).

Array References

As you recall, an array is just a container for a list. To assign a reference to that array to a scalar,
prepend it with a backslash:

my @fools = gw(jester clown motley);
my $fools = \@fools;

The $fools variable now contains a reference to the @fools array. You can copy the values to
another array by prepending it with the e sign (the array sigil).

my @Qcopy_of_fools = @$fools;

To access individual elements of the $fools array reference, you use the same syntax as you would
to access the original array, but you use the dereferencing operator, ->, between the array name and
the square brackets. The following prints jester - motley:

References 101 | 159

my @fools = gw(jester clown motley);
my Saref = \@fools;

my $first_fool = Saref->[0];

my $last_fool = Saref->[2];

print "$first_fool - S$last_fool";

NOTE You often see Perl programmers refer to array references as arefs.
Hash references are hrefs. Subroutines (Chapter 7) are subrefs or coderefs.
Sometimes you can just say ref when you are talking about references in
general. Hence, the $aref and shref variable names are used in some of this
book’s examples. Although these are not great variable names, the following is
often considered worse:

my $fools = \@fools;

It’s okay in Perl to have multiple variables named $fools, @fools, and $fools,
but it’s confusing and should be avoided whenever possible.

Naturally, you can iterate over an array reference just like you would an array:

foreach my $fool (@Saref) {
print "$fool\n";
}

And if you need to iterate over the indexes, use the $# syntax in front of the array reference. The
following code does the same thing as the previous code;

my @fools = gw(jester clown motley);
my $fools = \@fools;
foreach my $i (0 .. $#Sfools) {
my $fool = $fools->[$i];
print "$fool\n";
}

Although your author generally does not recommend the following (it can be confusing), be aware
that you can dereference the value and interpolate it into a string just as you would a regular scalar:

foreach my $i (0 .. S#Sfools) {
print "$fools->[$i]\n";
}

Hash References

You take a reference to a hash the same way you take a reference to an array. Like an array
reference, you access individual elements using the dereference operator after the variable name.

160 | CHAPTER6 REFERENCES

my %$words = (
dog => 'chien',
eat => 'manger',
clown => 'clown',
)
my $english_to_french = \%words;
my %copy = %$Senglish_to_french;
my Seat = Senglish_to_french->{eat};
while (my (Senglish, S$french) = each %S$english_to_french) {
print "The french word for '$english' is 'Sfrench'\n";

}
The previous code snippet should print something like this:

The french word for 'eat' is 'manger'
The french word for 'clown' is 'clown'
The french word for 'dog' is 'chien'

NOTE Although it’s been stated that the proper way to access elements in a
reference is to use the dereferencing operator, it’s not the only way. You can
prepend a $ sign to the variable and skip the dereferencing operator, optionally
wrapping the variable in curly braces:

Sfoo->[7];

$sfool7]; # same thing
${$fo0} [7]; # same thing
Sword_for->{laughter};
S$Sword_for{laughter}; # same thing

S${Sword_for}{laughter}; # same thing

You might notice the lack of the dereferencing operators. With these alternative
ways to dereference, Perl can be much harder to read, particularly if the mainte-
nance programmer is not familiar with this syntax or fails to note that something
is dereferenced.

It’s recommended that you limit your use of this syntax to those cases in
which it’s absolutely needed (as with reference slices, explained in the “Slices”
section later in this chapter).

Anonymous References

Anonymous references are commonly used to create rich data structures in Perl. They seem strange
at first, but they’re easy to use.

When you access an individual array or hash element, you wrap the index value in [] or {}
respectively. Those braces are also used to construct anonymous hashes and arrays:

References 101 | 161

["foo', 'bar', 'baz'];
{ red => "#FF0000', green => '#00FF00', blue => '#0000FF' };

my S$stuff
my $colors

However, it doesn’t make much sense to construct an anonymous array or hash and assign it directly
to a scalar just so you can dereference it again. Instead, they are powerful when you use them inside

of other data structures.

Anonymous Arrays
The following is an array of arrays (sometimes referred to as an AoA). The formatting, as usual, is
optional and used primarily to make these easier to read:

my @results = (
[12, 19, 4 1,
[454, 2, 42 1,
[6, 9, 13, 44 1,
)

An array can contain three anonymous arrays, the last of which has four elements instead of three.
Accessing each of these array references is as easy as you might expect:

my Sarefl = Sresults[0];
my Saref2 = Sresults[l];
my S$aref3 = Sresults(2];

And then you can access individual elements with the normal dereferencing syntax:

my Snumber = Saref2->[2];

By this time, $number should contain 42. However, you can directly access that variable from the
@results array by simply dereferencing it directly:

my @results = (
[12, 19, 4 1,
[454, 2, 42 1,
[6, 9, 13, 44 1,
)
my $number = Sresults[1]->[2]; # number is now 42
my Sresults = \@results;

If you have an array of arrays of arrays (AoAoA), you would repeat this:

my $number = S$aoaoal[3]1->[1]1->[0];

As a shortcut, Perl enables you to omit the dereferencing operator if you’re already accessing an indi-
vidual element in a data structure:

my Snumber = $acaoal[3]->[1]->[0];
my $number = $aocaoal[3][1][0]; # same thing

The latter syntax is more common than the former, but be wary of creating data structures too
complex because they’re often difficult to read.

162 | CHAPTER6 REFERENCES

When using normal data manipulation builtins, just dereference the array and use it as you normally
would:

push @Sarray, S$Svalue;

If you have a more complex data structure, use curly braces to tell Perl exactly what you’re
dereferencing:

push @{ Ssome_array[3]1[0] }, S$some_value;

Anonymous Hashes

Anonymous hashes work the same way, but you use curly braces instead of square brackets. The
following is a hash of hashes (HoH), but you can make the top-level hash an anonymous hash
assigned to a scalar:

my S$sales = {

monday => { jim => 2, mary => 1 },
tuesday => { jim => 3, mary => 5 },
wednesday => { jim => 7, mary => 3 },
thursday => { jim => 4, mary => 5 },
friday => { jim => 1, mary => 2 },

i
As you might expect, these are easier to read. What are Mary’s sales for Friday?
my Snum_sales = $sales->{friday}{mary};

You must use the dereference operator on the first element, but subsequent elements no longer
require said dereferencing. Of course, you can use the dereference operator multiple times, if you
prefer:

my Snum_sales = $sales->{friday}->{mary};

Mixing and matching anonymous data structures enable you to create powerful data structures.
Listing 6-1 (code file 1isting 6_1_sales.pl) is a smaller version of the previously shown $sales
data structure, but instead of showing the number of sales for Jim and Mary, you can

provide anonymous array references showing the commission per sale.

LISTING 6-1: Working with Data Structures

use strict;
use warnings;
use diagnostics;

my S$sales = {
monday => {

jim => [3, 4 1,

mary => [4],

References 101 | 163

+,
tuesday => {
jim => [3, 5, 11,
mary => [1, 1, 1, 1, 9 1,
}
Y

my Scommissions = $sales->{tuesday}{jim};
my $num_sales = @Scommissions;

my Stotal = 0;

foreach (@$commissions) {
Stotal += $_;
}

print "Jim made $num_sales sales on Tuesday and earned \$Stotal commission\n";
That tells you that Jim isn’t earning a lot of money.
Jim made 3 sales on Tuesday and earned $9 commission

You can escape the first dollar sign on $total to tell Perl not to interpolate that dollar sign as part
of a variable, but merely print it.

As with arrays, data manipulation builtins behave as normal, so long as you dereference the item
first.

my @days_of_the_week = keys %Ssales;
my @sales_people = keys %{ $sales->{monday} };

Other References

Arrays and hashes are the two most common types of references, but there are a variety of other
references that can prove useful from time to time. The most popular is a subroutine reference. The
following prints the number 9:

my Sadd_two = sub {
my $number = shift;
return S$number + 2;
Y
print $add_two->(7);

Don’t worry about how that works for now. Chapter 7 covers subroutine references, but it’s included
it here for completeness.

Naturally, you can take a reference to a scalar. The following prints ovia:
my $name = 'Ovid';
my $ref = \S$name;

print S$Sref;

Scalar references might seem odd, but they do have uses at times.

164 | CHAPTER6 REFERENCES

Walking Complex Data Structures

You haven’t had many pages to read, but you covered a lot of ground. Now this Try It Out walks through
a compound data structure to make a simple report. You want to print a report showing the top salesper-
son per day. All the code in this Try It Out is found in code file example 6_1_complex.pl.

1. Save the following code as example_6_1_complex.pl:

use strict;
use warnings;
use diagnostics;

my @day_of_week = qw(
monday
tuesday
wednesday
thursday
friday
)

my @sales = (

{ jim > 2, john => 7, mary => 1 },
{ alice => 4, jim => 3, mary => 5 },
{ jim => 7, mary => 3, pablo => 10 },
{ jim => 4, mary =51},

{ jim => 1, katherine => 4, mary => 2 },

)

print "Top sales per day report\n\n";
printf "%10s %$10s %s\n", 'Weekday', 'Person', 'Num sales';

get the name of the day and sales for that day
foreach my $i (0 .. S$#day_of_week) {
my Sday = ucfirst $day_of _week[$i];
my $daily_sales = S$sales[$i];

find top salesperson for the current day
my Stop_sales = 0;
my Stop_person;

while (my (S$salesperson, S$num_sales) = each %$daily_sales) {
if (Snum_sales > $top_sales) {
Stop_sales = $num_sales;

Stop_person = $salesperson;
}
}
printf "%$10s: %10s %-3d\n", sday, $top_person, $top_sales;

2. Run the code with perl example_6_1_complex.pl, and if you’ve copied it correctly, it should
output the following:

Top sales per day report
Weekday Person Num sales
Monday: john 7

References 101 | 165

Tuesday: mary 5
Wednesday: pablo 10
Thursday: mary 5
Friday: katherine 4

How It Works

All things considered, this is actually a fairly simple data structure (they’re so easy in Perl that people
often create far more complicated ones), but look at the top two arrays.

my @day_of_week = qw(

monday
tuesday
wednesday
thursday
friday
);
my @sales = (
{ jim => 2, john => 7, mary => 1 },
{ alice => 4, jim => 3, mary => 5},
{ jim => 7, mary => 3, pablo => 10 }
{ jim => 4, mary = 5}
{ jim => 1, katherine => 4, mary => 2 },

)

You can write this example in many ways, but in this case, assume that the @sales in the second array
are for Monday, Tuesday, Wednesday, Thursday, and Friday. Each entry in @sales is a hashref with the
first name of the salesperson as the key and the number of sales as the value.

The next two lines print out the top of your report:

print "Top sales per day report\n\n";
printf "%$10s %10s %s\n", 'Weekday', 'Person', 'Num sales';

The printf () formats were carefully chosen to match the printf () formats for each day’s entry on
the report.

Now you have a strange bit at the top of the for loop:

get the name of the day and sales for that day
foreach my $i (0 .. $#day_of_week) {
my S$day = ucfirst $day_of_week[$i];
my $Sdaily_sales = S$sales[S$i];

The reason you use the $i variable and assign values from 0 to $#day_of_week (remember, that’s the
value of the last index in that array) is that by using this index, you can fetch the name of the day from
@day_of_week and fetch the daily sales in the @sales array.

Next, use a while loop to iterates over the $daily_sales hash reference:
find top salesperson for the current day

my $top_sales = 0;
my $top_person;

166 | CHAPTER6 REFERENCES

while (my ($salesperson, S$num_sales) = each %$daily_sales) {
if (Snum_sales > Stop_sales) {
Stop_sales = S$num_sales;

Stop_person = $salesperson;
}

}
printf "%$10s: %10s $%-3d\n", $day, Stop_person, Stop_sales;

}

Simply keep track of the highest sale for that day and the name of the sales person associated with it. At
the end of the while loop, print that information out.

Of course, you can write the preceding code in many different ways. It’s also not robust. What if more
than one salesperson makes the same number of sales? What if the length of the eday _of_week and
@sales arrays do not match? (Refer to the subroutines discussing in Chapter 7.)

WORKING WITH REFERENCES

Knowing how to create references and fetch data out of them is one thing. However, many times you
need to copy all or part of a reference without changing the original reference. Or perhaps you can’t
figure out why you’re not getting the right data, so you need to debug your reference. The next
sections cover several ways to handle these issues.

Debugging

In the first Try It Out in this chapter, you saw how to work with references and even print them out.
However, sometimes they’re a bit confusing, and you’re not sure what you have. For example, say
you have the following line as line 23 of your program:

print Saref->[0]{sales};
And your program dies with the error message:
Not a HASH reference at some_program.pl line 23.

Now you want to know what you actually have in the $aref variable.

One way to handle this is to just print $aref->[0]. In this case, it might print something such as
ARRAY (0xc51220). When you print a reference, you see the type of reference (ARRAY in this case)
followed by its hexadecimal address in memory.

Another way to deal with this is the ref () function:
print ref Saref->[0];

For something that is not a reference, ref () returns the empty string. The following is a handy little
program that shows various reference types. You won’t understand all these yet, but that’s okay.
When you’re done with the book, this will be clear:

Working with References | 167

use strict;
use warnings;
use CGI;

my $foo;
sub handler {}

my Sscalar = ref $foo;
my $scalarref = ref \$foo;
my $Sarrayref = ref \@ARGV;

my S$hashref = ref \%ENV;
my $coderef = ref \&handler;
my $globref = ref *foo;

my Sregexref = ref qr//;
my $objectref = ref CGI->new;

print <<"END_REFERENCES";

Scalar: Sscalar
Scalar ref: S$scalarref
Array ref: Sarrayref
Hash ref: Shashref
Code ref: Scoderef
Glob ref: Sglobref
Regex ref: Sregexref

Object ref: S$objectref
END_REFERENCES

And that prints:

Name "main::foo" used only once: possible typo at refs.pl line 10.

Scalar:

Scalar ref: SCALAR
Array ref: ARRAY
Hash ref: HASH
Code ref: CODE
Glob ref: GLOB
Regex ref: Regexp

Object ref: CGI

You see nothing printed for $scalar because ref () returns the empty string if called with an
argument that is not a reference. The strange main: : foo warning happens because you take the
reference to something called a typeglob. We won’t cover them much in this book, but you can read
perldoc perldata for more information if you’re curious.

The rest of the names should be straightforward, even though we’ve not covered all the types yet.
Chapter 9 covers globs (slightly), and Chapter 8, covers regular expressions (the $regexref).
Calling ref () on an object (Chapter 12) merely returns the name of the object’s class.

168

| CHAPTER6 REFERENCES

WARNING All the references used in this chapter have been hard references.
Hard references tell Perl where to find some data. However, there’s also a soft
reference, sometimes referred to as a symbolic reference. Rather than telling
Perl where some data is kept, it contains the name of a variable or subroutine
that Perl can then access or call to get the data you want. Soft references are
considered dangerous because they’re easy to get wrong. As a result, they
are illegal when you use strict, which isn’t discussed further in this book. See
perldoc strict and perldoc perlref for more information.

For large data structures, you might find it frustrating to keep printing individual elements to find
out what they are. This is where the useful Data: : Dumper module comes in handy. pata: : Dumper
has been shipped with Perl since version 5.005 (released July 1998).

You can add the following before the offending line to see what you have:

use Data: :Dumper;
print Dumper ($aref);

That might print out something like this:

SVARL = [

As you can see by reading this data structure, you have an array ref of array refs, not an array ref
of hashrefs. Data: : Dumper is an invaluable debugging tool when trying to figure out just what went
wrong with your code. See perldoc Data: :Dumper to understand how to customize its output.

If you want to print out the values of arrays and hashes that are not references, you must pass them
by reference to Data: : Dumper and your output may look confusing:

use Data: :Dumper;
my @words = qw(this that other);
print Dumper (@words) ;

That prints out:

SVAR1 = 'this';
SVAR2 = 'that';
SVAR3 = ‘'other';

However, when you pass the array by reference, you get a cleaner output, so long as you understand
references:

Working with References | 169

print Dumper (\@words) ;
SVARL = [
"this',
"that',
'other'

1;

Copying

Sometimes you need to copy a data structure. For example, you might want to change some data in
a data structure, but leave the original data structure unchanged. Ordinarily you can copy a
variable like this:

my $x = 3;
my Sy = $x;
Sy = 4;

print "$x - $y";

That prints 3 - 4. This is because the assignment operator copies the value from one expression to
a variable (or variables). However, what happens when that value is a reference?

use Data: :Dumper;

my Sarefl =101, 3, 71;
my Saref2 = Sarefl;
Saref2->[0] = 9;

print Dumper ($Sarefl, S$aref2);

That prints:
SVARL = [
9,
3,
7

1:
$VAR2 = $VARL;

But how can the two variables be the same? You only changed the first value of the second array
reference.

That’s because when you did saref2 = $arefi, you copied the reference (not the data!) from
$arefl to $aref2. In Perl, copying a reference is automatically a shallow copy. A shallow copy
copies only top-level values. The data any references point to will be shared between the variables.
To do a deep copy of an array reference and not share the values, you must dereference the array. In
this case, dereference the array and use [] to create a new array reference.

use Data: :Dumper;

my Sarefl =[1, 3, 71;
my Saref2 = [@Sarefl 1;
Saref2->[0] = 9;

print Dumper (Sarefl, S$aref2);

170 | CHAPTER6 REFERENCES

That prints:
$VARL = [
1,
3,
7
1i
SVAR2 = [
9,
3,
7

And as you can see, the two variables no longer share the same array reference.

This can particularly confuse programmers who are not aware of this. The following is some broken
code attempting to copy a data structure and clear out the sales in the new structures:

use Data: :Dumper;

my %0ld_sales = (

monday => { jim => 2, mary => 1 },
tuesday => { jim => 3, mary => 5 },
wednesday => { jim => 7, mary => 3 },
thursday => { jim => 4, mary => 5 },
friday => { jim => 1, mary => 2 },
);
my %new_sales = %$o0ld_sales;
while (my ($day, $sales) = each %new_sales) {
$sales->{jim} = 0;
$sales->{mary} = 0;
}
print Dumper (\%0ld_sales, \%new_sales);
And that prints (reformatted for clarity):
SVAR1 = {
'monday’ => { 'jim' => 0, 'mary' => 0 }
'tuesday’ => { 'jim' => 0, 'mary' => 0 },
'wednesday' => { 'jim' => 0, 'mary' => 0 },
'thursday' => { 'jim' => 0, 'mary' => 0 },
'friday’ => { 'jim' => 0, 'mary' => 0 },
Y
SVAR2 = {
'monday’ => $VAR1->{'monday'},
'tuesday’ => $VAR1->{'tuesday'}

'wednesday' => $VAR1->{'wednesday'},
'thursday' => $VAR1->{'thursday'},
'friday’ => $VAR1->{'friday'},

Y

As you can see, you have overwritten the values in the $01d_sales hash. It would be tedious to
dereference each hashref and take a reference to each hash, but it’s also error prone. A much simpler

Working with References | 171

way to handle this is to use the storable 'dclone’ (deep clone) function. It does a deep copy of a
reference. Listing 6-2 (code file 1isting_6_2_dclone.pl) shows how it’s done.

LISTING 6-2: Using dclone to Deep Copy Data Structures

use strict;

use warnings;

use diagnostics;

use Data: :Dumper;

use Storable 'dclone';

my %0ld_sales = (

monday => { jim => 2, mary => 1 },
tuesday => { jim => 3, mary => 5 },
wednesday => { jim => 7, mary => 3 },
thursday => { jim => 4, mary => 5 },
friday => { jim => 1, mary => 2 },

)

my %new_sales = %${ dclone(\%0ld_sales) };

while (my (day, Ssales) = each %new_sales) {
$sales->{jim} = 0;
$sales->{mary} = 0;

}

print Dumper (\%0ld_sales, \%new_sales);

And running 1isting_6_1_dclone.pl shows that you have the wanted result (again, reformatted
for clarity);

SVAR1 = {
'monday’ => { 'jim' => 2, 'mary' => 1 }
'tuesday' => { 'jim' => 3, 'mary' => 5 },
'wednesday' => { 'jim' => 7, 'mary' => 3 },
"thursday' => { 'jim' => 4, 'mary' => 5 },
"friday" => { 'jim' => 1, 'mary' => 2 },

Y

SVAR2 = {
'monday"’ => { 'jim' => 0, 'mary' => 0 }
'tuesday' => { 'jim' => 0, 'mary' => 0 },
'wednesday' => { 'jim' => 0, 'mary' => 0 },
"thursday' => { 'jim' => 0, 'mary' => 0 },
"friday’ => { 'jim' => 0, 'mary' => 0 },

Y

Remember, when copying references, if it’s a flat data structure like an array or hash, you can just
dereference and assign the values (optionally creating a new reference):

my S$Sacopy [@Saref 1;
my %hcopy = %$href;

But if there are references in there, you have a shallow copy and possibly unwanted side effects.

172

CHAPTER6 REFERENCES

Slices

When working with arrays and hashes, you sometimes want to fetch several items from the array or
hash at once. For example, if you have an array with sales for each day of the month and you only
want sales for the first seven days, you don’t need the rest of the array. You might recall that the syn-
tax is to prefix the variable name with an e (array) symbol and provide two or more indexes/keys.

array slice
my @Garray = qw(foo bar baz quux);
my (Svarl, $var2) = Qarrayl[1, 2];

hash slice

my %$hash = (
this = 'is"',
another => 'boring',
example => 'innit?'

)

my (S$Sfirst, $second) = @hash{ 'another', 'example' };
print "S$varl, S$var2\n";
print "sfirst, $second\n";

And that prints:

bar, baz
boring, innit?

When you have references, you must, as expected, dereference the variables first. The following code
prints the same output as the previous code. You dereference the variables to get the slices:

array slice
my Sarrayref = [gw(foo bar baz quux) 1;
my (Svarl, S$var2) = @$Sarrayref[1, 2];
hash slice
my Shashref = {

this = 'is"',

another => 'boring',

example => 'innit'
Y
my (Sfirst, S$second) = @Shashref{ 'another',K 'example' };
print "$varl, $var2\n";
print "$first, $second\n";

However, if you want to take a slice of a complex data structure, you must use curly braces to make
it clear what you take a slice of:

my ($jim, Smary, $alice)
= @{ $sales->[12]{tuesday} }{gw/ jim mary alice /};

Yes, the syntax is painful and ugly. Taking slices from references is something that often confuses
newer programmers. You may want to avoid this feature.

Summary | 173

SUMMARY

References are Perl’s answer to pointers. Instead of containing data, they tell Perl where the data is
contained. The syntax is a bit different from using a normal variable, but it’s clear what’s going on
after you get used to it. References are also the key to building up complex data structures. If you
want to know far more than you ever wanted to know about references, you can read the following
docs included with Perl:

» References: perldoc perlref

» Reference tutorial: perldoc perlreftut

» Data structures cookbook: perldoc perldsc
>

Lists of lists: perldoc perllol

1. Create an array called @first and assign several values to it. Take a reference to that array, and
then dereference it into an array named @second. Print both arrays to ensure that you’ve copied
it correctly.

2. Write the code to find the individual number of sales Jim made on Friday and the total number of
the sales he made on Friday. Assume each number is the total for an individual sale.

my S$sales = {

monday => { jim => [2], mary => [1, 3, 7 1 3},
tuesday => { jim => [3, 8], mary => [5, 5 1 3},
wednesday => { jim => [7, 0 1, mary => [3 1},
thursday => { jim => [4 1, mary => [5, 7, 2, 5, 2 1 1},
friday = { jim => [1, 1, 5], mary => [2 1},

3. You want to print out the score for Jim and Mary, but the following code is wrong. What’s wrong
with it? Show two ways to fix it.

my $score_for = {
jim => 89,
mary => 73,
alice => 100,
bob => 83.
Y
my (jim, Smary) = %Sscore_for{ gw{jim mary} };
print "$jim Smary";

174 | CHAPTER6 REFERENCES

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Basic References
Anonymous References
Data::Dumper

Copying

Slices

KEY CONCEPTS

A shared data structure, which is Perl’s answer to pointers.
The building blocks of complex data structures.

A powerful debugging tool to examine variables.

How to safely copy a reference.

How to retrieve a subset of items from a reference.

Subroutines

WHAT YOU WILL LEARN IN THIS CHAPTER:

>

YYVYYVYYy

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

Declaringa subroutine

Passing data to subroutines
Returning data from subroutines
Using prototypes

Using subroutine references
Understanding recursion

Implementing error checking

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into

the following major examples:

>

Y VYV VY Y Y

example_7_1_running_total.pl
example_7_2_ length.pl
example_7_3_zip.pl
example_7_4_maze.pl

listing_ 7_1_fibonacci.pl

listing_ 7_2_binary search.pl

176

| CHAPTER7 SUBROUTINES

A subroutine is just a way of providing a “name” to a piece of code. This is useful when you need to
execute the same piece of code in several different places in your program, but you don’t want to just
“cut-n-drool” the same code all over the place.

Even if you don’t want to reuse a piece of code, applying a name is useful. Compare the following
two lines of code:

my S$result = 1 + int(rand(6));
my Sresult = random_die_roll();

Just by intelligently naming a subroutine, you can see that the second line of code much clearer than
the first. Thus, you can use subroutines to make your code more self-documenting. As an added
benefit, the name of a subroutine is documentation that you don’t forget to add.

SUBROUTINE SYNTAX

A basic subroutine (often just called a sub) is declared with the syntax of
sub IDENTIFIER BLOCK

IDENTIFIER is the name of the subroutine, and BLOCK is the block of code that is executed. So if you
want to write a subroutine that simulates the roll of one six-sided die, you can write it like this:

sub random_die_roll {
return 1 + int(rand(6));

}

The return () builtin is used to return data from a subroutine.

Now that you have assigned a name to that block of code, you can use it more or less like any Perl
builtin. This code prints a random number from 1 to 6:

my Sresult = random_die_roll();
print Sresult;

sub random_die_roll {
return 1 + int(rand(6));

}

NOTE In Perl, there is no formal distinction between a subroutine and a func-
tion. In some programming languages, a function and a subroutine are the
same, but a function returns a value and a subroutine does not. There is no such
distinction in Perl. As a result, people sometimes refer to subroutines as func-
tions. Again, don’t get hung up on terminology. Functionality (pun probably not
intended) is what you should pay attention to.

Subroutine Syntax |

177

Argument Handling

Subroutines are often used when you want to reuse some code but with different data. The data
you pass to subroutines is an argument. For example, whereas six-sided dice are the most common,

many games have dice with a different number of sides. So you might want to pass to random_die_

roll () the number of sides of the die you want to roll:
my Sresult = random_die_roll(10);

The arguments to a subroutine are stored in the special @_ array. The following is how to write the
sub that enables you to optionally pass the number of sides of the die you want to roll:

sub random_die_roll {

my (Snumber_of_sides) = @_;
have a useful default if called with no arguments
$number_of_sides ||= 6;

return 1 + int(rand(Snumber_of_sides));

WARNING Use parentheses around the variables you assign the subroutine
arguments to. This is just normal Perl syntax for force-list context. The following
code is a common mistake many Perl beginners make:

sub random_die_roll {
my S$number_of_sides = @_;
... more code

That evaluates the @_ array in scalar context, setting $number_of_sides to the
number of elements in @_. That’s probably not what you want.

If you prefer, you can also write the argument handling like this:
sub random_die_roll {
my $number_of_sides = shift;

... more code here

}

The shift () builtin (and the pop () builtin), when used in a subroutine and called with no argu-
ments, default to shifting off the first value of @_. You can be explicit if you prefer:

my S$number_of_sides = shift @_;
Sometimes you see subroutine calls prefixed with an ampersand:

my $result = &random_die_roll();

178

| CHAPTER7 SUBROUTINES

Although valid, this is an older form of subroutine syntax the author recommends you do not use
except in one special case:

my Sresult = &random_die_roll;

You called srandom_die_roll without parentheses. When you do that, the current value of @_, if
any, is passed to the new subroutine. This is sometimes useful, but it’s confusing because it looks
like you called the subroutine without any arguments.

Multiple Arguments

Sometimes you want to roll a die more than once and add up the value of each die roll. Passing mul-
tiple arguments to an array is simple. The following is how to roll a six-sided die three times and
print the result:

sub random_die_roll {
my (Snumber_of_sides, $number_of_rolls) = @_;

have a useful default if called with no arguments
$number_of_sides ||= 6;

the number of times to roll the die defaults to 1
$number_of_rolls ||= 1;
my Stotal = 0;
for (1 .. $Snumber of rolls) {
Stotal += 1 + int(rand(Snumber_of_sides));
}

return $total;

print random_die_roll(6, 3);
Because there is more than one way to do it, you can handle the arguments like this:

my Snumber_of_sides = shift;
my Snumber_of_rolls = shift;

Or if you prefer to be explicit:

my Snumber_of_sides = shift @_;
my Snumber_of_rolls = shift @_;

Subroutines in Perl are variadic. That means they can take a variable number of arguments. So if
you pass too many arguments to a subroutine, Perl usually ignores the extra arguments. The follow-
ing prints a random number from 1 to 10 and ignores the second argument:

sub random_die_roll {
my ($number_of_sides) = @_;
have a useful default if called with no arguments
$number_of_sides ||= 6;

Subroutine Syntax | 179

return 1 + int(rand(Snumber_of_sides));
}

print random_die_roll(10, 3);
You can pass as many arguments as you like and Perl still happily ignores them:
print random_die_roll(10, 3, S$some_val, @foobar);

This is a legacy of Perl’s roots that you still have today. There are modules such as
Params: :Validate to help deal with this, but Perl programmers usually just read the documenta-
tion and know how they’re supposed to call the subroutines.

Named Arguments

When you start passing multiple arguments to a subroutine, it can be confusing to know what the argu-
ments mean. Is the following telling you to roll a six-sided die four times or a four-sided die six times?

print random_die_roll(6, 4);
One way to do that is to use named arguments. In Perl, you handle this by passing a hash:

print random_die_roll (
number_of_sides => 6,
number_of_rolls => 4,

)

sub random_die_roll {
my %arg_for = @_;

assign useful defaults

my $number of_sides = $arg_for{number of_sides} || 6;
my Snumber of_rolls = $arg_for{number of_rolls} || 1
my S$total = 0;

7

for (1 .. Snumber_of_rolls) {
Stotal += (1 + int(rand($Snumber of_sides)));
}

return S$total;

This is useful because not only is it more self-documenting, but it also makes it easy for any argu-
ment to be optional. When you called random_die_ro11 (6, 3), what if you want the default num-
ber of sides but to have it rolled three times? You’d have to write something like the following;:

my Sresult = random_die_roll (undef, 3);
or

my $Sresult = random_die_roll (0, 3);

Both of those can be confusing because their intent may not be clear. Instead, you can write the
following:

print random_die_roll(number_of_rolls => 4);

180 | CHAPTER7 SUBROUTINES

There is a slight problem with this, though. What if someone doesn’t read your documentation (you
write documentation, don’t you?) and they try to call it like this?

print random_die_roll(2);
sub random_die_roll {
my %$arg_for = @_;

assign useful defaults

my $number of_sides = $arg_for{number of_sides} || 6
my $number_of_rolls = $arg_for{number_ of_ rolls} || 1
my Stotal = 0;

for (1 .. Snumber of rolls) {
Stotal += (1 + int(rand(Snumber_ of_sides)));
}

return $total;

Enabled warnings warn about 0dd number of elements in hash assignment. You also get the
default values for the $number_of_sides and $number of rolls. Quite often programmers over-
look warnings, forget to enable them, or have so many other warnings that they miss simple ones
like this. A better way to handle named arguments is to pass a hash reference instead.

print random_die_roll (
{
number_of_sides => 6,
number_of_rolls => 4,

)

sub random_die_roll {
my (Sarg_for) = @_;

assign useful defaults

my $number_of_sides = $arg_for->{number_of_sides} ||
my $number_of_rolls = $arg_for->{number_of rolls} ||
my Stotal = 0;

for (1 .. Snumber of rolls) {
Stotal += (1 + int(rand(Snumber_ of_sides)));

}

return $total;
With this code, if you use strict (and you should), then calling random_die_ro11 (6) results in the
following fatal error:
Can't use string ("6") as a HASH ref while "strict refs" in use

It’s far better to have your program die horribly than to return bad data.

Subroutine Syntax | 181

Aliasing

One thing to be aware of when using subroutines is that the @_ array aliases its arguments, just like
we saw with foreach loops in Chapter 6. Thus, you can write the following;:

my S$number = 40;

inc_by_two (S$Snumber) ;

print S$number;

sub inc_by_two {
$_[0] += 2;

}

That modifies the $number variable in place and prints 42. However, if you call it like this:

inc_by_ two (40);
That generates the following error:

Modification of a read-only value attempted at ...

Naturally, the aliasing cascades, so this throws the same error:
inc_1ist(3,2,1);

sub inc_list {
foreach (@_) {
S_t++;

}

As a general rule, subroutines are safest when they don’t have side effects like this. Instead of trying

to rely on aliasing to change variables in place, you should generally assign @_ to new variables and
return new values.

sub inc_list {
my @numbers = @_;
foreach (@numbers) {
S_++;
}

return @numbers;

State Variables (Pre- and Post-5.10)

When you call a subroutine, variables declared in that sub are reinitialized every time you call the
subroutine. However, sometimes you only want to initialize the variable once and have it retain its
value between subroutine invocations. If you use Perl version 5.10.0 or better, you can declare a
state variable. The following is a subroutine that tracks the number of times it has been called:

182 | CHAPTER7 SUBROUTINES

use 5.010;

sub how_many {
state $count = 0; # this is initialized only once
Scount++;
print "I have been called S$count time(s)\n";

}

how_many () for 1 .. 5;
That prints:

have been called 1 time(s)
have been called 2 time(s)
have been called 3 time(s)
have been called 4 time(s)
have been called 5 time(s)

HHHHH

On versions of Perl older than 5.10.0, you can still do this, but you wrap the subroutine in a block
and declare the $count variable in that block, but outside of the subroutine:

my $count = 0;

sub how_many {
Scount++;
print "I have been called Scount time(s)\n";
}
}

how_many() for 1 .. 5;

That prints the same thing.

The reason it works is because the subroutine is in the block in which the $count variable has
been declared. It is said to “close over” the scope of that variable and is thus known as a closure.
Closures are common in Perl but are usually used with anonymous subroutines, as discussed in the
“Closures” section of this chapter.

The $count variable doesn’t need to be declared in a block like that, but if you don’t, other sections
of code might see the $count variable and accidentally change its value. The block is just there to
safely restrict the scope of $count.

WARNING |t’s generally a bad idea to have a subroutine referring to variables
not explicitly passed to the subroutine. This is because if some other code
changes those variables in the way the subroutine does not expect, it can be
difficult to find out which part of the code is responsible for making that change.
This is why for older Perl’s you put the $count variable in a limited scope to
make sure that other code can’t touch it.

Subroutine Syntax | 183

However, this style to make state variables is clumsy and error prone. Consider a subroutine that
ensures it’s never called with the same argument twice in a row:

use strict;
use warnings;

do_stuff($_) for 1 .. 5;

my $last = 0;
sub do_stuff {
my $arg = shift;
if ($Sarg == S$last) {
print "You called me twice in a row with Sarg\n";
}
$last = Sarg;

That code generates the following warning:
Use of uninitialized value $last in numeric eqg (==) at

Why? Variable declaration happens at compile time before the code is run. However, variable
assignment happens at runtime and the assignment of 0 to $1ast doesn’t happen until after the calls
to do_stuff (). Thus, the first time do_stuff () is called, $1ast is declared but has no

value assigned to it! This is not an issue with state variables:

use strict;
use warnings;

do_stuff($_) for 1 .. 5;

sub do_stuff {
state $last = 0;
my $arg = shift;
if (Sarg == S$last) {
print "You called me twice in a row with Sarg\n";
}
Slast = Sarg;

That doesn’t have the warning because at compile time $1ast is declared, but the first time you
enter the do_stuff () subroutine, the $1ast = 0 assignment happens.

NOTE See perldoc feature and perldoc -f state for more information
about using state variables.

184 | CHAPTER7 SUBROUTINES

Passing a List, Hash, or Hashref?

This section isn’t actually about Perl but about good coding style. You can skip it if you want, but if
you’re new to programming, it’s worth reading.

Many times when writing a subroutine, you must decide if you want to pass single arguments, mul-
tiple arguments, references, and so on. this section offers a few good rules to consider.

If you have more than two arguments to pass to a subroutine, consider using a hash reference to use
named arguments, especially if some of the arguments are optional. Consider the following sub-
routine call where the account number may be optional. If the customer has only one account, the
subroutine might default to that account. If you want to check the balance and there is no amount to
$debit, that might also be optional. Named arguments are warranted here:

probably bad
my $balance = get_balance(Scustomer, S$account_number, S$debit);

better

my Sbalance = get_balance({
account_number => Saccount_number,
customer => Scustomer,
debit => S$debit,

1)

With that, you can omit the account_number and debit and still have code that is easy to read.
Plus, the order of the arguments becomes irrelevant.

But you might think that passing a hash reference is overkill here. It’s perfectly easy to read with
good variable names, right? Well, you may find yourself in a section of your code where the variable
names are not so clear:

my Sbalance = get_balance ({
account_number => Sacct,
customer => Sco,
1)

Well-chosen named arguments make code much easier to read. So is there ever a reason to pass a list
to a subroutine? Sure! If you pass only one or two items, or if every item in the list is conceptually
the same, passing a list is fine:

sub sum {
my @numbers = @_;
my $total = 0;
Stotal += $_ foreach @numbers;
return $total;

}
print sum(4, 7, 2, 100);

In this case, using named arguments would be silly because you’re just summing a list of numbers.

Sometimes passing a list would be a bad idea. Imagine if the numbers you passed into sum() were
two million order totals you’ve just read from a CSV file. When you pass the list to sum (), Perl must
copy every value, and this might eat up a lot of memory. Instead, you can pass a reference, and Perl
copies only the single value of the reference:

Subroutine Syntax | 185

sub sum {
my Snumbers = @_;
my S$total = 0;
Stotal += $_ foreach @S$numbers;
return S$total;

}

print sum(\@two_million_numbers) ;

Sometimes you might want to pass a hash to a sub, but as explained previously, there is nothing to
stop one from passing something that isn’t a hash. As a result, hard-to-find bugs can creep into your
code. Using a hashref when you want a hash is much safer.

Writing a running_total() Subroutine

Imagine that you’re reading a bunch of data and need to sum the results of some data, but do this
repeatedly while keeping a running total. You might just write a sum () subroutine and keep the run-
ning total of the results, or you might have a running_total () subroutine that does this for you.

In this Try It Out, you write such a subroutine to see how it works. This example requires Perl version
5.10 or better, but you’ll also see how to rewrite it with Perl 5.8. All the code in this Try It Out uses
example_7_1_running_total.pl

1. Type in the following program, and save it as example_7_1_running_total.pl:

use strict;

use warnings;
use diagnostics;
use 5.010;

my @numbers = (

[3,1, 4, 9, 321, # total 49
[5, 200 1, # total 205
[22, 75, 100, -3 1], # total 194

) ;

foreach my $group (@numbers) {

my (Stotal, $running_total) = _running_total ($group) ;

print "Total is Stotal and running total is $running total\n";
}

sub _running_ total {
state $running_ total = 0;
my S$numbers = shift;
my Stotal = 0;
Stotal += $_ for @$numbers;
Srunning_total += S$Stotal;
return Stotal, S$running_total;

2. Run the program with perl example_7_1_running_total.pl. You should see the following
output:

Total is 49 and running total is 49
Total is 205 and running total is 254
Total is 194 and running total is 448

186 | CHAPTER7 SUBROUTINES

How It Works

This one is straightforward, but it has a quirk. There is nothing unusual about this, but the subroutine
name is prefixed with an underscore (_). This it a Perl convention that says, “This subroutine is private
and you can’t use it.” This is important because if other code were to call this subroutine, the running
total would increase for all areas of the code that called it, and there’s a good chance you didn’t want
that.

The use 5.010 statement is what tells Perl that it can use all syntactic constructs available in Perl 5.10.
(Yes; the version number is annoying.)

If you use a version of Perl less that version 5.10, you could write the running total subroutine like this:

my $running_total = 0;

sub _running_total {
my Snumbers = shift;
my $total = 0;
Stotal += $_ for @Snumbers;
Srunning_total += Stotal;
return S$total, S$running_total;

The extra block around the variable and subroutine is to ensure that no code outside of the subroutine

can accidentally change the $running_total value. That’s ugly because of the extra block, but it gets
the job done.

RETURNING DATA

When writing subroutines, it’s not helpful if you can’t return data. The following section explains
many of the ways to do this that you’ll encounter in real code. The clearest way to do this is to use
the return builtin.

Returning True/False

Many of the most basic subroutines return a true or false value. The following is one way to write
an is_palindrome () subroutine, ignoring the case of the word:

sub is_palindrome ({

my Sword = lc shift;

if (Sword eq scalar reverse Sword) {
return 1;

}

else {
a bare return returns an empty list which evaluates to false
return;

Returning Data | 187

for my Sword (gw/Abba abba notabba/) {
remember that the ternary ?: operator is a shortcut for if/else
my $maybe = is_palindrome (Sword) ? "" : "not";
print "Sword is S$Smaybe a palindrome\n";

And that prints:

Abba is a palindrome
abba is a palindrome
notabba is not a palindrome

Unlike some other languages, you can put a return statement anywhere in the body of the subrou-
tine. However, you can make this subroutine even simpler:

sub is_palindrome {
my $word = lc shift;
return $Sword eq scalar reverse Sword;

If you don’t include an explicit return statement in a subroutine, the subroutine returns the result of
the last expression to be evaluated, allowing you to write is_palindrome () as follows:

sub is_palindrome {
my $word = lc shift;
Sword eq scalar reverse $word;

It’s strongly recommended that you use an explicit return on all but the simplest subroutines because
in a complicated subroutine, explicit return statements clarify flow control.

WARNING Some developers prefer to return undef, an empty string or a zero
for false.

sub is_palindrome ({
my S$word = lc shift;
return Sword eq scalar reverse Sword ? 1 : 0;

That’s okay, but consider the following:

if (my @result = is_palindrome (Sword)) {
do something

That’s a silly example, but if you return an empty string or a zero for false, then
@result will now be a one-element array and evaluate to true! This can cause
strange bugs in your code if you don’t consider this.

188 | CHAPTER7 SUBROUTINES

NOTE If you need a review of true and false values, see “Using the If Statement”
section in Chapter 5.

Returning Single and Multiple Values

As you might guess from the preceding examples, returning a single value is as simple as returning
Ssome_value:

use constant PI => 3.1415927;
sub area_of_circle {

my Sradius = shift;

return PI * (S$Sradius ** 2);
}

print area_of_circle(3);

The previous code prints 28.2743343, the area of a circle with a radius of 3 (of whatever units you
use).

Returning multiple values is simple. Just return them!
return ($first, $second, $third);
Be aware, though, that if you return an array or hash, its data is flattened into a list:

sub double_it {
my @array = @_;
$_ *= 2 for @array;
return @array;

This code returns a new list with the values doubled. However, if you want to return two arrays, or
two hashes, or an array and a hash, and so on, you want to return references:

sub some_function {

my @args = @_;

do stuff

return \@arrayl, \@Qarray?2;
}

my (Sarrayrefl, Sarrayref2) = some_function(@some_data);

Be careful with returning multiple values. Many languages allowonly a single value to be returned
from a subroutine. This is actually not a bad idea. If you try to return too much from a single sub-
routine, it’s often a sign that the subroutine is trying to do too much.

Returning Data |

189

RETURNING A LIST WITHOUT PARENTHESES

You may have noticed the last line of the _running total subroutine you used
earlier:

sub _running_ total {
state Srunning total = 0;

shift;
op

my S$numbers
my Stotal

Stotal += $_ for @$numbers;
Srunning_total += Stotal;
return $total, S$running total;

Note that this returns a list of values but you’re not using parentheses around the
list. In Perl, it’s fine to return a list like this. The comma operator is what defines
a list (not the parentheses, like many people believe) and because return has a
fairly low precedence (Chapter 4), there is no need to wrap the list in parentheses.
However, many people feel more comfortable with using parentheses here, and
that’s fine:

return (Stotal, $running_total);

With or without parentheses, returning a list this way is the same thing. Just
remember that you need the parentheses when assigning the values to variables:

my (Stotal, S$running total) = _running_total (\@numbers) ;

wantarray

The wantarray builtin (perldoc -f wantarray) gives you some information about how the
subroutine was called. It returns undef if you don’t use the return value, 0 if you use it in scalar
context, and 1 if you expect a list. The following should make this clear:

sub how _was_1i_called {
if (not defined wantarray) {
no return value expected
print "I was called in void context\n";
}
elsif (not wantarray) {
one return value expected
print "I was called in scalar context\n";
}
else {
a list is expected
print "I was called in list context\n";

190 | CHAPTER7 SUBROUTINES

how_was_1i_called();

my S$foo = how_was_1i_called();
my ($foo) = how_was_i_called();
my @bar = how_was_1_called();
my (Sthis, S$that) = how _was_i_called();
my %corned_beef = how_was_1i_called();

The previous code prints:

was called in void context
was called in scalar context
was called in list context
was called in list context
was called in list context
was called in list context

HHHHHH

Note the following about the previous code:

» The first how_was_i_called() did not assign the result to any values, so it’s in “void”
context.

The second how_was_i_called() assigns to my $foo and results in a scalar context.

» Themy ($foo) resultsin a list context because the parentheses force a list context. Also,
the my @bar,my ($this, $that), and my %corned_beef result in the subroutine being
called in list context.

There are a variety of uses for wantarray, but it is usually used for returning a reference when
called in scalar context:

sub double_it {
my @array = @_;
$_ *= 2 for Qarray;
return wantarray ? @array : \@Qarray;

With that, if you call double_it () in scalar context, you get an array reference back.

Use of the wantarray builtin is controversial, and many programmers recommend against it
because it can lead to surprising code when developers are not expecting the subroutine to behave
differently just because they’re calling it with a different context.

FAIL!

Subroutines never know how they’re going to be called (or at least, they shouldn’t), but they should
handle problems. The following is a great example of a problem:

sub reciprocal {
my Snumber = shift;
return 1 / $number;

FAIL! | 191

As you may recall from math class, the reciprocal of a number is 1 divided by that number (or that
number raised to the power of —1). However, what happens when you pass a zero to your recipro-
cal subroutine? Your program dies with an I1legal division by zero error. Or what happens if
you pass a reference instead of a number? Or maybe you passed a string? That’s where you want to
check the error and handle it appropriately.

“Wake Up! Time to Die!”

Sometimes you need your program to die rather than spit out bad data. You can use the die builtin
for this. The die builtin optionally accepts a string. It prints that string to STDERR (refer to Chapter 4)
and halts the programs execution at that point. (Although you can trap this with eval {...} asyou
see in the “eval” section of this chapter.) So, say you have a program that should be executed via the
command line as follows:

perl count_to.pl 7

And that should count from 1 to the number supplied. You want that number to look like a num-
ber and to be greater than 0. Otherwise, you want the program to die. Arguments to programs are
passed via the @arGv variable. (Chapter 18 covers command=line handling.) You also use the
looks_like_number () subroutine exported from the standard scalar: :Util module.

use strict;

use warnings;

use Scalar::Util 'looks_like_number';
my $number = $SARGVI[O0];

if (not Q@ARGV or not looks_like_number ($number) or $number < 1) {
die "Usage: $0 positivenumber"}
print "$_\n" for 1 .. S$number;

If you run that without any arguments, with an argument that doesn’t look like a number, or with a
number less than 1, the program dies with the following error message:

Usage: count_to.pl positivenumber at count_to.pl line 8

NOTE The $0 variable contains the name of the program you’re currently run-
ning. See perldoc perlvar for more information.

That’s a handy way to stop a program before serious problems occur and let the user know what the
problem is.

If a problem is worth a warning but not worth stopping the program, you can warn instead:

unless ($config_file) {
warn "No config file supplied. Using default config";
Sconfig_file = $default_config file;

It works the same, but your program keeps running.

192

| CHAPTER7 SUBROUTINES

carp and croak

Calling die is useful, but you might notice that it prints the line number of where it died. Quite
often that’s a problem because you don’t want to know where the code died, but the line number of
the calling code. This is where the carp () and croak () subroutines come in. These are exported
automatically by the standard carp module with a use carp; statement, but your author likes to be
explicit about what functions he’s importing.

use Carp 'croak';
sub reciprocal {
my Snumber = shift;
if (0 == $number) {
croak "Argument to reciprocal must not be 0";

}
return 1 / Snumber;

}

reciprocal (0) ;
And that prints something like:

Argument to reciprocal must not be 0 at reciprocal.pl line 5
main: :reciprocal (0) called at reciprocal.pl line 11

It tells you where the error occurred (line 5) and where it was called from (line 11). In this simple
example, it’s not that important, but in larger programs where reciprocal () can be called from
multiple locations, it’s vital information to track down the error.

If you don’t want to stop the program but you need a warning, there’s also the carp () subroutine
that is like croak (), but for warn instead of die.

use Carp gw(croak carp);

unless (Sconfig_file) {
carp "No config file supplied. Using default config";
Sconfig_file = S$default_config file;

The carp module also exports confess () and cluck (). These are like croak () and carp (), but
they also provide full stack traces.

eval

Sometimes you want to try to run some code that might fail but handle the failure gracefully, rather
than killing the program. This is where the eval () builtin comes in handy. There are two types of
eval: string and block.

String eval

The first form of eval takes a string as its argument. The Perl interpreter is used to interpret the
expression and, if it succeeds, the code is then executed in the current lexical scope. This form of
eval is often used to delay loading code until runtime or to allow a developer to fall back to an
alternative solution to a problem. The special $@ variable is set if there are errors.

FAIL! |

193

Consider trying to debug the following example, shown earlier in the chapter:

use Data: :Dumper;

$Data: :Dumper: :Indent = 0;
my @numbers = (1, 2, 3);
my @new = map { $_++ } @numbers;

print Dumper (\@numbers, \@new);
That printed something like this:
SVAR1 = [2,3,4];$VAR2 = [1,2,3];

However, the $vAR1 and $VAR2 variables can be confusing, particularly when you try to figure out
what went wrong with your program. Data: : Dumper offers a syntax that enables you to “name”
these variables:

print Data: :Dumper->Dump (
[\@numbers, \@new],
[gqw/*numbers *new/],

)i
And that prints a much more “friendly”:
@numbers = (2,3,4);@new = (1,2,3);

However, the syntax is cumbersome. As a result, your author has released pata: : Dumper : : Names.
It behaves like Data: : Dumper but tries to provide the names of the variables. Simply change

Data: :Dumper tO Data: : Dumper : :Names and you should get the preceding output. But what if you
don’t have that installed? You can use a string eval to fall back to pata: : Dumper:

eval "use Data::Dumper: :Names";

if (my Serror = $@) {
warn "Could not load Data::Dumper::Names: Serror";
delay loading until runtime. This is a standard module
included with Perl
eval "use Data::Dumper";
}
SData: :Dumper::Indent = 0;

my @numbers = (1, 2, 3);
my @new = map { $_++ } @numbers;
print Dumper (\@numbers, \@new);

With this code, regardless of whether you could successfully load pata: : Dumper: : Names, you still
get sensible output; although, you get a large warning message to boot.

Block eval

The block form of eval traps the error with code that might fail. This is similar to try/catch with
other languages; although it has some issues as you’ll soon see.

194 | CHAPTER7 SUBROUTINES

sub reciprocal { return 1/shift }

for (0 .. 3) {
my Sreciprocal;
eval {
Sreciprocal = reciprocal($_);
}; # the trailing semicolon is required

if (my Serror = $@) {

print "Could not calculate the reciprocal of $_: Serror\n";
}
else {

print "The reciprocal of $_ is Sreciprocal\n";

And that prints:

Could not calculate the reciprocal of 0: Illegal division
by zero at recip.pl line 1.

The reciprocal of 1 is 1

The reciprocal of 2 is 0.5

The reciprocal of 3 is 0.333333333333333

As you can see, the block form of eval is very useful. Unfortunately, it’s also tricky to use safely.
Now look at a few of the problems and their solutions.

evalGotchas

You probably noticed that after the block eval, you should immediately save the error into a
variable:

eval { ... };
if (my Serror = $@) {
handle_error (Serror) ;

Why is that? Because in the previous example, if handle_error () itself has an eval, it may reset
$@, causing you to lose your error message.

Another common mistake is this:

if (my Sresult = eval { some_code() }) {
do something with $result

}

else {
warn "Could not calculate result: $@";

As you might guess, if some_code () is allowed to return a false value (zero, the empty string, undef,
and so on), you might think you have an error when you actually don’t. A better way to write the
preceding code is this:

FAIL! | 195

my Sresult;
my Sok = eval { Sresult = some_code(); 1 };
if ($ok) {
do something with S$Sresult
}
else {
my Serror = $@;
warn "Could not calculate result: Serror";

The eval block has a bare 1 as the last expression. The block returns the value of the last expres-
sion, and if some_code () does not generate an error, $ok is set to 1 and $result has the return
value of some_code (). Otherwise, $ok is set to undef.

But there’s still a problem with the previous code! If you work on a large system, it’s entirely possible
that your eval () might be called from code that is also wrapped in an eval. When you call eval (),
you’ve clobbered the outer code’s $e. So you need to rewrite this again, localizing the $e variable!

my Sresult;
my $ok = do {
local $@;
eval { Sresult = some_code(); 1 };

Y

That’s starting to get tedious, but it’s fairly safe. You now know about the problems with eval,
which you will probably encounter in older code. The author strongly recommends that you install
the excellent Try: : Tiny module from the CPAN.

Try:Tiny

The Try: : Tiny module provides a try/catch/finally system for Perl. Now rewrite your reciprocal
code using it.

use Try::Tiny;
sub reciprocal { return 1/shift }

for my S$number (0 .. 3) {
my Sreciprocal;

try {
Sreciprocal = reciprocal ($Snumber) ;
print "The reciprocal of $number is S$reciprocal\n";
}
catch {
my S$error = $_;
print "Could not calculate the reciprocal of $_: Serror\n";

Y

This behaves exactly like your previous eval solution, but it does not clobber the $@ variable. Also,
any error is now contained in $_ instead of $@, which is why you now name the number as $number
to avoid confusion.

196 | CHAPTER7 SUBROUTINES

The catch block executes only if the try block trapped an error.

You can also provide an optional £inally block that always executes, error or not:

try {
Sreciprocal = reciprocal ($number) ;
print "The reciprocal of S$Snumber is S$reciprocal\n";
}
catch {
my Serror = S$_;
print "Could not calculate the reciprocal of $_: S$Serror\n";
}
finally {
print "We tried to calculate the reciprocal of S$number\n";
};

Install Try: : Tiny from the CPAN, and read the documentation for more information about this
excellent module. You also want to read its source code (perldoc -m Try::Tiny) to learn more
about the effective use of prototypes (explained in the section “Prototypes Summary” later in this
chapter); although some of the code is advanced.

SUBROUTINE REFERENCES

One lovely and powerful feature about Perl is the capability to take references to subroutines. This
seems strange, but if you’re familiar with this feature, you can do strange and wonderful things. You
can take references to existing subroutines or create anonymous subroutine references.

Existing Subroutines

The use of a leading ampersand to call a subroutine was previously mentioned. Just as $, @, and %
are the sigils for scalars, arrays, and hashes, the & is the sigil for subroutines; although it’s not seen
as often. Thus, taking a reference to an existing subroutine results in the following:

sub reciprocal { return 1 / shift }

my S$reciprocal = \&reciprocal;

And there are two ways of calling this:

my $result = &Sreciprocal (4);
print $result;

my $result = Sreciprocal->(4);
print $result;

The first method, using &$reciprocal (4), is dereferencing the subroutine with the & sigil

and calling with arguments like usual. However, the author recommends the second form,
$reciprocal->(4), using the standard -> dereferencing operator. This is easier to read (you’re less
likely to miss that leading &) and it’s more consistent in your code if you consistently use the
dereferencing operator.

Subroutine References | 197

Anonymous Subroutines

Just as you can have anonymous arrays and hashes (among other things), you can also have anony-
mous subroutines by omitting the subroutine name identifier and assigning the result to a variable:

my Sreciprocal = sub { return 1 / shift };
print Sreciprocal->(4);

Closures

So far, taking references to subroutines seems interesting, but how do you use this? One way is to use
a closure. A closure is a subroutine that refers to variables defined outside of its block. It is said to
close over these variables. These have a variety of uses; although they won’t be covered extensively.
Check out the book Higher Order Perl by Mark Jason Dominus if you truly want to have your mind
twisted by their power.

NOTE Although a closure does not need to be an anonymous subroutine, it’'s
usually implemented as such.

Closures are often used for iterators and lazy evaluation. Say you want to periodically fetch the next
Fibonacci number. In mathematics, Fibonacci numbers are in the form:

F(0) =0
F(l1) =1
F(n) = F(n-1) + F(n-2)

So you end up with an infinite list like this:
0o, 1, 1, 2, 3, 5, 8, 13, 21

Obviously computing an infinite list all at once is not feasible, so you can use a closure to create an
iterator that generates these numbers one at a time, as shown in code file 1isting 7_1_fibonacci.pl.

LISTING 7-1: Computing the FibonacciSequence

use strict;
use warnings;
use diagnostics;

sub make_fibonacci {
my (Scurrent, $next) = (0, 1);
return sub {
my S$fibonacci = S$current;
($Scurrent, S$next) = ($next, S$current + Snext);
return $fibonacci;
Y
}

my S$Siterator = make_fibonacci(); .
continues

198 | CHAPTER7 SUBROUTINES

LISTING 7-1 (continued)

for (1 .. 10) {
my S$fibonacci = $iterator->();
print "S$fibonacci\n";

}

The make_fibonacci () subroutine returns an anonymous subroutine that references the $current
and s$next variables declared in the make_fibonacci () subroutine, but outside of the anonymous
subroutine. The $iterator variable contains a reference to this anonymous subroutine, and it
“remembers” the values of the $current and $next variables. Every time it is invoked, it updates
the values of $current and $next and returns the next Fibonacci number. Eventually, you get to the
for loop that prints the first 10 Fibonacci numbers. You can pass the $iterator variable to other
subroutines just like any other variable, and it still remembers its state.

You can create several iterators with this same subroutine, and each will have a separate copy of
$current and $next.

Writing a Dispatch Table

As you may recall from Chapter 4, the length builtin works only with scalars. For arrays and hashes,

you use scalar and scalar keys, respectively. This Try It Outwrites a mylength () subroutine that uses

a dispatch table with anonymous subroutines to handle this differently. All the code in this Try It Out
uses the code file example_7_2_length.pl.

1. Type in the following program, and save it as example_7_2_length.pl:

use strict;

use warnings;

use diagnostics;
use Carp 'croak';

my %$length_for = (
SCALAR => sub { return length ${ $_[0] } 1},
ARRAY => sub { return scalar @{ $_[0] } 1},
HASH => \&_hash_length,

sub _hash_length { return scalar keys %{ $_[0] } }

sub mylength {
my Sreference = shift;
my S$length = Slength_for{ ref Sreference }
|| croak "Don't know how to handle $reference";
return $length->($Sreference);

}

my S$Sname = 'John Q. Public';
my @things = qgw(this that and the other);
my %cheeses = (
good => 'Havarti',
bad => 'Mimolette',
)
print mylength(\S$name), "\n";
print mylength(\@things), "\n";

Subroutine References | 199

print mylength(\%cheeses), "\n";
print mylength($name), "\n";

2. Run the code with perl example_7_2_length.pl. It prints out the following:

14

5

2

Uncaught exception from user code:

Don't know how to handle John Q. Public at

The exception might be printed before, after, or in the middle of the list of numbers. That’s because
STDERR and STDOUT are handled separately by your operating system, and you cannot guarantee that
they will be printed in sequence.

How It Works

When you first call mylength (), Perl calls the ref builtin on your argument and attempts to fetch the
subroutine reference from the $1ength_for hash. If that subref is not found, you croak with an error.
The scarLar and ARRAY keys have anonymous references inlined as the values, while showing the HASH
key pointing to a reference to an existing subroutine, just to make the syntax clear. When you call
$length-> ($reference), you pass $reference as an argument to the subroutine reference you fetched
from $length_for hash.

This type of code is called a dispatch table because it enables you to dispatch to different code paths based
on a particular condition, and you have a table (the $1ength_for hash) containing those code paths.

NOTE Many beginning Perl programmers try to do something like this:

sub foo {
my S$Sfoo_arg = shift @_;
sub bar {
my Sbar_arg = shift @_;
do something
}
bar ($foo_arg) ;

While that’s a silly and useless example, some developers think they can “nest”
subroutines like that to hide the inner subroutine from the outside world. The
syntax is legal, but the inner subroutine is not hidden and can be called like any
other. Use an anonymous subroutine if you ever need to do this:

sub foo {
my $foo_arg = shift @_;
my Sbar = sub {
my S$bar_arg = shift @_;
do something
B 5
Sbar-> ($foo_arg) ;

200 | CHAPTER7 SUBROUTINES

PROTOTYPES

A prototype is a simple compile time argument check for subroutines. After the subroutine name but
before the opening curly brace of the block, you can include a prototype in parentheses. The syntax
looks like this:

sub sreverse($) {

my $string = shift;

return scalar reverse $string;
}
my Sraboof = sreverse 'foobar';
print $raboof;
print sreverse 'foobar', 'foobar';

And that prints raboof, the reverse of foobar. (You may recall that reverse takes a list and does not
reverse a string unless called in scalar context.)

Argument Coercion

With a prototype using the scalar sigil $, you can force scalar context on the argument to
sreverse (). Because only one sigil is used in the prototype, you also guarantee that only one
variable is used as the argument.

So you can write this:

sub sreverse($) {
my $string = shift;
return scalar reverse $string;

}

print sreverse("this", "that");

And Perl fails at compile time, telling you that you have passed too many arguments to the
subroutine:

Too many arguments for main::sreverse at proto.pl line 5, near ""that")"
Execution of proto.pl aborted due to compilation errors.

You don’t even need strict or warnings for this error to stop your program from compiling.

You can also use @ or % for a prototype. This slurps in all remaining arguments in list context.

sub foo (@) {
my @args = @_;

That might seem silly, but it means you can combine it with another prototype character:

Prototypes | 201

sub random_die_rolls($@) {

my (Snumber_of_rolls, @number_of_sides) = @

my @results;

foreach my $num_sides (@number_of_sides) {
my Stotal = 0;
Stotal += int(1 + rand($Snum_sides)) for 1 .. $number_of rolls;
push @results, S$Stotal;

}

return @results;

—

}
my @Qrolls = random_die_rolls 3;
print join "\n", @rolls;

That might print something like:

8
26
31

It simulates three rolls of each of the subsequent die with the requisite number of sides. In this par-
ticular case, the prototype offers no particular advantage.

So far there’s nothing terribly exciting here, but you can start to do interesting things if you put a back-
slash in front of a sigil. When you do this, you can pass the variable, and it is accepted as a reference.
The following is a subroutine that attempts to lowercase all hash values that are not references.

use Data: :Dumper;
$Data: :Dumper: :Sortkeys = 1;

sub my_lc(\%) {
my Shashref = shift;
foreach my S$key (keys %Shashref) ({
next if ref Shashref->{Skey};
Shashref->{$key} = lc Shashref->{Skey};

}

my Sname = 'Ovid';
my %hash = (
UPPER => 'CASE',
Camel => 'Case’',

)

hey, no backslash required!
my_lc %hash;
print Dumper (\%hash) ;

And that prints out:

SVAR1 = {
'Camel' => 'case',
'UPPER' => 'case'

Y

202

| CHAPTER7 SUBROUTINES

Because the hash is passed as a reference, it’s modified in place. Just copy the hash and return it if
you don’t want this behavior:

sub my_lc(\%) {
my Shashref = shift;
my %hash = %$Shashref;
foreach my S$key (keys %hash) {
next if ref $hash{Skey};
Shash{sSkey} = lc Shash{Skey};
}
return %hash;
}
my %1lc_hash = my_ lc %hash;

More Prototype Tricks

There’s a lot more you can do with prototypes, but your author generally doesn’t recommend them
if you don’t know what you’re doing. They don’t specify what type of variable you’re passing in.
They tend to specify the context of the variable you’re passing in and this mimics Perl builtins.

For example, say you want to write your own length () subroutine. In Perl, the 1ength () builtin
is only for scalars. It’s not for arrays and hashes. Here’s a lovely little example, borrowed from a
long Tom Christiansen e-mail to the Perl 5 Porters list (and republished at http://www.perlmonks
.org/?node_id=861966).

For some reason, you decide that you want to write a wrapper around the length () builtin because
you want it to handles arrays and hashes. You’ve already shown how to handle this with a dispatch
table, but try to handle this with prototypes.

sub mylength($) {
my Sarg = shift;
return
'ARRAY' eq ref S$arg ? scalar @Sarg
'"HASH' eq ref $Sarg ? scalar keys %$Sarg
length Sarg;

}

my S$scalar = "whee!";

print mylength($scalar), "\n";
my @Qarray = (1, 18, 9);
print mylength(@array), "\n";
my %$hash = (foo => 'bar');

print mylength(%hash), "\n";

You can probably already guess that something is wrong because even though you haven’t covered
how to use prototypes with different kinds of arguments, this looks, well, strange. Except that it’s
stranger than you think. This prints out:

Prototypes | 203

You can understand why it prints 5 for whee!, but why 1 for the array and 3 for the hash? The
mylength () with a $ prototype prints 1 for the array with three elements because the $ prototype
forces scalar context, so $arg contains the number of elements in the array, not the array itself!
Thus, you wind up returning the value of 1ength(3) and the string "3" is only one character long,
thus returning 1.

The hash is even stranger. In the previous example, that prints 3 on some implementations. This

is because that hash in scalar context probably evaluates to something such as 1/8, as described

in Chapter 3. The string "1/8" has a length of 3. An empty hash in scalar context evaluates to 0,
which has a string length of 1.

WARNING |f the output of mylength () seems strange to you, be aware that
Perl’s length () builtin behaves the same way. See perldoc -f length.

You can fix that by wrapping the three primary data type sigils in the \ [1 prototype syntax. This
tells Perl to pass a single scalar or array or hash as a reference to the subroutine.

sub mylength(\[$@%]) {
my S$arg = shift;
return
'ARRAY' eq ref $arg ? scalar @$arg
'HASH' eq ref $Sarg ? scalar keys %$arg
length S$Sarg;
}
my $scalar = "whee!";
print mylength($scalar), "\n";
my @array = (1, 18, 9);
print mylength(@array), "\n";
my %hash = (foo => 'bar');
print mylength(%hash), "\n";

That prints the expected:

w

You don’t need to test for an invalid reference type, such as a subroutine reference, being passed to
mylength () because Perl tries to check that at compile-time.

WARNING Parentheses are required with the mylength () subroutine because
otherwise you get an error about Too many arguments for main::mylength.
Why do you need parentheses here and not for the sreverse () subroutine
earlier? This is because of a known bug in Perl that has been fixed in version
5.14. You can read the gory details at https://rt.perl.org/rt3/Public/Bug/
Display.html?id=75904 if you’re curious.

204 | CHAPTER7 SUBROUTINES

Mimicking Builtins

The mylength () subroutine mimicked the behavior of the 1ength builtin, but customized for your
own needs. We’ll look a bit more at mimicking builtins. A backslash before a sigil tells Perl that you
want that variable to be accepted as a reference. So you can rewrite push like this:

sub mypush (\@@) {
my (Sarray, @args) = @_;
@$array = (@$Sarray, @args);
}
mypush @some_array, $foo, Sbar, S$baz;
mypush @some_array, @some_other_array;

This works because the e sigil in a prototype tells Perl to slurp in the rest of the arguments as a list.
You can use a % sigil in a prototype, but it’s useless unless you use a backslash to force a reference.

You can also separate optional arguments with a semicolon.

sub mytime(;$) {
my Sreal_time = shift;
if (Sreal_time) {
return scalar localtime;

}
else {
return "It's happy hour!";

This mytime () subroutine usually lies to you and tells you it’s fine for a drink, but if you pass it a
true value, it return a string representing a human-readable version of the current local time.

Sat Dec 24 11:11:26 2011

One nifty trick with prototypes is to use an ampersand (&) as the first argument. Say you want to
increment every element in a list by one. You might write this:

use Data: :Dumper;

my @numbers = (1, 2, 3);

my @new = map { $_++ } @numbers;
print Dumper (\@numbers, \@new);

That prints out:

SVAR1 = [
2,
3,
4

1;

SVAR2 = [
1,
2,

Prototypes | 205

If you look at that carefully, you realize that you’ve incremented all the values of the original list but
not the new one! Why is that? Chapter 4 briefly explains the map builtin. In that explanation, $_ is
aliased to every element in the original list. Because $_++ uses the post-increment operator, you suc-
cessfully modified the original value of $_ in the @numbers list but returned $_ to @new before you
incremented it!

You can use a clever subroutine prototype to create an apply () subroutine that applies an anony-
mous subroutine to every element in a list and returns a new list. This leaves your old list intact and
successfully creates the new list:

sub apply (&@) {
my $action = shift;
my @shallow_copy = @_;
foreach (@shallow_copy) {
Saction->();
}
return @shallow_copy;
}
use Data: :Dumper;
my @numbers = (1, 2, 3);
my @new = apply { $_++ } @numbers;
print Dumper (\@numbers, \@new);

And this prints the desired result:

SVAR1

SVAR2

The & as the first symbol in the prototype enables a subroutine to accept a block as the first argu-
ment, and this block is considered to be an anonymous subroutine. You are not allowed to use a
comma after it. The @ enables you to pass a list after the anonymous subroutine.

In the apply () subroutine, you copy @_ to @shallow_copy and then iterate over @shallow_copy.
Because the loop aliases $_ to each variable in the new array, the $action anonymous subroutine
doesn’t touch the original array and lets it “do the right thing.”

Of course, being a shallow copy, this now breaks:
my @munged = apply { $_->[0]++ } @list;

The dclone () subroutine from storable (described in Chapter 6) enables you to do a deep copy, if
needed.

206 | CHAPTER7 SUBROUTINES

Forward Declarations

A forward declaration is a subroutine declaration without a subroutine body. It’s just a way to tell
Perl “Hey, I’'m going to define this subroutine later.” Some programmers like predeclaring their sub-
routines because it solves certain parsing problems in Perl. You author won’t cover it in-depth but
will explain one case where it can prevent compile errors.

NOTE There’s a saying that only perl (lowercase) can parse Perl (uppercase).
This is true. Many languages have extremely well-defined grammars that
enable you to unambiguously declare the semantics of a given expression. For
a variety of reasons, this is not possible with Perl. That’s why the Perl parse

is heuristic in nature — that is to say “it usually guesses correctly.” Very, very
seldom will you have issues with this, but for some examples of how the perl
parser can sometimes get things wrong, see perldoc -f map.

When using prototypes, you often get subtle errors if you omit the parentheses. For example, the
following is a potential mysterious error:

use strict;
use warnings;
use diagnostics;

my Sreciprocal = reciprocal 4;

sub reciprocal ($) {
return 1/shift;

}

That’s going to generate a number of errors, even though the code looks fine. The first one looks like
this:

Number found where operator expected at recip.pl line 5, near "reciprocal 4" (#1)
(S syntax) The Perl lexer knows whether to expect a term or an operator.
If it sees what it knows to be a term when it was expecting to see an
operator, it gives you this warning. Usually it indicates that an
operator or delimiter was omitted, such as a semicolon.
(Do you need to predeclare reciprocal?)

What’s happening here? Well, when the Perl parser starts compiling the code down to its

internal form, it encounters the reciprocal 4 construct. Because it has not yet seen the prototype
for the reciprocal subroutine, it doesn’t know that 4 is an argument for a subroutine named
reciprocal (). You can solve this in one of three ways. One way is to define the reciprocal () sub-
routine before that line of code. That ensures that when Perl gets to reciprocal 4, it already knows

what it is.

Prototypes | 207

If you prefer your subroutines to be defined after the main body of code, you can use a forward dec-
laration with the correct prototype:

use strict;
use warnings;
use diagnostics;

sub reciprocal ($);
my S$reciprocal = reciprocal 4;

sub reciprocal ($) {
return 1/shift;
}

That let’s Perl successfully parse reciprocal 4 when it gets to it.

Finally, you can use parentheses with the subroutine call and that let’s Perl know that you really
wanted a subroutine and it’s not just a bare word:

use strict;
use warnings;
use diagnostics;

my S$Sreciprocal = reciprocal (4);

sub reciprocal ($) {
return 1/shift;
}

Prototype Summary

Prototypes can be confusing and complicated, but to top it off, they’re also buggy. You’ve already
seen one bug. Another one is that you can declare a number of invalid prototypes, such as (ee).

You can also declare useless prototypes. Consider a prototype of (@s$). The @ symbol tells Perl to
slurp in all arguments, leaving nothing for the $. Perl does not warn you about this.

Also, when you get to the chapter on objects (Chapter 12), you may be tempted to use prototypes for
methods. This does not work because prototypes are checked at compile time, but you don’t know
what method you will be calling until runtime. For now, just remember that prototypes are a bit of a
minefield. They would have been left out of this book entirely, were it not for the fact that a number
of programmers use them and often do so incorrectly. You are now warned.

There are far more issues with prototypes, but they’re far beyond the scope of this book. If you want to
use them, I recommend that you carefully read about them and make sure you know what you’re doing.

NOTE For more information on prototypes, see the Prototypes section perldoc
perlsub.

208

CHAPTER7 SUBROUTINES

Writing a zip() Subroutine That Takes Two Arrays

Sometimes you have data in several data structures that you want to combine into a single data struc-
ture. For example, if you have two arrays with the values of one array corresponding to the values in
the second array, you may want to “zip” those two arrays together into a key/value hash.

All the code in this Try It Out uses the code file example_7_3_zip.pl.

1.

2.

Type in the following program and save it as example_7_3_zip.pl:

use strict;

use warnings;

use diagnostics;
use Carp 'croak';
use Data: :Dumper;

sub zip(\@\@;$);

my @names = gw(alice bob charlie);

my @tests = qw(87 72);

my @final = qw(100 53 87);

my %test_grades = zip @names, @tests, 0;
my $final_grades = zip @names, @final;

uncomment the following line to see how this breaks
#my %$blows_up = zip @tests, @final;
print Dumper (\%test_grades, \%final_grades);

sub zip (\e\e;s) {
my (Sfirst, $second, $default) = @_;

if we don't have a default, croak if arrays are not
the same length
if (@_ < 3 and (@$first !'= @S$second)) {
croak "zip() arrays must be the same length without a default";
}
my $max_index = S$#Sfirst;
if (S#S$second > S$max_index) {
$max_index = $#S$second;
}

my @zipped;

for my $i (0 .. S$max_index) {
my $first_value = $1 <= S$#Sfirst ? S$first->[$i] : Sdefault;
my S$Ssecond_value = $1 <= S$#S$Ssecond ? S$second->[$i] : S$default;

push @zipped, S$first_value, S$second_value;
}

return @zipped;

Run the program with perl example_7_3_zip.pl. You should see something similar to the fol-
lowing output;

SVAR1 = {
'alice' => '87"',
‘charlie' => 0,

Recursion | 209

'bob' => '72"

SVAR2 =
'alice' => '100°',
'charlie' => '87"',
'bob' => '53"
Y

charlie now has a grade of 0 instead of an undefined value.

How It Works

The main “trick” here is the use of the \@\e; $ prototype. The first two \e@ bits tell Perl that you’re
going to pass in arrays and to accept them as array references. The semicolon tells Perl that any sigils
after the semicolon are optional. Then provide a final ¢ to tell Perl there’s an optional final argument.

The @_ < 3 test is where you check to see if you actually have that $default value. You don’t want
to make the mistake of using defined $default here, because you may want to have an undefined
$default padding out your zipped values.

Then, calculate the $max_index because you need to know how many elements you’ll be iterating over.
Part of the actual magic is in these two lines:

my Sfirst_value = $i <= $S#Sfirst ? Sfirst->[$i] : Sdefault;
my $second_value = $i <= S$#S$second ? $second->[$i] : S$default;

If the current index is less than or equal to the largest index value for the given array references (see the
section “Array References” in Chapter 6 if you don’t remember the $#$first syntax), then you know
that array has a value for that index. Otherwise, use the default value.

If you don’t like the $#$ syntax (and many don’t), you can use the following:

my Sfirst_value = $i < @Sfirst ? $first->[$Si] : Sdefault;
my $second_value = $i < @$second ? $second->[$i] : S$default;

That works, too. Use whichever you feel is easier to read.

RECURSION

A recursive subroutine is a subroutine that calls itself. Why might it do this? Because it’s often
clearer to express something in a recursive form. Also, sometimes it is easier to break a large prob-
lem into smaller problems and solve those. This section lets you look at both.

Basic Recursion

Remember that Fibonacci numbers are the following:

F(0) =0
F(1) =
F(n) = F(n-1) + F(n-2)

=

210

| CHAPTER7 SUBROUTINES

To write that as a recursive subroutine for finding the nth Fibonacci number, use this code:

sub F {

my $n = shift;

return 0 if $n == 0;

return 1 if $n == 1;

return F($n - 1) + F($n - 2);
}
print F(7);

And that correctly prints 13, which closely matches the mathematical definition of Fibonacci
numbers.

WARNING Recursive functions should almost always have one or more state-
ments that return without recursing. This is to prevent infinite loops. If you write a
recursive subroutine that never returns, look at your return statements carefully
to see if you forgot to have one break out of the recursion.

Divide and Conquer

Divide and conquer, in computer science, is a way to break a problem down into smaller problems to
try to solve each of those, perhaps breaking those down into smaller problems. For example, say you
have a sorted list of integers and want to find an integer in that list. One way to do this is to iterate
over the list:

sub search {

my (Snumbers, Starget) = @_;
for my $i (0 .. $#Snumbers) {
return $i if S$numbers->[$i] == Starget;
}
return;

}

This code works, but it can be slow. Imagine if you have a list of 1,000 elements. You might have
1,000 iterations before you find the number. Doing this repeatedly could be a performance problem.
A better strategy (again, assuming the list of numbers is sorted), is to do a binary search. This search
checks to see if your number is less than the midpoint of the list. If so, repeat the process for the first
half of the list. If not, repeat for the second half of the list. Repeat until you find the index or run
out of list. This means for the first iteration, you have at most 500 numbers to compare, then 250,
and then 125, 63, 32, 16, 8, 4, 2, and 1. So you have at most 10 iterations before finding the num-
ber. You see how to do this in code file 1isting 7 2 binary search.pl

LISTING 7-2: Performing a binary search

use strict;
use warnings;

Recursion | 21

my @numbers = map { $_ * 3 } (0 .. 1000);

sub search {
my (Snumbers, Starget) = @_;
return _binary_search(S$numbers, Starget, 0, S#Snumbers);

sub _binary_search {
my (Snumbers, S$target, $low, Shigh) = @
return if $high < $low;
divide array in two
my $middle = int(($low + S$high)
if (Snumbers->[$middle] > Starget
search the lower half
return _binary_search($numbers, Starget, S$low, $middle - 1);

/2);
) {

}
elsif ($Snumbers->[$middle] < Starget) {
search the upper half
return _binary_search(S$numbers, Starget, $middle + 1, Shigh);
}
found it!
return S$middle;

}

print search(\@numbers, 699),"\n";
print search(\@numbers, 28),"\n";

The previous code prints 233 when you search for the number 699, and undef when you search for
the number 28. It’s also fast. You’ll note how the code successfully divided the problem into smaller
and smaller steps recursively to find what you were looking for.

Memoization

Recursive subroutines can be expensive in terms of memory. If the subroutine is a pure subroutine,

you can memoize (cache or “memorize” previous results) it. The Memoize module on the CPAN can
help with this.

The memoize subroutine provided by the module enables a subroutine to remember a previous result
for a set of arguments. The first time you call a memoized subroutine, it calculates the value. On any
subsequent call it returns the cached value.

NOTE A pure subroutine relies only on the arguments passed to it and always
returns the same value for each set of arguments. It’s also guaranteed not to
have side effects.

use Memoize;
memoize ('F');

sub F {

212

| CHAPTER7 SUBROUTINES

my $n = shift;
return 0 if $n == 0;
return 1 if $n == 1
return F($n - 1)

+ F(Sn - 2);
}
print F(50);

That quickly prints 12586269025, but if you remove the memoize ('F') line, it can take several
hours to run. That’s because the recursive subroutine calls are often calculating the same thing, call-
ing themselves over and over. If you walk through the subroutine several times, you’ll understand
why this saves so much time.

Of course, everything has a price. The memoize subroutine works by using extra memory to store
the computed value. Often, you’ll find that trading RAM time for CPU time is a good trade-off.

LAl Writing a Recursive Maze Generator

All the code in this Try It Out is included in code file example_7_4_maze.pl.

1.

Type in the following program and save it as example_7_4_maze.pl:

use strict;
use warnings;
use diagnostics;

use List::Util 'shuffle';

my (SWIDTH, $HEIGHT) = (10, 10);
my $OPPOSITE_OF = (

north => 'south',

south => 'north',

west => 'east',

east => 'west',

)

my @maze;

tunnel(0, 0, \@Gmaze);
print render_maze(\@maze);
exit;

sub tunnel {
my ($x, Sy, Smaze) = @_;
my @directions = shuffle keys %0PPOSITE_OF;
foreach my $direction (@directions) ({

my (new_x, Snew_y) = ($x, Sy);

if ('east' eq $direction) { S$new_x += 1; }
elsif ('west' eq S$direction) { Snew._x -= 1; }
elsif ('south' eq S$direction) { Snew_y += 1; }
else { Snew_.y -=1; }

if a previous tunnel() through the maze has not visited
the square, go there. This will replace the _ or |
character in the map with a space when rendered

Recursion

213

if (have_not_visited(S$Snew_x, $new_y, Smaze)) {
make a two-way "path" between the squares
Smaze->[$y] [$x]{$direction} = 1;
Smaze->[Snew_vy] [$new_x] {SOPPOSITE_OF{S$direction}}
= 1;

This program will often recurse more than one
hundred levels deep and this is Perl's default
recursion depth level prior to issuing warnings.
In this case, we're telling Perl that we know
that we'll exceed the recursion depth and to
not warn us about it

no warnings 'recursion';

tunnel (new_x, Snew_y, Smaze);

e

if we get to here, all squares surround the current square
have been visited or are "out of bounds". When we return,
we may return to a previous tunnel() call while we're
digging, or we return completely to the first tunnel ()
call, in which case we've finished generating the maze.
This return is not strictly necessary, but it makes it
clear what we're doing.

P

return;

sub have_not_visited {
my ($x, Sy, Smaze) = @_;

the first two lines return false if we're out of bounds
return if $x < 0 or Sy < 0;
return if $x > SWIDTH - 1 or Sy > SHEIGHT - 1;

this returns false if we've already visited this cell
return if $maze->[S$y][$x];

return true
return 1;

creates the ASCII strings that will make up the maze
when printed
sub render_maze {

my $Smaze = shift;

Sas_string is the string representation of the maze
start with a row of underscores:
#
my $as_string = "_" x (1 + SWIDTH * 2);

Sas_string .= "\n";

214 | CHAPTER7 SUBROUTINES

for my $y (0 .. SHEIGHT - 1) {

add the | vertical border at the left side
$as_string .= "|";

for my $x (0 .. SWIDTH - 1) {
my $cell = $maze->[$y][$x];

if the neighbor is true - we have a path

$as_string .= $cell->{south} 2 » " : "_";
$as_string .= $cell->{east} 2 " " : "|";
}
Sas_string .= "\n";

}

return $as_string;

2. Run the program as perl example_7_4_maze.pl. You should see output similar to the
following:

Due to the random nature of this program, your maze will likely not match this one.

How It Works

This is the most complex Try It Out to date, and you should read and run the code a few times to
understand how it works.

You start at position 0,0, randomly shuffle the north, south, east, and west directions, and choose the
first direction. If that puts you in a square that is not out of bounds (outside of the grid boundaries) and
has not yet been visited, then you mark a two-way path between the two squares. Then you move to the
new square and repeat the process. This moving to a new square is done recursively by calling

tunnel () with the new square’s coordinates.

When you get to a square surrounded by out of bounds or surrounded by already visited squares, then
you return from the tunnel () subroutine and the next of the random north, south, east, and west
directions is tried for the previous squares.

Eventually, you’ve tried every north, south, east, and west direction for every square. When that’s
done, the recursion ends and you render the map. Now, you should look at the successive building
of a 3-by-3 map.

Things to Watch For | 215

As you can see, the upper right-left corner is 0,0; the upper-right is 2,0; the lower-left is 0,2; and the
lower-right is 2,2. Because arrays start with 0, the largest index is 2, which is why you refer to $HEIGHT
- 1 and $wIDTH - 1 in the code. The code starts in the upper-left corner. Now here’s a sample run:

||| 2] -] 3 1|
||| |- [
i [0
4 ||| 51 1|1 6 |||
[[[
[P - -1 [
7 8| || 9 |-

| |
- ||
[
As you can see, the code randomly progresses (tunneles) from 0,0 to 0,1 to 1,1 to 1,2 before ending up
at a dead end at 0,2 in the fifth rendition of the maze. What does it do then? It can’t go left or down
because those are out of bounds. It can’t go up because that’s a visited square. It can’t go right because
that’s also a visited square. As a result, the tunnel () subroutine returns, but it returns to itself because
it calls itself. The code then continues in the for loop for square 1,2. If you play around with this a bit,
particularly for larger maps, you can better understand how recursion can draw the entire maze.

The downloadable version available at http: //www.Wrox.com is a bit more elaborate. It attempts to
redraw the maze at every step to let you see how the maze is built.

THINGS TO WATCH FOR

Writing subroutines allows you to write more maintainable code, but a few guidelines can make
your subroutines better. None of these guidelines should be taken as hard-and-fast rules.

Argument Aliasing

Don’t forget that the @_ array aliases the arguments to the subroutine. It’s easy to forget this and
write code that usually works, but breaks when you least expect it. The following is some code that
tries to modify an array “in place,” but breaks when you pass it hard-coded values:

sub fix_names {

$_ = ucfirst 1lc $_ foreach @_;
}
fix_names(gw/alice BOB charlie/);

216 | CHAPTER7 SUBROUTINES

That throws a Modification of a read-only value error because arguments to fix_names ()
are hard-coded into the program.

Scope Issues

As much as possible, subroutines should rely only on the arguments passed to them and not on
variables declared outside of it. You may have noticed that with the exception of one of the
_running_total () examples (and even that closely encapsulated the state in an outer block), and
the “maze” example in this chapter, you’ve adhered to this rule closely. Why? Take a look at this
subroutine:

sub withdraw {
my Samount = shift;
if (Scustomer->{balance} - $amount < $minimum_balance) {
croak "$customer->{name} cannot withdraw $amount";

}

Scustomer->{balance} -= S$Samount;

Where did $minimum_balance come from? Where did $customer come from? What happens if
something else changes them in a way to make their data invalid? Who changed them? If you move
this subroutine somewhere else, are those external variables still in scope?

So why did the example_7_4_maze.pl example earlier in this chapter break this rule? It’s a trade-
off. The opening of the tunnel () subroutine looked like this:

sub tunnel {
my ($x, Sy, Smaze) = @_;

However, if you pass in all the variables you need (taking into consideration the variables needed in
have_not_visited()), then it looks like this:

sub tunnel {
my ($Sx, Sy, Smaze, Sopposite_of, Sheight, S$width) = @_;

At which point, the argument list starts to get ridiculous, and it’s harder to figure out what’s going
on. For a one-off demonstration, this is okay. In reality, when you need to track this much data,
switching to object-oriented programming (Chapter 12) is one strategy to control the chaos.

Doing Too Much

Your author has worked on corporate code with “subroutines” that are thousands of lines long.
They’re a mess, and it’s hard to figure out what’s going on.

A subroutine should generally do one thing and do it well. If it needs to do more, it can call other
subroutines to help it out. If you try to do too much in a subroutine, not only does the subroutine
start to become confusing, but also what happens if something else needs that “extra” behavior
you’ve squeezed into that subroutine? Keep subroutines small and tightly focused.

Summary | 217

Too Many Arguments

I’ve already listed the example of what the example_7_4_maze.pl tunnel () function would look

like if you passed in all required variables. If you look at the downloadable version, you’d need to
pass in even more:

my (
$x, Sy, $maze, S$opposite_of, $height, S$width,
Sdelay, S$can_redraw, $delay, S$can_redraw, S$clear

) = @_;

—

There are ways to work around this, but this example would have been ridiculous if you passed

in that many arguments. When something like this happens, try to rewrite your code in such a way
that you need fewer arguments. If you can’t, consider switching to named arguments and passing in
a hashref; although in this case it would not have helped much.

SUMMARY

You now know far more about subroutines than you probably expected. In Perl, subroutines are
powerful and can even be assigned to variables as references and passed around.

Subroutines are a useful way to organize your code with named identifiers to promote code reuse
and more readable code.

EXERCISES

1.

Write a subroutine named average () that, given a list of numbers, returns the average of those
numbers. Don’t worry about error checking.

Take the subroutine average () and add error checking to it. Make sure the error is fatal.

Hint: Try the 1looks_like_number () subroutine from Scalar::Util, described earlier in this
chapter.

Write a subroutine called make_multiplier () that takes a number and returns an anonymous
subroutine. The returned anonymous subroutine can accept a number and return that number
multiplied by the first number. Use your code to make the following print yves, twice.

Hint: Use a closure.

my Stimes_seven = make_multiplier(7);

my S$times_five = make_multiplier(5);
print 21 == S$times_seven->(3) ? "yes\n" : "no\n";
print 20 == $times_five->(4) ? "yes\n" : "no\n";

Write a sum () subroutine that sums its arguments via recursion.

218

CHAPTER7 SUBROUTINES

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

e

return
wantarray
warn/carp
die/croak

eval STRING
eval BLOCK

se

Try::Tiny
Subroutine refs
Closures

Prototypes

Recursive
subroutines

Memoization

KEY CONCEPTS

The subroutine argument array.

How to return data from a subroutine.

Determine the context in which a subroutine was called.
How to report warnings.

How to report problems and stop the program.

Delay the parsing of code until runtime.

Trap fatal errors in code.

The default eval error variable.

A better way of trapping errors in Perl.

How to pass subroutines as variables.

Subroutines that refer to variables defined in an outer scope.

Sigils added to a subroutine definition to suggest how arguments are
passed.

Subroutines that call themselves.

Making subroutines faster by using more memory.

Regular Expressions

WHAT YOU WILL LEARN IN THIS CHAPTER:

» Understanding basic regular expression matching

» Understanding substitutions, lookahead/lookbehind anchors and
named subexpressions.

» Creating useful regular expression modules

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code I’ve replaced the tabs in the following code
with spaces. Please review. The code for this chapter is divided into the following major
examples:

) o example_8_1_ name_and_age.pl

> example_8_2_ dates_pl

> listing 8_1_data_structure.pl

> listing 8_2_composed_regexes.pl

Sometimes instead of exactly matching text, you want to find some text that looks
like something you’re expecting. This is where Perl’s regular expressions come in.

A regular expression is a pattern that describes what your text should look like. Regular
expressions can get complex, but most of the time they’re straightforward when you
understand the syntax. Regular expressions are often called regexes. (A single regular
expression is sometimes called a regex or worse, a regexp).

220 | CHAPTERS8 REGULAR EXPRESSIONS

An entire book can be (and has been) written on this topic. This chapter focuses on those aspects of
regular expressions you’re most likely to encounter.

BASIC MATCHING

Say you have a list of strings and want to print all strings containing the letters cat because, like
your author, you love cats.

my @words = (
'laphroaig"',
'house cat',
'catastrophe',
'cat',
'is awesome',

);

foreach my Sword (@words) {
if (Sword =~ /cat/) {
print "S$word\n";

}
}

That prints out:

house cat
catastrophe
cat

The basic syntax of a regular expression match looks like this:

STRING =~ REGEX

The =~ is known as a binding operator. By default, regular expressions match against the built in
$_ variable, but the binding operator binds it to a different string. So you could write the loop

like this:

foreach (@words) {
if (/cat/) {
print "$_\n";

}
}

There is also a negated form of the binding operator, !~ used to identify strings not matching a

given regular expression:

foreach my Sword (@words) {
if (Sword !~ /cat/) {
print "S$word\n";

}
}

Basic Matching | 221

And that prints the following;:

laphroaig
is awesome

Without the binding operator, use negation like normal:

foreach (@words) {
if (!/cat/) {
print "$_\n";

}
}

If you want to match a forward slash (/), you can escape it with a backslash. Alternatively, as with
quote-like operators, you can use a different set of delimiters if you precede them with the letter m
(for ‘m’atch). The following are all equivalent and match the string 1/2.

/IN/2/
m"1/2"

m{1/2}
m(l/2)

Quantifiers

If you just want to match an exact string, using the index () builtin is faster:
my $word = 'dabchick';
if (index S$word, 'abc' >= 0) {
print "Found 'abc' in S$word\n";

}

But sometimes you want to match more or less of a particular string. That’s when you use
quantifiers in your regular expression. For example, to match the letter a followed by an optional
letter b, and then the letter ¢, use the ? quantifier to show that the b is optional. The following
matches both abc and ac:

if (Sword =~ /ab?c/) { ... }
The * shows that you can match zero or more of a given letter:

if (Sword =~ /ab*c/) { ... }
The + shows that you can match one or more of a given letter:

if (Sword =~ /ab+c/) { ... }

This sample code should make this clear. Use the gr () quote-like operator. This enables you to
properly quote a regular expression without trying to match it to anything before you’re ready.

222

| CHAPTER8 REGULAR EXPRESSIONS

my @strings =
abba

abacus

abbba

babble
Barbarella
Yello

)

aw (

my @regexes = (
qr/ab?/,
qgr/ab*/,
qr/ab+/,

)

foreach my $string (@strings) {
foreach my Sregex (@regexes) {
if ($string =~ S$regex) {
print "'Sregex' matches 'S$Sstring'\n";
}
}

And that prints out the following (the exact syntax of the stringified regex might change depending
on your version of Perl):

'(?-xism:ab?) ' matches 'abba'

' (?-xism:ab*) ' matches 'abba'

' (?-xism:ab+) ' matches 'abba'

' (?-xism:ab?) ' matches 'abacus'

' (?-xism:ab*) ' matches 'abacus'

' (?-xism:ab+) ' matches 'abacus'

' (?-xism:ab?) ' matches 'abbba'
'(?-xism:ab*) ' matches 'abbba'

' (?-xism:ab+) ' matches 'abbba'
'(?-xism:ab?) ' matches 'babble’

' (?-xism:ab*) ' matches 'babble'’

' (?-xism:ab+) ' matches 'babble'’
'(?-xism:ab?) ' matches 'Barbarella’
' (?-xism:ab*) ' matches 'Barbarella’

Sadly, nothing matches Yello, an excellent music group, but studying the rest of the matches should
make it clear what is happening.

However, you may wonder what that bizarre (?-xism:ab*) is doing on the regex you printed?
Those are regular expression modifiers, which are covered in the “Modifiers and Anchors” section
of this chapter.

If you need to be more precise, you can use the {n,m} syntax. This tells Perl that you want to match
at least # times and no more than m times. There are three variants of this:

/ab{3}c/ # 1 a, 3 'b's, 1 c (only "abbbc")
/ab{3,}c/ # 1 a, 3 or more 'b's, 1 ¢
/ab{3,6}c/ # 1 a, 3 to 6 'b's, 1 ¢

Basic Matching | 223

Table 8-1 summarizes the different types of regex quantifiers and their meaning.

TABLE 8-1: Regex Quantifier

QUANTIFIER MEANING

* Match O or more times.

+ Match 1 or more times.

? Match O or 1times.

{n} Match exactly n times.

{n,} Match at least n times.

{n,m} Match at least n times but not more than m times.

By default, all quantifiers in Perl are greedy. That means they’ll try to match as much as possible.
For example, the dot metacharacter (.) means “match anything” except newlines and . * matches
the rest of the string up to a newline. In the “Extracting Data” section later in this chapter when you
learn to print out just the bits you’ve matched, you’ll discover that for the word cataract, the regu-
lar expression a.+a matches atara and not just ata. If you want a quantifier to be lazy (match as
little as possible) instead of greedy, just follow it with a question mark:

if ("cataract" =~ /a.+?a/) {
the first match is now "ata" instead of "atara"

}

NOTE By now you’ve noticed that some characters in regexes have a special
meaning. These are called metacharacters. The following are the metacharacters
that Perl regular expressions recognize:

{31107 [*+2\

If you want to match the literal version of any of those characters, you must
precede them with a backslash, \. As you go through the chapter, the meaning
of these metacharacters will become clear.

Escape Sequences

Sometimes, you want to match a wide variety of different things that are difficult to type, or may
match a wide range of characters. Many of the common cases are handled with escape sequences.
Table 8-2 explains some of these sequences and we’ll give a few practical examples after the table.
This is not an exhaustive list, just a list of the more common sequences.

224 | CHAPTER8 REGULAREXPRESSIONS

TABLE 8-2 Common Escape Sequences

ESCAPE MEANING

\A Beginning of string.

\b Word boundary.

\cx ASCII control character (for example, CTRL-C is \cC).

\d Unicode digit.

\D Not a Unicode digit.

\E End case (\F, \L, \U) or quotemeta (\Q) translation, only if interpolated.
\e Escape character (ESC, not the backslash).

\g{GROUP} Named or numbered capture.

\G End of match ofm/ /g.

\k<GROUP> Named capture.

\1 Lowercase next character only, if interpolated.

\L Lowercase until \E, if interpolated.

\N{CHARNAME} Named character, alias, or sequence, if interpolated. You must use

charnames (see Unicode in Chapter 9).

\n Newline.

\p{ PROPERTY?} Character with named Unicode property.
\P{PROPERTY?} Character without named Unicode property.
\Q Ignore metacharacters until \E.

\r Return character.

\s Whitespace.

\S Not whitespace.

\t Tab.

\u Uppercase next character only, if interpolated.
\U Uppercase until \E, if interpolated.

\w Word character.

a\w Not word character.

\z True at end of string only.

\Z True right before final newline or at end of string.

Basic Matching | 225

Of those, the ones you’ll most commonly see are \w (word characters), \d (digits), \s (whitespace),
and \b (word boundary).

Say you have some strings and you want to find all strings containing phone numbers matching the
pattern xxx-xxx-xxxx where x can be any digit. You might use the following regular expression:

for my (@strings) {

if (/\d{3}-\d{3}-\d{4}/) {

print "Phone number found: S$string\n";
}

}

And that indeed matches 555-867-5309. Unfortunately, it also matches a string containing
555555555-867-444444444 and that, presumably, is not a phone number. You can deal with this in
several ways. If you know the phone number has whitespace on either side, you could try to match
whitespace with the \s escape:

for my (@strings) {

if (/\s\d{3}-\d{3}-\d{4}\s/) {

print "Phone number found: S$string\n";
}

}

Maybe you don’t know what is on either side of the phone number. You might make a mistake and
try to match non-digits with \D:

for my (@strings) {

if (/\D\d{3}-\d{3}-\d{4}\D/) {

print "Phone number found: S$string\n";
}

}

That looks reasonable, but try this:

print "Phone: 123-456-7890" =~ /\D\d{3}-\d{3}-\d{4}\D/
5 tyeg"
"No" :

That prints No. Why? Because \D must match something. The first \D matches a space, but the
second one has nothing to match. What you want is the \b. That matches a word boundary. A word
is matched by \w and that’s any alphanumeric character, plus the underscore. A word boundary
matches no characters but matches when there is a transition between a word and nonword
character. (This means that \w\b\w can never match anything).

print "Phone: 123-456-7890" =~ /\b\d{3}-\d{3}-\d{4}\b/
? "Yes"
"No";

That prints Yes because the final \b matches between the final digit and the end of the string.

226

CHAPTER 8 REGULAR EXPRESSIONS

WARNING The \d matches any Unicode (Chapter 9) character that represents
a digit, and there are far more than you probably know about, including a few
mistakes that have crept into the Unicode standard. If you want to match only
the digits 0 through 9, use the [0-9] character class. See sections “Character
Classes” and “Grouping” later in this chapter

Extracting Data

At this point, you’re probably thinking “That’s nice, but what good is that data if you can’t get it?”
It’s simple: Put parentheses around any data in a regular expression that you want to extract. For
every set of capturing parentheses, use a $1, $2, $3, and so on, to access that data.

NOTE These special variables will only be populated if the match succeeds.

if ("Phone: 123-456-7890" =~ /(\b\d{3}-\d{3}-\d{4}\b)/) {
my S$phone = $1;

print "The phone number is S$phone\n";

}

And that prints the following;:

The phone number is 123-456-7890

You can use this to populate data structures. Consider the following block of text. You want to create
a hash of names and their ages. Listing 8-1 shows (code file 1isting_8_1_data_structure.pl) an
example of this.

LISTING 8-1: Building Data Structures with Regexes

use strict;

use warnings;

use diagnostics;
use Data: :Dumper;

my $text = <<'END';

Name: Alice Allison Age: 23
Occupation: Spy

Name: Bob Barkely Age: 45
Occupation: Fry Cook

Name: Carol Carson Age: 44
Occupation: Manager

Name: Prince Age: 53
Occupation: World Class Musician

Basic Matching

227

END

my %age_for;

foreach my $line (split /\n/, Stext) {
if ($line =~ /Name:\s+(.*?)\s+Age:\s+(\d+)/

Sage_for{sl} = $2;
}
}

print Dumper (\%age_for) ;

And that prints something like this:

SVAR1 = {
'Bob Barkely' => '45"',
'Alice Allison' => '23',
'Carol Carson' => '44‘',
'Prince' => '53'

Y

)

{

NOTE |If captures starting with $1 sound odd, it might be because other indexes
in Perl start with 0 and not 1. In this case, $0 is reserved for the name of the

program executed.

If that regular expression is confusing, the following is a way to make it read easier: Put a /x modi-
fier at the end, and all whitespace (unless escaped with a backslash) will be ignored. You can then
put comments at the end of each part to explain it.

my $name_and_age = qr{

Name:

\s+ # 1 or more whitespace
(.*?) # The name in $1

\s+ # 1 or more whitespace
Age:

\s+ # 1 or more whitespace
(\d+) # The age in $2

}x;

foreach my $line (split /\n/, Stext) {

if ($line =~ S$name_and_age) {
Sage_for{sl} = $2;

}

That makes regexes much easier to read.

As was explained earlier, the . metacharacter will match anything except newlines, but see the /s

modifier in the “Modifiers and Anchors” section of this chapter. So . * means match zero or more of
anything. The .* is made lazy by adding a question mark after it. If we didn’t do this, it would have
matched greedily and pulled in all the whitespace it could before the \s+. The resulting data

structure would have looked like this:

228

| CHAPTER8 REGULAR EXPRESSIONS

SVAR1 = {
'Carol Carson ' => '44"',
'Alice Allison' => '23',
'Bob Barkely ' => '45',
'Prince ' o=> '53"

WARNING Be careful when using the . metacharacter. Avoid it you possibly
can. Because it matches indiscriminately, it’s easy for it to match something you
don’t intend. It’s far better to have a regular expression state explicitly what
you want to match. For the $name_and_age regex, your author probably would
have written [[:alpha:] 1*?, but this hasn’t been covered yet.

You can also use those digit ($1, $2, and so on) variables in a regular expression. However, you
precede them with a backslash. The $1 captured by the first set of parentheses is matched by \1. The
following is how you can find double words:

print "Four score score and seven years ago" =~ /\b(\w+)\s+\1\b/
? "The word ($1) was doubled"
"No doubles found";

And that prints the following;:
The word (score) was doubled

Use the \b (word boundary) after the \1 to ensure that strings such as the theramin are not
reported as doubled words.

Modifiers and Anchors

A regular expression modifier is one or more characters appended to the end of the regular expres-
sion that modifies it.

Earlier, when printing a regular expression, you saw (?-xism:ab?). The (?-) syntax shows the
modifiers in effect for the regular expression. If the modifying letter is after the minus sign (-), then
it does not apply to the regex. For the $name_and_age regular expression used earlier, you can also
add an/i modifier at the end of it. When that’s added, it makes the regular expression case-insensi-
dve./name/inxnchesName,name,nAMe,andso(HL

For the (?-) syntax, if a modifying letter is before the minus sign, it means that it applies to this
regex:

my $name_and_age = gr{
Name:
\s+ # 1 or more whitespace
(.*?) # The name in $1

Basic Matching

229

\s+ # 1 or more whitespace
Age:

\s+ # 1 or more whitespace
(\d+) # The age in $2

Ixi;
print S$name_and_age;

And that prints the following:

(?ix-sm:
Name :
\s+ # 1 or more whitespace
(.*?) # The name in $1
\s+ # 1 or more whitespace
Age:
\s+ # 1 or more whitespace
(\d+) # The age in $2

)

Table 8-3 shows the most common modifiers.

TABLE 8-3: Common Regex Modifiers

MODIFIER MEANING

/x Ignore unescaped whitepace.

/1 Case-insensitive match.

/g Global matching (keep matching until no more matches).
/m Multiline mode (explained in a bit).

/s Single line mode (The . metacharacter now matches \n).

You already know about the /x and /i modifiers, so now look at the /g modifier. That enables you

to globally match something. For example, to print every non-number in a string, use this code:

my $string = '';

while ("alb2c3dddd4ddeee66" =~ /(\D+)/g) {
$string .= $1;

}

print S$string;

And that prints abcddddeee, as you expect.

You can also use this to count things, if you’re so inclined. Here’s how to count every occurrence of

a word ending in the letters at.

230

| CHAPTER8 REGULAR EXPRESSIONS

my $silly = 'The fat cat sat on the mat';
my Sat_words = 0;
Sat_words++ while $silly =~ /\b\w+at/g;

The $at_words variable contains the number 4 after that code runs. If you don’t like statement
modifiers (putting the while at the end of the statement), you can write it this way:

while ($silly =~ /\b\w+at/g) {
Sat_words++;

You might recall that while loops are often used with iterators. The /g modifier effectively turns the
regular expression in to an iterator.

The /m and /s modifiers look a bit strange, but to discuss those, you need to understand anchor
metacharacters first.

Anchor metacharacters are used to “anchor” a regular expression to a particular place in a string.
They do not match an actual character. You’ve already seen one anchor: \b. The ~ is used to match
the start of the string, and the $ is used to match the end of the string. They are synonymous with
\a and \z. Both ¢ and \z match the end of a string or before a newline. Therefore, if you have a
newline in your string, the $ matches immediately before the newline.

my Sprisoner = <<"END";
I will not be pushed, filed, stamped, indexed, briefed, debriefed or numbered.
My life is my own.

END

print $prisoner =~ /"I/ ? "Yes\n" : "No\n";
print $prisoner =~ /"My/ ? "Yes\n" : "No\n";
print Sprisoner =~ /numbered\.S$/ ? "Yes\n" : "No\n";
print $Sprisoner =~ /own\.$/ ? "Yes\n" : "No\n";
That prints:

Yes

No

No

Yes

In other words, only /~1/ and /own\ . $/ matched. If you want /~My/ and /numbered\.$/ to match,
use the /m switch to force a multiline mode. That forces the ~ and $ to match at the beginning and
end of every string (separated by newlines) instead of the beginning and end of the entire string.

You also need to know that if the ¢ is not the last character in the regular expression, Perl assumes
that this is the sigil introducing a scalar variable:

my $match = "aa";
if ($some_string =~ /$match/) {
match words containing aa

Later, you see how to take advantage of this to build complicated regular expressions that would
ordinarily be too difficult to write.

Basic Matching | 231

Character Classes

Sometimes, you want to match a few characters as even numbers. You can do this with a character
class. You put the characters you want in square brackets, [1. Here’s a silly way to extract all posi-
tive, even, ASCII integers from a string:

my $string = '42 85 abcd 8 4ever foobar 666 43';
my @even;
push @even => $1 while S$string =~ /\b(\d*[02468])\b/g;

That leaves @even containing the numbers 42, 8, and 666. Here’s how it works. By now you already
know that the \b matches a word boundary, so the 4 in 4ever cannot be matched because not

only is that an abomination to the English language, but also there is no “boundary” between the

4 and ever.

The \d*[02468] means “zero or more digits, followed by a 0, 2, 4, 6, or 8” — in other words, a
positive even integer.

In a character class, only the -1\~$ characters are considered “special.” So a . can match a literal
dot, not “any character except newline.” If the first character is a caret, *, then it’s a negated charac-
ter class. This means it can match anything except what’s listed in the character class, and you can
use this to match odd numbers:

my $string = '42 85 abcd 8 4dever foobar 666 43';
my @odd;
push @odd => $1 while $string =~ /\b(\d*["02468])\b/g;

That pushes 85 and 43 onto the @odd array. (Of course, you could have simply used [13579] for the
character class.)

The dash (-) if used any place after the first character in a character class tries to create a range. For
example, as mentioned earlier \d matches any Unicode character. (Chapter 9 discusses Unicode.) If
you want to match only the 0 through 9 ASCII digits, you can use [0-9]. This is generally easier to
read than [01234567891; although, they mean the same thing.

You can have multiple ranges in a character class. [0-9a-fA-F] can match all hexadecimal digits.

Perl also supports POSIX character classes. These have the form [:name:]. Despite the square
brackets around them, you must use an additional set of square brackets around them. For example,
to match all alphabetical and numeric characters (the same as \w, but without the underscore), you
could use [[:alnum:]]. You can combine these, too. To match all digits and punctuation charac-
ters, use [[:digit:][:punct:]]. Table 8-4 explains Perl’s POSIX-style character classes and their
meaning.

232 | CHAPTER8 REGULAREXPRESSIONS

TABLE 8-4: POSIX Character Classes

CLASS MEANING

[:alpha:] Letters (Think “Unicode” — Chapter 9. It’s more than you think.)
[:alnum:] [:alpha:] plus Unicode digits.

[:ascii:] ASCII only.

[:cntrl:] Control characters.

[:digit:] Unicode digits.

[:graph:] Alphanumeric and punctuation characters.

[:lower:] Lowercase letters.

[:print:] Printable characters ([:graph:] plus [:space:]).
[:space:] \s. In other words, tab, newline, form feed, and carriage return.
[:upper:] Uppercase characters.

[:xdigit:] Hexadecimal digits ([0-9a-fA-F]).

[:word:] \w.

NOTE A common, confusing mistake for regular expressions is to try to use
POSIX-style regular expressions like this:

if ($string =~ /[:alnum:]/) {
}

Not only does that not work, but it also doesn’t generate an error. This is
because Perl sees [:alnum:] as being a character class matching :, a, 1, n, u,
m. (It’s OK to list a character more than once in a character class.) You must write
that [[:alnum: 1] for Perl to recognize the regex correctly.

As a Perl extension to POSIX character classes, you can include a ~ after the [: to indicate negation.
So to match anything that is not a control character, use [[:"cntrl:]].

Grouping

For a character class, list the types of characters you’re looking for. For a group, you can list the
types of words you’re looking for. To group words (or patterns), put parentheses around them; then
you can do all sorts of interesting things, including using quantifiers:

Basic Matching | 233

cat, optionally followed by astrophe
/cat (astrophe) ?/

You can use a | character in the group to alternate between different patterns:

matches catastrophe, cataract and catapult, but not cat
/cat (astrophe|aract |apult)/

You’ve seen parentheses before used when you want to extract data into the $1, $2, and $3 variables
and so on. If you want to group but don’t want to extract the data (perhaps you’re inserting a group
into an existing regex and don’t want to change all your match variables), use the (?:...) syntax:

matches catastrophe or cataract, but without setting $1
/cat (?:astrophe|aract)/

As you’ve already seen (?-xism:...) earlier, you may wonder if the (?:...) syntax is related — it’s
the same thing. You can set those modifiers to tell Perl how to behave. For example, make part of a
regex case-insensitive. Maybe you’re writing code to list everyone who is a volunteer. Unfortunately,
the people who typed in the data typed volunteer, Volunteer, and VOLUNTEER.

use Data: :Dumper;

my Stext = <<'END';

Name: Alice Allison Position: VOLUNTEER
Name: Bob Barkely Position: Manager
Name: Carol Carson Position: Volunteer
Name: David Dark Position: Geek
Name: e.e. cummings Position: Volunteer
name: Fran Francis Position: volunteer
END

my @volunteers;
foreach my $line (split /\n/, S$text) {
if ($line =~ m<Name:\s+(.*?)\s+Position:\s+(?i-xsm:volunteer)\b>) {
push @volunteers => $1;
}
}

print Dumper (\@volunteers) ;
And that prints the following:

SVARL = [
'Alice Allison',
'Carol Carson',
'e.e. cummings'

1:

You can sneakily put the . in the Name pattern to still match e.e. cummings.

Why didn’t it add Fran Francis to that list? Because she has name: in front of her name, but you
didn’t make that part of the regular expression case-insensitive.

234 | CHAPTER8 REGULAR EXPRESSIONS

Typing (?i-xsm:volunteer)might be a bit cumbersome. If the entire regular expression is not
using the /x, /s, or /m modifiers, you don’t need the -xsm in the group. You need them only if you
need to explicitly disable them — and you don’t need to list all of them. So you could have written
(?i:volunteer), which is cleaner.

Using /g and [[:alpha]]

Earlier you extracted names and ages from a section of text by splitting the text on newlines and
matching resulting lines against a regular expression. All the code in this Try It Out uses the exam-
plefolfnamefandﬁage.plCodefﬂ&

foreach my $line (split /\n/, Stext) {
if ($line =~ /Name:\s+(.*?)\s+Age:\s+(\d+)/) {
Sage_for{s$l} = $2;
}

If $text is huge, that’s rather inefficient and can better be handled with a while loop and the /g modi-
fier. Also, we mentioned earlier that the (.*?) should be avoided. Now let’s be more precise.

1. Type in the following program, and save it as example_8_1_name_and_age.pl:

use strict;
use warnings;
use Data: :Dumper;

my $text = <<'END';

Name: Alice Allison Age: 23
Occupation: Spy

Name: Bob Barkely Age: 45
Occupation: Fry Cook

Name: Carol Carson Age: 44
Occupation: Manager

Name: Prince Age: 53
Occupation: World Class Musician
END

my %age_for;

while (S$text =~ m<Name:\s+([[:alpha:]]+?)\s+Age:\s+(\d+)>g) {
Sage_for{s$l} = $2;

}

print Dumper (\%age_for) ;

2. Run the program with perl example_8_1_name_and_age.pl. You should see the following
output:

SVAR1 = {
'Bob Barkely' => '45',
'Alice Allison' => '23',
'Carol Carson' => '44"',
'Prince' => '53"'
}s

Advanced Matching | 235

How It Works

This works almost the same as the previous version but with some important differences. First, the /g
turns the regular expression match into an iterator you can use with the while loop. It forces the
regular expression to keep matching until no more matches are found.

The example uses m<. . .> for the regular expression — just to remind you that you can use different
delimiters.

The [[:alpha:]] matches alphabetic characters plus a space character. Note the space before the
trailing square bracket.

In short, there’s nothing magical here, but now you can move to some more advanced regular expres-
sion techniques.

ADVANCED MATCHING

As you work with regular expressions more, youw’ll want to do more powerful things with them.
Regular expressions are a special-purpose declarative language embedded in Perl. Although they’re
generally not Turing complete (http://en.wikipedia.org/wiki/Turing_complete), they’re still
powerful. (Even if they were Turing complete, you'd upset a lot of programmers if you wrote your
programs solely in terms of regular expressions.)

Substitutions

Substitutions are the next logical step in your programming journey (although not an “advanced”
feature of regexes). They have the following form:

s/regular expression/replacement text/
You prefer a rare steak to a well-done steak (as you should), so you need to fix this menu item:

my $main_course = "A well-done filet mignon";
Smain_course =~ s/well-done/rare/;
print Smain_course.

And that prints A rare filet mignon.

As with the normal m//, you can use the /g modifier to make substitutions global. The following is
a (stupid) technique to remove all doubled words from a text:

my Stext = "a a b b ¢ cat dddd";
Stext =~ s/\b(\w+)\s+\1\b/$1/g;
print S$Stext;

And that leaves you witha b ¢ cat dd.

Now use the /x modifier to make this a bit clearer.

236

| CHAPTER8 REGULAR EXPRESSIONS

Stext =~ s/
\b # word boundary
(\w+) # capture to $1
\s+ # whitespace
\1 # doubled word (matches $1)
\b # word boundary
/$1/gx; # replace doubled with $1

The left side of the substitution is a regular expression, and the right side is not. Thus, you can use
\1 inside the regex and $1 outside the regex.

Lookahead/Lookbehind Anchors

As you know, an anchor matches a particular place in a string without actually matching a charac-
ter. Lookahead/behind anchors (and their negative counterparts) are primarily used with substitu-
tions (and sometimes split ()) to allow fine-grained control over matching. A positive lookahead
enables you to match text following a regular expression, but not including it in the

regular expression. The positive lookahead syntax is:

(?=Sregex)

For example, if you want to replace all xxx followed by yyy with ---, but not replacing the yyy, you
can do this:

my S$string = 'xXxXyyyxxxbbbxxxyyy';

$string =~ s/

XXX # match xxx

(?=yyy) # followed by yyy, but not included in the match
/=-=-=/%Xg;

print S$string;
And that prints out the following;:

-—-yyyxxxbbb ---yyy

The negative lookahead syntax is (?!$regex). That enables you to match a regular expression not
followed by another regular expression, but the negative lookahead is not included in the match. Say
your young child is writing a “compare and contrast” essay about Queen Elizabeth of the United
Kingdom and queen bees and ants. She writes this:

The queen rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.
The queen lives in a palace and the queen bee lives

in a hive.

Obviously, you are horrified because the queen of the United Kingdom should be referred to as
Queen Elizabeth in this context. So you write this:

my $Schilds_essay = <<'END_ESSAY';
The queen rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.

Advanced Matching | 237

The queen lives in a palace and the queen bee lives
in a hive.
END_ESSAY

Schilds_essay =~ s/the queen/Queen Elizabeth/gi;
print S$childs_essay;

And that prints out the following;:

Queen Elizabeth rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.

Queen Elizabeth lives in a palace and Queen Elizabeth bee lives
in a hive.

Obviously, that’s not going to earn your daughter a good grade, so let’s use a negative lookahead to
replace only those instances of queen not followed by the words ant or bee.

my $childs_essay = <<'END_ESSAY';

The queen rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.
The queen lives in a palace and the queen bee lives

in a hive.

END_ESSAY

Schilds_essay =~
s/
the

\s+
queen

\s+

(?!ant |bee)

/Queen Elizabeth /gxi;

print $childs_essay;
And that prints out the desired paragraph:

Queen Elizabeth rules over the United Kingdom and is loved by
her subjects but a queen ant just lays a lot of eggs.

Queen Elizabeth lives in a palace and the queen bee lives

in a hive.

Your daughter may not get a wonderful grade for the essay, but at least she’ll be following proper
editorial style.

NOTE The Queen Elizabeth/queen ant example seems fairly contrived, but it’s
based on a true story of an online news organization whose computer-driven
editorial rules had a news story about ants referring to Queen Elizabeth laying
thousands of eggs and having a lifespan of many times that of her workers. We
hope Her Majesty was amused.

238 | CHAPTER8 REGULAR EXPRESSIONS

Positive lookbehinds are designated with (?<=$regex) and negative lookbehinds are written as
(?<!$regex). They are identical to their lookahead counterparts with two exceptions:

» They match text before the regular expression.

» They cannot match a variable-width regex, meaning that *, +, and ? quantifiers are not
allowed.

Named Subexpressions (5.10)

If you use Perl 5.10 or better, you can also use named subexpressions. Ordinarily, you refer to a
captured group in the regex with \1, \2, and so on. After a successful match, those are $1, $2, and
so on. With named subexpressions you can name them and make things easier to read.

To name a subexpression, use the syntax (?<name>. . .). To refer to it again inside of the regex, use
\g{name}. To refer to the match outside of the regex, be aware that it’s a key in the special %+ hash.
For example, the double-word stripper would look something like this:

NOTE The %+ hash is a special variable that contains only entries for the last
successfully matched named subexpressions in the current scope. Thus, if a
named subexpression fails to match, it will not have an entry in the %+ hash.
There is a corresponding %$- hash not covered here. See perldoc perlvar and
perldoc perlretut for more information.

use v5.10;

my Stext = "a a b b ¢ cat dddd";
Stext =~
s/
\b
(?<word>\w+)
\s+
\g{word}
\b
/$+{word}/gx;

print Stext;

For a clearer example consider matching dates. You may remember the code to convert a date to the
ISO 8601 format. Here you can rewrite it with named subexpressions.

Before:
my Sprovided_date = '28-9-2011"';

Sprovided_date =~ s{
(\d\dz) # day

Advanced Matching | 239

[-/] # - or /
(\d\d?) # month
[-/1] # - or /
(

\d\d\d\d) # year
}

{
sprintf "$3-%02d-%024", $2, $1
tex;

print S$provided_date;
After:
my $provided_date = '28-9-2011"';

Sprovided_date =~ s{
(?<day>\d\d?)

[-/]
(?<month>\d\d?)

[-/]
(?<year>\d\d\d\d)
}

{
sprintf "$+{year}-%02d-%02d", S$+{month}, S$+{day}

tex;
print S$provided_date;

This has an added advantage of no longer requiring you to keep track of the number of the capture.
Therefore, if you need to switch the day and month around, use this code:

s{
(?<month>\d\d?) # month
[-/]
(?<day>\d\d?)
[-/]
(?<year>\d\d\d\d)
}
{
sprintf "$+{year}-%$02d-%02d", S$+{month}, S$+{day}
tex;

The regular expression changed, but the substitution did not.
You can also use the named parameters outside of the substitution as long as you’re in the same

scope, for example:

print LOGFILE "converted provided date to ",
sprintf "$S+{year}-%02d-%02d", S$+{month}, S$+{day};

240 | CHAPTER8 REGULAR EXPRESSIONS

134 elfh Converting Date Formats

Substitutions are common and you need to get used to them. Use a simple example converting the U.S.
style MM/DD/vYYY dates to the more common (outside the United States) pp/Mm/vyyy dates. All the code
in this Try It Out uses the example_8_2_dates.pl code file.

1. Type in the following program and save it as example_8_2_dates.pl.

use strict;
use warnings;
use Data: :Dumper;

my @dates = qw(
01/23/1987
11/30/2000
02/29/1980
)i

foreach (@dates) {

s{\Aa(\d\d)/(\d\d) /}
{$2/81/%};

}

print Dumper (\@dates) ;

2. Run the program with perlexample_8_1_dates.pl. You should see the following output:

$VARL = [
'23/01/1987",
'30/11/2000",
'29/02/1980"

1;

How It Works

This simple example has several subtleties you should be aware of because they crop up often in Perl code.

The substitution operator, s///, when the binding operator, =~, is not used, defaults to $_. Further, like
the regular expressions you’ve seen earlier, you’re permitted to use alternative delimiters. You didn’t use
/ for the delimiter because that would have forced you to escape the other forward slashes and make
the substitution harder to read:

s/\A(\d\d) \/ (\d\d) \//$2\/$1\//;

As a side-effect to using balanced delimiters ([1 and <> would also have been nice options), you can put
the regular expression and the substitution value on separate lines.

s{\A(\d\d)/(\d\d) /}
{$2/81/};

This is not required, but it can also help improve readability.

Another interesting thing you can do with substitutions is execute code via the /e modifier. When using
this modifier, the substitution code is not considered to just be a string; it’s Perl code to be evaluated.
For example, consider the substitution to change American-style dates:

Common Regular Expression Issues | 241

s{\A(\d\d)/ (\d\d) /}
{$2/81/};

What if the U.S. style date had been written 28/2/2011? Well, you know that’s February 28th, but your
regex doesn’t. And maybe it was sometimes entered as 12-12-1999. That’s a pain, too. Let’s fix that.
While we’re at it, we’ll also convert the data to the ISO 8601 unambiguous date format of yyvy-mm-Dp.

local $_ = '28-9-2011"';

s{
(\d\d?) # day
[-/] # - or /
(\d\d?) # month
[-/] # - or /
(

\d\d\d\d) # year
}
{
sprintf "$3-%02d-%024", $2, s$1
tex;
print;

And that correctly prints 2011-09-28. Use the /x modifier to make it easy to read. The /x modifier
never applies to the right side of the substitution. Instead, you can use extra whitespace here because
the /e modifier turns the right side into Perl code instead of a simple string.

All the other regex modifiers, including the /g, can be used with substitutions.

COMMON REGULAR EXPRESSION ISSUES

While you’re messing around with regular expressions, consider a few common issues that can arise.
These may seem superfluous to this chapter, but these issues are raised so often that they bear men-
tioning. The following are a few things you can do with regular expressions, along with a few things
you should not do.

Regexp::Common

You know a number might be represented as 2, 2.3, .4, -3e17, and so on. You can legally write
a number in a variety of ways, and writing a regular expression for it is hard. So don’t write it.
When you need a regular expression that you think someone else has already written, look at the
Regexp: : Common module to see if it’s in there. The following is how to match a real number:

use Regexp::Common;
print "yes" if '-3el7' =~ $RE{num}{real};

The following is how to blank out profanity. (Knowing it would never get through the editorial pro-
cess, I regretfully omitted the full example).

use Regexp::Common;

my $text = 'something awful or amusing';

Stext =~ s/ (SRE{profanity})/'*' x length($1)/eg;
print Stext;

242 | CHAPTER8 REGULAR EXPRESSIONS

There’s more in this module, so install it and have fun reading the docs.

E-mail Addresses

If you’ve never read RFC 822 (http://tools.ietf.org/html/rfc822), your author recommends
that you do. It’s a great way to get to sleep. It’s also a great way to realize that if you’ve been trying
to validate e-mail addresses with a regular expression, you’ve been doing it the wrong way.

E-mail addresses can contain comments. The local part of the domain name cannot contain spaces
(unless they’re in comments), but they can contain dashes. They can even start with dashes. Lots
of people with last names such as O’Malley have trouble sending and receiving e-mail because
o'malley@example.com is a perfectly valid e-mail address, but many e-mail validation tools think
that apostrophe is naughty.

So whatever you do, don’t do this:

if (Semail =~ /M\w+\@(?2:\w+\.)+\wS/) {
Congrats. Many good e-mails rejected!

}

You see that a lot in code. It doesn’t work. You can’t use regular expressions to match e-mail
addresses. The one your author knows of that is closest to being correct is an almost one-hun-
dred line (beautiful) monstrosity written by Jeffrey Friedl. You can see it in the source code of
Email::Valid; the module you should use instead follows:

use Email::Valid;
print (Email::Valid->address($Smaybe_email) ? 'yes' : 'no');

Actually, Email::valid tells you only if the e-mail address is well-formed. If you ask nicely, it tries
to tell you if the host exists. It cannot tell you if the e-mail is valid.

NOTE There is only one way to know if an e-mail is valid: Send an e-mail using
that address and hope someone responds. Even then, you may get a false
bounce or the mail server might be down. Nothing’s perfect.

HTML

Eventually, every programmer hears about people trying to parse HTML with regular expressions.
The following is an attempt your author tried to make once:

Shtml =~ s{

1 (?'href)) *href\s¥*)
?2(2:.(?21\3))+(?:\3)?)

{$1 .decode_entities($2) . $4}gsexi;

Common Regular Expression Issues | 243

Do you know what that does? Neither do I. I can’t remember what I was trying to do, but I don’t
care because it didn’t work. I learned to use a proper HTML parser instead. HTML does not have
regular grammar and thus cannot be properly parsed with regular expressions. Even if it did, there
are plenty of tricky edge cases. For example, what if you have angle brackets in quotes?

<input type="text" name="user" placeholder="<enter name>">

Or what it someone uses single quotes? Or no quotes? Or uses capitalized tags? There are many
examples of HTML that browsers handle nicely, but you would struggle to parse with regular
expressions.

That said, if you use a well-defined subset of HTML and you write small, one-off scripts for extract-
ing data, you can use regexes. Just don’t blame anyone but yourself when it breaks. Instead, consider
HTML: : TreeBuilder, HTML: : TokeParser: : Simple, or any of a variety of other great HTML pars-
ing modules.

Composing Regular Expressions

Sometimes, a regular expression is complicated. For example, you might want to match an employee
number in the format department-grade-number, where department is one of four different valid
department codes for a company, Ac, IT, MG, JA, the grade is a two-digit number from 00 to 20, and
the number is any five or six-digit number. The regular expression might look like this:

if (/\b(AC|IT|MG|JA)-([011\a|20)-(\d{5,6})\b/) {
my $dept = $1;
my Sgrade = $2;
my S$emp_number = $3;

}

For regular expressions, that one isn’t too bad, but maybe you still want it to be a bit easier to read.
You can compose regular expressions easily by using variables and the qr// operator.

my S$depts = join '|' =>qw(AC IT MG JA);

my Sdept_re gr/$depts/;

my Sgrade_re qr/[011\d|20/;

my $emp_number_re = qr/\d{5,6}/;

if (/\b($dept_re)- ($grade_re)- (Semp_number_re)\b/) {
my $dept = $1;

my $grade = $2;

my Semp_number = $3;

}

The gr () operator can “quote” your regular expression and, in some cases, precompile it, leading to
significant performance gains when you later use it in a match.

As a more complicated example, your author was writing a preprocessor for Prolog code (Prolog is
a programming language) and wanted to match math expressions. The following are all valid math
expressions in Prolog (the actual code is more complicated):

244 | CHAPTER8 REGULAR EXPRESSIONS

2+ 3
Var
-3.2e5 % SomeVar / Var

The code to match those is presented in Listing 8-2 (code file 1isting 8_2_composed_regexes.pl).

LISTING 8-2: Building Complex Regular Expressions from Smaller Ones

use strict;
use warnings;
use diagnostics;
useRegexp: :Common;
my Snum_re = SRE{num}{reall;
my Svar_re qgr/[[:upper:]1]1[[:alnum:]_1%*/;
my $op_re = qr{[-+*/%1};
my $math_term re = qr/$num_re|$var_re/;
my Sexpression_re = qr/
Smath_term_re
(?:
\s*
Sop_re
\s*
Smath_term_re
)*

/x;

my @expressions = (
"2 + 3",

Y+ 2 -3,
'Var',

'-3.2e5 % SomeVar / Var',
'not_a_var + 2',
)

foreach my S$Sexpression (@expressions) {

if (Sexpression =~ /"Sexpression_reS$/) {

print " (Sexpression) is a valid expression\n";
}

else {

print " (Sexpression) is not a valid expression\n";
}

}

And that prints the wanted output:

(2 + 3) is a valid expression

(+ 2 - 3) is not a valid expression

(Var) is a valid expression

(-3.2e5 % SomeVar / Var) is a valid expression
(not_a_var + 2) is not a valid expression

You may think that the regular expression isn’t that complicated, but if you print out the entire
thing, it looks like this (formatted to fit this page and still be a valid regular expression):

Summary | 245

/(?x-ism: (?-xism: (?:(?1) (?:[+-]1?) (?:(?=[.]1?[0123456789]) (?:[
01234567891*) (?:(?:[.1) (?:[01234567891{0,1}))?)(?:(?:[
E])(?:(?:[+—]?)(?:[0123456789]+))‘))|(?—Xism:[[:upper:]][
[:alnum:]_1%)) (?:\s*(?-xism: [-+*/%])\s* (?-xism: (?:(?1) (?:[

+-17) (?:(?=[.1?2[0123456789]) (?:[01234567891*) (?:(?:[.])
(?:[0123456789]1{0,1}))?) (?2:(?2:[E]) (?:(?:[+-1?)(?:[0123456789
14)) 1)) | (?-xism: [[:upper:]1][[:alnum:]_]*)))*)/x

If you want to write that by hand, be my guest, but don’t ask anyone (including yourself) to debug it.

SUMMARY

Regular expressions are powerful, and you’veskimmed only the surface of what they can do. This
chapter focused on what you’ll most likely encounter in the real world, but there are many areas of
regular expressions you have only seen a small bit of. You should read the following to learn more:

perldoc perlre
perldoc perlretut
perldoc perlrequick
perldoc perlreref

If you have Perl version 5.12 or above installed, you can also read perldoc perlrebackslash and
perldoc perlrecharclass.\knlcanzﬂsoreadthenlOrlhttp://perldoc.perl.org/.

In addition, the excellent book Mastering Regular Expressions by Jeffrey Friedl is highly
recommended.

By now, you should understand most common uses of regular expressions including matching arbi-
trary text, making substitutions, and extracting useful data from strings.

1. In the United States, Social Security numbers are a sequence of three digits, followed by a dash,
followed by two digits, followed by another dash, followed by four digits, which can look like this:
123-45-6789.

Ignoring that not all combinations of numbers are valid, write a regular expression that matches a
U.S. Social Security number.

2. Imagine you have a block of the following text read from a file:

my $Semployee_numbers = <<'END_EMPLOYEES';
alice: 48472
bob:34582
we need to fire charlie
charlie : 45824
denise is a new hire
denise : 34553
END_EMPLOYEES

246

CHAPTER 8 REGULAR EXPRESSIONS

Those are employee login names and their user numbers. Obviously, an admin has been sloppy
in keeping these in a text file. Write code that can read that text and create a hash with employee
usernames as the keys and employee numbers as the values. There should be no leading or
trailing whitespace in either the keys or the values. Ignore empty lines and lines starting with a #.

Given the following text with dates embedded in the yyyy-mMM-DD format, write code that can
rewrite them as $monthname $day, $year. For example, 2011-02-03should become February
3, 2011. Assume the dates are valid (in other words, not January 40th or something stupid like
that).

my Stext = <<'END';

We hired Mark in 2011-02-03. He's working on product
1034-34-345A. He is expected to finish the work on or
before 2012-12-12 because our idiot CEO thinks the world
will end.

END

Summary

247

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Regular expressions
Quantifiers
Escape sequences
Extracting data
Modifiers

Anchors

Character classes
Grouping
Substitutions
Regexp: : Common
Email::Valid

Lookahead/lookbehind
anchors

Named subexpressions

Composed regexes

KEY CONCEPTS

Patterns to describe strings.

Matching a pattern a variable number of times.
Sequences for controlling matches.

Extracting matched data into variables.

Special trailing characters that later regex behavior.
Matching “places” in a string and not characters.
Groups of individual characters.

Groups of patterns.

Replacing matched text.

A module providing many common regular expressions.
A module to properly validate an e-mail address.

Anchors to match text before and after a regex.

A cleaner way to match data.

Building complex regexes from smaller ones.

Files and Directories

WHAT YOU WILL LEARN IN THIS CHAPTER:

>
>
>
>

Understanding files handling
Working with directories
Understanding Unicode and Unicode rules

Useful file manipulation modules

Up to this point, except for a brief discussion of @arGv in Chapter 3, the data in your program
has been embedded in the program, which isn’t useful. In the real world, we’re constantly
reading data from files, Web services, databases, and a variety of other sources. This chapter
introduces you to the basics of reading and writing to files and directories.

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http: //www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into
the following major examples:

>

>
>
>
>

.targets.txt.swp
.tree.pl.swo
.tree.pl.swp
example_9_1_ spies.pl

example_9_2_ tree.pl

250

| CHAPTER9 FILES AND DIRECTORIES

listing 9_1_targets.pl

listing 9_2_reading_ from_data.pl
spiesl.txt

spies2.txt

spies3.txt

spiesd.txt

Y Y Y Y Y Y Y

targets.txt

BASIC FILE HANDLING

As you probably know by now, most common operating systems have their data internally
organized around files and directories. Even if the data is stored in a database, it’s probably
represented as files somewhere. Perl makes it easy to read and write files, and you can see the most
common ways to do that.

Opening and Reading a File

For this section, type the following into a file named targets.txt in a directory named
chapter_9.

James | 007 | Spy

Number 6|6 |Ex-spy

Agent 99|99|Spy with unknown name

Napoleon Solo|ll|Uncle spy

This guy is only rumored to exist. Not everyone believes it.
Unknown | 666 |Maybe a spy

Those are names, case numbers, and bizarre job titles for people your overly optimistic intelligence
agency wants to interrogate.

To open a file, use the open () builtin. The two most common forms of open () follow:

open FILEHANDLE, MODE, FILENAME
open FILEHANDLE, FILENAME

The first preceding syntax is the three argument open, and the second is the two argument

open. The second is an older version of open () and it’s generally frowned upon today, but is
explained here so that you can understand it if you see it in legacy code. (If someone is still writing
using the two argument open today, it’s either because they must support a version of Perl prior to
version 5.6 or they don’t know any better.)

The arguments to open () follow:

Basic File Handling | 251

> FILEHANDLE: The identifier you will use elsewhere to read or write to the file
MODE: Specifies if you are opening the file to read and/or write to it

FILENAME: Mostly, just what it looks like, the name of the file in your system

NOTE See perldoc -f open for more information than you expected. perldoc
opentut is good, too. If you need fine-grained control over how to open files
(such as dieing if you try to open for writing a file that already exists), see
perldoc -f sysopen. It’s also explained in detail with perlopentut.

Reading Files

To open a file in read mode, use the < sign for the mode. The following is what it looks like:

my S$filename = 'chapter_9/targets.txt';
open my $spies_to_espy, '<', $filename
or die "Cannot open 'S$filename' for writing: $!";

That is a lot of new stuff at once, so I’ll break it down carefully.

The my $spies_to_espy variable contains the filehandle that you can use to access the contents of
$filename. Like variables, a filehandle with a descriptive name leads to clearer code. Filehandle is
commonly abbreviated at $fh.

The < tells Perl you’re going to open the file for reading. If the attempt to open the file fails, the
open () builtin returns false and sets the special $! Variable, which contains a human-readable
description of the error. You can print $! to provide an error message. If the previous file does not
exist, that might print the following:

Cannot open 'chapter_ 9/targets.txt' for writing: No such file or
directory at my_program.pl line 17.

When using open () and other related functions, always include the or die section at the end.
Otherwise, Perl may ignore the error and silently Do The Wrong Thing, which would be disappoint-
ing. To automate, remember you can install the handy autodie module from the CPAN to take
care of this for you:

use autodie;
my $filename = 'chapter_9/targets.txt';
open my S$filehandle, '<', S$filename;

If open () fails, you get a virtually identical error message to the previous one.

The autodie module was included with Perl as of version 5.10.1, so if you have that version of Perl
or newer, you won’t need to install it separately.

252 | CHAPTER9 FILES AND DIRECTORIES

NOTE Windows, and some operating systems, use the backslash, \, as a file-
name delimiter. This could be an issue in Perl, which uses the \ to specify
characters such as tab, \t, and newline, \n.

When you attempt to do something like
my $filename = "chapter_9\targets.txt";

In a double-quoted string, the \t is the tab character but your filename is prob-
ably not chapter_9<TAB>argets.txt. You can escape the \ like this:

my $filename = "chapter_9\\targets.txt";
But that can quickly start to get ugly:
my $file = "path\\to\\some\\S$file";

In a Perl program just use forward slashes, and internally Perl will Do The Right
Thing for your operating system.

my $file = "path/to/some/$file";

my $file "C:/path/to/some/S$file";

That’s much cleaner.

Now that you have opened the file, read from it and print the name, case number, and description of
each record. Listing 9-1 shows the code to do this (code file 1isting 9_1_targets.pl).

LISTING 9-1: Reading and Parsing a File

use strict;
use warnings;
use diagnostics;

my $filename = 'chapter_9/targets.txt';

open my $spies_to_espy, '<', $filename
or die "Cannot open 'Sfilename' for writing: $!";

while (my $line = <$spies_to_espy>) {
next if $line =~ /"\s*#/; # skip comments!
chomp ($1ine) ;
my (Sname, S$case_number, S$description)

Basic File Handling | 253

= split /\|/, $line;
print "S$name ($case_number): $description\n";
}

close $spies_to_espy or die "Could not close 'S$Sfilename': S$!";
And that prints out the following;:

James (007): Spy

Number 6 (6): Ex-spy

Agent 99 (99): Spy with unknown name
Napoleon Solo (11): Uncle spy
Unknown (666): Maybe a spy

The following discussion takes this line by line so that you can clearly see what is going on here.
while (my $line = <$spies_to_espy>) {

The angle brackets around the filehandle turn it into an iterator. If you assign it in list context (such
as assigning it to an array), it can read in every record in the file, as separated by the value in the $/
variable. If you assign it to a scalar, as shown previously, it acts like an iterator, returning one line at
a time, or undef when there is no more input. As you recall from Chapter 5, you usually use while
loops with iterators.

NOTE The sharp-eyed among you may wonder what’s going on with using a
while loop and a filehandle. What if the filehandle just returns an empty string
or some other value that evaluates to false? It still Just Works because when
reading filehandles in a while loop, Perl magically converts it as follows:

while (my $line = <$fh>) { ... }
becomes
while (defined (my S$line = <$fh>)) { ... }

Remember that the assignment, my $line = <$fh>, returns the value of the
entire expression and the filehandle can return only undef at EOF (end of the
file). Thus, the while loop works. This behavior happens because Perl knows
that’s what you need here. Don’t rely on this behavior for other uses of while.

The $/ variable defaults to whatever the newline character is for your operating system. For
Windows, this is the carriage return plus line feed (\r\n). For UNIX-like systems such as Linux,
Mac OS X, AIX and so on, it’s just the line feed character (\n) and for versions of Mac OS prior to
OS X, it’s just the carriage return (\r). Other operating systems may use different characters, but
Perl takes care of this for you.

254 | CHAPTERY9 FILES AND DIRECTORIES

NOTE If you have a file from another operating system, or if the file delimits
“records” with a different character, you can assign a different value to the $/
variable to ensure that lines are split correctly. Just be sure to use the local ()
builtin with it to avoid having other parts of your system picking up the new
value. You can also read an entire file into a scalar by setting $/ to undef. This
is often referred to as slurp mode. Just using a bare local $/; can set $/ to an
uninitialized value:

my $file_contents = slurp('chapter_9/targets.txt');
print $file_contents;
sub slurp {

my Sfile = shift;

open my $fh, '<', S$file

or die "Cannot open '$file' for reading: $!";

local $/;

my Scontents = <S$fh>;

return S$Scontents;

That’s written for clarity. However, you'll often see it written like this:

sub slurp {
my $file = shift;
open my $fh, '<', S$file
or die "Cannot open 'S$file' for reading: $!";
return do { local $/; <Sfh> };

The next line of code should be clear. You can skip comments in the file by preceding them with a #
symbol. The \s* allows you to have zero or more spaces in front of the # symbol.

next if $line =~ /"\s*#/; # skip comments!
Then you have the chomp ():
chomp ($1ine) ;

As you may recall from Chapter 4, chomp () removes anything matching $/ from the end of the vari-
able. In this case, you don’t need to do this because you’re adding it back in when you print the data.
It is a good habit to get into. You often store data in variables and probably do not want the line
separator.

Then you split the line on the pipe character, |. Because split () expects a regular expression as
its first argument and the | is used for alternation, you need to escape it to match a literal pipe
character.

my (Sname, S$case_number, S$description)
= split /\|/, $line;

Basic File Handling | 255

And finally you can print your results:
print "$name (S$case_number): $description\n";
The final line closes your filehandle:
close $fh or die "Could not close 'S$filename': S$!";

If the filehandle falls out of scope, Perl closes the filehandle for you. You’ll see many programs take
advantage of this feature and not close their filehandles.

The <> operator assigns to $_ by default, so you can omit the my $1line = if you prefer:

while (<$fh>) {
next if /"\s*#/; # skip comments!
chomp;
my ($name, $case_number, $description) = split /\|/, $_;
print "S$name ($case_number): $description\n";

Reading Files the Wrong Way

For versions of Perl prior to version 5.6 (released over a decade ago!), you often see this syntax:

open FH, $filename
or die "Cannot open 'S$filename" for reading: $!";

open FH, "< S$filename"
or die "Cannot open 'S$filename" for reading: $!";

This combines a few practices that are today considered bad. The FH looks like a bareword and
should not be allowed with use strict, but in this instance, it’s considered to be a typeglob. You
use it like a normal filehandle:

while (my $line = <FH>) { ... }

This is considered bad practice because typeglobs are package globals, and there can be some
strange bugs associated with other portions of your program messing with global variables. Imagine
trying to debug what’s going wrong with this:

open FH or die $!;

That’s perfectly legal, and it might just open a file in read mode, but this monstrosity isn’t covered
here. (Again, see perlopentut for the gory bits).

You can use the two argument form of open () in this bad example:

open FH, $filename;
and
open FH, "< S$filename";

256 | CHAPTERY9 FILES AND DIRECTORIES

For the first, you simply omitted the < mode. If that’s left off, Perl assumes read mode. For the second,
it’s included in the string, along with the filename. That does the same thing. It has to do with mak-
ing this seem a bit more familiar to UNIX programmers, but suffice it to say that it’s strongly dis-
couraged today. If the $filename contains user input and a malicious user provides a filename with
any mode-specific characters at the start, you will have significant security implications.

Don’t do that. Stick with the three argument open.

NOTE For more information on typeglobs, see “Typeglobs and Filehandles” in
perldoc perldata.

Writing Files
Writing files has a similar syntax, but you use > to open the file in write mode. If you want to append to a
file, use >>. So to add Maxwell Smart as a new target in targets. txt, you could write the following:

open my $fh, '>>', $filename
or die "Cannot open 'S$filename' for appending: $!";
print $fh "Maxwell Smart|86|Definitely a spy\n";

And now the file should contain the following (code file target. txt):

James | 007 | Spy

Number 6|6 |Ex-spy

This guy is only rumored to exist. Not everyone believes it.
Unknown | 666 |Maybe a spy

Maxwell Smart|86|Definitely a spy

Nothing unusual about this, except for the print line:
print $fh "Maxwell Smart|86|Definitely a spy\n";

There’s no comma after the $fh. That’s what lets Perl know that $fh is a file handle it’s printing to
instead of something to print. So if you see something like this on your screen when you weren’t
expecting any output:

GLOB (0xbfe220)Maxwell Smart|99|Definitely a spy

You probably put a comma after the filehandle, telling Perl that it’s something to print instead of a
filehandle to print to.

If you want, you can rewrite the file by reading it and then writing to it. Now sort the lines of the
file and strip the comments from it. Following is one way to do that:

my $filename = 'chapter_ 9/targets.txt';

open my $fh, '<', $filename
or die "Cannot open 'S$filename' for reading: $!";

Basic File Handling | 257

each element in @lines gets one line from the file
remember grep from Chapter 47?

my @lines = sort grep { !/"\s*#/ } <S$fh>;

close $fh or die "Cannot close 'Sfilename': S$!";

open $fh, '>', $filename

or die "Cannot open 'S$filename' for writing $!";
print s$fh @lines;
close $fh or die "Cannot close '$Sfilename': S$!";

Again, this code builds on everything you’ve learned so far. There’s nothing too magical here.

There is another way to rewrite a file. You need four things: seek (), tell (), truncate(), and
read-write mode.

To open a file in read-write mode, prepend the mode with a +. In this case, use +< mode. There is a
corresponding +> mode, but you should probably never use it because it deletes the contents of your
file first. That’s probably not helpful. Following is your new program:

my S$filename = 'chapter_9/targets.txt';
open my $fh, '+<', $filename
or die "Cannot open 'S$filename' in read-write mode: $!";

my @lines = sort grep { !/"\s*#/ } <S$fh>;

seek $fh, 0, 0

or die "Cannot seek 'S$filame', 0, 0: $!";
print $fh @lines;
truncate $fh, tell($fh)

or die "Cannot truncate '$filename': $!";
close $fh or die "Cannot close $filename: S$!";

The seek () function has the following syntax:
seek FILEHANDLE, OFFSET, STARTINGAT
The values for STARTINGAT follow:

» 0: Sets the new position in bytes to OFFSET
» 1: Sets the new position to the current position plus OFFSET

» 2: Sets the new position to the end of file plus OFFSET, which is usually a negative value

The tell () function returns the position of the filehandle, in bytes. The truncate () builtin tells
Perl to truncate the file at the given position.

This may seem a bit confusing, but it’s what Perl needs to know to handle this. Again, don’t forget
that you can use autodie to make this simpler:

use autodie;

my $filename = 'chapter_9/targets.txt';
open my $fh, '+<', $filename;

my @lines = sort grep { !/"\s*#/ } <S$fh>;

seek $th, 0, 0;

258

| CHAPTER9 FILES AND DIRECTORIES

print $fh @lines;
truncate $fh, tell($fh);
close $fh;

Although your author usually uses autodie, you can avoid it in examples to constantly remind
you to check the success or failure of your system calls. As usual, see peridoc -f for the various
functions to learn more about them.

File Test Operators

When you work with files or directories, you often want to know things about them first. For exam-
ple, you might want to see if a file exists before trying to read it. The -e file test operator does this.
You can also use the - f operator to find out if it’s a file.

my S$filename = 'somefile';
if (-e S$filename && -f S$filename) { ... }

Every time you use a file test operator, the system makes another stat () call (see perldoc -f
stat) and this can be expensive, so Perl let’s you use a special filehandle named _. When a file test
operator is used, subsequent file test operators can use _ that contains the results from the last

stat () call. This is generally much less expensive, particularly if you stack many file test operators:

does it exist? Is it a file? Is it readable?
if (-e S$filename && -f _ && -r _) { ... }

Also, if you use Perl 5.9.1 or better, you can stack the operators and write the above as follows:
if (-e -f -r $filename) { ... }

There are a great many file test operators, and you won’t cover all of them. Just be aware that
they’re there for you. See Table 9-1 for a list, which is loosely sorted with the most common ones at
the top of the table.

TABLE 9-1: File test Operators and Their Meaning

OPERATOR MEANING

-e File exists

-f File is a plain file

-d A directory

-r File is readable by effective uid/gid
-w File is writable by effective uid/gid
-X File is executable by effective uid/gid

=% File has zero size (it's empty)

Basic File Handling

259

OPERATOR MEANING

File has nonzero size (returns size in bytes)
File is owned by effective uid

File is readable by real uid/gid

File is writable by real uid/gid

File is executable by real uid/gid

File is owned by real uid

File is a symbolic link

File is a named pipe (FIFO) or filehandle is a pipe
File is a socket

File is a block special file

File is a character special file

Filehandle (often STDOUT) is opened to a tty
File has setuid bit set

File has setgid bit set

File has sticky bit set

File is an ASCII text file (heuristic guess)

File is a “binary” file (opposite of -T)

Script stat time minus file modification time, in days

NOTE In Table 9-1, you see references to real and effective uid and gid. These
are UNIX terms indicating the real and effective user and group IDs. Normally
you have a real user ID and group ID. (Your user belongs to a group, and this
may have different permissions than the user.)

Sometimes programs can run with setuid, and these change your effective user
id to something else while preserving your real user ID. This allows programs
such as passwd to change the /etc/passwd file, something that only root

can do. However, although passwd uses your effective user ID to allow you to
change /etc/passwd, it can check your real user ID to make sure that you can’t
change someone else’s password.

Programs that use setuid are inherently dangerous because it’s easy to get this
wrong and can open up serious security holes.

260 | CHAPTER9 FILES AND DIRECTORIES

The Diamond Operator

You’ve seen the angle brackets, <>, around a filehandle, but if you use them without a filehandle,

or with the special ARGV filehandle (not the @arav array), they’re called the diamond operator, and
they’re useful for certain types of programs. They cause each filename in @aRGV to be opened, in
sequence, and read. This is better seen than explained. Consider the following program, myfilter.pl.

use strict;

use warnings;

while (<>) {
next unless /\S/;
print;

}

Ifyoucachat“dﬂlperl myprog.pl filel.txt file2.txt fi1e3.txt,thenitprhﬁsoutevmy
“nonblank” (in other words, containing at least one nonwhitespace character, \s) line from each of
those files.

Note that while (<>) isidentical to while (defined ($_ = <ARGV>)).

NOTE while (<>) isthe same as while (defined($_ = <ARGV>)). But

how do you know this? Perl has a handy module named B: :Deparse. The B: :
modules are backend modules and let you see some things about Perl normally
not visible. In this case, use B: :Deparse to “deparse” the while (<>) construct.

perl -MO=Deparse -e 'while (<>) {}'
That prints the following:

while (defined($_ = <ARGV>)) {
()

}

-e syntax OK

You can see the changed code that has been neatly formatted. B: : Deparse has
a number of interesting options to help you better understand complicated code.
See perldoc B::Deparse for more information. The -M switch for Perl tells it

to load the module requested, in this case the mysteriously named o. (That’s

the letter O, not the number O). See perldoc 0 to understand how that loads

B: :Deparse. And if you’re brave, see perldoc B for a better understand of

the B: : modules, but be warned: it’s dense.

Temporary Files

Sometimes you need to create temporary files that disappear when your program ends. For example,
you may want to filter a file but write it out to a tempfile first. Other times, you may want to create
a tempfile and feed it to another program. There are several ways to do this, but you can use the
File::Temp module because it’s fairly common.

Basic File Handling | 261

use

File::Temp 'tempfile';

my $fh = tempfile();
or, if you also need the name:

my

$fh, $filename) = tempfile();

If you need a particular suffix for the tempfile:

my

$fh, $filename) = tempfile(SUFFIX => '.yaml');

File: :Temp also has an object-oriented interface and provides a number of features. In this case,
just remember that it’s a handy module when you want to write out some temporary data.

DATA as a File

Perl has two special tokens: __END__

and __pata__, which, if on a line by themselves, tell Perl that

it’s reached the end of the program and to stop compiling. However, the __paTa__ token also tells
Perl that it can read the data after said token (__END__ can sometimes do this too, but read perldoc

perldata for the details and pretend you never knew you could do this.).

Listing 9-2 (code file 1isting_9_2_reading_from_data.pl) has an example.

LISTING 9.2: Reading DATA

use
use
use
use

strict;
warnings;
diagnostics;
Data: :Dumper;

my %config;

while (<DATA>) {

}

next if /™M\s*#/; # skip comments
next unless /(\w+)\s*=\s* (\w+)/; # key = value

my ($key, Svalue) = ($1, $2);
if (exists Sconfig{sSkey}) {

we've already seen this key, so convert the value to an

array reference

Does S$config{Skey} currently store a scalar or an aref?

if(! ref sconfig{skey}) {
Sconfig{skey} = [Sconfig{Skey} 1;
}
push @{ Sconfig{S$key} } => S$value;
}
else {
Sconfig{skey} = $value;
}

print Dumper (\%config) ;

__ DATA___

max_tries =
max_tries = 2

3

continues

262 | CHAPTER9 FILES AND DIRECTORIES

LISTING 9-2 (continued)

timeout = 30

only these people are OK
user = Ovid

user = Sally

user = Bob

Running the code in Listing 9-2 prints something similar to the following;:

SVAR1 = {
'max_tries' => '2',
'timeout' => '30',
'user' => [
‘ovid!',
'Sally",
'Bob!

}i

In this case, you used the DATA section of your code to embed a tiny config file. As a general rule,
you can read from only the DATA section once, but if you need to read from it more than once, use
the following code:

Find the start of the _ DATA__ section
my Sdata_start = tell DATA;
while (<DATA>) {

do something

}
Reset DATA filehandle to start of _ DATA_
seek DATA, $data_start, O0;

In case you’re wondering, yes, you can also write to the DATA section if you have the correct permis-
sion, but this is generally a bad idea and is left as an exercise for the foolhardy. (Hint: If you get it
Wrong, you can overwrite your program.)

NOTE The example of using a DATA section for configuration works, but be
aware that this is only to show you how __DATA___ works. There are plenty of
useful modules on the CPAN for handling configuration files. Some popular ones
are AppConfig, Config: :General, Config: :Std, and Config: :Tiny. You could
still keep your config in the DATA section, but you want it to be in a separate file
because this is something that others are likely to need to read and edit.

binmode

When working with text files, opening the file and reading and writing to it is generally handled
transparently. However, what happens if you open a file written on a Linux system and being read
on a Windows system? As explained earlier, the $/ variable defaults to the newline character, but
that is \n on Linux and \r\n on Windows. Perl silently translates newline characters the appropriate

Basic File Handling | 263

newline character for your operating system. This means that reading and writing text files (such as
XML or YAML documents) works transparently, regardless of the operating system you are on.

What happens if you work with a binary file, such as an image? You don’t want Perl to try and “fix”
the newlines, so you open the file and use the binmode builtin:

my $image = 'really_cool.jpg';
open my $fh, '<', $image

or die "Cannot open '$image' for reading: S$!";
binmode $fh; # treat it as a binary file

With this code, you don’t need to worry about newlines being translated.

NOTE See perldoc -f binmode for more information.

The binmode builtin accepts an optional “layer” description (older versions of Perl referred to this as
the “discipline”). The :raw layer is the default, so the following two lines are equivalent:

binmode $fh;
binmode $fh, ':raw';

If you want to tell Perl that the file is UTF-8 (we’ll explain this in the Unicode section of this chap-
ter), you can use the :encoding (UTF-8) layer:

my $kanji_examples = 'kanji.txt';
open my $fh, '<', S$kanji_examples

or die "Cannot open 'S$kanji_examples' for reading: $!";
binmode $fh, ':encoding(UTF-8)';

If you use the three-argument form of open () (and you should), you can specify the layer directly in
the mode:

open my $fh, '<:raw', S$some_file
or die "Cannot open 'S$some_file' for reading: S$!";

Writing a Filter

Sometimes you need to take a bunch of files and filter them by some criteria. Imagine, for your intel-
ligence agency, that you have agents all over the world who regularly send files to you via SFTP. These
agents are detailed to investigate suspected spies. The files they send contain one or more lines with
additional information in the format name | information|number. Because your agents are careless,
they don’t respect the \d\d\d\d\d number format, so you need to fix this before you combine their
data into one master file. You can write out the data as name |number | information. All the code in
this Try It Out is found in code file example_9_1_spies.pl.

Type in the following program and save it as example_9_1_spies.pl:

use strict;
use warnings;

264

CHAPTER 9 FILES AND DIRECTORIES

while (<>) {
if (/™\s*#/) {

print; # keep the comments
next;
}
chomp;
my (Sname, $description, $number) = split /\|/, $_;

if(defined S$name) {
printf "$name|%05d|$description\n", $number;

}

Now create four text files, spiesl.txt to spies4.txt, with the following contents:
> * spiesl.txt

James |Definitely a Spy|007

> * spies2.txt

Number 6|Won't answer Questions|6

> * gspies3.txt

This guy is only rumored to exist. Not everyone believes it.

Unknown |Maybe a spy|666

> * spiesd.txt

Maxwell Smart|Definitely a spy|86

Run the program with perl example_9_1_spies.pl spies*.txt. If your operating system does
not properly support shell metacharacter expansion, you may need to run the program as follows:

perl example_9_1_spies.pl spiesl.txt spies2.txt spies3.txt spiesd.txt

You should see the following output:

James | 00007 |Definitely a Spy

Number 6|00006|Won't answer Questions

This guy is only rumored to exist. Not everyone believes it.
Unknown | 00666 |Maybe a spy

Maxwell Smart|00086|Definitely a spy

How It Works

The diamond operator, <>, automatically opens in read-mode every file passed in as an argument to the
program. Thus, when you run the program with the following command:

perl example_9_1_spies.pl spiesl.txt spies2.txt spies3.txt spiesd.txt

The while (<>)Wduset$_suGX$$detoeadlhneinspiesl.txt,spies2.txt,spies3.txt,and
spies4.txt, just as if they were all concatenated into one big file.

Directories | 265

Unlike the previous while (<>) example, you do need the chomp () command here because your input
is generally in the form name|description|number but your output is name | number |description.
This means you need to remove the newline from the number but add it back in to the end of every line
in the printf ().

DIRECTORIES

When working with Perl, you’ll sometimes need to work with directories. In general, you don’t
want to do this directly because it’s easy to make mistakes. Instead, you can use a number of useful
modules (explained later in the “Useful Modules” section), but it’s useful to see some of the
low-level details in case you work on code that uses them.

Reading Directories

When reading directories, you usually need a directory handle. The opendir builtin enables you to
create a directory handle, and the readdir builtin can read all entries from a directory handle.

opendir (my $dh, $directory)
or die "Cannot open 'S$directory' for reading: S$!";
get all entries not starting with a dot
my @entries = grep { !/"\./ } readdir (sdh);
closedir $dh
or die "Cannot close 'S$directory': $!";

WARNING Do not be tempted to think that readdir () returns only files and
directories. Depending on what your operating system supports, it might be a
symbolic link (-d), a named piped (-p) or a socket (-s). These are generally not
covered in this book, but you should be aware of this because it’s a common
beginner mistake.

Note that opendir () does not have a three-argument form. You do not “write” to directories,
although you can certainly create directories and files in them.

Globbing

You can also use the File: :Glob module to glob directories (using wildcard characters to match a
“glob” of files or directories). This uses the common file globbing semantics. For example, *.txt
matches any file with a . txt extension. You can use the glob () builtin or the angle brackets for this
behavior.

NOTE See perldoc File: :Glob for more information on glob () and <>.

266 | CHAPTER9 FILES AND DIRECTORIES

The following are three equivalent ways to list all directory entries with a . txt extension. Start
using autodie to make your life simpler.

Using opendir ():

use strict;

use warnings;

use autodie;

my $dir = 'drafts/';

opendir (my $dh, $dir);

my @txt = grep { /\.txt$/ } readdir($dh);
print join "\n", @txt;

closedir $dh;

Using glob():

use strict;

use warnings;

use autodie;

my $dir = 'drafts';

my @txt = glob("$dir/*.txt");
print join "\n", @txt;

Using <>:

use strict;

use warnings;

use autodie;

my $dir = 'drafts';

my @txt = <$dir/*.txt>; # no quotes!
print join "\n", @txt;

NOTE Typeglobs and fileglobs are not the same thing. Your author apologizes
for the confusion.

UNICODE

When Perl is processing data, it needs to know what character set it is encoded as. As the world
becomes more interconnected, it’s increasingly important that different systems communicate
correctly.

This is introduced now because as you’re reading and writing files; it’s increasingly common to find
that those files are not ASCII or Latin-1, as many developers assume. (Or more correctly, many
developers aren’t aware of the issues.)

WARNING Any version of Perl prior to 5.6 is broken by default for Unicode. 5.12
is sometimes considered the minimum “safe” version, and 5.14 offers a level of
Unicode support that few other languages can equal.

Unicode | 267

What Is Unicode?

In the good ol’ days of programming (arbitrarily defined as “when your author was growing up”),
aspiring programmers were typing game programs directly from the BASIC listing in programming
magazines. These programs were written in ASCII, the American Standard Code for Information
Interchange. Back then, characters tended to be represented by 7 or 8 bits of data. ASCII characters
took 7 bits of data, with values ranging from 0 to 128. Eight-bit numbers could use characters from
129 to 255. Different systems often represented the 129 to 255 numbers in different ways and were
sometimes referred to as extended ASCIIL. You might have had interesting graphic figures or you
may have had accented characters. But what did the Japanese do when they wanted to write HA[E?
Clearly having only 255 characters is not enough for many writing systems.

The Unicode standard is a way to describe every character in every writing system with a single
number. This number is called a code point and it’s composed of one or more octets. We use the
word octet to refer to 8 bits, so all characters that can be represented by the numbers 0 to 255 take
up 1 octet of space. Your author’s wife is French, and her first name is Leila. The i in Leila is rep-
resented as the code point U+00EF. (The 00EF is hexadecimal.) The letters A and a are U+0041 and
U+0061, respectively, and [H is u+56FD. However, a code point describes a character, but it doesn’t
describe the encoding of that character. The EF in code point u+00EF is the decimal number 239.
That number can be described in 8 bits as 11101111. Some encodings, such as UTF-8 and UTF-16,
encode that in 16 bits (2 octets). UTF-32 encodes that in 32 bits (4 octets).

NOTE A bitis a single O, or 1. 8 bits forms an octet. Many people refer to 8 bits
as 1byte, but in reality, a byte’s length is dependent on the machine you’re
running it on, so use the word octet to avoid ambiguity.

The code point associated with a character has no relation to the encoding. Any given character
encoding (such as UTF-8, UTF-32, and so on) is free to encode any code point in any way it wants,
so long as the encoding is unambiguous.

UTF-8 has an advantage over many other encodings because ASCII characters are represented iden-
tically in ASCII and UTF-8, making it backward compatible with ASCII. This is why UTF-8 tends
to be the dominant encoding for Unicode. If you send ASCII to a system that is expecting UTF-8, it
often works just fine.

That doesn’t tell you, however, how to use Unicode.

Two Simple Rules
A typical workflow for a program follows:
» Initialization
> Input
» Calculation
>

Output

268

| CHAPTER9 FILES AND DIRECTORIES

The two simple rules are to decode all your text input and encode all your text output. With
this, you can ensure that inside of your Perl program, you work with Perl’s internal string format
and don’t have to worry about errors that occur when you try to concatenate strings in different
encodings.

Decoding Your Data

Decoding your data means “decode your data to Perl’s internal format.” What is Perl’s internal
format? It doesn’t matter. If Perl ever needs to change that internal format, you should not rely on
knowing the details. Suffice it to say that Perl generally treats your text data as binary data instead
of characters until you decode it and write it out somewhere. This is the hard part. You must find
out what the encoding of your source data is! So if your data is in 7bit-jis (a Japanese pre-Uni-
code encoding), you could use the Encode: : decode () function to transform it into Perl’s internal
format:

use Encode gw(encode decode) ;
my S$string = decode('7bit-jis', Sbyte_string);

And now Perl can happily handle this for you, including reporting its length correctly.

However, it’s better to not need to decode strings on a string-by-string basis. It’s better to decode
them at the source, if possible (thus making it harder to forget). You can use Perl’s 10 layers to han-
dle that. One way is to specify the layer with binmode ():

open my $fh, '<', S$some_file or die $!;
binmode $fh, ':7bit-jis';

Or better still, specify it with the mode because it’s harder to miss:
open my $fh, '<:7bit-jis', $some_file or die $!;

If you don’t know the encoding of your source data, ask the person who sent you the data. If that
fails, Encode (first shipped with Perl 5.7.3) includes the Encode: : Guess module. It’s not a bad
module, but it’s a “guess” at the encoding. Read the documentation carefully, and be aware that it
guesses wrong from time to time.

Encoding Your Data

Now that you’ve decoded your data and done fun things with it, you need to encode it back to its
original format before you send it along. Not surprisingly, the encode () function from Encode does
this for you:

use Encode gw(encode decode) ;
my Sencoded = encode('7bit-jis', $string);

Or again, use the IO layers:

open my $fh, '>:7bit-jis', Ssome_file or die $!;

Unicode | 269

Then, when you write the data out to the console, a file or some other data sink, it will be encoded
correctly.

A Typical Unicode Nightmare

So decode your input and encode your output. Not too bad, right? Well, that’s until you try it. First,
look at this code snippet.

my $string = 'HAR';
my $length = length(S$string);
print "$string has $length characters\n";

And that prints out (assuming you have the correct font installed):
HAME has 9 characters

Of course, that’s not true. It has 9 octets, but it clearly has 3 characters. So the first thing that many
people do is this:

use utf§;

my $string = 'HAR';

my $length = length($string);

print "$string has $length characters\n";

Many people assume that use utf8 means “magically make everything UTF-8,” but that’s not cor-
rect. You get the following output:

Wide character in print at /var/tmp/eval_Yrhm.pl line 4.
HZAMRE has 3 characters

NOTE You can cut-and-paste HZR[E from http://en.wikipedia.org/wiki/
Japan because you are unlikely to type those characters directly.

Note the strange Wide character in print warning, but you now have the correct length. The
use utfs pragma tells Perl only that your source code is UTF-8. It doesn’t tell Perl that your output
is UTF-8, so Perl is expecting a binary output to the stTpour filehandle, but you’ve sent UTF-8, so
fix that.

use utf§;

my $string = 'HAR";

my $length = length($string);
binmode STDOUT, ':encoding (UTF-8)';

print "$string has S$length characters\n";

270

| CHAPTER9 FILES AND DIRECTORIES

And that gives you the correct output with no warnings. (The wide Character in Print warning
occurs even if you don’t use warnings).

Alternatively, if you don’t want to apply that encoding layer to all of sSTDOUT you could just encode
the string from Perl’s internal format to UTF-8, which also makes the warning go away:

use utf§;
use Encode gw(encode decode) ;

my $string = 'HAHE";
my $length = length(S$string);
Sstring = encode('UTF-8', $string);

print "S$string has $length characters\n";

But you’re still not quite sure where you want to be in understanding this. The use utf8 pragma
tells Perl that your source code is UTF-8, but it doesn’t tell Perl that your input is UTF-8. Try this:

use utf§;
use Encode gw(encode decode) ;

my $string = shift @ARGV;
my $length = length(S$string);
Sstring = encode('UTF-8', $string);

print "S$string has $length characters\n";

If you save that as 1length.pl and run that with perl length.pl HA, you will get output simi-
lar to this:

*¥x-ad% has 9 characters

You won’t even get a warning. Why? Because you haven’t decoded the data and Perl assumes it’s
Latin-1 data (ISO-8859-1) that it already knows how to deal with. When you explicitly decode the
data, everything works as expected:

use utf8;
use Encode gw(encode decode) ;

my S$string = decode('UTF-8', shift);
my $length length($string) ;
Sstring = encode('UTF-8', $string);

print "$string has $length characters\n";

If you are unsure of what encodings your system provides, the following one-liner will print all of
them for you:

perl -MEncode -e 'print join "\n" => Encode->encodings(":all")'

Unicode | 271

WARNING Be careful when using the UTF-8 layer. Many Perl references will tell
you to do something like this:

binmode STDOUT, ':utf8';
Or this:
open my $fh, '<:utf8', S$filename;

This is extremely bad because :ut£8 is not the same as :encoding (UTF-8).
The :encoding (UTF-8) layer says “this filehandle is guaranteed to be UTF-8”
and it will die if you feed it invalid data. The :ut£8 layer says “this filehandle is
in UTF-8,” but it doesn’t verify that this is true. As a result, programs that use the
:utf8 layer can be deliberately fed invalid data, and this is a security hole. Do
not use the :ut£8 layer.

Read http: //www.perlmonks.org/?node_id=644786 for more information.

NOTE Just because your source code is UTF-8 doesn’t mean that your text edi-
tor or IDE is set to recognize or save your source code as UTF-8. Consult your
editor’s documentation on how to do this.

Also, your terminal program may not default to UTF-8. Check how to set your
terminal’s preferences for displaying UTF-8 data correctly. This is often in a pref-
erence titled “Character Encoding” or something similar. If your terminal cannot
handle UTF-8 data, use a modern terminal program.

In the event that your terminal and editor/IDE both claim to handle UTF-8 data
correctly and you still see garbage on the screen, you may need to ensure you
have the correct fonts installed. You need to consult your operating system’s
documentation for how to do this.

Lots of Complicated Rules

Before going further, read the following;:

perldoc perlunitut
perldoc perlunifaqg
perldoc perlunicode
perldoc perluniintro
perldoc Encode

Unfortunately, although the two simple rules cover general cases, they won’t cover all cases because
they can’t, but we’re going to cover a few issues to be aware of.

272 | CHAPTER9 FILES AND DIRECTORIES

Case Folding

Case folding is converting all the characters in a string to uppercase or lowercase. This is useful
when you want to make case-insensitive comparisons. It’s also often a dangerous thing to do with
Unicode. Consider the following program:

use utf§;

binmode (STDOUT, ":encoding (UTF-8)");

print uc("c"), "\n"; # Greek small letter sigma
print uc("g¢"), "\n"; # Greek small final letter sigma

That prints out the same letter twice, an uppercase sigma character:

X
z

The o and ¢ characters are the same lowercase sigma character, but the latter is used at the end of
the word. When you call uc () on them, they both resolve to an uppercase sigma, . This leads to
this problem:

use utf8;

binmode (STDOUT, ":encoding(UTF-8)");

print lc(uc("c")), "\n"; # Greek small letter sigma
print lc(uc("¢")), "\n"; # Greek small final letter sigma

That prints ¢ twice, meaning that case-folding is not round-trip safe in Unicode.

In earlier versions of Perl, in some cases, characters in the range 128 to 255 would often have
strange behavior when you tried to use 1c, uc, ucfirst, and so on. When used as characters, they
would sometimes be considered Unicode code points, and when used as bytes, they could be consid-
ered “unassigned characters” and not match \w in regular expressions. The solution is simple:

use feature 'unicode_strings';

Unfortunately, that feature was not added until Perl 5.11.3 (a development release). So today it’s
argued that you should use Perl 5.12 or better (preferably 5.14) if you want to be “Unicode safe.”

Converting Between Encodings

You need to convert between UTF-16 and ISO-8859-1 (Latin-1). To do this, you must convert from
one encoding to Perl’s internal format and then convert to the desired format:

decode ('UTF-16"', $utfl6_data);
encode ('iso-8859-1', $string);

my S$string
my $latinl

However, ISO-8859-1 is a subset of UTF-16, so you may lose data.

Wide Character in Print

You’ll see this warning a lot when you work with character encodings and you’re not being careful.
When this happens, it’s because you haven’t specified your encoding layer. Perl then assumes your

Unicode | 273

data is ISO-8859-1 (for backward compatibility) and tries to output UTF-8. Any data that doesn’t fit
in the ISO-8859-1 range emits this warning. That’s why you got this warning with this code snippet
used earlier:

use utf8§;

my $string = 'HAH:';

my $length = length($string);

print "$string has $length characters\n";

Assuming Everything Is UTF-8

The input data may be read from files, the command line, sockets, and other data sources. The
output data may be written to STDOUT, files, or other data sinks. To tell Perl that all input and
output data is UTF-8, you can set the PERI,_UNTICODE environment variable to As. The A and s
letter combination is described in the -c section of perldoc perlrun.

Unfortunately, it’s not as simple as setting the environment variable in your code. You must set this
before you run your program. On a Linux style system, you can do this:

PERL_UNICODE=AS perl program.pl

Or you can export the variable, and it will be set for all programs:
export PERL_UNICODE=AS

On Windows, the syntax is:
set PERL_UNICODE=AS

This can be a hassle to do every time, and it may very well be the wrong thing to do if you have non-
UTF-8 data.

is_utfs()

Sometimes you see this in code:

use Encode 'is_utf8';
if (is_utf8($string)) {
wrong!

}
Or the identical:

if (utf8::is_utf8($string)) {
wrong!

}

This does not work as you think it does. The is_utf£8() function is used internally to determine if
Perl should treat a string as Latin-1 or UTF-8. However, just because the UTF-8 flag is set does not
mean that the string is actually UTF-8. Like the Encode: : Guess module, it’s just a guess (for you)
and you explicitly set your encoding layers as described earlier.

274 | CHAPTER9 FILES AND DIRECTORIES

A UTF-8 Shortcut

If you want a shortcut for assuming that @arcv, your filehandles, and your source code are all
UTF-8, you can install the ut£8: :a11 module from the CPAN.

use utf8::all;
You may recall this program from earlier:

use utf8;

use Encode gw(encode decode) ;

my S$string = decode('UTF-8', shift);
my $length = length($string);

Sstring = encode('UTF-8', $string);

print "$string has $length characters\n";
With the ut£8::a11 pragma, this becomes:

use utf8::all;

my $string = shift @ARGV;

my $length = length(S$string);

print "$string has $length characters\n";

In other words, it makes it easier to write programs with UTF-8 data. It’s not perfect, but it’s a good
start.

Printing Unicode

By now you already know how to open your sTDOUT to handle printing Unicode, but what about
typing those funny characters? Well, you don’t have to. One way to avoid this is with the charnames
pragma:

use utf8::all;
use charnames ':short';

note that double-quoted strings are required
print "\N{greek:Sigma} is an upper-case sigma.\n";

And that prints the following (with no warning due to ut£8: :all):
X is an upper-case sigma.

The \N{} construct with charnames is resolved at compile time, so you cannot use variables there.

You can also use the Unicode full names:

use utf8::all;
use charnames ':full';
print "\N{GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI}\n";

Unicode | 275

Which prints 1.

If you know the code point but not the name, you can use \N{U+codepoint}. Again, remember this
is done at compile time. Thus, the code point for the smiley face character is U+2634, so you can
print it with this:

use utf8::all;
print "\N{U+263A}\n";

Or you can just fall back to the chr () function:

print chr(0x263a);

See http://unicode.org/charts/ for a list of the appropriate names you may want to print.

Unicode Character Properties and Regular Expressions

The character 7 is a Greek letter, but is it uppercase or lowercase? You can try Unicode character
properties to find out:

use utf8::all;

my Scharacter :‘ﬁ';

if (Scharacter =~ /\p{Lowercase}/) ({
print "S$character is lower case\n";

if ($character =~ /\p{Uppercase}/) {
print "S$character is upper case\n";

That correctly prints fj, which is lowercase.

Unicode properties are properties about characters that describe something about it. They might
describe the case of the letter, the script used, whether it’s a math symbol or punctuation, and so
on. Unicode is so all-encompassing — and it must be because it is trying to handle all writing
systems — that you can find many strange things in Unicode land. Here’s one of them:

use utf8::all;
latin capital letter d with small letter z
my $character = "\N{U+01F2}";
if ($character =~ /\p{Lowercase}/) {
print "S$character is lower case\n";
}
if (Scharacter =~ /\p{Uppercase}/) ({
print "S$character is upper case\n";

if (Scharacter =~ /\p{Titlecase_Letter}/) {
print "S$character is title case\n";

And that prints this:

ﬁ is title case

276

| CHAPTER9 FILES AND DIRECTORIES

This is because the Latin capital letter d with small letter z is considered a Titlecase character and is
not uppercase or lowercase. Fun, eh?

NOTE See perldoc perluniprop for a full list of Unicode properties supported
and how to use them. See also Chapter 4 of the Unicode version 6 standard:
http://www.unicode.org/versions/Unicode6.0.0/ch04.pdf. perldoc
perlunicode also has a list of common properties in the “Unicode Character
Properties” section.

Further Reading

You can spend a long time understanding Unicode, and this section of the book is far too short, but
the following are a couple good starting points for understanding Unicode and some of the associ-
ated issues.

First, read Joel Spolsky’s famous “The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No Excuses!)” article at
http://www.joelonsoftware.com/articles/Unicode.html

Second, read this: http://stackoverflow.com/questions/6162484/
why-does-modern-perl-avoid-utf-8-by-default

In that link, Tom Christiansen explains, in depth, many of the traps to be aware of. It’s mind-bending,
but it begins to give you an idea of what you’re up against.

Also, http://en.wikipedia.org/wiki/Free_software_Unicode_typefaces has a list of
Free Unicode fonts you can install if you’re tired of seeing broken characters when you try to print
Unicode.

USEFUL MODULES

If you start working frequently with the filesystem, you’ll be happy to know that many Perl modules
are available to take away the drudgery. Further, as they get new features added and bugs fixed,
they’ll correctly handle issues that you don’t want to have to worry about.

File::Find

The File: :Find module was released with Perl 5 and is useful for walking through directory struc-
tures and finding files and directories matching the criteria you’re looking for. It’s a great module
that, unfortunately, is showing its age. You’ll often find when working with Perl that older modules
are stable, powerful, and have difficult interfaces. This is because when Perl 5 was released, many
people were still experimenting with all its features and trying to figure out the best way to work
with them. File: :Find is a module from that era and its interface is clumsy, but it works well. It
has a variety of options, but you must do most of the work. The following is one way to delete all
empty text files in a directory and its subdirectories:

Useful Modules | 277

use File::Find;
find(\&wanted, 'some_directory/');
sub wanted {
if (/\.txt$/ & -f $_ && -z _) {
only delete empty text files
unlink $_ or die "Could not unlink '$File::Find::name': $!";

You could also have written that as the following (but this is a touch clumsy):

use File::Find;
find(sub {
if (/\.txt$/ && -f S_ && -z _) {
unlink $_ or die "Could not unlink 'S$File::Find::name': $!";
}
}
'some_directory',

)
From the documentation:

find(\&wanted, @directories);
find(\%options, @directories);

The £ind () function does a depth-first search over the given @directories in the order they are
given. For each file or directory found, it calls the wanted () subroutine. (The details on how to
use the wanted () function are upcoming). In addition, for each directory found, it will chdir ()
(change directory) into that directory and continue the search, invoking the wanted () function on
each file or subdirectory in the directory.

Every time the wanted () function is called, the following three variables will be set:
» $File::Find::name: The full path to the file or directory found
» $File::Find::dir: The full path to the current directory found
> $_: The short name of the file or directory found

In this case, the full path is relative to the starting directory.

When you start a Perl program, its “current directory” is generally the directory you were in when
you started the program. However, you can call chdir ($some_directory) and Perl will attempt to
change its current directory to that directory. Thus, the $_ variable is relative to the current direc-
tory that the File::Find::find() function is in at the time.

In other words, if you write the following:

find sub { print "$_ -> $File::Find::name\n" }, 'notes/');

278

| CHAPTER9 FILES AND DIRECTORIES

If there is a file named notes/some_file.txt, the following variables will be set when that file is
reached:

> SFile::Find: :name — notes/some_file.txt
> SFile::Find::dir — notes/
> $_—some_file.txt
Because the find () function changes into the directory it’s searching at the time, file test opera-

tors and functions such as open and unlink should operate on $_ instead of $File: :Find: :name.
However, the latter is useful if you need to do error reporting:

the $_ is optional with unlink as it default to $_
unlink $_ or die "Could not unlink '$SFile::Find::name': $!";

It’s also useful if you need to collect the names for later use:

find (\&html_documents, @directories);
my @html_docs;
sub html_documents {
push @html_docs, S$File::Find::name
if /\.html?$/;

When the find () function is finished, your Perl program’s current directory becomes the one you
started with, so working with the @ntml_docs array needs the full paths relative to the current
directory and not just the short name in $_.

NOTE See perldoc File::Find for many more options for this module.

File::Path

File::Path was released with Perl 5.001 and lets you manipulate file paths and not just individual
files and directories.

use autodie ':all';

use File::Path qw(make_path remove_tree);
make_path('path/to/create/', 'another/path/to/create');
remove_tree('path/to/remove') ;

Those should be self-explanatory. The latter removes a “tree” because path/to/remove/ may have

a complete directory tree underneath it. As with other modules listed here, see the documentation to

understand all that it can do. Only the basics are covered here. You can use autodie to make error
handling a bit safer, but the docs show a slightly different approach.

Useful Modules | 279

File::Find::Rule

Object-oriented Perl hasn’t been covered yet (that’s in Chapter 12), but the File: :Find: :Rule mod-
ule is so useful that it’s explained briefly now. If you don’t understand what’s going on, bookmark
this page to return to after you read Chapter 12.

File::Find::Rule is an excellent alternative to the File: : Find module because it has a cleaner
syntax that is easier to follow. The code to find HTML documents becomes this:

my @html_docs = File::Find::Rule
->file
->name (gqr/\ .html?$/)
->in(@directories) ;

The -> syntax, as you may recall, is the dereferencing operator. In this case it’s also used when you
call methods on an object. Chapter 12 covers objects more, but for now, be aware that ->file,
->name, and ->in are sort of like subroutine calls. With the File: :Find: :Rule examples, just note
the syntax, and try these examples on your own. You’ll understand this better when objects are
covered.

Moving along, here’s how to find empty files:
my @empty = File::Find::Rule->file->empty->in(@directories);

You’ll note how naturally that reads. The file() method means Find Only Files. The empty ()
method means Find Only Empty Files (or directories, if you asked for directories). The in () method
means, well, ’'m sure you get the idea by now. The name () method seen just a bit earlier takes a glob
or regex and returns everything matching that.

So say you’re converting a project from the Subversion source control system to git, and you want to
delete all of Subversion’s annoying . svn directories; you could do this:

use File::Path 'remove_tree';
use File::Find::Fule;
my @svn_dirs = File::Find::Rule->directory->name('.svn')->in($dir);
foreach my $svn_dir (@svn_dirs) {
remove_tree($svn_dir)
or die "Cannot rmdir ($svn_dir): $!";

File::Find::Rule also provides an exec () method. Like File: :Find, it takes a callback
(a subreference passed to it). Unlike File: :Find, it passes relevant variables to the subref as
arguments, so the preceding could be written as this:

File::Find: :Rule->find->directory->name('.svn')->exec(sub {
my (S$Sshort_name, $directory, $fullname) = @
remove_tree($svn_dir)

or die "Cannot rmdir ($svn_dir): $!";
})->in(@directories);

—

280 | CHAPTER9 FILES AND DIRECTORIES

If the exec () method is encountered, the $short_name, $directory, and $fullname are passed to
the subref. These are analogous to the $_, $File: :Find::dir, and $File: :Find: :name variables
used with File: :Find.

Of course, sometimes you prefer an iterator. This is handy when you work with a large directory
structure and you want to process everything as it’s encountered rather than waiting for a list to be
generated. So instead of this:

my @html_docs = File::Find::Rule->file
->name (gr/\.html?S$/)
->in(@directories) ;

You could write this:

my $find = File::Find::Rule->file
->name (gr/\.html?$/)
->start (@directories) ;

while (defined (my $html_document = $find->match)) {
do something with $html_document

Or maybe you want to print all files greater than a half meg?

File::Find::Rule
->file
->size('>.5M")
->exec (sub {
my ($short_name, $directory, $fullname) = @_;
print "$fullname\n";
})->in (@ARGV) ;

Like File: :Find, File::Find: :Rule has many options, so reading the documentation is useful.

LA hRellhl Recursively Printing a Directory Structure

Some systems come with a command-line utility named tree that prints out a text representation of
a file tree. For example, your author wrote this book using the Vim editor and wrote a filetype plug-in
named wroxbook.vim and a syntax file with the same name. He stored them in a vim/ directory in
ftplugin/ and syntax/ directories. The directory structure looks like this (produced by the afore-
mentioned tree utility):

vim

|-- ftplugin

| -- wroxbook.vim
‘-- syntax

' -- wroxbook.vim

We’ll write a simple Perl version of this that will print the following output for that directory structure:

Useful Modules | 281

vim/

| ftplugin/

| | --wroxbook.vim
| syntax/

| |--wroxbook.vim

It’s not quite as pretty as the tree utility, but it works for files and directories. You may want to
keep this program handy (and have it somewhere in your path) as it’s used to refer to file and
directory layout in later chapters. All the code in this Try It Out can be found in the code file
example_9_2_ tree.pl.

1. Type in the following program, and save it as example_9_2_tree.pl. Use the autodie module
here. You need to install this from the CPAN.

use strict;

use warnings;

use autodie ':all';

use File::Spec::Functions gw(catdir splitdir);

The starting directory wil be passed on the command line.
Otherwise, use the current directory.
my $dir = @ARGV ? SARGVI[0] : '.';

unless (-d $dir) {
die "($dir) is not a directory";
}
print_entries($dir, 0);
exit 0;

sub print_entries {

my ($dir, $depth) = @_;

my @directories = grep { $_ } splitdir(s$dir);
my $short_name = $directories[-1];

my S$prefix = '| ' x $depth;

print "S$prefix$short_name/\n";
opendir(my $dh, $dir);

grab everything that does not start with a .
my @entries = sort grep { !/"\./ } readdir(s$dh);
foreach my $entry (@entries) {
my S$path = catdir(dir, SSentry);
if (-f Spath) {
print "$prefix|--$entry\n";
}

elsif (-d _) {

print_entries(S$path, S$depth + 1);
}
else {

skip anything not a file or directory

282 | CHAPTER9 FILES AND DIRECTORIES

2. Run the program with perl example_9_2_tree.pl dirname. You should see a text representa-
tion of the directory you passed to it as an argument. If you had the same vim/ directory struc-
ture as previously outlined, you should see the following output:

vim/

| ftplugin/

| |--wroxbook.vim
| syntax/

| |--wroxbook.vim

How It Works

The File: :Spec: : Functions module is used, and you can import the catdir () and splitdir ()
functions. These are used to join directories together and to split them into their component parts.
Under the hood, this module recognizes your operating system and, most important, how to recognize
directories and files. For example, in Macs prior to OS X, the path separator was the colon, :. You
don’t have to know this because File: : Spec: : Functions can take care of it for you.

When you first call print_entries (), you can see the following three lines of code:

my @directories = grep { '' ne $_ } splitdir($dir);

my S$short_name = Sdirectories[-11]; # grab the last parth

my $prefix = '| ' x $depth;
The grep { '' ne $_ } looks strange, but splitdir () may return empty strings for directory separa-
tors because these are significant on some operating systems. If you passed vim/ as the argument to this
program, the first time you called this function, @directories would be setto ('vim', '') and the

name would then be the empty string. You can avoid this by using grep to select only directory parts

not equal to the empty string. (grep { $_ } fails because a 0 (zero) is a perfectly valid directory name
but evaluates as false.)

The $short_name is the last directory in the path. Otherwise, you could end up with output that keeps
repeating irrelevant information that obscures our intent. You would have this:

beginning perl/
beginning_perl/vim/

| beginning_perl/vim/ftplugin/
| |-- wroxbook.vim

| beginning perl/vim/syntax/

| |-- wroxbook.vim

Instead of this:

beginning_perl/

vim/

| ftplugin/

| |-- wroxbook.vim
| syntax/

| |-- wroxbook.vim

Useful Modules | 283

The $prefix variable is a string like €| | | ¢ corresponding to the number of directories
($depth) you have. You could have used splitdir () and counted them if you didn’t want to pass the
$depth variable.

Then you can print the current directory:
print "S$prefix$short_name/\n";

Then open the directory, and for everything in it that does not start with a dot, add it to the eentries
array:

opendir (my $dh, $dir);
my @entries = sort grep { !/?\./ } readdir($dh);

Then go through every entry, using File: : Spec: : Functions: :catdir () to add the original directory
name to the entry. Otherwise, -f and -d won’t find the file you want.

foreach my $entry (@entries) {
my $path = catdir(dir, SSentry);
if (-f Spath) {
print "$prefix|--$entry\n";
}
elsif (-d _) {
print_entries($path, S$depth + 1);
}
else {
skip anything not a file or directory

You can use _ with -d to avoid calling stat () on the file again and minimizing disk I/O. (This can get
expensive if you have a large number of files and directories.)

The trailing else block is not necessary here, but it’s good practice to remind programmers that you
are deliberately not processing symbolic links, sockets, or anything else that might not be a file or
directory. Otherwise, a maintenance programmer might assume this is a bug in your code. Remember:
Always double-check if/elsif conditions if they do not have a trailing else block.

And just to remind you of the value of using modules and CPAN, the following is the same code rewrit-
ten in an iterative fashion with File: :Find: :Rule.

use strict;

use warnings;

use File::Spec::Functions 'splitdir';
use File::Find::Rule;

my $dir = @ARGV ? $ARGV[0] : '.';

my Srule = File::Find::Rule->any(
File::Find::Rule->directory, # only directories
File::Find::Rule->file, # or files

)->start ($dir) ;

284 | CHAPTERY9 FILES AND DIRECTORIES

while (defined(my $found = S$rule->match)) {
next if $found =~ /"\./;
my @directories = splitdir($found);
my S$Sname = pop @directories;

if (-f sfound) {

print "| " x (@directories - 1);
print "|-- $name\n";

}

else {
print "| " x @directories;

print "$name/\n";
}

Many times in the rest of this book, we’ll find this ability to print out the tree structure of directories
useful, so we’ll be running this program a lot and will refer to it as tree.pl for simplicity.

SUMMARY

This chapter covered the basics of file and directory manipulation in Perl. You learned how to open
files and read and write to them. You learned about file test operators to check for interesting prop-
erties about your filesystem and how to use binmode () to tell Perl how it’s supposed to read and
write the data in filehandles.

Also, because this is the first chapter to start working with data outside of your program, Unicode
was introduced. It’s a complicated topic and one that more and more programmers are expected to
understand. Due to the Internet, what was previously a problem encountered by only a handful of
people is one that many must now deal with and understand. You can save yourself much grief in
your future career by coming to grips with it now.

EXERCISES

1. The Unix cat utility takes a list of files as arguments and concatenates them, printing the result
to sTpouT. Write this utility in Perl as cat.pl. (If you know the UNIX cat utility, you don’t need to
provide the rest of the behavior.)

2. Modify cat.pl to strip comments and blank lines. Consider a comment to be any line in a file
that begins with zero or more spaces followed by a # symbol.

3. Writea program, codepoints2char.pl, that can take a list of decimal (not hexadecimal) numbers
and print the Unicode character. Assume UTF-8. Try running it with the following:

perl codepoint2char.pl 3232 95 3232

Summary | 285

NOTE This exercise is problematic because it requires the proper fonts installed
for the code points you want to display. The 3232 (U+0CA0) code point is from
Kannada, one of the Dravidian languages of India. You may need to search for
an install of a free Kannada font.

Write a program, chars2codepoints.pl, which can take a list of words on the command line
and print out, in decimal, their code points separated by spaces, having each word’s list of code
points on a separate line. You can search Wikipedia for interesting lists of words written in other
scripts.

(Extra Credit) Print out the values from exercise as Unicode code points. In other words, decimal
3232 becomes U+0CAO0. (Hint: see sprintf () or printf () in Chapter 4.

286

CHAPTER 9

FILES AND DIRECTORIES

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

open()

File test operators
The diamond operator
Temporary files

The DATA section
Binmode

opendir, readdir
Globbing

Unicode

UTF-8

Unicode character properties
File::Find
File::Path

File::Find::Rule

KEY CONCEPTS

The function for opening files for reading and writing.

Used for testing various properties of files and directories.

A shortcut for opening files from the command line.
Files that are deleted when your program ends.
Storing data in your program as a file.

Used to give hints to Perl on how to read/write files.
Functions for reading directories.

Patterns to match files and directories.

A standard for describing all character sets.

The most popular Unicode encoding.

Ways to identify interesting features of a character.
A module used to make directory traversal easier.
A module that makes path manipulation easier.

A clean alternative to File: : Find.

sort, map, and grep

WHAT YOU WILL LEARN IN THIS CHAPTER:

Sorting lists alphabetically and numerically
Creating custom sorts with sort subroutines

Using map and grep to efficiently transform and filter lists and
avoiding their traps

Combing map, sort, and grep to create powerful list manipulations

WROX.COM CODE DOWNLOAD FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at http://www.wrox.com/remtitle
.cgi?isbn=1118013840 on the Download Code tab. The code for this chapter is divided into
the following major examples:

>

Y Y VY VY Y

example_10_1_soldier.pl
example_10_2_1is_prime.pl
example_10_3_celsius.pl
listing 10_1_employee.pl
listing 10_2_collate.pl

listing_10_3_locale_sort.pl

288 | CHAPTER10 SORT, MAP, AND GREP

By this time in the book you should have a sufficient understanding of Perl that you’re able to use

it for small tasks in relation to your day-to-day work. However, there’s an odd sort of “litmus test”
for Perl developers. For some reason, understanding sort, map, and grep seems to be the difference
between beginner and intermediate Perl developers. When you cross this threshold, you’re well on
your way to being a Perl expert.

Though sort, map, and grep have been mentioned briefly, their usage has deliberately been kept
simple. Now you can see a bit more about their full power.

The one thing to remember is that each of these creates a new list from an old list.

BASIC SORTING

The sort builtin sorts a list and returns a new list. It has three forms:

sort LIST
sort BLOCK LIST
sort SUBNAME LIST

As an example of each:

@passengers = sort @passengers;
@passengers = sort { Sa->{age} <=> S$b->{age} } @passengers;
@passengers = women_and_children_first @passengers;

Sorting Alphabetically

The simplest sort in Perl is this:

my @list = sort qw(this is a list);
print "@list";

That prints out the Yoda-esque phrase: a is 1ist this. By default, sort sorts items with a string
comparison. Well, actually, it sorts items via a numeric comparison of the string’s code point, from
lower to higher values. So the following line:

declare our source code as UTF-8

use utf§;

and we're printing UTF-8

binmode STDOUT, 'encoding (UTF-8)';

print join ' ', sort qw/b H aa H 1 & a a/;

Prints this:
1AaaabllHAK

Basic Sorting |

289

NOTE If you're unsure of why Perl sorts in this order, you can convert each char-
acter to its UTF-8 code point with this (obviously, the aa is left out for this example):

use utf8::all;
print join ' ', map { as_code_point($_) } sort qw/b H H 1 & a
A/;
sub as_code_point {
my $Schar = shift;
die "Only characters!" if length($char) > 1;
return "U+" . uc sprintf "%04x", ord Schar;

And that prints out this:
U+0031 U+0041 U+0061 U+0062 U+56FD U+65E5 U+672C

As you can see, by default Perl’s sort will sort characters in ascending order by
their numerical oxrd () value. If you don’t understand the map, don’t worry. It is
explained carefully in the “map and grep” section later in this chapter.

If you want to see the decimal value of the numbers, use this:

use utf8::all;
print join ' ', map ord, sort aw/b H 1 A& a a/;

Sorting Numerically

Perl’s default sort (more or less) sorts strings as characters. This means that if you do this:
print join "\n", sort qw/1 9 10 99 222/;
You get this:

1
10
222
9
99

You probably meant to sort your numbers numerically. In this case, you can provide a sort block:
print join "\n", sort { $Sa <=> $b } qw/1 9 10 99 222/;

And now you get the correct sort order:

1

9
10
99
222

290 | CHAPTER10 SORT, MAP, AND GREP

In the form sort BLOCK LIST, Perl iterates over the pairs of items in the list and sets the special
package variables $a and $b to each element in the list in turn. The <=> operator (sometimes called
the spaceship operator) was covered in Chapter 4. In this case, it tells Perl to compare $a and $b as
numbers instead of strings.

WARNING The $a and sb variables are special package variables. Do not
declare them with my or else your sort blocks are likely to break.

Reverse Sorting

Many times you want a list reversed. You could do this:
my @reversed_names = reverse sort @names;

That reads clearly, but for larger lists, this is inefficient. It sorts the list into ascending order
and then reverses it into descending order. Why not just sort directly into reverse descending order?
In this case, you can use a sort block and swap the $a and $b variables.

my @reversed_names = sort { $b cmp $a } @names;
This works when sorting numbers in descending order, too:
my @descending = sort { $b <=> $a } @numbers;

Complex Sort Conditions

When sorting on a single value, sorting is straightforward, but if you need to sort on multiple values,
you need to use a sort block or sort subroutine. Listing 10-1 (code file 1isting_10_1_employee.
pl) shows an example of complex sorting.

LISTING 10-1: Complex Sorting in Perl

use strict;

use warnings;

use diagnostics;

my @employees = (
{

name => 'Sally Jones',
years => 4,
payscale => 4,

},

{
name => 'Abby Hoffman',
years = 1,

payscale => 10,

Basic Sorting | 291

name => 'Jack Johnson',
years = 4,
payscale => 5,

name => 'Mr. Magnate',
years = 12,
payscale => 1,
},
)
@employees =
sort {
Sb->{years} <=> Sa->{years}
||
Sa->{payscale} <=> $b->{payscale}
}

@employees;
printf "Name Years Payscale\n";
foreach my Semployee (@employees) {
printf "%-15s %2d %2d\n" => @{Semployee}{qw/name years payscale/};

}

Running 1isting_10_1_employee.pl prints the following

Name Years Payscale
Mr. Magnate 12 1
Sally Jones 4 4
Jack Johnson 4 5
Abby Hoffman 1 10

The idea in this case is that you want to print a list of employees. They should be printed from the
highest number of years in the company to the lowest. That’s your first sort condition:

$b->{years} <=> Sa->{years}

The $b and the $a are reversed to provide a descending sort.

But Sally Jones and Jack Johnson have the same number of years with the company. The highest
payscale is 1 and the lowest is 10, and if a tie occurs, you need to print employees from highest to
lowest payscale (in other words, from 1 to 10).

$a->{payscale} <=> $b->{payscale}

You may remember that the <=> operator returns 0 (zero) if the two terms are equal, so you can
use the | | operator to sort by payscale if the employees have the same number of years with the
company:

Qemployees =
sort {
$b->{years} <=> $a->{years}

292 | CHAPTER10 SORT, MAP, AND GREP

Sa->{payscale} <=> $b->{payscale}
}

@employees;

What happens if the employees have the same number of years and the same payscale? Well, just
throw in a sort by name:

@employees =
sort {
$b->{years} <=> $a->{years}

Sa->{payscale} <=> Sb->{payscale}

Sa->{name} cmp Sb->{name}
}

Qemployees;

This looks like a lot of work, but the | | operator short-circuits. That means that because only one of
the conditions is required to be true, as soon as one of the conditions evaluates as true, the
subsequent conditions are not evaluated. It’s actually a fairly efficient sort.

Writing a sort Subroutine

In handling complex sorts, you might find that this is a bit daunting:

@employees =
sort {
Sb->{years} <=> $a->{years}

$a->{payscale} <=> S$b->{years}

Sa->{name} cmp $b->{name}
}

@employees;

The fix is simple. Put that sort block into a subroutine, and replace the block with the subroutine
name:

sub by_seniority_then_pay_ then_name {
Sb->{years} <=> $a->{years}

$a->{payscale} <=> S$b->{years}

Sa->{name} cmp $b->{name}
}

Qemployees = sort by_seniority_then_pay then name @employees;

When you have a complex sort condition, giving it a named sort subroutine improves readability
quite a bit. As an added bonus, if you need to replicate a complex sort elsewhere, you already have
the code handy.

Basic Sorting | 293

NOTE For those who are curious, Perl’s sort, by default, is stable. This means
that if two values compare the same way, they will be returned in the same
order they were originally found. Thus, if you left off the sorting by name condi-
tion in your employee sort, all employees with the same years and payscale
would be guaranteed to be returned in the order they were in on the original list.
This is useful, particularly if you have a list that is already partially sorted. This is
far more common than you think.

Some people prefer to not use the $a and $b variables. They are not strictly required in the sort
subroutine. If you want to use variables with names of your choosing (and not $a or $b) you need to
use a $$ prototype to force passing $a and $b to the sort sub for assignment to your variables:

sub by_seniority_then_pay_ then_name($$) {
my (Semployeel, Semployee2) = @_;
Semployee2->{years} <=> Semployeel->{years}

Semployeel->{payscale} <=> Semployee2->{years}
||

Semployeel->{name} cmp Semployee2->{name}
}

@employees = sort by _seniority_then_pay then_name @employees;

Be aware that if you do this, the sort subroutine will be a bit slower because as an optimization in
Perl, the $a and $b variables are automatically aliased by Perl when sort is encountered.

Sorting and Unicode Fun!
Why do you sort data? You do so to make it faster for:
> Computers to find data
» Humans to find data

If all you care about is to make it faster for computers to find data, the default sort behavior is
often fine. However, humans are an annoyingly troublesome lot. In Swedish, the letter z comes
before the letter &, but in German it’s the other way around. If you’re sorting data for display to
people, they will complain bitterly (and quite rightly) if they have trouble finding what they need
because the sort order of the data is not what they expect, so you need to make sure that you’re
sorting correctly for your target audience.

And here’s another fun example. Run the following code:

use utf8::all;

use charnames ":full";

print "\N{ANGSTROM SIGN}\n";

print "\N{LATIN CAPITAL LETTER A WITH RING ABOVE}\n";

That prints out this:

294

| CHAPTER10 SORT, MAP, AND GREP

o

A

Those are the Unicode code points U+212B and U+00C5, respectively, but for purposes of sorting
or comparison, they are supposed to be considered the same character. Further, Unicode has a
combining-character to indicate that two symbols should be combined. This gives Unicode great
flexibility in representing different characters. Using the two preceding code points along with an
uppercase A and a COMBINING RING ABOVE gives this code:

use charnames ':short';

binmode STDOUT, ':encoding (UTF-8)';
print "\N{U+212B}\n";

print "\N{U+00C5}\n";

print "\N{U+0041}\N{U+030A}\n";

Which prints this:

o
A
A

Many computers can actually print those slightly differently, but they should look generally similar,
and for purposes of sorting and comparing (cmp), they must, as already stated, be considered the
same character despite being different code points. This information is repeated because it’s
important, and there’s a good chance youw’ll get it wrong. But don’t feel bad. Perl’s default sort
builtin also gets this wrong.

WARNING Although A (u+2128), A (U+00C5) and A (u+0041 U+030a) are consid-
ered to be identical characters, the fact that they look the same is an accident.
Do not rely on a character’s appearance to decide whether two characters are
the same.

So how do you get this right? Collation. Collation, for our purposes, is defining the correct order for
data. Sorting, by contrast, is putting data into that correct order. The Unicode Collation Algorithm,
described at http://www.unicode.org/reports/trl0/, tells you how to do properly collate
Unicode data. Fortunately, the Unicode: :Collate module was first included with Perl in version
5.7.3 and implements the Unicode Collation Algorithm for you.

So as a general rule, sorting is handled correctly with the code shown in Listing 10-2 (code file
listing_10_2_collate.pl).

LISTING 10-2: Using Unicode::Collate

use strict;

use warnings;
use diagnostics;
use utf8::all;

Basic Sorting |

295

use Unicode::Collate;

my @Qapples = (
"\N{U+212B}pples",
"\N{U+00C5}pples",
"\N{U+0041}\N{U+030A}pples",
"apples",
"Apples",

);

my @bad = sort @apples;

my @sorted = Unicode::Collate->new->sort (@Qapples);
print "Original: @apples\n";

print "Sorted: @bad\n";

print "Collated: @sorted\n";

Running listing 10_2_collate.pl prints out this:

Original: Apples Apples Apples apples Apples
Sorted: Apples Apples apples Apples Apples
Collated: apples Apples Apples Apples Apples

The second line, sorted:, starts with aApples Apples apples. Clearly that’s not right, but Perl’s
default sort does not recognize the U+0041 U+0030A as being combined. It merely sorts on the
numeric value of the individual octets, leading to incorrect sorting.

Unicode::Collate is great, but you often need to sort according to a specific locale. In Perl, you
can do this:

use locale; # but don't really do this

That tells Perl to use the proper sorting for your system’s LC_COLLATE environment variable.
Unfortunately, many programmers have been bitten by this because not all operating systems
support this, nor are the locales guaranteed to be installed, ensuring that this method is not
portable. Instead, use Unicode: :Collate: :Locale

As previously mentioned, in Swedish the letter z comes before the letter 6, but the sort order is
reversed in German. Listing 10-3 shows the use of Unicode: :Collate: :Locale to get the correct
sortordﬂfkodefﬂelisting_10_3_locale_sort.pll

LISTING 10-3: Using Unicode::Collate::Locale to Sort According to Locale

use strict;

use warnings;

use utf8::all;

use Unicode::Collate::Locale;

my @letters = gqw(z 0);
my @reversed = reverse @letters;
my S$Sgerman = Unicode::Collate::Locale->new(locale => 'de_DE');

my $swedish = Unicode::Collate::Locale->new(locale => 'sv_SE');
foreach my $letters (\@letters, \@reversed) {
print "Original: @Sletters\n";

my @german = S$german->sort(@Sletters); continues

296 | CHAPTER10 SORT, MAP, AND GREP

LISTING 10-3 (continued)

my @swedish = $swedish->sort(@$letters);
print "German: @german\n";
print "Swedish: @swedish\n\n";

When you run listing 10_3_locate_sort.pl, you should see the following:

Original:
German:
Swedish:
Original:
German:
Swedish:

N O: O: N O N
O: N N O: N O:

Unicode::Collate: :Locale was first released with Unicode: :Collate version 0.55 in August
2010, so you may need to install a newer version of Unicode: :Collate from the CPAN.

Sorting by External Criteria

Sometimes you need to sort by criteria that is not directly represented in your data. One way to handle
this is to define your sort criteria in a separate data structure. Imagine a fictitious military that has
Generals, Colonels, Majors, Captains, and Privates. They’re a bit top-heavy on officers and they like
their personnel reports to have those important officers sorted at the top. All the code in this Try It Out
is found in code file example 10 _1_soldier.pl.

1. Type in the following program, and save it as example_10_1_soldier.pl:

use strict;
use warnings;
my %$sort_order_for = (
General => 1
Colonel => 2,
Major = 3,
4
5

r

r

Captain =>
Private => 5,
my @soldiers = (
{ name => 'Custer’,
rank => 'General' },
{ name => 'Crassus',
rank => 'General' },
{ name => 'Burnside',
rank => 'General' },
{ name => 'Potter’,
rank => 'Colonel' }
{ name => 'Bickle',
rank => 'Private' },
)
@soldiers = sort {
$Ssort_order for{$Sa->{rank}} <=> $sort_order_ for{Sb->{rank}}
|

Sa->{name} cmp S$b->{name}

map and grep |

297

} @soldiers;
foreach my S$soldier (@soldiers) {
print "$soldier->{rank} S$soldier->{name}\n";

}
2. Run the program with perl example_10_1_soldier.pl. You should see the following output:

General Burnside
General Crassus
General Custer
Colonel Potter
Private Bickle

How It Works

None of the soldier records actually contain the value you first need to sort on, so construct a hash
named $sort_order_for to contain your sort value. The first sort criteria evaluates as the numeric
value you need to sort on. Had you merely sorted on rank, colonel Potter would have been listed
higher than those Generals (not a bad thing given those Generals’ records for historic defeats).

However, for each of Burnside, Crassus, and custer, the first sort condition evaluates to 1 <=> 1, so

you can fall back to your second sort condition, their name, to complete the sorting;:

$a->{name} cmp S$b->{name}
Had you left off the second sort condition, the list would look like this:

General Custer
General Crassus
General Burnside
Colonel Potter
Private Bickle

That shows that you have a stable sort, preserving the original order for values considered “equal.”

map and grep

Many times you want to filter or transform a list instead of (or in addition to) sorting the list. The
grep builtin is for filtering lists. Maybe you want to create a new list of all elements of an old list
that are greater than zero? The grep builtin is the tool you’re looking for.

The map builtin allows you to take a list and transform in into another list. For example, you
might want to multiply all list elements by two, but assign it to a new list rather than altering the
original.

Let’s start with filtering the list first.

298 | CHAPTER10 SORT, MAP, AND GREP

Using grep

You used the grep builtin a few times in this book and the examples are deliberately kept simple
to make the basic use clear. However, pretend you’ve never heard of it just to give you a quick
refresher. The grep builtin takes a list and produces another list of all values matching grep’s
criteria. For example, to use only numbers greater than zero, use this code:

my @greater = grep { $_ > 0 } @numbers;
The grep builtin takes two forms:

NEWLIST = grep BLOCK LIST;
NEWLIST = grep EXPRESSION, LIST;

The first form, used in the preceding code is probably the most popular. You could have written the
“greater than zero” filter as any of these three:

> 0 } @numbers;
> 0, @numbers;
> 0, G@numbers);

my @greater = grep { $
my @greater = grep S
my @greater = grep($

The grep BLOCK does not take a comma after the block, whereas grep EXPRESSION does.

When using grep, you can iterate over every element in the LIST, setting each element in turn to $_.
The grep builtin returns only elements for which the BLOCK or EXPRESSTON returns true. You can
have arbitrarily complex expressions in the grep. To grab the palindromes from a list, use this code:

my @palindromes = grep { uc eqg reverse uc } @words;

NOTE Your author debated quite a bit about writing this palindrome checker:
my @palindromes = grep { uc eq reverse uc } @words;

Ignoring Unicode issues here (in some encodings, characters are different
depending on their location in a word), it might seem “friendlier” to write the
code like this:

my @palindromes = grep { uc($_) eqg scalar reverse uc(S_) }
@words;

The reason the first version works is because uc operates on the s_ version
by default. The scalar builtin is often used with reverse to force it to reverse
a string, but the eq forces scalar context, rendering the scalar keyword
redundant. Although you should use the longer form to avoid confusion, you
need to get used to seeing the shorter forms, so they will be used from time
to time.

map and grep |

299

Because a bare regex matches against $_, this is often seen in grep. To find words beginning with
the vowels a, e, i, o, or u, use this code:

my @starts_with vowels = grep { /"[aeioul/ } @words;

Because grep returns a list, you can combine this with sort. To find all numbers greater than or
equal to 10 and return them sorted from lowest to highest, use this code:

my @numbers = (13, 3, -2, 7, 270, 19, -3.2, 10.1);
my @result = sort { $a <=> $b } grep { $_ >= 10 } @numbers;
print join ', ', @result;

And that prints the following;:
10.1, 13, 19, 270

When chaining list builtins like this, many people prefer to write them on separate lines to make
things more clear:

my @result = sort { $Sa <=> S$b }
grep { $_ >= 10 } @numbers;

When using list builtins such as grep, they can operate on an entire list. Sometimes you see code
like this:

my @positive = grep { $_ > 0 } @numbers;
my $first = $positive[0];

That can be inefficient, particularly if you have a lot of @numbers. A for loop with 1ast is better.

my $Sfirst;
for (@numbers) {
if (S_>0) {
Sfirst = $_;
last;

That for loop terminates the search through @numbers on the first successful match, if any.
Of course, if none of the @numbers are greater than zero, it’s not more efficient than the grep.

Grepping for Prime Numbers

Often, you might want to create a new list from an old list based on particular criteria, but that criteria

can be expensive to compute. The following program returns a list of primes from a list but caches all

prime numbers found so that you don’t waste time recalculating whether a given number is prime.

Assume that your resulting list of primes should contain all primes from the supplied list of numbers,

even if they’re duplicates. Also assume that you’re printing only unique primes. Otherwise, your list

will be rather large and filled with duplicate numbers. All the code for this Try It Out can be found in

thecodefﬂeexample_10_2_is_prime.pl.

300

CHAPTER 10 SORT, MAP, AND GREP

Type in the following program, and save it as example_10_2_is_prime.pl:

use strict;
use warnings;
use diagnostics;
use List::MoreUtils 'uniqg';
use Time::HiRes gw(gettimeofday tv_interval);
my $is_slow = 0;
my @numbers = qw(3 2 39 7919 997 631 200 7919 459 7919 623 997 867 15);
@numbers = (@numbers) x 200000;
my @primes;
my Sstart = [gettimeofday];
if (Sis_slow) {
@primes = grep { is_prime($_) } @numbers;

}
else {
my $is_prime;
@primes = grep {
(exists $is_prime{S$_} and S$is_prime{S$_})
or
(Sis_prime{S$S_} = is_prime(S_))
} @numbers;
}

my $Selapsed = tv_interval ($start);
printf "We took %0.1f seconds to find the primes\n", S$elapsed;
print join ', ' => sort { Sa <=> $b } uniqg @primes;
sub is_prime ({

my $number = $_[0];

return if Snumber < 2;

return 1 if $Snumber == 2;

for (2 .. int sqgrt($number)) {

return if ! ($number % $_);
}

return 1;

Run the program with perl example_10_2_is_prime.pl. You should see output similar to the
following:

We took 2.7 seconds to find the primes
2, 3, 631, 997, 7919

The exact number of seconds depends on how fast your computer is.

Now, change my $is_slow = 0; tomy $is_slow = 1; and run it again. You see output similar
to the following, again dependent on how fast your computer is:

We took 10.1 seconds to find the primes
2, 3, 631, 997, 7919

When you use the slow version, finding primes takes almost four times longer than your fast
version.

map andgrep | 301

How It Works

Let’s revisit the definition of a prime number. A prime number is any integer greater than 1 that is
evenly divisible (in other words, no remainder) only by 1 and itself. You know 5 is prime because
dividing it by 2 leaves a remainder of 1, 3 leaves a remainder of 2, and 4 leaves a remainder of 1. The
number 15 is not prime because dividing it by 5 leaves a remainder of 0, so it’s evenly divisible by 5.

That leaves you with the following definition of is_prime():

sub is_prime {
my Snumber = $_[0];
return if Snumber < 2;
return 1 if $number == 2;
for (2 .. int sqgrt(Snumber)) {
return if ! (Snumber % S$S_);
}

return 1;

This is not the most efficient primality test, but it’s easy to understand. It’s also slow, so you can cache
its results.

You return false (return with no arguments) if the number is less than 2 ($number < 2) because by
definition, it’s not prime. You also return true (1) if the number is 2. That’s because the test in the for
loop would incorrectly return false for 2, which is prime:

return if ! (Snumber % 2);

Now break that down so you can understand this rather common idiom.

The % operator is the modulus operator. (See Chapter 4 if you don’t remember this.) If your number is
8, you know that 8 % 2 returns zero, so that line evaluates to this:

return if !(0);

The ! symbol negates the truth value of its argument, so the line then evaluates to the following:
return if 1;

And that is equivalent to:
return;

Because a bare return (a return that doesn’t return any arguments) is evaluated as false, you are
effectively returning false from this function. However, the return if ! ($number % 2) line would
return false for 2, so check to see if your $number is 2 on the line prior to the for loop.

Then you have the actual loop:

for (2 .. int sqgrt(Snumber)) {
return if ! ($number % $_);
}

return 1;

302 | CHAPTER10 SORT, MAP, AND GREP

The loop iterates from 2 to the square root of the number passed to it. Remember that the range
operator, . . , (see Chapter 4) creates a range from the left number to the right number. For every
iteration through the loop, if any number you test returns 0 for $number % $_, you know that the
$number is evenly divisible by some number other than 1 and itself, and you thus return. When you
get to the end of the loop, you return a true value to indicate that you have a prime number. You may
want to walk through this function a couple of times to understand it.

Now that you have the prime number check out of the way, take a look at the rest:

use List::MoreUtils 'uniqg';
use Time::HiRes gw(gettimeofday tv_interval);

Import the unig function from List: :MoreUtils. (You may have to install this module from the
CPAN.) That later enables you to have only unig number for printing. The Time: :HiRes module was
included in Perl 5.7.3 and later, so you probably already have it on your system. See the documentation
for how it works. You are just going to use it to show elapsed time.

The $is_slow variable is merely a boolean indicating whether you’re going to use the slow version of
your grep or the fast version.

Next, you have this curious bit:

my @numbers = gw(3 2 39 7919 997 631 200 7919 459 7919 623 997 867 15);
@numbers = (@numbers) x 200000;

The @numbers array contains 14 numbers. The line after this uses the (VARIABLE) x REPEAT syntax.

As explained in Chapter 4, when you put parentheses around the value to the left of the x operator, it’s
in list context and replicates that list REPEAT times. Thus, your original 14 numbers expand into a list

of 2,800,000 elements (almost 3 million elements!). That’s quite a large list to search through.

If $is_slow is true, you executes the following normal grep statement:
@primes = grep { is_prime($_) } @numbers;

However, because you must recompute the value of is_prime () every time, it can be quite slow, par-
ticularly when you have a list of almost 3 million elements to search through.

If $is_slow is false, you execute the following code:

my %is_prime;
@primes = grep {
(exists $is_prime{S$_} and S$is_prime{S$_})
or
(Sis_prime{S$S_} = is_prime(S_))
} @numbers;

The $is_prime hash is your cache. If a number is in that hash, you know you already calculated its
primality:

(exists $is_prime{$_} and Sis_prime{S_})

Otherwise, you calculate its primality and store it in the hash, taking advantage that an assignment
also returns the value assigned.

map andgrep | 303

(Sis_prime{S$_} = is_prime(S_))
Finally, you have your print statement:
print join ', ' => sort { $a <=> $b } unig @primes;

You sort after you find the unique values because there’s no point to sort the entire list only to throw
away duplicates.

Because you put the prime number calculation into the function is_prime (), if you have a faster prime
number calculation function, you can easily replace just this one function and not touch the rest of the
program.

If some of this program is unclear, download it from Wrox.com and play around with it. (Better yet,
type it in yourself.) You’ll learn a lot about various issues in programming.

Using map

The map builtin, like the grep builtin, takes a list and returns a new list. It maps old values to new
values. Its syntax is virtually identical to grep’s:

NEWLIST = map BLOCK LIST;
NEWLIST = map EXPRESSION, LIST;

So to uppercase every word in a list, use this code:
my @QUPPER = map { uc } @words;

Like grep, map operates on every element in a list, so use it only if you want to transform an entire
list. And like grep, because it returns a list, you can chain with grep and sort. Say you have an
array of numbers, and you want to take the square roots of those numbers greater than zero:

my @roots = map { sqrt(S$_) }
grep { $_ > 0 } @numbers:

A RReIlAN Printing Celsius Values from Fahrenheit

Often, you need to convert a list to a new set of values. Converting from Fahrenheit to Celsius is an
age-old problem. Following is one way to do this, using map. All the code in this Try It Out is found in
Codefﬂeexample_lO_B_celsius.pl.

1. Type in the following program, and save it as example_10_3_celsius.pl.

use strict;
use warnings;
binmode STDOUT, ':encoding (UTF-8)';
my %$fahrenheit = (
'absolute zero' => -459.67,

304 | CHAPTER10 SORT, MAP, AND GR