

Learn Programming in Python
with Cody Jackson

Grasp the basics of programming and Python syntax while
building real-world applications

Cody Jackson

BIRMINGHAM - MUMBAI

Learn Programming in Python with Cody
Jackson
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Chaitanya Nair
Content Development Editor: Anugraha Arunagiri
Technical Editor: Ashi Singh
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Shraddha Falebhai

First published: November 2018

Production reference: 1281118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-194-7

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Cody Jackson is a disabled military veteran, the founder of Socius Consulting, an IT and
business management consulting company in San Antonio, Texas, and a co-founder of Top
Men Technologies with Scott Thompson. He is currently employed at CACI International as
the lead ICS/SCADA modeling and simulations engineer. He has been involved in the tech
industry since 1994, when he left Gateway Computers to join the Navy as a nuclear chemist
and radcon technician. Prior to joining CACI, he worked at ECPI University as a computer
information systems adjunct professor. He is a self-taught Python programmer, and is the
author of Learning to Program Using Python and Secret Recipes of the Python Ninja. He holds
an Associate in Science degree in electromechanical technology, a Bachelor of Science
degree in computer engineering technology, and a Master of Science degree in IT
management, as well as numerous IT certifications.

I would like to thank my wife and family for having to put up with another book writing
disappearing act for the last four months, Scott Thompson for creating the fuel farm
schematic drawing, Christopher De La Rosa for allowing me to use the knowledge from
work in this book, and the open source community for providing such great tools to work
with.

About the reviewers
Nimesh Kiran Verma has a dual degree in math and computing from IIT Delhi, and has
worked with companies such as LinkedIn, Paytm, and ICICI for about five years in
software development and data science. He co-founded a micro-lending company,
Upwards Fintech, and currently serves as its CTO. He loves coding and has mastered
Python and its popular frameworks, including Django and Flask. He extensively leverages
Amazon Web Services, design patterns, and SQL and NoSQL databases to build reliable,
scalable, and low-latency architectures.

Naveen Verma has completed his bachelor's degree in computer science and is a software
developer at Turtlemint insurance company. He has knowledge of C, C+, Python, Django,
and Android, and is a Java Oracle certified associate, a technology with which he has built
various projects. He is also an active open source contributor. He loves solving
brainstorming puzzles and ongoing learning is his focus in life.

To our mom and dad, Nutan Kiran Verma and P R Verma, who made us what we are
today and gave us the confidence to pursue our dreams. Thanks also to Prabhat, who
motivated us to steal time for this book when, in fact, we were supposed to be spending it
with him.

Our thanks also to Ulhas and the entire Packt team. Your support was tremendous.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: The Fundamentals of Python 7
What is Python? 7

Python versions 8
Interpreted versus compiled 8
Dynamic versus static 9

Python 2 versus Python 3 division 11
Working with Python 11

Installation 11
Launching the Python interpreter 12

Windows (Win8 and above) 12
Mac 13

Using the Python command prompt 13
Commenting Python code 16
Launching Python programs 16
Using the IPython shell 18
Summary 21

Chapter 2: Data Types and Modules 22
Structuring code 23

Multiple line spanning 25
Common data types 26
Python numbers 28
Strings 29

Basic string operations 30
Indexing and slicing strings 33
String formatting 35
Combining and separating strings 37

Lists 39
List usage 40
Adding list elements 42
Mutability 43

Dictionaries 44
Creating dictionaries 45
Working with dictionaries 46
Dictionary details 48

Tuples 49
Why use tuples? 49
Sequence unpacking 51

Table of Contents

[ii]

Sets 52
Using data type methods 53

Sequence methods 53
String methods 55
List methods 56
Tuple methods 57
Dictionary methods 57
Set methods 62

Importing modules 64
Namespaces 64
Dot nomenclature 67
Types of imports 68
Modules as scripts 69

Summary 71

Chapter 3: Logic Control 72
if...else statements 73
Loops 76

while loops 76
for loops 78
zip() function 81

Exceptions 82
Exception class hierarchy 85
User-defined exceptions 87
Final thoughts 88

Summary 90

Chapter 4: Functions and Object Oriented Programming 91
Working with functions 92

Lambdas 95
Classes, methods, and namespaces 96

How are classes better? 96
Classes and instances 99
Modules 101
Inheritance 101
Operator overloading 103

Properties and class and static methods 106
Properties 106

Getters and setters 107
Class and static methods 111

Summary 114

Chapter 5: Files and Databases 115
File I/O 116

Files and streams 117
Reading from a file 120

Table of Contents

[iii]

Iterating through files 122
Seeking 123
Serialization 125

Python and SQLite 127
Working with databases 128
Using SQL to query a database 131
Creating a SQLite database 132
Retrieving data from a database 134
SQLite database files 136

SQLAlchemy 137
Writing a SQLAlchemy database 138
Filling and querying the database 139

Summary 142

Chapter 6: Application Planning 143
Software development life cycle 143
Development practices and methodologies 144

Incremental development 144
Continuous integration 145
Prototyping 147
Rapid application development 147
Waterfall development 148
Spiral development 149
Agile development 150

Project requirements 152
Software repositories 154
Summary 155

Chapter 7: Writing the Imported Program 156
Project requirements 156
Utility functions 159
Simulating storage tanks 162

Name mangling 166
Simulating valves 167

Base valve class 167
Gate valve class 171
Globe valve class 172
Relief valve class 173

Simulation pumps 176
Base pump class 177
Centrifugal pump class 181
Positive displacement pump class 183

Summary 187

Chapter 8: Automated Software Testing 188
Testing techniques 188

Table of Contents

[iv]

Static versus dynamic tests 189
White-box testing 189
Black-box testing 190
When to test 191

Writing tests 192
Refactoring code 200
Summary 202

Chapter 9: Writing the Fueling Scenario 203
Fueling scenario requirements 203
Directory structure 205
Component coding 207
Functionality coding 211
Testing 218
Summary 221

Chapter 10: Software Post-Production 222
Docstrings 222
Sphinx documentation 227
Lessons learned 235
Summary 238

Chapter 11: Graphical User Interface Planning 239
GUI functionality 239

GUI elements 240
Best practices 249

User environment 252
Graphical frameworks 254
Summary 255

Chapter 12: Creating a Graphical User Interface 256
Wireframing 256
Coding the interface 258

Kivy logic file 261
Kivy layout file 265

GUI testing 270
Summary 277

Other Books You May Enjoy 278

Index 281

Preface
Much like programming, this book is a fork from another book series: Learning to Program
Using Python. I started that series in 2008, while deployed in Iraq. I had just learned Python,
but didn't feel comfortable with it, especially as the books I had read didn't really "click"
with me.

I wrote that series for two reasons. First, I wanted to give back to the open source
community. Second, the best way to learn something is to try and teach it to someone else;
since I wasn't comfortable as a programmer, writing a book for others would be one of the
best ways to ensure I knew what I was talking about.

I also wanted to write the type of book I would have liked to have read when I was
learning: written from a personal perspective, rather than an academic viewpoint, and one
that points out tips and traps to be aware of. Hence, every book in the series came from that
viewpoint.

This new book expands and improves on that series by providing the basics of Python
programming, but also walks through programming a real-world scenario: a fuel storage
and transfer simulation. In addition, we will also look at how to add a graphical interface to
the original, text-based program.

As an introductory book, some of the information presented here may not be completely
accurate from a computer science point of view. Even though I have a degree in computer
engineering, I consider myself a self-taught programmer, as the majority of my
programming has not been in a professional or academic environment, so I may not know
all the nuances of software creation.

In addition, being technically accurate isn't necessary for someone new to programming. I'd
rather have the reader understand the concepts discussed so as to create a foundation for
future learning, than bore the reader so they lose interest. Information will be provided to
the best of my knowledge, but terms and theory may be slightly inaccurate to promote
reader comprehension.

I'd also like to note that the term "*nix" is used throughout this book to denote any UNIX-
like OS, such as Linux and Berkeley Software Distribution, as these OSes tend to have
similar functionality. This can also apply to macOS (to an extent), as it has UNIX
underpinnings.

Preface

[2]

Who this book is for
This book is meant for people new to programming, especially the Python language. While
no previous programming knowledge is expected, a little knowledge would be beneficial.
In addition, while Python is cross-platform, a knowledge of Linux would be helpful.

What this book covers
Chapter 1, The Fundamentals of Python, looks at the Python language and how it differs
from other languages, and covers how to install and use the interactive Python console,
commenting code, running Python programs, and alternative programming shells.

Chapter 2, Data Types and Modules, covers how Python code is structured, common data
types and their methods, and how to import and work with Python modules.

Chapter 3, Logic Control, discusses conditional tests using if...else statements,
repetition using loops, and error handling with exceptions.

Chapter 4, Functions and Object-Oriented Programming, looks at optimizing code reuse with
functions and objects. Classes, methods, namespaces, and Python properties are also
covered.

Chapter 5, Files and Databases, discusses file interaction, including reading from and
writing to files, retrieving individual lines from files, and serializing files for transfer. In
addition, basic database operations are covered using SQLite, and a brief summary of using
the SQLAlchemy utility for database access is provided.

Chapter 6, Application Planning, covers the software development life cycle, development
practices and methodologies, identifying project requirements, and the use of software
repositories.

Chapter 7, Writing the Imported Program, focuses on the development of the foundational
code; identifying specific project requirements; writing utility functions; simulating liquid
storage tanks, valves, and pumps; as well as how name mangling alleviates errors in
classes.

Chapter 8, Automated Software Testing, discusses a variety of techniques for writing unit
and functional tests, how to use pytest to write automated tests, and what code
refactoring is.

Preface

[3]

Chapter 9, Writing the Fueling Scenario, is the main focus of the book. It details the specific
requirements for creating a simulated fuel farm, how the project directory is structured,
writing the component instances and scenario functionality, and testing the simulation.

Chapter 10, Software Post-Production, looks at the final steps to completing software
projects, including documenting code using docstrings, creating user documentation via
Sphinx, and reviewing lessons learned for the project.

Chapter 11, Graphical User Interface Planning, explores GUI development, including GUI
functionality, elements, and best practices. It also considers the user environment as it
applies to GUI creation, and looks at some of the most popular graphical Python
frameworks available.

Chapter 12, Creating a Graphical User Interface, discusses wireframing the GUI prior to
writing the code. It then uses the Kivy framework to write the actual interface, utilizing
separate Kivy logic and layout files. It also looks at using manual methods to test GUI
functionality.

To get the most out of this book
While no programming experience is required, a knowledge of programming terms will be
helpful. Knowledge of Linux is a plus. A basic ability to use command-line instructions and
the ability to use text editors are assumed.

Unless otherwise stated, this book uses Python 3.6 for all examples.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learn-Programming-in-Python-with-Cody-Jac
kson. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789531947_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "However, when the print() function is called in line 11, the text is printed as it
was originally entered."

A block of code is set as follows:

tank1 = tank.Tank(
 "Tank 1",
 level=36.0,
 fluid_density=DENSITY,
 spec_gravity=SPEC_GRAVITY,
 outlet_diam=16,
 outlet_slope=0.25
)

https://github.com/PacktPublishing/Learn-Programming-in-Python-with-Cody-Jackson
https://github.com/PacktPublishing/Learn-Programming-in-Python-with-Cody-Jackson
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789531947_ColorImages.pdf

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import sys
 if len(sys.argv) > 1: # Check if arguments are provided
 entered_value = sys.argv[1:] # Capture all arguments except program
name

Any command-line input or output is written as follows:

$ python foo.py -f /home/User/Documents

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata

Preface

[6]

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
The Fundamentals of Python

Python is a programming language that, as of the time of writing, is ranked number four on
the the TIOBE programming language popularity index. It's one of the most popular
languages taught in college, as well as heavily used in industry. Companies such as Google,
Rackspace, Industrial Lights and Magic, D-Link, NASA, and others, as well as the
Department of Defense and a large number of hobby projects, rely on Python to get work
done.

This chapter will cover the following items:

What is Python?
Working with Python
Commenting Python code
Launching Python programs
Using the IPython shell

What is Python?
Python is a programming language widely used in a number of applications, such as
machine learning, computer graphics, video games, and shell scripts. Nearly any computer
application can be implemented in Python, though there are some areas where Python may
not be the best solution, such as low-level programs that have to access hardware. In
general, though, Python is a good tool for initial application prototyping. Once the initial
design has been clarified with Python, it can be re-implemented in a more appropriate
language, or the Python code itself can be revised for better optimization.

The Fundamentals of Python Chapter 1

[8]

Python versions
Two main version lines exist for Python: Python 2 and Python 3. Python 2 is the legacy line
(version 2.7.15, at the time of writing); while it is still used for some new projects nowadays,
it is predominately seen in old software that either can't or won't be upgraded to the Python
3 line. Python 2.7 is the last major release number for this line; incremental upgrades will be
provided to back-port Python 3 features or for security patching, but no major features are
written for it.

Python 3 (version 3.7.0, as of this writing) is the main development line, and all new
features are added here first. Many features in Python 3 are not available in Python 2, or are
renamed, so significant effort must be made to convert one version to another.

The Python tools 2to3 and 3to2 are provided with every Python download to help with this
conversion process, but they can only handle simple things, such as changing print
statements or automatically renaming built-in functions. Anything beyond that requires a
programmer to look at the code and make the changes. As this is a non-trivial process (each
line of code must be assessed), it may be easier to simply rewrite the code.

Python, as normally used, is technically called CPython, as it is actually written in C code.
Python has bindings for use in non-native Python environments, such as Java (Jython), the
.NET framework (IronPython), or microcontrollers (MicroPython). This means that you can
write regular Python code and it will be interpreted into the correct byte-code for a
particular environment. This way, for example, you can interact with a Java program
without having to actually write Java code; the Jython interpreter translates Python into
equivalent Java code.

Interpreted versus compiled
Python is classified as a scripting language, because it doesn't require a compiler to
generate machine code. It actually uses an interpreter to create byte-code, which is cross-
platform, and, therefore, any system that has Python installed should be able to run the
code. (There are caveats to this, which will be addressed later in the book.)

Byte-code is common among higher-level languages, such as Java, because it makes it easy
to write software that runs in many different environments. Languages that use byte-code
have a language-specific virtual machine; that is, the virtual machine's sole purpose is to
translate the byte-code into something the host computer's operating system can
understand. Any OS that has a language-specific virtual machine can process and use the
byte-code, thus making an interpreted programming language system agnostic. The
programmer doesn't have to do anything special prior to releasing the software.

The Fundamentals of Python Chapter 1

[9]

Machine code is basically the opposite. It is compiled from the raw source code for a
particular computer system; this is more common for low-level languages like C++ and Go.
The code is portable between systems, but has to be recompiled for each system; it cannot
be run immediately like it can with byte-code. Thus, a programmer must either generate
the compiled code for each target OS, or has to provide the source code so an end user can
perform that compilation step.

Compiled languages tend to operate faster than interpreted languages because the code has
already been optimized for the environment. The compiler also finds many errors before
the code is actually executed (the "runtime"). However, compilers can take minutes or even
hours to compile the source code, depending on various factors. When errors occur, the
programmer has to fix them and rerun the compiler; this compile-fix-compile process
continues until the compiler returns no errors.

Compilers can't identify all errors, so the final product must be tested. If problems are
found, the code must be fixed, leading to another round of compile-fix-compile, as the fixes
to the runtime errors may introduce new errors during compilation.

Working with interpreted languages can be quicker, as there is no compilation step. The
code can be run as often as necessary while fixing errors, so the development process is
much faster. For many products, developer time is more important than computer time, so
having a programmer who can quickly write a program is more desirable than a program
that is quicker to run.

In addition, utilizing interpreted languages also allows software developers to provide a
scripting interface to the end user; the user can manipulate the program without having to
dive into the source code itself. Referring to the previous Jython example, a program
written in Java could allow the user to manipulate the data or the actions performed by
writing a simple Jython script, essentially adjusting on the fly how the results are
generated. This type of customization is commonly found in video games, such as modding
communities.

Dynamic versus static
Python is a dynamic typed language. Many other languages are static typed, such as C/C++
and Java. A static typed language requires the programmer to explicitly tell the computer
what type of "thing" each data construct is.

The Fundamentals of Python Chapter 1

[10]

For example, if you were writing a C inventory program and one of the variables was
cost, you would have to declare cost as a float type, which tells the C compiler that the
only data that can be used for that variable must be a floating point number, that is, a
number with a decimal point, such as 3.14. If any other data type was assigned to that
variable, like an integer or a text string, the compiler would give an error when trying to
compile the program. (A programming variable is similar to a math variable; it's just a
placeholder for a particular value.)

Python, however, doesn't require this. You simply give your variables names and assign
values to them. The interpreter takes care of keeping track of the kinds of objects your
program is using. This also means that you can change the size of the values as you develop
the program. (For the curious, this is handled by adding metadata to a C construct. Every
time the item is used, the metadata is looked at to determine how Python should interact
with it, as well as potentially modifying the metadata.)

Say you have another decimal number you need in your program. With a static typed
language, you have to decide the memory size the variable can take when you first
initialize that variable. A double is a floating point value that can handle a much larger
number than a normal float (the actual amount of memory used depends on the operating
environment, but a float is typically 32 bits long while a double is 64 bits). If you declare a
variable to be a float but later on assign a value that is too big to it, your program can
develop errors or be slower than expected; changing it to a double will correct these
problems.

With Python, it doesn't matter what type of data a construct is. You simply give it whatever
number you want, and Python will take care of manipulating it as needed. It even works
for derived values. For example, say you are dividing two numbers. One is a floating point
number and one is an integer. Python realizes that it's more accurate to keep track of
decimals so it automatically calculates the result as a floating point number. The following
code example shows what it would look like in the Python interpreter—floating point and
integer division:

>>> 6.0 / 2
3.0
>>> 6 / 2.0
3.0

As you can see, it doesn't matter which value is the numerator or denominator; Python
"sees" that a float is being used and gives the output as a decimal value.

This would be a good time to note one of the differences between Python 2 and Python 3.
Python 2 truncates division operations, whereas Python 3 automatically converts to
decimal values. The following section offers examples of the two versions.

The Fundamentals of Python Chapter 1

[11]

Python 2 versus Python 3 division
While most Python 2.7 code is compatible with 3.x code, you can see that certain things
don't carry over well. For example, Python 2 truncates the output of division calculations:

Python 2
>>> 7/2
3

Python 3, as the following shows, provides the remainder when dividing. This is important
to remember, as the code you're writing will break if it uses features or side effects of a
particular version but is run on a different version:

Python 3
>>> 7/2
3.5

Working with Python
Python can be programmed through an interactive command line (the interpreter), but
anything you code won't be saved. Once you close the session it all goes away. To save
your program, it's easiest to just type it in a text file and save it (be sure to use the .py
extension, that is, foo.py).

To use the interpreter, simply type python at the command prompt (*nix and Mac) or click
the Python application icon (Windows and Mac). If you're using Windows and installed the
Python .msi file, you should be able to also type python at the command prompt, or find
the launch icon in the Start menu.

Though they may look the same, the main difference between the Python interpreter and
the system command prompt is that the command prompt is part of the operating system
while the interpreter is part of Python. The command prompt can be used for other tasks
besides messing with Python; the interpreter can only be used for Python.

Note that *nix is used throughout this book to denote any UNIX-like
operating system, such as Linux, BSD, and others, as these OSes tend to
have similar functionality.

The Fundamentals of Python Chapter 1

[12]

Installation
Depending on your operating system, Python may already be installed. Python is very
prevalent in the *nix world, though different operating systems use different versions. It is
almost guaranteed that Python 2 is installed, and an increasing number of systems have
some version of Python 3 installed as well.

It is recommended to go to https:/ /www. python. org and download the latest version of
Python. While this book will focus on version 3.6 and later, the majority of the information
will apply to older versions of Python 3 as well. Various installers are available for the
major operating systems, as well as some specialized and older platforms; installation
instructions are provided with the download.

Launching the Python interpreter
If you're using Linux, BSD, or another *nix operating system, I'll assume you already know
about the Terminal; you probably even know how to get Python up and running already.
For those who aren't familiar with opening Terminal or the command prompt (same thing,
different name on different operating systems), the following sections explain how to do it.

The interactive Python interpreter is sometimes referred to as the Python shell, Python
prompt, Python terminal, or Python command line. They all mean the same thing—a
special, text-based interface that allows for Read-Evaluate-Print Loop (REPL) interaction
with Python.

Windows (Win8 and above)
The following steps will help you to install Python in Windows:

Press the Windows key.1.
Type cmd and press Enter.2.
You should now have a black window with white text. This is the command3.
prompt.
If you type python at the prompt, you should be dropped into the Python4.
interpreter prompt. If not, Python isn't installed correctly.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

The Fundamentals of Python Chapter 1

[13]

Mac
The following steps will help you to install Python in Mac:

Open Applications.1.
Open Utilities.2.
Scroll down and open Terminal.3.

You should now have a black window with white text. This is the command4.
prompt.
Type python at the prompt and you will be in the Python interpreter.5.

Using the Python command prompt
Your Terminal should look similar to the screenshot labeled Python 3 prompt. Notice that
the command to launch the interpreter is actually python3. If both Python 2 and Python 3
are installed on the system, you need to expressly indicate which version to use; otherwise,
the system default will be used, which may be different from what is desired. The
screenshot labeled Default Python prompt shows what the default prompt on the author's
system looks like.

Anaconda is a customized Python distribution (https:/ /www. anaconda. com) that includes a
large number of data science and machine learning tools by default, making it easier for
users to manage their environment. This simply demonstrates that, in addition to multiple
Python versions, different Python distributions can be installed on the same system, each
one customized to a particular use. Below is an example of the interactive Python shell for a
vanilla Python installation:

Python 3 prompt

https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/
https://www.anaconda.com/

The Fundamentals of Python Chapter 1

[14]

In addition, the astute reader will see there is a difference in the Python environment
between the different versions. The following screenshot states that the Python 3
environment is standard Python, whereas the preceding screenshot shows that Python 2 is
part of the Anaconda distribution:

Default Python prompt

For the most part, you won't even notice which version is in use; for example, version 3.4
versus 3.7, unless you are using a library, function, or method for a specific version. Then,
you can simply add a special code to identify what version the user has and provide
notification to upgrade, or you can modify your code so it is backwards-compatible.

The >>> characters in the preceding screenshot is the Python command prompt; your code
is typed here and the result is printed on the following line, without a prompt. For example,
the following screenshot shows how the user can interact with the Python interpreter just
like using a normal operating system command prompt.

Python prompt example

The Fundamentals of Python Chapter 1

[15]

If you write a statement that doesn't require any processing by Python, it will simply return
you to the prompt, awaiting your next order. In the previous example, the print()
function simply takes the text that is placed in the parentheses and prints it to the screen.
Python doesn't have to do anything with this, in terms of performing calculations or
anything, so it prints the statement and then waits for a new command.

(By the way, Python was named after Monty Python, not the snake. Hence, some of the code
you'll find on the internet, and tutorial, and books will have references to Monty Python
sketches.)

The standard Python interpreter can be used to test ideas before you put them in your code.
This is a good way to test the logic required to make a particular function work correctly or
see how a conditional loop will work. You can also use the interpreter as a simple
calculator; if you import various mathematical libraries, you can perform complex
calculations as well.

The following screenshot shows the Python interpreter being used for simple arithmetic; it
also shows that the math library is imported so more complex calculations can be
performed (importing libraries will be covered in more detail in the Importing
modules section):

Python calculator

The Fundamentals of Python Chapter 1

[16]

Commenting Python code
Another thing to discuss is that comments in Python are marked with the # symbol.
Comments are used to annotate notes or other information without having Python try to
perform an operation on them. For example, the following screenshot demonstrates the
use of comments when writing code. It should be noted that, normally, comments in the
interactive Python prompt are not used, since it is more of a scratchpad for testing bits
of code:

Python comments

You will see later on that, even though Python is a very readable language, it still helps to
put comments in your code. Sometimes, it's to explicitly state what the code is doing, to
explain a neat shortcut you used, or to simply remind yourself of something while you're
coding, like a "to do" list.

Launching Python programs
If you want to run a Python program, simply type python foo.py at the shell command
prompt (make sure it's not Python's interactive prompt).

The foo.py code is a stand-in term for a generic program; don't try to
actually run it because it won't work.

The following screenshot demonstrates how to call a Python program from the command
line. This particular program simulates rolling a number of dice; the actual program will be
discussed later in this book:

The Fundamentals of Python Chapter 1

[17]

Launching a program

Files saved with the .py extension are called modules and can be called individually at the
command line or imported into a program, similar to header files in other languages; we
saw an example of this in the screenshot labeled Python calculator. If your program is going
to import other modules, it is easiest to ensure they are all saved in the same directory on
the computer, or you have to do some extra work to point to a different directory. More
information on working with modules can be found in Chapter 2, Data Types and Modules,
in the Importing modules section, or in the Python documentation.

Depending on the program, certain arguments can be added to the command line when
launching the program. This is similar to adding switches to a Windows command prompt.
The arguments tell the program what exactly it should do.

For example, perhaps you have a Python program that can output its processed data to a
file rather than to the screen. To invoke this function in the program you simply launch the
program like the following example—launching a Python program with arguments:

$ python foo.py -f /home/User/Documents

The -f argument is received by the program and calls a function that saves the data to the
designated location (/home/User/Documents) within the computer's filesystem instead of
printing it to the screen.

The Fundamentals of Python Chapter 1

[18]

Using the IPython shell
The default Python shell is fine, but there are alternatives. The most popular option is to
install the IPython shell from https:/ / ipython. org. This is also included with the
Anaconda distribution, as well as a number of supporting tools that enhance the
development experience.

IPython provides a number of enhancements to the regular interactive Python experience,
such as:

Syntax-highlighted interactive shells
Web-based notebooks that support multimedia output
Interactive visualizations
Interactive parallel application development
Tab completion
Object exploration
Magic functions
Command history
Direct implementation of shell commands

The following screenshot demonstrates how the IPython shell differs from the default
Python shell. The first thing that is most noticeable is that there is now color within the
Python commands. Keywords, errors, and so on are all shown with different colors, easily
highlighting different parts of the code.

In addition, each line has its own line number associated with it, rather than the >>>
symbol. Lines one and five show that, when necessary, IPython will provide an associated
output result if the input command requires it.

Lines six and seven show how IPython can call Bash shell commands directly, in this case
pinging a website and printing the current directory, respectively. Because of this ability,
some programmers treat IPython as an alternative to the default command shell on *nix
systems:

https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/
https://ipython.org/

The Fundamentals of Python Chapter 1

[19]

IPython example

The Fundamentals of Python Chapter 1

[20]

However, there is an alternative to using IPython in this manner: the Xonsh shell, found at
https://xon.sh. Depending on your preference, it is pronounced using the Greek letter
Chi ("Χ"), to sound like "conch," or with a "Z," to sound like "zonsh."

Xonsh is built on Python 3.4 and includes Bash shell functions; it is designed to improve on
perceived problems with Bash, as well as making the lives of Python programmers easier.
This is because Xonsh essentially replaces the Bash shell with Python, allowing the use of
Python code directly at the command line without having to invoke a Python interactive
prompt. It also means that Python code in Xonsh has direct access to the underlying OS
processing and filesystems, allowing the user to never have to drop back to Bash to interact
with the OS.

If you look back through the previous screenshots, you'll note that at the top of each
window, the name "xonsh" was listed. Xonsh functions just like the default Bash shell in
*nix; it's only when you start using commands that are associated with Python that you will
notice differences.

The following screenshot shows the errors that occur when trying to run Python commands
directly with a Bash shell:

Bash command errors

https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/

The Fundamentals of Python Chapter 1

[21]

The following screenshot shows the same commands successfully functioning within the
Xonsh shell:

Xonsh commands

For the purposes of this book, normal Bash commands will be used when demonstrating
OS shell commands, to limit confusion. However, interactive Python sessions will be
demonstrated through IPython, rather than the default Python shell.

Summary
In this chapter, we discussed what the Python programming language is and how it differs
from other languages. We learned how to use it on different operating systems and how to
interact with the interactive Python shell. We saw how to comment Python code to provide
a better explanation of what the code is doing. Finally, we discussed two alternative Python
environments: IPython and the Xonsh shell.

In the next chapter, we will take a look at the Python data types (such as lists, dictionaries,
and sets), how these types are used when programming, and how Python modules are
imported and utilized to enhance coding projects.

2
Data Types and Modules

Because Python is built upon the C language, many aspects of Python will be familiar to
users of C-like languages. However, Python makes life easier because it isn't as low-level as
C. The high-level nature of Python means that many data primitives aren't required, as a
number of complicated data structures are provided in the language by default.

In addition, Python includes features not often found in low-level languages, such as
garbage collection and dynamic memory allocation. On the flip side, Python isn't known for
its ability to interact with hardware or perform other low-level work. In other words,
Python is great for writing applications but wouldn't be a good choice for writing a
graphics card device driver.

Learning how to use built-in data structures helps your programming. Data structures are
particular ways of organizing data so they can be used most efficiently. It's easier to write
code because the included data structures tend to provide all the features you need, so you
spend less time creating your own. If you do need to create your own, you'll probably use
the built-in structures as a foundation to start from. This, in turn, means your customized
structures will generally perform better than fully customized code, as the built-in data
structures have been vetted by multiple developers over a long period of time, so they are
fully optimized. Finally, using built-in structures means you always know what is
available; proprietary frameworks are an unknown entity, as you can never be sure what is
available to you.

In this chapter, we will cover the following topics:

Structuring code
Common data types
Python numbers
Strings
Lists
Dictionaries
Tuples

Data Types and Modules Chapter 2

[23]

Sets
Using data type methods
Importing modules

Structuring code
Before we get too far into this chapter, we really need to cover the most obvious and special
feature of Python: indentation. Python forces the user to program in a structured format.
Code blocks are determined by the amount of indentation used; this is frequently referred
to as "white space matters". In many other C-based languages, brackets and semicolons are
used to show code grouping or end-of-line termination. Python doesn't require those;
indentation is used to signify where each code block starts and ends. In this section is an
example of how white space works in Python (line numbers are added for clarification).
The following code shows how white space is significant:

1 x = 1
2 if x: # if x is True...
3 y = 2 # process this line
4 if y: # if y is True...
5 print("x = true, y = true") # process this line
6 else: # if y is False...
7 print("x = true, y = false") # process this line
8 print("x = true, y = unknown") # if x is True, process this line
as well
9 else: # if x is False...
10 print("x = false") # process this line

Each indented line demarcates a new code block. To walk through the preceding code
snippet, line 1 is the start of the main code block. Line 2 is a new code section; if x has a
value that is true, then indented lines below it will be evaluated. In Python, true can be
represented by the word true, any number other than 0, and so on. Hence, lines 3 and 4
are in another code section and will be evaluated only if line 2 is true.

Line 5 is yet another code section and is only evaluated if y is not a false value. Line 6 is
part of the same code block as lines 3 and 4; it will also be evaluated in the same block as
those lines. Line 9 is in the same section as line 2 and is evaluated regardless of what any
other indented lines may do; in this case, this line won't do anything because line 2 is true.

Data Types and Modules Chapter 2

[24]

In case that is confusing, the following diagram shows a flowchart of the logic for the
previous example. Note that if line 2 is No (the first diamond decision icon), the program
logic immediately jumps to line 10 and the program ends. Only if variable X is True will
any of the indented lines be evaluated:

Logic flowchart

You'll notice that compound statements, such as the if comparisons, are created by having
the header line followed by a colon (:). The rest of the statement is indented below it. The
biggest thing to remember is that indentation determines grouping; if your code doesn't
work for some reason, double-check which statements are indented. Some development
environments allow you to toggle vertical lines that make it easier to check indentation.

Data Types and Modules Chapter 2

[25]

The following screenshot is an example of running the program in the preceding example.
Notice that, since both x and y are not equal to zero or another false-type value, the if true
statements are printed:

White space demonstration

Multiple line spanning
Statements can span more than one line if they are collected within braces (parentheses (),
square brackets [], or curly braces {}). Normally parentheses are used. When spanning lines
within braces, indentation doesn't matter; the indentation of the initial bracket is used to
determine which code section the whole statement belongs to. The following example
shows a single variable having to span multiple lines due to the length of the parameters:

tank1 = tank.Tank(
 "Tank 1",
 level=36.0,
 fluid_density=DENSITY,
 spec_gravity=SPEC_GRAVITY,
 outlet_diam=16,
 outlet_slope=0.25
)

Data Types and Modules Chapter 2

[26]

tank1 is the variable, and everything to the right of the equal sign is assigned to tank1.
While Python allows the developer to write everything within the parentheses on one line,
the preceding example has separated each parameter into different lines for clarity.

The Python interpreter recognizes that everything within the parentheses is part of the
same object (tank1), so spreading the parameters across multiple lines doesn't cause a
problem.

String statements (text) can also be multiline if you use triple quotes. For example, the
following screenshot demonstrates a long block of text that is spread over multiple lines:

Triple quote line spanning

When the variable containing the text is directly called (line 10 in the preceding screenshot),
Python returns the raw text, including the \n symbol which represents a newline character;
it tells the system where a new line starts and the old one ends. However, when the
print() function is called in line 11, the text is printed as it was originally entered.

Common data types
Like many other programming languages, Python has built-in data types that the
programmer uses to create a program. These data types are the building blocks of the
program. Depending on the language, different data types are available. Some languages,
notably C and C++, have very primitive types; a lot of programming time is spent simply
combining these primitive types into useful data structures.

Data Types and Modules Chapter 2

[27]

Python does away with a lot of this tedious work. It already implements a wide range of
types and structures, leaving the developer more time to actually create the program.
Having to constantly recreate the same data structures for every program is not something
to look forward to.

Python has the following built-in types:

Numbers
Strings
Lists
Dictionaries
Tuples
Files
Sets
Databases

In addition, functions, modules, classes, and implementation-related types are also
considered built-in types, because they can be passed between scripts, stored in other
objects, and otherwise treated like the other fundamental types.

Naturally, you can build your own types if needed, but Python was created so that very
rarely will you have to roll your own. The built-in types are powerful enough to cover the
vast majority of your code and are easily enhanced.

It was mentioned previously that Python is a dynamic typed language; that is, a variable
can be used as an integer, a float, a string, or whatever. Python will determine what is
needed as it runs. The following screenshot shows how variables can be assigned
arbitrarily. You can also see that it is trivial to change a value, as shown in line 16:

Dynamic typing

Data Types and Modules Chapter 2

[28]

Other languages often require the programmer to decide what the variable must be when it
is initially created. For example, C would require you to declare x in the preceding program
to be of type int and y to be of type string. From then on, that's all those variables can be,
even if, later on, you decide that they should be a different type.

That means you would have to decide what each variable will be when you started your
program; that is, deciding whether a number variable should be an integer or a floating-
point number. Obviously, you could go back and change them at a later time, but it's just
one more thing for you to think about and remember. Plus, any time you forgot what type a
variable was and you tried to assign the wrong value to it, you would get a compiler error.

Python also has a difference between expressions and statements. In Python, an expression
can contain identifiers (names), literals (constant values of built-in types), and operators
(primarily arithmetic-looking symbols, but can be other items, such as [], (), or other
symbols). Expressions can be reduced to a derived value, much like solving a math
equation.

Statements, on the other hand, are everything that can make up a line (or multiple lines) of
code; that is, they actually perform the programming logic. Statements can contain
expressions. In other words, lines that equate to a value are expressions, whereas lines that
actually do something are statements.

Python numbers
Python can handle normal long integers (the maximum length is determined based on the
operating system, just like C), Python long integers (the maximum length is dependent on
available memory), floating-point numbers (just like C doubles), octal and hexadecimal
numbers, and complex numbers (numbers with an imaginary component).

Here are some examples of these numbers:

Integer: 12345, -32
Python integer: 999999999L (in Python 3.x, all integers are Python integers)
Float: 1.23, 4e5, 3e-4
Octal: 012, 0456
Hexadecimal: 0xf34, 0X12FA
Complex: 3+4j, 2J, 5.0+2.5j

Data Types and Modules Chapter 2

[29]

Historically, integers were 16-bit numbers while longs were 32-bit. This could cause
problems when using compiled languages, such as C, because trying to store a number that
was too big for its data type could cause errors. The largest 16-bit number available is
65535, so trying to store 999999999 in a regular integer would fail.

As advances in computing created 32-bit, then 64-bit, processors and operating systems, the
number of bits used has changed, but they are still defined by the OS and the particular
programming language compiler used to make the program. In Python 3, all integers are
the longest value they can be.

Python has the normal built-in numeric tools you'd expect: expression operators (*, >>, +, <,
and so on), math functions (pow, abs, and so on), and utilities (rand, math, and so on). For
heavy number-crunching, Python has the Numeric Python (NumPy) (http:/ /www. numpy.
org) extension which has such things as matrix data types. It's heavily used in science and
mathematical settings, as its power and ease of use make it equivalent to Mathematica,
Maple, and MatLab. It's included with the Anaconda Python distribution, and due to the
number of other tools included with Anaconda, that's probably the easiest way to obtain
NumPy.

Though this probably doesn't mean much to non-programmers, the expression operators
found in C have been included in Python; however, some of them are slightly different.
Logic operators are spelled out in Python rather than using symbols; for example, logical
AND is represented by the word and in Python, not by &&, as in C; logical OR is
represented by the word or in Python, not the double-pipe symbol ||; and logical NOT
uses the word not instead of !. More information can be found in the Python
documentation.

Operator level-of-precedence is the same as C, but using parentheses is highly encouraged
to ensure the expression is evaluated correctly and enhances readability. Mixed types (float
values combined with integer values) are converted up to the highest type before
evaluation; that is, adding a float and an integer will cause the integer to be changed to a
float value before the sum is evaluated.

Strings
Strings in programming are simply text; either individual characters, words, phrases, or
complete sentences. They are one of the most common elements to use when programming,
at least when it comes to interacting with the user. Because they are so common, they are a
native data type within Python, meaning they have many powerful capabilities built in.
Unlike other languages, you don't have to worry about creating these capabilities yourself.

http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/

Data Types and Modules Chapter 2

[30]

Strings in Python are different than in most other languages. First off, there are no char
types, only single character strings (char types are single characters, separate from actual
strings, used for memory conservation). Strings also can't be changed in-place; a new
string object is created whenever you want to make changes to it, such as concatenation.
This means you have to be aware that you are not manipulating the string in memory; it
doesn't get changed or deleted as you work with it. You are simply creating a new string
each time.

Empty strings are written as two quotes with nothing in between. The quotes used can be
either single or double; my preference is to use double quotes, since you don't have to
escape the single quote to use it in a string. That means you can write a statement like the
following:

"And then he said, 'No way', when I told him."

If you want to use just one type of quote mark all the time, you have to use the backslash
character to escape the desired quote marks so Python doesn't think it's at the end of the
phrase, like this:

"And then he said, \"No way\", when I told him."

Triple quoted blocks are for strings that span multiple lines, as shown in Chapter 1,
The Fundamentals of Python. Python collects the entire text block into a single string with
embedded newline characters. This is good for things like writing short paragraphs of text;
for example, instructions, or for formatting your source code for clarification.

Basic string operations
The + and * operators are overloaded in Python, letting you concatenate (join together) and
repeat string objects, respectively. Overloading is just using the same operator to do
multiple things, based on the situation where it's used; you'll also see the term
polymorphism. For example, the + symbol can mean addition when two numbers are
involved or, as in this case, combining strings.

Concatenation combines two (or more) strings into a new string object, whereas repeat
simply repeats a given string a given number of times.

Data Types and Modules Chapter 2

[31]

The following screenshot demonstrates some of the Python operators that are overloaded.
Line 21 shows string concatenation: the combining of multiple strings into a new, single
string. In this case, the + operator is overloaded to combine strings but, when used with
numbers (line 22), the operator will provide the sum of the values. Note that in line 23,
trying to use the + operator with a number and a string results in an error, as Python
doesn't know how to process that command. The error indicates that trying to use the
+ operator to combine an integer number with a text string won't work, because Python
doesn't know whether you want to add two numbers or concatenate two strings. Therefore,
the error states that combining the two data types is unsupported.

Line 24 shows the * operator used with a string to return multiple copies of that string in a
new, combined string. Line 25 shows normal mathematical use of the * operator, returning
the product of two numbers:

Operator overloading

Because Python doesn't know how to combine a string with a number, you can explicitly
tell Python that a number should be a string through the str() function, as shown in the
following screenshot. This is similar to casting values in C/C++. It informs Python that the
number is not an integer or floating-point number but is, in reality, a text representation of
the number. Just remember that you can no longer perform mathematical functions with it;
it's strictly text:

Data Types and Modules Chapter 2

[32]

Converting a number to a string

Iteration in strings is a little different than in other languages. Rather than creating a loop to
continually go through the string and print out each character, Python has a built-in type
for iteration, utilizing a for loop. The for loops are explained fully in Chapter 3, Logic
Control, in the section, Loops but here is a brief explanation: Python accepts a given sequence
and then performs one or more actions to each value within the sequence.

The following screenshot provides a demonstration of this:

String iteration

Data Types and Modules Chapter 2

[33]

Line 27 assigns a string variable. In line 28, Python is sequentially going through the myjob
variable and printing each character that exists in the string. By default, the print()
function assigns a newline character to the end of each item that is printed. In this case,
since we want to print each character that is in the lumberjack string, each character will
be printed on a separate line.

If you want to print the results on a single line, you'll have to do a little printing
manipulation. As a function, print() has some additional parameters available; in this
case, we can use the end keyword as a print() argument, as shown in line 29, where
the end parameter (with no value) has been added. This tells Python that there should be
no ending character inserted after printing an individual character, resulting in everything
being printed on a single line.

Indexing and slicing strings
Python strings functionally operate the same as Python lists, which are basically C arrays
(see the Lists section). Unlike C arrays, characters within a string can be accessed both
forward and backward. Frontward, a string starts off with a position of 0 and the character
desired is found through an offset value (how far to move from the beginning of the string).
However, you also can find this character by using a negative offset value from the end of
the string. The following screenshot briefly demonstrates this:

String indexing

Line 30 creates a string variable, and then line 31 requests the characters at position 0 (the
very first entry of the string), as well as the second character from the end of the string.

Data Types and Modules Chapter 2

[34]

Indexing is simply telling Python where a character can be found within the string. Like
many other languages, Python starts counting at 0 instead of 1. So the first character's index
is 0, the second character's index is 1, and so on. It's the same counting backward through
the string, except that the last letter's index is -1 instead of 0 (since 0 is already taken).
Therefore, to index the final letter, you would use -1, the second-to-last letter is -2, and so
on. Knowing the index of a character is important for slicing.

Slicing a string is basically what it sounds like: by giving upper and lower index values, we
can slice the string into sections and pull out just the characters we want. A great example
of this is when processing an input file where each line is terminated with a newline
character; just slice off the last character and process each line.

The following screenshot demonstrates how string slicing works in more detail.

String slicing

You'll note in the previous screenshot that the colon symbol is used when indicating the
slice. The colon acts as a separator between the upper and lower index values. If one of
those values is not given, Python interprets that to mean that you want everything from the
index value to the end of the string. In the preceding example, the first slice is from index 1
(the second letter, inclusive) to index 3 (the fourth letter, exclusive). You can consider the
index to actually be the space before each letter; that's why the letter m isn't included in the
first slice but the letter p is.

The second slice is from index 1 (the second letter) to the end of the string. The third slice
starts as the beginning of the string and includes everything except the last character.

One neat feature about the [:-1] index: it works on any character, not just letters or
numbers. So if you have a newline character (\n), you can put [:-1] in your code to slice
off that character, leaving you with just the text you care about.

Data Types and Modules Chapter 2

[35]

You'll see that entering -1 as the ending value makes it easy to find the end of a string. You
could, alternatively, use len(S) to get the length of the string, and then use that to identify
the last value, but why bother when [:-1] does the same thing?

You could also use slicing to process command-line arguments by filtering out the program
name. When the Python interpreter receives a program to process, the very first argument
provided to the OS is the name of the program. By slicing out the first argument, we can
capture the real arguments for processing.

For example, the following code shows how Python can automatically strip out the
program's name from a list of arguments passed in to the operating system:

capture_arguments.py

1 import sys 2 if len(sys.argv) > 1: # Check if arguments are provided 3
entered_value = sys.argv[1:] # Capture all arguments except program name

String formatting
Formatting strings is simply a way of presenting the information on the screen in a way
that conveys the information best. Some examples of formatting are creating column
headers, dynamically creating a sentence from a list or stored variable, or stripping
extraneous information from the strings, such as excess spaces.

Python supports the creation of dynamic strings. This means you can create a variable
containing a value of some type (such as a string or number) and then call that value into
your string. You can process a string the same way as in C if you choose to, such as %d for
integers and %f for floating-point numbers.

The following screenshot shows this legacy method of formatting strings. Lines 1 and 2
define the substitution values that will be used. Line 3 creates the string that will be output.
Note that the substitution values are identified by position, as well as the fact that, when
using an interactive Python session, the interpreter will patiently wait until all required
information is presented. In this case, an extra parenthesis is added to complete the
print() function:

Data Types and Modules Chapter 2

[36]

Expression string formatting (pre-Python 2.6)

Since Python 2.6, an alternate way of formatting strings is to use a method call, shown in
the following screenshot. Line 21 shows positional substitution, line 22 shows keyword
substitution, and line 23 shows relative position substitution. Relative position may be the
most common, but it can get out of hand with more than just a few substitutions.

The following screenshot shows an example of method string formatting:

Method string formatting (post-Python 2.6)

Data Types and Modules Chapter 2

[37]

Method string formatting is similar to the C# method, but it hasn't replaced the expression
formatting. While the expression formatting is deprecated, it is still available in Python 3.
However, method formatting provides more capabilities, so expression formatting is
primarily found in legacy code.

It's worth pointing out that, while you can frequently get the output you desire by calling
the string object directly (as demonstrated in the previous example), it doesn't always work
the way you want. Sometimes the object will only return a memory address, particularly if
you are trying to print an instance of a class (which will be discussed in Chapter 4,
Functions and Object Oriented Programming, in the Classes and instances section). Generally
speaking, it's better to explicitly call the print() function if you want a statement
evaluated and printed out. Otherwise, you don't know exactly what value it will return.

Combining and separating strings
Strings can be combined (joined or concatenated) and separated (split) quite easily.
Tokenization is the process of splitting something up into individual tokens; in this case, a
sentence is split into individual words. When a web page is parsed by a browser, the
HTML, JavaScript, and any other code in the page is tokenized and identified as a keyword,
operator, variable, and so on. The browser then uses this information to display the web
page correctly, or at least as well as it can.

Python does much the same thing. The Python interpreter tokenizes the source code and
identifies the parts that are part of the actual programming language and the parts that are
data. The individual tokens are separated by delimiters, characters that actually separate
one token from another. If you import data into Excel or another spreadsheet program, you
will be asked what it should use as a delimiter: a comma, tab, space, and so on. Python does
the same thing when it reads the source code.

In strings, the main delimiter is a whitespace character, such as a tab, a newline, or an
actual space. These delimiters mark off individual characters or words, sentences, and
paragraphs. When special formatting is needed, other delimiters can be specified by the
programmer.

String concatenation was demonstrated in Basic string operations. An alternative way to
combine strings is by joining them. Joining strings combines the separate strings into one
string. The catch is that it doesn't concatenate the strings; the join() method creates a
string in which the elements of a string sequence are joined by a given separator. The
following screenshot demonstrates this action. Line 29 is a normal concatenation; the results
are printed in line 31. Line 30 joins string 1 with string 2, with the results in line 32:

Data Types and Modules Chapter 2

[38]

Joining strings

As you can see, the results are not what you expect. The join() method is actually
designed to be used to create a string where the individual characters are separated by a
given separator character. The following screenshot demonstrates this more common use of
join():

Common string join

After a sequence of strings is created in line 35 (known as a tuple, and explained further
in Tuples), the join() method is called in two different ways. Line 36 is a simple call of the
function itself; the result is a string, with the quotation marks shown. Line 37 is the
print() function calling join(); the resultant string is printed normally, without the
quote marks.

Data Types and Modules Chapter 2

[39]

Finally, splitting strings separates them into their component parts. The result is a list
containing the individual words or characters. The following screenshot shows two ways to
split a string:

Splitting strings

In line 39, the default split is performed, resulting in the string being split at the spaces
between words. Line 41 performs the string split on the commas, though essentially any
character can be used.

Lists
Lists in Python are one of the most versatile collection object types available. The other
workhorses are dictionaries and tuples, but they are really more like variations of lists.

Python lists do the work of most of the data collection structures found in other languages,
and since they are built in, you don't have to worry about manually creating them. Lists can
be used for any type of object, from numbers and strings to other lists. They are accessed
just like strings (since strings are just specialized lists), so they are simple to use. Lists are
variable in length; that is, they grow and shrink automatically as they're used, and they can
be changed in place; that is, a new list isn't created every time, unlike strings. In reality,
Python lists are C arrays inside the Python interpreter and act just like an array of pointers.

Data Types and Modules Chapter 2

[40]

The following screenshot shows the creation of a list and a few examples of how to use it:

List examples

After the list is created in line 42, lines 43 and 44 show different ways of getting the values
in a list; line 43 returns the list object while line 44 actually prints the items that are in the
list. The difference is subtle, but will be more noticeable with more complicated code.

Line 45 returns the first item in the list, while line 46 pops out the last item. Returning an
item doesn't modify the list, but popping an item does, as shown in line 47, where the list is
visibly shorter.

The biggest thing to remember is that lists are series of objects written inside square
brackets, separated by commas. Dictionaries and tuples will look similar except they have
different types of brackets.

List usage
Lists are most often used to store homogeneous values; that is, a list usually holds names,
numbers, or other sequences that are all one data type. They don't have to; they can be used
with whatever data types you want to mix and match. It's just usually easier to think of a
list as holding a standard sequence of items.

Data Types and Modules Chapter 2

[41]

The most common use of a list is to iterate over the list and perform the same action to each
object within the list, hence the use of similar data types. This simple iteration is shown in
the following screenshot:

List iteration

Line 48 defines the list as a sequence of string values. Line 49 creates a for loop that iterates
through the list, printing out a phrase for each item.

Lines 50 and 51 show alternative ways of iterating through and creating lists. This method
is called list comprehension and is frequently found in code as a shortcut to writing a
normal for loop to make a new list. Line 51 demonstrates that additional information can
be provided to the returned values, much like the values returned in line 49.

One thing to note right now, however, is that you can use whatever word for the
placeholder that you want; that is, if you wanted to use the name number instead of item
in the preceding examples, you can do that. This is key because it was a weird concept for
me when I first encountered it in Python. In other languages, loops like this are either
hardwired into the language and you have to use its format or you have to expressly create
the x value beforehand so you can call it in the loop. Python's way is much easier because
you can use whatever name makes the most sense.

Data Types and Modules Chapter 2

[42]

Adding list elements
Adding new items to a list is extremely easy. You simply tell the list to add them, as shown
in the following screenshot. This also demonstrates how any item can be placed in a list,
even disparate data types:

Appending to a list

The append() method simply adds a single item to the end of a list; it's different from
concatenation since it takes a single object and not a list. The append() method changes the
list in-place and doesn't create a brand new list object, nor does it return the modified list.
To view the changes, you have to expressly call the list object again, as shown in line 3. So
be aware of that in case you are confused about whether the changes actually took place.

If you want to put the new item in a specific position in the list, you have to tell the list
which position it should be in; that is, you have to use the index of what the position is.
This is demonstrated in line 4 of the previous screenshot.

You can add a second list to an existing one by using the extend() method. Essentially, the
two lists are concatenated (linked) together, as shown in the following screenshot:

Extending a list with another list

Data Types and Modules Chapter 2

[43]

Be aware that there is a distinct difference between extend() and append().
The extend() function takes a single argument, which is always a list, and adds each of
the elements of that list to the original list; the two lists are merged into one.
The append() function takes one argument, which can be any data type, and simply adds
it to the end of the list; you end up with a list that has one element, which is the appended
object.

Compare line 10 in the following screenshot to line 8 in the previous screenshot. Whereas
appending the new_l list to the original list simply added each item from new_l to the
original, essentially increasing the number of elements, when extending the exact same
new_l list to the original, the entire list object was added, rather than the individual
elements.

extend() versus append()

Mutability
As mentioned several times, one of the special things about lists is that they are mutable;
that is, they can be modified in place without creating a new object. The big concern with
this is remembering that, if you do this, it can affect other references to it. However, this
isn't usually a large problem; it's more of something to keep in mind if you get program
errors.

Data Types and Modules Chapter 2

[44]

The following screenshot is an example of changing a list using index offset, slicing, and
deleting elements:

Changing a list

Line 12 changes the value for the element at index 1 (second position in the list). Line
14 swaps out the first two elements for new values. Line 16 deletes the first element;
removing multiple elements through slicing is also allowed.

Dictionaries
Next to lists, dictionaries are one of the most useful data types in Python. Python lists, as
previously shown, are ordered collections that use a numerical offset. To select an item in a
list, you need to know its position within the list. Python dictionaries are unordered
collections of objects, matched to a key name; in other words, you can reference an item
simply by knowing its associated key.

Because of their construction, dictionaries can replace many typical search algorithms and
data structures found in C and related languages. For those coming from other languages,
Python dictionaries are just like a hash table or associative array, where an object is mapped
to a key name.

Dictionaries include the following properties:

They are accessed by a key, not an offset. Each item in the dictionary has a
corresponding key; the key is used to call the item.

Data Types and Modules Chapter 2

[45]

Stored objects are in a random order to provide faster lookup. When created, a
dictionary stores items in a particular order that makes sense to Python, but may
not make sense to the developer.
To get a value, simply supply the key. If you need to order the items within a
dictionary, there is a container called OrderedDict that was added in Python
2.7, but it has to be imported from the collections library.
Dictionaries are variable-length, can hold objects of any type (including other
dictionaries), and support deep nesting (multiple levels of items can be in a
dictionary, such as a list within a dictionary within another dictionary).
They are mutable but can't be modified like lists or strings. They are the only
data type that supports mapping; that is, a key is linked to a value.

Internally, a dictionary is implemented as a hash table.

Creating dictionaries
As previously stated, you create dictionaries and access items through a key. The key can
be of any immutable type, such as a string, number, or tuple; basically, anything that can't
be changed. Each key's associated value can be any type of object, including other
dictionaries. The basic use of dictionaries is displayed in the following screenshot:

Basic dictionary operations

Data Types and Modules Chapter 2

[46]

Line 19 creates the dictionary. Note that the brackets for dictionaries are curly braces, the
separator between a key word and its associated value is a colon, and that each key:value is
separated by a comma. In this example, the first mapping is a string to a string, the second
is a string to an integer, and the last is a list to an integer.

Line 20 shows how to see how many items are contained within a dictionary. This value is
only the number of mappings, not the individual keys/values contained within the
dictionary.

Line 21 returns the value associated with the key cow. If you want to add a new item, you
have to use the format in line 23—the name of the dictionary, followed by the new key
within square brackets, and then what that key is equal to. If you try to make a new
dictionary entry by trying to directly map the value to its key through a colon character
(line 22), you will get an error.

After the new entry is created in line 23, we can verify it is there by simply calling the
dictionary (line 24). Values in dictionary entries are completely accessible; in the case of line
25, we can increment the integer value by directly adding 1 to the appropriate key.

Compare this to lines 21 and 23. In line 21, calling the key returned its associated value. In
line 23, adding the = sign to a key made a new dictionary entry. Thus, line 25 acts like a
combination of those two—it gets the value associated to a key, and then makes a new
dictionary entry by performing an operation on the value. In this case, we are simply
adding 1 to the value, and then reassigning it as the key's associated value. Line 26 returns
the entire dictionary to show that the new value associated with the chicken key has been
incremented from 3 to 4.

Working with dictionaries
There are a large number of methods that can be used with dictionaries.

Data Types and Modules Chapter 2

[47]

We won't talk about all of them, but some of the more common ones are shown in the
following screenshot:

Dictionary methods

Line 36 checks to see whether a specified key exists within the dictionary.

Line 37 returns all the items that exist within the dictionary—both keys and their associated
values. For more flexibility, you can look for just a dictionary's keys (line 38) or just the
values (line 39).

To remove entries within a dictionary, you can delete single items, as demonstrated in line
40. To remove all entries in dictionary d1, you would use the d1.clear() method .

Since dictionaries are changeable, you can add and delete values to them without creating a
new dictionary object, as shown in lines 23 and 40. Adding a new object to a dictionary only
requires making a new key and value, whereas lists will return an index out-of-bounds
error if the offset is past the end of the list. Therefore, you must use append() to add
values to lists but simply make new key value entries for dictionaries.

The following screenshot is a more realistic dictionary example. The following example
creates a table that maps programming language names (the keys) to their creators (the
values). You fetch a creator name by indexing on the language name:

Data Types and Modules Chapter 2

[48]

Using a dictionary

From this example, you might notice that the last command is similar to string and list
iteration using the for command. However, you'll also notice that, since dictionaries aren't
sequences (that is, the stored items are indexed by keyword and not position), you can't use
the standard for statement. You must use the keys() method to return a list of all the keys
which you can then iterate through like a normal list.

You may have also noticed that dictionaries can act like light weight databases. The
preceding example creates a table, where the programming language column is matched by
the creator's row. If you have a need for a database, you might want to consider using a
dictionary instead. If the data will fit, you will save yourself a lot of unnecessary coding
and reduce the headaches you would get from dealing with a full-blown database. Granted,
you don't have the flexibility and power of a true database, but for quick-and-dirty
solutions, dictionaries will suffice.

Dictionary details
There are a few key points about dictionaries that you should be aware of:

Sequence operations don't work. As previously stated, dictionaries are mappings,
not sequences. Because there's no order to dictionary items, functions such as
concatenation and slicing don't work.

Data Types and Modules Chapter 2

[49]

Assigning new indexes adds entries. Keys can be created when making a
dictionary (that is, when you initially create the dictionary) or by adding new
values to an existing dictionary. The process is similar and the end result is the
same.
Keys can be anything immutable. The previous examples showed keys as string
objects, but any non-mutable object (such as numbers) can be used for a key.
Numbers can be used to create a list-like object but without the ordering. Tuples
are sometimes used to make compound keys; class instances that are designed
not to change can also be used if needed.

Tuples
The final built-in data type is the tuple. Python tuples work exactly like Python lists except
they are immutable; that is, they can't be changed in place. They are normally written inside
parentheses to distinguish them from lists (which use square brackets), but as you'll see,
parentheses aren't always necessary; however, a comma is always required, as expressions
can use parentheses too. Since tuples are immutable, their length is fixed. To grow or shrink
a tuple, a new tuple must be created.

Since parentheses can surround expressions, you have to show Python when a single item
is actually a tuple by placing a comma after the item. A tuple without parentheses can be
used when a tuple is unambiguous. However, it's easier to just use parentheses than to
screenshot out when they're optional.

Why use tuples?
Tuples typically store heterogeneous data, similar to how lists typically hold homogeneous
data. It's not a hardcoded rule but simply a convention that some Python programmers
follow. Because tuples are immutable, they can be used to store different data about a
certain thing. For example, a contact list could conceivably be stored within a tuple; you
could have a name and address (both strings) plus a phone number (integer) within a data
object.

The biggest thing to remember is that standard operations, such as slicing and iteration,
return new tuple objects. Commonly, lists are used for everything except when a developer
doesn't want a collection to change. It cuts down on the number of collections to think
about; plus, tuples don't let you add new items to them or delete data. You have to make a
new tuple in those cases.

Data Types and Modules Chapter 2

[50]

There are a few times when you simply have to use a tuple because your code requires it.
However, a lot of times you never know exactly what you're going to do with your code
and having the flexibility of lists can be useful.

So why use tuples? Apart from sometimes being the only way to make your code work,
there are few other reasons to use tuples:

Tuples are processed faster than lists. If you are creating a constant set of values
that won't change, and you need to simply iterate through them, use a tuple.
The sequences within a tuple are essentially protected from modification. This
way, you won't accidentally change the values, nor can someone misuse an API
to modify the data. (An API is an application programming interface. It allows
programmers to use a program without having to know the details of the whole
program.)
Tuples can be used as keys for dictionaries. One possible use of this is a crude
inventory system, such as the following screenshot:

Tuples as keys

Tuples are great when you want to return multiple values from a function.
Normally, you can only return a single value from a function. If you return a
tuple, however, multiple items can be placed into a single tuple object, so you
aren't violating the single value rule, because it is a single tuple, yet you still get
all the items that are contained in the tuple.

Data Types and Modules Chapter 2

[51]

Sequence unpacking
To create a tuple, we simply create a variable and assign items to it, separated by commas.
The term for this is packing a tuple, because the data is packed into the tuple, all wrapped
up and ready to go. To remove items from a tuple, you simply unpack it, as shown in the
following screenshot:

Unpacking a tuple

In line 60, the tuple is packed with a sequence of numbers, and in line 61, the items in the
tuple (the numbers) are unpacked and assigned to individual variables. Lines 62-65
demonstrate that each number has been assigned to separate variables.

Data Types and Modules Chapter 2

[52]

Line 66 shows the same thing, except the tuple parentheses, have been dropped to show
that they aren't necessary.

Tuple unpacking is nice when you have a lot of items to work with. Rather than having a
separate variable for each item, you can pack them all into a tuple and work with that.
When you need to, you can unpack the tuple and work with the individual items directly.

One benefit of tuple packing/unpacking is that you can swap items in-place. With other
languages, you have to create the logic to swap variables; with tuples, the logic is inherent
in the data type, as shown in the following screenshot:

In-place variable swapping

Tuple unpacking and in-place swapping is one of the neatest features of Python, in my
opinion. Rather than creating the logic to pull each item from a collection and place it in its
own variable, tuple unpacking allows you to do everything in one step. In-place swapping
is also a shortcut; you don't need to create temporary variables to hold the values as you
switch places.

Sets
Sets are unordered collections of hashable objects; in other words, each object is unique.
Sets are commonly used to see if a collection of objects contains a particular item, remove
duplicates from a sequence, and compute a variety of mathematical operations.

Sets look like dictionaries, in that curly braces {} are used to create a set. However, unlike
dictionaries, sets only have values; there are no key names within a set.

Data Types and Modules Chapter 2

[53]

The following example shows how to create a set:

knights_set = {"Sir Galahad", "Sir Lancelot", "Sir Robin"}

Sets are also like dictionaries in that the objects they contain are unordered, and it is likely
that calling a set will show a different order of objects compared to what was originally set.

There are actually two types of sets: set and frozenset. A regular set is mutable, in that it
can be modified in-place. A frozenset is immutable and cannot be altered after creation.
Therefore, a frozenset can be used as a dictionary key, like a tuple, but a regular set cannot.

Set-specific operations are covered in Set methods, though they can utilize many of the
sequence methods listed in Sequence methods.

Using data type methods
Because everything in Python is an object, and the vast majority of objects in Python have
methods to provide functionality, this section will discuss some of the more common
methods available to Python data types.

Sequence methods
The following methods are common to most sequence types, such as lists, tuples, sets, and
strings, except where indicated:

x in seq: True if an item within the sequence is equal to x; otherwise, False is
returned. This also applies to a subset of a sequence, such as looking for a specific
character within a string.
x not in seq: True if no item within the sequence is equal to x; otherwise,
False is returned.
seq1 + seq2: Concatenates two sequences; if immutable sequences, a new
object is created.
seq * n: Adds a sequence to itself n times.

seq[i]: Returns the item of a sequence, with the first object's index value = 0.
seq[i:j]: Returns a slice of the sequence, from i (inclusive) to j (exclusive).
Not available with sets.
seq[i:j:k]: Returns a slice of the sequence, from i (inclusive) to j (exclusive),
skipping every k values. Not available with sets.

Data Types and Modules Chapter 2

[54]

len(seq): Returns the length of a sequence; that is, the number of items within
the sequence.
min(seq): Returns the smallest item in a sequence.
max(seq): Returns the largest item in a sequence.
seq.index(x[, i[, j]]): Returns the index value for the first occurrence of
value x in a sequence; optionally, the first occurrence at or after index value i but
before index j. Not available with sets.
seq.count(x): Returns the total number of occurrences of x in a sequence. Not
available with sets.

The following methods are common to all mutable sequence types, such as lists and strings,
except where indicated:

seq[i] = x: Item i within a sequence is replaced with x.
seq[i:j] = iter: A slice of seq, from i (inclusive) to j (exclusive), is replaced
with the contents of iterable object iter. Not available with sets.
del seq[i:j]: Deletes the given slice in seq. Not available with sets.
seq[i:j:k] = iter: A slice of the sequence, from i (inclusive) to j (exclusive),
skipping every k values, is replaced by the contents of iter. Not available with
sets.
del seq[i:j:k]: Deletes a slice of seq, skipping every k value. Not available
with sets.
seq.append(x): Appends x to the end of seq. Not available with sets; use
set.add(x) instead.
seq.clear(): Deletes all contents of seq.
seq.copy(): Makes a new copy of seq.
seq.extend(iter): Extends the sequence with the contents of iter. Not
available with sets; use set.union(*others) instead.
seq *= n: Updates the sequence with n copies of itself. Not available with sets.
seq.insert(i, x): Inserts item x into the sequence at index value i.
seq.pop([i]): Returns the item at index i and removes it from the sequence.
s.remove(x): Deletes the first item from seq that equals x.
s.reverse(): Reverses the sequence in-place.

Data Types and Modules Chapter 2

[55]

String methods
As there are more than 40 methods for strings, we will cover some of the most commonly
found methods here. However, the full list can be found in the Python documentation:

str.capitalize(): Returns a copy of the string with only the first character
capitalized and all others lowercase.
str.endswith(suffix[, start[, end]]): Returns True if the string ends
with the specified suffix; otherwise, returns False. To look for multiple
suffixes, a tuple can be used. The optional start is the index to start the search
at, and the optional end is the ending index.
str.format(*args, **kwargs): Conducts a string formatting operation. This
has been shown previously in other examples. There are many additional
parameters that can be used with string formatting, so the official documentation
should be referenced. On an additional note, the *args and **kwargs
arguments are frequently found in the Python documentation. They simply
indicate what types of arguments are accepted by a function or method. For
*args, any argument passed in will be processed; **kwargs indicates key=value
arguments are accepted. Naturally, if the argument passed in is not known, an
error will be generated.
str.isalpha(): Returns True if all characters in the string are alphabetic. There
are also methods for alphanumeric, numbers, ASCII-only, lowercase, and so on,
checks.
str.ljust(width[, fillchar]): Returns a string that is left-justified with a
length of width. By default, any extra space is padded with space characters, but
fillchar can be used to provide alternative characters.
str.lower(): Returns a copy of the string that is all lowercase.
str.splitlines([keepends]): Returns a list of the individual lines within a
string, as determined by common line separator characters. The line breaks
themselves are not included, unless keepends is True.
str.strip([chars]): Returns a copy of the string with the lead and trailing
characters removed. By default, all whitespace is removed, but the optional
chars argument can specify specific characters to remove.
str.title(): Returns a copy of the string in title case. Due to the algorithm
used, apostrophe characters can cause problems with the expected output, so a
review of the documentation is suggested prior to use.

Data Types and Modules Chapter 2

[56]

As previously mentioned, these are not all the special methods available to strings. Also,
because strings are simply specialized lists, they also have access to all the sequence
methods listed in Sequence methods.

List methods
Lists have only one special method: list.sort(*, key=None, reverse=False). By
default, sort() performs an A-Z-style sort, with lower values on the left. Using key allows
the use of an additional function to modify the default sort, while reverse performs a Z-A
sort. An example of these sorting operations is shown in the following screenshot:

List sorting methods

Data Types and Modules Chapter 2

[57]

In line 145, a list of strings is created and the default sort is performed in line 146. The
results of the default sort are shown in line 147. Note that capital letters come before
lowercase ones.

In line 148, the key modifier is used to take lowercase letters into account, resulting in the
unusual results of line 149. These are unusual because, rather than simply moving the
lowercase words to the beginning of the list, the sort() method has actually sorted the list
according to the actual alphabetical listing of the beginning characters, regardless of their
capitalization.

Line 150 performs a reverse sort. The output in line 151 shows that capitalization doesn't
matter, as we didn't specify a key, so the results are simply the opposite of line 147.

Tuple methods
Tuples implement all the common sequence methods (see Sequence methods), except for the
mutable-only ones.

Dictionary methods
Dictionaries, as hashable arrays rather than sequences, have a number of methods that are
unique to them, and only a few of the sequence-specific methods are similar. The following
is a list of the dictionary-specific methods:

len(dict): Returns the number of items in a dictionary.
dict[key]: Returns the value associated with key. If the specified key is not in
the dictionary, an error is generated.
dict[key] = value: Sets the association of key to value.
del dict[key]: Deletes the indicated key, and its associated value, from the
dictionary. If key doesn't exist, an error is generated.
key in dict: If the dictionary has the specified key name, returns True;
otherwise, returns False.
key not in dict: If the dictionary does not contain the specified key name,
returns True; otherwise, returns False.
iter(dict): Returns an iterator object that contains the keys of the dictionary.
dict.clear(): Deletes all entries from the dictionary.
dict.copy(): Returns a copy of the dictionary.

Data Types and Modules Chapter 2

[58]

dict.fromkeys(seq[, value]): Creates a new dictionary, with the key names
taken from a sequence. The optional value defines the default value associated
with each key.
dict.get(key[, default]): Returns the value for key if the key exists; if the
key doesn't exist, the optional default value is returned. If default is not
defined, then None is returned; this prevents an error from being generated.
dict.items(): Returns a dictionary view object of all the key:value pairs from
the dictionary.
dict.keys(): Returns a dictionary view object of just the key names from the
dictionary.
dict.pop(key[, default]): Returns the value for key if the key exists, while
removing the key:value pair from the dictionary. If the key doesn't exist, then the
optional default value is returned to prevent an error.
dict.popitem(): Returns a key:value pair from the dictionary while removing
it from the dictionary. Pairs are removed in a last-in, first-out order.
dict.setdefault(key[, default]): Returns the value associated with key if
it exists in the dictionary. If it doesn't exist, key is added to the dictionary and its
value is set to the optional default value, then return the default value. If no
default value is provided, it defaults to None.
dict.update([other]): Updates the dictionary with the key:value pairs, as
defined in other, by overwriting existing items. update accepts either a
dictionary or an iterable object of key:value pairs, such as a tuple.
dict.values(): Returns a dictionary view object of all the values existing in the
dictionary.

When an item states it provides a dictionary view object, it just means that it provides a view
of the indicated part of a dictionary, and this view is updated in real time. Views are not
copies of the objects, but simply a display of the current contents.

For example, dict.keys()shows all the current keys associated with a particular
dictionary; if the keys are updated, dict.keys() will show the change.

Data Types and Modules Chapter 2

[59]

The aforementioned methods are demonstrated in the following examples, which are split
into two screenshots due to the number of entries:

Dictionary methods, part 1

Line 181 creates our dictionary. Line 182 displays the number of key:value pairs within the
dictionary.

Line 183 returns the value for the key named 2, while line 184 changes the value associated
with key 4, as shown in line 185.

Data Types and Modules Chapter 2

[60]

To check whether a particular key exists in the dictionary, lines 186 and 187 provide
alternative methods to do that.

Line 188 iterates over the dictionary and assigns the keys to a new sequence. Line 189
iterates over the sequence and prints the keys that were pulled out. Note that the sequence
new_d is not a dictionary, but is actually a different type: dict_keyiterator. An iterator
is a special object that is associated with iterations and isn't normally defined by a
programmer, except in certain circumstances that won't be covered here.

Line 190 removes all entries from the dictionary, as shown in line 191, but we add new
entries in line 192. Note that Python is comfortable with non-ASCII characters, such as
Greek letters. Python 3 deals with Unicode characters by default, so any characters can be
used, not just the normal English alphabet.

In line 193, a new dictionary is made as a copy of d1, as shown in line 194:

Dictionary methods (continued)

Data Types and Modules Chapter 2

[61]

Line 219 defines a tuple of strings. This tuple is used in line 220 to overwrite the items in
dictionary d2. As shown in line 221, the strings from the tuple are now the keys in the
dictionary, and the values have defaulted to None.

Line 222 attempts to retrieve the value associated with the key 5 but, since there is no key
5 in dictionary d1, nothing is returned. While this may not seem special, using the get()
method rather than the normal d1[5] command, as shown in line 183, means that no error
is generated if the specified key doesn't exist.

Line 223 shows all the items that are in the dictionary, while line 224 shows just the keys.

Line 225 pulls the requested key from the dictionary and returns its value. The key:value
pair is deleted from the dictionary, as shown in line 226. In line 227, the last key:value pair
in the dictionary is removed and returned, no longer existing within the dictionary, as
shown in line 228.

Line 229 requests the value associated with key 5. Since that key doesn't exist, the specified
value of Z is entered into the dictionary and summarily returned as the value associated
with 5. The addition of the new key:value pair is shown in line 230.

In line 231, the dictionary is updated with new key:value pairs; had any of the keys been a
duplicate of an existing key, that key:value pair would have been overwritten. As such, the
new additions are placed into the dictionary, as shown in line 232. Note that the sequence
used in line 231 does not use quotation marks for the strings. In this case, Python is smart
enough to understand what is desired and will perform the operation without errors. As a
matter of fact, attempting to use quotation marks may generate an error.

Finally, line 233 shows all the values that exist within the dictionary.

Dictionaries are very powerful and useful data types, and are used for many different
things. Learning to use them well is an important skill for anyone who wants to code well.

Data Types and Modules Chapter 2

[62]

Set methods
Operations that are specific to sets and frozensets generally provide a way to quickly
compare and shift out common/uncommon items between the different sets. Examples of
the following methods can be seen in the next screenshot. The following non-exhaustive
listing of set methods is an example of the more common set methods.

However, be sure to review the official Python documentation as there are some differences
between set and frozenset methods:

set1.isdisjoint(set2): Returns True if set1 has no elements in common
with set2
set1.issubset(set2): Returns True if every element in set1 exists in set2
set1 < set2: Returns True if set1 is a true subset of set2 but not exactly
equal to set2
set1.issuperset(set2): Returns True if every element in set2 is in set1
set1 > set2: Returns True if set1 is a true superset of set2 but not exactly
equal to set2
set1.union(set2, set3, ...): Returns a new set that includes elements
from all given sets
set1.intersection(set2, set3, ...): Returns a new set with all common
elements between the given sets
set1.difference(set2, set3, ...): Returns a new set with elements that
exists in set1 but are not in any others
set1.symmetric_difference(set2): Returns a new set with elements that
are unique to each set
set1.copy(): Returns a new set with a copy of the elements from set1

Data Types and Modules Chapter 2

[63]

The following screenshot shows an example of set method:

Set method examples

Lines 104 and 105 create two different sets. Lines 106-110 are self-explanatory, based on the
previous definitions.

With line 111, we create a new set by merging set1 with set2. Line 112 shows a returned,
empty set because there are no common elements between the two sets.

Line 113 shows the elements that exist in set1 but not set2, while line 114 shows all the
unique elements.

Finally, line 115 presents a copy of set1; normally, this would be assigned to a new
variable for later use.

Data Types and Modules Chapter 2

[64]

Importing modules
We briefly touched on importing modules way back in Chapter 1, The Fundamentals of
Python. Modules are also called libraries or packages. Modules are modular, often self-
contained Python programs that are commonly utilized in other programs, hence the need
to import them for access.

Modules are used to separate code to make a program easier to work with, as each module
can be designed to do one thing well, rather than having to make a single program that is
responsible for all logic.

The Python Package Index (PyPI) website (https:/ /pypi. org) is the official repository of
third-party Python libraries. At the time of writing, there are more than 150,000 packages
available for download from PyPI. Most of these packages are designed to be imported into
a Python project to provide additional, or easier, functionality than can be achieved with
the default Python libraries.

Namespaces
Another benefit of modules is that they create additional namespaces for code. Namespaces
(also called scopes) are the hierarchy of control that a module has. Normally, objects outside
of a module aren't visible to code within the module; thus, they can't be accessed or utilized
within the current module.

The benefit of this segregation is that variable shadowing is less likely. Variable shadowing
is the creation of duplicate variable names in different blocks of code, such that one variable
is hidden (shadowed) by an identical variable and cannot be accessed, or the Python
interpreter may call the incorrect variable.

Using a module allows the same variable name to be used in multiple locations without
requiring shadowing to occur, as a specific variable is identified by the module it resides in.
Of course, there is nothing to stop a programmer from using the same variable within a
module, with the potential of shadowing occurring, but the namespace hierarchy makes
that unlikely.

Global variables are an option, but aren't recommended. Global variables allow a
programmer to define a variable that can be accessed within any namespace; they are
commonly used to contain data that is used in multiple locations, such as a counter. Of
course, this leaves open the possibility that a global variable will be overwritten without the
programmer realizing, causing a problem later on in the program.

https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/

Data Types and Modules Chapter 2

[65]

Program scope works inside-out. As a module is typically made with multiple functions or
methods, when an object is called, the Python interpreter will look for the correct reference
within the current function/method. If the object isn't defined there, the interpreter will
move to the enclosing container, if one exists (such as another function or a method's class).
If the variable can't be found there, the interpreter looks for a global variable. Not finding
one, the interpreter will look in the built-in libraries. If still not found, Python will generate
an error. The flow looks like this: local container|enclosing container|global scope|built-in
module|error.

The following is a simple program that should help explain this idea a little better. We
haven't directly talked about functions or if...else statements yet, but hopefully this
won't be too confusing:

scope_example.py (part 1)
1 var1 = 1 # global variable
2
3 if var1 == 1:
4 var2 = 0 # also a global variable
5 print("Unmodified var2: {}".format(var2))
6
7 def my_funct():
8 var3 = 3 # local variable
9 var1 = 42 # shadows global var1 variable
10 global var2
11 var2 = 80
12 print("Inside function, var1: {}".format(var1))
13 print("Inside function, var2: {}".format(var2))
14 print("Inside function, var3: {}".format(var3))

In line 1, a global variable is created. Line 3 is a test to see whether var1 is equal to 1; if so,
then a new global variable (var2) is created, and its value is printed.

Line 7 is the start of a Python function. Within this function, a variable that is only
accessible within the function is created (var3). In addition, a new variable (var1) is
created; this variable hides the previously made global variable var1, so when the value of
this local var1 is printed in line 12, the local value is printed, rather than the value of the
global variable.

Line 10 explicitly calls the global variable var2; this allows the function to manipulate the
global variable in line 11 without attempting to make a local variable that would shadow it.

Data Types and Modules Chapter 2

[66]

Lines 12-14 print the values of the variables as seen within the scope of the function:

scope_example.py (part 2)
1 my_funct()
2
3 print("Outside function, var1: {}".format(var1))
4 print("Outside function, var2: {}".format(var2))
5 print("Outside function, var3: {}".format(var3))

In the second part, line 1 is the call to the function to actually run it. Lines 3-5 print the
values of the variables as seen outside the function.

The following screenshot displays the output of the previous program.

Output of scope_example.py

The print() calls show the value of each variable at its respective location within the
program. Initially, var1 and var2 are the values of the globally defined variables. Once the
function has been called and performs its operations, the local var1 and var3 variables are
printed, along with the global var2 variable, whose value has been replaced.

When the function is complete and we are back outside the function, we see that the
globally defined variable var1 is back to its original value, and is no longer hidden by the
local function variable of the same name. However, because var2 was explicitly called to
reference the global variable, rather than shadow it, var2 retains the value it was assigned
while within the function.

Data Types and Modules Chapter 2

[67]

Finally, because var3 doesn't exist outside the function, the interpreter doesn't know what
to do with it. Since we are no longer within the function, there is no local reference to it.
Moving up the namespace, there is no encapsulating function or other object, and there is
no global reference to var3. Since Python doesn't have a var3 object in any of its built-in
libraries, the only thing Python can do with the call is to give up and throw an error.

Dot nomenclature
When a module is imported, after the local and global checks within the current program,
the imported module will be examined for the called object as well (prior to checking the
built-ins). The problem with this is that, unless the called object is explicitly identified with
the dot nomenclature, an error will still be generated.

In the following screenshot, we see how the dot nomenclature works:

Dot nomenclature

In this case, we attempt to calculate the square root of a number. Since this operation is
unknown to the default Python interpreter, an error is generated. However, if we import
the math library in line 2, and then attempt to perform the calculation again, we get an
answer.

Note that we explicitly told Python that the square root function is to be found in the math
library by using the math.sqrt() command. This is the dot nomenclature that we talked
about earlier; the dot indicates that the sqrt() function can be found in the math library.
We will see many other examples of this as we discuss programming further, so while it
may not make sense right now, hopefully more examples will help.

Data Types and Modules Chapter 2

[68]

Types of imports
In the previous screenshot, we performed a basic module import. This just means that we
imported the module, and then referenced something within it through the dot
nomenclature. With this type of import, the main program and the imported module
maintain their separate namespaces, hence the need to explicitly identify a function through
the dot nomenclature.

There are other ways to import modules. One of the most common is to use the from
version of import to get only specified objects from a module, rather than the entire
module, as shown in the following screenshot.

From import

In this case, we are importing just randint() from the random library in line 4. Because we
have explicitly imported this function, it is now part of the overall program's namespace,
rather than being separated into the random namespace and requiring the dot
nomenclature to call it. This allows us to call it in line 5 without any special conditions.

If we try to do the same for randrange() in line 6, we get an error because we never
imported randrange() explicitly. Even if we try to use the dot nomenclature in line 7, we
still get an error because the entire random library was not imported.

Data Types and Modules Chapter 2

[69]

One way around this is to use the from <module> import * command, which imports
nearly all objects from the specified module. The problem with this is the possibility of
name shadowing because of all the imported objects, especially if multiple modules are
imported this way.

In general, if only a handful of objects are needed, explicitly importing them is the safest
way to work with them. If you need most or all of a library, you can use the import *
command (it's easier to work with but not as safe) or the dot nomenclature (which is safer
but requires more typing).

Modules as scripts
An important thing to know about Python is that modules, as written, are pretty much only
useful as imported objects for other programs. However, a module can be written to be
imported or function as a standalone program.

When a module is imported into another program, only certain objects are imported over.
Not everything is imported, which is what allows a module to perform dual duty. To make
a module operate by itself, a special line has to be inserted near the end of the program.

The following program is a simple dice rolling simulator, broken up into separate parts:

random_dice_roller.py (part 1)
1 import random #randint
2
3 def randomNumGen(choice):
4 """Get a random number to simulate a d6, d10, or d100 roll."""
5
6 if choice == 1: #d6 roll
7 die = random.randint(1, 6)
8 elif choice == 2: #d10 roll
9 die = random.randint(1, 10)
10 elif choice == 3: #d100 roll
11 die = random.randint(1, 100)
12 elif choice == 4: #d4 roll
13 die = random.randint(1, 4)
14 elif choice == 5: #d8 roll
15 die = random.randint(1, 8)

Data Types and Modules Chapter 2

[70]

The preceding code imports the random library from the built-in Python modules. Next, we
define the function that will actually perform the dice simulation in line 3:

random_dice_roller.py (part 2)
1 elif choice == 6: #d12 roll
2 die = random.randint(1, 12)
3 elif choice == 7: #d20 roll
4 die = random.randint(1, 20)
5 else: #simple error message
6 return "Shouldn't be here. Invalid choice"
7 return die
8
9 def multiDie(dice_number, die_type):
10 """Add die rolls together, e.g. 2d6, 4d10, etc."""
11
12 #---Initialize variables
13 final_roll = 0
14 val = 0

In the preceding code, we continue the different dice rolls and then define another function
(line 9) that combines multiple dice together, as frequently used in games:

random_dice_roller.py (part 3)
1 while val < dice_number:
2 final_roll += randomNumGen(die_type)
3 val += 1
4 return final_roll
5
6 if __name__ == "__main__": #run test() if calling as a separate program
7 """Test criteria to show script works."""
8
9 _1d6 = multiDie(1,1) #1d6
10 print("1d6 = ", _1d6, end=' ')
11 _2d6 = multiDie(2,1) #2d6
12 print("\n2d6 = ", _2d6, end=' ')
13 _3d6 = multiDie(3,1) #3d6
14 print("\n3d6 = ", _3d6, end=' ')

Data Types and Modules Chapter 2

[71]

In the preceding code, we finish with the summation of dice. The key part of the entire
program is line 6. This line determines whether the module can run by itself or can only be
imported into other programs.

Line 6 states that, if the namespace seen by the interpreter is the main one (that is, if
random_dice_roller.py is the main program being run and not something else), then
the interpreter will process any operations that are specified below line 6. In this case, these
operations are simply tests to confirm that the main logic (preceding line 6) works as
expected.

If this program were to be imported into another program, then everything before line 6
would be imported while everything following it would be ignored. Thus, you can make a
program that functions as a standalone program or can be imported; the only difference is
what code is written below if __name__ == "__main__":

random_dice_roller.py (part 4)
1 _4d6 = multiDie(4,1) #4d6
2 print("\n4d6 = ", _4d6, end=' ')
3 _1d10 = multiDie(1,2) #1d10
4 print("\n1d10 = ", _1d10, end=' ')
5 _2d10 = multiDie(2,2) #2d10
6 print("\n2d10 = ", _2d10, end=' ')
7 _3d10 = multiDie(2,2) #3d10
8 print("\n3d10 = ", _3d10, end=' ')
9 _d100 = multiDie(1,3) #d100
10 print("\n1d100 = ", _d100)

This finishes the self-tests for the dice rolling program.

Summary
In this chapter, we discussed how to structure Python code, including how to span multiple
lines, if necessary. Next, we covered the various data types that are included in Python:
numbers, strings, lists, dictionaries, tuples, and sets. We also demonstrated how to use
those data types to make simple scripts, and then talked about frequently used methods
that provide more functionality to the data types. Finally, we saw how to import modules
and how they affect the ability to interact with different parts of Python code.

In the next chapter, we will learn how to control logic flow within a program using if...else
statements, looping, and dealing with error exceptions.

3
Logic Control

The main part of programming is learning how to make your code do something, primarily
through a variety of logic controllers. These controllers handle if-then conditions,
reiterative processing through loops, and dealing with errors. While there are other ways of
working with code, these are the most important ones for new programmers to learn.

When dealing with logic control, a developer needs to be aware of how data is being
transferred, particularly when working with user input, network connections, or filesystem
access. Python has three data streams for input/output (I/O). sys.stdout is the standard
output stream; it handles the output of print() and Python expressions. sys.stdin is the
standard input stream; it is used for all interactive input. sys.stderr is the standard error
stream; it only takes errors from the program, but also handles the interpreter's own
prompts.

One thing to recognize is that, depending on the OS environment, information that you
would consider going to stdout is actually sent to stderr, because stderr normally goes
to the same location as stdout, by default you'll usually see it on the screen as well.
However, you won't know that a response is actually going to stderr without testing. If
the particular environment routes stderr to another location, such as a log file, you won't
know until you need to troubleshoot. This is important to note because, sometimes, you
may not be seeing the information you expect because it's not a normal stdout message.

These data streams are considered regular text files and can be accessed and interacted with
just like normal files. File operations are looked at in Chapter 5, Files and Databases, in
the File I/O section.

This chapter will cover the following:

if...else statements
Loops
Exceptions

Logic Control Chapter 3

[73]

if...else statements
One of the most common control structures you'll use, and run into in other programs, is
the if...else conditional block. Simply put, the program asks a yes or no question;
depending on the answer, different things happen.

If you've programmed in other languages, the if...else statement works the same way.
The key difference is that, in Python, the elseif statement is written as elif for checking
multiple conditions, as shown in following screenshot:

Using if...else statements

In the preceding example, the preference() function is used to hold the main code logic;
functions are explained in Chapter 4, Functions and Object Oriented Programming, in
the Working with functions section. The input() function prints the string within
parentheses to the user (normally a question), and accepts the user's input, and that input is
assigned to the answer variable.

When checking for a yes or no condition, the only required part is the if statement. The
elif (else/if) and the else statement aren't necessary. Having the else statement as a
catch-all, default case is useful, especially if used with a print() command to indicate
when an unexpected condition is received.

Logic Control Chapter 3

[74]

An if statement can be standalone, as shown here:

x = True
y = False
if x == True:
 y = True
 print(y)

More common is an if...else block, to have two different options depending on the
condition, as shown here:

x = True
y = False
if x == True:
 y = True
 print(y)
else:
 print("'x' is not True")

Python doesn't have a switch or case statement, unlike other languages. A switch
statement is a type of control device that allows a single variable to determine the rest of the
program execution based on the variable's value. An example of the switch statement
from the C language is shown in the following example:

switch (grade) {
 case "A":
 printf("Outstanding!");
 break;
 case "B":
 printf("Good job!");
 break;
 case "C":
 printf("Satisfactory performance.");
 break;
 case "D":
 printf("You should try harder.");
 break;
 case "F":
 printf("You failed.");
 break;
 default:
 printf("Invalid grade");
}

Logic Control Chapter 3

[75]

While this is somewhat simplistic, you can probably see that a more complicated example
could provide different branches to the rest of the program, if desired. The key point is that
a single variable is tested, and the results of that test are compared to a variety of options;
the option that matches dictates how the program continues.

You can get the same functionality of switch statements by using if...elif tests,
searching within lists, or indexing dictionaries. Since lists and dictionaries are built at
runtime, they can be more flexible. Following screenshot demonstrates how a dictionary
can be used to perform the same functionality as a switch statement:

Dictionary as a switch statement

Obviously, this isn't the most intuitive way to write this program. A better way would be to
create the dictionary as a separate object, and then use a dictionary method such as key in
dict to find the value corresponding to your choice. In this case, you could use "spam" in
choice.

However, it's more common to use if...else statements to perform this operation, as it
looks similar to the normal switch choices and is the easiest way to deal with choices. The
benefit to using a dictionary is that dynamic programs can create these data structures
relatively easily. With if...else statements, they have to be written by the programmer
prior to running the program, whereas dictionaries can be populated and tested
programmatically during runtime.

Logic Control Chapter 3

[76]

Loops
There are a number of differing looping constructs available in Python, though for and
while loops are the dominant ones. Generally speaking, loops allow a program to perform
the same operation multiple times until a condition occurs that cancels the loop. Along with
if...else statements, loops handle a large portion of program logic.

while loops
The while loop is a standard workhorse of many languages. Essentially, the program will
continue doing something while a certain condition exists. As soon as that condition is no
longer true, the loop stops.

break and continue work exactly the same as in C. The equivalent of C's empty statement
(a semicolon) is the pass statement, and Python includes an else statement for use with
breaks.

The break statements simply force the loop to quit early; when used with nested loops, it
only exits the innermost enclosing loop. The continue statements cause the loop to start
over with the next iteration, regardless of any other statements further on in the loop. The
else statement block is run "on the way out" of the loop, unless a break statement causes
the loop to quit early.

The following example demonstrates a generic while loop:

1 while <test>:
2 <statements>
3 if <test>:
4 break
5 elif <test>:
6 continue
7 else:
8 <statements>

Line 1 declares the condition that is tested. As long as this condition is true, the loop will
continue. Once it is no longer true, the loop quits.

Line 2 indicates the main logic of the loop that is performed during each iteration.

Logic Control Chapter 3

[77]

Line 3 tests a particular condition, usually whether the initial condition is still true. If line 3
is a true statement, the loop quits. If not, the control moves to line 5, which is yet another
test. In this case, if the test condition is true, the loop immediately starts again and ignores
the following logic.

Line 8 is executed when the looping condition is no longer true.

Following screenshot shows a simple while loop that loops 10 times before the test
condition causes it to stop. When the loop is finished, the else statement ensures a final
operation is performed, in this case printing a string:

Simple while loop

Following screenshot shows a more complex loop. In this case, it counts down from 50,
printing all even numbers. Once the number 10 is reached, the loop quits. The % symbol is
the modulus operator and is explained later in this book:

Logic Control Chapter 3

[78]

More complex while loop

for loops
We've seen for loops in previous examples; they are the go-to sequence iterator for Python.
The for loops work on nearly anything: strings, lists, tuples, and so on. The main format is
shown next. Note how for loops have the same basic look as while loops:

for <target> in <object>: # assign object items to target
 <statements>
 if <test>:
 break # exit loop now, skip else
 if <test>:
 continue # go to top of loop now
 else:
 <statements> # if we didn't hit a 'break'

Logic Control Chapter 3

[79]

When the for loop starts, it looks at the first item in the sequence. This item is given a
value of 0 (many programming languages start counting at 0, rather than 1). Once the code
block has finished doing its processing, the for loop looks at the second value and gives it
a value of 1. Again, the code block does its processing and the for loop looks at the next
value and gives it a value of 2. This sequence continues until there are no more values in
the list. At that point, the for loop stops and the control proceeds to the next operation in
the program. Following screenshot shows how nested for loops are:

for loop

The first loop increments a counter from 2 through 20, while the second loop increments
from 2 through the current count. If the remainder of i divided by x is 0, the inner loop
breaks and returns to the outer loop.

Logic Control Chapter 3

[80]

The % symbol is the modulus operation, which returns the remainder of a division
operation. The range() function automatically generates a list of integers, in memory,
starting from the first number provided (inclusive) and stopping at the second number
provided (exclusive). A third number can be provided that indicates how many numbers to
skip between each integer generated.

Strings and tuples can also be a good location to use a for loop. Iteration through the items
in a string or tuple is easily accomplished with a loop, and is frequently used for processing
text. Following screenshot demonstrates the sequence iteration:

for loops with sequences

A string and a tuple are defined in lines 35 and 36, respectively. In line 37, the for loop
iterates over, and prints out the string, character by character. In line 38, a similar thing
occurs with the tuple, except we have told the print() function to add a comma to the end
of each number printed. Note that a comma is included after the final number due to this
feature.

Because for loops are pretty simple and tend to run more quickly than while loops, they
are the preferred loop when iterating through a sequence. In general, avoid counting things
in Python, since the built-in iteration tools can do much of the work you would have to
manually write.

Logic Control Chapter 3

[81]

zip() function
The zip() function is a great tool to process multiple sequences during the same loop. As it
looks at each sequence, zip() joins the individual items from the sequences and outputs
tuples with parallel items from each sequence.

In other words, if you stack two rows of items on top of each other, zip() will gather the
first two items from each row and combine them in a tuple. Then, it gets the second two
items from each row and makes another tuple. It continues doing this until each row is
finished. Following screenshot demonstrates this functionality:

zip() combines tuples

Each element in each tuple is combined concurrently as the list is generated, as zip()
simply grabs the item in each tuple that has the same index value, and then makes a new
tuple from them.

Any type of iterable sequence can be used by zip(), even files (as they are just streams of
characters). Also, it will only process the minimum number of items from all given
sequences; if you have a list with three items and another with seven, you'll only get three
tuples as the result.

The zip() function is great for combining data gathered at runtime, such as user input or
from a file. If you need to make a dictionary after the program has been started, because
you don't know what the actual dictionary values will be, zip() can help create that
dictionary. While following screenshot demonstrates this, the keys and values are
frequently from sources created after the program was started:

Logic Control Chapter 3

[82]

Dictionary through zip() function

Line 7 shows how the Python built-in constructor dict() can be used to make an object
creation request. It essentially makes a dictionary out of a list, and can be quite powerful
when working with dictionaries. There are other constructors within Python, such as lists,
and they are often used to programmatically create these objects during runtime.

Exceptions
Exceptions are events that modify a program's flow, either intentionally or due to errors.
Some examples are trying to open a file that doesn't exist, or when the program reaches a
marker, such as the completion of a loop. Exceptions, by definition, don't occur very often;
hence, they are the exceptions to the rule and a special class has been created for them.

Exceptions are everywhere in Python. Virtually every module in the Python standard
library uses them, and Python itself will raise them in a variety of different circumstances.
Here are just a few examples:

Accessing a non-existent dictionary key will raise a KeyError exception
Searching a list for a non-existent value will raise a ValueError exception
Calling a non-existent method of a class will raise an AttributeError exception
Referencing a non-existent variable will raise a NameError exception
Mixing data types without coercion will raise a TypeError exception

One use of exceptions is to catch a fault and allow the program to continue working; this is
the most common way to use exceptions. If the developer can anticipate possible errors,
then the exception-catching code can be written to deal with them. This not only allows the
program to continue working, but also hides the ugliness of broken software from the user.
From a security perspective, it also helps make it more difficult to screenshot out what a
program does if someone is looking for vulnerabilities to exploit.

Logic Control Chapter 3

[83]

When programming with the Python command-line interpreter, you generally don't need
to worry about catching exceptions. Your program is usually short enough to not be hurt
too much if an exception occurs. Plus, having the exception occur at the command-line is a
quick and easy way to tell if your code logic has a problem. However, if the same error
occurred in your real program, it would fail and stop working.

Exceptions can be created manually in the code by raising an exception. It operates exactly
as a system-caused exception, except that the programmer is doing it on purpose for a
number of reasons. One of the benefits of using exceptions is that, by their nature, they
don't put any overhead on the code processing. Because exceptions aren't supposed to
happen very often, they aren't processed until they occur.

Exceptions can be thought of as a special form of the if...else statements. You can
realistically do the same thing with if blocks as you can with exceptions. However, as
already mentioned, exceptions aren't processed until they occur; if blocks are processed all
the time. Proper use of exceptions can help the performance of your program. The more
infrequent the error might occur, the better off you are to use exceptions; using if blocks
requires Python to always test extra conditions before continuing. Exceptions also make
code management easier: if your programming logic is mixed in with error-handling if
statements, it can be difficult to read, modify, and debug your program.

The following is a simple program that highlights most of the important features of
exception processing:

1 num1 = input("Enter the first number: ")
2 num2 = input("Enter the second number: ")
3 try:
4 num1 = float(num1)
5 num2 = float(num2)
6 result = num1/num2
7 except ValueError:
8 print ("Two numbers are required.")
9 except ZeroDivisionError:
10 print ("Zero can't be a denominator.")
11 else:
12 print ("{num1}/{num2}={result}".format(num1=num1, num2=num2,
result=result))

This program simply takes two numbers from the user, divides them, and then shows the
calculation and result to the user. If the user forgets to enter a number or attempts to divide
by zero, the resultant errors are caught and the user is politely informed of the problem.
Following screenshot shows the output of this program:

Logic Control Chapter 3

[84]

Exception example output

As demonstrated in the code, you can catch multiple exceptions within the same try block.
You can also put an optional else statement at the end to denote the logic to perform if all
goes well. Exceptions assume the "default" case to be true until an exception actually
occurs. This speeds up program processing, compared to if...else statements that check
each if line for a true or false condition.

One change you could make to this program is to simply put it all within the try block.
The input() variables (which capture input from the user's keyboard) could be placed
within the try block, replacing the num1 and num2 variables by forcing the user input to a
float value, as shown here:

try:
 numerator = float(input("Enter the numerator."))
 denominator = float(input("Enter the denominator."))

This way, you reduce the amount of logic that has to be written, processed, and tested. You
still have the same exceptions; you're just simplifying the program.

If you want to ensure some actions take place at the end of the try block, you can add a
finally block at the end. While try/except is used to catch and recover from errors,
try/finally is used to ensure that some sort of action takes place, regardless of whether
any exceptions actually occur, such as closing files, severing server connections, and so on.

Logic Control Chapter 3

[85]

When planning your project, it's better to include error-checking, such as exceptions, in
your code as you program rather than as an afterthought. A special "category" of
programming involves writing test cases to ensure that most possible errors are accounted
for in the code, especially as the code changes or new versions are created. By planning
ahead and putting exceptions and other error-checking code into your program at the
outset, you ensure that problems are caught before they can cause problems. By updating
your test cases as your program evolves, you ensure that version upgrades maintain
compatibility and that a fix doesn't create an error condition.

Exception class hierarchy
When an exception occurs, it starts at the innermost level possible (a child) and travels
upward (through the parents), waiting to be caught. This means a couple of things to a
programmer:

If you don't know what exception may occur, you can always just catch a higher-
level exception. For example, if you didn't know that ZeroDivisionError from
the preceding exception example was its own exception, you could have used the
ArithmeticError for the exception and caught that. The following exceptions
list shows that ZeroDivisionError is a child of ArithmeticError, which in
turn is a child of Exception, which in turn is a child of BaseException, which
is the default class that all other exceptions derive from.
Multiple exceptions can be treated the same way. Following on with the
preceding example, suppose you plan on using ZeroDivisionError and you
want to include FloatingPointError. If you wanted to have the same action
taken for both errors, simply catch the parent exception, ArithmeticError.
That way, when either a floating-point or a zero-division error occurs, you don't
have to have a separate case for each one. Naturally, if you have a need or desire
to catch each one separately, perhaps because you want different actions to be
taken, then writing exceptions for each case is fine. Also, catching the parent
exception means all children exceptions of that parent, even ones you didn't
intend to catch.

The following exceptions list shows the hierarchy of exceptions from the Python Library
Reference, for Python 3.6. One thing to note is that this hierarchy sometimes changes
between Python versions; for example, ArithmeticError is a child of StandardError in
version 2.7, but is a child of Exception in version 3.6:

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt

Logic Control Chapter 3

[86]

 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StopAsyncIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 +-- BufferError
 +-- EOFError
 +-- ImportError
 | +-- ModuleNotFoundError
 +-- LookupError
 | +-- IndexError
 | +-- KeyError
 +-- MemoryError
 +-- NameError
 | +-- UnboundLocalError
 +-- OSError
 | +-- BlockingIOError
 | +-- ChildProcessError
 | +-- ConnectionError
 | | +-- BrokenPipeError
 | | +-- ConnectionAbortedError
 | | +-- ConnectionRefusedError
 | | +-- ConnectionResetError
 | +-- FileExistsError
 | +-- FileNotFoundError
 | +-- InterruptedError
 | +-- IsADirectoryError
 | +-- NotADirectoryError
 | +-- PermissionError
 | +-- ProcessLookupError
 | +-- TimeoutError
 +-- ReferenceError
 +-- RuntimeError
 | +-- NotImplementedError
 | +-- RecursionError
 +-- SyntaxError
 | +-- IndentationError
 | +-- TabError
 +-- SystemError
 +-- TypeError
 +-- ValueError
 | +-- UnicodeError
 | +-- UnicodeDecodeError

Logic Control Chapter 3

[87]

 | +-- UnicodeEncodeError
 | +-- UnicodeTranslateError
 +-- Warning
 +-- DeprecationWarning
 +-- PendingDeprecationWarning
 +-- RuntimeWarning
 +-- SyntaxWarning
 +-- UserWarning
 +-- FutureWarning
 +-- ImportWarning
 +-- UnicodeWarning
 +-- BytesWarning
 +-- ResourceWarning

This hierarchy is important to understand when you're writing your code; an exception
may not be available depending on which Python version you're using. If you're trying to
make your programs as portable as possible, you have to be cognizant of which Python
version the target system is running.

User-defined exceptions
Python allows for a programmer to create new exceptions if the project warrants them.
However, make sure that one of the built-in exceptions won't do the job for you. They have
been tested and tweaked over the years and not only do they work effectively, but they
have been optimized for performance and are bug-free.

Making your own exceptions involves object-oriented programming, which will be covered
in Chapter 4, Functions and Object Oriented Programming, in the Classes, methods, and
namespaces section. To make a custom exception, the programmer determines which base
exception to use as the class to inherit from. For example, making an exception for negative
numbers or one for imaginary numbers would probably fall under the ArithmeticError
exception class.

To make a custom exception, simply inherit the base exception and define what it will do.
The following example gives an example of creating a custom exception:

1 import math
2
3 class NegativeNumberError(ValueError):
4 """Attempted improper operation on negative number."""
5 pass
6
7 def squareRoot(number):
8 """Computes square root of number. Raises NegativeNumberError if

Logic Control Chapter 3

[88]

number is less than 0."""
9 if number < 0:
10 raise NegativeNumberError("Square root of negative number not
permitted")
11
12 return math.sqrt(number)
13
14 if __name__ == "__main__":
15 squareRoot(-3)

Because this is dealing with square roots, we need to import the math module in line 1. We
inherit from ValueError in line 3, creating the new class, NegativeNumberError.
Because we are inheriting all the characteristics of ValueError, we don't have to do
anything else, so we just use pass in line 5 to tell Python to continue with the program.

To actually use the new exception, a function is created in lines 7-12 that calls
NegativeNumberError if the argument value is less than 0; otherwise, it gives the square
root of the number.

Line 14 tells Python to run everything following if this program is explicitly called; that is, if
this is the main program to be processed. Line 15 is just a test to ensure that the new
exception works as expected.

Following screenshot shows the output of this program, showing that the new exception
works as advertised:

Custom exception output

Final thoughts
It's important to reiterate that exceptions don't always have to resolve errors. Since they
function like if...else blocks, they can be used in a similar manner. For example, the
end-of-file exception (EOFError) can be used to identify when the last line of a file has
been processed, thereby breaking out of the processing loop.

Logic Control Chapter 3

[89]

One possible use of this is to analyze strings. If a string method won't work for you, you
can generally accomplish the same goal using exceptions. For example, if you want to
determine if a string value is a float, you can't use the str.isdigit() method to do the
job; it can only tell you if a particular string entry matches the values 0-9. If you have a
floating-point number, which includes a decimal point, the isdigit() method gives you
an error.

In this case, you can simply check whether the value is a float and expressly check for the
error, as demonstrated here:

1 def float_check(num):
2 try:
3 float(num)
4 except ValueError:
5 print("Not a float number.")

In this example, if you check a string and it doesn't match a floating-point number, or can't
be converted into a float, you receive ValueError, alerting you to the fact that the value is
not a float, as shown in following screenshot:

Float check output

When using input() to receive captured information from the user, the information
received is saved as a string. In this case, the input for line 11 was an imaginary number,
which can't be converted to a float value and the error message was printed in line 12. But
when an integer is provided in line 13, Python can convert it to a floating-point number and
no error is generated.

Logic Control Chapter 3

[90]

An easier way to perform this check, without using exceptions, is shown here:

if type(num) is not float:
 print("Not a float number.")

In other languages, normal programming practice is to use exceptions for exceptional cases:
if something goes wrong, there is a serious problem; otherwise, continue normal
operations. Python programming is different, where the assumption is that valid data is
present and, if not, an exception is generated and caught. In the end, the choice is up to you;
use what makes the most sense and is most readable.

Summary
In this chapter, we covered the basics of controlling programming logic. This included
conditional branching using if...else statements, as well as repetition using while and
for loops. Finally, we talked about error handling using exceptions, and how exceptions
can substitute for if...else statements in certain cases.

In the next chapter, we will talk about the key parts of programs that allow for modularity:
functions and classes. We will also look at how to use properties to provide the ability to
get and set parameter values.

4
Functions and Object Oriented

Programming
So far, we've covered a lot about how the Python language is structured, how to use the
built-in data structures, and some basic example programs. Now, we'll dive into how to
make more complex programs.

Most Python programs are built using a variety of variables and functions, classes, or both.
Functions are programmer-created code blocks that do a specific task. Classes are object-
oriented structures that we'll look at in the Classes, methods, and namespaces section; briefly,
though, classes help segregate code into related code blocks and can include class-specific
variables and methods (class-specified functions).

In this chapter, we will cover the following topics:

Working with functions
Classes, methods, and namespaces
Properties and class and static methods

Functions and Object Oriented Programming Chapter 4

[92]

Working with functions
Functions are blocks of code logic that can be used multiple times within a program, simply
by calling the function's name. If you don't use functions, but you want to repeat an
operation multiple times, you will have to copy and paste the necessary code multiple
times to get your program to work. If you ever have to revise the program, you would have
to ensure that all applicable copied and pasted code is updated. With functions, a single
code block can be updated. The following is an example of a function:

Function example

Preceding screenshot is about as simple as it gets. On line 1, we use the def keyword to
define the function called square_num() (the parentheses indicate that it's a function
rather than a statement) and tell it that the argument called x will be used for processing.
Then we actually define what the function will do; in this case, it will multiply x by itself to
produce a squared value. By using the return statement, the squared value will be
returned back to whatever actually called the function (in this case, the print() function
on line 2).

Next, on line 2, we create a for loop that iterates over a range of numbers, from 1 to 9; for
each number, we call the square_num() function and then print the resultant squared
value.

Functions and Object Oriented Programming Chapter 4

[93]

While this particular example was generated interactively in IPython, if you wanted to save
this program to a file for later use, you would simply type the program into a text file, such
as the following example, function_example.py:

def square_num(x):
 return x * x

for x in range(1, 10):
 print(square_num(x))

To run the program, you first have to save it to your computer and give it a name ending in
.py, for example, function_example.py. Then, on the command line, type python3
function_example.py. The results should look like following screenshot:

function_example.py output

Next we will talk about a neat little trick that demonstrates the power of Python:
polymorphism. We touched on it in Chapter 2, Data Types and Modules, in the Basic string
operations section, but we'll discuss it in more depth here, as functions are one way to create
polymorphism in your program.

The code in function_example.py shows that Python is capable of interpreting (to an
extent) what you want to do. In this case, the * operator is overloaded to support multiple
roles. If numbers are provided, it will multiply them; if a string and number is provided, it
will perform repetition; and so on.

As long as the objects passed into a function support the intended action (as determined by
the Python language), the function will process them. If a particular operation can't be
performed on the objects passed in, the interpreter will return an error, letting the
programmer know of the problem.

Functions and Object Oriented Programming Chapter 4

[94]

This feature is not generally found in static typed languages, such as C/C++. This is because
static languages can only deal with data types that are explicitly stated; attempting to
override the behavior won't work. You would have to create a function to perform
repetition if you wanted to use the * operator, as it is used for number multiplication only.
An example of polymorphism is displayed in following screenshot:

Polymorphism example

This little program is pretty powerful, as it takes a variable number of arguments and either
adds them or concatenates (combines) them together, depending on the argument type.
These arguments can be anything: numbers, strings, lists, tuples, and so on.

We mentioned the *args keyword previously in Chapter 2, Data Types and Modules, in
the String methods section. This is a special feature of Python that allows you to enter
undesignated arguments and do things to them (such as add them together). The * is like a
wildcard; it signifies that a variable number of arguments can be provided. You could get
by without using the word args, but common practice is to include it for clarity.

A similar argument keyword is **kwargs. This one is related (it takes an unlimited
number of arguments), but the arguments are set off by keywords.

Functions and Object Oriented Programming Chapter 4

[95]

This way, you can match variables to the arguments based on the keywords. *args and
**kwargs can be used together, if desired.

Lambdas
An interesting way of making functions is through anonymous functions, also known as
lambda expressions. Lambdas create a function that is essentially processed in-line, rather
than giving it a name to be called later (hence, the anonymous part). This is useful when the
normal def statement wouldn't necessarily work, such as within a list or as a function call's
argument.

When using the normal def statement to create a function, the function is assigned a name
and called from a different location, possibly multiple times; it also returns an object of
some type. When using a lambda, the function itself is the returned object that can be given
a name, if desired.

Lambdas look and work differently than regular functions. First, it is a single expression,
not a block of code. This is why it can be used in places where a normal function can't;
you're essentially creating the return statement directly, rather than calling a function to
return a value.

Second, because it's an expression, there's a limit to what it can do. Since expressions break
down to a value, whereas statements perform code logic, lambdas are limited in how much
work they can do. If you need to do significant work, such as working with if statements
or loops, you'll have to create a normally defined function.

Following screenshot provides an example of a normal function versus its equivalent
lambda function:

Lambda function

Functions and Object Oriented Programming Chapter 4

[96]

It's somewhat confusing at first, but, as you can see, the lambda is doing the exact same
thing that the traditional function does, except it assigns the return value to a variable name
automatically, rather than having to be called separately later. The lambda shortcuts the
function process in a similar manner as list comprehensions shortcut list creation.

Lambdas work the same as normal functions, with all the features and limitations (actually,
a few more limitations, since they only use expressions). Lambdas are a nice feature when
you only need quick, inline executable code and a normal function won't work. You'll also
find some third-party libraries that require a lambda expression as an argument.

Classes, methods, and namespaces
Object-oriented programming (OOP) is one of the primary ways to program in many
languages, and sometimes the only way. Classes are the primary way OOP is implemented
in most object-oriented languages, and Python uses classes as well. While functions are
great and can do a lot of work, you'll see that OOP is very powerful as well. Plus, many
Python libraries and APIs use classes, so you should at least be able to understand what the
code is doing.

One thing to note about Python and OOP is that it's not mandatory to use classes in your
code. As you've already seen, Python can do just fine with functions. Unlike languages such
as Java, you aren't tied down to a single way of doing things; you can mix functions and
classes as necessary in the same program. This lets you build the code in a way that works
best; maybe you don't need to have a full-blown class with initialization code and methods
to just return a calculation. With Python, you can get as technical as you want.

How are classes better?
Imagine you have a program that calculates the velocity of a car in a two-dimensional plane
using functions. If you want to make a new program that calculates the velocity of an
airplane in three dimensions, you can use the concepts of your car functions to make the
airplane model work, but you'll have to rewrite many of the functions to make them work
for the vertical dimension, especially to map the object in a 3D space. You may be lucky and
be able to copy and paste some of them, but for the most part, you'll have to redo much of
the work.

Functions and Object Oriented Programming Chapter 4

[97]

Classes let you define an object once, and then reuse it multiple times. You can give it a
base function (functions in classes are called methods to indicate that they are object-
oriented) and then build upon that method to redefine it as necessary. It also lets you model
real-world objects much better than using functions. In short, a class provides the basic
template and default behavior for an object, and an instance of that class, that is, a
particular incarnation created from the class, uses the base template as a foundation for
more specific changes.

For example, you could make a tire class that defines the size of the tire, how much
pressure it holds, what it's made of, and so on, and then make methods to determine how
quickly it wears down based on certain conditions. You can then use this tire class as part of
a car class, a bicycle class, or whatever. Each use of the tire class (called instances) would
use different properties of the base tire object. If the base tire object said it was just made of
rubber, perhaps the car class would "enhance" the tire by saying it had steel bands or
maybe the bike class would say it had an internal air bladder. This will make more sense
later.

Several concepts of classes are important to know:

Classes have a definite namespace, just like modules. Trying to call a class
method from a different class will give you an error unless you qualify it using
the dot protocol; for example, spamClass.eggMethod(). We have seen this
when a module is imported, then we attempt to use a method from inside it. As
we saw in Chapter 2, Data Types and Modules, in the Types of imports section, for
example, if you simply import math, you have to qualify anything that comes
from it, such as math.log(). However, if you use from math import *, then
you don't have to qualify it, as all those items are now part of your program's
namespace. Of course, if you happen to make your own variables or methods
with the same names, you'll run into problems due to variable shadowing.
Classes support multiple copies. This is because classes have two different object
types: class objects and instance objects. Class objects give the default behavior
and are used to create instance objects. Instance objects are the objects that
actually do the work in your program; every time a class is called, a new instance
is created. You can have as many instance objects of the same class object as you
need. Instance objects are normally marked by the self keyword, so a class
method could be Car.Brake(), while a specific instance of the Brake() method
would be marked as self.Brake(). (This is covered in more depth in Chapter
4, Functions and Object Oriented Programming, in the Classes and Instances section.)

Functions and Object Oriented Programming Chapter 4

[98]

Each instance object has its own namespace but also inherits from the base class
object. This means that each instance has the same default namespace
components as the class object, but additionally, each instance can make new
namespace objects just for itself. This is part of each instance being a new and
separate object. In other words, an instance has objects that are part of the
instance scope, but it also has access to the base class' scope.
Class objects are similar to any built-in variable in Python. So a list of Python
objects can be sliced, indexed, concatenated, and so on, just like strings, lists, and
other standard Python types. This is because everything in Python is actually a
class object; we aren't actually doing anything new with classes, we're just
learning how to better use the inherent nature of the Python language.

Here's a brief list of Python OOP concepts:

The class statement creates a class object and gives it a name, as well as creating
a new namespace.
Variable assignments and methods within the class create class attributes.
These attributes are accessed by qualifying the name using dot syntax:
ClassName.Attribute.
Class attributes export the state of an object and its associated behavior. These
attributes are shared by all instances of a class.
Calling a class creates a new instance of the class. This is where the multiple
copies part comes in.
Each instance gets ("inherits") the default attributes of its class, while also getting
its own namespace. This prevents instance objects from overlapping and
confusing the program.
Using the term self identifies a particular instance, allowing for per-instance
attributes. This allows items such as variables to be associated with a particular
instance.

Functions and Object Oriented Programming Chapter 4

[99]

Classes and instances
Let's look at an example of creating a simple class and methods, plus some instances of the
class:

Class and instances

The class is defined on line 22. We use the statement class, followed by the name of the
class. Normally, when the class object is defined, there are no parentheses at the end;
parentheses are only used for functions and methods. However, the old way of defining
classes used parentheses, so you may see that in many programs you come across.

Functions and Object Oriented Programming Chapter 4

[100]

After the class is defined, two methods are defined as well: setName() and display().
The first argument in the parentheses for a method must be self. This is used to identify
which particular instance is calling the method. The Python interpreter handles the calls
internally, so all you have to do is make sure self is where it's supposed to be so you don't
get an error.

Even though you must use self to identify each particular instance of a class, Python is
smart enough to know which particular instance is being referenced, so having multiple
instances at the same time is not a problem.

self is similar to this, which is used in several other languages, such as Java. Even if you
have no arguments for a method, you must still include self so Python knows which class
instance is being referred to, as demonstrated with the display() method.

If there are any arguments that are passed to a method, such as name in this case, they will
follow the self argument. When you are assigning arguments or other objects to variables,
such as self.name, the variable itself must be qualified with the "self" title. Again, this is
used to identify a particular instance.

The two methods, setName() and display(), defined in the class simply accept a string
argument and assign it to a "name" variable, and then print that name to the screen
respectively.

Moving on, lines 23-25 create instances of the Knight class. Here, you'll notice that
parentheses make an appearance. This is to signify that these are instance objects created
from the Knight class. Each one of these instances has the exact same attributes, as they all
inherit from the same parent class.

Lines 26-28 call the setName() method that is defined in the Knight class. However, each
one is for a different instance: x, y, and z each has a different value for name. This can be
seen on lines 29-31, which show the name that was set for each instance.

You can assign values to attributes in an instance during instance creation (lines 26-28) or
by explicitly assigning to instance objects after creation (line 32). On line 32, we overwrite
the name that was initially assigned to instance x by assigning a new name with the = sign.
Generally speaking, you can do this with any instance at any time, assuming it's not a read-
only parameter.

Functions and Object Oriented Programming Chapter 4

[101]

Modules
When working with modules, it's important to remember that classes can be imported
directly from the module, rather than importing the entire module. As you learned in
Chapter 2, Data Types and Modules, in the Types of imports section, import calls other
libraries or modules, while from is a selective import, allowing you to get specific parts of
a module; using from foo import * is dangerous, as it imports everything into the
current namespace, which can cause shadowing of different objects, resulting in errors.
Classes and functions are the tools that make importation work.

Since everything in Python is (from the interpreter's viewpoint) an object, everything can be
imported. However, in practice, only classes and functions can be imported; if you have
another program that is strictly in-line code, that is, no functions or classes, you'll just have
to copy and paste it.

This is one reason why using classes or functions is important in your code. While you can
make your code work without them, they improve the logic flow (since everything is
segregated into its own logical block) and they make it possible to reuse code in different
programs. Imagine trying to make a simulation program but you have to copy and paste
code to screenshot out mathematical problems. It's easier to simply import the math library
and utilize the classes available from it.

Inheritance
Inheritance is one of the most powerful aspects of classes. First off, classes allow you to
modify a program without really making changes to it. To elaborate, by making a subclass
through inheritance, you can change the behavior of the program by simply adding new
components to it rather than rewriting the existing components.

As we've seen, an instance of a class inherits the attributes of that class. However, classes
can also inherit attributes from other classes. Hence, a generic superclass (also known as a
parent) can be specialized through subclasses (also called children), since the children
classes inherit their general properties from the parent class. The subclasses can override
the logic in a superclass, allowing you to change the behavior of subclasses without
changing the superclass at all.

Functions and Object Oriented Programming Chapter 4

[102]

Let's look at a simple example, such as following screenshot:

 Class inheritance

First we make a class on line 43. This will be the superclass. This class has two methods, just
like the preceding screenshot. Next, we make a subclass on line 44.

As you can see, the child class overwrites the display method but, since there is no explicit
reference or redefining of the set_data() method, that particular method is inherited as
is. When an instance of the Parent class is created, all of its actions will be taken from the
methods defined in Parent. When a Child instance is created, it will use the inherited,
generic set_data() method from Parent but the display() method will be the new one
created in Child.

Functions and Object Oriented Programming Chapter 4

[103]

Instances of the superclass and subclass are created on lines 45 and 46. Both instances use
the same set_data() method from Parent; x uses it because it's an instance of Parent
while y uses it because Child inherits set_data() from Parent. However, when the
display() method is called, x uses the definition from Parent (line 49) but y uses the
definition from Child (line 50), where display is overridden.

Because changes to program logic can be made through subclasses, the use of classes
generally supports code reuse and extension better than traditional functions do. Functions
have to be rewritten to change how they work, whereas classes can just be sub-classed to
redefine methods.

It should be obvious now that a class instance can access all attributes from the classes they
are part of; that is, a specific instance can access its own class methods, as well as any
parent classes it is inherited from. Thus, you only have to overwrite or create specific
attributes as necessary, relying on the inherited attributes to be available to the instance.

On a final note, you can use multiple inheritance (adding more than one superclass within
the parentheses) if you need a class that belongs to different groups. In theory, this is good
because it should cut down on extra work.

For example, a person could be a chef, a musician, a store owner, and a programmer; the
person could inherit the properties from all of those roles. In reality, though, it can be a real
pain to manage the multiple inheritance sets, as methods are inherited, overridden, and
otherwise obfuscated. In short, multiple inheritance is something that beginning
programmers should avoid until they understand how Python deals with it.

Operator overloading
Operator overloading was briefly talked about in Chapter 2, Data Types and Modules, in
the Basic string operations section; now we will see how it works behind the scenes. Operator
overloading simply means that objects that you create from classes can respond to actions
(operations) that are already defined within Python, such as addition, slicing, printing, and
so on. Even though these actions can be implemented through class methods, using
overloading ties the behavior closer to Python's object model and the object interfaces are
more consistent with Python's built-in objects; hence, overloading is easier to learn and use.

Functions and Object Oriented Programming Chapter 4

[104]

User-made classes can override nearly all of Python's built-in operation methods. These
methods are identified by having two underscores before and after the method name, like
this: __add__. These methods are automatically called when Python evaluates operators; if
a user class overloads the __add__ method, then, when an expression has the + symbol in
it, the user's method will be used instead of Python's built-in method.

Continuing with the example from preceding screenshot, next screenshot shows how
operator overloading would work in practice:

Creating an overloaded operator

We make a subclass of the Child class on line 55, so it is technically a sub-subclass of the
original class, or a grandchild class. GrandChild doesn't override any of Child's methods,
so if you wanted, you could put the methods from GrandChild in Child and go from
there. However, creating a new subclass allows you flexibility in your program.

Functions and Object Oriented Programming Chapter 4

[105]

When a new instance of GrandChild is made on line 56, the __init__ method takes
whatever argument is provided during instance creation and assigns it to the self.data.
variable

GrandChild also overrides the + and * operators; when one of these is encountered in an
expression, the object on the left of the operator is passed to the self.data argument and
the object on the right is passed new_value, as demonstrated on lines 58-61. Note that the
Child method of display() is utilized, as it was inherited and not modified.

These custom methods are different from the normal way Python deals with + and *, but
these custom methods only apply to instances of GrandChild; other applications of these
operators revert to the default Python functionality.

Some items of interest are shown in following screenshot:

Overloading problems

The return statement in the __add__() method creates a new GrandChild instance, with
self.data and new_value automatically passed in as arguments. If this wasn't present,
then line 59 would error out because instance b wasn't explicitly created, as happens on line
80.

Functions and Object Oriented Programming Chapter 4

[106]

On the other hand, attempting to perform an addition operation directly with instance a
causes the memory location of the instance to be displayed (line 77), but the actual value of
a never changed (line 78).

The __mul__() method doesn't return an instance, because it simply updates the value of a
in-line (line 61). Thus, without the explicit creation of a new instance, attempting to assign
a*3 to variable b (line 79) causes the error on line 80, because b is just a regular variable and
not an instance of GrandChild.

One final thing to mention about operator overloading is that you can make your custom
methods do whatever you want. However, common practice is to follow the structure of
the built-in methods. That is, if a built-in method creates a new object when called, your
overriding method should too. This reduces confusion when other people are using your
code. Regarding the preceding example, the built-in method for resolving * expressions
creates a new object (just as the + method does); therefore, the overriding method we
created should probably create a new object too, rather than changing the value in-place as
it currently does. You're not obligated to "follow the rules" but it does make life easier when
things work as expected.

Properties and class and static methods
Properties, class methods, and static methods are additional tools available to OOP
development. There are others you will find as you gain Python proficiency, but these are
some of the key ones to be aware of, primarily because we will use them in the second half
of this book when we write the full-featured application.

Properties
Properties are found in other languages as getters and setters. As those terms indicate, they
are used to get data and set (modify) data. To gain an understanding of getters, setters, and
Python properties, we'll start with an example problem:

Functions and Object Oriented Programming Chapter 4

[107]

Temperature class

Here, we create a class that defines the temperature in degrees Fahrenheit. The
__init__() method takes temp as an argument; it also provides a default value for temp if
none is provided. A conversion method to Celsius is also provided; it simply returns the
conversion value but doesn't attempt to assign any values to any variables.

A new instance is created on line 82 and it is verified that it exists on line 83. Line 84 returns
the temperature value; because no value was provided during the instance creation, the
default value is used.

Line 85 assigns a new value to the temp variable, as shown on line 86. Line 87 shows that
the Celsius conversion method works as expected.

Getters and setters
If we assume that people are using this script to do work, but we want to improve upon it
by adding new features, such as preventing a temperature less than absolute zero, we need
to make it easy for our users to deal with the change.

Functions and Object Oriented Programming Chapter 4

[108]

This is where getter and setter methods come in. Normally, the direct access to temp would
be hidden behind these methods, so that the only interface to interact with temp would
require a method call, as shown in following screenshot:

Getter and setter methods

Functions and Object Oriented Programming Chapter 4

[109]

On line 90, we have rewritten the Fahrenheit class to include a getter and setter; these are
the only ways to interact with the temp variable. In addition, we have renamed it to _temp;
the leading underscore tells Python to treat it as a private variable that should only be
accessed by this class. (This isn't completely true, but the reasons why Python doesn't have
truly private variables is beyond the scope of this book.)

A new instance is created on line 91, and we retrieve the default temperature value on line
92. When we attempt to set the temperature to a value below the absolute value, we receive
an error, as desired (line 93).

Lines 94 and 95 set a more realistic temperature and verify it was set, respectively. If we
attempt to get the value of temp the old-fashioned way (line 96), we receive an error,
because that variable is no longer directly accessible that way. If we recognize the private
naming convention and provide a leading underscore (line 97), we can still access the
temperature directly. However, the purpose of a private variable is to prevent direct access
like this.

The problem of using getter and setter methods like this is the issues it causes for users of
the program. They now have to change all their programs to use the getter and setter
methods, rather than direct variable access. It may be simple with this script, but imagine if
we did this with a larger program that had tens or hundreds of getter/setter methods; we
have essentially broken any backwards compatibility with our previous versions.

The Python version of getters and setters is property. Simply put, a property uses built-in
functionality to perform getter/setter methods without requiring the knowledge of specific
method names. All changes to the code are internal to the program, so users don't have to
worry about the implementation.

Functions and Object Oriented Programming Chapter 4

[110]

The following screenshot demonstrates using the Python property attribute:

Using Python @property

The previously used class is slightly modified on line 5. Note that the __init__() method
changed from calling a set_temp() method to simply assigning the temp argument to the
self.temp variable. Also, the to_celsius() method uses the variable directly, rather
than calling the get_temp() method.

The @property decorator is a Python built-in function that tells Python that the following
method defines the getter functionality for a variable. In this case, all we do is return the
value of self.temp when the variable is referenced elsewhere.

Decorators in Python are any callable objects that can modify a function or method. They
allow some additional functionality similar to other languages, such as declaring a method
as a class or static method. Decorators allow you to wrap a function or method in another
function that can add new functionality, modify arguments, or results, and so on. You write
decorators one line above the function definition, beginning with an "at" sign (@).

Functions and Object Oriented Programming Chapter 4

[111]

The@temp.setter decorator works with the @property decorator to define the setter
functionality for the indicated variable. Functionality of the following method is no
different than the original setter method; it's just wrapped within the decorator so Python
knows which variable it applies to.

We make a new instance on line 6, and confirm that the temperature argument was
correctly assigned on line 7. Note that no special methods were called, nor was the private
name _temp required to be used. While the private name is used within the class, the
property handles the access to it.

Lines 8 and 9 show off the setter and getter functionality inherent with the property. Again,
nothing special has to be done in terms of method or variable calls. The new value is
assigned like a normal variable assignment, and the value is returned just by asking for it.

Line 10 shows that the to_celsius() method works the same as before. It uses the
property abilities to get the value of temperature and doesn't require calling a getter
method.

When first making a program, it's probably natural to write getter/setter methods.
However, as part of the refactoring process, changing those to properties is advisable due
to the simplicity they provide when working with variables, as well as making life easier
for users of your software.

Class and static methods
There are several types of methods available for classes. Instance methods are what we
have been talking about so far. Class and static methods are other ways to create Python
methods.

Class methods are called on the class itself, not just a particular instance of the class. Static
methods apply to all instances of a class, not just a specific one.

Functions and Object Oriented Programming Chapter 4

[112]

An example of their use is contained in the following screenshot:

Class and static methods (part 1)

A class about dogs is made on line 10. The initialization method takes arguments for the
dog's breed and age. Getter methods are written to return the breed and age, but aren't
really necessary because the last method in the class, __repr__(), defines the print
formatting used when asking for those values. These getter methods could be changed to
Python properties as well.

Functions and Object Oriented Programming Chapter 4

[113]

The first new thing we encounter is the @staticmethod decorator. The method defined
here can be applied to all instances of the class, as well as the class itself; note that there is
no self within the parentheses. They are restricted in what data they can access, and they
cannot modify the state of an instance or class.

Next, we have @classmethod. The method defined here can only be used when calling the
class itself; it cannot modify instances. This is because the argument passed in the
parentheses is cls, rather than self. Thus, class methods only know about the class and
are oblivious to any instances of the class. For this class method, it checks to see whether
the class that called it is Dog, or some other class, such as a subclass that inherits this
method.

We make an instance of this class on line 11, and then print the breed and age of the dog on
lines 12 and 13. If we attempt to do the same with the class itself, the only information we
get is that there is an address location for Dog.breed but an error is generated when age is
requested. This is because the class acts as a container for instances, but cannot access
normal instance methods.

The program is continued in following screenshot:

 Class and static methods (part 2)

Functions and Object Oriented Programming Chapter 4

[114]

Lines 26 and 27 demonstrate accessing the static method. Because there is no self or cls
argument for a static method, it can be used with anything related to the class. In other
words, it can be used with any instance of the class, as well as the class itself and any
subclasses.

Speaking of subclasses, we make one on line 28. All methods are inherited and we don't
need any new ones, so pass is used to tell Python to continue. An instance of the subclass is
created on line 29.

Lines 30 and 31 demonstrate use of the class method. As stated earlier, when the class
method is invoked on the base class Dog on line 30, it returns a predefined string. But if
called on a subclass (line 31), it returns the name of the subclass.

Summary
In this chapter, we learned about functions, which provide the main operational capability
of many programs, as they perform specific tasks while allowing code reuse without
copying and pasting. We also learned about object-oriented programming, including what
classes and methods are, as well as how to implement them. Finally, we covered different
types of OOP methods and how to utilize Python properties to hide the internals of
programming logic from users.

In the next chapter, we will look at files and file input/output operations, as well as
database creation and access.

5
Files and Databases

The final built-in object type of Python allows us to access files. Files in Python are different
from the previous types I've covered. They aren't numbers, sequences, or mappings; they
only export methods for common file processing. Technically, the file is a pre-built C
extension that provides a wrapper for the C stdio.h (standard input/output) library
header. If you already know how to use files in other languages, there isn't much difference
in Python.

Files are a way to save data permanently. Apart from a few program listings, nearly
everything demonstrated so far is resident only in memory; as soon as you close down
Python or turn off your computer, it goes away. You would have to retype everything over
if you wanted to use it again.

The files that Python creates are manipulated by the computer's filesystem. Python is able
to use operating-system-specific functions to import, save, and modify files. It actually
doesn't take much to make cross-platform applications, because the Python application
programming interface (API) handles a lot of the details behind the scenes. All the
developer needs to know is which commands to call for a particular operation.

In this chapter, we will cover the following topics:

File input/output operations
Python and SQLite databases
SQLAlchemy and database administration

Files and Databases Chapter 5

[116]

File I/O
File creation is extremely easy with Python: you simply create the variable that will
represent the file, open the file, give it a filename, and tell Python that you want to write to
it.

If you don't expressly tell Python that you want to write to a file, it will be opened in read-
only mode. This acts as a safety feature to prevent you from accidentally overwriting files.
In addition to the standard w to indicate writing and r for reading, Python supports several
other file access modes:

a: Appends all output to the end of the file; it does not overwrite information
currently present. If the indicated file does not exist, it is created.
r: Opens a file for input (reading). If the file does not exist, an IOError exception
is raised.
r+: Opens a file for input and output. If the file does not exist, causes an IOError
exception.
w: Opens a file for output (writing). If the file exists, it is overwritten. If the file
does not exist, one is created.
w+: Opens a file for input and output. If the file exists, it is overwritten; otherwise
one is created.
ab, rb, r+b, wb, w+b: Opens a file for binary, non-textual input or output. (Note:
these modes are supported only on the Windows and macOS platforms. *nix
systems don't care about the data type.)

When using standard files, most of the information will be alphanumeric in nature, hence
the extra binary-mode file operations. Unless you have a specific need, this will be fine for
most of your tasks.

A typical command to open a file to write to might look like this:
open('data.txt', 'w'). An optional, third argument can be added for buffering
control. If you used open('data.txt', 'w', 0), then the data would be immediately
written to the file without being held temporarily in memory. This can speed up file
operations at the expense of data integrity.

Here is a list of common Python file operations:

output = open('/tmp/spam', 'w'): Create output file ('w' means write)
input = open('data', 'r'): Create input file ('r' means read, and is the
default file operation)

Files and Databases Chapter 5

[117]

append = open('file.txt', 'a'): Append more data to the end of the file
without overwriting
S = input.read(): Read entire file into a single string
S = input.read(n): Read n number of bytes
S = input.readline(): Read next line (through end-line marker)
L = input.readlines(): Read entire file into list of line strings; note that this
is different from read() in that readlines() splits the file into separate lines,
placed into a list
output.write(S): Write string S onto file
output.writelines(L): Write all line strings in list L onto file
output.close(): Manual close

Python has a built-in garbage collector, so you don't really need to manually close your
files; once an object is no longer referenced within memory, the object's memory space is
automatically reclaimed. This applies to all objects in Python, including files.

However, it's recommended to manually close files in large systems; it won't hurt anything
and it's good to get into the habit in case you ever have to work in a language that doesn't
have garbage collection. In addition, Python for other platforms, such as Jython or
IronPython, may require you to manually close files to immediately free up resources,
rather than waiting for garbage collection. Also, there are times when system operations
have problems and a file is left open accidentally, resulting in a potential memory leak.

The location of the file you are working with can be indicated as either an absolute path (a
specific location on a drive) or a relative path (the file location in relation to the current
directory); if no path is provided, the current directory is assumed.

Files and streams
Coming from a *nix background, Python treats a file as a data stream: each file is read and
stored as a sequential flow of bytes. Each file has an end-of-file (EOF) marker denoting
when the last byte of data has been read from it. Frequently, programs will read a file in
pieces rather than loading the entire file into memory at one time. When the end-of-file
marker is reached, the program knows there is nothing further to read and can continue
with whatever processing it needs to do.

Files and Databases Chapter 5

[118]

When a file is read, such as with a readline() method, the end of the file is shown at the
command line with an empty string; empty lines are just strings with an end-of-line
character. The following screenshot shows how this looks:

EOF example

A file object is opened in line 22, with the w flag provided to indicate that the file is to be
written to; the default mode when opening a file is read-only, as seen in line 25.

Line 23 writes a short text string to the file. When completed, Python 3 tells us how many
characters were written to the file. Python 2.x doesn't automatically provide this feedback.

The file is manually closed in line 24, then reopened as a new filename in line 25. Because
the default mode is read-only, we didn't have to provide the r flag.

The file is read in line 26, accepting data until the end of the line. The line read in is then
printed to the screen. When we attempt to read the next line in the file (line 27), an empty
string is returned to tell us there is nothing left.

If you want to put a new line in the file you're writing to (through the interactive shell), you
must include the newline (\n) character every time you want to denote the end of a line;
Python's write() method doesn't include it automatically. This is demonstrated in the
following screenshot:

Files and Databases Chapter 5

[119]

Writing and reading files

With line 28, we reopen the file using append mode; this allows us to write to the file
without overwriting the data that is already present. Lines 29 and 30 add two additional
lines to the file, then it is closed in line 31.

If we open the file to read it (lines 32 and 33), we see that all the lines added to the file are
put into one string; there is no default separation between them, even though they were
inserted separately.

So, we make a brand-new file in line 34. With lines 35 and 36, we write lines to the file but
ensure that the newline character /n is added at the end of each line. The file is then closed
and reopened.

If we send the data in the file to the readlines() method, we see a list of the two strings,
both showing the newline characters. If we try to print more (line 40), we are presented
with an empty string, as once the file is processed by one of the read methods, the data is
purged from the variable.

Files and Databases Chapter 5

[120]

If you want to view the file information as it would normally be seen, that is, outside of a
list, you'll have to use the regular read() method, as shown in the following screenshot:

File read() method

Using the read() method reads the entire file contents, at once, into a string. The print()
function then allows you to print a reader-friendly version of the file, one that doesn't show
the newline characters.

If you want to save the buffered data to the file without closing out the file, you can use the
flush() method instead of close(). As the name implies, the buffer is flushed out,
sending the stored data to the actual file location while leaving the buffer open for more
data. Thus, you can continue working with data without continuously opening and closing
the file. For example, instead of using new_file.close() in line 31 in the previous
screenshot, we could have used new_file.flush() to immediately write all data to the
file, but new_file would remain open for more writing.

Reading from a file
Note that in the list of file operations in the File I/O section, the standard read modes
produce an input/output (I/O) error if the file doesn't exist. If you end up with this error,
your program will halt and give you an error message, like in the following screenshot:

File IOError

Files and Databases Chapter 5

[121]

To fix this, you should always open files in such a way as to catch the error before the
program crashes. When you are performing an operation where there is a potential for an
exception to occur, you should wrap that operation within a try/except code block. This
will attempt to run the operation; if an exception is thrown, you can catch it and deal with it
gracefully. Otherwise, your program will error out, potentially causing problems for the
user.

Exception handling with files is demonstrated in the following screenshot:

Catching file exceptions

A file is created for writing to in line 69, then we add a string to it and close it (lines 70 and
71, respectively).

A try/except block is written to attempt opening and reading the file in line 72. Because
the file exists, it runs as expected and prints the data in the file.

Files and Databases Chapter 5

[122]

In line 73, we make a new try/except block, this time with a file that doesn't exist. Because
it doesn't exist, it would normally print an error message like the previous screenshot. With
the exception-catching code, we look explicitly for the IOError, and when it is generated,
we print a nice message to the user. Alternatively, we could add code that would provide
other functionality, such as automatically looking in a different directory, or presenting the
user the option to indicate where the file is located.

One way to open and then automatically close a file, so you don't have to manually close it
or wait for the garbage collector, is to use the with keyword when working with file
objects. This ensures the file is automatically closed after it is no longer needed, even if an
exception arose during processing. The following screenshot provides an example of this:

Auto-closing files

Rather than opening a file like we have in previous examples, line 78 shows how to use the
with keyword to open a file and assign it to a variable name. We can process the file like
normal, in this case simply printing the file data as before. When we check to see if the file
has been closed in line 79, Python tells us that the file is, indeed, closed.

Iterating through files
Iteration is used frequently with files; iteration can be used to read the information in the
file and process it in an orderly manner. It also limits the amount of memory taken up
when a file is read, which not only reduces system resource use but can also improve
performance. The following screenshot demonstrates this:

Files and Databases Chapter 5

[123]

Simple file iteration

Basically, the code in line 80 opens a temporary file in memory and reads each line from
afile.txt, printing each one to the screen, until the end-of-file marker is reached. Unlike
previous examples, using a for loop won't print the EOF marker because, once that marker
is reached, file processing is aborted.

Line 81 shows the same thing, except that the print() function is provided with an
argument for how to end each line. In this case, we just want to have an empty value to
cause the lines to be printed without an intervening space.

When iterating through files, it is important to note that the readlines() method requires
the file to be placed in memory before it can be processed; for large files, this can result in a
performance hit or out-of-memory errors. Therefore, it may be better to look at one of the
other file methods to process each line individually or come up with another solution.

Seeking
Seeking is the process of moving a pointer within a file to an arbitrary position. This allows
you to get data from anywhere within the file without having to start at the beginning
every time.

The seek() method can take several arguments. The first argument (offset) is the
starting position of the pointer. The second, optional, argument is the seek direction from
where the offset starts. The default value is 0 which indicates an offset relative to the
beginning of the file, 1 is relative to the current position within the file, and 2 is relative to
the end of the file.

Files and Databases Chapter 5

[124]

The tell() method returns the current position of the pointer within the file. This can be
useful for troubleshooting (to make sure the pointer is actually in the location you think it
is) or as a returned value for a function.

One caveat to this is that text files can only be sought relative to the beginning of the file
(starting with Python 3.2). Binary files don't suffer from this limitation.

As a best practice, it is advised that, instead of using 0, 1, or 2 for the offset starting
position, you should import the os library and use the values os.SEEK_SET,
os.SEEK_CUR, and os.SEEK_END. This is because the os library will use whatever values
the operating system uses for seeking, rather than hardcoded numbers, just in case the OS
does something different. This also ties in to the tell() method, as it can be used to help
seek within a text file, as demonstrated in the following screenshot:

File seeking

Files and Databases Chapter 5

[125]

The os module is imported in line 7 and the file is opened. Line 9 returns the current
location of our position within the file; zero indicates the beginning of the file.

In line 10, we move the pointer ahead in the file by four characters. But when we try to
move ahead another 12 characters in line 11, we receive an error. The error indicates that
Python can't perform relative seeking from the current location; it can only do this from the
beginning (zero) position. To fix this, we first confirm our position (line 12), then use
tell() and os.SEEK_SET in line 13 to move ahead 12 characters.

Line 14 jumps us to the end of the file, then we move back three characters in line 15.

Serialization
Since files work with text strings by default, to save Python data types like dictionaries or
tuples, you could convert them to strings first, but an easier method is to serialize the data.

Serialization (pickling) allows you to save non-textual or binary information or transmit it
over a network. Pickling essentially takes any data object, such as dictionaries, lists, or even
class instances, and converts it into a byte set that can be used to reconstitute the original
data. When pickling data, you must use the binary mode for files, as the data is being
stored in the raw, rather than the normal text strings file operations are used to.

The following screenshot shows how to use the pickle library:

List pickling

Files and Databases Chapter 5

[126]

We first import the pickle library in line 18, create a list of strings in line 19, and open a
save file in line 20.

In line 21, the list is pickled to the file, then the file is closed. If you were to look at the
current directory now, you would see that the pickled file has been created.

The file is reopened in line 23 and the pickled data loaded into a variable (line 24). When
we print the new variable, we see the original list is returned.

In Python 3, only the pickle library is available. For Python 2.x, there are two different
pickle libraries for Python: cPickle and pickle. Since Python is interpreted, it runs a bit
slower compared to compiled languages, such as C. Because of this, Python has a
precompiled version of pickle that was written in C; hence cPickle. Using cPickle
makes your program run faster; if you decide to use it, you might consider importing
cPickle as pickle, so you're not always typing cPickle.

Shelves are similar to pickles except that they pickle objects to an access-by-key database,
much like dictionaries; as a matter of fact, the pickle library provides the backend
functionality. Shelves allow you to simulate a random-access file or a database. It's not a
true database but it often works well enough for development and testing purposes.
Alternatively, shelves can be used when the values will be class instances, recursive data
types, containers with multiple sub-objects, and similar Python objects.

The following screenshot shows how the shelve library is used:

Shelve object persistence

Files and Databases Chapter 5

[127]

The shelve library is imported, and a new shelve object is created (lines 32 and 33). A new
list is created in line 34, then the shelve object is populated (lines 35 and 36) with the list of
strings from the preceding screenshot, as well as the list from line 34.

The two lists within the shelve object are assigned to new variables (lines 37 and 38). We
can verify this action by looking at the individual variables in lines 39 and 40.

One thing to note about pickling: there is no data security/integrity performed. Passing
pickled objects around or storing them doesn't prevent the data from becoming corrupted
or being maliciously modified. Never unpickle data from untrusted or unauthenticated
sources.

Python and SQLite
Databases are popular for many applications, especially for use with web applications or
customer-oriented programs. Databases are good when discrete structures are to be
operated on, such as a customer list that has phone numbers, addresses, past orders, and so
on. A database can store a lump of data and allow the user or developer to pull the
necessary information, without regard to how the data is stored. Additionally, databases
can be used to retrieve data randomly, rather than sequentially. For pure sequential
processing, a standard file is better.

A database (DB) is simply a collection of data, placed into an arbitrary structured format.
The most common DB is a relational database; tables are used to store the data and
relationships can be defined between different tables. Structured Query Language (SQL) is
the language used to work with most DBs. (SQL can either be pronounced as discrete
letters S-Q-L or as a word, sequel.)

SQL provides the commands to query a database and retrieve or manipulate information.
The format of a query is one of the most powerful forces when working with DBs; an
improper query won't return the desired information, or worse, it will return the wrong
information. SQL is also used to input information into a DB.

While you can interact directly with a DB using SQL, as a programmer you have the liberty
of using Python to control much of the interactions. You will still have to know SQL so you
can populate and interact with the DB, but most of the calls to the DB will be with the
Python database application programming interface (DB-API).

Starting with v2.5, Python has included SQLite, a lightweight SQL-based database
management system. SQLite is written in C, so it's quick.

Files and Databases Chapter 5

[128]

It also creates the database in a single file, which makes implementing a DB fairly simple;
you don't have to worry about all the issues of having a DB spread across a server.
However, it does mean that SQLite is better suited to either development purposes or
small, standalone applications. If you are planning on using your Python program for
large-scale systems, you'll want to move to a more robust database, such as PostgreSQL or
MySQL.

Working with databases
This book is not intended to be a database or SQL primer, but it will help to have an
understanding of how traditional interaction with a database using SQL occurs.

First, consider a database to be one or more tables, just like a spreadsheet. The vertical
columns comprise different fields or categories; they are analogous to the fields you fill out
in a form. The horizontal rows are individual records; each row is one complete record
entry. Here is a pictorial summary, representing a customer list. The table's name is
Customers:

Index LName FName Address City State
0 Johnson Jack 123 Easy St. Anywhere CA
1 Smith John 312 Hard St. Somewhere NY

The only column that needs special explanation is the Index field. This field isn't required
but is highly recommended. You can name it anything you want but the purpose is the
same. It is a field that provides a unique value to every record; it's often called the primary
key field. The primary key is a special object for most databases; simply identifying which
field is the primary key will automatically increment that field as new entries are made,
thereby ensuring a unique data object for easy identification. The other fields are simply
created based on the information that you want to include in the database.

To make a true relational database, one table needs to refer to one or more different tables
in some fashion.

Files and Databases Chapter 5

[129]

If you wanted to make an order-entry database, you could make another table that tracks
an order and relate that order to the preceding customer list, like so:

Key Item_title Price Order_Number Customer_ID
0 Boots 55.50 4455 0
1 Shirt 16.00 4455 0
2 Pants 33.00 7690 0
3 Shoes 23.99 3490 1
4 Shoes 65.00 5512 1

This table is called Orders. This table shows the various orders made by each person in the
customer table. Each entry has a unique key and is related to Customers by the
Customer_ID field, which is the Index value for each customer.

The code listing next shows how this database could be created:

sqlite_db.py (part 1)
import sqlite3
1
2 connection = sqlite3.connect("Customers.db") # The .db extension is
optional
3 cursor = connection.cursor() # Executes SQL queries
4
5 # Alternative DB created only in memory
6 # mem_conn = sqlite3.connect(":memory:")
7 # cursor = mem_conn.cursor()
8
9 # Create the table to hold entries
10 cursor.execute("""
11 CREATE TABLE Customers
12 (id INTEGER PRIMARY KEY,
13 LName TEXT,

Here, we import the sqlite3 database module in line 1, create the database in line 3, and
establish a connection to the DB in line 4.

Lines 6-8 demonstrate how to create a database strictly within memory and not writing the
data to disk. This is fine for testing, but shouldn't be used in production because, if the
power fails on the computer, the data in memory is lost.

Files and Databases Chapter 5

[130]

Starting with line 11, we create the DB table that will hold our customer information:

sqlite_db.py (part 2)
1 FName TEXT,
2 Address TEXT,
3 City TEXT,
4 State TEXT)
5 """)
6
7 cursor.execute("""
8 CREATE TABLE Orders
9 (id INTEGER PRIMARY KEY,
10 Item_title TEXT,
11 Price FLOAT,
12 Order_Number INTEGER,
13 customer_id INTEGER,
14 FOREIGN KEY (customer_id) REFERENCES Customers(id))
15 """)

Here, we complete the table declarations in lines 1-5. Then, in lines 7-15, we create the table
to hold the customer orders:

sqlite_db.py (part 3)
1 def customer_insert(last_name, first_name, address, city, state):
2 sql = "INSERT INTO Customers VALUES (?, ?, ?, ?, ?, ?)"
3 cursor.execute(sql, (None, last_name, first_name, address, city,
state))
4 return cursor.lastrowid # Get ID of object
5
6 def order_insert(item, price, order_num, customer_id):
7 sql = "INSERT INTO Orders VALUES (?, ?, ?, ?, ?)"
8 cursor.execute(sql, (None, item, price, order_num, customer_id))
9 return cursor.lastrowid
10
11 johnson_id = customer_insert("Johnson", "Jack", "123 Easy St.",
"Anywhere", "CA")
12 johnson_order1 = order_insert("Boots", 55.50, 4455, johnson_id)
13 johnson_order2 = order_insert("Shirt", 16.00, 4455, johnson_id)
14 johnson_order3 = order_insert("Pants", 33.00, 7690, johnson_id)

Here, lines 1-4 create a function that populates the customer table with supplied
information, while lines 6-9 do the same thing for the order table.

Lines 11-14 provide the data that will be used to fill the customer and order table for the
first customer:

sqlite_db.py (part 4)
1 smith_id = customer_insert("Smith", "John", "312 Hard St.",

Files and Databases Chapter 5

[131]

"Somewhere", "NY")
2 smith_order1 = order_insert("Shoes", 23.99, 3490, smith_id)
3 smith_order2 = order_insert("Shoes", 65.00, 5512, smith_id)
4
5 connection.commit() # Write data to database
6 cursor.close() # Close database

Here, we populate the tables with information about the second customer and orders in
lines 1-3. Lines 5 and 6 put the data into the DB and then close the connection to the DB.

Using SQL to query a database
To query a table using SQL, you simply tell the database what it is you're trying to do. If
you want to get a list of the customers or a list of orders in the system, just select what parts
of the table you want to get.

Note that the following code snippets are not Python-specific.
Additionally, SQL statements are not case-sensitive but are usually
written in uppercase for clarity, so you know what words are SQL-related.

Returning data with SQL is shown in following snippet:

SELECT * FROM Customers

The command simply pulls everything from Customers_table and prints it. The printed
results may be textual or have grid lines, depending on the environment you are using, but
the information will all be there.

You can also limit the selection to specific fields, such as following example:

SELECT Last_name, First_name FROM Customers
SELECT Address FROM Customers WHERE State == "NY"

The second SQL query uses the WHERE statement, which returns a limited set of information
based on the condition specified. In this case, only the addresses of customers who live in
New York state would be returned.

Files and Databases Chapter 5

[132]

Limiting a query in this manner is a good idea because it limits the results you have to
process and it reduces the amount of memory being used. Many system slowdowns can be
traced to bad DB queries that return too much information and consume too many
resources.

To combine the information from two tables, that is, to harness the power of relational
databases, you have to join the tables in the query, as demonstrated here:

SELECT Last_name, First_name, Order_Number FROM Customers, Orders WHERE
Customers.id = Orders.customer_id

This should give you something that looks like the following screenshot:

SQL query results

Again, the formatting may be different depending on the system you are working with, but
it's the information that counts.

Creating a SQLite database
To use the SQLite database, you simply import it like any other library. Once imported, you
have to make a connection to it; this creates the database file. A cursor is the object within
SQLite that performs most of the functions you will be doing with the DB.

The following code listing demonstrates the creation of a SQLite database:

tools_db.py (part 1)
1 import sqlite3
2
3 connection = sqlite3.connect("Tools.db") # The .db extension is optional
4 cursor = connection.cursor() # Executes SQL queries

Files and Databases Chapter 5

[133]

5
6 # Create the table to hold entries
7 cursor.execute("""
8 CREATE TABLE Tools
9 (id INTEGER PRIMARY KEY,
10 name TEXT,
11 size TEXT,
12 price INTEGER)
13 """)

The sqlite3 library is imported in line 1. Lines 2 and 3 create the connection to the DB file
and the cursor object, respectively.

Lines 6-13 create the table that will hold all the DB entries. In this case, the name of the table
is Tools, a primary key is provided to ensure each entry has a unique identifier, two text
entries are created, and so is a numeric entry:

tools_db.py (part 2)
1 # Populate table
2 for item in (
3 (None, "Box Knife", "Small", 15),
4 (None, "Drill", "Medium", 35),
5 (None, "Axe", "Large", 55),
6 (None, "Putty Knife", "Small", 25),
7 (None, "Hammer", "Small", 25),
8 (None, "Screwdriver", "Small", 10),
9 (None, "Crowbar", "Large", 60),
10):
11 cursor.execute("INSERT INTO Tools VALUES (?, ?, ?, ?)", item)
12
13 connection.commit() # Write data to database
14 cursor.close() # Close database

In part 2, lines 2-11 actually populate the DB with data. The entries are comma-separated to
match the entries provided during table creation. The value None corresponds to the
primary key; we don't have to provide a value as SQLite will automatically increment the
key value for each new entry. The rest of the values in each entry apply to the item's name,
size, and price.

Files and Databases Chapter 5

[134]

Line 11 calls cursor.execute() to stage the data that will be added to the DB. The
question marks are used to prevent a SQL injection attack, where a SQL command is passed
to the DB as a legitimate value. The DB would process the command as a normal, legitimate
command which could delete data, change data, or otherwise compromise your DB. The
question marks act as a substitution value to prevent this from occurring.

Lines 13 and 14 write the data to the DB then close the connection. The commit()
command is required to actually put the data into the DB; until this is done, the data is only
staged for filling the DB. This allows multiple data staging to occur, with only a single
commit being required.

Retrieving data from a database
To pull the data from an SQLite DB, you just use the SQL commands that tell the DB what
information you want and how you want it formatted. If the data retrieval is part of the
same SQLite program, that is, if the creation of the database and subsequent retrieval are in
the same file, then you don't need to include it again; just make sure you haven't closed the
cursor connection until the end. Otherwise, you will have to create a connection to the
desired DB and recreate the cursor within the new file.

The code listing here modifies the previous code to demonstrate data retrieval:

db_retrieval.py
1 import sqlite3
2
3 connection = sqlite3.connect("Tools.db")
4 cursor = connection.cursor()
5
6 cursor.execute("SELECT name, size, price FROM Tools")
7 toolsTuple = cursor.fetchall()
8 for entry in toolsTuple:
9 name, size, price = entry # Unpack the tuples
10 item = ("{}, {}, {}".format(name, size, price))
11 print(item)

Files and Databases Chapter 5

[135]

Lines 1-4 are only necessary if you are writing a new program; if you want to retrieve the
data from within the same program that filled the DB, then you only need to include lines
6-11.

The new commands start with line 6. Here, we execute the command that pulls the desired
columns from the Tools table. Line 7 tells SQLite to return all entries; you could also
specify single entries if desired.

Lines 8-11 is a simple for loop that iterates over the entries returned by SQLite and prints
the results, which we see in the following screenshot:

SQLite retrieval results

Alternatively, if you want to print out more structured tables, you can use something like
this code:

pretty_print.py
cursor.execute("SELECT * FROM Tools")
for row in cursor:
 print ("-" * 10)
 print ("ID:", row[0])
 print ("Name:", row[1])
 print ("Size:", row[2])
 print ("Price:", row[3])
 print ("-" * 10)

Files and Databases Chapter 5

[136]

When run, the output should look like the following screenshot:

Output of pretty SQL query

Obviously, you can mess around with the formatting to present the information as you
desire, such as giving columns with headers, including or removing certain fields, and so
on.

Files and Databases Chapter 5

[137]

SQLite database files
SQLite will try to recreate the database file every time you run the program. If the DB file
already exists, you will get an OperationalError exception. The easiest way to deal with
this is to simply catch the exception and ignore it, as demonstrated here.

Dealing with existing databases:

try:
 cursor.execute("CREATE TABLE Foo (id INTEGER PRIMARY KEY, name TEXT)")
 except sqlite3.OperationalError:
 pass

This will allow you to run your database program multiple times (such as during creation
or testing) without having to delete the DB file after every run.

You can also use a similar try/except block when testing to see if the DB file already
exists; if the file doesn't exist, then you can call the DB creation module. This allows you to
put the DB creation code in a separate module from the main program, calling it only when
needed.

SQLAlchemy
When working with databases, it can be difficult and time-consuming to deal with writing
SQL queries all the time, especially if you don't deal with databases on a regular basis.
Luckily, there are many Python libraries available to help with this problem. One of the
most popular is SQAlchemy.

SQLAlchemy is an object-relational mapper (ORM), a utility that eliminates the issue of
writing raw SQL queries and replaces it with more Python-centric code. ORM tools convert
data between incompatible type systems in OOP languages, because these languages
frequently use types that are more complex than low-level, primitive types. In other words,
an ORM deals with more complex objects, whereas SQL expects primitives and creates
relations between them.

Because SQLAlchemy is a third-party library, the easiest way to install it is
through pip. pip is a standard Python package tool, much like apt is the package tool for
Debian-based Linux. To install SQLAlchemy, use the following command.

Installing software with pip:

$ pip3 install sqlalchemy

Files and Databases Chapter 5

[138]

This command can be used to install nearly any Python package. The PyPI website can be
used to locate particular packages for installation.

Writing a SQLAlchemy database
When working with SQLAlchemy, there are three main components to work with:

The table, which functions as a normal DB table
The mapper, which maps a Python class to a table
The class object, which handles how a DB record maps to a Python object

One beneficial aspect of SQLAlchemy is that all of these items can be placed within the
same location, rather than having separate files. The SQLAlchemy declarative contains
the definitions of these objects.

To convert the previous SQLite database into a SQLAlchemy database, we first create the
declarative program, as shown here:

sqlalchemy_declarative.py
1 from sqlalchemy import Column, Integer, String, create_engine
2 from sqlalchemy.ext.declarative import declarative_base
3
4 Base = declarative_base()
5
6 class Tools(Base):
7 __tablename__ = "tools"
8 id = Column(Integer, primary_key=True)
9 name = Column(String(length=250), nullable=False)
10 size = Column(String(length=25))
11 price = Column(Integer)
12
13 engine = create_engine("sqlite:///sqlalchemy_example.db")
14
15 Base.metadata.create_all(engine)

Line 1 imports all the important creation items from the base SQLAlchemy module; these
are used to create the database schema.

Line 2 imports the declarative base class, which our program will inherit from, after we
create an instance of it in line 4.

Files and Databases Chapter 5

[139]

The core of the declaration definitions is in lines 7-12. Each table in SQLAlchemy is defined
as a class, and the parameters of the class are the individual columns that will make up the
table. The columns are defined similar to the SQLite table, such as deciding the column that
will be the primary key and the type of data contained within a column. When
nullable=False is present, it means the column cannot be empty; otherwise, the column
will assume no data is necessary.

Line 15 creates the DB engine that will handle the interaction with the actual DB file, and
line 17 creates the tables from the defined classes. In this case, we only have one table, but
large databases may have multiple ones that reference others.

When this program is run, a new database file (sqlalchemy_example.db) should appear
within the current directory.

Filling and querying the database
Once the database is created, we can now populate it, as demonstrated in this code listing:

sqlalchemy_db.py (part 1)
1 from sqlalchemy import create_engine
2 from sqlalchemy.orm import sessionmaker
3 from sqlalchemy_declarative import Tools, Base
4
5 engine = create_engine("sqlite:///sqlalchemy_example.db")
6 Base.metadata.bind = engine
7
8 DBSession = sessionmaker(bind=engine)
9 session = DBSession()
10
11 box_knife = Tools(name="Box Knife", size="Small", price=15)
12 drill = Tools(name="Drill", size="Medium", price=35)
13 axe = Tools(name="Axe", size="Large", price=55)
14 putty_knife = Tools(name="Putty Knife", size="Small", price=25)
15 hammer = Tools(name="Hammer", size="Small", price=25)

Continuing with reimplementing the SQLite example, we are filling the SQLAlchemy DB
with the same tools inventory. Line 1 imports the DB engine module, while line 2 imports
the session-making module. Line 4 imports the important classes from the previously
created sqlalchemy_declarative.py file.

Files and Databases Chapter 5

[140]

Lines 6 and 7 create the DB engine and bind it to the Base class so the declarative classes
can be accessed by the session.

Lines 9 and 10 establish the communications with the database and provide the staging
area for the objects that will populate the DB. Until the data is committed to the database,
they are stored in the temporary session. If desired, the changes can be undone using
session.rollback().

Lines 11-15 provide the actual data that will be placed in the database. Each row of the
database is represented by a separate variable definition:

sqlalchemy_db.py (part 2)
1 screwdriver = Tools(name="Screwdriver", size="Small", price=10)
2 crowbar = Tools(name="Crowbar", size="Large", price=60)
3 items = (box_knife, drill, axe, putty_knife, hammer, screwdriver,
crowbar)
4 session.add_all(items)
5 session.commit()

Here, line 3 creates a tuple of all the items to be added to the database, then line 4 uses the
tuple to fill the DB with one command. Finally, we commit the changes to the database in
line 5.

To retrieve the data from the database, we will use the following code:

sqlalchemy_retrieval.py (part 1)
1 from sqlalchemy_declarative import Base, Tools
2 from sqlalchemy import create_engine
3 from sqlalchemy.orm import sessionmaker
4
5 engine = create_engine("sqlite:///sqlalchemy_example.db")
6
7 Base.metadata.bind = engine
8
9 DBSession = sessionmaker()
10 DBSession.bind = engine
11 session = DBSession()

Files and Databases Chapter 5

[141]

We've seen lines 1-11 before, so we'll move to the main code in the following snippet:

sqlalchemy_retrieval.py (part 2)
1 # Query all entries in database
2 tools = session.query(Tools).all()
3 for tool in tools:
4 print(tool.name)
5
6 # Return first entry in database
7 tool = session.query(Tools).first()
8 print("\n" + tool.name)
9
10 # Return the tool with given price
11 priced_tool = session.query(Tools).filter(Tools.price == 10).one()
12 print("\n" + priced_tool.name + "\n")

Line 2 queries the DB for all the entries within the database; since we only have one table,
this is not a problem. Obviously, if you have a lot of data in a database, you wouldn't do
this. With the query complete, we use a for loop to iterate over the returned list and print
the names of the tools in lines 3 and 4.

Line 7 does a similar query, but only returning the first entry in the database, which is
subsequently printed in line 8. (To keep the final output separated for clarity, a newline
character has been added.)

Line 11 performs a query that looks for the first item that matches the provided filter; in this
case, we are looking for an item with a price = 10. The item is then printed, separated from
the other output:

sqlalchemy_retrieval.py (part 3)
1 # Return all the tools with a given price
2 priced_tools = session.query(Tools).filter(Tools.price == 25).all()
3 for tool in priced_tools:
4 print(tool.name)

Line 2 looks for all entries that match a price of 25. The resultant list is then iterated
through to provide the name of the matching tools.

Files and Databases Chapter 5

[142]

When this program is run, the results should look like the following screenshot:

SQLAlchemy query results

Obviously, there is more to DBs and SQLAlchemy than can be covered here. Hopefully, this
provided you with an idea of how Python can be used to work with DBs, and some of the
tools available depending on your needs.

From here, we will move into the main portion of this book: writing a program with real-
world applications and significant complexity that, when finished, should give the reader
confidence in being a software developer.

Summary
In this chapter, we discussed how Python works with OS filesystem I/O operations to
interact with files, and how to work with DBs. Specifically, we looked at SQLite, which is
included with Python, and how to use the Python-SQLite commands to use SQL queries.
Finally, we reviewed some of the basics of SQLAlchemy, a DB framework that allows more
Python-centric access to DB operations, without requiring the direct use of SQL statements.

In the next chapter, we will talk about application planning, including the software
development life cycle, development best practices, determining project requirements, and
establishing a software repository.

6
Application Planning

In the old days, software development was primarily dictated by management in terms of
the programming languages and tools to be used, as well as providing the different
resources necessary to complete the work.

Nowadays, companies and developers are more cognizant of privacy and security issues, as
well as including user feedback early in the development process. Another key factor is the
flexibility of development compared to system integration, developer efficiency, and user
control of the software.

While this won't be a complete course in the administrative side of software development,
this chapter will cover the following topics:

 Software development life cycle
 Development practices and methodologies
 Project requirements
 Software repositories

Software development life cycle
The development cycle divides software creation into several distinct phases, all focused on
improving the design, product management, and project management processes of
software engineering. Often, each phase culminates in a milestone, a designated
deliverable, or some other marker of phase transition.

The software life cycle is a subset of systems development that was developed in the 1960s
to create a formal framework for building information systems. As such, there have been
numerous processes and methodologies created over the years to incorporate new
technology, to address shortcomings in previous methods, because management demanded
it, or other reasons.

Application Planning Chapter 6

[144]

Some of the different practices include the following:

Structured programming
Object-oriented programming
Rapid application development
Scrum
Rational unified process
Extreme programming
Agile
Pair programming
Open source

As software development frameworks have evolved and changed in the last 50 years, there
is no right method to use. Sometimes a hybrid construct will work best, though most
software engineering nowadays uses some form of agile development.

Development practices and methodologies
As there are numerous ways to manage software development, we will only cover some of
the most popular ones here.

Incremental development
As the name suggests, incremental (or iterative) development (ID) is a succession of
project segments that build on each other to create the final product. This allows for
different aspects of the software to be fleshed out and tested prior to moving to the next
step.

This doesn't mean that multiple steps can't be worked on simultaneously, just that a
successive step isn't started until the previous one is judged to be complete. This
development practice most aligns with traditional project management, where different
aspects of the project can be developed at the same time, but within each aspect's pipeline,
the steps are iterative and cumulative.

An example development process is shown in the following diagram. The columns
represent the stages of the project, while the rows are the individual aspects. Each titled
column has one or more sub-columns that represent the different milestones within each
stage.

Application Planning Chapter 6

[145]

As can be seen in the following diagram, the areas of each colored graph move to the right
as one moves down the chart. This makes sense, as initial development aligns with
Requirements and Design, while finishing the project means deployment takes precedence.
Testing cycles up and down during the project, as milestones are reached:

 

Incremental development process

Continuous integration
Continuous integration (CI) is the practice of merging all the code written by team
members into a central repository, particularly into the main line of code. The continuous
portion comes from the fact that these code merges occur multiple times per day, or at least
once a day.

The main purpose of CI is to identify and remedy integration issues early in the
development process. Programmers write unit tests for their code to ensure it works as
expected. They can also check their work against the tests of other developers. When all the
code is merged together, a build server will run automated tests to ensure compatibility
between all submitted code. If any errors occur, they are identified immediately, rather
than later on when it can be difficult to identify and fix them.

Another aspect of the build servers is to perform continuous quality control, such as
profiling the software for performance bottlenecks, automatically creating documentation,
and applying a variety of additional tests to the code base.

Application Planning Chapter 6

[146]

Development/Operations (DevOps) utilizes CI as the backbone of software creation.
DevOps relies heavily on automated testing and monitoring of all steps of software
development, with an eye toward reducing the development cycle, improving time to
deploy, and making the final product more dependable and robust.

The CI process is demonstrated in the following diagram:

Continuous integration process

Application Planning Chapter 6

[147]

Attribution: CC BY-SA 1.0 (Jez Humble – http:/ /continuousdelivery. com/ 2010/ 02/
continuous-delivery/)

Prototyping
Software prototypes are simply models of the final product. They can be of nearly any part
of the final application: user interface mock-ups, stand alone features, proof-of-concept, and
so on.

Prototypes are intended to help guide the course of development, showing management
and customers what the developers are working on, while allowing time for feedback
before the programmers move forward. They are also useful when a large number of
programmers are involved in a project, as each person or team can be responsible for a
particular aspect of the final application. Their prototypes can be compared to other ones to
ensure everyone knows what is going on with the project.

Rapid application development
Rapid application development (RAD) features aspects of iterative development and
prototyping, focusing on rapid construction of prototypes to test out ideas and move the
project forward, rather than spending a lot of time in the planning stage. In essence, the
planning of the software is merged with the writing of the software, as planning and
coding follow each other in a cyclical nature.

Of course, some roadmaps for the software exist. It's just that the pre-planning is
minimized and, while the overall plan is followed, the path to get there may change during
development. With the initial plan established, prototypes are created and used to dictate
the plan for the next batch prototypes. This continues until the project is finished.

A chart of the RAD process is shown in the following diagram The initial planning stage
moves into a development/design-plan cycle.

http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/
http://continuousdelivery.com/2010/02/continuous-delivery/

Application Planning Chapter 6

[148]

When the project is complete, it is cut over into the next phase, which may be testing,
deployment, or another aspect of the overall project:

Rapid application development process

Waterfall development
Waterfall models were prominent in the early days of software development, being
formalized into a standard during the mid-1980s by the US military. Waterfalls follow a
sequential method, with development stages flowing downhill toward completion.

The stages are successive; though some allowance for overlap and rework is allowed,
returning to a previous stage is discouraged. The main point to waterfall development is
tight control of the entire project, from planning and maintaining deadlines to resource
management and entire system implementation at one time. Project management focuses
on the project lifetime through extensive documentation, formal reviews, and approval
prior to commencing the next stage.

This approach is seen in classic project management models, regardless of the project, and
is often seen as one reason why deadlines are missed, cost overruns occur, and the final
product fails to deliver the expected results.

Another problem with waterfall development is that it is inflexible in terms of customer
requirements. Once the project is approved, it continues until the product is delivered,
regardless of whether the customer truly knows what that deliverable should actually
do. The waterfall model is depicted in the following diagram:

Application Planning Chapter 6

[149]

Waterfall development

Attribution: CC BY 3.0 (Peter Kemp / Paul Smith)

Spiral development
Spiral development aims to improve on the waterfall model by allowing for a repetitive
development process. Like a spiral moving from the center outward, the process repeats
each step as the project progresses, using the knowledge developed from the previous cycle
to create each prototype.

Each loop covers the following items:

 Determine objectives and constraints for the new iteration
 Perform risk management and evaluate alternatives
 Develop deliverables for the current iteration
 Plan the next iteration

Application Planning Chapter 6

[150]

The spiral process is shown in the following diagram:

Spiral development

Agile development
Agile development is less of a process or methodology and more of a way of working for
software developers. It focuses on adaptive planning, evolution of development, self-
organized and cross-functional teams, continuous integration, and, above all, flexibility.
The unofficial motto of agile development can summed up as "release early, release often" as
stated by Eric S. Raymond in his seminal essay The Cathedral, and The Bazaar.

Application Planning Chapter 6

[151]

Though a variety of lightweight development methods and framework were in existence
for many years, agile development could be said to have formally started in 2001, when the
Manifesto for Agile Software Development was published. The Manifesto stipulated the
following:

People and their interactions are more important than tools and processes.
Software should work as intended, while documentation should support the
software. In other words, while comprehensive documentation is ideal,
development should be applied toward the software, rather than documentation.
Customer interaction is more important than contract negotiation.
Adaptability and willingness to change are better than uncompromisingly
sticking to a plan.

Based on these proclaimed values, the principles of agile development are as follows:

Customer satisfaction through early and continuous delivery of software
Welcoming changing requirements, even late in development
Working software is delivered frequently; the shorter the time frame, the better
Daily interaction between business people and developers
Include motivated individuals in the project, and provide them with the tools
and support necessary for success
Face-to-face conversation is the best form of communication, both between
developers and with leadership
Working software is the primary measure of progress
Sustainable development with the ability to maintain a constant pace
Continuous attention to technical excellence and good design principles
Simplicity, through the art of maximizing the amount of work not done, is
essential
The best architectures, requirements, and designs come from self-organizing
teams
On a regular basis, the development team reflects on how to become more
effective, and adjusts their behavior accordingly

A number of agile development methods have developed over the years. While some
concentrate on development practices, others focus on workflow management. Here is a list
of some of the more popular practices and frameworks used in agile development:

Scrum
Kanban
Extreme programming

Application Planning Chapter 6

[152]

Feature-driven development
Dynamic systems development method
Agile testing
Agile modeling
Backlogs
Behavior-driven development
Continuous integration
Pair programming
Refactoring
Retrospective
Test-driven development
User stories

Project requirements
Regardless of the design philosophy that will be used for the actual coding, the planning
stage is perhaps the most important, at least when it comes to having a successful
deployment. Many project management courses highlight planning as one of the key stages
for any project; while agile development can mitigate poor planning, it doesn't completely
eliminate all the problems.

Developing project requirements and evaluating them for incorporation is generally a job
for the project or program manager, or whoever will be responsible for seeing the project to
completion. A key point is that a project has a definite time frame associated with it; while
work may be ongoing, a project has a designated start date and a completion deadline. This
helps define what elements a project is supposed to have completed for the deliverable;
anything beyond the scope of the project will be moved into a separate project.

Generally speaking, the key steps in developing a project are as follows:

Locate stakeholders, subject-matter experts (SMEs), and any relevant 1.
documentation and resources.
Identify the key problem(s) to be addressed.2.
Determine the scope of the project. This includes all the key features that will be3.
included, as determined by the stakeholders. The scope needs to be reasonable
for the given time frame, or the timeline extended.
Once the overarching scope has been approved, detailed requirements are4.
developed and validated.

Application Planning Chapter 6

[153]

When the requirements are accepted, all stakeholders need to prioritize them,5.
recognizing that low-priority ones may be pushed to the next version.
At this point, everything agreed upon should be formally documented to provide6.
a roadmap for the project manager. This roadmap is vetted by stakeholders for
final approval.
If the roadmap is approved, the project is frozen. Any additions or changes7.
should be marked for inclusion in the next project, rather than modifying the
current one. If the change is urgent and necessary, established change
management processes should be used to document the change.
At this stage, the SMEs provide input regarding different options, solutions, risk8.
factors, and costs. This input is incorporated into the development process.
The developers start work and provide regular updates to the project manager.9.
This work continues until the project is finished, or at least this stage of a multi-
phase project.
Any changes required are reviewed and assessed for relevance to the project's10.
scope. If within the scope, the changes are documented via the change
management process and incorporated into the project. If out of scope, the
changes should be pushed to the next project.

There is much more to project management, as several certifications are available for the
field, but this list should provide a general idea of the process.

The key takeaway from this section is that identifying and listing the requirements for a
software project is important, as they guide the project from start to finish. Without clear
requirements, the project can flounder.

An example from my personal experience should help clarify this. When placed in charge
of a project at a new organization, it was discovered that the project had been in progress
for 10 years and more than $1 million had already been spent. The project was to make a
custom content management system (CMS) for the organization; the original designer
wanted to use Python, so a third-party company was contracted to provide support to the
in-house developers.

The problem was that the project was dictated by upper management and did not include
the opinions or needs of the true users of the software. In addition, the requirements
continually changed as leadership changed or new ideas were introduced. This was
exacerbated by the fact that the users could rarely be bothered to test new versions of the
software during development.

Application Planning Chapter 6

[154]

Thus, the developers were constantly trying to code for a moving target, and the contracted
company didn't mind, as they were paid regardless. As a matter of fact, the company was
able to use the knowledge from working on this project to create a brand-new version of
their own CMS software.

Ultimately, I convinced management to abandon the project and find a commercial off-the-
shelf product that met most of the needs of the users. That way, users could at least start
working with something useful and request updates from the manufacturer as needed,
rather than wait for vaporware that was never ready.

Software repositories
Software repositories, or repos, are storage locations for software, whether completed
packages or code in development. Having a designated central location for software makes
it easier for team members to access the code for development and referral. It can also be a
location for end users to access the software.

Many software developers provide multiple versions of software, from nightly builds
generated by a build server to various versions of the final product. Documentation is
frequently included as well, often as separate files for downloading but sometimes as
online HTML files.

For Python, the online PyPI repo is used for third-party Python modules; these are most
commonly installed through the pip command. Another common option is to post
packages onto GitHub; many packages available on PyPI have a hosting on GitHub as well.

GitHub is one of the most popular sites for open-source software, though Bitbucket, Gitlab,
and other sites are available. That's not counting internal development repos for companies
and organizations.

Software repositories often include, or provide extension support to, common build tools,
such as CI build servers, documentation generators, automated testing suites, and so on.
Often, these tools can be connected to a programmer's integrated development
environment (IDE), such as PyCharm, allowing the programmer to rarely have to leave the
IDE to use a tool.

Application Planning Chapter 6

[155]

Summary
In this chapter, we learned about some of the ways that project management in general, and
software development specifically, can be used to help in the development of applications.
We learned about the software development life cycle, a brief history of software project
management and the various processes, methodologies, and frameworks available, the
basic flow of assessing requirements and completing development, and how software
repositories can be used to reduce the amount of administration in software projects.

In the next chapter, we will use this knowledge to make a plan of action for a liquid storage
and transfer scenario. The requirements will dictate how detailed the program has to be, as
well as how it will be utilized and what interface methods are required.

7
Writing the Imported Program

For this project, we will be creating a liquid storage and transfer system, suitable for nearly
any liquid fluid scenario; while the term fluid can apply to both liquids and gases, we will
only consider liquids in this book. In particular, we will include physics-based,
mathematical formulas to calculate pressure and flow rate, while accounting for differences
in liquid density to make the model suitable for any liquid.

Specifically, we will cover the following topics:

Project requirements
Utility functions
Simulating storage tanks
Simulating valves
Simulating pumps

Project requirements
Because this was more of a personal project than a demand from a customer, the
requirement assessment process was somewhat abbreviated. However, some of the needs
were dictated by failures of previous tools, so a little background is in order.

A virtualized Industrial Control System (ICS) modeling program was provided by a
vendor, but it never worked as desired. Two of the scenarios were irrelevant to the
organization's mission, while the other two scenarios were broken: if a circuit breaker was
opened, there were no cascading effects, like other circuit breakers opening. Therefore,
when cyber security personnel were attempting to identify and protect critical components,
there were no consequences felt within the system.

Writing the Imported Program Chapter 7

[157]

The physical ICS model used by the organization was ready for expansion, and one request
was for a fuel storage and transfer system. With the knowledge what was lacking from the
previous ICS application, I decided to make a fuel scenario that accounted for cascading
effects, while providing alternative options for the security team.

A brief summary of the necessary requirements is listed here:

General-use backend model was needed, one that can be used for any liquid, not
just fuel. This means the same backend program can be used for fuel, water,
chemicals, and so on.
Physics-modeling of flow rates and pressure drops (within reason) was
necessary. Because the cyber security teams wouldn't have the engineering
background to notice invalid parameters, some of the components would be
"idealized" to be frictionless or otherwise theoretical models. However, the main
components, such as valves and pumps, needed to be modeled as realistically as
possible, so cascading effects could be simulated.
A graphical interface should be available. This could be the standard human-
machine interface currently used with the physical model or a Python-centric
GUI.
Pure Python code would be used, but the ability to use ICS protocols, such as
Modbus, should be supported.

One of the key points of this project, the physics-based modeling, could be considered
unusual for software developers. Most software projects are business applications;
programmers have little need to know about mathematical modeling or they have
engineering teams who can provide the formulas. As I served in the Navy as a nuclear
engineering laboratory technician, the necessary knowledge and skills were already
available.

You are not expected to know the engineering principles that will be used for this scenario,
but it will demonstrate some of the real-world applications of programming beyond
making a website or other typical business applications.

Writing the Imported Program Chapter 7

[158]

The schematic diagram that will be used when designing this project is shown as follows:

Project schematic diagram

You don't have to understand the entire system, but a basic explanation follows, as the
operations are part of the requirements development.

For this fuel storage and transfer systems, two 1-million gallon tanks store the fuel that is
delivered by truck. The height of the fluid in the tanks provides a static hydraulic pressure
to the supply lines going to the pumps.

Writing the Imported Program Chapter 7

[159]

The pumps are positive displacement, screw-type pumps that maintain a constant flow rate
regardless of downstream pressure. Unlike centrifugal pumps, they do not suffer vapor
lock if no fluid is present, as they can create their own suction. Also, unlike centrifugal
pumps, they don't require a Net Positive Suction Head (NPSH) of incoming fluid. NPSH is
the pressure of incoming fluid from static pressure due to gravity, as well as any additional
pressure provided by other pumps. If the NPSH is too low for a given pump, the fluid will
flash to vapor and cause damage to the pump, as well as stop the flow.

The valves are comprised of the following:

There are gate valves, which are either fully open or fully closed. These are
annotated as SV in the diagram.
There are globe valves, which are designed to allow any position from fully open
to fully closed. Because of their construction, they can throttle flow to any
amount desired. These are annotated as GV in the diagram.
There are pressure relief valves, which have a spring setting to ensure the
downstream pressure from the pumps does not exceed parameters. If the
pressure gets too high, the relief valve opens and sends the fuel back to the inlet
of the pump. These are annotated as PR in the diagram.
There are pressure regulating valves, which maintain a constant outlet pressure
for the pumps. Regardless of the rest of the valves settings, the pump will
continue to see the same pressure. These are annotated as FR in the diagram.
There are needle valves, which are used for sampling fuel prior to use. These are
annotated as NV in the diagram.

The circles with FIT, PDIT, and PIT are flow and pressure sensors, while LI is a tank level
indicator. Not shown in the diagram are the check valves between the tanks and SV-1 and
SV-2, which prevent backflow into the tanks.

That's a lot of information, and most of it probably doesn't make much sense unless you
have a mechanical background. Don't worry, as we will cover the most important
information in the next few sections.

Utility functions
One thing that wasn't addressed in the requirements but will be necessary later is the need
for utility functions. These are often found in applications and provide functionality for the
main program, but don't directly apply to the core logic.

Writing the Imported Program Chapter 7

[160]

For this program, we will require a number of utility functions:

Calculate liquid flow rate due to gravity
Static hydraulic pressure of a fluid due to its height
Conversion programs for pressure: specifically, we need to convert fluid head
(measured in feet) in to pounds per square inch (PSI)

The functions are shown next (in separate parts), with explanations following each part:

utility_formulas.py (part 1)
1 #!/usr/bin/env python3
2
3 import math
4
5 GRAVITY = 32.174 # ft/s^2
6 WATER_SPEC_WEIGHT = 62.4 # lb/ft^3
7 WATER_DENSITY = 1.94 # slugs/ft^3
8 WATER_SPEC_GRAV = 1.0

Line 1 is the "she-bang" line, telling *nix operating systems to use the default Python3
environment. Specifically, it tells the OS that the script can be executed without having to
type python first at the command line.

Because we will be working with physics formulas, we will need to import the math
module in line 3. However, we will be using basic algebraic formulas; we don't need to
import any special physics modules.

Lines 5-8 define the constants that will be used in this file. Note that we are not using metric
values; in the US, both metric and imperial values are used in engineering. However, it is
often easier to locate imperial numbers than metric numbers for equipment. Hence, we
arbitrarily selected imperial values and will convert from metric values when necessary:

utility_formulas.py (part 2)
1 def gravity_flow_rate(diameter, slope, rough_coeff=140):
2 """Calculates approximate fluid flow due to gravity.
3
4 Should be within 5% of actual value.
5
6 Based on the Hazen-Williams equation
(https://en.wikipedia.org/wiki/Hazen-Williams_equation). Assumes a 2 inch,
polyethylene pipe
7 """
8 coeff = math.pow(rough_coeff, 1.852)
9 diam = math.pow(diameter, 4.8704)
10 root_flow = math.sqrt(((coeff * diam * slope) / 4.52))
11 return root_flow

Writing the Imported Program Chapter 7

[161]

The first utility function is defined in gravity_flow_rate() on line 1. This function
calculates a liquid's flow rate simply due to gravity. Because it doesn't have to be exact, the
final result is within 5% of the real number. The formula requires a coefficient value based
on the type of material the fluid is flowing through; the rough_coeff value is based on
plastic piping but can be changed depending on the situation. The diameter of the pipe also
plays a factor in flow rate; a larger diameter allows more fluid to flow without turbulence:

utility_formulas.py (part 3)
1 def static_press(height, density=WATER_DENSITY):
2 """Calculate static pressure for any fluid"""
3 press = density * GRAVITY * height / 144
4 return press
5
6
7 def press_to_head(press, spec_grav=WATER_SPEC_GRAV):
8 """Calculate fluid head from pressure."""
9 head = (74.215 * press) / (spec_grav * GRAVITY)
10 return head
11
12
13 def head_to_press(head, spec_grav=WATER_SPEC_GRAV):
14 """Calculate pressure from fluid head."""
15 press = (spec_grav * GRAVITY * head) / 74.215
16 return press

The next function is defined as static_press() in line 1. Here, we calculate the static
pressure of a column of fluid, that is, the pressure of a non-moving liquid. Because pressure
in a liquid is felt equally throughout the fluid, and it cannot be compressed, it doesn't
matter how large the container is, only the height of the fluid. Therefore, the static pressure
of 15 feet of water behind a dam is the same as 15 feet of water in a vertical tube. For this
calculation, we only need to know the density of the liquid and the height of the liquid, as
we already have defined the gravitational constant.

Next, we convert from PSI in to feet of fluid head in line 7. This is a simple calculation that
only requires the PSI value and the specific gravity of the fluid.

Conversely, in line 13, we convert from head in to PSI. Again, the only variables of concern
are the specific gravity and fluid head (in feet):

utility_formulas.py (part 4)
1 if __name__ == "__main__":
2 print(gravity_flow_rate(2, 0.6))
3 print(static_press(150))
4 print(press_to_head(65.0))
5 print(head_to_press(150))

Writing the Imported Program Chapter 7

[162]

Finally, we have simple tests at the end of the file that provide a sanity check of these
calculations. These results can be compared to hand-calculated results to see if the formulas
work correctly.

This is also a good time to reiterate how line 1 works. The Python interpreter looks for the
main program that will be running; each module within a program has its own identity
name, with the main program's logic controlling the application's behavior. Therefore, if a
particular module is given the name __main__, any code listed below this line will be run.
If the module is imported into the main program, then any code below this line will not be
run.

In other words, if utility_formulas.py is called directly by the Python interpreter (that
is, it has the name __main__), then lines 2-5 will be processed. However, if
utility_formulas.py is imported into another module, then lines 2-5 will be ignored.

The output of running the code on its own is shown in following screenshot:

Utility functions output

Simulating storage tanks
Now that we have our utility formulas defined, we can move into modeling the
environment. First, we will figure out how to write the storage tanks, as they are fairly
simple constructs: all we need to figure out is the pressure of the fluid in the tanks, as well
as the flow rate out due to gravity. In addition, we need to know the tank level, as that
affects the pressure of the fluid.

Writing the Imported Program Chapter 7

[163]

The code for the tanks is shown next, followed by explanations:

tank.py (part 1)
1 #!/usr/bin/env python3
2 """
3 VirtualPLC tank.py
4
5 Purpose: Creates a generic Tank class for PLC-controlled SCADA systems.
6
7 Author: Cody Jackson
8
9 Date: 5/28/18
10 #################################
11 Version 0.2
12 Added path extension to alleviate errors
13 Version 0.1
14 Initial build
15 """

Line 1 is the "she-bang" command for the OS. Lines 2-15 provide a brief description of the
program and its version history:

tank.py (part 2)
1 import sys
2 sys.path.extend(["/home/cody/PycharmProjects/VirtualPLC"])
3 from Utilities import utility_formulas
4 import numbers
5
6 class Tank:
7 """Generic storage tank."""
8 def __init__(self, name="", level=0.0, fluid_density=1.94,
spec_gravity=1.0, outlet_diam=0.0, outlet_slope=0.0):
9 self.name = name
10 self.__level = float(level) # feet
11 self.fluid_density = fluid_density # slugs/ft3
12 self.spec_grav = spec_gravity
13 self.__tank_press = 0.0
14 self.flow_out = 0.0
15 self.pipe_diam = outlet_diam
16 self.pipe_slope = outlet_slope
17 self.pipe_coeff = 140

In this part, with lines 1 and 2, we import the sys module and use it to extend the system
path (the locations where files are looked for) to add the project's root directory. Without
this, the importation of some of the project modules, such as the utility formulas, will error
out, as Python doesn't know exactly where they are located.

Writing the Imported Program Chapter 7

[164]

In lines 3 and 4, we import the previously written utility formulas, as well as the built-in
numbers module. The numbers module provides for a hierarchy of abstract base classes of
numeric objects. While it provides a number of useful features, the main thing we'll use it
for in this program is to simply determine whether an argument is a number or not.

In line 6, we define our Tank class. Lines 9-17 define the parameters that will be used when
an instance of Tank is created. The parameters defined are the following:

The tank instance name
The fluid level in the tank
The fluid's density and specific gravity, with default values for water
The fluid pressure as measured at the bottom of the tank (the static pressure)
The gravity flow rate of the fluid
The outlet pipe's diameter, slope, and roughness coefficient

The next code listings are all part of the Tank class, until we reach if __name__ ==
"__main__":

tank.py (part 3)
1 @property
2 def static_tank_press(self):
3 """Return hydrostatic tank pressure."""
4 return self.__tank_press
5
6 @static_tank_press.setter
7 def static_tank_press(self, level):
8 """Calculate the static fluid pressure based on tank level."""
9 try:
10 if not isinstance(level, numbers.Number):
11 raise TypeError("Numeric values only.")
12 elif level <= 0:
13 self.__tank_press = 0.0
14 else:
15 self.__tank_press =
utility_formulas.static_press(self.level, self.fluid_density)
16 except TypeError:
17 raise # Re-raise for testing

Starting with line 1, we define the static pressure property. With a Python property,
whenever the specific variable is called without arguments, the current value of the
variable is returned. To set this variable, we use the setter method in lines 6-17.

Writing the Imported Program Chapter 7

[165]

The setter method takes the tank level as an input argument and checks to ensure it is
actually a number. If not, then an error is generated. Next, if the level is zero or less, the
tank pressure is set to zero. Finally, if there is a fluid level in the tank, the pressure for that
fluid level is calculated. Note that no value is returned; a setter method simply sets the
value for a property but doesn't return anything:

tank.py (part 4)
1 @property
2 def level(self):
3 """Return fluid level in tank."""
4 return self.__level
5
6 @level.setter
7 def level(self, level):
8 """Set the level in the tank."""
9 try:
10 if not isinstance(level, numbers.Number):
11 raise TypeError("Numeric values only.")
12 elif level <= 0:
13 self.__level = 0.0
14 else:
15 self.__level = level
16 except TypeError:
17 raise # Re-raise error for testing
18 finally:
19 self.static_tank_press = self.level
20 self.gravity_flow(self.pipe_diam, self.pipe_slope,
self.pipe_coeff)

The preceding code listing creates the property and setter method for tank level. The
operations are similar to fluid pressure, except a finally statement is provided to pass the
tank level into the pressure setter, as well as calculate the gravitational flow rate based on
the level:

tank.py (part 5)
1 def gravity_flow(self, diameter, slope, pipe_coeff):
2 if self.level > 0:
3 self.flow_out = utility_formulas.gravity_flow_rate(diameter,
slope, pipe_coeff)
4 else:
5 self.flow_out = 0.0
6
7
8 if __name__ == "__main__":
9 tank1 = Tank("tank1", 10)
10 print(tank1.level)
11 tank1.static_tank_press = tank1.level

Writing the Imported Program Chapter 7

[166]

12 print(tank1.static_tank_press)
13 tank1.level = 8.0
14 print(tank1.level)
15 tank1.static_tank_press = tank1.level
16 print(tank1.static_tank_press)
17 tank1.level = "a"
18 print(tank1.level)

In the preceding code listing, lines 1-5 comprise the method to calculate the gravitational
flow rate. First, it checks that the tank level is greater than zero and, if true, it calculates the
flow rate. Otherwise, it sets the flow rate to zero.

Finally, we have the simple tests in lines 8-18. These are not full-blown unit tests, but
verification tests while writing the code.

The output of directly running the tank code is shown in following screenshot:

Tank code output

Name mangling
You'll notice that some of the variable names have leading double underscores. This is to
define them as specifically related to this class. This is referred to as name mangling in
Python.

Writing the Imported Program Chapter 7

[167]

In Python, a single, leading underscore creates a so-called private attribute or method,
designed to keep the attribute from being directly accessed. It's not really private, as it can
be called explicitly, but it won't be automatically imported when using the import
statement.

Name mangling causes the attribute with double underscores to become
_ClassName__attribute internally within Python. That is, the class name the attribute is
associated with becomes part of the fully qualified name for the attribute.

Name mangling is intended to provide private instance variables and methods to classes
without the programmer having to worry about name shadowing or other attributes with
the exact name.

While not necessary, using name mangling for property variables is an easy way to ensure
properties are returned or set for the desired object, without having to worry about
capturing the wrong one.

Simulating valves
Valves and pumps are the key components of most piping systems, as they affect how fluid
flows through the system and does work. We will first talk about modeling valves; since
there is a lot of information in this code, we will break it into separate subsections.

Base valve class
Before we can do anything with individual valves, we have to create a basic Valve class
that the unique valves will inherit from. This base class will have to have as many
characteristics as each valve type will need to make the base class as generic as possible.
The base valve class will be broken up into multiple code listings:

valve.py (part 1)
1 #!/usr/bin/env python3
2 """
3 VirtualPLC valve.py
4
5 Purpose: Creates a generic Valve class for PLC-controlled SCADA systems.
6
7 Classes:
8 Valve: Generic superclass
9 Gate: Valve subclass; provides for an open/close valve
10 Globe: Valve subclass; provides for a throttling valve

Writing the Imported Program Chapter 7

[168]

11 Relief: Valve subclass; provides for a pressure-operated open/close
valve
12
13 Author: Cody Jackson
14
15 Date: 4/9/18
16 #################################
17 Version 0.1
18 Initial build
19 """

We've seen lines 1-19 before in the tank.py program; they simply provide some basic
information about the program.

valve.py (part 2)
1 import math
2
3 class Valve:
4 """Generic class for valves.
5
6 Cv is the valve flow coefficient: number of gallons per minute at
60F through a fully open valve with a press. drop of 1 psi. For valves 1
inch or less in diameter, Cv is typically < 5.
7 """
8 def __init__(self, name="", sys_flow_in=0.0, sys_flow_out=0.0,
drop=0.0, position=0, flow_coeff=0.0, press_in=0.0):
9 """Initialize valve."""
10 self.name = name
11 self.__position = int(position) # Truncate float values for
ease of calculations
12 self.Cv = float(flow_coeff)
13 self.flow_in = float(sys_flow_in)
14 self.deltaP = float(drop)
15 self.flow_out = float(sys_flow_out)
16 self.press_out = 0.0
17 self.press_in = press_in

For this file, we're also importing the math module in line 1. Line 3 is where we start the
generic base Valve class. The docstring in lines 4-7 provides some basic information to the
user of the program. Lines 8-17 define the initialization parameters for a valve. Specifically,
we set the following:

We set the valve's name; not required but helpful when attempting to identify
valves programatically.

Writing the Imported Program Chapter 7

[169]

We set the valve's position as an integer, where 0 = closed and 100 = fully open.
An integer value allows us to show the throttling value for a valve, such as 30%
open.
We set the valve's flow coefficient (Cv), which affects the pressure drop seen
across the valve from inlet to outlet.
We set the fluid flow rate into and out of the valve.
We set the pressure drop across the valve.
We set the fluid pressure coming into and leaving the valve.

Following code snippet demonstrates valve.py (part 3):

valve.py (part 3)
1 def calc_coeff(self, diameter):
2 """Roughly calculate Cv based on valve diameter."""
3 self.Cv = 15 * math.pow(diameter, 2)
4
5 def press_drop(self, flow_out, spec_grav=1.0):
6 """Calculate the pressure drop across a valve, given a flow rate.
7
8 Pressure drop = ((system flow rate / valve coefficient) ** 2) *
spec. gravity of fluid Cv of valve and flow rate of system must be known.
9
10 Specific gravity of water is 1.
11 """
12 try:
13 x = (flow_out / self.Cv)
14 self.deltaP = math.pow(x, 2) * spec_grav
15 except ZeroDivisionError:
16 return "The valve coefficient must be > 0."

Line 1 defines a method to calculate the valve's flow coefficient. Normally, this value is
provided by the manufacturer, but for simulations that don't require exact values, this
method allows us to approximate Cv based on the diameter of the valve.

Line 5 is the method to calculate the pressure drop across a valve. The pressure across the
valve is a function of the flow rate and Cv. It's not as simple as using Bernoulli's equation,
as the flow coefficient is dependent on the valve structure; a gate valve has a much higher
Cv compared to a globe valve:

valve.py (part 4)
1 def valve_flow_out(self, flow_coeff, press_drop, spec_grav=1.0):
2 """Calculate the system flow rate through a valve, given a
pressure drop.
3
4 Flow rate = valve coefficient / sqrt(spec. grav. / press. drop)

Writing the Imported Program Chapter 7

[170]

5 """
6 try:
7 if flow_coeff <= 0 or press_drop <= 0:
8 raise ValueError("Input values must be > 0.")
9 else:
10 x = spec_grav / press_drop
11 self.flow_out = flow_coeff / math.sqrt(x)
12 return self.flow_out
13 except ValueError:
14 raise # Re-raise error for testing

Line 1 defines a method to calculate the outlet flow from a valve. This flow is dependent on
the valve's Cv, the pressure drop across the valve, and the specific gravity of the fluid. The
method ensures that both Cv and pressure drop are not less than 1; otherwise, an error is
generated.

An interesting exception use is shown in lines 13 and 14. ValueError was raised in line 8
and has an error message that will be printed to the console when the exception is thrown.
However, while it is caught in line 13, it is re-raised in line 14. Re-raising the error isn't
normally necessary, but when we write unit tests, it is a useful characteristic to test for, as it
ensures we are capturing the correct exception. As we haven't talked about testing yet, feel
free to ignore this for now:

valve.py (part 5)
1 def get_press_out(self, press_in):
2 """Get the valve outlet pressure, calculated from inlet
pressure."""
3 if press_in:
4 self.press_in = press_in # In case the valve initialization
didn't include it, or the value has changed
5 self.press_drop(self.flow_out)
6 self.press_out = self.press_in - self.deltaP
7
8 @property
9 def position(self):
10 """Get position of valve, in percent open."""
11 return self.__position

Line 1 is the start of the method to calculate outlet pressure. The method is "intelligent"
enough to check for the inlet pressure and reset it to the current value; this ensures the
calculation is correct, based on the current system operating parameters.

Writing the Imported Program Chapter 7

[171]

Line 8 is the start of the property method that provides for the valve's position, a measure
of percentage open:

valve.py (part 6)
1 @position.setter
2 def position(self, new_position):
3 """Change the valve's position.
4
5 If new position is not an integer, an error is raised.
6 """
7 try:
8 if type(new_position) != int:
9 raise TypeError("Integer values only.")
10 else:
11 self.__position = new_position
12 except TypeError:
13 raise # Re-raise for testing

The preceding code listing is the start of the valve position setter method. It checks to
ensure that the value input is an integer and notifies the user if not. We could have just
truncated floating-point numbers, but this provides a little bit of backup to remind the user
to double-check the values being input:

valve.py (part 7)
1 def open(self):
2 """Open the valve"""
3 self.__position = 100
4 self.flow_out = self.flow_in
5 self.press_out = self.press_in
6
7 def close(self):
8 """Close the valve"""
9 self.__position = 0
10 self.flow_out = 0
11 self.press_out = 0
12 self.deltaP = 0

Lines 1-12 provide easy ways to set a valve to be fully open or closed, as they not only set
the position value but also set the outlet flow rates and pressure values for the valve at the
same time.

This is it for the parent valve class. The following subsections will describe the code for
specific valve children.

Writing the Imported Program Chapter 7

[172]

Gate valve class
Gate valves are children of the parent Valve class, as shown in the following code example:

valve.py (part 8)
1 class Gate(Valve):
2 """Open/closed valve."""
3 def read_position(self):
4 """Identify the position of the valve."""
5 if self.position == 0:
6 return "{name} is closed.".format(name=self.name)
7 elif self.position == 100:
8 return "{name} is open.".format(name=self.name)
9 else: # bad condition
10 return "Warning! {name} is partially
open.".format(name=self.name)
11
12 def turn_handle(self, new_position):
13 """Change the status of the valve."""
14 if new_position == 0:
15 self.close()
16 elif new_position == 100:
17 self.open()
18 else: # Shouldn't get here
19 return "Warning: Invalid valve position."

The Gate subclass inherits everything from the Valve parent class. The only new methods
it provides are read_position() and turn_handle(). As a gate valve is either open or
closed (it doesn't affect fluid flow until more than 70% closed), we only need to know
whether the valve is fully open or closed. In addition, when operating the valve, we only
need to open or close it, so turn_handle() only accepts those two values; all others result
in an error.

Globe valve class
Globe valves are also children of the Valve parent, as shown in the following code:

valve.py (part 9)
1 class Globe(Valve):
2 """Throttling valve."""
3
4 def read_position(self):
5 """Identify the position of the valve."""
6 return "{name} is {position}% open.".format(name=self.name,
position=self.position)

Writing the Imported Program Chapter 7

[173]

7
8 def turn_handle(self, new_position):
9 """Change the status of the valve."""
10 if new_position == 100:
11 self.open()
12 elif new_position == 0:
13 self.close()
14 else:
15 self.position = new_position
16 self.flow_out = self.flow_in * self.position / 100
17 self.press_drop(self.flow_out)
18 self.get_press_out(self.press_in)

Globe valves can be any position from fully open to fully closed, so the Globe subclass is
similar to the Gate subclass. The primary difference is in turn_handle(), which accepts
any value from 0 to 100. If the valve isn't fully open or closed, then the pressure and flow
parameters of the valve are automatically adjusted.

Relief valve class
Relief valves are the last subclass of the Valve parent class, as demonstrated in the
following code:

valve.py (part 10)
1 class Relief(Valve):
2 """Pressure relieving valve.
3
4 Assumes full open when open set point reached and fully closed when
close set point reached. Does not affect flow rate or system pressure;
those parameters must be adjusted elsewhere.
5 """
6 def __init__(self, name="", sys_flow_in=0.0, sys_flow_out=0.0,
drop=0.0, position=0, flow_coeff=0.0, press_in=0.0, open_press=0,
close_press=0):
7 """Inherits base initialization and adds valve open/close
pressure values."""
8 super(Relief, self).__init__(name, sys_flow_in, sys_flow_out,
drop, position, flow_coeff, press_in)
9 self.setpoint_open = open_press
10 self.setpoint_close = close_press

Pressure valves have pressure setpoints, above which the valve will open and below which
the valve will close. There's actually a small pressure range between initial lifting and being
fully open, as well as when closing. For our purposes, we don't need to account for that and
simply model the valve to be fully open/closed when the setpoints are reached.

Writing the Imported Program Chapter 7

[174]

The Relief subclass defines these setpoints during initialization. This method is unique,
compared to the other classes: it includes a super() call. This call ensures that the parent
class, Valve, is called for all standard parameters, while allowing Relief to add the new
parameters setpoint_open and setpoint_close. Hence, we don't have to redefine all of
the initial parameters just to add the two new ones.

The methods used for the relief valve, shown in the following two code blocks, are similar
to what we've seen before, so we won't elaborate on them:

valve.py (part 11)
1 def read_position(self):
2 """Identify the status of the valve."""
3 if self.position == 0:
4 return "{name} is closed.".format(name=self.name)
5 elif self.position == 100:
6 return "{name} is open.".format(name=self.name)
7 else: # bad condition
8 return "Warning! {name} is partially
open.".format(name=self.name)
9â€‹
10 def set_open_pressure(self, open_set):
11 """Set the pressure setpoint where the valve opens."""
12 self.setpoint_open = open_set
13â€‹
14 def read_open_pressure(self):
15 """Read the high pressure setpoint."""
16 return self.setpoint_open

The following code snippet is part 12 of valve.py:

valve.py (part 12)
1 def read_close_pressure(self):
2 """Read the low pressure setpoint."""
3 return self.setpoint_close
4
5 def set_close_press(self, close_set):
6 """Set the pressure setpoint where the valve closes."""
7 self.setpoint_close = close_set
8
9 def valve_operation(self, press_in):
10 """Open the valve if pressure is too high; close the valve when
pressure lowers."""
11 if press_in >= self.setpoint_open:
12 self.open()
13 elif press_in <= self.setpoint_close:
14 self.close()

Writing the Imported Program Chapter 7

[175]

The following code shows the simple tests for the valve program, much like we've done
before with the utility functions and tank program. They are broken up into three parts,
with each one dedicated to testing a specific child class type:

valve.py (part 13)
1 if __name__ == "__main__":
2 # Functional test_valves
3 # name="", sys_flow_in=0.0, position=0, flow_coeff=0.0, drop=0.0,
open_press=0, close_press=0
4 gate1 = Gate("Pump inlet")
5 print("{} created".format(gate1.name))
6 print(gate1.read_position())
7 gate1.turn_handle(100)
8 print(gate1.read_position())
9 gate1.close()
10 print(gate1.read_position())
11 gate1.open()
12 print(gate1.read_position())

The following code snippet is part 14 of valve.py:

valve.py (part 14)
 globe1 = Globe("\nThrottle valve", flow_coeff=21, press_in=10,
sys_flow_in=15)
 print("{} created".format(globe1.name))
 print(globe1.read_position())
 globe1.open()
 print(globe1.read_position())
 globe1.close()
 print(globe1.read_position())
 globe1.turn_handle(40)
 print(globe1.read_position())

The following code snippet is part 15 of valve.py:

valve.py (part 15)
 relief1 = Relief("\nPressure relief", open_press=25, close_press=20)
 print("{} created".format(relief1.name))
 print(relief1.read_position())
 print("The open setpoint is {}
psi.".format(relief1.read_open_pressure()))
 print("The close setpoint is {}
psi.".format(relief1.read_close_pressure()))
 relief1.set_open_pressure(75)
 relief1.set_close_press(73)
 print("The open setpoint is {}
psi.".format(relief1.read_open_pressure()))
 print("The close setpoint is {}

Writing the Imported Program Chapter 7

[176]

psi.".format(relief1.read_close_pressure()))
 relief1.valve_operation(75)
 print(relief1.read_position())
 relief1.valve_operation(73)
 print(relief1.read_position())

The output of running valve.py on its own is shown in the following screenshot:

Valve file output

Simulation pumps
The final main component of the fuel scenario are pumps. While the fuel simulation uses
positive displacement pumps (a given amount of fluid is pumped out per cycle), we will
also write code for centrifugal pumps (a type of variable displacement pump, which uses
an impeller to impart velocity and pressure to the fluid) to make this program more
universal.

Writing the Imported Program Chapter 7

[177]

Base pump class
First, we will define a base Pump class, much like we did for valves, as shown in the
following code:

pump.py (part 1)
1 #!/usr/bin/env python3
2 """
3 VirtualPLC pump.py
4
5 Purpose: Creates a generic Pump class for PLC-controlled SCADA systems.
6
7 Classes:
8 Pump: Generic superclass
9 CentrifPump: Pump subclass; provides for a variable displacement
pump
10 PositiveDisplacement: Pump subclass; provides for a positive
displacement pump
11
12 Author: Cody Jackson
13
14 Date: 4/12/18
15 #################################
16 Version 0.2
17 Added path extension to alleviate errors
18 Version 0.1
19 Initial build
20 """

Lines 1-20 are similar to what we've seen before, with the basic program information:

pump.py (part 2)
1 import sys
2 sys.path.extend(["/home/cody/PycharmProjects/VirtualPLC"])
3 import math
4 import numbers
5 from Utilities import utility_formulas
6
7 GRAVITY = 9.81 # m/s^2

Writing the Imported Program Chapter 7

[178]

In lines 1 and 2, notice that, like the Tank program, we have to extend the system's path to
include the root program directory to prevent errors when importing the utility formulas.

Line 7 defines the gravitational constant, which is used when calculating the power used by
the pump. Unlike our other constants, this one is in metric values, as it is necessary for the
pump power calculation:

pump.py (part 3)
1 class Pump:
2 """Generic class for pumps.
3
4 Displacement is the amount of fluid pushed through the pump per
second.
5 Horsepower coefficient is the slope of the equivalent pump curve.
6 """
7 def __init__(self, name="", flow_rate_out=0.0, pump_head_in=0.0,
press_out=0.0, pump_speed=0):
8 """Set initial parameters."""
9 self.name = name
10 self.__flow_rate_out = float(flow_rate_out)
11 self.head_in = float(pump_head_in)
12 self.__outlet_pressure = float(press_out)
13 self.__speed = pump_speed
14 self.__wattage = self.pump_power(self.__flow_rate_out,
self.diff_press_psi(self.head_in, self.outlet_pressure))

Line 1 starts the generic Pump class. The docstring (lines 2-6) provides some basic
information about the class, while lines 7-14 initialize the pump instance parameters. For a
pump, we care about the following:

The pump instance's name
The flow rate coming out of the pump
The net positive suction head at the pump's inlet—this value has to be higher
than the pump's minimum requirement to prevent cavitation
The pump's outlet pressure
The speed of the pump, typically measured in revolutions per minute (rpm)
The power used by the pump, measured in watts

pump.py (part 4)
1 @property
2 def speed(self):
3 """Get the current speed of the pump."""
4 return self.__speed
5
6 @speed.setter

Writing the Imported Program Chapter 7

[179]

7 def speed(self, new_speed):
8 """Change the pump speed."""
9 try:
10 if not isinstance(new_speed, numbers.Number):
11 raise TypeError("Numeric values only.")
12 elif new_speed < 0:
13 raise ValueError("Speed must be 0 or greater.")
14 else:
15 self.__speed = new_speed
16 except TypeError:
17 raise # Re-raise error for testing
18 except ValueError:
19 raise # Re-raise error for testing

The preceding code block defines the pump speed property and setter methods. Like the
previous examples, name mangling is used for property variables to ensure there is no
confusion with other names in the program. Notice that we are re-raising the exceptions in
lines 17 and 19 for use when we write our unit tests:

pump.py (part 5)
1 @property
2 def outlet_pressure(self):
3 """Get the current outlet pressure of the pump."""
4 return self.__outlet_pressure
5
6 @outlet_pressure.setter
7 def outlet_pressure(self, press):
8 """Set the pump outlet pressure."""
9 self.__outlet_pressure = press
10
11 @property
12 def flow(self):
13 """Get the current outlet flow rate of the pump."""
14 return self.__flow_rate_out

Lines 1-9 are the property and setter methods for the pump's outlet pressure, while lines
11-14 are for the output flow rate property method:

pump.py (part 6)
1 @flow.setter
2 def flow(self, flow_rate):
3 """Set the pump outlet flow."""
4 self.__flow_rate_out = flow_rate
5
6 @property
7 def power(self):
8 """Get the current power draw of the pump."""
9 return self.__wattage

Writing the Imported Program Chapter 7

[180]

10
11 @power.setter
12 def power(self, power):
13 """Set the pump power."""
14 self.__wattage = power

Lines 1-4 are the outlet flow rate setter method and lines 6-14 are for the pump's power
usage:

pump.py (part 7)
1 def pump_power(self, flow_rate, diff_head, fluid_spec_weight=62.4):
2 """Calculate pump power in kW.
3
4 Formula from
https://www.engineeringtoolbox.com/pumps-power-d_505.html.
5 Because imperial values are converted to metric, the calculation
isn't exactly the formula listed on the site; view the site's source code
to see the formula used.
6 """
7 flow_rate = flow_rate / 15852
8 density = fluid_spec_weight / 0.0624
9 head = diff_head / 3.2808
10 hyd_power = (100 * (flow_rate * density * GRAVITY * head) / 1000)
/ 100
11 self.power = hyd_power
12 return self.power

The actual power calculation is handled by the function defined in the preceding code
listing. As this formula was taken from a third-party site, testing the output was compared
to the website's output to ensure correct values were used. This is important to note when
using any external tools; the Python program's results have to be compared to the same
tool, as rounding errors or other problems may skew the results:

pump.py (part 8)
1 @staticmethod
2 def diff_press_ft(in_press_ft, out_press_ft):
3 """Calculate differential head across pump, converted from
feet."""
4 in_press = utility_formulas.head_to_press(in_press_ft)
5 out_press = utility_formulas.head_to_press(out_press_ft)
6 delta_p = out_press - in_press
7 return delta_p
8
9 @staticmethod
10 def diff_press_psi(press_in, press_out):
11 """Calculate differential pump head."""
12 delta_p = abs(press_out - press_in) # Account for Pout < Pin
13 return delta_p

Writing the Imported Program Chapter 7

[181]

The preceding code listing creates two static methods that calculate the pressure difference
from the pump inlet to outlet; essentially, this is the increase in pressure from the pump.
This method can be used by all instances of the class, as well as the class itself. Lines 1-7
return the pressure in feet of head pressure, while the static method in lines 9-13 returns
PSI.

Centrifugal pump class
Having written all of the code for any generic pump, we now write the code for centrifugal
pumps, which are the most common type of variable displacement pumps. This code is
shown here:

pump.py (part 9)
1class CentrifPump(Pump):
2 """Defines a variable-displacement, centrifugal-style pump."""
3
4 def get_speed_str(self):
5 """Get the current speed of the pump, in rpm."""
6 if self.speed == 0:
7 return "The pump is stopped."
8 else:
9 return "The pump is running at {speed}
rpm.".format(speed=self.speed)
10
11 def get_flow_str(self):
12 """Get the current flow rate of the pump."""
13 return "The pump output flow rate is {flow}
gpm.".format(flow=self.flow)

Line 1 subclasses the Pump base class to create the CentrifPump subclass. For this
particular type of pump, we don't require any special parameters beyond the default,
generic ones, so we don't have to provide a new __init__ method.

Lines 4-9 create a method that returns a string, indicating the speed of the pump or if it is
not running. Lines 11-13 do the same thing for pump flow rate:

pump.py (part 10)
1 def get_press_str(self):
2 """Get the current output pressure for the pump."""
3 return "The pump pressure is {press:.2f}
psi.".format(press=self.outlet_pressure)
4

Writing the Imported Program Chapter 7

[182]

5 def get_power_str(self):
6 """Get the current power draw for the pump."""
7 return "The power usage for the pump is {pow:.2f}
kW.".format(pow=self.power)

Lines 1-3 provide a string output for pump outlet pressure, and lines 5-7 are for pump
power:

pump.py (part 11)
1 def adjust_speed(self, new_speed):
2 """Defines pump characteristics that are based on pump speed.
3
4 Only applies to variable displacement (centrifugal) pumps.
Variable names match pump law equations.
5 """
6 n2 = new_speed # Validate input
7
8 if self.speed == 0: # Pump initially stopped
9 n1 = 1
10 else:
11 n1 = self.speed
12 v1 = self.flow
13 hp1 = self.outlet_pressure
14
15 self.flow = v1 * (n2 / n1) # New flow rate
16 self.outlet_pressure = hp1 * math.pow((n2 / n1), 2) # New outlet
pressure
17 self.speed = n2 # Replace old speed with new value
18 delta_p = self.diff_press_psi(self.head_in,
utility_formulas.press_to_head(self.outlet_pressure))
19 self.power = self.pump_power(self.flow, delta_p)

The method that is defined in the following code listing adjusts the speed of the pump, but
requires some explanation. Centrifugal pump operating characteristics are defined by the
following pump affinity laws:

Flow rate is proportional to pump speed (Q ∝ N)

Pressure (head) is proportional to the square of pump speed (H ∝)
Power is proportional to the cube of pump speed (P ∝)

Writing the Imported Program Chapter 7

[183]

Hence, to double the flow rate from a centrifugal pump, the output pressure increases four-
fold while the power required increases by a factor of eight.

The adjust_speed() method uses these pump laws to calculate the resulting changes as
pump speed varies. It also attempts to account for a pump that is initially started, as the
formulas assume a steady-state running condition:

pump.py (part 12)
1 def start_pump(self, speed, flow, out_press=0.0, out_ft=0.0):
2 """System characteristics when a pump is initially started.
3
4 Assumes all valves fully open, i.e. maximum flow rate.
5
6 """
7 self.speed = speed
8 self.flow = flow
9 if out_press > 0.0:
10 self.outlet_pressure = out_press
11 elif out_ft > 0.0:
12 self.outlet_pressure = utility_formulas.head_to_press(out_ft)
13 else:
14 return "Outlet pump pressure required."
15 delta_p = self.outlet_pressure -
utility_formulas.head_to_press(self.head_in)
16 self.power = self.pump_power(self.flow, delta_p)
17
18 return self.speed, self.flow, self.outlet_pressure, self.power

The method in the preceding code listing initializes the pump's characteristics when it is
initially started. This is only necessary when after a pump instance has been initially
created and either the instance was set to a stopped condition or was shut off.

Positive displacement pump class
Positive displacement pumps are any pumps that have a set amount of fluid capacity per
revolution, which includes rotary, reciprocating, and linear types. Examples include screw
pumps, gear pumps, piston pumps, and diaphragm pumps.

The following code listings define the generic characteristics for any positive displacement
pump; because it is a general class, any true simulation would require more specific
engineering formulas:

pump.py (part 13)
1 class PositiveDisplacement(Pump):
2 """Defines a positive-displacement pump."""

Writing the Imported Program Chapter 7

[184]

3
4 def __init__(self, name="", flow_rate_out=0.0, pump_head_in=0.0,
press_out=0.0, pump_speed=0, displacement=0.0):
5 super(PositiveDisplacement, self).__init__(name, flow_rate_out,
pump_head_in, press_out, pump_speed)
6 self.displacement = displacement
7
8 def get_speed_str(self):
9 """Get the current speed of the pump, in rpm."""
10 if self.speed == 0:
11 return "The pump is stopped."
12 else:
13 return "The pump is running at {speed}
rpm.".format(speed=self.speed)

For this pump, we have to account for the fluid displacement that occurs per cycle of the
pump, so we define a new __init__ method in line 4 and create the new variable
displacement in line 6.

Lines 8-13 is a string return method for speed, similar to the centrifugal pump class:

pump.py (part 14)
1 def get_flow_str(self):
2 """Get the current flow rate of the pump."""
3 return "The pump outlet flow rate is {flow}
gpm.".format(flow=self.flow)
4
5 def get_press_str(self):
6 """Get the current output pressure for the pump."""
7 return "The pump pressure is {press:.2f}
psi.".format(press=self.outlet_pressure)
8
9 def get_power_str(self):
10 """Get the current power draw for the pump."""
11 return "The power usage for the pump is {pow:.2f}
kW.".format(pow=self.power)

The methods listed here are the same types of methods as the centrifugal pump and require
no additional explanation.

pump.py (part 15)
1 def adjust_speed(self, new_speed):
2 """Modify the speed of the pump, assuming constant outlet
pressure.
3
4 Affects the outlet flow rate and power requirements for the pump.
5 """
6 self.speed = new_speed

Writing the Imported Program Chapter 7

[185]

7 press_in = utility_formulas.head_to_press(self.head_in)
8
9 self.flow = self.speed * self.displacement
10 self.power = self.pump_power(self.flow,
self.diff_press_psi(press_in, self.outlet_pressure))
11 # TODO: Account for different flow rates based on outlet pressure

The speed of a positive displacement pump changes the amount of fluid pumped per cycle,
as a set amount is moved each time. Therefore, a new speed method is created in the
preceding code listing.

Line 11 is a TODO reminder that we will have to return later and figure out how to calculate
changes in flow rate based on system pressure. Positive displacement pumps function
differently than centrifugal pumps when it comes to outlet pressure. While centrifugal
pumps can operate even if the outlet valve is completely shut, positive displacement
pumps will continue to displace the same amount of fluid with each revolution, regardless
of any obstructions. If it continues long enough, the piping or connections will break due to
overpressure.

In other words, with a given speed, a positive displacement pump will attempt to maintain
a constant flow rate. The actual flow rate will change based on the backpressure seen on the
outlet of the pump, which is shown in the manufacturer's documentation. Currently, this
pump program does not account for these real-world changes, but should be included in
the future to provide a better simulation.

The basic functionality tests for the pump program are shown next, in two different code
listings:

pump.py (part 16)
1 if __name__ == "__main__":
2 # Functional test_valves
3 # name="", flow_rate=0.0, pump_head_in=0.0, press_out=0.0,
pump_speed=0, hp=0.0, displacement=0.0
4 pump1 = CentrifPump("Pumpy", 75, 12, 25, 125)
5 print("{} created.".format(pump1.name))
6 print(pump1.get_speed_str())
7 print(pump1.get_flow_str())
8 print(pump1.get_power_str())
9 print(pump1.get_press_str())
10 pump1.adjust_speed(50)
11 print(pump1.get_speed_str())
12 print(pump1.get_flow_str())
13 print(pump1.get_power_str())
14 print(pump1.get_press_str())
15 pump1.adjust_speed(0)
16 print(pump1.get_speed_str())

Writing the Imported Program Chapter 7

[186]

17 print(pump1.get_flow_str())
18 print(pump1.get_power_str())
19 print(pump1.get_press_str())
pump.py (part 17)
1 pump2 = PositiveDisplacement("Grumpy", 100, 0, 200, 300, 0.15)
2 print("\n{} created.".format(pump2.name))
3 print(pump2.get_speed_str())
4 print(pump2.get_flow_str())
5 print(pump2.get_power_str())
6 pump2.adjust_speed(50)
7 print(pump2.get_speed_str())
8 print(pump2.get_flow_str())
9 print(pump2.get_power_str())
10 pump2.adjust_speed(0)
11 print(pump2.get_speed_str())
12 print(pump2.get_flow_str())
13 print(pump2.get_power_str())

The output of these tests are shown in following screenshot:

Pump test output

Writing the Imported Program Chapter 7

[187]

Summary
In this chapter, we developed the requirements for a generic liquid storage and transfer
system, for later use in a fueling scenario. We created several utility functions that will help
with individual component calculations, as well as writing the code for storage tanks,
valves, and pumps.

In the next chapter, we will learn how to write automated tests to double-check our code, as
well as alerting us if code changes cause breakages.

8
Automated Software Testing

ISoftware testing is performed to ensure the final product will meet the needs of the
customer or stakeholders. Software is checked to see whether all of the expected output is
generated and that no overly detrimental errors occur. No program is bug-free, and
enhancements are often made, so testing needs to be a firm part of the product life cycle.

To be honest, I didn't learn about writing tests until fairly recently. After listening to a
Python podcast, this appears to be a common problem with developers; some computer
science degrees never teach testing within the curriculum, so a large number of
programmers are forced to learn on their own.

After writing small programs to gain familiarity with testing, the fuel farm scenario in this
book was the first large-scale implementation of software testing I performed, as the
scenario was to be used in a training program. Therefore, I had to make sure that the code
worked as expected and the physical parameters were correct.

In this chapter, we will cover the following topics:

Testing techniques
Writing tests
Refactoring code

Testing techniques
When testing software, a wide range of philosophies and methodologies have been
developed over the years. Some people write the entire program and then attempt to
manually check every user action to verify the results. Others write their tests first
(knowing they will fail), then write the code to make the tests pass. We will discuss some of
the more common testing methods in this section.

Automated Software Testing Chapter 8

[189]

Static versus dynamic tests
Static testing generally comprises a review of the code without trying to run it. This
includes actually looking through the code, an action similar to proofreading, as well as
using tools such as text editors or compilers to check syntax and logic flow.

Dynamic tests run the program, or portions of it, to look at the inner workings (as is the
case when using a debugger) or just to validate the expected output.

White-box testing
White-box testing checks the internal workings of the software rather than the user
experience. It looks at the source code and follows different paths through the code, such as
all of the possible branches of if...else statements.

In addition, white-box testing considers all the possible connections between the different
parts of an application. So, not only will a particular unit, such as a class, be looked at, but
also all of the classes within a module and all of the modules within a program.

The problem with white-box testing is that it can only identify problems in code that has
been implemented. If a particular condition is marked as TODO, but no logic has been
written to even call the condition, such as a simple code stub, then testing won't be able to
identify that a project requirement is missing.

White-box testing can include the following:

Application Programming Interface (API) testing: This means checking public
and private APIs. An API is simply a way to interact with the program without
having to know the inner workings. For example, in the preceding fuel program,
using the close() method changes the position of a valve and ensures that all of
the outlet flow and pressure values are set to zero. The method allows a
programmer to work with the program without requiring knowledge of how the
model works.
Code coverage: This means creating tests that check the desired amount of code.
It may not be possible, or necessary, to check 100% of an application, but some
coding shops require a certain amount of code to be checked, whether it is a
percentage of the whole code base or a certain number of classes, functions, and
so on.

Automated Software Testing Chapter 8

[190]

Fault injection: This means intentionally feeding bad data or other faults into the
software and checking the results. In security testing, fuzzing performs a similar
function, where a variety of data is fed into a system to see what potential
vulnerabilities exist.
Mutation testing: This means checking the quality of software tests themselves
by checking how effective they are in preventing changes to the code. The
program is modified slightly (mutated) and the tests are run. The tests look for
changes in the code and, hopefully, reject the changes. The percentage of mutants
that are killed (caught by tests and rejected) is the rating of the test suite.
Mutants often mimic programming errors, such as incorrect variables, or logic
errors, such as dividing by zero.
Static testing: This means looking at the code itself without actually running it.

Black-box testing
Black-box testing could be considered more of a quality-control/quality-assurance check.
The application is tested based on what a user would expect to deal with, without any
knowledge of the source code itself; the software is considered a "black box", and only the
input and output is known, not how it is manipulated.

Some of black-box techniques include the following :

Equivalence partitioning: Input is partitioned into equivalent data from which
tests are created. Ideally, each partition is tested at least once. The purpose is to
identify classes of errors rather than individual errors, thereby reducing the total
number of tests that have to be written.
Boundary-value analysis: Within a set of values, the minimum and maximum
values are tested, allowing easy elimination of everything in between as potential
errors.
All-pairs testing: If all possible input combinations are identified, then testing all
possible, discrete pairings can help speed parameter testing.
State testing: Using one of several different "state machines" (such as a state table
or state diagram), all possible states of a system are identified and tested. Input
includes normal input parameters, as well as the current state, while output
includes normal output parameters and the new state.

Automated Software Testing Chapter 8

[191]

Decision table: A visual representation of if...else statements, switch cases,
and so on. An example of this is a troubleshooting guide in a vendor manual. A
decision table can be used to validate the various conditions in order to verify
whether everything is accounted for in both expected and unexpected use cases.
As a table, it could also be made into a database or another computer-readable
format to provide automated testing.
Fuzzing: This uses automated software to produce a variety of input values to
determine how they affect system outcome, such as crashes, error generation,
and memory leaks.
Use cases: A list of actions that defines a variety of expected uses of the software
and the expected outcomes. This is often a key part of agile programming, as it
helps direct a programming team in the final product's capabilities.

When to test
Tests can be written before, during, or after coding the project. Test-Driven Development
(TDD) uses the idea of short development cycles, with each cycle based on a set number of
features to implement. Prior to coding, tests are written (and expected to fail) that dictate
the end states of the different features. The actual code is written with an eye to making the
tests pass; once a test passes, no further work is necessary for that particular feature.

The problem with TDD is that it focuses on small portions of the overall project, but doesn't
necessarily address full functional testing of the product. It also means that management
has to support the TDD paradigm. Many managers feel testing is a waste of time or, at best,
left until the end of the project; they often feel that writing tests doesn't add to meeting
deadlines because it isn't functional code.

TDD also means that the tests need to be thought out and designed to address the needs of
the project. Since the main code is written to make tests pass, it's entirely possible that
portions of the project aren't written because someone forgot to write the tests for it.

More common, at least in this my experience, is testing after development. While a variety
of agile programming techniques dictate how the project code is written, the tests are
written after most of the project is completed.

The advantage is that all aspects of the project can be tested, because the developers already
known what is present. A disadvantage is that some of the project code could be wasteful if
it was written without a purpose; in other words, while TDD allows the programmer to
stop writing code when a test passes, writing tests after the fact means that more tests may
have to be written, and some project code may have been written that wasn't necessary to
meet project requirements.

Automated Software Testing Chapter 8

[192]

Ultimately, while it is better to test early and test often, having tests at all is more important
than not having any tests.

Writing tests
Python has a number of different testing libraries available. The default library that comes
with Python is unittest. This library is based on JUnit, from Java, and it shows. In this my
opinion, the library is not especially user friendly, and there are 12 different tests to choose
from, based on the expected outcome of the code. Writing the tests isn't especially intuitive
for beginners, partly because of the amount of boilerplate code required just to work with
unittest.

While nose2 is available as a third-party testing library, a more popular option is pytest.
It requires no boilerplate; most of the time, just having pytest installed on your system is
sufficient, though, in some cases, an explicit import of pytest is required. Tests are written
as you would write normal Python code; the assert keyword tells the testing framework
what the expected outcome is.

The easiest way to learn how to test is to see the code, which is especially useful in this case
since pytest is so easy to use. The test file that we will cover in this section is separated
into different sections for clarity, but they are all part of the same file.

It should be noted that, for pytest to work properly, all test files have to start with the
word test_. In addition, the following test file contains arbitrary components; it is simply
testing whether the class methods we have written perform as expected, prior to writing
the actual simulation:

test_functions.py (part 1)
1 """Assumes valves in series, with the first supplied by a tank 10 feet
above the valve with a pipe length of 6 feet.
2 Water level is 4 feet above tank bottom; total water head = 14 feet.
3 """
4 from PipingSystems.pump.pump import CentrifPump, PositiveDisplacement
5 from PipingSystems.valve.valve import Gate, Globe, Relief
6
7 valve1 = Gate("Valve 1", position=100, flow_coeff=200,
sys_flow_in=utility_formulas.gravity_flow_rate(2, 1.67),
press_in=utility_formulas.static_press(14))
8 pump1 = CentrifPump("Pump 1")
9 throttle1 = Globe("Throttle 1", position=100, flow_coeff=21)
10 valve2 = Gate("Valve 2", position=100, flow_coeff=200)
11 valve3 = Gate("Valve 3", position=100, flow_coeff=200)

Automated Software Testing Chapter 8

[193]

Lines 1-3 provide some basic background assumptions for this test file. This helps when
double-checking the results.

We have to import the items that we want to test, so the specific components are identified
in lines 4 and 5.

Starting with line 7, we create instances of each component and provide the initial values. A
position of 100 means that the valve is fully open. The flow coefficient represents how
much the valve's constructions affects the flow that passes through it; a higher value
indicates a lesser impact on the flow rate and pressure drop. Look at the following code:

test_functions.py (part 2)
1 pump2 = PositiveDisplacement("Gear Pump", displacement=0.096,
press_out=30)
2 relief1 = Relief("Relief 1", position=0, open_press=60, close_press=55)
3 recirc1 = Globe("Throttle 2", position=100, flow_coeff=21)
4 valve4 = Gate("Valve 4", position=100, flow_coeff=200)
5
6 # Utility functions
7 def test_grav_flow():
8 flow_rate = utility_formulas.gravity_flow_rate(2, 1.67)
9 assert flow_rate == 319.28008077388426
10
11
12 def test_static_press():
13 press = utility_formulas.static_press(14)
14 assert press == 6.068373888888889

Lines 1-4 continue the creation of the component instances we will test. Starting with line 8,
we define the functions that will test our utility formulas.

When using pytest, we define the test function (starting with the word test_), followed
by the normal code logic that we expect to use in the final product (lines 8 and 13). Once all
of the functionality has been defined, we create one or more assert statements that test the
final outcome against its expected value (lines 9 and 15).

Depending on how you want to write your tests, you can accept the default precision of
Python calculations, as shown in the following code, or you can truncate/round the results
to the desired precision. A case could be made either way, as it doesn't require any extra
effort to use the default, but if your final value is off by one value, the entire assertion errors
out:

test_functions.py (part 3)
class TestSystem:

Gate Valve 1

Automated Software Testing Chapter 8

[194]

def test_v1_press_in(self):
 assert valve1.press_in == 6.068373888888889

def test_v1_flow_in(self):
 assert valve1.flow_in == 319.28008077388426

def test_v1_flow_out(self):
 valve1.flow_out = valve1.flow_in
 assert valve1.flow_out == 319.28008077388426

In the preceding code listing, we can see an alternative way to use pytest. You can use
individual functions, as demonstrated in part 2, or you can make a test class and define
methods for each test case. This is useful if you have multiple tests that relate to each other.
In this example, we are simply testing a single system with limited components; you could
also have a separate class for each component type, different subsystems, and so on.

For this test suite, we will test the input/output flow rates and pressure values for the
components, based on our expectations, as shown in the following code:

test_functions.py (part 4)
def test_v1_press_drop(self):
 valve1.press_drop(valve1.flow_out)
 assert valve1.deltaP == 2.5484942494744516

def test_v1_press_out(self):
 valve1.get_press_out(valve1.press_in)
 assert valve1.press_out == 3.5198796394144374

Centrifugal Pump
def test_pump1_input_press(self):
 pump1.head_in = utility_formulas.press_to_head(valve1.press_out)
 assert pump1.head_in == 8.119222584669064

Following code snippet is the part 5 of test_functions.py:

test_functions.py (part 5)
def test_pump1_start_pump(self):
 pump1.start_pump(1750, 50, 16)
 assert pump1.speed == 1750
 assert pump1.flow == 50.0
 assert pump1.outlet_pressure == 16
 assert pump1.power == 0.11770474358069433

Globe valve 1
def test_t1_press_in(self):
 throttle1.press_in = pump1.outlet_pressure
 assert throttle1.press_in == 16

Automated Software Testing Chapter 8

[195]

In the preceding code listing, we can see that multiple assert statements can be used
within a single test case. Here, once a pump is started, we want to ensure that all of the
pump parameters are set correctly. Rather than writing a separate test case for each
condition, we can put all assertions into one case, as shown in the previous code. The
following code snippet is part 6 of test_functions.py

test_functions.py (part 6)
def test_t1_flow_in(self):
throttle1.flow_in = pump1.flow
assert throttle1.flow_in == 50.0

def test_t1_flow_out(self):
throttle1.flow_out = throttle1.flow_in
assert throttle1.flow_out == 50.0

def test_t1_press_drop(self):
throttle1.press_drop(throttle1.flow_out)
assert throttle1.deltaP == 5.668934240362812

def test_t1_press_out(self):
throttle1.get_press_out(throttle1.press_in)
assert throttle1.press_out == 10.331065759637188

Following code snippet is the part 7 of test_functions.py:

test_functions.py (part 7)
Gate Valve 2
def test_v2_input_press(self):
 valve2.press_in = throttle1.press_out
 assert valve2.press_in == 10.331065759637188

def test_v2_input_flow(self):
 valve2.flow_in = throttle1.flow_out
 assert valve2.flow_in == 50.0

def test_v2_output_flow(self):
 valve2.flow_out = valve2.flow_in
 assert valve2.flow_out == 50.0

Following code snippet is the part 8 of test_functions.py:

test_functions.py (part 8)
def test_v2_press_drop(self):
 valve2.press_drop(valve2.flow_out)
 assert valve2.deltaP == 0.0625

Automated Software Testing Chapter 8

[196]

def test_v2_press_out(self):
 valve2.get_press_out(valve2.press_in)
 assert valve2.press_out == 10.268565759637188

Gate Valve 3
def test_v3_input_press(self):
 valve3.press_in = valve2.press_out
 assert valve3.press_in == 10.268565759637188

Following code snippet is the part 9 of test_functions.py:

test_functions.py (part 9)
def test_v3_input_flow(self):
 valve3.flow_in = valve2.flow_out
 assert valve3.flow_in == 50.0

def test_v3_output_flow(self):
 valve3.flow_out = valve3.flow_in
 assert valve3.flow_out == 50.0

def test_v3_press_drop(self):
 valve3.press_drop(valve3.flow_out)
 assert valve3.deltaP == 0.0625

def test_v3_press_out(self):
 valve3.get_press_out(valve3.press_in)
 assert valve3.press_out == 10.206065759637188

Following code snippet is the part 10 of test_functions.py:

test_functions.py (part 10)
Gear Pump
def test_pump2_input_press(self):
 pump2.head_in = utility_formulas.press_to_head(valve3.press_out)
 assert pump2.head_in == 23.542088964737797

def test_pump2_output(self):
 pump2.adjust_speed(300)
 assert pump2.speed == 300
 assert pump2.flow == 28.8
 assert pump2.power == 0.10753003776038036

Relief Valve 1
def test_relief1_input_press(self):
 relief1.press_in = pump2.outlet_pressure
 assert relief1.press_in == 30

Automated Software Testing Chapter 8

[197]

Following code snippet is the part 11 of test_functions.py:

test_functions.py (part 11)
Globe Valve 2
def test_t2_input_press(self):
 recirc1.press_in = pump2.outlet_pressure
 assert recirc1.press_in == 30

def test_t2_input_flow(self):
 recirc1.flow_in = pump2.flow
 assert recirc1.flow_in == 28.8

def test_t2_output_flow(self):
 recirc1.flow_out = recirc1.flow_in
 assert recirc1.flow_out == 28.8

def test_2_press_drop(self):
 recirc1.press_drop(recirc1.flow_out)
 assert recirc1.deltaP == 1.8808163265306124

Following code snippet is the part 12 of test_functions.py:

test_functions.py (part 12)
def test_t2_press_out(self):
 recirc1.get_press_out(recirc1.press_in)
 assert recirc1.press_out == 28.119183673469387

Gate Valve 4
def test_v4_input_press(self):
 valve4.press_in = recirc1.press_out
 assert valve4.press_in == 28.119183673469387

def test_v4_input_flow(self):
 valve4.flow_in = recirc1.flow_out
 assert valve4.flow_in == 28.8

Following code snippet is the part 13 of test_functions.py:

test_functions.py (part 13)
def test_v4_output_flow(self):
 valve4.flow_out = valve4.flow_in
 assert valve4.flow_out == 28.8

def test_v4_press_drop(self):
 valve4.press_drop(valve4.flow_out)
 assert valve4.deltaP == 0.020736000000000004

Automated Software Testing Chapter 8

[198]

def test_v4_press_out(self):
 valve4.get_press_out(valve4.press_in)
 assert valve4.press_out == 28.098447673469387

Assuming that we have written the tests correctly, this will be completed successfully. The
following screenshot shows successful completion:

A pytest success

Each of the dots represents a test case that has successfully passed. We also receive
information on the total number of tests that were processed, as well as the total time
required to perform all of the tests.

If we had a problem, we would see something like the following screenshot:

pytest failure

Automated Software Testing Chapter 8

[199]

The pytest library is helpful in telling us the problem. First, where we saw a row of dots
previously, a capital F shows where the failure occurred among all of the test cases.

Second, a FAILURES section provides the details. In this instance, it tells us the test case
that failed (test_grav_flow()), the specific assertion statement that failed, and what the
actual received result was compared to the expected value. The expected value is what we
have written into the test case; in this case, we deleted the final number from the calculated
flow rate, resulting in the error.

There are many other tests that can be written, such as testing a generic pump instance, and
testing a specific gate valve instance. The following screenshot shows how to run multiple
test files at one time (these test files are provided in the code repository for this book):

Multiple pytest cases

With the preceding test run, we pointed pytest at a directory that contained the test files
we wanted to run. As shown in the test results, 149 test cases were found. The pytest
library will process all of the tests within each file, providing a running count of the total
percentage completed after each file.

Automated Software Testing Chapter 8

[200]

One final thing to point out about tests refers back to re-raising exceptions in our code.
When an exception is re-raised after catching it, it allows a test case to capture the exception
and run an assert statement against it, just like the calculations we've tested. The
following code listing provides an example of this (this is just one test method from the
entire test file):

def test_tank_level_str(self):
 tank1 = Tank()
 with pytest.raises(TypeError) as excinfo:
 tank1.level = "a"
 exception_msg = excinfo.value.args[0]
 assert exception_msg == "Numeric values only."

In this test, we want to check whether an exception is raised if a non-numeric value is
provided as an argument to the tank-level method in tank.py. Doing this allows us to
ensure that the correct exception is generated, as well as the error message that is printed,
thereby allowing multiple exceptions with different messages to be tested.

Refactoring code
When debugging, testing, and troubleshooting, code is often rewritten to change how it
works, a process that is also known as refactoring. The benefit of having test cases available
means that changes to the code can be checked to see whether functionality has been
compromised, such as interactions between functions or methods or if end-user
complications have developed.

In large testing projects, continuous integration test suites are utilized to check code as the
developers upload it to the server. These tests not only check each developer's code, but
also check it against other code that was submitted to ensure that the entire project
continues to function properly.

Refactoring can take many different forms, such as the following:

Adding comments to help clarify key bits of code or why a certain piece of logic
was used.
Improving readability by separating code into logical blocks.
Abstracting code into more general types. For example, if we had started the fuel
scenario by writing the code for a globe valve, we could refactor it by abstracting
the valve parameters to make a generic valve class.
Encapsulation fields, which force code to use getter/setter methods rather than
direct access.

Automated Software Testing Chapter 8

[201]

Replacing conditional behavior with class polymorphism. In other words,
instead of testing for different conditions that dictate different logic paths, we
create a class with a method that can account for the different conditions.
Separating functions/methods that perform several jobs into multiple ones,
where each one does only one job.
Moving methods to more appropriate classes or even modules.
Renaming objects to make them readily understandable.
Converting a class into a superclass (pull up) and converting other classes into
subclasses (push down).

When using an IDE, a number of refactoring tools may be available with just a click of a
mouse. For example, the PyCharm IDE provides the following refactoring tools:

Rename: This renames anything, from a variable or function to modules and
projects.
Change signature: This can be used to rename functions, add/remove
parameters, assign default values, or reorder parameters.
Move: This moves an object to another location within the code directory.
Copy: This copies an object to another location within the code directory.
Safe delete: Before deletion, PyCharm will check for locations where the file is
being called. If found, the user will be allowed to make changes to the code prior
to deletion.
Extract: This addresses expressions that are hard to understand or are duplicated
in the code by placing the expression result into a separate variable that is less
complex and, therefore, easier to understand.
Parameter: This adds a new parameter to a function declaration and
automatically updates function calls.
Superclass: This creates a superclass from the existing class or renames the
existing class to become an implementation for a new superclass.
Constant: This allows the conversion of multiple occurrences of an expression
into one constant.
Field: This allows the declaration of a new field and its initialization with a
selected expression.
Method: This takes a code fragment that can be grouped together and creates a
separate method with it.
Variable: This allows conversion of a duplicated expression, or one that is hard
to understand, into a separate variable that is less complex.

Automated Software Testing Chapter 8

[202]

Inline: The following items are the opposite implementation of their respective
"extract" tools:

Variable
Constant
Field
Parameter
Method
Superclass

Invert Boolean: This changes any Boolean value to its opposite. This also
changes its respective usage.
Pull members up: This moves class members to a superclass.
Push members down: This moves class members to a subclass.
Convert in Python package: This automatically converts a directory or
subdirectory into a Python package with the required __init__.py file.
Convert in Python module: This consolidate all modules from a package into a
single module.

Summary
In this chapter, we learned about why testing is important, the different methodologies
regarding software testing, and how to write tests using pytest, and we looked at some
concepts and tools to use when refactoring code.

In the next chapter, we will take our simulated components and actually write the code to
simulate a portion of the schematic drawing from Chapter 7, Writing the Imported Program,
the diagram entitled Project schematic diagram. We will also write some tests to verify that
the functionality of the simulation works correctly.

9
Writing the Fueling Scenario

In the last two chapters, we learned about writing the code that creates the components for
our final project, as well as writing tests to confirm that the logic works correctly. That
actually doesn't do anything for us besides laying the groundwork for creating different
piping and fluid-transfer scenarios.

In this chapter, we will plan how the final scenario (a fuel-storage and fuel-transfer system),
based on the schematic drawing, will actually function, write the code that creates the
components and their associated functionality, and, finally, write tests to ensure that the
coded design actually works.

In this chapter, we will cover the following topics:

Fueling scenario requirements
Directory structure
Component coding
Functionality coding
Testing

Fueling scenario requirements
We established the generic fluid simulation requirements in Chapter 7, Writing the Imported
Program. Now we will determine the requirements for creating a fuel farm. A fuel farm is a
storage and transfer location for fuel, often seen at airports, trucking companies, and so on.

Writing the Fueling Scenario Chapter 9

[204]

The fuel tanks can be above or below ground, and often comprise both large storage tanks
(holding millions of gallons of fuel) and service tanks (holding hundreds of gallons of fuel).
Storage tanks are just that, storage for fuel prior to its transfer to the service tanks. Service
tanks hold the fuel that is pumped into a vehicle, or otherwise put to use. Typically, there is
equipment to separate water and particulate matter from the fuel as it is moved from the
storage tank to the service tank. In addition, sample lines allow fuel to be tested for a
number of factors such as color, clarity, and so on.

Our project is based on the schematic drawing that we saw before in Chapter 7, Writing the
Imported Program, and which is reprinted in the following image:

Fuel farm schematic

Writing the Fueling Scenario Chapter 9

[205]

In this drawing, there are no service tanks, so the fuel is taken directly from the storage
tanks, through the pumps, and out to either the airport flight line or a fuel truck. In our
code, we will only model the following components:

Pumps 1-3
Gate valves 1-10
Pressure relief valves 1-3
Outlet pressure regulating valves 1-3
Storage tanks 1 and 2

The reason we will only model these components is that these have the largest effect on the
system. After the pressure regulating valves, it doesn't really matter what the valves are
doing, as the regulating valves will ensure that the outlet pressure of the pumps remains
constant. In addition, these devices can be remotely operated, which will be a key
component when we make a graphical interface.

In addition, the fluid characteristics will be based on JP-8/Jet A aviation fuel. It is a
kerosene-based fuel that is commonly used by military jets, as well as commercial airliners.
While we don't currently model the viscosity of fluids (a key factor if we want to show
what happens as temperature fluctuates), we do account for density and specific gravity; of
course, new characteristics can always be added at a later time, if necessary.

Directory structure
One thing that hasn't been mentioned yet is the directory structure for this project. So far,
the assumption has been that you are placing all of these items within the same directory,
or have an intelligent way to separate files, as in the case of tests.

Writing the Fueling Scenario Chapter 9

[206]

The following screenshot shows the current directory structure as created on my computer:

Project directory tree

Writing the Fueling Scenario Chapter 9

[207]

This output was provided by the Linux tree command, and it shows all important
directories and files from the project's root directory. You'll note that there are a lot of
__init__.py files scattered throughout. Each directory that has an __init__.py file is
treated as if it contains Python packages, regardless of whether it actually does. This
prevents directories with common names, such as OS-specific directories, from hiding valid
modules that happen to have the same name.

The models directory is designed to hold any fluid model. Currently, we only have the fuel
farm model that we have been talking about, so it only contains the FuelFarm
subdirectory. Within that subdirectory are the two files that we will write in this chapter
and an hmi subdirectory that we will cover in a later chapter, when we learn how to put a
graphical interface to this project.

The PipingSystems directory contains the subdirectories for the pump, tank, and valve-
modeling files. The user_creation_script.py file is a program in development, and
will not be discussed in this book.

The tests directory contains all the tests for the entire program. The models subdirectory
contains the tests for any models that we create, while piping holds the tests for the initial
modeling code.

The Utilities directory currently holds the utility_formulas.py file we created
during our initial modeling, but it can also contain future tools for different models.

Finally, venv is the directory that holds all the necessary files and configurations for our
pipenv virtual Python environment. It is created automatically when we create a new
pipenv.

Component coding
Since we have already coded the foundation parts of the valves, pumps, and tanks, writing
the instances of the specific components for our diagram is comparatively easy, as shown in
the code listings that we will explain in this section.

Writing the Fueling Scenario Chapter 9

[208]

We have split the components.py file into the following separate parts, with a discussion
of each code listing following its respective part. Part 1 is the same introduction that we've
seen before. If you look at the date for this listing compared to the previous ones, you'll see
that it took about two months to complete the work on the foundation code. Of course, this
work was done by one person, who also had other work projects to handle during the same
time frame, but it's also a good example of how much time it takes to make full-blown
programming projects, especially if it's a personal project:

components.py (part 1)

1 #!/usr/bin/env python3
2 """
3 FuelFarm.py
4
5 Purpose: Simulate an aviation fuel storage and transfer system.
6
7 Author: Cody Jackson
8
9 Date: 6/12/18
10 #################################
11 Version 0.2
12 Added path extension for utility formulas
13 Version 0.1
14 Initial build
15 """

We've seen the code in part 2 before as well. We have the normal imports, plus the
extension to the system path to ensure that we can actually call the parts of the project that
we need without errors. We also specify the unique density and specific gravity values of
JP-8 fuel:

components.py (part 2)

1 import sys
2 sys.path.extend(["/home/cody/PycharmProjects/VirtualPLC"])
3 from Utilities import utility_formulas
4
5 from PipingSystems.pump import pump
6 from PipingSystems.valve import valve
7 from PipingSystems.storage_tank import tank
8
9 # Constants
10 DENSITY = 1.629869
11 SPEC_GRAVITY = 0.840

Writing the Fueling Scenario Chapter 9

[209]

In part 3, we define the specifications for the storage tank instances. The comments also
show some of the assumptions that are used to provide the parameters:

components.py (part 3)

1 # Storage tanks
2 # Assumes 36 ft tall tank w/ 1 million gallon capacity = 27778
gallons per foot
3 # Assumes 16 inch diam transfer piping
4 tank1 = tank.Tank("Tank 1", level=36.0, fluid_density=DENSITY,
spec_gravity=SPEC_GRAVITY, outlet_diam=16, outlet_slope=0.25)
5 tank1.static_tank_press = tank1.level
6 tank1.gravity_flow(tank1.pipe_diam, tank1.pipe_slope, tank1.pipe_coeff)
7
8 tank2 = tank.Tank("Tank 2", level=36.0, fluid_density=DENSITY,
spec_gravity=SPEC_GRAVITY, outlet_diam=16, outlet_slope=0.25)
9 tank2.static_tank_press = tank2.level
10 tank2.gravity_flow(tank2.pipe_diam, tank2.pifunctionalitype_slope,
tank2.pipe_coeff)

In part 4, we again provide some comments for the basis of the parameters, then start
creating instances of the inlet valves to the pumps. Valve flow coefficients are normally
found in manufacturers' data manuals, but we can use the diameter of the valve to roughly
calculate the coefficient:

components.py (part 4)

1 # Pump inlet manifold
2 # 16 inch to 4 inch connections
3 gate1 = valve.Gate("Gate valve 1", sys_flow_in=tank1.flow_out,
press_in=tank1.static_tank_press)
4 gate1.calc_coeff(16)
5
6 gate2 = valve.Gate("Gate valve 2", sys_flow_in=tank2.flow_out,
press_in=tank2.static_tank_press)
7 gate2.calc_coeff(16)
8
9 gate3 = valve.Gate("Gate valve 3")
10 gate3.calc_coeff(16)
11
12 gate4 = valve.Gate("Gate valve 4")
13 gate4.calc_coeff(16)

Writing the Fueling Scenario Chapter 9

[210]

In part 5, we continue defining the inlet valve instances (note that in part 4, only valves 1-4
are 16 inches in diameter, while the valves in part 5 are 4 inches), then create the fuel pump
instances. Note that, as screw-type pumps, we have provided a set RPM value, which
determines the volume of fluid displaced per revolution. These values would normally be
determined by looking at pump curves provided by the manufacturer:

components.py (part 5)

1 gate5 = valve.Gate("Gate valve 5")
2 gate5.calc_coeff(4)
3
4 gate6 = valve.Gate("Gate valve 6", sys_flow_in=gate3.flow_out +
gate4.flow_out,
5 press_in=gate3.press_out + gate4.press_out)
6 gate6.calc_coeff(4)
7
8 gate7 = valve.Gate("Gate valve 7")
9 gate7.calc_coeff(4)
10
11 # Fuel pumps @ 1480 rpm
12 pump1 = pump.PositiveDisplacement("Pump 1", flow_rate_out=0.0,
pump_head_in=utility_formulas.press_to_head(gate5.press_out),
displacement=0.24)
13
14 pump2 = pump.PositiveDisplacement("Pump 2", flow_rate_out=0.0,
pump_head_in=utility_formulas.press_to_head(gate6.press_out),
displacement=0.24)

Part 6 shows the creation of the instances of the remaining fuel pump, the relief valves, and
the pressure-regulating throttle valves:

components.py (part 6)

1 pump3 = pump.PositiveDisplacement("Pump 3", flow_rate_out=0.0,
pump_head_in=utility_formulas.press_to_head(gate7.press_out),
displacement=0.24)
2
3 # Pump outlet manifold
4 relief1 = valve.Relief("Relief 1", sys_flow_in=pump1.flow,
flow_coeff=0.81)
5 relief2 = valve.Relief("Relief 2", sys_flow_in=pump2.flow,
flow_coeff=0.81)
6 relief3 = valve.Relief("Relief 3", sys_flow_in=pump3.flow,
flow_coeff=0.81)
7

Writing the Fueling Scenario Chapter 9

[211]

8 throttle1 = valve.Globe("Flow Control 1", sys_flow_in=pump1.flow,
press_in=pump1.outlet_pressure, flow_coeff=165)
9 throttle2 = valve.Globe("Flow Control 2", sys_flow_in=pump1.flow,
press_in=pump1.outlet_pressure, flow_coeff=165)
10 throttle3 = valve.Globe("Flow Control 3", sys_flow_in=pump1.flow,
press_in=pump1.outlet_pressure, flow_coeff=165)

We finish the file with part 7 by creating instances for the fluid-distribution valves that send
the fuel back to the tanks or to the flight line.

Also, rather than creating some self-tests at the end of the program, we use the pass
statement to allow Python to continue. Functionally, there is no difference between using
pass and not even having the if __name__ == "__main__" code block; having it there
makes it easier if we want to add self-test code or other code that should be run if
components.py is run by itself:

components.py (part 7)

1 gate8 = valve.Gate("Gate valve 8", sys_flow_in=throttle3.flow_out,
press_in=throttle3.press_out)
2 gate8.calc_coeff(4)
3
4 gate9 = valve.Gate("Gate valve 9", sys_flow_in=throttle1.flow_out,
press_in=throttle1.press_out)
5 gate9.calc_coeff(4)
6
7 gate10 = valve.Gate("Gate valve 10", sys_flow_in=throttle3.flow_out,
press_in=throttle3.press_out)
8 gate10.calc_coeff(4)
9
10 if __name__ == "__main__":
11 pass

Functionality coding
Now that the instances for all the components are available, we can write the code to
actually allow the scenario to work. In this section, the functionality.py file is split into
separate parts, with a discussion of each code listing following its respective part.

Writing the Fueling Scenario Chapter 9

[212]

We've seen the code in part 1 many times before, so there is no need to discuss it in detail:

functionality.py (part 1)

1 #!/usr/bin/env python3
2 """
3 FuelFarm_functionality.py

4
5 Purpose: Ensure valve/pump changes are passed to the rest of the system.
6
7 Author: Cody Jackson
8
9 Date: 6/18/18
10 #################################
11 Version 0.2
12 Added path extension for utility formulas
13 Version 0.1
14 Initial build
15 """

In part 2, we import the necessary modules and update the system path. We also list all the
parameters and components that are affected by opening or closing valve 1 in lines 7-12. In
line 8, we call the ffc.gate1.open() method, which is actually from components.py.

Next, we check to see which storage tank has a higher level (line 9), and therefore a higher
pressure at the outlet of the tank. This is a factor if both tanks are aligned to provide fuel at
the same time an unlikely condition, but possible; otherwise, only the tank that is on service
will be providing the fuel, so only its gravity flow rate and pressure will be important.

If tank 2 has a higher level/pressure than tank 1, there will be no flow coming from tank 1,
and the pressure through valve 3 will be the same as through valve 4. (Hydraulic pressure
is the same everywhere within a fluid, which is one reason why liquids are not
compressible.) However, a check valve that isn't represented on the schematic is assumed
to be in the system after valve 1, so even if tank 1 is empty, there will be no flow through
valve 3 (unless valve 5 is open):

functionality.py (part 2)

1 import sys
2 sys.path.extend(["/home/cody/PycharmProjects/VirtualPLC"])
3 from Utilities import utility_formulas
4 import Models.FuelFarm.components as ffc
5
6 # Gate valve 1
7 def gate1_open():

Writing the Fueling Scenario Chapter 9

[213]

8 ffc.gate1.open()
9 if ffc.tank2.static_tank_press > ffc.tank1.static_tank_press:
10 ffc.gate1.flow_in = ffc.gate1.flow_out = 0.0
11 ffc.gate3.press_in = ffc.gate4.press_out
12 ffc.gate3.flow_in = 0.0 # No flow because of check valves after
valves 1 and 2

In part 3, if the level in tank 1 isn't lower than tank 2, then the flow and pressure through
valves 3 and 5 will be the same as that which out of valve 1, which is really just the
gravitational flow/pressure on the fluid in the tank.

This leads to the TODO entry in line 13. Right now, the system checks the tank level, and
that determines which tank actually supplies the system. But there is nothing to ensure that
the flow comes from a tank with a lower level if that one is deemed "on service," and
therefore providing fuel to the rest of the system.

Note that, while pressure is a given, because of hydraulic principles, the flow rate is not
guaranteed. Obviously, a valve has to be open for flow to occur, but there will be a certain
pressure/flow rate seen at the inlet to each valve. We have to know what these values are to
later calculate outlet values, regardless of whether the valve is open or not.

We finish part 3 by writing the method to close gate 1. This not only closes the valve, but
also affects the downstream valve pressures and flow, which is described in lines 9-12:

functionality.py (part 3)

1 else:
2 ffc.gate3.press_in = ffc.gate1.press_out
3 ffc.gate3.flow_in = ffc.gate1.flow_out
4 ffc.gate5.press_in = ffc.gate1.press_out
5 ffc.gate5.flow_in = ffc.gate1.flow_out
6
7 def gate1_close():
8 ffc.gate1.close()
9 ffc.gate3.press_in = ffc.gate4.press_out
10 ffc.gate3.flow_in = ffc.gate4.flow_out
11 ffc.gate5.press_in = ffc.gate3.press_out
12 ffc.gate5.flow_in = ffc.gate3.flow_out
13 # TODO: ensure that one tank on service allows flow

Writing the Fueling Scenario Chapter 9

[214]

Valve 2 is the same as valve 1, so the code in part 4 shows the same functionality, except the
valve numbers have changed:

functionality.py (part 4)

1 # Gate valve 2
2 def gate2_open():
3 ffc.gate2.open()
4 if ffc.tank2.static_tank_press < ffc.tank1.static_tank_press:
5 ffc.gate2.flow_in = ffc.gate2.flow_out = 0.0
6 ffc.gate4.press_in = ffc.gate3.press_out
7 ffc.gate4.flow_in = 0.0 # No flow because of check valves after
valves 1 and 2
8 else:
9 ffc.gate4.press_in = ffc.gate2.press_out
10 ffc.gate4.flow_in = ffc.gate2.flow_out
11 ffc.gate7.press_in = ffc.gate2.press_out
12 ffc.gate7.flow_in = ffc.gate2.flow_out

In part 5, we finish with the close method for valve 2. Valves 3 and 4 are opposites, so the
discussion about valve 3 applies to valve 4.

With valve 3, we again have to figure out which tank's side has a higher pressure. After we
open the valve in line 3, we check to see whether valves 1, 2, and 4 are open at the same
time (line 11)—in other words, whether both tanks 1 and 2 are lined up to supply fuel. If so,
then we have to figure out which side has the higher pressure (line 12). Based on that
information, we can figure out what the inlet pressure to the various valves is:

functionality.py (part 5)

1 def gate2_close():
2 ffc.gate2.close()
3 ffc.gate4.press_in = ffc.gate4.press_out
4 ffc.gate4.flow_in = ffc.gate4.flow_out
5 ffc.gate7.press_in = ffc.gate4.press_out
6 ffc.gate7.flow_in = ffc.gate4.flow_out
7
8 # Gate valve 3
9 def gate3_open():
10 ffc.gate3.open()
11 if ffc.gate1.position == 100 and ffc.gate2.position == 100 and
ffc.gate4.position == 100: # dual input
12 if ffc.gate3.press_out > ffc.gate4.press_out: # pressure
from tank 1 > tank 2
13 ffc.gate6.press_in = ffc.gate3.press_out
14 ffc.gate4.press_in = ffc.gate3.press_out

Writing the Fueling Scenario Chapter 9

[215]

Part 6 continues with valve 3. Line 1 checks whether tank 2 has a higher level and pressure
than tank 1, while line 4 assumes that the pressure is equal from both tanks, so valves 3 and
4 will show the same pressure values. In this case, we arbitrarily determine which valve's
outlet pressure provides the inlet pressure to valve 6 (line 5).

Line 7 checks that there is no flow coming from the tanks, and then ensures that all
parameters for valve 3 are set to zero in line 8. This is just to explicitly ensure that no weird
values are available for other calculation input, which could generate hard-to-find errors.

In line 9, if the outlet of tank 2 is closed, then valve 3 will provide input values to valve 4. In
line 12, the opposite occurs:

functionality.py (part 6)

1 elif ffc.gate3.press_out < ffc.gate4.press_out: # pressure
from tank 1 < tank 2
2 ffc.gate3.press_in = ffc.gate4.press_out
3 ffc.gate6.press_in = ffc.gate4.press_out
4 else: # Pout from valves 3 and 4 is equal
5 ffc.gate6.press_in = ffc.gate3.press_out # doesn't matter
which Pout to use
6 ffc.gate6.flow_in = ffc.gate3.flow_out + ffc.gate4.flow_out #
combined flow from valves 3 and 4
7 if ffc.gate1.position == 0 and (ffc.gate2.position == 0 or
ffc.gate4.position == 0): # no input flow
8 ffc.gate3.press_in = ffc.gate3.flow_in = ffc.gate3.press_out
= ffc.gate3.flow_out = 0.0 # Ensure null values
9 if ffc.gate2.position == 0: # valve 3 provides flow to valve 4
10 ffc.gate4.press_in = ffc.gate3.press_out
11 ffc.gate4.flow_in = ffc.gate6.flow_in = ffc.gate3.flow_out
12 if ffc.gate1.position == 0: # valve 4 provides flow to valve 3
13 ffc.gate5.press_in = ffc.gate3.press_out
14 ffc.gate5.flow_in = ffc.gate6.flow_in = ffc.gate3.flow_out

Writing the Fueling Scenario Chapter 9

[216]

In part 7, we determine the parameters if valve 3 is closed. This is comparatively easy, as
we only have to account for values from tank 2, as it is the only supply to valves 4 and 6
when valve 3 is closed:

functionality.py (part 7)

1 def gate3_close():
2 ffc.gate3.close()
3 ffc.gate6.press_in = ffc.gate4.press_out
4 ffc.gate6.flow_in = ffc.gate4.flow_out
5 if ffc.gate2.position == 0:
6 ffc.gate4.press_in = 0.0
7 ffc.gate4.flow_in = 0.0

As mentioned before, valve 4 is a mirror image of valve 3, so its code is not presented here;
however, the full functionality.py file is available in the book's code repository.

Valves 5-7 are pretty similar, the only difference being in the pump they supply. Therefore,
only the code for valve 5 is presented in part 8, as shown in the following code:

functionality.py (part 8)

1 # Gate valve 5
2 def gate5_open():
3 ffc.gate5.open()
4 ffc.pump1.head_in =
utility_formulas.press_to_head(ffc.gate5.press_out)
5
6 def gate5_close():
7 ffc.gate5.close()
8 ffc.pump1.head_in = 0.0

Valves 8-10 are similar as well, so part 9 only shows the methods for valve 8.

Writing the Fueling Scenario Chapter 9

[217]

Valves 8-10 don't have any components that rely on their outlet parameters, so simple calls
to their open/close methods are sufficient. However, in a later revision, having some way to
account for valves 8 and 9 recirculating flow back to the tanks should be added:

functionality.py (part 9)

1 # Gate valve 8
2 def gate8_open():
3 ffc.gate8.open()
4
5 def gate8_close():
6 ffc.gate8.close()

In part 10, we create a method that will change the tank level and subsequent static
pressure. This can be used to programmatically adjust levels as fuel is used, though this
particular functionality isn't implemented in this version:

functionality.py (part 10)

1 # Change tank level
2 def change_tank_level(tank, level):
3 tank.level = level
4 tank.static_tank_press = tank.level
5 if tank == ffc.tank1:
6 ffc.gate1.press_in = ffc.tank1.static_tank_press
7 elif tank == ffc.tank2:
8 ffc.gate2.press_in = ffc.tank2.static_tank_press
9 else:
10 return "Invalid tank number."

The fuel pump code is presented in part 11. We already know the speed of the pump, so
when the pump is started, we only need to change the speed. The adjust_speed()
method handles all the parameter changes for us. The only other parameters to account for
are primary valves on the outlet.

Pumps 2 and 3 can supply fuel to a number of common valves, notably valves 8 and 10.
Normally, the valves wouldn't be supplied by two pumps at once, but if we want to do this,
we only have to account for adding the flow rates from pumps 2 and 3. The outlet pressure
of all pumps is held constant by their respective regulating valves, which adjust the throttle
percentage based on system changes, so a constant pressure value is seen downstream of
the pumps.

Writing the Fueling Scenario Chapter 9

[218]

Because pumps 2 and 3 are functionally the same, only the code for pump 2 is displayed in
the following code:

functionality.py (part 11)

1 # Pump 1
2 def pump1_on():
3 ffc.pump1.adjust_speed(1480)
4 ffc.pump1.outlet_pressure = ffc.gate9.press_in = 50
5 ffc.gate9.flow_in = ffc.pump1.flow
6
7 def pump1_off():
8 ffc.pump1.adjust_speed(0)
9 ffc.pump1.outlet_pressure = 0
10
11 # Pump 2
12 def pump2_on():
13 ffc.pump2.adjust_speed(1480)
14 ffc.pump2.outlet_pressure = ffc.gate8.press_in =
ffc.gate10.press_in = 50
15 ffc.gate8.flow_in = ffc.gate10.flow_in = ffc.pump2.flow +
ffc.pump3.flow
16
17 def pump2_off():
18 ffc.pump2.adjust_speed(0)
19 ffc.pump2.outlet_pressure = 0

Testing
There are a lot of tests that can be performed. The test file for this model,
test_fuel_components.py, currently holds more than 500 lines of code, so I won't be
covering it here; however, it will be included in the book's code repository for you to
examine at your leisure.

I do want to mention that, quite often (in my experience), testing failures aren't indicative of
a problem with the code being tested, but with the tests themselves. For example, look at
the following figure:

Writing the Fueling Scenario Chapter 9

[219]

Fuel testing errors

Writing the Fueling Scenario Chapter 9

[220]

In this test, two errors are generated. Are they related? Perhaps; a single issue can cause
multiple errors, so by fixing and correcting the single issue, multiple errors can be resolved.

In this case, the error being generated in test_gate5_tank2() tells us that the expected
value (39085.73879782904) does not equal the real value (19542.86939891452). As
noted in the code where the error occurred, the flow rate should be from a single tank, and
therefore should not be doubled. If we change the expected value to be the flow rate from a
single tank, we receive the test results as shown in following figure:

Fuel testing success

By making that one change, both errors go away, so we don't have to bother
troubleshooting the error in test_pump1_no_flow(). This doesn't always happen, as
sometimes each error is caused by different issues. However, there are times when a single
issue causes multiple, cascading errors.

This demonstrates that you need to have tests that check nearly every possible condition, as
well as test the same thing multiple times. Of course, you have to determine which tests are
most useful, as well as when to stop; there is such a thing as testing too much, because the
more code you have, the more likely you are to introduce bugs. Test only what needs to be
tested, and leave the simple stuff alone. You can always refactor it in the next version, if
necessary.

Writing the Fueling Scenario Chapter 9

[221]

Summary
In this chapter, we determined the project requirements to actually make a fuel transfer
simulation. With this information, we wrote the code to create the component instances and
the system functionality. This allowed us to show the fuel flow from the storage tanks to
the pump outlets via different valve lineups. Finally, we talked about testing the simulation
and how a single fix to one error can actually fix a variety of issues at once.

In the next chapter, we will look at a software project post-production. We will specifically
look at how to document code with docstrings, how to generate user-friendly
documentation, and how to review lessons that we will have learned from this project.

10
Software Post-Production

Once a project is deemed complete (you can always revisit it later with a revision), there are
a couple of housekeeping things you should think about. While we added a few comments
and basic docstrings to our code, more complete in-code documentation never hurts. By
doing that, we can set the project up to help autogenerate user documentation. Finally, it's
important to conduct a lessons-learned review of the project to see what went wrong and
what could be improved in the future.

In this chapter, we will cover the following topics:

Writing more complete docstrings
Generating Sphinx documentation
Conducting an after-action review

Docstrings
We've mentioned docstrings before, but now we will cover them in greater detail.
Docstrings are triple-quoted strings that have special significance within Python. When
used, they form the __doc__ attribute of an object. There are many examples of projects
that don't use docstrings, but it is highly advised to incorporate docstrings into your
projects. If you do use them, review PEP 257 -- Docstring Conventions (https:/ / www.
python.org/dev/peps/ pep- 0257/) to see how to do them right; a Python Enhancement
Proposal (PEP) is used to discuss changes to the Python language. Not following the
guidelines is fine, as long as you're consistent within your code. However, if you try to use
tools such as Docutils, you can have problems, as they expect the docstrings to be properly
formatted; Docutils is a text processing system that converts plain text into formatted
documents, such as HTML, and XML.

https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Software Post-Production Chapter 10

[223]

Docstrings are the very first item in a module, function, class, or method; if they are put
elsewhere, chances are good that tools won't recognize them as docstrings. They have to be
enclosed by a trio of either single or double-quote marks; that, in conjunction with their
location at the beginning of each object, tells Python that they are docstrings and not
ordinary triple-quoted strings.

Docstrings can be placed on a single line or, since they are triple-quoted strings, they can
also spread across multiple lines. Normally, single lines are used to summarize a basic
object while multi-line docstrings can provide more information about an object, such as its
expected arguments or output parameters or even what the object is expected to do.

There are a lot of details about docstrings that we won't cover here but are explained in
more detail in PEP 257. Some examples include what information to include in a class
docstring, especially when creating subclasses, as well as information to include about a
function or method. The key takeaway is that docstrings help document and define parts of
Python programs and should be included whenever possible.

Related to docstrings are doctests. These are handled by the doctest module and function
like unit tests, except they are created within a docstring. Doctests are best used as a way to
keep docstrings up-to-date and ensure the code actually does what the documentation says
it should. Doctests utilize the interactive Python interpreter to perform the tests, rather than
run as separate test files. The following is an example of a doctest included within the
docstring of a function:

def factorial(n):
 """Return the factorial of n, an exact integer >= 0.

 >>> [factorial(n) for n in range(6)]
 [1, 1, 2, 6, 24, 120]
 >>> factorial(30)
 265252859812191058636308480000000
 >>> factorial(-1)
 Traceback (most recent call last):
 ...
 ValueError: n must be >= 0

 Factorials of floats are OK, but the float must be an exact integer:
 >>> factorial(30.1)
 Traceback (most recent call last):
 ...
 ValueError: n must be exact integer
 >>> factorial(30.0)
 265252859812191058636308480000000

 It must also not be ridiculously large:

Software Post-Production Chapter 10

[224]

 >>> factorial(1e100)
 Traceback (most recent call last):
 ...
 OverflowError: n too large
 """

We won't cover all of the docstrings for all of the code we have written, but the complete
files in this book's code repository does include them. However, we will show the
docstrings for valve.py as a representative example of how docstrings could be written.
Note that we won't reprint the entire file or the actual code logic, but just the key objects
that benefit from expanded docstrings.

In part 1 of the following code, we create the docstring for the parent Valve class. The first
line is a basic summary of the class; this should be written as a single-line summary
statement, in case we decide not to include any additional information.

Line 4 provides additional information about the class, specifically what the Cv parameter
is and what it represents for a valve. Line 6 lists all of the parameters identified in the class,
while line 8 lists the methods that are part of the class. Notice that we don't list getter/setter
methods for valve positions, as those have been converted in to class properties:

valve.py docstrings (part 1)
1class Valve:
2 """Generic class for valves.
3
4 Cv is the valve flow coefficient: number of gallons per minute at 60F
through a fully open valve with a press. drop of 1 psi. For valves 1 inch
or less in diameter, Cv is typically < 5.
5
6 Variables: name, position, Cv, deltaP, flow_in, flow_out, press_out,
press_in
7
8 Methods: calc_coeff(), press_drop(), valve_flow_out(),
get_press_out(), open(), close()
9 """

When we create the initialization method in part 2 in the following code, it is useful to
provide the parameters that are being initialized (lines 4-10). These parameter statements
include the name of the parameters, as well as a short sentence about what the parameter
represents:

valve.py docstrings (part 2)
1 def __init__(self, name="", sys_flow_in=0.0, sys_flow_out=0.0,
drop=0.0, position=0, flow_coeff=0.0, press_in=0.0):
2 """Initialize valve.
3

Software Post-Production Chapter 10

[225]

4 :param sys_flow_out: Fluid flow out of the valve
5 :param drop: Pressure drop across the valve
6 :param press_in: Pressure at valve inlet
7 :param name: Instance name
8 :param sys_flow_in: Flow rate into the valve
9 :param position: Percentage valve is open
10 :param flow_coeff: Affect valve has on flow rate; assumes a 2
inch, wide open valve
11 """

In part 3 of the following code, we provide not only an argument parameter for the
calc_coeff() method, but also indicate what the return object represents. You can
provide the name/type of the return value, but it isn't necessary, as the code itself should be
indicative enough:

valve.py docstrings (part 3)
1 def calc_coeff(self, diameter):
2 """Roughly calculate Cv based on valve diameter.
3
4 :param diameter: Valve diameter
5
6 :return: Update valve flow coefficient
7 """
8
9 def press_drop(self, flow_out, spec_grav=1.0):
10 """Calculate the pressure drop across a valve, given a flow rate.
11
12 Pressure drop = ((system flow rate / valve coefficient) ** 2) *
spec. gravity of fluid
13
14 Cv of valve and flow rate of system must be known.

In part 4, we continue providing assumptions in line 1, then we list the input parameters in
lines 3 and 4. With line 6, we provide the exception that is generated within this method,
and finish up with lines 8 and 9 that provide the return object information. Note that, in line
9, the return type is provided; again, it's not required, but it might be useful if an actual
object is returned, rather than just updated.

We start a new method in line 12, with lines 13 and 15 providing additional information
about the method, as is normal for a docstring:

valve.py docstrings (part 4)
1 Specific gravity of water is 1.
2
3 :param flow_out: System flow rate into the valve
4 :param spec_grav: Fluid specific gravity; default assumes fluid is
water

Software Post-Production Chapter 10

[226]

5
6 :except ZeroDivisionError: Valve coefficient not provided
7
8 :return: Update pressure drop across valve
9 :rtype: float
10 """
11
12 def valve_flow_out(self, flow_coeff, press_drop, spec_grav=1.0):
13 """Calculate the system flow rate through a valve, given a
pressure drop.
14
15 Flow rate = valve coefficient / sqrt(spec. grav. / press. drop)

Part 5 continues the valve_flow_out() method by adding the incoming parameter
arguments, the method exception, return object, and return type. Line 11 starts a new
method:

valve.py docstring (part 5)

1 :param flow_coeff: Valve flow coefficient
2 :param press_drop: Pressure drop (psi)
3 :param spec_grav: Fluid specific gravity
4
5 :except ValueError: Valve coefficient or deltaP <= 0
6
7 :return: Update system flow rate
8 :rtype: float
9 """
10
11 def get_press_out(self, press_in):
12 """Get the valve outlet pressure, calculated from inlet pressure.
13
14 :param press_in: Pressure at valve inlet

In part 6, lines 1-3 complete the get_press_out() method docstring. With line 5, we gave
the Gate valve subclass. Docstrings for subclasses are slightly different, as they identify
what the parent class is (line 8) and the methods that are part of the subclass (lines 10-12).

We finish this code listing by starting the read_position() method and its initial
docstring summary:

valve.py docstring (part 6)
1 :return: Pressure at valve outlet
2 :rtype: float
3 """
4
5class Gate(Valve):

Software Post-Production Chapter 10

[227]

6 """Open/closed valve.
7
8 Subclasses Valve.
9
10 Methods:
11 read_position()
12 turn_handle()
13 """
14 def read_position(self):
15 """Identify the position of the valve.

In part 7, we finish the rest of the read_position() docstring and then create the
docstring data for turn_handle():

valve.py docstring (part 7)
1 :return: Indication of whether the valve is open or closed.
2 :rtype: str
3 """
4
5 def turn_handle(self, new_position):
6 """Change the status of the valve.
7
8 :param new_position: New valve position
9
10 :return: Update valve position
11 """

As these classes and methods are representative of how docstrings can be made, the rest of
the file is not provided. However, the complete valve.py file and the rest of the code for
this project are provided in this book's file repository for review by the reader.

Sphinx documentation
Sphinx was written for the Python documentation and is used extensively in official
document creation, though it can be used to create other documents as well. All of the
documentation on the Python site is generated by Sphinx and most Python projects use it
for their websites. Even the Sphinx website is written in reStructuredText (reST) and
converted in to HTML.

Software Post-Production Chapter 10

[228]

PEP 287 proposes that reST markup should be used for structured text documentation
within Python docstrings, PEPs, and other documents that require structured markup. Of
course, plain text docstrings are not deprecated; reST simply provides more options for
developers who want to be more expressive in their documentation.

Sphinx can convert reST into HTML, PDF, ePub, Texinfo, and man pages. The program is
also extensible, providing plug-ins for generating mathematical notation from formulas or
highlighting source code.

Sphinx can be installed in the normal ways: either through pip or downloading an
installation package. Once installed, it is suggested to move (through the command
prompt) to the project directory, as the program defaults to looking for files in the current
directory. It's not necessary, as the path can be changed later; it just makes life easier.

Run the sphinx-quickstart command. The program will run through an interactive,
text-based setup, which will ask the user multiple questions. The questions are generally
self-explanatory, but be sure to check the Sphinx documentation if something doesn't make
sense. Don't panic, however, if you just pick the defaults and you don't get the results
expected. This process is simply creating the default configuration files, which can be
manually modified later. A key thing to point out is, if you want to use your docstrings to
generate your documenation, ensure you select autodoc for installation.

When completed, you should now see conf.py and index.rst in your project directory.
These are used to allow Sphinx to operate. conf.py as the configuration file for Sphinx. It
is the primary location for setting up Sphinx and the entries made during the quickstart
process are stored here. index.rst is the primary file for telling Sphinx how to create the
final documentation. It basically tells Sphinx what modules, classes, and so on to include in
the documentation.

By default, conf.py looks for files in PYTHONPATH; if you are looking to use files in another
location, make sure you set it up correctly at the top of the file. Specifically, uncomment
import os, import sys and the sys.path.insert() line (and update the path as
needed).

Software Post-Production Chapter 10

[229]

This is demonstrated in the following screenshot:

conf.py

Software Post-Production Chapter 10

[230]

In the preceding screenshot, we have an example conf.py file for our fuel farm project.
Only two of the component paths have been added for demonstrative purposes. In reality,
you would want to add all of the paths that you want to include within the documentation.

If you set up conf.py to use autodoc (line 43 in the preceding screenshot), the next step is
simple. Go to index.rst and tell Sphinx to automatically find the information for the
documentation. The easiest way to do this is take a look at http:/ /www. sphinx- doc. org/
en/stable/ext/autodoc. html#module- sphinx. ext. autodoc, which explains how to
automatically import all desired modules and retrieve the docstrings from them.

An example of automodule from autodoc is shown in following screenshot. If you go to
the autodoc site, you'll see you can also use autoclass and autoexception to document
individual components within a Python program, if you don't want or need to document
an entire module. There are also a large number of options and advanced features
available, which are beyond the scope of this book. The following screenshot shows
the index.rst file:

index.rst

http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc
http://www.sphinx-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc

Software Post-Production Chapter 10

[231]

The preceding screenshot shows an example for this project. Everything apart from the two
automodule sections is default information, automatically created by Sphinx. The
automodule sections tell Sphinx what the name is of the Python module to import: the
Python filename without the .py extension. The other parts of the file are described as
follows:

members: This automatically gathers documentation for all public classes,
methods, and functions that have docstrings. If you don't use it, only the
docstring for the main object (a module, in this case) will be imported.
undoc-members: This does the same thing, except it will get objects that don't
have docstrings. Obviously, the information for these items will be limited
compared to a docstring.
show-inheritance: This specifies that the inheritance tree for the module will
be included. Needless to say, if you aren't using inheritance, this won't do much
good.

Once conf.py and index.rst are updated, run the make html command to generate the
HTML files for the project. It is not unusual to receive errors, particularly Sphinx telling
you it can't find a particular module. This usually means you provided the wrong path in
conf.py.

One unusual error you can receive is shown in the following screenshot:

Software Post-Production Chapter 10

[232]

Sphinx error

This error indicates that Sphinx is unable to proceed because it found an invalid character.
If you look at the utility_formulas.py file, there is nothing on line 17 that would cause
the error. However, if you check line 15, you'll see that we included a percentage symbol.

Software Post-Production Chapter 10

[233]

Rather than removing the symbol, if we modify utility_formulas.py to include line 2 in
the following screenshot, that will remove the Sphinx error:

Update utility_formulas.py

Software Post-Production Chapter 10

[234]

When Sphinx runs correctly, you should see something like the following screenshot:

Sphinx success

If you go into the project directory, you should find index.html in the _build/html
directory (assuming you used the default values).

When you open it, you should see something like following screenshot. Currently, this
output only shows the information in the docstrings, but reST allows you to create much
more useful information, such as explaining how to use the software.

Software Post-Production Chapter 10

[235]

If you don't like the default theme, there are a number of other themes included with
Sphinx. Obviously, being HTML, you can make your own as well. The following screenshot
shows the Sphinx output:

Sphinx output

Lessons learned
Once the project is deemed complete, at least for this particular version, it is a good time to
take a step back from programming and planning to review the project and see what went
right and what went wrong.

Software Post-Production Chapter 10

[236]

For example, these are some of the things I have learned when writing the fuel farm
scenario, in no particular order:

Don't try to write the parameters into docstrings until the project is done.
Refactoring can cause items to change, such as eliminating getter/setter methods
and replacing them with properties.
Write basic docstring summaries while coding, as it helps to clarify what a
function/method/class is supposed to do. This helps to ensure that a function or
method does only one thing, rather than trying to have multiple operations
occurring.
Update version numbers each day. Even if not using a CI environment, it is
helpful to provide a version number to the final code pushed to the repository at
the end of the day. If you looked closely at the version information in several of
the code files, you'll see that the current version is listed as "0.2". This is because I
manually updated the version number arbitrarily based on personal preference.
While this is perfectly acceptable for personal projects, it isn't really conducive to
identify bugs in particular versions, nor does it help when rolling back to
previous versions. It also means that the programmer is slightly behind the curve
when working in a team, where code is automatically built each night and
receives an internal version number.
Keep TODO entries in your code as you think of things. Where they are placed is
up to the individual coder, unless there is a company policy. They could all be
placed at the beginning or end of a file or they could be placed in the location
they apply to.
Don't think that unit tests that fail are due to bad code. When writing this
program, it was discovered that the majority of failed tests were caused by tests
receiving incorrect data; that is, the core code was correct, but the tests was
requesting the wrong values.
Keep unit tests up-to-date. This can be very difficult if the code is frequently
refactored. This is where doctests can help; since they are included in the
docstring, when the docstring is updated, the doctests are part of the update.
Alternatively, test-driven development means that the code is written to make
the tests pass; once a test passes, no more coding needs to be done, apart from
bug fixes.

Software Post-Production Chapter 10

[237]

Don't be afraid to brute-force solutions. In my philosophy, coding is like flying a
plane: any crash you walk away from is a successful landing. In the same way,
any code that gets the job done is a success. You can always go back and refactor
the code to make it more concise, more efficient, and so on, but you have to have
a solution first. Coding effectively comes with practice, and it may not be
immediately obvious what the best solution is, so writing your first iteration like
a first-year student is perfectly fine.
Get out of your comfort zone. The fuel farm scenario discussed in this book
includes a lot of information that the average person wouldn't know, whether it
is the difference between valves or even the mathematical formulas used in the
scenario. Most business applications are pretty standard and often come down to
capturing data entry and interacting with databases; engineering principles aren't
required. However, the more knowledge you have, the more valuable you
become to employers. This obviously opens up many more job
opportunities—for example, with the knowledge from the fuel farm scenario,
you are better positioned to apply for work in the industrial sector, as you can
demonstrate that you have a basic understanding of systems engineering; in
other words, you can think about how different systems affect other systems,
including cascading consequences and real-world applicability. Alternatively, if
you want to get into video game design, you should have an idea of some of the
concerns developers have when it comes to simulating an environment. Many
companies talk about their physics models, such as gravity or ragdoll mechanics.
The formulas used in this book are simple algebraic calculations, while video
games often use algebraic geometry, matrix calculations, and so on. However, the
underlying idea is the same: use real-world physics to determine an outcome.
Consider alternative implementations of the same thing. For example, while this
project used class instances to hold all of the parameter data for each component,
an alternative solution could be to use a database. A database could make it
easier for other programs to access the system information, such as incorporating
the virtual fuel farm into an industrial control simulation that uses Modbus or
other industrial protocols to change plant parameters. By using SQLAlchemy, the
need to know SQL is reduced, so the code could remain Python-centric. This also
means it would be easier to wrap the entire project into a website.

That's about it for lessons learned by me. There are always things to consider, especially
when working on a team, as group dynamics, resource allocation, and management
support come into play as well.

Software Post-Production Chapter 10

[238]

Summary
In this chapter, we learned how to add useful information to docstrings to enhance their
use for future users, how to use Sphinx to autogenerate documentation, and some of the
lessons learned from this project.

In the next chapter, we will look at how to take a purely text-based program, like we just
created, and make it into a graphical program. We will plan out the graphical interface,
look at different frameworks, and make plans for our fuel farm project.

11
Graphical User Interface

Planning
The graphical user interface (GUI) is what most people now see when they use computers.
The macOS and Windows operating systems are primarily graphical-based, as graphical
interfaces are easier to use; while you can do some things from a text console, such as
Windows PowerShell, the majority of features are accessed through a graphical window.

Currently, our fuel farm project is strictly text-based. To make it easier for people to use, we
can put a graphical interface on it, which allows people to click on the components to
manipulate them. In the industrial controls world, this is called a human-machine interface,
more commonly known as an HMI. An HMI allows an operator to work with a system and
change settings without having to manually walk to each component. It also displays
system parameters, such as flow rates or pressure values.

In this chapter, we will cover the following topics:

GUI functionality
User environment
GUI frameworks

GUI functionality
Graphical interfaces have to provide usability to users. Many of us have dealt with GUIs
that were not well designed; the issue is with either presenting the information in a non-
intuitive manner or not providing the tools we need to accomplish a task. Sometimes, the
designer of a program never actually uses the program. Often, what makes sense on paper
doesn't actually carry over to the final user's interaction.

Graphical User Interface Planning Chapter 11

[240]

Some organizations have guidelines for GUI best practices, such as Apple's Human
Interface Guidelines (https:/ /developer. apple. com/ design/ human- interface-
guidelines/macos/ overview/ themes/). In Apple's case, they provide directions for
designing software for macOS, iOS, the Apple watchOS, and even Apple's tvOS.

Another example is the GNOME desktop environment (https:/ /developer. gnome. org/
hig/stable/). Other organizations or products have their own recommendations;
Wikipedia provides a list of various guidelines on its Human Interface Guidelines page for
different environments, as different vendors, operating systems, and software recommend,
or require, particular interface configurations.

The purpose of these guidelines is to encourage the developers to use intuitive and
consistent interfaces, particularly when designing a particular desktop or device
environment. Thus, users can expect to find the same functionality in the same locations
across applications.

One thing to recognize is that a GUI is normally a graphical wrapper around text-based
commands. Every text command that a user can perform on a command line could also be
handled by a GUI. Sometimes, however, it can take multiple user actions, such as mouse
clicks, to perform the same thing through a single or a combined line command. Since
people are visually oriented, more information can be conveyed via a graphical interface
than a person could understand through text.

Most GUI environments use the Windows, Icons, Menus, Pointer (WIMP) paradigm; this
is especially common in traditional desktop/laptop applications, as well as websites. Other
GUIs can use different paradigms, such as heads-up displays in video games, or icon-based
menus in mobile phones that don't have windows.

GUI elements
When designing and using a GUI, there are a number of common elements (often called
widgets) that need to be considered. The following is a non-exhaustive list of widgets, and
the options available, which may be limited by the graphical framework used:

Input controls:
Buttons: A widget that provides a simple way to trigger an event,
such as confirming an action. The following screenshot shows an
example of it:

https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.apple.com/design/human-interface-guidelines/macos/overview/themes/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/

Graphical User Interface Planning Chapter 11

[241]

Text fields: Boxes that accept text input from the user:

Checkboxes: Allows the user to make a binary (on/off) selection for a particular
option:

Radio buttons: Allows the user to make a single option from a set
of mutually exclusive choices:

Graphical User Interface Planning Chapter 11

[242]

Drop-down lists: Normally shows a single item; when the drop-
down arrow is clicked, more items are displayed, though only one
item can be selected. The following screenshot shows an example
of it:

List boxes: Similar to drop-down lists, list boxes allow one or more
choices to be made. The following screenshot shows an example of
it:

Toggles: Buttons, sliders, or other widgets that allow on/off
functionality. The following diagram shows an example of it:

Graphical User Interface Planning Chapter 11

[243]

Date fields: The following screenshot shows a date field:

Navigational tools:
Breadcrumbs: Graphical navigation aid that shows a user where
they are currently located within a directory structure. Commonly
seen on websites and in filesystem tools, such as Windows File
Explorer.

Attribution: User:EnEdC [GPLv2 (https://www.gnu.org/licenses/old-licenses/gpl-2.0.html)], from Wikimedia Commons

Graphical User Interface Planning Chapter 11

[244]

Sliders: Allows the user to move an indicator along a line to select
a value; often allows the user to click on a position to set the
indicator:

Search fields: Normally a single-line textbox that allows the user
to enter text to search for within a filesystem, database, and so on.
Real-time results can populate a drop-down list, such as Google
Search or Wikipedia:

Attribution: screenshot by DTankersley (WMF) [CC BY-SA 3.0 (https:/ / creativecommons. org/ licenses/ by- sa/ 3.0) or

GFDL (http:/ / www. gnu. org/ copyleft/ fdl. html)], through Wikimedia Commons

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html

Graphical User Interface Planning Chapter 11

[245]

Pagination: Used to inform the user how many pages are present
within a document. Normally indicated by a page number on
printed documents, electronic documents may show how many
pages are present overall, as well as allowing one or more ways to
move between pages:

Attribution: Moharnab Saikia [CC BY-SA 4.0 (https:/ /creativecommons. org/ licenses/ by-sa/ 4.0)], from Wikimedia
Commons

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

Graphical User Interface Planning Chapter 11

[246]

Tags: Metadata comprised of keywords or terms associated with a
particular piece of information, often selected by a file uploader,
site administrator, users, and so on:

Attribution: Original by Markus Angermeier; vectorized and linked version by Luca Cremonini [CC BY-SA 2.5 (https:/ /creativecommons. org/
licenses/ by- sa/ 2.5)], through Wikimedia Commons

Icons: Graphical images used to supplement textual information.
They can provide a visual representation of an operation, links to
files or web pages, activate programs, and so on:

https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5

Graphical User Interface Planning Chapter 11

[247]

Informational tools:
Tooltips: When hovering over an item, such as a hyperlink, a small
pop-up window appears with more information about the item:

Progress bars: Visual representation of the completion progress for
a computer operation, such as downloading or uploading a file,
installing software, and so on:

Attribution: Simeon87 [GPL (http:/ / www. gnu. org/ licenses/ gpl. html)], through Wikimedia Commons

Pop-up notifications: Graphical communication tool that displays
information without forcing the user to immediately respond to
the notice:

Attribution: Mudd1 [GFDL (http:/ / www. gnu. org/copyleft/ fdl. html) or CC BY-SA 3.0 (https:/ /
creativecommons. org/ licenses/ by- sa/ 3.0)], through Wikimedia Commons

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

Graphical User Interface Planning Chapter 11

[248]

Message boxes: Also called dialog boxes, these are small windows
to display information to the user and require a response before
disappearing. Boxes can be modal (requiring user action before
any other action on the system can be performed) or non-modal
(the user can still use the system without responding to the box):

Attribution: Bruce89 at en.Wikipedia [GPL (http:/ / www. gnu. org/ licenses/ gpl. html], through Wikimedia Commons

Containers:
Accordion: A set of vertically-stacked items list. Clicking on an
item expands the information content for that item:

Attribution: http:// melaychie. deviantart. com/ [CC BY 3.0 (https:/ /creativecommons. org/
licenses/ by/ 3.0)], via Wikimedia Commons

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
http://melaychie.deviantart.com/
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0

Graphical User Interface Planning Chapter 11

[249]

Tabs: Displays the titles of multiple windows within a single pane,
like tabs in a filing cabinet. Each tab has its own information, so
selecting different tabs displays different data:

Attribution: Maria Sieglinda von Nudeldorf [CC BY-SA 3.0 (https:/ /creativecommons. org/ licenses/ by-sa/ 3.0)], from
Wikimedia Commons

Best practices
While designing an interface, the key factor is understanding the expected user. Is your
application a general-purpose program that could be used by anyone in the population? Or,
is it targeted for a specific category of users, such as doctors, who will be expected to know
certain things about the program?

The user case can help determine how to best layout a GUI, what information to include on
different screens, and even what type of interaction device will be used, such as a mouse
pointer versus a fingertip. In the case of the doctor example, we may decide that the doctors
will use the GUI on a tablet, so their fingers will be the main way to interact with the
interface. Thus, buttons should be larger and spread apart more than a desktop computer,
so their fingers can easily touch them.

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

Graphical User Interface Planning Chapter 11

[250]

In addition, a patient's information should probably be displayed on the home page, and
reference material or other, non-critical information on secondary pages. Of course, it is
recommended to talk to doctors first, and during development, to ensure that the final
product meets their needs.

Regardless of the user, the following are some common design criteria to consider:

Keep the interface simple. Avoid unnecessary elements and use clear and concise
words in labels and messages.
Use a common theme. Whenever possible, use the same widgets as the
underlying OS, so the user doesn't have to guess what a particular widget does.
For custom schemes, ensure a particular widget does the same thing every time,
regardless of where it is implemented. For example, a clock icon should only pop
up a calendar, or be used to insert the current date/time, but not allow different
actions while using the same icon. Having different actions means the user never
knows exactly what to expect when clicking on the icon.
Consider spatial relationships. Like newspapers, non-information helps in
getting the message across; in other words, white space is important. Don't
clutter the interface with too much information, but also don't spread data
needlessly around the interface. Consider where the most important information
should be placed, and learn where people are apt to look first and where their
eyes will scan to.
Keep the user up to date. Notify the user whenever important events occur, such
as saving documents, errors, and so on. Ensure that the user knows where they
are within the interface and, at a minimum, how to get to the "home page".
Provide tooltips to assist in learning about elements and, when using pop-up
windows, determine whether the information is important enough to justify a
modal dialog box.
Consider default values. Anticipate the most common actions of users, and create
default settings that account for them. If there are settings and configurations
required for your application, attempt to preconfigure them so that a user could
just accept the defaults and have an acceptable output.
Use color and texture to aid in information retrieval. Not only color but also
contrast and texture can be used to highlight information. There are a number of
websites and books available that discuss the making of a color-blind-friendly
interface; in addition to helping color-blind users, these changes can help others
by quickly showcasing different information. Also, be wary of the trend toward
minimalist, low-contrast GUIs that have minimal contrast between colors (like
varying shades of gray) and rely on sans serif fonts, which can be hard for some
people to read. The Nielson-Norman Group (https:/ / www.nngroup. com/
articles/ low- contrast/) provides a good example and explanation of this.

https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/
https://www.nngroup.com/articles/low-contrast/

Graphical User Interface Planning Chapter 11

[251]

Use typography to showcase important information. Following on from the
previous bullet, the type and size of the font used can clarify the information. For
example, the following screenshot is a slide from a NASA report about the Space
Shuttle Columbia explosion. What information is most important? In the
following screenshot, some of the most critical information, such as Test results
do show that it is possible at sufficient mass and velocity as well as Volume of
ramp is 1920cu in vs 3 cu in for test, are not highlighted in any manner, even
though they are probably the most critical elements of the slide. They have the
same, or less, priority of information on the slide as any other bullet point.

The following screenshot is an example of identifying importance:

Identifying importance

Graphical User Interface Planning Chapter 11

[252]

User environment
The user environment comprises the traditional five senses, as determined by the
computer. The computer programmer is responsible for how the user will interact with the
computer. The following image displays how the user interaction cycle works:

Human-computer interaction

CC BY-SA 3.0 Shmuel Csaba Otto Traian

The preceding image shows how the user provides input to a computer through a
particular hardware device. The computer hardware converts the input information to
software commands that are processed by the operating system, and the appropriate
application.

Once the data has been processed, the process returns to the user: the application (or a
different one, if appropriate) generates a return signal that is processed by the OS. The
return signal is converted into the correct output signal, such as video or audio, and that
signal is sent to the appropriate hardware device, where the output signal is finally
received and interpreted by the user. Then the user responds to that signal and provides a
new input signal, and the whole process starts anew.

Graphical User Interface Planning Chapter 11

[253]

The user's environment has to be accounted for, to make an appropriate interface for the
situation. Enough information has to be provided without overwhelming the user with
information overload, as well as "noise": information that is irrelevant to the task at hand.
The following are a couple of examples of how designing a user interface with no regard to
the user's environment can affect the situation:

Three Mile Island: In 1979, the reactor at the Three Mile Island power plant had
a stuck relief valve. However, the control panel's indicator light only indicated if
the open/close signal was sent to the valve, not the true position. So, the relief
valve was stuck open; but the control panel was indicating that it was closed.
Hence, the reactor coolant leaked out to the point that the reactor overheated,
which then released radioactive gas into the air outside the power plant.
USS Vincennes: In 1988, the US Navy cruiser USS Vincennes shot down a
civilian airliner after mistaking it for an enemy plane approaching on an attack
run. The problem was that the radar operator's console on the ship had three
large screens that showed the airspace around the ship, but none of them showed
a plane's speed, range, or altitude. That information could only be shown by
clicking on it with a cursor, and that information was provided by a separate,
smaller screen.In addition, there were two separate cursors to highlight the
desired target. One would track an item on the big screens, but a separate one
had to be used to get the plane's flight information. A crucial fault, though, was
that none of the provided information indicated how quickly a plane was gaining
or losing altitude.Thus, the operator had the desired target highlighted on the big
screen with the first cursor, but the second information cursor was on a different
military jet. Thus, the information displayed on the smaller screen was of an
actual military jet, while the desired target was a civilian plane.

While the preceding two examples aren't directly related to a normal GUI, they do show
that the environment in which the user will be expected to use an interface plays a large
factor in how it should be designed. Normally, people will interact with GUIs in a stress-
free environment but, for a programmer or designer, the worst-case scenario should be
expected.

When it comes to the GUI for our fuel farm scenario, it is advised to make it simple to use
and understand. The worst-case situation is that the user needs to deal with a fuel spill and,
thus, stop flow quickly to prevent a possible explosion.

Graphical User Interface Planning Chapter 11

[254]

Graphical frameworks
There are a number of GUI frameworks available nowadays. Since we are using Python, we
will look at Python-specific frameworks:

Tkinter: This is actually a Python binding for the Tk GUI toolkit. It is considered
to be the standard Python GUI framework that is available on all OS installations
of Python. For a long time, the widgets included in Tkinter didn't use the OS-
scheme, so Tkinter applications looked out of place. That has been fixed in the
latest versions, so now Tkinter programs look like native applications.
wxPython: This uses a Python wrapper for the cross-platform wxWidgets toolkit.
There was a time when it was considered as the replacement for the built-in
Tkinter framework, but that hasn't happened. The main code is compatible with
Python 2.x, while the Phoenix Project was designed to create a Python 3.x-
compatible version from the ground up. wxPython uses native OS widgets, so it
looks like a native application. A graphical designer, wxGlade, is available to
help lay out the GUI prior to coding the functionality.
PyQT: Yet another framework that wraps a Python binding around another
toolkit, in this case the cross-platform Qt toolkit. PyQT is considered by many to
be the primary GUI framework for Python applications, as Qt was designed for
business application development and has more than 400 classes and over 6,000
functions and methods. Of course, with that power comes a steeper learning
curve than other toolkits.
Kivy: Unlike the other tools, Kivy is a pure-Python library and not a wrapper
around another language's toolkit. It is cross-platform, as well as cross-device, so
you can run the same application on a Windows PC, an iPad, or Android phone.
Programs can be written in pure Python, or optionally you can create a hybrid
program that uses Python for functionality and the Kv language for user-
interface markup; this helps separate functionality from design.

There are many other GUI frameworks available, so the reader is encouraged to look at the
options available before committing to a particular one.

Graphical User Interface Planning Chapter 11

[255]

Summary
In this chapter, we talked about how to make a graphical user interface actually functional
for the user along with some best practices. We discussed the user environment and how it
affects the design practices for an application, and, at the end, we discussed some of the
most common Python GUI frameworks available for developers.

In the next chapter, we will actually create a GUI for the fuel farm project and ensure that it
provides the functionality we want.

12
Creating a Graphical User

Interface
While we covered a number of GUI frameworks in the last chapter, we will use Kivy for
this particular development project. It is pure Python, so you don't have to concern yourself
with trying to configure a separate environment; it is cross-platform as well as cross-device,
so Kivy applications have a wider user base; and it is in active development, with new
releases coming out every few months, in addition to a steadily improving library of tools.

In this chapter, we will cover the following topics:

Wireframing
Coding the interface
GUI testing

Wireframing
When designing a GUI, it is common to sketch out what the final interface should look like.
This is known as wireframing. While there are applications designed explicitly for
wireframing, even something as simple as MS PowerPoint can be used.

Ideally, we would talk to the end users and figure out what they wanted in a GUI, allowing
them to test each version of the software until we found the best solution. However, when
it comes to a Human-Machine Interface (HMI), as GUIs for industrial applications are
commonly called, the interface is pretty much dictated by the system being used.

Creating a Graphical User Interface Chapter 12

[257]

HMIs have to show what the system looks like, much like a schematic diagram, as well as
telling the operator the current system parameters and conditions. The following
screenshot shows a representative example of an HMI for an industrial application:

Example HMI

Creating a Graphical User Interface Chapter 12

[258]

Frequently, the HMI allows the operator to directly control the system by manipulating
GUI elements, such as buttons or switches. The HMI is remotely connected to the actual
components, much like we simulated in the fuel farm program in Chapter 9, Writing the
Fueling Scenario.

Because HMIs are basically system drawings, we don't have much to wireframe for this
project. We can actually use the schematic drawing itself, as all of the necessary information
is already shown on the schematic drawing.

Coding the interface
As we will be using Kivy, you can go to https:/ /kivy. org/ and review the installation
instructions.Depending on your OS, and whether you're using a virtual Python
environment, Łand other factors, there are different ways to install the software.

By default, Kivy applications are designed to scale according to the device or the user's
desires. If we were to allow this, we would have to hand-draw the schematic drawing
within Kivy, or otherwise create the HMI from scratch. If we used the schematic drawing as
a background image and placed widgets on top, the widgets would not maintain the same
position relative to the schematic drawing when scaled.

Having a scalable image is the most desirable option, but for the purpose of this book, we
will use the schematic drawing as a background image and block scaling. Therefore, any
widgets that we place on top of the schematic drawing won't have to worry about the
drawing moving underneath them.

As this is not a Kivy-specific book, we will only cover the fundamental Kivy processes
necessary to code the fuel farm GUI. We will talk about two specific files in this chapter:
hmi.kv and hmilayout.py. They define the widget layout and program functionality,
respectively, and allow the programmer to separate logic from presentation. Frequently, the
two files are coded side by side, with logic leading to widget layout and vice versa. To
make it easier for the reader, we will talk about the logic file first, and then we'll cover the
layout.

https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/
https://kivy.org/

Creating a Graphical User Interface Chapter 12

[259]

To give the reader an idea of what the expected outcome is, the schematic portion of the
HMI is shown in the following diagram:

Kivy HMI (part 1)

Creating a Graphical User Interface Chapter 12

[260]

The parameter data table is shown in following table:

Kivy HMI (part 2)

As Kivy is designed to be used with mobile devices, the two screens can be viewed by
grabbing the side bar (dark gray in the first image) and swiping back and forth. On a
computer, this is done using the mouse to swipe.

Creating a Graphical User Interface Chapter 12

[261]

Kivy logic file
The first thing we will work on is the Python logic for our application. It is demonstrated in
the multi-part listing of hmilayout.py, as follows:

hmilayout.py (part 1)
1 import sys
2 sys.path.extend(["/home/cody/PycharmProjects/VirtualPLC"])
3
4 import Models.FuelFarm.components as components
5 import Models.FuelFarm.functionality as functionality
6
7 from kivy.app import App
8 from kivy.uix.pagelayout import PageLayout
9 from kivy.config import Config
10
11 import kivy
12 kivy.require("1.10.0")

In part 1, we import all of the important modules that we will need. Lines 1 and 2 show the
path extension code to ensure the smooth attempt to execute the program. Lines 4 and 5
assign alias names to the components.py and functionality.py files, so we don't have
to continually type the entire path every time.

Lines 7-9 import the important pieces from Kivy. There are a number of different layouts
available in the uix module, so it is worth looking at them to see which ones might best fit
your GUI.

Line 12 is important, as it dictates which Kivy version the program is written for. If a user
has an older version of Kivy installed, an exception will be generated and the program
won't run; this is because Kivy changes frequently. If a newer version is installed, the
exception won't occur.

The following code snippet is part 2 of hmilayout.py:

hmilayout.py (part 2)
1 # Fix the drawing to a set size and prevent scaling
2 Config.set("graphics", "width", "1112")
3 Config.set("graphics", "height", "849")
4 Config.set("graphics", "resizable", False)
5
6 class HMILayout(PageLayout):
7 # Methods are associated with their class; each class would have its
own .kv file
8 @staticmethod
9 def on_state(device): # Get the status of the device

Creating a Graphical User Interface Chapter 12

[262]

10 if device.state == "down":
11 if device.group not in ["pump1", "pump2", "pump3"]:
12 exec("functionality.{}_open()".format(device.group)) #
Dynamically call valve open()
13 else:
14 exec("functionality.{}_on()".format(device.group)) #
Dynamically call pump on()

Lines 2-5 are the commands that force the schematic drawing to not be scalable, as well as
forcing the displayed image to have the same dimensions as the original file. This way, it is
easy to use a program such as GIMP or Photoshop to overlay a grid and determine the
rough position of where widgets should be placed.

In normal Python fashion, we create a class in line 6 to contain all the items that will create
the GUI. In this case, the class inherits from the PageLayout class, allowing us to simply
inherit the layout and functionality of widgets from the parent class. As the comment on
line 7 indicates, if multiple classes are used, then each class would have its own .kv layout
file associated with it.

We define a static method in lines 8-14 that receives the status state of a particular widget
(in this case, a toggle button). A static method is used because we don't care whether a class
or instance calls the method, so a static method operates more like a regular function that
can be called either from an instance or a class; this is useful in a GUI, as it makes the
method more universal in use. If the widget for a particular component is "down", or
showing blue on the HMI, the device is either open (if a valve) or on (if a pump).

We use the Python exec() function to call the appropriate action, depending on the
component. The exec() command effectively uses the string argument passed into it as a
command to the Python interpreter. This choice was made to allow the string command to
dynamically determine the name of the component; this is such as having a large
if...else block, where each command would be the same but only the component name
was different.

The following code snippet is part 3 of hmilayout.py:

hmilayout.py (part 3)
1 def populate(self):
2 # Make dictionaries to populate table
3 tank_properties1 = {}
4 tank_properties2 = {}
5
6 valve_properties1 = {}
7 valve_properties2 = {}
8 valve_properties3 = {}
9 valve_properties4 = {}

Creating a Graphical User Interface Chapter 12

[263]

10 valve_properties5 = {}
11 valve_properties6 = {}
12 valve_properties7 = {}
13
14 pump_properties1 = {}
15 pump_properties2 = {}

Part 3 shows a method that will populate the parameter table. This method is linked to one
of the buttons on the table slide of the GUI; initially, the table is empty so the button is
provided to fill it. This first listing shows all of the empty dictionaries we will use later;
there are alternative ways to make dictionaries, such as the dict() method, but it is
sometimes easier for clarity to create empty ones and populate as needed.

It should also be noted that the current code does not automatically update the table when
data changes. So, if a user clicks one of the toggle buttons on the GUI, the Populate Table
button needs to be clicked as well to show the changes.

The following code snippet is part 4 of hmilayout.py:

hmilayout.py(part4)
1 pump_properties3 = {}
2
3 # Convert instances to dictionaries
4 for key, value in vars(components.tank1).items():
5 tank_properties1[key] = value
6 for key, value in vars(components.tank2).items():
7 tank_properties2[key] = value
8
9 for key, value in vars(components.gate1).items():
10 valve_properties1[key] = value
11 for key, value in vars(components.gate2).items():
12 valve_properties2[key] = value
13 for key, value in vars(components.gate3).items():
14 valve_properties3[key] = value

Line 1 finishes the empty dictionary creation, and then we move into the expressions. The
expressions convert all of the component instances we created into key:value pairs that can
populate the dictionaries. Because this methodology is the same for different components,
we will not cover all of the components as coded. However, the complete hmilayout.py
file is available in this book's code repository for review.

Creating a Graphical User Interface Chapter 12

[264]

The following code snippet is part 5 of hmilayout.py:

hmilayout.py (part 5)
1 # Populate table
2 self.table.data = [{"value": "Tank"}, {"value": "Level"}, {"value":
"Pressure Out"}, {"value": "Flow Out"},
3 {"value": ""}, {"value": ""},
4 # Tank 1
5 {"value": tank_properties1["name"]},
6 {"value": str(tank_properties1["_Tank__level"])},
7 {"value": "{:.2f}".format((tank_properties1["_Tank__tank_press"]))},
8 {"value": "{:.2f}".format((tank_properties1["flow_out"]))},
9 {"value": ""},
10 {"value": ""},
11 # Tank 2
12 {"value": tank_properties2["name"]},
13 {"value": str(tank_properties2["_Tank__level"])},
14 {"value": "{:.2f}".format((tank_properties2["_Tank__tank_press"]))},
15 {"value": "{:.2f}".format((tank_properties2["flow_out"]))},

After we have populated the dictionaries, we need to populate the table itself. This code
block takes up nearly 100 lines, so we won't cover each line here. The main thing to get
from part 5 is that the table's data is determined by a list of dictionary items. This is a part
of how Kivy operates, particularly the RecycleGridLayout class that is used for tabular
data display. (We will see that class in the next section when we talk about the Kivy layout.)

The following code snippet is part 6 of hmilayout.py:

hmilayout.py (part 6)
1 def clear(self):
2 self.table.data = []
3
4 class HMIApp(App):
5 def build(self):
6 return HMILayout()
7
8 if __name__ == "__main__":
9 HMIApp().run()

After we have set up the table to be populated with data from the model, we write the
method (line 1) to clear the table when the Clear List button is pressed.

We create a new class in line 4 that has only one method: build(). The whole purpose of
this class is to build the GUI we defined in the HMILayout() class.

At the end (line 9), we actually run the GUI when it is called.

Creating a Graphical User Interface Chapter 12

[265]

Kivy layout file
Now that we have the logic for how the GUI is supposed to function, we can actually write
the code to place the widgets where we want on the diagram. You could do this within the
Python file that we just created, but best practice is to separate code logic from
presentation. For example, the following code from the official Kivy tutorial shows how a
Python file could both accept a touch from a finger and create a small dot on the screen of a
tablet:

def on_touch_down(self, touch):
 with self.canvas:
 Color(1, 1, 0)
 d = 30.
 Ellipse(pos=(touch.x - d / 2, touch.y - d / 2), size=(d, d))

For our purposes, we will write a special .kv file to hold the layout-specific information
and keep the Python logic in hmilayout.py:

hmi.kv (part 1)
1 #:kivy 1.10.0
2
3 <HMIButton@ToggleButton>:
4 size_hint: None, None
5 size: 35, 35
6
7 <Row@BoxLayout>:
8 canvas.before:
9 Color:
10 rgba: 0.5, 0.5, 0.5, 1
11 Rectangle:
12 size: self.size
13 pos: self.pos
14 value: ''

Line 1 has the Kivy version information to ensure that the user doesn't receive errors. Lines
3-5 define the HMIButton size that will be used for the GUI; it inherits from the Kivy
ToggleButton class.

size_hint (line 4) accepts proportional values from 0 to 1; the values are basically the
percentage length of width and height. Because the values for size_hint are None, we
provide actual values through size (line 5) to set the button to be square. If not using a set
size, then only size_hint needs to be used and the GUI will automatically size the widget.

Creating a Graphical User Interface Chapter 12

[266]

Lines 7-14 determine the layout of the rows in the parameters table. canvas.before tells
Kivy to process the items beneath the line (lines 8-13) before moving onto anything else;
essentially, it defines the background of the drawing canvas, where images and widgets are
placed. In this case, we are defining the color of the row and the size of the cells within the
table.

Color (line 9) accepts the red, green, blue, and alpha channel values as proportions, from 0
to 1. The size and pos parameters of Rectangle (lines 12 and 13) don't have values
assigned, so they will accept the default values from the parent class, BoxLayout.

Line 14 provides the option for a default value to be given. As we will fill this later, we have
set it to be an empty string.

The following code snippet is part 2 of hmi.kv:

hmi.kv (part 2)
1 Label:
2 text: root.value
3
4 <HMILayout>:
5 table: table # identify this object for reference by other objects
6 swipe_threshold: .2 # Allow page turn to occur when it has been moved
20%
7 FloatLayout:
8 # First page (HMI)
9 canvas.before:
10 Rectangle:
11 pos: self.pos
12 size: self.size
13 source: "fuel_schematic.png"

Lines 1 and 2 finish up the Row from the part 1. Label is the name that would be placed on
the row; in line 2, the text assignment indicates that the text value will be whatever the root
class at the top of the hierarchy is; in this case, it is BoxLayout.

Starting with line 4, we define how the buttons will be placed on the GUI. Line 5 provides a
reference name for this particular object, while line 6 determines how far the user must
swipe before the next screen appears (whether schematic to the table or vice versa).

Line 7 declares FloatLayout, which organizes widgets with proportional coordinates
using size_hint and pos_hint properties. It also allows widgets to overlay one another.

Creating a Graphical User Interface Chapter 12

[267]

Lines 9-13 dictate what Kivy is supposed to do first when processing the file. In this case,
we create a rectangle with inherited size and position; then we fill it with the schematic
drawing. This way, the drawing is the first thing displayed by Kivy, allowing all other
widgets to lay on top of it.

The following code snippet is part 3 of hmi.kv:

hmi.kv (part 3)
1 HMIButton:
2 id: gate1
3 text: "G1"
4 pos: 347, 325
5 group: "gate1"
6 on_state: root.on_state(self)
7
8 HMIButton:
9 id: gate2
10 text: "G2"
11 pos: 347, 473
12 group: "gate2"
13 on_state: root.on_state(self)

After defining the canvas.before items, we move into creating widgets. In part 3, we
define two buttons that will be placed on the schematic drawing. Lines 1-6 create gate valve
1 on the drawing, providing the Kivy identification value, the text to be displayed on the
button, the absolute position of the button (from the bottom-left corner of the drawing), the
group the button is associated with, and access to the on_state() method that we defined
previously. Lines 8-13 do the same thing for gate valve 2.

Since the rest of the buttons follow a similar pattern, we will not cover them in detail here.
However, the full code is available in this book's code repository.

The following code snippet is part 4 of hmi.kv:

hmi.kv (part 4)
1 HMIButton:
2 id: pump1
3 text: "P1"
4 pos: 545, 294
5 group: "pump1"
6 on_state: root.on_state(self)
7 color: 1, .5, .5, 1

Creating a Graphical User Interface Chapter 12

[268]

The preceding code listing for a pump button is slightly different from the valve buttons.
Line 7 shows a color listing, in the normal RGBA setting we saw in part 1. This color defines
the text color used by the button; this was done in order to help to differentiate the buttons
on the drawing. Valve buttons have default text colors, while pump buttons have pinkish
text.

The following code snippet is part 5 of hmi.kv:

hmi.kv (part 5)
1 BoxLayout:
2 # Second page (table layout)
3 canvas:
4 Color:
5 rgba: 0.3, 0.3, 0.3, 1
6 Rectangle:
7 size: self.size
8 pos: self.pos
9 table: table # identify this object for reference by other objects
10 orientation: 'horizontal' # place the following layouts side-by-side
11 BoxLayout:
12 orientation: "vertical" # stack buttons
13 size_hint_x: .15 # buttons should be 15% window width

After we provide the code for all of the buttons on the GUI, we move onto the parameters
table page. This is the page that is swiped in from the side.

Line 1 tells Kivy that we will use BoxLayout this time, which organizes widgets into a row
or a column, depending on the orientation provided.

We define the canvas colors, rectangle size, and position in lines 3-8. Note that we didn't
use canvas.before in line 3; with just canvas, items are allowed to overlap. There is also
canvas.after, which places widgets after everything else that has been placed. You can
think of the different canvas options as the tools that the drawing applications have for
"move to back", "move to front", and so on.

In line 9, we again identify the object for future reference and line 10 tells BoxLayout that
we will be using the horizontal orientation, to create a row of widgets.

Lines 11-13 create a new BoxLayout within the parent box container. This new layout will
stack two buttons vertically (the Populate List and Clear List buttons).

Creating a Graphical User Interface Chapter 12

[269]

The following code snippet is part 6 of hmi.kv:

hmi.kv (part 6)
1 Button:
2 text: 'Populate list'
3 on_press: root.populate()
4 Button:
5 text: 'Clear list'
6 on_press: root.clear()
7 RecycleView:
8 # reference to data table
9 id: table
10 scroll_type: ['bars', 'content'] # table is scrolled by using
scroll bars or touching content directly
11 bar_width: dp(20) # sets scroll bar width to 20 px
12 viewclass: 'Row' # Refer back to Row@BoxLayout for grid appearance
13 RecycleGridLayout:
14 size_hint: 1, None # Force scrolling
15 cols: 6

Lines 1-6 create the buttons we talked about in part 5 and associate them to their respective
hmilayout.py methods.

Line 7 starts a way to view datasets. RecycleView is the current way to create tables within
Kivy; it was added in version 1.10 and replaced the old ListView class.

Line 9 provides the ID reference for the view; the name "table" here is the same table listed
in part 2 and part 5.

Line 10 indicates that scroll bars are available for mouse users, but mobile device users can
touch the table directly to scroll. Line 11 provides the width of the scroll bars.

Line 12 calls back to the Row layout to determine how to display the table.

Lines 13-15 actually create the layout that will be used to display information. Line 14
forces the scroll bars to appear, rather than only showing up when scrolling starts. This
allows the user to easily "grab" the scroll bars for quick scrolling. Line 15 states that six
columns will be used for the table.

Creating a Graphical User Interface Chapter 12

[270]

The following code snippet is part 7 of hmi.kv:

hmi.kv (part 7)
1 default_size: None, dp(56) # fit table to window
2 default_size_hint: 1, None # fill width
3 height: self.minimum_height # fill height
4 spacing: dp(2) # spacing between cells

We finish up RecycleGridLayout by providing for the default sizes of the table and the
cells.

GUI testing
While there is documentation for Kivy testing, it requires the installation of nose (an
alternative testing library, similar to pytest) for unit testing and coverage to check how
much code was tested. However, the documentation doesn't seem to have been updated
within the last year, as it refers to the original nose program, which has been deprecated in
favor of nose2.

You can use regular, non-graphical unit tests in your code. But, if you want to test the GUI
itself, you have to set up the environment for that. We won't bother with automated testing
for this project, though it is advised to do that for large-scale projects. Any new versions of
the fuel farm scenario would include automated tests; but, for now, we will manually test it
because it is actually pretty easy in this small a project.

First, we just want to ensure that, when everything is closed or turned off, we should have
no flow through the system. In this case, the only pressure is from the inlet of valves 1 and 2
from the static tank pressure.

Creating a Graphical User Interface Chapter 12

[271]

The diagram of this lineup is shown in following:

Closed diagram

Creating a Graphical User Interface Chapter 12

[272]

The table output of the lineup diagram shown is as follows:

Closed table

Creating a Graphical User Interface Chapter 12

[273]

For a simple system lineup, coming from Tank 1 through Pump 1, we click the appropriate
buttons, as shown in the following diagram:

Tank 1-Pump1 drawing

Creating a Graphical User Interface Chapter 12

[274]

The output after clicking buttons in a simple system lineup that is coming from Tank 1
through Pump 1 is provided in the table shown in the following:

Tank 1-Pump 1 table

As shown in preceding the screenshot, we now have pressure and flow out of valves 1 and
5, and flow out of Pump 1. You can double-check the values that are shown; they should
match your calculations as well as being part of your unit tests for the text-based program.

Creating a Graphical User Interface Chapter 12

[275]

Another test is to ensure that the flow from both the tanks is represented correctly. The
lineup is shown in the following diagram:

Both tanks to pump 2

Creating a Graphical User Interface Chapter 12

[276]

The output for the preceding lineup is shown in the following:

Both tanks to pump 2 table

As shown in the preceding screenshot, the flow through the valves is correct, with valve 6
receiving the combined flow from both tanks, while the pressure out is the same as the
other valves (static pressure in the tanks is the only pressure source). The pump
information is also correct, even though we have the combined flow coming into it; it can
only pump so much, so it doesn't matter what the flow rate coming into it is.

Creating a Graphical User Interface Chapter 12

[277]

Summary
In this chapter, we learned about wireframings and how they are used to mock up
graphical interfaces. We also saw that, sometimes, the wireframe may already be available
to you, such as a schematic diagram, so you don't have to make a new one or you can use it
directly as the GUI itself.

We saw how to use Kivy's API calls to create a simple GUI using a pre-made schematic
drawing and how to generate an output table of information. After making the GUI, we
learned how to map the original text-based program to the GUI widgets to provide the user
with a point-and-click method to adjust the program.

Finally, we looked at how to manually check the values of the fuel farm project and saw
that, sometimes, it may be easier to manually test a GUI than write the automated tests if
the GUI is simple enough.

There is a lot of information in this fuel farm simulation project, but it should suffice to
demonstrate what can be done with Python. While actual hydrodynamic fluid calculations
require advanced math, we only use the basic, algebraic calculations in this program since
we don't need high fidelity in our physics modeling. Also, there is a good chance that the
results in this model aren't completely accurate; but the project should be sufficient to
demonstrate how a liquid storage and transfer design should work.

There are also a number of things a programmer can do from here. The original text-based
code could be changed to use a database instead of class instances; the rest of the GUI could
be modeled out; there are always more tests to write, and so on. Hopefully, you have
gained sufficient knowledge of Python to feel comfortable writing your own programs
now.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Python Programming - Second Edition
Fabrizio Romano

ISBN: 978-1-78899-666-2

Get Python up and running on Windows, Mac, and Linux
Explore fundamental concepts of coding using data structures and control flow
Write elegant, reusable, and efficient code in any situation
Understand when to use the functional or OOP approach
Cover the basics of security and concurrent/asynchronous programming
Create bulletproof, reliable software by writing tests
Build a simple website in Django
Fetch, clean, and manipulate data

https://www.packtpub.com/application-development/learn-python-programming-second-edition

Other Books You May Enjoy

[279]

Secret Recipes of the Python Ninja
Cody Jackson

ISBN: 978-1-78829-487-4

Know the differences between .py and .pyc files
Explore the different ways to install and upgrade Python packages
Understand the working of the PyPI module that enhances built-in decorators
See how coroutines are different from generators and how they can simulate
multithreading
Grasp how the decimal module improves floating point numbers and their
operations
Standardize sub interpreters to improve concurrency
Discover Python’s built-in docstring analyzer

https://www.packtpub.com/application-development/secret-recipes-python-ninja

Other Books You May Enjoy

[280]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
agile development 150, 152
application programming interface (API) 115

B
base valve class 167, 169, 171
black-box testing
 about 190
 all-pairs testing 190
 boundary-value analysis 190
 decision table 191
 equivalence partitioning 190
 fuzzing 191
 state testing 190
 use cases 191

C
code
 refactoring 200, 202
compiled languages
 versus interpreted languages 8, 9
component coding 207, 209, 211
containers
 accordion 248
 tabs 249
continuous integration (CI) 145

D
data streams 117, 120
data types
 about 26, 28
 methods, using 53
database (DB) 127
database application programming interface (DB-

API) 127
dictionaries

 about 44, 45
 creating 45, 46
 key points 48, 49
 working with 46, 48
directory structure 205, 207
docstring conventions
 reference link 222
docstrings 222, 224, 225, 227, 236, 237
dot nomenclature 67
dynamic tests
 versus static tests 189
dynamic typed language
 versus static typed language 10

E
end-of-file (EOF) 117
end-of-file exception (EOFError) 88
exception class hierarchy 85, 87
exceptions
 about 82, 84, 88, 90
 user-defined exceptions 87, 88

F
file I/O
 about 116, 117
 iterating through 122
 reading from 120, 122
 seeking 123, 125
 serialization 125, 127
files 117, 120
for loops 78, 80
frozenset 53
fueling scenario
 requirements 203, 205
 testing 218, 220
functionality coding 211, 212, 214, 216, 217, 218
functions

[282]

 Lambdas 95, 96
 working with 92, 94, 95

G
gate valve class 172
globe valve class 172
graphical frameworks 254
graphical user interface (GUI) 239
GUI elements
 about 240
 breadcrumbs 243
 buttons 240
 checkboxes 241
 date fields 243
 drop-down lists 242
 icons 246
 list boxes 242
 message boxes 248
 pagination 245
 pop-up notifications 247
 progress bars 247
 radio buttons 241
 search fields 244
 sliders 244
 tags 246
 text fields 241
 toggles 242
 tooltips 247
GUI functionality
 about 239
 best practices 249, 251
 containers 248
GUI testing 270, 273, 276

H
Human Interface Guidelines, Apple
 reference link 240
Human Interface Guidelines, GNOME
 reference link 240
human-machine interface (HMI) 256

I
if/else statements 73, 75
incremental development 144
input/output (I/O) 120

interface
 coding, with Kivy 258, 260
interpreted languages
 versus compiled languages 8, 9
IPython shell
 using 18, 20

K
Kivy
 about 254
 installation link 258
 layout file 265, 267, 269
 logic file 261, 263, 264
 used, for coding interface 260

L
Lambdas 95, 96
list elements
 adding 42, 43
lists
 about 39, 40
 mutability 43, 44
 usage 40, 41
loops
 about 76
 for loops 78, 80
 while loops 76, 77
 zip() function 81, 82

M
Mac
 Python, installing 13
methods, data types
 dictionary methods 57, 58, 59, 60, 61
 list methods 56, 57
 sequence methods 53, 54
 set methods 62, 63
 string methods 55
 tuple methods 57
module import
 types 68, 69
modules
 dot nomenclature 67
 importing 64
 namespaces 64, 66

[283]

 using, as scripts 69, 71
multiple line spanning 25, 26

N
name mangling 166
namespaces 64, 66
net positive suction head (NPSH) 159
Numeric Python (NumPy)
 about 29
 reference link 29

O
Object-Oriented Programming (OOP)
 about 96
 class methods 106, 111, 114
 classes 96, 98, 99, 100
 inheritance 101, 103
 instances 99, 100
 methods 96
 modules 101
 namespaces 96
 operator overloading 103, 106
 properties 106
 static methods 106, 111, 114
object-relational mapper (ORM) 137

P
PostgreSQL 128
pounds per square inch (PSI) 160
project requirements
 developing 152, 154
properties, Object-Oriented Programming (OOP)
 getters method 107, 109, 111
 setters method 107, 109, 111
prototyping 147
pumps
 base pump class 177, 179, 181
 centrifugal pump class 181, 183
 positive displacement pump class 183, 185, 186
 simulating 176
PyQT 254
Python 2 division
 versus Python 3 division 11
Python 3 division
 versus Python 2 division 11

Python code
 commenting 16
Python Command Prompt
 using 13, 15
Python Enhancement Proposal (PEP) 222
Python interpreter
 launching 12
Python numbers 28
Python Package Index (PyPI)
 reference link 64
Python programs
 launching 16, 17
Python-specific, GUI frameworks
 Kivy 254
 PyQT 254
 Tkinter 254
 wxPython 254
Python
 about 7
 installing 12
 installing, on Mac 13
 installing, on Windows 12
 SQLite, using 127
 versions 8
 working with 11

R
rapid application development (RAD) 147
Read-Evaluate-Print Loop (REPL) 12
relief valve class 173, 175
reStructuredText (reST) 227

S
sets 52, 53
Software Development Life Cycle 143
software development
 agile development 150, 152
 continuous integration (CI) 145
 incremental development 144
 methodologies 144
 practices 144
 prototyping 147
 rapid application development (RAD) 147
 spiral development 149
 waterfall development 148

software repositories 154
Sphinx documentation 227, 229, 230, 231, 234,

235, 236, 237
spiral development 149
SQL
 using, to query database 131, 132
SQLAlchemy 137
SQLAlchemy database
 filling 139, 142
 querying 139, 142
 writing 138, 139
SQLite database
 creating 132, 134
 data, retrieving from 134, 136
 files 137
SQLite
 databases, working with 128, 130
 using, with Python 127
static typed language
 versus dynamic typed language 10
storage tanks
 name mangling 166
 simulating 162, 164, 166
strings
 about 29, 30
 combining 37, 39
 formatting 35, 37
 indexing 33, 35
 operations 30, 31
 separating 37, 39
 slicing 33, 35
Structured Query Language (SQL) 127
structuring code 23, 25
subject-matter experts (SMEs) 152

T
Test-driven development (TDD) 191
testing techniques
 about 188
 black-box testing 190
 static tests, versus dynamic tests 189
 white-box testing 189

tests
 writing 192, 195, 199, 200
Tkinter 254
tokenization 37
tuples
 about 49
 need for 49, 50
 sequence unpacking 51, 52

U
user environment 252, 253
user-defined exceptions 87, 88
utility functions 159, 161, 162

V
valves
 base valve class 167, 169, 171
 gate valve class 172
 globe valve class 172
 relief valve class 173, 175
 simulating 167

W
waterfall development 148
while loops 76, 77
white-box testing
 about 189
 application programming interfaces (API) testing

189

 code coverage 189
 fault injection 190
 mutation testing 190
 static testing 190
Windows, Icons, Menus, Pointer (WIMP) paradigm

240

Windows
 Python, installing 12
wireframing 256, 258
wxPython 254

Z
zip() function 81, 82

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: The Fundamentals of Python
	What is Python?
	Python versions
	Interpreted versus compiled
	Dynamic versus static
	Python 2 versus Python 3 division

	Working with Python
	Installation
	Launching the Python interpreter
	Windows (Win8 and above)
	Mac

	Using the Python command prompt

	Commenting Python code
	Launching Python programs
	Using the IPython shell
	Summary

	Chapter 2: Data Types and Modules
	Structuring code
	Multiple line spanning

	Common data types
	Python numbers
	Strings
	Basic string operations
	Indexing and slicing strings
	String formatting
	Combining and separating strings

	Lists
	List usage
	Adding list elements
	Mutability

	Dictionaries
	Creating dictionaries
	Working with dictionaries
	Dictionary details

	Tuples
	Why use tuples?
	Sequence unpacking

	Sets
	Using data type methods
	Sequence methods
	String methods
	List methods
	Tuple methods
	Dictionary methods
	Set methods

	Importing modules
	Namespaces
	Dot nomenclature
	Types of imports
	Modules as scripts

	Summary

	Chapter 3: Logic Control
	if...else statements
	Loops
	while loops
	for loops
	zip() function

	Exceptions
	Exception class hierarchy
	User-defined exceptions
	Final thoughts

	Summary

	Chapter 4: Functions and Object Oriented Programming
	Working with functions
	Lambdas

	Classes, methods, and namespaces
	How are classes better?
	Classes and instances
	Modules
	Inheritance
	Operator overloading

	Properties and class and static methods
	Properties
	Getters and setters

	Class and static methods

	Summary

	Chapter 5: Files and Databases
	File I/O
	Files and streams
	Reading from a file
	Iterating through files
	Seeking
	Serialization

	Python and SQLite
	Working with databases
	Using SQL to query a database
	Creating a SQLite database
	Retrieving data from a database
	SQLite database files

	SQLAlchemy
	Writing a SQLAlchemy database
	Filling and querying the database

	Summary

	Chapter 6: Application Planning
	Software development life cycle
	Development practices and methodologies
	Incremental development
	Continuous integration
	Prototyping
	Rapid application development
	Waterfall development
	Spiral development
	Agile development

	Project requirements
	Software repositories
	Summary

	Chapter 7: Writing the Imported Program
	Project requirements
	Utility functions
	Simulating storage tanks
	Name mangling

	Simulating valves
	Base valve class
	Gate valve class
	Globe valve class
	Relief valve class

	Simulation pumps
	Base pump class
	Centrifugal pump class
	Positive displacement pump class

	Summary

	Chapter 8: Automated Software Testing
	Testing techniques
	Static versus dynamic tests
	White-box testing
	Black-box testing
	When to test

	Writing tests
	Refactoring code
	Summary

	Chapter 9: Writing the Fueling Scenario
	Fueling scenario requirements
	Directory structure
	Component coding
	Functionality coding
	Testing
	Summary

	Chapter 10: Software Post-Production
	Docstrings
	Sphinx documentation
	Lessons learned
	Summary

	Chapter 11: Graphical User Interface Planning
	GUI functionality
	GUI elements
	Best practices

	User environment
	Graphical frameworks
	Summary

	Chapter 12: Creating a Graphical User Interface
	Wireframing
	Coding the interface
	Kivy logic file
	Kivy layout file

	GUI testing
	Summary

	Other Books You May Enjoy
	Index

