

 1

 2

By
Chris Rose

Foreword by Daniel Jebaraj

 3

Copyright © 2013 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Jeff Boenig

Copy Editor: Ben Ball

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story behind the Succinctly Series of Books.. 6

About the Author ... 8

Introduction .. 9

Part 1 Direct2D ... 10

Chapter 1: Direct2D (XAML) Template .. 11

SimpleTextRenderer Class ... 14

VSync, Swap Chain, and Buffering .. 20

Chapter 2: Debugging with a WinRT Device .. 22

Chapter 3: Beginning a Graph Rendering App ... 25

Chapter 4: Graph Backgrounds ... 36

Solid Color Background .. 36

DirectX Colors... 38

Gradient Background .. 40

Bitmap Backgrounds ... 47

Chapter 5: 2-D Data Plots ... 55

Scatter Plot ... 56

2-D Transformations ... 62

Translating the Scatter Plot ... 72

Chapter 6: Infinite Lines and the Axes ... 75

Chapter 7: Displaying FPS (Frames per Second) .. 81

Chapter 8: Line Charts .. 85

Chapter 9: Navigating between Multiple XAML Pages ... 91

Chapter 10: Printing Direct2D...100

Chapter 11: Margins ..107

Chapter 12: Zooming ...114

Chapter 13: Hit Testing or Picking ..119

Chapter 14: Direct2D Geometry ...124

 5

Simple Geometries ..124

Complex Geometries ...126

Part 2 Direct3D ..132

Chapter 15: Rendering Pipeline ...133

Chapter 16: Starting a Direct3D Project ..135

Terms and Concepts ..135

Chapter 17: Rendering a Triangle with Direct3D ...139

Vertex and Index Buffers ..140

Backface Culling ..141

Positioning the Eye ..143

Primitive Topologies ...145

Chapter 18: Rendering a Height Map ...146

Chapter 19: Projection Options ..150

Perspective Projection ...150

Orthographic Projection ...151

Direct3D Scatter Plot..153

Conclusion ..158

Appendix A: Microsoft Limited Public License ...159

MICROSOFT LIMITED PUBLIC LICENSE version 1.1 ...159

Appendix B: DirectXPage.xaml Class Listing ..161

Appendix C: CDocSource Class Code Listing ..167

Appendix D: Code Listing for SimpleTextRenderer Printing ..178

 6

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always being
on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are being
published, even on topics that are relatively new, one aspect that continues to inhibit us is the
inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for relevant
blog posts and other articles. Just as everyone else who has a job to do and customers to serve,
we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can be
translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The book
you now hold in your hands, and the others available in this series, are a result of the authors’
tireless work. You will find original content that is guaranteed to get you up and running in about
the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free. Any
updates we publish will also be free.

S

 7

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and sell
against competing vendors who promise to “enable AJAX support with one click,” or “turn the moon
to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic of
study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 8

About the Author

Chris Rose is an Australian software engineer. His background is mainly in data mining and
charting software for medical research. He has also developed desktop and mobile apps and a
series of programming videos for an educational channel on YouTube. He is a musician and can
often be found accompanying silent films at the Pomona Majestic Theatre in Queensland.

 9

Introduction

This book is an introduction to some of the capabilities of Direct2D and Direct3D. Direct2D and
Direct3D are the graphics rendering components of DirectX. It is about leveraging the graphics
card and DirectX to efficiently represent data. It is aimed at programmers already familiar with C++
(both managed and unmanaged) and Visual Studio 2012 Express. We will be using the version of
Visual Studio designed for Windows 8 application development, not the desktop version. The
desktop version is designed for building standard Windows Forms applications, and the version for
Windows 8 is designed for Windows Store applications. This book presents methods for rendering
vector graphics and visualizing different types of data on Windows 8 and Windows RT platforms
using Direct2D and Direct3D. It is not an in-depth discussion of these topics; for further information,
consult the appropriate MSDN library pages from Microsoft along with the specification of the
graphics hardware for which you are programming.

This book provides a general introduction to Direct2D and Direct3D. It is written from the
perspective of rendering data as nodes and lines, but the information presented is useful for any
applications that require efficient rendering using DirectX. In the initial chapters of this book we will
develop a small but scalable charting system that can be adapted to suit other projects or
incorporated into an existing project. We will examine some common requirements of charting
applications, such as detecting if the pointer is near a node, as well as printing Direct2D.

In the interest of keeping things as general as possible, I have generated random data in the
examples. In a real situation this data would be loaded from some data source. I will also build on
the standard project templates provided by Visual Studio 2012, rather than concentrate on the
boilerplate code. The verbose DirectX boilerplate code is a barrier for any programmers hoping to
become familiar with the API. Thankfully, the templates supplied with Visual Studio 2012 write all of
the boilerplate code for us. We will largely take it for granted, and examine options in the
boilerplate code as they arise.

The code in this book is designed for desktop PCs running Windows 8 and tablet PCs running
Windows RT. It has been formatted to suit the page of this document. This means it is very difficult
to read, and should be reformatted if it is copied and pasted for testing purposes.

 10

Part 1 Direct2D

Direct2D is a graphics API (Application Programming Interface) designed to render 2-D vector and
raster graphics. It is built on top of the Direct3D API, which in turn is built on the DXGI (DirectX
Graphics Infrastructure). It can be used in conjunction with Direct3D to render any 2-D portions of a
scene. It is high performance, leveraging the GPU for efficient, complex 2-D graphics.

Note: Throughout this book I will refer to GPU many times (short for Graphics Processing Unit). The
term GPU usually refers to a dedicated graphics card, however, I will use the term more generally to
refer to the hardware which performs the majority of graphics processing in a computer. This includes
a dedicated graphics card, an onboard graphics card, or the execution units in the NVidia Tegra chips

in the WinRT devices.

The API consists of a number of interfaces (COM objects), which are used to communicate with
the graphics hardware. It can render vector primitives, like lines and ellipses, and can also fill
shapes with solid colors or gradients, as well as display raster images. Raster graphics are
composed of pixels, one for each point on a screen (or image). The pixels each have values which
determine their colors, and collectively they are arranged in a large grid.

Direct2D is important for visualizing data because many chart types (line charts, scatter plots, etc.)
are fundamentally 2-D in design. The most important difference between using Direct2D and using
Direct3D to render 2-D graphics is simplicity. Direct3D is orders of magnitude faster than Direct2D
but it is more complicated to program. In addition to this, the Direct2D project template is a perfect
combination of standard Windows 8 XAML and Direct2D. This allows programmers to use
standard Windows 8 controls and XAML pages to deal with user input, while Direct2D handles all
the graphics processing. This combination of DirectX and XAML is a feature only available in
Windows 8 applications.

Figure 1: Relationship between Major DirectX Components

The graphics driver is the lowest level depicted; it controls the hardware directly. Above this is the
DirectX Graphics Infrastructure (DXGI), then Direct3D and finally Direct2D. The software rasterizer
is used in place of graphics hardware, it uses the CPU to render graphics when a dedicated GPU
is not available.

 11

Chapter 1: Direct2D (XAML) Template

We will begin by creating a standard Direct2D (XAML) template project and becoming familiar with
its structure. Open Visual Studio 2012 and on the File Menu, click New Project.

Figure 2: Creating a new Direct2D App (XAML)

Click Visual C++ on the left panel, and then select Direct2D App (XAML) from the project
templates in the center panel. Type a name for your project in the Name box, and then click OK.

Visual Studio will create many files for the new project which contain the boilerplate code and
some other useful helper methods. The Solution Explorer should look like Figure 3.

To run the application in debug mode press F5, or on the File menu click Debug > Start
Debugging. After Visual Studio builds and links your project files, it will execute the application.

Figure 3: Direct2D App (XAML) Solution Explorer

 12

Figure 4: Output of Direct2D App (XAML) Template

Assets Folder

This folder contains several PNG images for the new application:

 Logo.png: This image appears as the tile on the Windows 8 Start page. It is similar to the
desktop icon from previous versions of Windows.

 SmallLogo.png: This is the icon image used when a smaller icon should be displayed, such
as when the user is searching 'All Apps' in Windows 8.

 SplashScreen.png: The splash screen appears briefly when your application is executed.

 StoreLogo.png: This is the logo for your app as it appears in the Windows Store.

Common

This folder contains a single XAML file that describes common settings between the XAML files.

External Dependencies:

This folder contains a very large list of external files that your project may depend on. Some are
generated per project, and others are the standard Windows C++ header files. You should not
change the files in this list, especially the standard Windows headers.

App

The App.xaml, App.cpp, and App.h files define your application. The XAML file contains some
global settings across your entire app. The CPP and H files define a class with the starting point for
executing the program. This class owns a member variable called m_directXPage which is the
main Direct2D rendering class. It also controls some important system-level operations, like saving
and restoring the state of the application when the program is suspended.

BasicTimer.h

The basic timer header defines a class that can be used for any time-based tasks such as physics
or animation.

 13

xxx_TemporaryKey.pfx

This is the ClickOnce digital certificate for your application. It is used to help ensure that the
application is not malicious software. If the application is not signed, Windows will warn users that
the application "comes from an unknown publisher," and it will ask them if they are sure they wish
to run the program.

DirectXBase

The DirectXBase class is defined in two files: DirectXBase.h and DirectXBase.cpp. This class
contains most of the boilerplate code to get Direct2D up and running. It contains code to initialize
the device, the factories, device context, and many other things. It can be used for both 2-D and 3-
D graphics. It has many helper functions to enable us to quickly begin DirectX programming
without typing the extremely verbose boilerplate code. The reader is encouraged to investigate this
file thoroughly, as it shows exactly how DirectX should be initialized.

DirectXHelper

This file consists of a single function, DX::ThrowIfFailed. This is a helper function that converts an
HRESULT to a managed C++ exception. DirectX function calls return an HRESULT. Many of the
codes we will examine surround the DirectX function calls with a call to this method, such that the
programmer has an opportunity to examine any errors that are thrown by DirectX. If you set a
break point on this line, Visual Studio will break when an exception is thrown, and allow you to
examine what went wrong. The errors will give you an error number and you can research the
meaning of this, or look it up using the error look up application that comes with the DirectX SDK.

DirectXPage

This is the main XAML page of your application. The Direct2D (XAML) template application
contains a simple page with two sentences written on a XAML form. The top sentence is written
using XAML and the lower one is written by DirectX. This is the class that renders the top line of
code.

Package.appxmanifest

This is the main manifest of your application. It contains all the information about your app,
including who the publisher is, and what capabilities the app requires (Internet access, access to
the webcam, etc.).

PCH

The precompiled header file (pch.h) contains headers that are compiled to an intermediate format
to save time when recompiling the entire project. Most of the classes you add to your project will
include this file in order to work correctly.

SimpleTextRenderer

This is the core class of this DirectX application. This class renders the lower sentence on the
screen. Because the SimpleTextRenderer class is the main class controlling what DirectX displays
on the screen, we will examine it in detail.

 14

SimpleTextRenderer Class

This class uses Direct2D to render a line of text to the screen. In this section, it is not the class
itself we are examining, but rather the way that it operates. The Graph Renderer class we will build
in future chapters will be heavily based on this class. Open the SimpleTextRenderer.h file.

The class derives from the DirectXBase class. It contains a default constructor and several
methods, which are called during resource allocation (CreateDeviceIndependentResources,

CreateDeviceResources and CreateWindowSizeDependentResources).

Note: Resources is a general term referring to many different types of objects and structures that
are stored in memory (either system memory or in the GPU’s dedicated memory) and used by
DirectX. Resources must be created and initialized prior to their use. Most of the resources we will
examine are created shortly after the main DirectX objects. These resources are destroyed when the
application closes. Resources can be created and destroyed at any time after the main DirectX
objects are initialized, since the resource creation methods belong to these objects.

The Render method is where DirectX does all of its rendering. This class also defines an update
method which can be used to perform calculations to determine where objects should be moved to
in the scene. The UpdateTextPosition, BackgroundNextColor, and

BackgroundPreviousColor functions are specific to this template, and not required when you
develop your own. They allow the user to manipulate the position of the DirectX drawn text, as well
as cycle through some predefined background colors.

The SaveInternalState and LoadInternalState methods are used to save and restore the

state of the application; for example, when a WinRT tablet goes to sleep, and then is woken.

These methods are followed by several member variables that are used to maintain and
manipulate the position of the text. Apart from the m_renderNeeded variable, most of these

variables are application specific and most likely not required for your application. The
m_renderNeeded variable is used by the application to determine if the Render method should be
called. If nothing has changed in the scene, there is no point in rendering it again. The following
diagram depicts the relationships between the most important classes of this application. Lines
ending in diamond shapes indicate ownership (the AppXAML class owns a member of the type
DirectXPage), and the lines ending with a triangle indicate inheritance (the SimpleTextRenderer
inherits from the DirectXBase class).

Figure 5: Class Relationships of Direct2D App (XAML) Template

 15

Real-time graphics applications often render frames at some predefined interval described with the
metric of the number frames displayed per second (FPS). A frame is a single still image of a game
or movie. In order to create the illusion of smooth animation, slightly different frames are displayed
to the viewer in succession. DirectX applications often render frames at a fixed refresh rate, such
as 60fps or even 100fps. It is not likely that the frames of a charting application need to be re-
rendered every 60th or 100th of a second. They usually stay exactly the same for long periods of
time. The user may pan or zoom into the chart which would require a re-rendering of the scene, but
this action is not as time critical as updating the frames of a real-time game.

Note: The member variables for this and other classes in this template have an “m_” prefix. This
signifies that they are member variables as opposed to local variables to a function. It is not

necessary but it is a good idea to name all member variables with this prefix.

Next, open the SimpleTextRenderer.cpp file in the Solution Explorer. At the top of the file you will
see an #include directive for the Precompiled Header (pch.h). Below this is the #include for the

SimpleTextRenderer.h, and the list of namespaces the class uses. Under the using directives
you will see the predefined order of the background colors that the user can cycle while running the
application.

The user can cycle through the colors and change the background of the application by right-
clicking the mouse in the screen, or swiping the pointer if you are using a touch screen device, and
selecting Next or Previous. This is an application-specific array, and it is unlikely that other
applications will use it. Below this we see the default constructor for the class.

The default constructor initializes several variables; it sets the backcolor to CornflowerBlue by

selecting index 0 (this is a reference to the BackgroundColors array defined in the previous code
sample). It also initializes the text position and sets the m_renderNeeded Boolean to true, such
that the first frame will be drawn to the screen. Resources are not created or allocated at this point;
the DirectX factories and context do not yet exist either.

Following this are three resource allocation methods. The first of which is the
CreateDeviceIndependentResources method.

static const ColorF BackgroundColors[] = { … }

SimpleTextRenderer::SimpleTextRenderer():m_renderNeeded(true),
 m_backgroundColorIndex(0),m_textPosition(0.0f, 0.0f) { }

void SimpleTextRenderer::CreateDeviceIndependentResources() {

 DirectXBase::CreateDeviceIndependentResources();

 DX::ThrowIfFailed(

 m_dwriteFactory->CreateTextFormat(

 L"Segoe UI", nullptr, DWRITE_FONT_WEIGHT_NORMAL,

 DWRITE_FONT_STYLE_NORMAL, DWRITE_FONT_STRETCH_NORMAL,

 42.0f, L"en-US", &m_textFormat));

 DX::ThrowIfFailed(

 m_textFormat->SetTextAlignment(DWRITE_TEXT_ALIGNMENT_LEADING)

);

}

 16

The CreateDeviceIndependentResources method is used to create and initialize any Direct2D

objects that are device independent. This method begins by calling the base class's method of the
same name. The base class method creates the DirectX factories, such as the m_dwriteFactory
used on the next line, which can be used by the application to create more DirectX objects.

Note: Resources in DirectX are all from one of two broad categories: device resources or device
independent resources. The device is the graphics card, and the device resources reside on the
graphics card itself. Device independent resources reside in system RAM, and tend to render slower
because they require CPU cycles to transfer to the video card.

The CreateDeviceResources method creates and initializes the device dependent resources. The

method calls the base class method with the same name, which creates the instance of the
Direct3D device and the context used by the application (m_d3dcontext and m_d3dDevice).

Note: Device and context are two important terms in DirectX. The device can be thought of as the
graphics card itself; this class is used to initialize the hardware, query its capabilities, and create
resources such as textures and shaders. A context is a particular use of the device; it renders
things to the screen using the resources on the device. There is normally one device, but there may
be more than one context. For instance, the printing sample uses three contexts: one for rendering,
another for the print preview, and a third for the printing itself. Figure 6 shows some of the tasks

each of these classes is responsible for.

void SimpleTextRenderer::CreateDeviceResources() {

 DirectXBase::CreateDeviceResources();

 DX::ThrowIfFailed(

 m_d2dContext->CreateSolidColorBrush(

 ColorF(ColorF::Black), &m_blackBrush));

 Platform::String^ text = "Hello, DirectX!";

 DX::ThrowIfFailed(m_dwriteFactory->CreateTextLayout(

 text->Data(), text->Length(),

 m_textFormat.Get(),

 700, // maxWidth.

 1000, // maxHeight.

 &m_textLayout));

 DX::ThrowIfFailed(m_textLayout->GetMetrics(&m_textMetrics));

}

 17

Figure 6: Device versus Context

Brushes are device resources; this method creates a black brush for painting the text. The actual
string to be written to the screen is created on the device as a TextLayout object using the

CreateTextLayout method. After this, the measurements and proportions of the string are saved
to m_textMetrics using the GetMetrics method.

Note: The CreateTextLayout method creates the IDWriteTextLayout device resource. This resource
contains information about the string to be printed, the bounding box within which it is printed and
its location. The CreateTextFormat method (in the CreateDeviceIndependentResources method)
creates an IDWriteTextFormat object, which is used to specify the font, size, and attributes of the

text to render.

void SimpleTextRenderer::CreateWindowSizeDependentResources() {

 DirectXBase::CreateWindowSizeDependentResources();

 // Add code to create window size dependent objects here.

}

void SimpleTextRenderer::Update(float timeTotal, float timeDelta) {

 (void) timeTotal; // Unused parameter.

 (void) timeDelta; // Unused parameter.

 // Add code to update time dependent objects here.

}

 18

The previous two methods are empty in the template. The
CreateWindowSizeDependentResources method is used to create any objects (device or device
independent) whose settings are dependent on the size or orientation of the screen. The Update
method is also empty; it controls the physics or other logic of the application, usually things that are
time dependent. The following code is an example of the template’s Render method.

void SimpleTextRenderer::Render() {

 m_d2dContext->BeginDraw();

 m_d2dContext->Clear(ColorF(BackgroundColors[m_backgroundColorIndex]));

 // Position the rendered text.

 Matrix3x2F translation = Matrix3x2F::Translation(

 m_windowBounds.Width / 2.0f –

 m_textMetrics.widthIncludingTrailingWhitespace / 2.0f +

m_textPosition.X,

 m_windowBounds.Height / 2.0f –

m_textMetrics.height / 2.0f + m_textPosition.Y

);

 // Note that the m_orientationTransform2D matrix is post-multiplied
here

 // in order to correctly orient the text to match the display
orientation.

 // This post-multiplication step is required for any draw calls that
are

 // made to the swap chain's target bitmap. For draw calls to other
targets,

 // this transform should not be applied.

 m_d2dContext->SetTransform(translation * m_orientationTransform2D);

 m_d2dContext->DrawTextLayout(Point2F(0.0f, 0.0f),

 m_textLayout.Get(), m_blackBrush.Get(),

 D2D1_DRAW_TEXT_OPTIONS_NO_SNAP);

 19

It is here in the Render method that actual drawing of the scene takes place. Most of the drawing
of the scene is performed by the m_d2dContext object. The Render method begins by stating
m_d2dcontext->BeginDraw; this line is coupled to the call to m_d2dContext->EndDraw method
call near the bottom. You should place all of your Direct2D drawing between these two function
calls. BeginDraw is used to specify the start of some code which builds a batch of rendering
commands for a render target. EndDraw specifies that the batch of commands is finished and they
can be rendered.

The next line calls the Clear method, passing the color the user currently has selected. This
results in clearing the screen to a solid color, one that the BackgroundColors array defined

previously, which the user can cycle through.

Tip: It is a good idea to clear the screen to some color other than black in a render method, even if
your subsequent drawing will completely overwrite the cleared screen. If you do not do this and
there is a problem with the program, you might be left staring at a black screen (or random flashing

colors or pixels) with no way of telling whether the render method is being called at all.

Following the call to Clear, a matrix is set up. Transforms such as scaling, rotation, and translation
(or panning, which is what we are doing here) are all controlled by matrices. This particular matrix
is a translation matrix; it moves the text such that the user can drag it around the screen. The
calculation in the definition of this matrix places the text in the middle of the screen with some
offset when the user drags it around. It uses the TextMetrics object and the WindowBounds
object to find where the text should go.

Once defined, the translation matrix must be applied to the context. This occurs on the next line
with the call to SetTransform. After the appropriate transformations have been applied, the text
itself can be rendered. This happens on the next line with the call to DrawTextLayout. Then the
drawing is ended with the call to EndDraw, and the image is presented to the user.

Tip: The actual screen refresh of the rendered scene occurs in the DirectXPage.xaml.cpp f ile when
the m_renderer object calls Present() in its OnRendering event handler method. It is very important
to note that the DirectXPage class presents the scene. When you add more sophisticated rendering
classes that call Present() themselves, it is important that you remove this Present() call from the
DirectXPage class. Otherwise you might Present() twice which will result in first flipping the actual

scene to the screen but immediately overwriting it with some other image.

 // Ignore D2DERR_RECREATE_TARGET. This error indicates that the device

 // is lost. It will be handled during the next call to Present.

 HRESULT hr = m_d2dContext->EndDraw();

 if (hr != D2DERR_RECREATE_TARGET) {

 DX::ThrowIfFailed(hr);

 }

 m_renderNeeded = false;

}

 20

The remaining methods are event handlers and other things which are specific to this. I
recommend that programmers new to DirectX with Visual Studio 2012 spend some time altering
the workings of this template before continuing on to the next section. A good familiarity with this
template is essential to understanding the remaining chapters of the Direct2D portion of this book.

Tip: Direct2D is designed to use multiple cores of the CPU automatically when rendering geometry.
If you use the D2D1_DEVICE_CONTEXT_OPTIONS_ENABLE_MULTITHREADED_OPTIMIZATIONS
option when creating the device context in the DirectXBase.cpp file, automatic multithreading may

provide a good speed boost to your code at the cost of utilizing more of the system's cores.

VSync, Swap Chain, and Buffering

Computer monitors update their display at a fixed speed. 60 times per second is common, referred
to as 60 Hz, but there are others like 75 Hz and 100 Hz. The pixel data is stored in a buffer on the
GPU, which is called the front buffer. The image on the monitor is refreshed with the data from this
buffer 60 times per second. At the same time the monitor is refreshing its display, the GPU is busy
rendering the frames to be displayed. The GPU writes the pixel data to the buffer.

There is a problem with this system which leads to unpleasant artifacts. The trouble is that the
GPU and the monitor are not necessarily updating frames at the same speed. This leads to an
artifact called tearing (see Figure 7). The monitor draws half of one frame to the screen and half of
the previous frame, because the GPU updates the frame in the front buffer when the monitor is
partially through updating its display.

Figure 7: Tearing

To get around this, the GPU does not render to the front buffer. Instead, it renders to a back buffer,
which is identical to the front buffer in every aspect, except that it is not rendered to the screen.

The monitor refreshes its display by rendering pixels from the upper left corner of the screen to the
lower right corner, then it resets and repeats the operation. The time period in which it resets itself
from the lower right corner back to the top is called the vertical retrace. To avoid the tearing
artifact, the GPU waits for the monitor to be in this vertical retrace phase, then it flips the buffers
(swaps the back and front buffers either by copying the pixel data or swapping pointers). This is
called vertical synchronization or V-sync for short. By the time the monitor has finished resetting
itself, the GPU can copy an entire frame to the front buffer. This way there is no tearing and the
monitor will never display half of one frame and half of another.

 21

The buffers are coordinated using a swap chain object. This is a class dedicated to controlling the
swapping of the buffers. In our applications there are two buffers: the front buffer and the back
buffer. Sometimes it is beneficial to use more than one back buffer and render frames to each, one
after the other, queuing the frames to be presented.

 22

Chapter 2: Debugging with a WinRT Device

All of the code in this book works for Windows 8 PCs as well as WinRT devices. If you are
authoring software for a WinRT tablet and have a real device, it is very beneficial to use it for
debugging and testing your application instead of an emulator (which is usually the default). Most
of the code in C++ and DirectX works fine on a Windows 8 PC, as well as a WinRT device
(compiled for the ARM target). The emulators are good but can never match the exact
characteristics of a real device.

Install the Remote Tools

Install the remote tools for Visual Studio 2012 onto the device. This is available from the Microsoft
website (available from http://www.microsoft.com/visualstudio/eng/downloads#d-additional-
software). It is a service that connects with the Visual Studio development machine to run and
debug the app on the device. All the regular debugging mechanisms are available from Visual
Studio such as break points, examining the ARM registers, and Memory windows. You need to
know the name of the device in order to deploy an application onto it. You also need to have the
device run the Remove Debugging Monitor that comes with the previously mentioned installation.
Each build configuration (Release x86, Debug x86, Release ARM, etc.) you want the device to run
must have the device's name in its project settings.

Change the application to ARM

If the WinRT device that you are deploying to is ARM based, such as a Microsoft Surface, you can
change the configuration for the project from the main menu by selecting ARM.

Figure 8: Configurations

Change debugging to Remote Machine

If it is not set already, you should change the debugging to Remote Machine.

http://www.microsoft.com/visualstudio/eng/downloads#d-additional-software
http://www.microsoft.com/visualstudio/eng/downloads#d-additional-software

 23

Figure 9: Machine Name

Specify the Name of the Remote Machine

Open the Project > [Name] Properties page from the main menu of Visual Studio or right-click on
your project's name in the Solution Explorer and click Properties on the context menu. This will
open the properties page for the project. Click Debugging on the left panel and type the name of
your remote machine into the space labeled Machine Name.

Figure 10: Remote Machine

Run the Remote Debugger

Run the remote debugging service on the device and you should be able to start debugging from
Visual Studio 2012 as usual (press F5 or click the start debugging button). The first thing you will
see on the device (Visual Studio Remote debugger's window) says it is connected to the
development computer with a message like the following:

3/01/2013 2:48:40 PM [MachineName]\[ComputerName] connected

Shortly after this you will see a message in the output window of Visual Studio saying it is
uploading the program to the device. This takes some time, but once the upload is complete the
application should run.

 24

Here are some ideas if you are unable to debug the application from the device, or it does not run
as expected:

 Make sure you have the correct remote debugging tools installed on the device. Install the
tools for Visual Studio 2012. Always download this directly from the Microsoft website and
download any available updates to ensure the current remote debugging supports your
particular device.

 Make sure you have spelled the name of the remote machine correctly in the project
properties. The remote machine name was chosen when Windows RT was first installed on
the machine. You can see the name of the remote machine in the Remote Debugger
window if you have forgotten or are unsure what the remote machine is called. At present,
the case of the name in the properties of the project is irrelevant, but the machine uses all
uppercase so you might try to match the exact case the machine is using.

 Make sure the current configuration has the name of the remote machine specified in its
debugging field in the properties page. You need to put the name of the device in each
configuration. For instance, if you use Debug and Release, you need to specify the remote
machine's name in both.

Finally, if the application is not executing as expected but is running, ensure the code you have
used is completely portable to WinRT. Be aware that these devices do not have a dedicated
graphics card. They rely on a scaled down, portable, and energy efficient CPU/GPU combination.
The version of DirectX 11 which runs on these devices is also scaled down. It does not contain the
full capabilities of the DirectX 11 standard. The operating system itself (Windows RT) is a scaled
down version of the full Windows 8, and many features are missing (free access to the file
structure, for instance).

 25

Chapter 3: Beginning a Graph Rendering App

Figure 11 is a basic bar chart. This particular one was generated using Open Office Calc with
random data. It consists of a title, background, axis labels, grid, key, and bars representing the
data.

Figure 11: Bar Chart

Each part of the chart can be thought of as being a distinct object. Each object is rendered one
after the other, starting with the background followed by the grid, the data, and then the labels. The
graph itself is composed of several objects which it draws one after the other to build a complete
graphical representation of the data. Many things about the previous chart are generic and
applicable to different chart types. The grid, for example, could be used for a scatter plot, line chart,
or histogram exactly as it is used here.

Our charting application will work in the same way. We will develop a collection of chart objects
that can be added and removed from charts at will. The objects will be very basic to maintain a
generic and usable foundation for a Direct2D charting application. The graph itself will be a class
called GraphRenderer, which will be based on the SimpleTextRenderer class that we just
examined. Each of the objects comprising the GraphRenderer will be a scaled down version of the
SimpleTextRenderer.

Create a new Direct2D (XAML) application in Visual Studio 2012 for Windows 8. This will form the
starting point for our application. I have called my application GraphPlotting. You will need to
change any references to this namespace to the name of your application if you copy the code for
testing.

First, we can delete the XAML text on the form. Open the DirectXPage.xaml file by double-clicking
its name in the Solution Explorer. This should display the page in a visual designer. Select Hello,
XAML! and right-click. Click Delete on the context menu.

 26

Figure 12: Deleting Text

There is also a hidden bar at the lower side of this panel which can be deleted. It is the bar that
appears when the user right-clicks on the screen, allowing the background colors to change. This
bar is not visible from the designer, so it is easiest to remove it from the XAML code. I have
highlighted the lines to remove.

<Page

 x:Class="GraphPlotting.DirectXPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:GraphPlotting"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <SwapChainBackgroundPanel x:Name="SwapChainPanel"
PointerMoved="OnPointerMoved" PointerReleased="OnPointerReleased"/>

 <Page.BottomAppBar>

 <AppBar Padding="10,0,10,0">

 <Grid>

 … Lots of XAML code here…!!!

 </Grid>

 27

Open the DirectXPage.xaml.cpp file. Delete the OnPreviousColorPressed and
OnNextColorPressed event handlers. In the constructor of this class, a SimpleTextRenderer

object is created. We need to change this to a GraphRenderer constructor call. You can also
delete the state saving methods, SaveInternalState and LoadInternalState. The
GraphRenderer class uses a method called PointerMoved instead of UpdateTextPosition. This
method has been renamed in the code listing. The entire DirectXPage.xaml.cpp file should look
like the following:

 </AppBar>

 </Page.BottomAppBar>

</Page>

// DirectXPage.xaml.cpp

#include "pch.h"

#include "DirectXPage.xaml.h"

using namespace GraphPlotting;

using namespace Platform;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

using namespace Windows::Graphics::Display;

using namespace Windows::UI::Input;

using namespace Windows::UI::Core;

using namespace Windows::UI::Xaml;

using namespace Windows::UI::Xaml::Controls;

using namespace Windows::UI::Xaml::Controls::Primitives;

using namespace Windows::UI::Xaml::Data;

using namespace Windows::UI::Xaml::Input;

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

DirectXPage::DirectXPage() : m_renderNeeded(true), m_lastPointValid(false) {

 InitializeComponent();

 28

 m_renderer = ref new GraphRenderer();

 m_renderer->Initialize(Window::Current->CoreWindow, SwapChainPanel,

 DisplayProperties::LogicalDpi);

 Window::Current->CoreWindow->SizeChanged +=

 ref new TypedEventHandler<CoreWindow^,

 WindowSizeChangedEventArgs^>(this,

 &DirectXPage::OnWindowSizeChanged);

 DisplayProperties::LogicalDpiChanged +=

 ref new DisplayPropertiesEventHandler(this,

 &DirectXPage::OnLogicalDpiChanged);

 DisplayProperties::OrientationChanged +=

 ref new DisplayPropertiesEventHandler(this,

 &DirectXPage::OnOrientationChanged);

 DisplayProperties::DisplayContentsInvalidated +=

 ref new DisplayPropertiesEventHandler(this,

 &DirectXPage::OnDisplayContentsInvalidated);

 m_eventToken = CompositionTarget::Rendering::add(ref new

 EventHandler<Object^>(this, &DirectXPage::OnRendering));

 m_timer = ref new BasicTimer();

}

void DirectXPage::OnPointerMoved(Object^ sender, PointerRoutedEventArgs^
args) {

 auto currentPoint = args->GetCurrentPoint(nullptr);

 29

 if (currentPoint->IsInContact) {

 if (m_lastPointValid) {

 Windows::Foundation::Point delta(

 currentPoint->Position.X - m_lastPoint.X,

 currentPoint->Position.Y - m_lastPoint.Y

);

 m_renderer->PointerMoved(delta);

 m_renderNeeded = true;

 }

 m_lastPoint = currentPoint->Position;

 m_lastPointValid = true;

 }

 else {

 m_lastPointValid = false;

 }

}

void DirectXPage::OnPointerReleased(Object^ sender, PointerRoutedEventArgs^
args) {

 m_lastPointValid = false;

}

void DirectXPage::OnWindowSizeChanged(CoreWindow^ sender,

WindowSizeChangedEventArgs^ args) {

 m_renderer->UpdateForWindowSizeChange();

 m_renderNeeded = true;

}

void DirectXPage::OnLogicalDpiChanged(Object^ sender) {

 m_renderer->SetDpi(DisplayProperties::LogicalDpi);

 30

Open the DirectXPage.xaml.h file and delete the declarations of the OnPreviousColorPressed

and OnNextColorPressed event handlers that we removed from the CPP file, and change the
include from SimpleTextRenderer.h to GraphRenderer.h, and the member variable declaration
from SimpleTextRenderer^ to GraphRenderer^. Delete the declarations for the SaveInternalState
and LoadInternalState methods as well. The file should look like the following (Visual Studio will
underline references in red as we are yet to declare the GraphRenderer class).

 m_renderNeeded = true;

}

void DirectXPage::OnOrientationChanged(Object^ sender) {

 m_renderer->UpdateForWindowSizeChange();

 m_renderNeeded = true;

}

void DirectXPage::OnDisplayContentsInvalidated(Object^ sender) {

 m_renderer->ValidateDevice();

 m_renderNeeded = true;

}

void DirectXPage::OnRendering(Object^ sender, Object^ args) {

 if (m_renderNeeded) // Comment out this line to make real-time
updating

 {

 m_timer->Update();

 m_renderer->Update(m_timer->Total, m_timer->Delta);

 m_renderer->Render();

 m_renderer->Present();

 m_renderNeeded = false;

 }

}

// DirectXPage.xaml.h

#pragma once

#include "DirectXPage.g.h"

 31

Open the App.xaml.cpp file, and remove the two references to the LoadInternalState and

SaveInternalState methods:

#include "GraphRenderer.h"

#include "BasicTimer.h"

namespace GraphPlotting{

 [Windows::Foundation::Metadata::WebHostHidden]

 public ref class DirectXPage sealed {

 public:

 DirectXPage();

 private:

 void OnPointerMoved(Platform::Object^ sender,

 Windows::UI::Xaml::Input::PointerRoutedEventArgs^ args);

 void OnPointerReleased(Platform::Object^ sender,

 Windows::UI::Xaml::Input::PointerRoutedEventArgs^ args);

 void OnWindowSizeChanged(Windows::UI::Core::CoreWindow^ sender,

 Windows::UI::Core::WindowSizeChangedEventArgs^ args);

 void OnLogicalDpiChanged(Platform::Object^ sender);

 void OnOrientationChanged(Platform::Object^ sender);

 void OnDisplayContentsInvalidated(Platform::Object^ sender);

 void OnRendering(Object^ sender, Object^ args);

 Windows::Foundation::EventRegistrationToken m_eventToken;

 GraphRenderer^ m_renderer;

 bool m_renderNeeded;

 Windows::Foundation::Point m_lastPoint;

 bool m_lastPointValid;

 BasicTimer^ m_timer;

 };

}

// App.xaml.cpp

// Implementation of the App class.

 32

#include "pch.h"

#include "DirectXPage.xaml.h"

using namespace GraphPlotting;

using namespace Platform;

using namespace Windows::ApplicationModel;

using namespace Windows::ApplicationModel::Activation;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

using namespace Windows::Storage;

using namespace Windows::UI::Xaml;

using namespace Windows::UI::Xaml::Controls;

using namespace Windows::UI::Xaml::Controls::Primitives;

using namespace Windows::UI::Xaml::Data;

using namespace Windows::UI::Xaml::Input;

using namespace Windows::UI::Xaml::Interop;

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

App::App() {

 InitializeComponent();

 Suspending += ref new SuspendingEventHandler(this, &App::OnSuspending);

}

void App::OnLaunched(LaunchActivatedEventArgs^ args) {

 m_directXPage = ref new DirectXPage();

 // Place the page in the current window and ensure that it is active.

 Window::Current->Content = m_directXPage;

 Window::Current->Activate();

}

 33

The following GraphRenderer class will take the place of the SimpleTextRenderer supplied in the
Direct2D (XAML) template, so that we can delete the SimpleTextRenderer from our project. Select
the two files that define the SimpleTextRenderer (SimpleTextRenderer.h and
SimpleTextRenderer.cpp) in the Solution Explorer. To delete them, right-click and select Remove
from the context menu.

Add two files to the project, GraphRenderer.h and GraphRenderer.cpp. These files will define our
graph renderer class. These files will change often as our charts evolve, but the following is their
initial listing.

void App::OnSuspending(Object^ sender, SuspendingEventArgs^ args) {

 (void) sender; // Unused parameter.

 (void) args; // Unused parameter.

}

// GraphRenderer.h

#pragma once

#include "DirectXBase.h"

//

// Additional headers for graph objects here

//

// This class represents a graph

ref class GraphRenderer sealed : public DirectXBase{

public:

 // Public constructor

 GraphRenderer();

 // DirectXBase methods.

 virtual void CreateDeviceIndependentResources() override;

 virtual void CreateDeviceResources() override;

 virtual void CreateWindowSizeDependentResources() override;

 virtual void Render() override;

 // Capture the pointer movements so the user can pan the chart

 34

 void PointerMoved(Windows::Foundation::Point point);

 // Method for updating time-dependent objects.

 void Update(float timeTotal, float timeDelta);

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

};

// GraphRenderer.cpp

#include "pch.h"

#include "GraphRenderer.h"

using namespace D2D1;

using namespace DirectX;

using namespace Microsoft::WRL;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

using namespace Windows::UI::Core;

GraphRenderer::GraphRenderer() {

}

void GraphRenderer::CreateDeviceIndependentResources() {

DirectXBase::CreateDeviceIndependentResources();

}

void GraphRenderer::CreateDeviceResources() {

DirectXBase::CreateDeviceResources();

}

 35

Compile and test your application at this point. You should see the entire screen cleared to a light
blue color.

void GraphRenderer::CreateWindowSizeDependentResources() {

DirectXBase::CreateWindowSizeDependentResources();

}

void GraphRenderer::Update(float timeTotal, float timeDelta) {

}

void GraphRenderer::PointerMoved(Windows::Foundation::Point point)

{

// Allow the user to set the current pan value with the mouse or pointer

m_pan.X += point.X;

m_pan.Y += point.Y;

}

 36

Chapter 4: Graph Backgrounds

The first graph objects we define will be backgrounds. The background of a chart acts as the
canvas upon which the other objects are rendered. It can be a simple single color, a gradient, or
even an image. Charts are usually meant to clearly portray information, and the background should
not obscure the data.

Solid Color Background

The simplest chart background is a single solid color, usually white or some other unsaturated
pigment. These are common because they do not tend to draw the attention of the viewer away
from the data being represented, and they are quick and easy to render.

Note: We could change the color in the call to Clear from CornflowerBlue to something else.
Instead, we will encapsulate the rendering of the background in a separate class. Once our chart is

clearing the screen, you can remove the clear to CornflowerBlue.

The following code defines a class that renders a solid color background.

// SolidBackground.h

#pragma once

#include "DirectXBase.h"

// Defines a background consisting of a solid color

class SolidBackground {

private:

 D2D1::ColorF color; // The color of this background

public:

 // Creates a new SolidBackground set to the specified color

 SolidBackground(D2D1::ColorF color);

 // Draw the background

 void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

};

 37

This class takes a color parameter in its constructor, saves it to a member variable, and uses this
to clear the screen in its render method. To create an instance of our solid background, we need to
add it to the GraphRenderer class. Open GraphRenderer.h and add an #include for the
SolidBackground.h file (I have highlighted the lines which have been added or changed in blue).

Declare a member variable at the bottom of the GraphRenderer.h file.

// SolidBackground.cpp

#include "pch.h"

#include "SolidBackground.h"

SolidBackground::SolidBackground(D2D1::ColorF col): color(col) { }

void SolidBackground::Render(

 Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

context->Clear(color); // Clear the screen to the color

}

// GraphRenderer.h

#pragma once

#include "DirectXBase.h"

//

// Additional headers for graph objects here

//

#include "SolidBackground.h"

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

 SolidBackground* m_solidBackground;

};

 38

Open the GraphRenderer.cpp file and use “new” to create the instance of m_solidBackground in

the GraphRenderer class constructor.

And finally, the GraphRenderer’s render method must be changed to call the new
m_solidBackground’s render method. The call to the m_d2dContext’s Clear method is no longer
needed and can be removed.

You can remove the call to m_d2dContext::Clear() in the render method, since it is no longer

needed. Now is a good time to compile and run your application.

DirectX Colors

Colors can be specified using the D2D1::ColorF enumeration, which defines a list of around 140

predefined colors.

GraphRenderer::GraphRenderer() {

m_solidBackground = new SolidBackground(D2D1::ColorF::Bisque);

}

void GraphRenderer::Render(){

m_d2dContext->BeginDraw();

// Clear to some color other than blank

// m_d2dContext->Clear(D2D1::ColorF(ColorF::CornflowerBlue));

// Pan the chart

Matrix3x2F panMatrix = Matrix3x2F::Translation(m_pan.X, m_pan.Y);

m_d2dContext->SetTransform(panMatrix*m_orientationTransform2D);

//

// Draw objects here

//

m_solidBackground->Render(m_d2dContext);

// Ignore D2DERR_RECREATE_TARGET error

HRESULT hr = m_d2dContext->EndDraw();

if (hr != D2DERR_RECREATE_TARGET) DX::ThrowIfFailed(hr);

}

 39

Note: For the complete list of predefined colors available in the D2D1::ColorF enumeration, right-
click on AliceBlue or another color identifier and select Go To Definition from the context menu.

This will open the Direct2DHelper.h file where the list of predefined colors is defined.

Note: The D2D1::ColorF class inherits from the D2D_COLOR_F class. It is the same but it defines
some useful functions and an enumeration of predefined colors.

You can also create your own colors by specifying the amount of red, green, and blue the color has
as floating point values:

The constructor for the ColorF class takes three parameters with an optional fourth (which defaults
to 1.0f and represents the opacity or alpha channel). The first three arguments are the amount of
red, green, and blue in the color. Here I have defined 100% red, 0% green, and 100% blue. This
combines to create a bright magenta color. In this color model, the range for the components is
from 0.0f to 1.0f, where 0.0f means none at all and 1.0f means full saturation or 100%.

You will often see colors initialized with something like the following:

D2D1::ColorF myColor = D2D1::ColorF(D2D1::ColorF::PredefinedColor);

The PredefinedColor is one of the colors from the ColorF enum defined in the D2D1Helper.h
file.This is a call to the copy constructor of the ColorF class. The nested reference to the
predefined color is the value to copy.

You can also define colors in a style similar to HTML colors using their hexadecimal
representation.

Here, the value is an unsigned integer usually written as six hexadecimal digits, which represent
three unsigned bytes ranging from 0 to 255 in decimal each. The lowest two digits represent the
amount of blue (the 7A in the example), and they can range from 00 (none) to FF (255 or 100%
saturation). The next two digits (the AA in the example) represent the amount of green in a similar
fashion, and the highest two digits (the CE in the example) are the amount of red.

D2D_COLOR_F copyOfPredefinedColor = D2D1::ColorF(D2D1::ColorF::AliceBlue);

// Alternative syntax using the derived helper class would be:

D2D1::ColorF copyOfPredefinedColor2 = D2D1::ColorF(D2D1::ColorF::AliceBlue);

D2D1::ColorF brightMagenta = D2D1::ColorF(1.0f, 0.0f, 1.0f);

D2D1::ColorF coffee = 0xCEAA7A;

 40

The example color model is called RGB for red, green, and blue. Sometimes there is an additional
channel called the alpha channel, which is usually used to represent the opacity of the color. An
alpha value of 0% means completely transparent, and 100% means completely opaque. The RGB
color system with the additional alpha channel is called the ARGB color system, because the
topmost bits of a 32-bit unsigned integer are used to store the alpha channel.

Tip: The RGB color model on little-endian systems (like x86 and ARM) results in the byte order for
the color of a pixel actually being BGR, the reverse, when stored in memory. The blue byte is the
lowest in memory and the red byte is the highest. When using the ARGB model, the byte order is
BGRA.

Gradient Background

The solid background introduced clearing the screen; the next background will introduce Direct2D’s
Gradient Brush. Almost everything that we draw in Direct2D we do so using a brush. There are
several different types of brush. We saw previously the use of a solid color brush to render text.
Gradient backgrounds can be created by coloring the whole render target with a linear gradient
brush prior to rendering the data. To create a GradientBackground class, add two files to the
project, GradientBackground.h and GradientBackground.cpp.

// GradientBackground.h

#pragma once

#include "DirectXBase.h"

// Gradient background

class GradientBackground {

private:

 D2D1_COLOR_F *colors; // The colors in the gradient

 float *stops;// Positions of the colors

 int count; // The number of different colors used

 D2D1_RECT_F m_ScreenRectangle; // The size of the rectangle we're filling

 // The linear gradient brush performs the painting

 Microsoft::WRL::ComPtr<ID2D1LinearGradientBrush> m_linearGradientBrush;

public:

 // Creates a new gradient background

 GradientBackground(D2D1_COLOR_F colors[], float stops[], int count);

 // Release dynamic memory

 41

 ~GradientBackground();

 void CreateWindowSizeDependentResources

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

 void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

};

// GradientBackground.cpp

#include "pch.h"

#include "GradientBackground.h"

GradientBackground::GradientBackground(D2D1_COLOR_F colors[],

float stops[], int count) {

// The constructor just saves the colors and stops

this->count = count;

this->colors = new D2D1_COLOR_F[count];

this->stops = new float[count];

for(int i = 0; i < count; i++) {

 this->colors[i] = D2D1_COLOR_F(colors[i]);

 this->stops[i] = stops[i];

 }

}

void GradientBackground::CreateWindowSizeDependentResources

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context)

{

// Create a gradient stops array from the colors and stops

D2D1_GRADIENT_STOP *gradientStops = new D2D1_GRADIENT_STOP[count];

for(int i = 0; i < count; i++) {

 gradientStops[i].color = colors[i];

 42

 gradientStops[i].position = stops[i];

 }

// Create a Stop Collection from this using the

// context's create method:

ID2D1GradientStopCollection *gradientStopsCollection;

DX::ThrowIfFailed(

 context->CreateGradientStopCollection (

 gradientStops, // Stops

 count, // How many?

 &gradientStopsCollection // Output object

));

// Create a linear gradient brush from this:

DX::ThrowIfFailed(

 context->CreateLinearGradientBrush(

 D2D1::LinearGradientBrushProperties (

 D2D1::Point2F(0, 0),// Start point of gradient

 D2D1::Point2F(// Finish point of gradient

 context->GetSize().width,

 context->GetSize().height

)),

 gradientStopsCollection,

 &m_linearGradientBrush));

// Also save the rectangle we're filling

m_ScreenRectangle = D2D1::RectF(0, 0, context->GetSize().width,

context->GetSize().height);

}

void GradientBackground::Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

// The fill the whole screen with the gradient

 43

The constructor of this class does nothing more than save the values passed as parameters to a
member variable, such that they can be used in the resources allocation methods to create a
brush. The most important method is the creation of window size dependent resources. We want
our gradient to fill the whole render target so we should place it in the window size dependent
resources method. In the code sample, you will see two points specified in the method call to
CreateLinearGradientBrush.

When we create a gradient brush, we first create a collection of the stops, positions at which the
colors are blended, and from this we create the gradient brush itself. I have also saved the render
target size to a member variable, so that it isn't calculated in the Render method.

I have used the screen coordinates (0, 0) and (width, height) such that the gradient stretches from
the top left corner to the lower right. If you want a straight vertical gradient blending from the top of
the screen to the bottom, you could use 0 instead of the screen's width as the first parameter of the
second point. Likewise, if you want a gradient that stretches horizontally, you could replace the
context->GetSize().height with 0.

Creating a linear gradient brush requires specifying a list of colors and a list of positions where the
colors change. If the colors were red, green, and blue, and the stops were 0.0f, 0.2f, and 1.0f, the
gradient's colors would be blended like the following:

At 0% across the gradient it is red, and at 20% across it is green, and at 100% it is blue. You can
add as many stops and colors as needed. The stops can be higher than 100% (1.0f). This means
the gradient's blend extends further than the visible area. If the stops do not begin at 0.0f, the first
color will be assumed for the start of the gradient. Likewise, if the stops do not end with 1.0f, the
remainder of the gradient brush will use the last color.

context->FillRectangle(&m_ScreenRectangle, m_linearGradientBrush.Get());

}

GradientBackground::~GradientBackground() {

delete[] colors;

delete[] stops;

}

 D2D1::Point2F(0, 0), // Start point of gradient

 D2D1::Point2F(// Finish point of gradient

 context->GetSize().width,

 context->GetSize().height

)),

 44

To make an instance and render the gradient background we follow a similar pattern to that of the
solid background. However, the solid background did not need any resources, whereas the
gtradient background creates a brush on the device, so we need to call the
CreateWindowSizeDependentResources method to have the gradient background create this
brush.

Note: We are examining the linear gradient, but there are also radial gradient brushes available in

Direct2D. These radiate the gradient outwards from a central point in concentric circles.

Replace the reference to the SolidBackground.h header with a reference to the new
GradientBackground.h header in the GraphRenderer.h file.

Replace the declaration of the SolidBackground member variable with a declaration of the new
GradientBackground.

Replace the call to the SolidBackground constructor with a call to the new GradientBackground
constructor in the GraphRenderer’s constructor.

//

// Additional headers for graph objects here

//

#include "GradientBackground.h"

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

 GradientBackground* m_gradientBackground;

};

GraphRenderer::GraphRenderer() {

D2D1_COLOR_F colors[] = {

 D2D1::ColorF(ColorF::PaleGoldenrod),

 D2D1::ColorF(ColorF::PaleTurquoise),

 D2D1::ColorF(0.7f, 0.7f, 1.0f, 1.0f)

 };

 45

Note: Standard colors, such as ColorF::Red, are declared as integer RGBA values in an enum. Our
GradientBackground class expects an array of D2D1_COLOR_F structures, each of which
represents a color as four distinct floating point values. This is the reason for wrapping the

standard color inside a call to D2D1::ColorF().

Call the method to create the background's window size dependent resources in the
GraphRenderer's CreateWindowSizeDependent resources method.

And finally, replace the call to render the SolidBackground with the call to render our new
GradientBackground.

float stops[] = {

 0.0f,

 0.5f,

 1.0f

 };

m_gradientBackground = new GradientBackground(colors, stops, 3);

}

void GraphRenderer::CreateWindowSizeDependentResources() {

DirectXBase::CreateWindowSizeDependentResources();

m_gradientBackground->CreateWindowSizeDependentResources(m_d2dContext);

}

void GraphRenderer::Render() {

m_d2dContext->BeginDraw();

// Reset the transform matrix so our gradient does not pan

m_d2dContext->SetTransform(m_orientationTransform2D);

m_gradientBackground->Render(m_d2dContext);

// Pan the chart

Matrix3x2F panMatrix = Matrix3x2F::Translation(m_pan.X, m_pan.Y);

 46

I have assumed that the gradient background is not to be affected by the panning (translation) of
the chart. This is only meant for panning the data. For this reason, I have added the call to render
just after resetting the transformation matrix.

The number of gradients in the collection can be very large and generated rather than stored, or
hard programmed into the code. The following creation of a gradient background produces a
random pastel rainbow, and this could replace the code we placed into the GraphRenderer’s
constructor:

The example code produces a rather pleasing gradient which should look something like Figure
13.

m_d2dContext->SetTransform(panMatrix*m_orientationTransform2D);

//

// Draw objects here

//

// Ignore D2DERR_RECREATE_TARGET error

HRESULT hr = m_d2dContext->EndDraw();

if (hr != D2DERR_RECREATE_TARGET) DX::ThrowIfFailed(hr);

}

const int count = 500;

D2D1_COLOR_F *cols = new D2D1_COLOR_F[count];

float* stops = new float[count];

for(int i = 0; i < count; i++) {

 cols[i] = D2D1::ColorF(

 0.75f+(float)(rand()%192)/192.0f, // Random pastels

 0.75f+(float)(rand()%192)/192.0f,

 0.75f+(float)(rand()%192)/192.0f);

 stops[i] = (float)i / (count - 1);

 }

m_gradientBackground = new GradientBackground(cols, stops, count);

 47

Figure 13: Rainbow Gradient

Gradient backgrounds are excellent for charting, especially on devices with limited resources,
because they are more appealing to look at than the standard solid background. They are faster to
render and initialize than a bitmap background, and they do not take up any disk space or bloat the
application by storing an image.

Bitmap Backgrounds

Next we will examine loading and displaying an image by creating a bitmap background. You can
use the WIC (Windows Imaging Component) to load a bitmap image (or several other standard
image formats) and display it as a background. Bitmap backgrounds provide the most flexibility, but
are more costly in terms of rendering performance.

Note: Thanks to the flexibility of the WIC decoders, this class will be able to load many standard
image file formats. Windows 8 ships with decoders for JPEG, TIFF, PNG, BMP, and others. With no

change to the code, our charts should be able to load any of these image formats.

The first thing to do is add an image file to your project. Right-click the project's name in the
Solution Explorer and click Add Existing item... as per Figure 14.

Figure 14: Adding an Existing Item

Locate the image file you wish to use in the Add Existing Item box that appears. I will use an
image file called background5.jpg in this example. Once you have selected your file, click Add as
per Figure 15.

 48

Figure 15: Adding the Image

Now that we have added a bitmap to our project, we can create the BitmapBackground class by
adding the BitmapBackground.h and BitmapBackground.cpp files.

// BitmapBackground.h

#pragma once

#include "DirectXBase.h"

// Defines a background consisting of a bitmap image

class BitmapBackground {

private:

 ID2D1Bitmap * m_bmp; // The image to draw

 D2D1_RECT_F m_screenRectangle; // Destination rectangle

public:

 // Constructor for bitmap backgrounds

 BitmapBackground();

 // Release dynamic memory

 ~BitmapBackground();

 49

Tip: The ID2D1Bitmap is a device dependent resource. Many WinRT devices do not have dedicated
GPU RAM, so the bitmap will be stored in the limited system memory. To reduce strain on system
resources, it is best to load only relatively small bitmaps or load few of them if you intend your

application to function smoothly on these devices.

 void CreateDeviceDependentResources

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context,

 IWICImagingFactory2 *wicFactory, LPCWSTR filename);

 void CreateWindowSizeDependentResources(

Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

 void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

};

// BitmapBackground.cpp

#include "pch.h"

#include "BitmapBackground.h"

// This constructor must be called at some point after the

// WIC factory is initialized!

BitmapBackground::BitmapBackground() { }

BitmapBackground::~BitmapBackground(){

m_bmp->Release();

}

void BitmapBackground::CreateDeviceDependentResources

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context,

IWICImagingFactory2 *wicFactory, LPCWSTR filename) {

// Create a WIC decoder

IWICBitmapDecoder *pDecoder;

// Decode a file, make sure you've added the file to the project first:

 50

DX::ThrowIfFailed(wicFactory->CreateDecoderFromFilename(filename,

 nullptr, GENERIC_READ, WICDecodeMetadataCacheOnDemand, &pDecoder));

// Read a frame from the file (png, jpg, bmp etc. images only have one frame so

// the index is always 0):

IWICBitmapFrameDecode *pFrame = nullptr;

DX::ThrowIfFailed(pDecoder->GetFrame(0, &pFrame));

// Create format converter to ensure data is the correct format despite the

// file's format.

// It's likely the format is already perfect but we can't be sure:

IWICFormatConverter *m_pConvertedSourceBitmap;

DX::ThrowIfFailed(wicFactory->CreateFormatConverter(&m_pConvertedSourceBitmap));

DX::ThrowIfFailed(m_pConvertedSourceBitmap->Initialize(

 pFrame, GUID_WICPixelFormat32bppPRGBA,

 WICBitmapDitherTypeNone, nullptr,

 0.0f, WICBitmapPaletteTypeCustom));

// Create a Direct2D bitmap from the converted source

DX::ThrowIfFailed(context->CreateBitmapFromWicBitmap(

m_pConvertedSourceBitmap, &m_bmp));

// Release the dx objects we used to create the bmp

pDecoder->Release();

pFrame->Release();

m_pConvertedSourceBitmap->Release();

}

void BitmapBackground::CreateWindowSizeDependentResources(

Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

 51

The constructor is empty and the destructor just releases the bitmap. Most of the code for this
background revolves around loading and decoding the image with the WIC factory and related
components. This is done in the BitmapBackground::CreateDeviceDependentResources
method. We first create a decoder using the wicFactory’s CreateDecoderFromFile method. Then
we use that to read a frame from the file. There will only be one frame in a JPEG, PNG, or bitmap
image, so the frame index we pass is 0 (in the call to pDecoder’s GetFrame method). There is a

chance that the format of the frame we just read was something other than the standard RGB
pixels we want to use. Use a WIC Format Converter to convert the data, and finally, create an
ID2D1Bitmap object from this. We can then render the resulting converted frame to the screen.

The constructor for this class is empty, and the creation of the bitmap is delegated to the
CreateDeviceDependentResources method because we require the use of the WIC decoder, but
the WIC decoder is not initialized when the constructor of the graph renderer is called.

Note: The order of the calls to the constructor and methods to create the resources in the
GraphRenderer class is Constructor, CreateDeviceIndependentResources, CreateDeviceResources,
then CreateWindowSizeDependentResources. This order is specified in the DirectXBase.cpp file.
DirectXPage also plays a role in this sequencing by calling the constructor.

Figure 16: Sequence of Resource Creation Methods

// Save a rectangle the same size as the area to draw the background

m_screenRectangle = D2D1::RectF(0, 0, context->GetSize().width, context-
>GetSize().height);

}

void BitmapBackground::Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

context->DrawBitmap(m_bmp, &m_screenRectangle);

}

 52

To make a new instance of our class and render a bitmap background, replace the #include of the
GradientBackground.h header with an #include for the new BitmapBackground.h header in the
GraphRenderer.h file.

Replace the definition of the GradientBackground member variable with a definition for the new
BitmapBackground member variable called m_bitmapBackground at the bottom of the

GraphRenderer.h file.

Replace the code in the GraphRenderer’s constructor, which was used to construct the gradient
background, with a call to the constructor for our new class.

Call the new bitmap background's CreateDeviceResources method in the Graph Renderer’s

method of the same name (remember to change the file name to the actual image you have used).

//

// Additional headers for graph objects here

//

#include "BitmapBackground.h"

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

 BitmapBackground* m_bitmapBackground;

};

GraphRenderer::GraphRenderer() {

m_bitmapBackground = new BitmapBackground();

}

void GraphRenderer::CreateDeviceResources() {

DirectXBase::CreateDeviceResources();

// Load the bitmap for our background

m_bitmapBackground->CreateDeviceDependentResources(

 53

Replace the call to the m_gradientBackground->CreateWindowSizeDependentResources

method in the GraphRenderer’s CreateWindowSizeDependentResources method with a call to
the new class’s CreateWindowSizeDependentResources.

And finally, replace the call to the GradientBackground’s render method with a call to the new
BitmapBackground's render method in the graph renderer's render method before the panning
matrix is applied.

 m_d2dContext,

 m_wicFactory.Get(),

 L"Background5.jpg");

}

void GraphRenderer::CreateWindowSizeDependentResources() {

DirectXBase::CreateWindowSizeDependentResources();

m_bitmapBackground->CreateWindowSizeDependentResources(m_d2dContext);

}

void GraphRenderer::Render() {

m_d2dContext->BeginDraw();

// Reset the transform matrix so our background does not pan

m_d2dContext->SetTransform(m_orientationTransform2D);

m_bitmapBackground->Render(m_d2dContext);

// Pan the chart

Matrix3x2F panMatrix = Matrix3x2F::Translation(m_pan.X, m_pan.Y);

m_d2dContext->SetTransform(panMatrix*m_orientationTransform2D);

//

// Draw objects here

//

 54

Note: The downside to using a bitmap background is that it increases the footprint of the
application. An image takes space on the hard drive, but depending on the format this may be
negligible. However, once the image is decoded and loaded into our application as an ID2D1Bitmap,
it will no longer use the compression algorithm of the file format. For instance, a 2247 × 1345 pixel
JPEG consumes less than 1 MB of disk space, but when loaded into the application it will add
almost 9MBs to the memory usage. This 9 MB is due to there being 2247 × 1345 pixels in the image,
each stored as red, green, and blue bytes. So the whole image is 2247 × 1345 × 3 bytes or about 8.6

MB.

 55

Chapter 5: 2-D Data Plots

We will now move on to rendering some shapes in Direct2D by examining how to plot some data.
This will be a small introduction to rendering vector graphics in Direct2D. In the interest of keeping
the sample code simple, I will use arrays of randomly generated values for the data that will be
plotted. When used in a real application, this data will probably come from a database or some
other real data source.

Graph Variable Base Class

We will create scatter plots and line charts in the following sections. Both the scatter plot and the
line chart share many characteristics, so we will implement a small class hierarchy. Both the
scatter plot and the line chart will inherit from the following base class, which is called the
GraphVariable class. Add two files to your project to define this base class, GraphVariable.h and
GraphVariable.cpp.

The class consists of the nodes as an array of D2D1_POINT_2F structures, as well as a count and
a record of the smallest x and y values in the node collection. The reason we are taking note of the
smallest x and y values is to automatically pan the data later on, so that some data is visible in the
initial view of our charts.

// GraphVariable.h
#pragma once

#include "DirectXBase.h"

// This class represents a generic plottable variable
// It is the base class for the ScatterPlot and the LineChart
// classes.
class GraphVariable abstract
{
protected:
 D2D1_POINT_2F* m_points; // These are the x and y values of each node
 int m_nodeCount; // This is a record of the total number of nodes

 // Record of smallest point
 float m_minX, m_minY; // Used to auto pan
public:
 // Getters for min values
 float GetMinX() { return m_minX; }
 float GetMinY() { return m_minY; }

 GraphVariable(float* x, float* y, int count);

 virtual void CreateDeviceDependentResources
(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) = 0;
 virtual void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context)
 = 0;

};

 56

The only method defined for this base class is a constructor that copies the two float arrays (*x and
*y) to the member variable m_points. It also finds and records the smallest values in both the *x
and the *y arrays, to be used for automatically panning later.

Scatter Plot

The scatter plot is one of the most common and useful depictions of 2-D data. It is usually
represented on a chart as a collection of nodes, each drawn as a primitive shape such as a circle,
square, or a triangle. Each node represents some point in 2-D space and each has various
properties including its position, color, and size. Scatter plots are usually employed to represent
data with two dimensions where each of the dimensions is parametric (such as weight and height).
The values are not ordered by the x-axis and they do not show continuation in the same way that a
line chart does. Two variables are needed for a scatter plot: the values in one variable determine
how far left or right a node is, while the values in the other variable determine how far up or down a
node is. Scatter plots are excellent for displaying data that may be correlated since correlated data
appears to collect around a straight line or as a spray of nodes.

If you do not need to maintain a steady 60 frames per second as dictated by the V-sync, you can
change the SwapChain's sync interval to 2, 3, or 4. By default, the swap chain will try to present
after the V-sync at 60 fps. Change the value of the first parameter of the call to the following:

HRESULT hr = m_swapChain->Present1(1, 0, ¶meters);

// GraphVariable.cpp
#include "pch.h"
#include "GraphVariable.h"

GraphVariable::GraphVariable(float* x, float* y, int count)
{
this->m_nodeCount = count;

// Assume the minimum is the first value
m_minX = x[0]; m_minY = y[0];

// Create an array of points from the *x and *y.
// We can't assume that the *x and *y are permanent so
// allocate seperate heap space for a copy of the data
// as D2D1::Point2F's:
m_points = new D2D1_POINT_2F[count];
for(int i = 0; i < count; i++)
 {
 m_points[i] = D2D1::Point2F(x[i], y[i]);

 // Check if the point is lower than the current minimum
 if(x[i] < m_minX) m_minX = x[i];
 if(y[i] < m_minY) m_minY = y[i];
 }

}

 57

Changing the value of the first parameter of the call in the DirectXBase.cpp file to 2, 3, or 4 will
cause the swap chain to sleep the application for up to 4 V-syncs, instead of the usual 1. This will
result in far better power consumption at the cost of a smooth frame rate. The input 1 means 60
fps, 2 means 30 fps, 3 means 20 fps, and 4 means 15 fps. The frames per second required to
adequately graph data are not usually 60 fps. 30 fps or 20 fps should be fine for most applications.
Even 15 fps will look fairly smooth in a charting application.

The following scatter plot inherits from the previously defined GraphVariable base class. Add two
files to your project, ScatterPlot.h and ScatterPlot.cpp.

// ScatterPlot.h
#pragma once

#include "DirectXBase.h"
#include "GraphVariable.h"

// Two different example shapes
enum NodeShape { Circle, Square };

// This class represents data to be drawn as a scatter plot
class ScatterPlot: public GraphVariable {
 float m_HalfNodeSize;// Half size of the nodes
 D2D1::ColorF m_NodeColor; // The color of the nodes
 ID2D1SolidColorBrush* m_brush; // Solid brush for painting nodes
 NodeShape m_NodeShape; // The shape of the nodes

public:
 // Public constructor
 ScatterPlot(float* x, float* y, float nodeSize,
 D2D1::ColorF nodeColor, NodeShape nodeShape, int count);

 virtual void
CreateDeviceDependentResources(Microsoft::WRL::ComPtr<ID2D1DeviceContext>
context) override;
 virtual void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context)
override;
};

// ScatterPlot.cpp
#include "pch.h"
#include "ScatterPlot.h"

using namespace D2D1;
using namespace DirectX;

ScatterPlot::ScatterPlot(float* x, float* y, float nodeSize,
 D2D1::ColorF nodeColor, NodeShape nodeShape, int count):
 m_NodeColor(0), GraphVariable(x, y, count) {
// Save half the node size. The nodes are drawn with
// the point they're representing at the middle of the shape.
this->m_HalfNodeSize = nodeSize / 2;

this->m_NodeShape = nodeShape;

 58

The constructor saves the color and node shape settings to member variables. The Render
method of this class shows how to render two basic shapes, the ellipse and the rectangle. The
shapes are drawn with the context’s FillXXX methods, where the XXX is some primitive shape.
These methods require a brush (created in the CreateDeviceDependentResources method), as

well as the shape to draw.

The FillEllipse method takes an ellipse as its first parameter. This could be generated previously or
calculated on the fly. Ellipses have a position and x and y radius. For instance, to create an ellipse
whose center is at pixel (100, 150), is 60 DIPs wide, and twice as tall, you could use
D2D1::Ellipse(100, 150, 60, 120). I have created circles by specifying the x and y radius as the
same value.

The FillRectangle method takes a Rectangle as its first parameter. This requires specifying the x-
coordinate and y-coordinate of the upper left corner of the rectangle, as well as the width and
height.

this->m_NodeColor = nodeColor;
}

void ScatterPlot::Render(
 Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {
switch(m_NodeShape) {
 // Draw as circle nodes
 case NodeShape::Circle:
 for(int i = 0; i < m_nodeCount; i++) {
 context->FillEllipse(D2D1::Ellipse(m_points[i],
m_HalfNodeSize,
 m_HalfNodeSize), m_brush);
 }
 break;

 // Draw as square nodes
 case NodeShape::Square:
 for(int i = 0; i < m_nodeCount; i++) {
 context->FillRectangle(D2D1::RectF(m_points[i].x -
 m_HalfNodeSize,
 m_points[i].y - m_HalfNodeSize, m_points[i].x +
m_HalfNodeSize,
 m_points[i].y + m_HalfNodeSize), m_brush);
 }
 break;

 // Additional shapes could follow

 default:
 break;
 }
}

void ScatterPlot::CreateDeviceDependentResources
 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {
// Create a brush of the specified color for painting the nodes
DX::ThrowIfFailed(context->CreateSolidColorBrush(ColorF(m_NodeColor),

&m_brush));
}

 59

The ID2D1DeviceContext interface has two versions of each of the primitive drawing methods; one
fills shapes (FillEllipse, FillRectangle, etc.) and the other renders only the outline of an empty
shape (the context’s DrawEllipse or DrawRectangle methods).

We will now add a scatter plot to our GraphRenderer, but there are some big problems with our
charting application that will become apparent as a result and will lead nicely to the next section.

Add the #include to the top of the GraphRenderer.h file (I have also included a gradient
background).

Add a GraphVariable pointer member to the graph renderer class. This will be used as the

ScatterPlot in this chapter, but it will also be used as the LineChart later.

Call the constructors for the GradientBackground and the new ScatterPlot in the

GraphRenderer's constructor in the GraphRenderer.cpp file.

//

// Additional headers for graph objects here

//

#include "GradientBackground.h"

#include "ScatterPlot.h"

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

 // Background

 GradientBackground *m_gradientBackground;

 // Plottable data

GraphVariable* m_graphVariable;

GraphRenderer::GraphRenderer()
{
// Create the gradient background:
D2D1_COLOR_F colors[] = {
 D2D1::ColorF(ColorF::PaleGoldenrod),
 D2D1::ColorF(ColorF::PaleTurquoise),
 D2D1::ColorF(0.7f, 0.7f, 1.0f, 1.0f)
 };
float stops[] = { 0.0f, 0.5f, 1.0f };

 60

Call the ScatterPlot’s CreateDeviceDependentResources method and the

GradientBackground’s CreateWindowSizeDependentResources methods. In the following code
I have also set the initial values for the m_pan member variable so the data will be visible when the

application starts. Otherwise the data would be plotted off the screen.

And finally, render the GradientBackground and the ScatterPlot in the

GraphRenderer::Render method.

m_gradientBackground = new GradientBackground(colors, stops, 3);

// Create the scatter plot:
const int count = 500; // Create 500 nodes
float* x = new float[count];
float* y = new float[count];

// Create random points to plot, these
// would usually be read from some data source:
for(int i = 0; i < count; i++) {
 x[i] = (float)(rand() % 2000);
 y[i] = (float)(rand() % 1000);
 }

m_graphVariable = new ScatterPlot(x, y, 10.0f,
 D2D1::ColorF::Chocolate,
 NodeShape::Circle, count);

delete[] x;
delete[] y;

}

void GraphRenderer::CreateDeviceResources() {
DirectXBase::CreateDeviceResources();

// Call the create device resources for our graph variable
m_graphVariable->CreateDeviceDependentResources(m_d2dContext);
}

void GraphRenderer::CreateWindowSizeDependentResources() {
DirectXBase::CreateWindowSizeDependentResources();

// Create window size resources for gradient background
m_gradientBackground->CreateWindowSizeDependentResources(m_d2dContext);

// Set the initial pan value so the lowest node is visible in the corner
m_pan.X = -m_graphVariable->GetMinX();
m_pan.Y = -m_d2dContext->GetSize().height - m_graphVariable->GetMinY();

}

 61

Upon running the application, you should see something similar to Figure 17.

Figure 17: Scatter Plot Screenshot

The problem with our chart is that this looks like a scatter plot, but actually the y-axis is reversed. In
computer graphics, the point (0, 0) refers to the pixel at the top left corner of the screen. Y values
increase down the screen, while x values increase across the screen to the right. This behavior in
the y-axis is the exact opposite of the way charts are normally rendered. Usually the point at the
lower left corner is used to represent the origin (0, 0). If the data is changed from being random to
increasing coordinates in both the x-axis and y-axis, you will see a diagonal line of nodes running
from the top left toward the lower right.

void GraphRenderer::Render()
{
m_d2dContext->BeginDraw();

// Reset the transform matrix so our background does not pan
m_d2dContext->SetTransform(m_orientationTransform2D);
// Render the background
m_gradientBackground->Render(m_d2dContext);

// Pan the chart
Matrix3x2F panMatrix = Matrix3x2F::Translation(m_pan.X, m_pan.Y +
m_d2dContext->GetSize().height);
m_d2dContext->SetTransform(panMatrix*m_orientationTransform2D);

//
// Draw objects here
//
// Render the graph variable
m_graphVariable->Render(m_d2dContext);

// Ignore D2DERR_RECREATE_TARGET error
HRESULT hr = m_d2dContext->EndDraw();
if (hr != D2DERR_RECREATE_TARGET) DX::ThrowIfFailed(hr);

}

 62

Upon running the application, you should see something like Figure 18.

Figure 18: Scatter Plots Rendered in a Line

This is an image of 500 nodes all in a line, so close together that there are no gaps at all. The
problem is that the whole y-axis needs to be flipped. We could do this fairly easily by multiplying
each y value for the scatter plot by -1 and accounting for the screen's height. We could do this
either when we create the scatter plot's data or when we render the nodes. However, there is a far
better way. The GPU can easily flip the y-axis for us with just a few lines of code by applying a
transform.

2-D Transformations

The movement, rotation, zooming, and many other aspects of DirectX scenes can be implemented
using transformation matrices. Transformations are applied by creating matrices that can control
almost all aspects of rendering: from an object's size and rotation settings, to its position and
eventual pixels on the screen.

// Create the scatter plot:
const int count = 500; // Create 500 nodes
float* x = new float[count];
float* y = new float[count];

// Create random points to plot, these
// would usually be read from some data source:
for(int i = 0; i < count; i++) {
 x[i] = i; //(float)(rand() % 2000);
 y[i] = i; //(float)(rand() % 1000);
 }

m_graphVariable = new ScatterPlot(x, y, 10.0f,
 D2D1::ColorF::Chocolate,

 NodeShape::Circle, count);

 63

Note: The graphics card is specifically built to perform this type of operation. It applies matrix
transforms to a collection of points or vertices far more efficiently than a CPU. It is an inherently
parallel device, having many low powered execution units (perhaps hundreds of cores), as opposed

to the multicore CPU, which has only a few high powered cores.

Matrices make graphics programming much easier. Matrix multiplication is cumulative, such that if
you multiply a translation matrix by a rotation matrix, it will result in a single matrix that both
translates and rotates. This is exactly the way the various transforms are applied to our objects
when we render with DirectX.

Graphics programming is an excellent way to introduce matrix operations. It is very easy to see the
effect of multiplying matrices when a scene is drawn using the results. The matrices used in 2-D
and 3-D graphics are usually very small, consisting of perhaps 3 to 16 components. The steps to
multiplying matrices can be found in many places on the Internet, and will not be examined in this
book.

I will not describe matrix multiplication in detail, but one of the most important differences between
matrix multiplication and regular arithmetic is that matrix multiplication is not commutative. If we
have two matrices, one for translation and another for rotation, the order that they are multiplied is
very important:

 Translation*Rotation ← Translate first then rotate

 Rotation*Translation ← Rotate first then translate

The top product translates first, and then rotates about the translated points. The lower product will
rotate about the origin, and then translate the points in the direction of the rotation. Also, when two
matrices are multiplied together, the result is a single matrix which does what both of the original
two matrices did.

There are static helper functions in the Matrix3x2F class that can be used to create common
transformations. The functions are Translation, Rotation, Scale, Skew, and Identity. To apply
a collection of transformation matrices, create the matrices with the appropriate helper functions,
multiply them together, and supply the resulting matrix as a parameter to the SetTransform

method. SetTransform is a method belonging to the ID2D1DeviceContext, which is used to set
the context’s current transformation matrix. For example, to pan and translate, or scale and rotate,
create three matrices for each transformation. Multiply the three matrices together in the call to the
SetTranform method. The multiplication results in a single matrix that does all three jobs, panning,

scaling, and rotating.

For the following discussion I will use a new Direct2D (XAML) template project for illustration. We
will apply transformation to our charting application afterward. The code being altered is in the
SimpleTextRenderer::Render method. The lines we are interested in have been highlighted in
the following code:

// Define each of the transformations
Matrix3x2F pan = Matrix3x2F::Translation(10.0f, 15.0f); // Pan 10 × 15 pixels
Matrix3x2F scale = Matrix3x2F::Scale(10.0f, 10.0f); // Scale 10 times the
size
Matrix3x2F rotate = Matrix3x2F::Rotation(25.0f);// Rotate 25 degrees

// Apply them all by multiplying together

m_d2dContext->SetTransform(pan * scale * rotate);

 64

Translation Transform

The translation transform is applied to a matrix, and the matrix is used to transform a set of points.
This is a movement transform that can be used to pan our chart. Open a new Direct2D (XAML)
project, and open the SimpleTextRenderer.cpp file. Scroll down to the Render method, and at line

103 you will see a translation matrix being created. This particular matrix calculates the x and y
values for the text, such that it begins centered and can be dragged around with the pointer. The
DirectX XAML page captures the pointer movements, recording the x and y position in the
m_textPosition member variable.

void SimpleTextRenderer::Render()
{
 m_d2dContext->BeginDraw();

 m_d2dContext->Clear(ColorF(BackgroundColors[m_backgroundColorIndex]));

 // Position the rendered text.
 Matrix3x2F translation = Matrix3x2F::Translation(
 m_windowBounds.Width / 2.0f -
m_textMetrics.widthIncludingTrailingWhitespace / 2.0f + m_textPosition.X,
 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y
);

 // Note that the m_orientationTransform2D matrix is post-multiplied
here
 // in order to correctly orient the text to match the display
orientation.
 // This post-multiplication step is required for any draw calls that
are
 // made to the swap chain's target bitmap. For draw calls to other
targets,
 // this transform should not be applied.
 m_d2dContext->SetTransform(translation * m_orientationTransform2D);

 m_d2dContext->DrawTextLayout(
 Point2F(0.0f, 0.0f),
 m_textLayout.Get(),
 m_blackBrush.Get(),
 D2D1_DRAW_TEXT_OPTIONS_NO_SNAP
);

 // Ignore D2DERR_RECREATE_TARGET. This error indicates that the device
 // is lost. It will be handled during the next call to Present.
 HRESULT hr = m_d2dContext->EndDraw();
 if (hr != D2DERR_RECREATE_TARGET)
 {
 DX::ThrowIfFailed(hr);
 }

 m_renderNeeded = false;

}

 65

The matrix is comprised of two components, the amount to translate in the x or horizontal axis, and
the amount to translate in the y or vertical axis.

To place the text at the top left corner of the screen, you could set both these values to 0.0f. This

would mean do not translate the axis at all.

This will produce something like Figure 19, and the text will no longer move around with the
pointer.

// Position the rendered text.

Matrix3x2F translation = Matrix3x2F::Translation(

 m_windowBounds.Width / 2.0f -

 m_textMetrics.widthIncludingTrailingWhitespace / 2.0f +
m_textPosition.X,

 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y

);

Matrix3x2F translation = Matrix3x2F::Translation (

 amountToMoveInHorizontal, // X-axis 0 is far left

 amountToMoveInVertical // Y-axis 0 is top of screen

);

// Position the rendered text.

Matrix3x2F translation = Matrix3x2F::Translation(

 0.0f, 0.0f

);

 66

Figure 19: No Translation

In this particular program we also see that the matrix defined previously is multiplied by a matrix
called m_orientationTransform2D (in the context’s call to SetTransform). The orientation
matrix is updated when the program is run on a WinRT device, such that if the user turns the
screen, the text can correct itself and always be displayed upright. The values for the orientation
matrix are set up in the DirectXBase class. Remember that two or more matrices can be multiplied
together to produce a single matrix that contains all the transformations of the original matrices.

Rotation Transform

The rotation transform in Direct2D allows objects to rotate clockwise or counterclockwise around
some defined point. If you define a rotation transform just after the translation matrix, and then
multiply the translation and orientation matrices by this new matrix, you will see the text has been
rotated by 45 degrees in a clockwise direction.

 // Position the rendered text.
 Matrix3x2F translation = Matrix3x2F::Translation(
 m_windowBounds.Width / 2.0f -
m_textMetrics.widthIncludingTrailingWhitespace / 2.0f + m_textPosition.X,
 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y

);

// Rotate text about the middle

Matrix3x2F rotation = Matrix3x2F::Rotation (

 45.0f, // Angle to rotate in degrees, clockwise is positive

 D2D1::Point2F (

 m_textMetrics.widthIncludingTrailingWhitespace / 2.0f, // X position of
origin

 m_textMetrics.height / 2.0f // Y position of origin

)

 67

Figure 20: Rotation

The text in Figure 20 has been rotated about its center point since this was the origin specified in
the rotation matrix. The origin specified in the matrix is the point about which the rotation is to
occur; it is the point that will remain static. If instead we specify the origin to rotate as the point (0,
0), the text will be rotated about its top left corner (the output of this will look like Figure 21).

);

// Apply the rotation, then the translation, and then the orientation matrix

m_d2dContext->SetTransform(rotation * translation *
m_orientationTransform2D);

// Position the rendered text.
Matrix3x2F translation = Matrix3x2F::Translation(
 m_windowBounds.Width / 2.0f -
m_textMetrics.widthIncludingTrailingWhitespace / 2.0f + m_textPosition.X,
 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y

);

 // Rotate text about the middle

 Matrix3x2F rotation = Matrix3x2F::Rotation (

 45.0f, // Angle to rotate in degrees

 D2D1::Point2F (

 68

Figure 21: Rotation

The other extremely important point to reiterate is that matrix multiplication is not commutative. If
we apply the rotation after the translation by placing it as the second operand in the string of matrix
multiplications in the call to SetTransform, we see that the effect is very different.

 0.0f, // X position of origin

 0.0f // Y position of origin

)

);

 // Apply the rotation, then the translation, and then the orientation
matrix

 m_d2dContext->SetTransform(rotation * translation *

 m_orientationTransform2D);

 m_d2dContext->SetTransform(translation * rotation *
m_orientationTransform2D);

 69

Figure 22: Rotation

Figure 23: Order of Transforms

In Figure 22 the text is almost rotated off the screen altogether. The origin of the rotation is (0, 0),
the top left corner of the screen (the second parameter in the call to create the matrix). Figure 23 is
an illustration of the order of transformations that lead to the text appearing half rotated off the
screen:

Scale Transform

Scaling applies a multiplier to one or both of the axes in order to shrink or enlarge the rendered
shapes. The scale transform requires three parameters, an X multiplier, a Y multiplier and an origin
about which to scale. The output from this code should look like Figure 24.

// Position the rendered text.
Matrix3x2F translation = Matrix3x2F::Translation(
 m_windowBounds.Width / 2.0f -
m_textMetrics.widthIncludingTrailingWhitespace / 2.0f + m_textPosition.X,
 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y

 70

Figure 24: Scaling

The scale’s origin was calculated such that the text grows and shrinks from its center point, the
letter D. I have marked the code which calculates the origin in blue. Moving the text first, and then
applying the scale produces very different results, similar to rotation and translation:

);

// This will make the text 3 times wider and half as high!

Matrix3x2F scale = Matrix3x2F::Scale (

 3.0f, // Multiply x by 3

 0.5f, // Halve the y values

 D2D1::Point2F(// Make the origin the middle of the text

 m_textMetrics.widthIncludingTrailingWhitespace / 2.0f,

 m_textMetrics.height / 2.0f)

);

// Apply the scale, then the translation, and then the orientation

m_d2dContext->SetTransform(scale * translation * m_orientationTransform2D);

// Position the rendered text.
Matrix3x2F translation = Matrix3x2F::Translation(
 m_windowBounds.Width / 2.0f -
m_textMetrics.widthIncludingTrailingWhitespace / 2.0f + m_textPosition.X,
 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y
);

 71

The text is first translated to the center of the screen using the translation matrix. When the

scale matrix is applied, the current position of the text is multiplied by 3.0f in the x-axis and halved
(multiplied by 0.5f) in the y-axis. This leads to the text being off the screen altogether. I have
depicted the area outside the right side of the screen as a dark blue color in Figure 25, so we can
see where our text has gone.

Figure 25: Order of Transforms 2

Like the rotation matrix, the scale matrix requires the specification of an origin point. The origin
point is the point that will remain static throughout the growing and shrinking. In the previous
example it was the center of the text, but it can be any point, even points well outside the bounds
of the text. For instance, if we change the origin to the top right corner of the text, we can see that it
no longer grows and shrinks from the center, but leftwards and downwards instead.

 // This will make the text 3 times wider and half as high!
Matrix3x2F scale = Matrix3x2F::Scale (
 3.0f, // Multiply x by 3
 0.5f, // Halve the y values
 D2D1::Point2F(// Make the origin the middle of the text
 m_textMetrics.widthIncludingTrailingWhitespace / 2.0f,
 m_textMetrics.height / 2.0f)
);

 m_d2dContext->SetTransform(translation * scale *
m_orientationTransform2D);

// Position the rendered text.
Matrix3x2F translation = Matrix3x2F::Translation(
 m_windowBounds.Width / 2.0f -
m_textMetrics.widthIncludingTrailingWhitespace / 2.0f + m_textPosition.X,
 m_windowBounds.Height / 2.0f - m_textMetrics.height / 2.0f +
m_textPosition.Y

);

 // This will make the text 3 times wider and half as high!

 Matrix3x2F scale = Matrix3x2F::Scale (

 72

Figure 26: Scaling

The origin remains fixed in Figure 26. The text is squashed along the y-axis and stretched along
the x-axis. If you apply the scale after the translation, then the translation will also be scaled.

Note: There are other transformations in Direct2D that can be used to produce a variety of effects.
Matrix3x2F::Identity() is a matrix with the original or default values. It can be used to reset the
transformations. The Skew matrix is also interesting; it can be used to produce some simple

perspective transformations on 2-D data.

Translating the Scatter Plot

Now that we have looked at how to transform the objects we are drawing, we can fix our scatter
plot. By default, the computer will assume the top left corner is the origin, and the y-axis increases
downwards and to the right. We want our origin to be in the lower left corner of the screen, and we
want the y-axis values to increase up the screen.

 3.0f, // Multiply x by 3

 0.5f, // Halve the y values

 D2D1::Point2F(// Make the origin the top right corner

 m_textMetrics.widthIncludingTrailingWhitespace,

 0.0f)

);

 // Apply the scale, then the transform, and then the orientation

 m_d2dContext->SetTransform(scale * translation *
m_orientationTransform2D);

 73

To fix our scatter plot, we can apply two matrices, a scale matrix and a translation. The scale
matrix multiplies all the y values by -1.0f, thereby inverting the y-axis. In flipping the y-axis, we
have flipped all the data upwards above the screen. The translation matrix can be used to add the
screen's height, so we are once again looking at the data.

Before we run the application, we also need to adjust the initial starting position for the m_pan
member variable. This is specified in the
GraphRenderer:CreateWindowSizeDependentResources method, the x value can stay the same

but the y value must be changed since we flipped the axis.

void GraphRenderer::Render()
{
m_d2dContext->BeginDraw();

// Reset the transform matrix so our background does not pan
m_d2dContext->SetTransform(m_orientationTransform2D);
// Render the background
m_gradientBackground->Render(m_d2dContext);

// The scale matrix inverts the y-axis
Matrix3x2F scale = Matrix3x2F::Scale(1.0f, -1.0f, D2D1::Point2F(0.0f, 0.0f));

// The pan matrix still pans but it also adds the height of the screen
Matrix3x2F panMatrix = Matrix3x2F::Translation(m_pan.X, m_pan.Y +
 m_d2dContext->GetSize().height);

// Apply the scale first
m_d2dContext->SetTransform(scale*panMatrix*m_orientationTransform2D);

//
// Draw objects here
//
// Render the graph variable
m_graphVariable->Render(m_d2dContext);

// Ignore D2DERR_RECREATE_TARGET error
HRESULT hr = m_d2dContext->EndDraw();
if (hr != D2DERR_RECREATE_TARGET) DX::ThrowIfFailed(hr);

}

void GraphRenderer::CreateWindowSizeDependentResources() {
DirectXBase::CreateWindowSizeDependentResources();

// Create window size resources for gradient background
m_gradientBackground->CreateWindowSizeDependentResources(m_d2dContext);

// Set the initial pan value so the lowest node is visible in the corner
m_pan.X = -m_graphVariable->GetMinX();
m_pan.Y = m_graphVariable->GetMinY();

}

 74

Upon running the application, you should now see that the origin is in the lower left corner and the
y-axis increases upwards, exactly the same as a regular graph.

Figure 27: Scatter Plot with Flipped Y-Axis

 75

Chapter 6: Infinite Lines and the Axes

In this section, we will introduce one method of rendering infinite lines. I will use the example of
rendering the chart’s axes that intersect at the origin. Scatter plots and line charts often have the
concept of an origin which is the point (0, 0) in the chart’s coordinates. Sometimes this point is very
important, and we will display it on the chart as two intersecting lines: one representing the 0 point
for the x-axis and another representing the 0 point for the y-axis.

Add two files to your project, Axes.h and Axes.cpp.

// Axes.h
#pragma once
#include "DirectXBase.h"
// This class represents a graph's axes as two perpendicular lines
class Axes {
 ID2D1SolidColorBrush* m_solidBrush; // Brush to draw with
 float m_lineThickness; // Thickness in pixels
 float m_opacity; // Opacity, 0.0f is invisible 1.0f is solid
 D2D1::ColorF m_color; // The color of the lines

public:
 // Public constructor
 Axes(D2D1::ColorF col, float thickness, float opacity);

 // Create the solid brush to draw with
 void CreateDeviceDependentResources
 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

 // The render method needs to know the panning and scaling
 void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context,
 float panX, float panY, float scaleX, float scaleY);
};

// Axes.cpp
#include "pch.h"
#include "Axes.h"
using namespace D2D1;
using namespace DirectX;
Axes::Axes(D2D1::ColorF col, float thickness = 3.0f, float opacity = 1.0f):
m_color(0)
{
// Save these settings to member variables so
// they can create the brush later:
this->m_color = col;
this->m_lineThickness = thickness;
this->m_opacity = opacity;
}

void Axes::CreateDeviceDependentResources(
Microsoft::WRL::ComPtr<ID2D1DeviceContext> context){
// Create the solid color brush

 76

The constructor saves some settings to member variables. The
CreateDeviceDependentResources method creates a brush to paint the lines.

The axis lines are theoretically infinite in length. It does not matter how far left, right, up, or down
the user pans around the graph's plane, and the ends of these lines should never be visible. To
achieve this effect we draw two lines, one for the x-axis and the other for the y-axis. The horizontal
line (which marks the 0 point for the y-axis) is drawn the same width as the screen, and the vertical
line (which marks the 0 point for the x-axis) has the same length as the screen's height. In this
way, regardless of how far the chart is panned, the axis lines will always be drawn across the
whole screen if it is visible at all. This will appear as infinite when actually these lines are quite
short.

The actual drawing of the lines is achieved through the use of Context’s DrawLine method. This
method takes two points, a brush and a line thickness. The line is drawn to connect the two points.

The thickness of the lines is static. I have assumed that even if the user zooms out thousands of
units, the origin line should still be visible. Likewise, if the user zooms right into tiny points around
the origin, it should not scale to the zoom and take up the entire screen. I have made our origin a
standard thickness in pixels no matter the zoom factor by dividing the thickness by the current
scale or zoom. In the code I have undone the panning and zooming manually to achieve this.

DX::ThrowIfFailed(context->CreateSolidColorBrush(
 m_color, D2D1::BrushProperties(m_opacity), &m_solidBrush));
}

void Axes::Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context, float
panX, float panY, float scaleX, float scaleY) {
// Draw infinite vertical line with 0.0f as the x-coordinate
context->DrawLine(
 D2D1::Point2F(
 0.0f, // Horizontal axis
 (-context->GetSize().height - panY) / scaleY // Top of the screen
),
 D2D1::Point2F(
 0.0f, // Horizontal axis
 (-panY) / scaleY // Bottom of the screen
),
 m_solidBrush,
 m_lineThickness/scaleX);

// Draw infinite horizontal line with 0.0f as the y-coordinate
context->DrawLine(
 D2D1::Point2F(
 -(panX)/scaleX, // Left side of screen
 0.0f // Vertical axis
),
 D2D1::Point2F(
 (context->GetSize().width - panX)/scaleX, // Right side of screen
 0.0f // Vertical axis
),
 m_solidBrush,
 m_lineThickness/scaleY);
}

 77

Note: When drawing lines with some thickness other than 1.0f, it is the center (lengthwise) of the
line that will be at the specified coordinate. This is different from bitmaps whose top left corner is
drawn at the specified coordinate. This means that if you draw a line from (0, 0) to (100, 0) with a
thickness of 30, the top edge of the line will be drawn at (0, (-30/2)) and the lower edge will be drawn
at (0, (30/2)).

I have also included a margin. This is the amount, in pixels, short of the screen's edge that the
lines will be drawn. It can be used to produce a crosshair origin instead of infinite lines for the axes.
To instantiate an object of our new Axes class, add the header to the GraphRenderer.h file. I have

included a gradient background and scatter plot in the following code and I have highlighted the
code that deals with the origin in blue.

Also add an Axes member variable to this file.

Create the chart objects in the GraphRenderer's constructor. These can be created in any order. I
have created the Axes last.

//

// Additional headers for graph objects here

//

#include "GradientBackground.h"

#include "ScatterPlot.h"

#include "Axes.h"

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

 // Background

 GradientBackground *m_gradientBackground;

 // Axes

 Axes* m_axes;

 // Data

 ScatterPlot* m_scatterPlot;

GraphRenderer::GraphRenderer() {

// Create the gradient background:

 78

D2D1_COLOR_F colors[] = {

 D2D1::ColorF(ColorF::PaleGoldenrod), D2D1::ColorF(ColorF::PaleTurquoise),

 D2D1::ColorF(0.7f, 0.7f, 1.0f, 1.0f) };

float stops[] = { 0.0f, 0.5f, 1.0f };

m_gradientBackground = new GradientBackground(colors, stops, 3);

// Create the scatter plot:

const int count = 25;

float* x = new float[count];

float* y = new float[count];

// Create random points to plot, these

// would usually be read from some data source:

for(int i = 0; i < count; i++) {

 x[i] = (float)((rand() % 2000) - 1000);

 y[i] = (float)((rand() % 1000) - 500);

 }

m_scatterPlot = new ScatterPlot(x, y, 10.0f, D2D1::ColorF::Chocolate, NodeShape::Circle,
count);

delete[] x;

delete[] y;

// Create the Axes

m_axes = new Axes(D2D1::ColorF::Black, 5.0f, 0.75f);

}

 79

Call the Axes’ CreateDeviceResources method so it can initialize its solid color brush.

And finally, call the origin's render method in the GraphRenderer’s Render method.

void GraphRenderer::CreateDeviceResources() {

DirectXBase::CreateDeviceResources();

// Create the brush for the scatter plot:

m_scatterPlot->CreateDeviceDependentResources(m_d2dContext);

// Create the brush for the Axes

m_axes->CreateDeviceDependentResources(m_d2dContext);

}

void GraphRenderer::Render() {

m_d2dContext->BeginDraw();

// Clear to some color other than blank

m_d2dContext->Clear(D2D1::ColorF(ColorF::CornflowerBlue));

// Reset the transform matrix so our background does not pan

m_d2dContext->SetTransform(m_orientationTransform2D);

// Draw the background

m_gradientBackground->Render(m_d2dContext);

// The scale matrix inverts the y-axis

Matrix3x2F scale = Matrix3x2F::Scale(1.0f, -1.0f, D2D1::Point2F(0.0f, 0.0f));

// The pans added to the screen height so origin is at lower left

Matrix3x2F panMatrix = Matrix3x2F::Translation

 (m_pan.X, m_pan.Y + m_d2dContext->GetSize().height);

// Apply the scale and the pan

m_d2dContext->SetTransform(scale*panMatrix*m_orientationTransform2D);

// Draw the axes

m_axes->Render(m_d2dContext, m_pan.X, m_pan.Y, 1.0f, -1.0f);

//

 80

Upon running the application and panning a little to the right and upwards, you will see the origin
and the scatter plot. This is the (0, 0) point in our chart’s world coordinates as shown in Figure 28.

Figure 28: Axis Lines

// Draw objects here

//

m_scatterPlot->Render(m_d2dContext);

// Ignore D2DERR_RECREATE_TARGET error

HRESULT hr = m_d2dContext->EndDraw();

if (hr != D2DERR_RECREATE_TARGET) DX::ThrowIfFailed(hr);

}

 81

Chapter 7: Displaying FPS (Frames per Second)

Frames per second (FPS) is the rate at which DirectX refreshes or renders a scene. In this section,
we will examine how to display the FPS in the top left corner of our chart. This will provide an
example of calculating the FPS, but also of rendering text. Text is very important in a charting
application and can be used to render a title for the cart, node positions, axis labels, and many
other things. Text is very slow to render, so aim to minimize the amount of text to less than 200
strings or so. The labels of the axis, chart title, node values, and many other things can all be
rendered with text, but the FPS will very quickly drop if you render thousands of strings.

We will build on the chart from the last chapter, which displayed the axis lines. Add two member
variable floats to the GraphRenderer class for recording the time in the BasicTimer when the

GraphRenderer::Update method is run. Also, add an IDWriteTextFormat object which will hold
the format of our FPS output, and a black brush which will be used to draw the text.

Create the Text Format instance in the GraphRenderer::CreateDeviceIndependentResources

resources method. The text format is used to specify the font, size, and several other text
formatting options.

private:

 // Global pan value for moving the chart with the mouse

 Windows::Foundation::Point m_pan;

 // Member variables for displaying FPS

 float m_timeDelta; // Time since last update call

 float m_timeTotal; // Total time of application

 Microsoft::WRL::ComPtr<IDWriteTextFormat> m_textFormat;

 Microsoft::WRL::ComPtr<ID2D1SolidColorBrush> m_blackBrush;

void GraphRenderer::CreateDeviceIndependentResources() {

DirectXBase::CreateDeviceIndependentResources();

DX::ThrowIfFailed(

 m_dwriteFactory->CreateTextFormat(

 L"Segoe UI",

 nullptr,

 DWRITE_FONT_WEIGHT_NORMAL,

 82

Create the brush for drawing the text in the CreateDeviceDependentResources method.

Add an #include <string> to the GraphRenderer's code file. This gives us functions to append

the floats to strings for displaying the frames per second.

Record the times (m_timeTotal and m_timeDelta) passed as parameters to the Update method
in the GraphRenderer's code file. m_timeTotal is the total number of milliseconds that have

elapsed since the program started, and timeDelta is the amount of time that has elapsed since
the last call to Update.

 DWRITE_FONT_STYLE_NORMAL,

 DWRITE_FONT_STRETCH_NORMAL,

 42.0f,

 L"en-US",

 &m_textFormat

)

);

}

void GraphRenderer::CreateDeviceResources() {
DirectXBase::CreateDeviceResources();

// Call the create device resources for our graph variable
m_graphVariable->CreateDeviceDependentResources(m_d2dContext);

// Create the brush for the origin
m_axes->CreateDeviceDependentResources(m_d2dContext);

// Create the solid brush for the text
DX::ThrowIfFailed(
 m_d2dContext-
>CreateSolidColorBrush(ColorF(ColorF::Black),&m_blackBrush));

}

// GraphRenderer.cpp

#include "pch.h"

#include <string>

#include "GraphRenderer.h"

 83

In the GraphRenderer::Render method, create the string by appending the times to labels (Total

Time and FPS). The inverse of m_timeDelta (1.0f/m_timeDelta) is the speed of the last update. I
have rounded this value to an integer. It is a good idea to render our new FPS string after all of the
graph objects are drawn so it is not obscured.

Upon running the application, you will note that the timers are only updated when the graph is
panned. This is a very good thing for saving power on WinRT devices, but for testing the
performance of our chart rendering, we want to switch the application to real time. To switch to real
time (updating repeatedly), open the DirectXPage.cpp file and comment out the “if” condition that
causes the program to update based on the m_renderNeeded member variable. The OnRendering
method of the DirectXPage is called when the CompositionTarget::Rendering event is fired.
The CompositionTarget is the surface to which the XAML controls are rendered.

void GraphRenderer::Update(float timeTotal, float timeDelta) {

 // Record the times for displaying:

 m_timeDelta = timeDelta;

 m_timeTotal = timeTotal;

}

//
// Draw objects here
//
// Render the graph variable
m_graphVariable->Render(m_d2dContext);

// Reset the transform matrix so the time and FPS does not pan or zoom
m_d2dContext->SetTransform(m_orientationTransform2D);
// Set up the string to print:
std::wstring s = std::wstring(
 L"Total Time: ") + std::to_wstring(m_timeTotal) +
 std::wstring(L" FPS: ") + std::to_wstring(
 (int)(0.5f+1.0f/m_timeDelta)); // FPS rounded to nearest int
// Render the string in the top left corner
m_d2dContext->DrawText(s.c_str(), s.length(), m_textFormat.Get(),
 D2D1::RectF(0, 0, 600, 32), m_blackBrush.Get());

// Ignore D2DERR_RECREATE_TARGET error

void DirectXPage::OnRendering(Object^ sender, Object^ args) {

 // if (m_renderNeeded)

 {

 m_timer->Update();

 m_renderer->Update(m_timer->Total, m_timer->Delta);

 84

Now when you run the application it should update continuously. The FPS is a little difficult to read
when it updates many times per second. We can slow it down and update the counter only every
16 frames by adding a static counter and "if" condition to the GraphRenderer's update.

Tip: Use Boolean operations and bit shifting instead of integer division wherever you can. The CPU
needs to run the update method very quickly. It is best to minimize division, modulus, square roots,
trigonometry, and all other complex functions in the update and render methods. Some of these
complex functions are hundreds of times slower to execute than simple Boolean instructions. The
optimizing compiler is most likely smart enough to realize that "x%16" is the same as "x&15" but
every compiler is different and it may be best not to trust the compiler when there is a simple

optimization such as this.

 m_renderer->Render();

 m_renderer->Present();

 m_renderNeeded = false;

 }

}

void GraphRenderer::Update(float timeTotal, float timeDelta) {

static int fpsCounter = -1;// Start at -1 so frame 0 updates timers

fpsCounter++;

if((fpsCounter & 15) == 0) { // Update every 16 frames

 // Record the times for display in the render method:

 m_timeDelta = timeDelta;

 m_timeTotal = timeTotal;

 }

}

 85

Chapter 8: Line Charts

We have looked a little at rendering lines in our origin, but now we will examine rendering many
lines, and we will use a line chart as an example. Line charts display data as a series of connected
lines. The lines connect consecutive nodes or points, and depicts continuity or a chronological
order to the data in a way which the scatter plot does not. Frequently, the x-axis is seen as time
and progresses from early points on the left to later points on the right, as shown in Figure 29.

Figure 29: Line Chart

Figure 29 is a simple line chart that uses the year as the x-axis. It progresses from 1978 to 2013,
and at each year a score variable is plotted and connected with the previous point as a straight
line. The important difference is that the data must be sorted by the x-axis prior to rendering the
lines; otherwise, something like Figure 30 may happen.

Figure 30: Line Chart with Unordered X-Axis

 86

Figure 30 is certainly a line chart, but the line is drawn backwards and forwards with regards to the
x-axis values, since the nodes were created in a random order. To properly render a line chart from
data with an unordered x-axis, the data must be sorted. I have used the STL (Standard Template
Library) stable sort in the following code.

Tip: Always sort the data outside of the Update and Render methods. If the data is sorted outside
these critical methods, the speed of the sorting algorithm is largely negligible. Modern hardware will
easily sort 1,000,000 nodes in a few seconds, but we can’t afford a few seconds in our Update or

Render methods.

Add two files to your project, LineChart.h and LineChart.cpp.

// LineChart.h
#pragma once
#include "DirectXBase.h"
#include "GraphVariable.h"

// This class represents a variable rendered as a line
class LineChart: public GraphVariable {
 ID2D1SolidColorBrush* m_solidBrush; // Brush to draw with
 float m_lineThickness; // Thickness in pixels
 D2D1::ColorF m_color; // The color of the line

 // Method to stable-sort the data by the x-axis
 void SortData();

public:
 // Public constructor
 LineChart(float* x, float *y, int count, D2D1::ColorF col, float
thickness);

 // Create the solid brush to draw with
 virtual void CreateDeviceDependentResources
 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) override;

 // The main render method of the line class
 virtual void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context)
override;

};

// LineChart.cpp
#include "pch.h"
#include "LineChart.h"
#include <vector>
#include <algorithm>
using namespace D2D1;
using namespace DirectX;
// Comparison method used by the stable-sort below
bool ComparePoints(D2D1_POINT_2F a, D2D1_POINT_2F b) {
return a.x < b.x; // Sort on x values

 87

To create and render a LineChart, we can replace the code we used to create the ScatterPlot. It is
also common to render ScatterPlot nodes over the top of a line chart, so I will include the
ScatterPlot object as well. The ScatterPlot nodes will be used to accent the LineChart. Add the
header to the GraphRenderer.h file.

Add a member variable called m_lineChart to the GraphRenderer class.

}

LineChart::LineChart(float* x, float *y, int count,
 D2D1::ColorF col, float thickness = 3.0f): m_color(0), GraphVariable(x,
y, count) {
// Save these settings to member variables to
// create the brush later:
this->m_color = col;
this->m_lineThickness = thickness;

// Sort the data by the x-axis
SortData();
}

void LineChart::SortData()
{
// Sort the data by the x-axis
std::vector<D2D1_POINT_2F> sortedNodes(m_points, m_points + m_nodeCount);

// Note the use of the stable sort, using an unstable sort
// like Quicksort will produce unexpected results!
std::stable_sort(sortedNodes.begin(), sortedNodes.end(), ComparePoints);

// Copy the sorted points back to the m_pointsArray
int counter = 0;
for(std::vector<D2D1_POINT_2F>::iterator nodeIterator = sortedNodes.begin();
 nodeIterator != sortedNodes.end(); nodeIterator++, counter++) {
 m_points[counter].x = (*nodeIterator).x;
 m_points[counter].y = (*nodeIterator).y;
 }
}

void LineChart::CreateDeviceDependentResources(
 Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {
// Create the solid color brush
DX::ThrowIfFailed(context->CreateSolidColorBrush(
 m_color, D2D1::BrushProperties(1.0f), &m_solidBrush));
}

//
// Additional headers for graph objects here
//
#include "GradientBackground.h"
#include "ScatterPlot.h"
#include "LineChart.h"

#include "Axes.h"

 88

Call the constructor for the LineChart object in the GraphRenderer constructor. I am plotting the
LineChart and the ScatterPlot using the same data and color.

 // Member variables for displaying FPS
 float m_timeDelta; // Time since last update call
 float m_timeTotal; // Total time of application
 Microsoft::WRL::ComPtr<IDWriteTextFormat> m_textFormat;
 Microsoft::WRL::ComPtr<ID2D1SolidColorBrush> m_blackBrush;

 // Solid background
 GradientBackground* m_gradientBackground;

 // Plottable data
 GraphVariable* m_graphVariable;
 GraphVariable* m_lineChart;

 // Axes

 Axes* m_axes;

GraphRenderer::GraphRenderer()
{
// Create the gradient background:
D2D1_COLOR_F colors[] = {
 D2D1::ColorF(ColorF::PaleGoldenrod),
 D2D1::ColorF(ColorF::PaleTurquoise),
 D2D1::ColorF(0.7f, 0.7f, 1.0f, 1.0f)
 };
float stops[] = { 0.0f, 0.5f, 1.0f };
m_gradientBackground = new GradientBackground(colors, stops, 3);

// Create the scatter plot:
const int count = 25; // Create 25 nodes
float* x = new float[count];
float* y = new float[count];

// Create random points to plot, these
// would usually be read from some data source:
for(int i = 0; i < count; i++) {
 x[i] = (float)(rand() % 2000) - 1000;
 y[i] = (float)(rand() % 1000) - 500;
 }

m_graphVariable = new ScatterPlot(x, y, 10.0f,
 D2D1::ColorF::Chocolate,
 NodeShape::Circle, count);

// Create the line chart
m_lineChart = new LineChart(x, y, count, D2D1::ColorF::Chocolate, 5.0f);

delete[] x;
delete[] y;

 89

Call the line chart's CreateDeviceDependentResources method to create the brush to use when

drawing the lines.

And finally, call the m_lineChart::Render method in the GraphRenderer::Render method just
prior to plotting the ScatterPlot nodes.

Upon running the application, you should see something like Figure 31.

// Create the axes lines
m_axes = new Axes(D2D1::ColorF::Black, 5.0f, 0.75f);

}

void GraphRenderer::CreateDeviceResources() {
DirectXBase::CreateDeviceResources();

// Call the create device resources for our graph variable
m_graphVariable->CreateDeviceDependentResources(m_d2dContext);

// Create device resources for the line chart
m_lineChart->CreateDeviceDependentResources(m_d2dContext);

// Create the brush for the axes
m_axes->CreateDeviceDependentResources(m_d2dContext);

// Create the solid brush for the text
DX::ThrowIfFailed(
 m_d2dContext-
>CreateSolidColorBrush(ColorF(ColorF::Black),&m_blackBrush));

}

//
// Draw objects here
//
// Render the graph variable(s)
m_lineChart->Render(m_d2dContext);

m_graphVariable->Render(m_d2dContext);

 90

Figure 31: Line Chart

The data in the x-axis may already be ordered (since it may have been collected in chronological
order), in which case it need not be sorted at all. The LineChart class should be fairly self-
explanatory. We have created a list of points from the data passed to the constructor and in the
render method, and we join the points with a collection of lines.

 91

Chapter 9: Navigating between Multiple XAML Pages

Up until now, our charts have consisted of a single XAML page, which is being drawn upon by
Direct2D. It is often necessary to include more than one XAML page. I will use the example of a
settings page where the user can select some options for the line chart. This will be a completely
separate page from the main XAML page, and each of the chart’s objects could have their own
settings XAML page, which can be made in the same way.

In a plain XAML project, the programmer can use the simple Frame->Navigate(destination)
syntax. This is not possible in an application with Direct2D, as the Frame member variable will be
null (it will not be set up at all by the framework). Instead of using frames, the programmer can
navigate manually using the following syntax.

The first line sets the content of the current window to another XAML page, and the second line
activates it. To activate a XAML page means brings it to the front, and gives it focus so it receives
the input events.

This new XAML subpage will most likely need to return to the original page. For instance, if it is
altering some settings in the chart, we will need to display the chart again after the user has
changed the settings. We could create another copy of the original page using the previous code
(to be executed when the user closes the subpage), but this would be wasteful and likely lead to a
crash (since we would be re-creating the main DirectX pages repeatedly and never closing them).
We want to reinstate the original page and give it focus rather than create more than one copy.
There are many ways to do this. One of the simplest is to give the constructor of the new page a
handle to the parent XAML page.

The second page saves the “this” pointer passed in its constructor as m_myParent, and when the
second page closes, it won't re-create the parent, but reinstate it from this parent handle.

The “this” pointer passed to the subpage can have as generic a type as possible to allow almost
any window to open any subwindow. The Windows::UI::Xaml::UIElement^ is a good choice.

We will now examine adding a second page by creating a XAML page that allows users to edit a
setting for our line chart, and then returns control back to the main DirectXPage class to draw the
updated chart. To add a new blank XAML page to your solution, right-click the solution and click
Add, and then click New Item on the context menu.

Window::Current->Content = ref new SomeOtherXAMLPage();// Reference another
page

Window::Current->Activate();

Window::Current->Content=ref new SomeOtherXAMLPage(this);//Reference parent
page

Window::Current->Content = m_myParent; // Give the parent the focus

Window::Current->Activate();

 92

Click Windows Store on the left panel, then click Blank Page on the middle panel and type a
name for the new page. I have used EditLine in this example, as per Figure 32.

Figure 32: Add a Blank Page

Once Visual Studio has created the new XAML page, open the header (EditLine.xaml.h in this
example) and add a parameter to the constructor, specifying that it requires a
Windows::UI::Xaml::UIElement^. Also, add a member variable with the same type called

m_myParent.

//

// EditLine.xaml.h

// Declaration of the EditLine class

//

#pragma once

#include "EditLine.g.h"

namespace GraphPlotting

{

 /// <summary>

 /// Empty page that can be used on its own or navigated to within a
Frame.

 /// </summary>

 [Windows::Foundation::Metadata::WebHostHidden]

 93

Double-click the new XAML page (EditLine.xaml file in this example) in the Solution Explorer, and
Visual Studio will open the XAML designer with our blank page. Add a button to the top left corner.
This will be our back button, and will allow users to navigate back to the main DirectX page, see
Figure 33.

Figure 33: Adding a Button

In the XAML code section you can set the name, content, and font size of the new button.

 public ref class EditLine sealed{

 public:

 EditLine(Windows::UI::Xaml::UIElement^ myParent);

 protected:

 virtual void OnNavigatedTo

 (Windows::UI::Xaml::Navigation::NavigationEventArgs^ e) override;

 private:

 Windows::UI::Xaml::UIElement^ m_myParent;

 };

}

 94

Double-click the new button in the designer, and Visual Studio will write the OnClicked event and

take us to the code. We want the parent to become activated when the user clicks the back button.

Change the constructor of the page so it takes the new parent UIElement as a parameter, which
we specified in the header. Save the handle as the class's m_myParent member variable.

<Page

 x:Class="GraphPlotting.EditLine"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:GraphPlotting"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">

 <Button Name="btnBack" Content="Back" FontSize="32"

 HorizontalAlignment="Left" Height="82" Margin="10,10,0,0"

 VerticalAlignment="Top" Width="157"/>

 </Grid>

</Page>

void GraphPlotting::EditLine::btnBack_Click(Platform::Object^ sender,

 Windows::UI::Xaml::RoutedEventArgs^ e){

 Window::Current->Content = m_myParent; // Give the parent the focus

 Window::Current->Activate();

 }

 95

Now that we have our subpage set up to open and close, we can design the method by which the
user should request to edit the LineChart (a button in an AppBar in this example). Open the
DirectXPage.xaml file by double-clicking it in the Solution Explorer. This will take you to the XAML
designer for the main DirectXPage. Add an AppBar with a button to the DirectXPage XAML file.

EditLine::EditLine(Windows::UI::Xaml::UIElement^ myParent){

 InitializeComponent();

 this->m_myParent = myParent;

}

<Page

 x:Class="GraphPlotting.DirectXPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:GraphPlotting"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <SwapChainBackgroundPanel x:Name="SwapChainPanel"
PointerMoved="OnPointerMoved"

 PointerReleased="OnPointerReleased">

 </SwapChainBackgroundPanel>

 <Page.BottomAppBar>

 <AppBar Padding="10, 0, 10, 0">

 <Button Name="btnEditLine" Content="Edit Line" FontSize="24"

 HorizontalAlignment="Center" Width="240"/>

 </AppBar>

 </Page.BottomAppBar>

</Page>

 96

Tip: Working with AppBar and several other object types is far easier in the XAML code window
than it is in the main designer window, since these controls are often invisible in the designer. To
have the designer window show an invisible control, you can select the control's opening tag in the

XAML code.

Double-click the new button in the designer (btnEditLine) and Visual Studio will add the OnClicked

event and take us to the code. The first thing to do is #include a reference to the EditLine.xaml.h
header at the top of this file.

Next, scroll back down to the button clicked event, so we can add the code to create and activate
the edit line window.

Upon running the application, you should be able to bring up the app bar by right-clicking (or
swiping with the pointer on a touchscreen device). Upon clicking the button, you will be presented
with the Edit Line page, and from there you can click the Back button to return to the graph
renderer.

As an example of changing the value of a graph object with the new XAML page, we will allow the
user to set the thickness of our line chart. Add a public getter and setter to the LineChart class for
the line's thickness in the LineChart.h file.

// DirectXPage.xaml.cpp

#include "pch.h"

#include "DirectXPage.xaml.h"

#include "EditLine.xaml.h"

void GraphPlotting::DirectXPage::btnEditLine_Click(Platform::Object^ sender,

 Windows::UI::Xaml::RoutedEventArgs^ e){

 Window::Current->Content = ref new EditLine(this);

 Window::Current->Activate();

 }

// Public constructor
 LineChart(float* x, float *y, int count, D2D1::ColorF col, float
thickness);

 // Create the solid brush to draw with
 virtual void CreateDeviceDependentResources
 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) override;

 // The main render method of the line class
 virtual void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context)

 97

Add a public internal getter to the GraphRenderer.h file that returns the class's line chart member
variable.

Add an #include to the LineChart header in the EditLine.xaml.h file. Add a new argument to the
constructor that is a pointer to a LineChart, mark the constructor as internal, and then add a new
LineChart pointer member variable in which to store that argument.

override;

 // Getters and setters for line thickness
 void SetLineThickness(float newThickness) {
 m_lineThickness = newThickness;
 }

 float GetLineThickness() {
 return m_lineThickness;

 }

public:
 // Public constructor
 GraphRenderer();

 // DirectXBase methods.
 virtual void CreateDeviceIndependentResources() override;
 virtual void CreateDeviceResources() override;
 virtual void CreateWindowSizeDependentResources() override;
 virtual void Render() override;

 // Capture the pointer movements so the user can pan the chart
 void PointerMoved(Windows::Foundation::Point point);

 // Method for updating time-dependent objects.
 void Update(float timeTotal, float timeDelta);

internal:
 LineChart* GetLine() {
 return (LineChart*) m_lineChart;

 }

//
// EditLine.xaml.h
// Declaration of the EditLine class
//

#pragma once
#include "EditLine.g.h"
#include "LineChart.h"
namespace GraphPlotting{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a
frame.

 98

Add a call to the m_renderer::GetLine method and pass this as a parameter in the
DirectXPage::btnEditLine_Click event of the DirectXPage.xaml.cpp file.

Add a slider control to the EditLine.xaml file. This will be used to set the thickness of the line. I
have called it sldLineThickness. I have also added a text block to the grid in the following code,
which is used to label the slider for users. The complete code for the grid of the EditLine.xaml file
follows:

 /// </summary>
 [Windows::Foundation::Metadata::WebHostHidden]
 public ref class EditLine sealed
 {
 public:
 internal:
 EditLine(Windows::UI::Xaml::UIElement^ myParent, LineChart*
myLine);
 protected:
 virtual void OnNavigatedTo
 (Windows::UI::Xaml::Navigation::NavigationEventArgs^ e)
override;
 private:
 Windows::UI::Xaml::UIElement^ m_myParent;
 LineChart* m_myLine;
 void btnBack_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e);
 };
}

void GraphPlotting::DirectXPage::btnEditLine_Click(Platform::Object^ sender,
Windows::UI::Xaml::RoutedEventArgs^ e) {
 Window::Current->Content = ref new EditLine(this, m_renderer-
>GetLine());
 Window::Current->Activate();

 }

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Button Name="btnBack" Content="Back" FontSize="32"
HorizontalAlignment="Left" Margin="10,10,0,0" VerticalAlignment="Top"
Click="btnBack_Click"/>

 <Slider Name="sldLineThickness" HorizontalAlignment="Left"
Margin="420,302,0,0"
 VerticalAlignment="Top" Width="573" Height="47" Minimum="1"
Maximum="12"/>

 <TextBlock FontSize="32" HorizontalAlignment="Left" Margin="185,302,0,0"
 TextWrapping="Wrap" Text="Line Thickness"
 VerticalAlignment="Top"/>

 </Grid>

 99

Alter the constructor's code in the EditLine.xaml.cpp file to take a LineChart parameter and save

it to the m_myLine member variable. I have also set the initial value for the slider to be the same as
the current thickness of the myLine parameter.

Finally, in the btnBack_Click event method in the EditLine.xaml.cpp file, just prior to handing

control back to the parent window, we can call the line chart's set line thickness method and set
the thickness of the line to sldLineThickness->Value.

Upon running the application, you should be able to set the thickness of the line chart by moving
the slider. This example only allowed changing the thickness of the line, but other controls could be
added to the page to allow editing other aspects of the line. New XAML pages could be added to
change any aspect of the chart.

EditLine::EditLine(Windows::UI::Xaml::UIElement^ myParent, LineChart* myLine)

{

 InitializeComponent();

 this->m_myParent = myParent;

 this->m_myLine = myLine;

 this->sldLineThickness->Value = (int)myLine->GetLineThickness();

}

void GraphPlotting::EditLine::btnBack_Click(Platform::Object^ sender,

 Windows::UI::Xaml::RoutedEventArgs^ e) {

 m_myLine->SetLineThickness((float)sldLineThickness->Value);

 Window::Current->Content = m_myParent; // Give the parent the focus

 Window::Current->Activate();

 }

 100

Chapter 10: Printing Direct2D

In this chapter we will walk through how to add printing to a standard Direct2D (XAML) application,
which users can activate from the charms bar by selecting the Devices icon. I have described how
to add printing to a new Direct2D (XAML) project, as opposed to adding the functionality to our
existing application, because printing Direct2D is applicable beyond graphing and charting data.

Note: Most of the code I have presented here is either based heavily on the Direct2Dapp printing
sample from Microsoft, or taken directly from this sample. The Microsoft sample is designed as a
standalone application. In this walk-through we will examine how to add printing to a Direct2D
(XAML) application, rather than writing a completely new application. If you are starting a new
project from scratch, it may be beneficial to more closely model the structure of your application
after the Microsoft sample called "Direct2Dapp printing sample." See Appendix A for Microsoft's

license for the use of the code from its samples.

Create a new Direct2D XAML Project

Create a new Direct2D (XAML) app. Even if you are adding printing functionality to an existing
project, it is recommended that you step through this process with a new Direct2D (XAML) app in
order to familiarize yourself with the structure of a Direct2D printing application.

Open the DirectXPage.xaml file and delete the text that says "Hello XAML." This example will not
print out the contents of the XAML controls.

Note: XAML controls are not related to the Direct2D graphics we will be printing in this example. If
you wish to print XAML controls, Microsoft has a separate sample application titled "Quickstart:

Printing from your app (Windows Store apps using C#/VB/C++ and XAML)."

Make your application Multithreaded

Direct2D printing occurs on a separate thread with another device context. There is also a
separate thread for rendering the print preview. The screen, the preview, and the printing can all
occur at once without interfering with each other. The main Direct2D factory must be created
multithreaded. The option to create a multithreaded application is set in the DirectXBase class in
the CreateDeviceIndependentResources method of the DirectXBase.cpp file.

// These are the resources required independent of the device.

void DirectXBase::CreateDeviceIndependentResources(){

 D2D1_FACTORY_OPTIONS options;

 ZeroMemory(&options, sizeof(D2D1_FACTORY_OPTIONS));

#if defined(_DEBUG)

 // If the project is in a debug build, enable Direct2D debugging via
SDK Layers.

 101

Add the Print Manager

Add a "using namespace" directive to the top of the DirectXPage class in the DirectXPage.cpp file
to use the Printing namespace. There are several other changes that must be made to this class.
See Appendix B for a complete listing of the DirectXPage class.

Add a print manager member variable to your DirectXPage class in the DirectXPage.h file.

Initialize the Print Manager

Initialize the print manager in the constructor of the DirectXPage class in the DirectXPage.cpp file.
This can occur after the other code. I have placed it directly under the initialization of the m_timer.
To initialize it we need to do two things: grab the print manager for the current program, and
register an event handler so we know when the user requests to print something.

 options.debugLevel = D2D1_DEBUG_LEVEL_INFORMATION;

#endif

 DX::ThrowIfFailed(

 D2D1CreateFactory(

 D2D1_FACTORY_TYPE_MULTI_THREADED,

 __uuidof(ID2D1Factory1),&options,&m_d2dFactory

)

);

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

using namespace Windows::Graphics::Printing;

DirectXPage::DirectXPage() :

BasicTimer^ m_timer;

 Windows::Graphics::Printing::PrintManager^ m_printManager;

};

m_timer = ref new BasicTimer();

 102

In this code we have specified that there is a handler method called SetPrintTask, which the print
manager will use to make new printing tasks.

Create the SetPrintTask Method

This method is very important, as it determines when the user has requested to print something
from the charms bar. It will be called when the user selects Devices from the charms bar, and
depending on what the event does, it will either enable the application to print, or the charms bar
will say "this app can't send to other devices at the moment." Add the SetPrintTask prototype to the
DirectXPage.h header.

Note: The declaration of the SetPrintTask (as well as many other methods in this sample) must be
marked as internal, since it contains native data types in its prototype, and the class is marked as
ref, meaning it is a .NET Framework Reference class. Reference classes cannot contain public

methods or data based on native types.

The following listing is the method body for the SetPrintTask method. I have placed it after the
LoadInternalState method as the final method in the DirectXPage.cpp file.

// Grab the print manager for the current view

m_printManager =
Windows::Graphics::Printing::PrintManager::GetForCurrentView();

// Add an event handler to capture when the user requests a print task

m_printManager->PrintTaskRequested +=

 ref new TypedEventHandler<PrintManager^,
PrintTaskRequestedEventArgs^>(this,

 &DirectXPage::SetPrintTask);

 BasicTimer^ m_timer;

 Windows::Graphics::Printing::PrintManager^ m_printManager;

internal:

 // Print task requested event handler method

 void SetPrintTask(_In_ Windows::Graphics::Printing::PrintManager^
sender,

 In Windows::Graphics::Printing::PrintTaskRequestedEventArgs^
args);

 };

void DirectXPage::LoadInternalState(IPropertySet^ state) {

 103

Note: This method uses the new (C++11) syntax for lambda expressions since the new event
handler needs access to the data members of the outer DirectXPage class. These expressions are
similar in functionality to anonymous inner types in Java. The code is from Microsoft. Please refer
to Appendix A for the license and reuse of this code.

 m_renderer->LoadInternalState(state);

}

void DirectXPage::SetPrintTask(_In_ PrintManager^ sender,

 In PrintTaskRequestedEventArgs^ args){

// Create a new source requested handler

PrintTaskSourceRequestedHandler^ sourceRequestedHandler = ref new
PrintTaskSourceRequestedHandler(

 [this](PrintTaskSourceRequestedArgs^ args)-> void {

 Microsoft::WRL::ComPtr<CDocumentSource> documentSource;

 DX::ThrowIfFailed (

 Microsoft::WRL::MakeAndInitialize<CDocumentSource>(

 &documentSource,reinterpret_cast<IUnknown*>(m_renderer)

)

);

 // Cast the document to an object

 IPrintDocumentSource^ objSource(
 reinterpret_cast<IPrintDocumentSource^>(documentSource.Get())

);

args->SetSource(objSource);

 });

// Create the print task

PrintTask^ printTask = args->Request->CreatePrintTask(L"Direct 2D Printing
Example",

 sourceRequestedHandler);

}

 104

The DirectX (XAML) template has several references to methods in the SimpleTextRenderer,

which will be removed when we rewrite the class. It also references the CDocumentClass from
Microsoft, which I have included as Appendix C. It creates and registers a
PrintTaskSourceRequestedHandler event handler. This event is fired when the print task

requests a document to be printed. It must be called to finish the initialization of the PrintTask
object. As mentioned, for a full listing of the final altered DirectXPage class without these methods,
refer to Appendix B.

Add DocSource class

Next, we will create the document source class referenced in the previous code. Add an #include
to the top of the DirectXPage.cpp file to include the header for a new class called DocSource.h.

Add a header and a code file for the new Document Source class called DocSource.h and
DocSource.cpp. The complete code listing (from Microsoft’s printing sample) for the Document
Source class is included as Appendix C.

Split the SimpleTextRenderer

The next step is to enable the SimpleTextRenderer class to be created more than once to create
multiple contexts. The multiple device contexts will run in parallel. The rendering method itself must
also be updated to consider the format of the output. The dimensions of a computer monitor are
usually different from those of a standard A4 piece of paper. The Rendering method of this class
must now consider the differences in these dimensions, and alter the layout of the image if
required. There is no standard way to format output from a monitor such that it perfectly suits a
physical piece of paper. Some suggestions would be that the background not be colored when
printing, since printing a solid colored background is very slow and wastes a lot of ink.

Tip: The standard orientation of the printed page is portrait. It may match the image on the monitor
better if this orientation of the printed page is changed to landscape.

The SimpleTextRenderer class contains a lot of code that is specific to this Visual Studio template.
The background changing colors, loading and saving of the internal state, and the member
variables for displaying the “Hello DirectX!” can be removed, since they have nothing to do with
printing. The final listing for the two files is included as Appendix D. Much of the following code
comes from Microsoft; Appendix A is the license agreement for use of the Microsoft code.

The actual drawing is exactly the same as we have previously examined; it is made of perfectly
normal Direct2D context method calls. The method is called Draw in the example code. I have
highlighted it in green. The App class must also be updated and the Visual Studio template
methods dealing with loading and saving the internal state can be removed.

The final listing for App.xaml.cpp is as follows.

#include "pch.h"

#include "DirectXPage.xaml.h"

#include "DocSource.h"

 105

//

// App.xaml.cpp

// Implementation of the App class.

//

#include "pch.h"

#include "DirectXPage.xaml.h"

using namespace DXPrinting;

using namespace Platform;

using namespace Windows::ApplicationModel;

using namespace Windows::ApplicationModel::Activation;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

using namespace Windows::Storage;

using namespace Windows::UI::Xaml;

using namespace Windows::UI::Xaml::Controls;

using namespace Windows::UI::Xaml::Controls::Primitives;

using namespace Windows::UI::Xaml::Data;

using namespace Windows::UI::Xaml::Input;

using namespace Windows::UI::Xaml::Interop;

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

App::App(){

 InitializeComponent();

 Suspending += ref new SuspendingEventHandler(this, &App::OnSuspending);

}

void App::OnLaunched(LaunchActivatedEventArgs^ args){

 m_directXPage = ref new DirectXPage();

 106

After implementing the code in this chapter and the appendices, you should be able to run the
application and print a pattern of circles (rendered in the Draw method). The same pattern of
colored circles can be drawn to the screen, the print preview, or printed to a page using the charms
bar.

The code for this chapter was lengthy and mostly taken from the Microsoft Direct2D printing
sample. Interacting with printers is a complex task, and all the boilerplate code for this type of
activity should be taken from the Microsoft samples. Printing DirectX is really a job for the
operating system, and has very little to do with DirectX. Minor deviations from the standard code as
presented in the Microsoft samples will not work.

 // Place the page in the current window and ensure that it is active.

 Window::Current->Content = m_directXPage;

 Window::Current->Activate();

}

void App::OnSuspending(Object^ sender, SuspendingEventArgs^ args){

 (void) sender; // Unused parameter.

 (void) args; // Unused parameter.

}

 107

Chapter 11: Margins

We now return to our charting application, where we will add a margin around the edge. I am going
to add to the code as it was after the “Navigating between Multiple XAML Pages” chapter. Adding a
margin to a chart is important, as it can be used to separate the title, axis labels, and grid figures
from the data being plotted. The following margin class consists of a collection of four rectangles
and a solid color brush. The rectangles form a border around the visible chart area. Add a Margin.h
and Margin.cpp file to your project.

// Margin.h

#pragma once

#include "DirectXBase.h"

enum MarginStyle { Absolute, WindowSizeDependent };

class Margin {

 ID2D1SolidColorBrush* m_solidBrush; // Brush to draw margin

 D2D1::ColorF m_color; // The color of the margin

 D2D1_RECT_F m_leftRect; // Rectangles which make the margin

 D2D1_RECT_F m_rightRect;

 D2D1_RECT_F m_topRect;

 D2D1_RECT_F m_bottomRect;

 MarginStyle m_style; // Style is Absolute or Window size dependent

 // The size of the margin

 float m_left, m_right, m_top, m_bottom;

public:

 // Public constructor

 Margin(float left, float right, float top, float bottom,

D2D1::ColorF color, MarginStyle style);

 // Create the rectangles to draw the margin

 void CreateWindowSizeDependentResources

 108

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

 // Create the solid brush to draw with

 void CreateDeviceDependentResources

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

 // The render method needs to know the panning and scaling

 void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context);

 };

// Margin.cpp

#include "pch.h"

#include "Margin.h"

Margin::Margin(float left, float right, float top, float bottom,

 D2D1::ColorF color, MarginStyle style) : m_color(0) {

// Save the parameters for the create resources methods

this->m_color = color; m_style = style; this->m_left = left; this->m_right =
right;

this->m_top = top; this->m_bottom = bottom;

}

void Margin::CreateWindowSizeDependentResources(

 Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

// If the sizes of the margin passed were percentages of the screen

// we have to multiply the values before creating the rectangles:

if(m_style == MarginStyle::WindowSizeDependent) {

 m_left = context->GetSize().width * m_left;

 109

 m_right = context->GetSize().width * m_right;

 m_top = context->GetSize().height * m_top;

 m_bottom = context->GetSize().height * m_bottom;

 }

// Left rectangle

m_leftRect.left = 0; m_leftRect.right = m_left;

m_leftRect.top = 0; m_leftRect.bottom = context->GetSize().height;

// Right rectangle

m_rightRect.left = context->GetSize().width - m_right;

m_rightRect.right = context->GetSize().width;

m_rightRect.top = 0; m_rightRect.bottom = context->GetSize().height;

// Top margin

m_topRect.left = m_left;

m_topRect.right = context->GetSize().width - m_right;

m_topRect.top = 0; m_topRect.bottom = m_top;

// Bottom margin

m_bottomRect.left = m_left;

m_bottomRect.right = context->GetSize().width - m_right;

m_bottomRect.top = context->GetSize().height - m_bottom;

m_bottomRect.bottom = context->GetSize().height;

}

void Margin::CreateDeviceDependentResources

 (Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

// Create the brush

 110

To add a margin object, we need to add a member variable to the graph renderer. Load its
resources when appropriate and render it.

Note: The margin class takes a MarginStyle enum as one of the parameters to the constructor. I
have added this to enable margins to be created dependent on the size and/or resolution of the
device running the application. Using Absolute as this parameter results in the margin's thickness
parameters being interpreted as pixels. Using WindowSizeDependent means that the parameters

passed in are interpreted as a percentage of the context width and height.

Add the Margin.h file to the Graph Renderer.h headers section:

Add the member variables to the GraphRenderer.h file.

DX::ThrowIfFailed(context->CreateSolidColorBrush(m_color, &m_solidBrush));

}

void Margin::Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {

// Draw the left margin

context->FillRectangle(m_leftRect, m_solidBrush);

// Draw the right margin

context->FillRectangle(m_rightRect, m_solidBrush);

// Draw the top margin

context->FillRectangle(m_topRect, m_solidBrush);

// Draw the bottom margin

context->FillRectangle(m_bottomRect, m_solidBrush);

}

//
// Additional headers for graph objects here
//
#include "GradientBackground.h"
#include "ScatterPlot.h"
#include "LineChart.h"
#include "Axes.h"

#include "Margin.h"

// Plottable data
 GraphVariable* m_graphVariable;
 GraphVariable* m_lineChart;

 111

Call the constructor(s) for the margin(s) in the GraphRenderer constructor; this can be done at any
time. I have placed it after constructing the m_axes object.

Call the CreateDeviceDependentResources method for the new m_margin object in the
GraphRenderer::CreateDeviceResources method (this will create the margin’s brush).

 // Axes
 Axes* m_axes;

 // Margin

 Margin* m_margin;

// Create the line chart
m_lineChart = new LineChart(x, y, count, D2D1::ColorF::Chocolate, 5.0f);

delete[] x;
delete[] y;

// Create the Axes
m_axes = new Axes(D2D1::ColorF::Black, 5.0f, 0.75f);

// Create the margin
m_margin = new Margin(0.1f, 0.1f, 0.1f, 0.1f, // 10% of window size
 D2D1::ColorF(0.38f, 0.66f, 0.74f, 1.0f),
MarginStyle::WindowSizeDependent);

}

void GraphRenderer::CreateDeviceResources() {
DirectXBase::CreateDeviceResources();

// Call the create device resources for our graph variable
m_graphVariable->CreateDeviceDependentResources(m_d2dContext);

// Create device resources for the line chart
m_lineChart->CreateDeviceDependentResources(m_d2dContext);

// Create the brush for the Axes
m_axes->CreateDeviceDependentResources(m_d2dContext);

// Create the solid brush for the text
DX::ThrowIfFailed(
 m_d2dContext-
>CreateSolidColorBrush(ColorF(ColorF::Black),&m_blackBrush));

// Create the margin's device dependent resources
m_margin->CreateDeviceDependentResources(m_d2dContext);

}

 112

Call the CreateWindowSizeDependentResources method for the margin(s) in the

GraphRenderer::CreateWindowSizeDependentResources method (this will create the
rectangles to fill for the margin).

And finally, call Render on the margin(s) in the GraphRenderer::Render method. I have rendered
the margins immediately after the transformation matrix is reset, and just prior to rendering the FPS
counter. We originally added this reset to make sure the FPS counter was not affected by the pan
and zoom, but we can also use it to ensure the margin is not transformed.

Upon debugging the application, you should see a stormy cyan colored margin surrounding the
window, as shown in Figure 34.

void GraphRenderer::CreateWindowSizeDependentResources() {
DirectXBase::CreateWindowSizeDependentResources();

// Create window size resources for gradient background
m_gradientBackground->CreateWindowSizeDependentResources(m_d2dContext);

// Set the initial pan value so the lowest node is visible in the corner
m_pan.X = -m_graphVariable->GetMinX();
m_pan.Y = m_graphVariable->GetMinY();

// Create window size dependent resources for the margin
m_margin->CreateWindowSizeDependentResources(m_d2dContext);

}

//
// Draw objects here
//
// Render the graph variable(s)
m_lineChart->Render(m_d2dContext);
m_graphVariable->Render(m_d2dContext);

// Reset the transform matrix so the time and FPS do not pan or zoom
m_d2dContext->SetTransform(m_orientationTransform2D);

// Render the margin
m_margin->Render(m_d2dContext);

// Set up the string to print:
std::wstring s = std::wstring(
 L"Total Time: ") + std::to_wstring(m_timeTotal) +
 std::wstring(L" FPS: ") + std::to_wstring(

 (int)(0.5f+1.0f/m_timeDelta)); // FPS rounded to nearest int

 113

Figure 34: Margins

 114

Chapter 12: Zooming

As mentioned in the section on transformations, the entire view can be zoomed in or out using a
simple Scale matrix. We will attach an event to the DirectXRenderer page that captures the mouse
wheel (if the user is using a Windows 8 desktop), and allow the wheel to alter the zoom of our
chart.

We already have a scale matrix being applied to our data, but its task is to flip the y-axis, so we are
not drawing our chart upside down. To create a zoom capability, we can add an additional
multiplication to the values in the parameters of this matrix. I have used two member floats to hold
the zoom coefficients, and I have used #define to specify some limits, avoid zooming in too far, and
to avoid division by zero errors that can occur when zooming out so far that it underflows the 32-bit
floats. I've made the changes to the GraphRenderer.h file.

Initialize the floats we just defined in the constructor of the GraphRenderer in the
GraphRenderer.cpp file.

Add a public, internal Zoom method prototype to the GraphRenderer class so we can call it from
the DirectXPage class. I have placed this prototype directly after the GetLine method prototype.

// Member variables for displaying FPS

 float m_timeDelta; // Time since last update call

 float m_timeTotal; // Total time of application

 // Member variables and constants for zooming

 #define MIN_ZOOM (0.01f) // Smallest zoom value is 1%

 #define MAX_ZOOM (100.0f) // Largest zoom value is 10,000%

 float m_zoomX; // The amount the x-axis is scaled by

 float m_zoomY; // The amount the y-axis is scaled by

 Microsoft::WRL::ComPtr<ID2D1SolidColorBrush> m_blackBrush;

 Microsoft::WRL::ComPtr<IDWriteTextFormat> m_textFormat;

GraphRenderer::GraphRenderer():

 m_zoomX(1.0f),

 m_zoomY(1.0f)

{

 115

The body for the function in the GraphRenderer.cpp file is very basic. We multiply the axis zooms
by the parameter passes, and make sure they are within the limits MAX_ZOOM and MIN_ZOOM.
Place the following code in the GraphRenderer.cpp file. It can be placed at the end after the
Render method.

Next, we need to add an event handler to capture when the mouse wheel is changed. Open the
DirectXPage.xaml file, find the line describing the SwapChainBackground panel, and add a
PointerWheelChanged event to the XAML code.

internal:
 LineChart* GetLine() {
 return (LineChart*) m_lineChart;
 }

 // Zooming method

 void Zoom(float amount);

void GraphRenderer::Zoom(float amount) {

// Multiply the zooms

m_zoomX *= amount;

m_zoomY *= amount;

// Make sure the new zooms are still within the limits:

if(m_zoomX < MIN_ZOOM) m_zoomX = MIN_ZOOM;

else if(m_zoomX > MAX_ZOOM) m_zoomX = MAX_ZOOM;

if(m_zoomY < MIN_ZOOM) m_zoomY = MIN_ZOOM;

else if(m_zoomY > MAX_ZOOM) m_zoomY = MAX_ZOOM;

}

<SwapChainBackgroundPanel x:Name="SwapChainPanel"

 PointerWheelChanged="OnPointerWheelChanged"
PointerMoved="OnPointerMoved"

 PointerReleased="OnPointerReleased">

 116

Right-click on the event name in the XAML code (I've used OnPointerWheelChanged) and click

Navigate to Event Handler on the context menu which appears.

Visual Studio will write the event handler code for us, and take us directly there so we can specify
what is to happen when the mouse wheel changes. All we need to do is check which way the
wheel was rotated, and call the GraphRenderer::Zoom method with appropriate values. I have

used 1.2f to zoom in and 0.8f to zoom out. These values mean the zooming will be fairly smooth
at around 20%. Here is the code for the DirectXPage::OnPointerWheelChangedEvent.

Add the additional multiplication of our new axis zoom values to the scale matrix in the

GraphRenderer::Render method.

void DirectXPage::OnPointerWheelChanged(Platform::Object^ sender,

 Windows::UI::Xaml::Input::PointerRoutedEventArgs^ e) {

 Windows::UI::Input::PointerPoint ^p = e->GetCurrentPoint(this);

 if(p->Properties->MouseWheelDelta > 0)

 m_renderer->Zoom(1.2f);

 else

 m_renderer->Zoom(0.8f);

 }

// The scale matrix inverts the y-axis

Matrix3x2F scale = Matrix3x2F::Scale(

 1.0f * m_zoomX, // Multiply by x-axis zoom

 -1.0f * m_zoomY, // Flip and multiply by y-axis zoom

 D2D1::Point2F(0.0f, 0.0f));

 117

Upon running the application, you should find that you can now zoom in and out of the chart using
the mouse wheel. The Axes class is no longer rendering properly. First, the thickness of the axis
lines is being altered by the scale matrix. When the user zooms in, the axis lines become thicker.
When the user zooms out, they become thinner and disappear altogether. Figure 35 is a
screenshot zoomed into the meeting point of the axes, the origin.

Figure 35: Zooming into Origin

The other problem is that when the chart is zoomed out, the axes’ lines no longer span the entire
window. This destroys the illusion that they are infinite since the ends are clearly visible. See
Figure 36.

Figure 36: Zooming Out

We can fix both of these problems by multiplying by the m_zoomX and m_zoomY in the
m_axes::Render method call.

// The pan matrix still pans but it also adds the height of the screen
Matrix3x2F panMatrix = Matrix3x2F::Translation(m_pan.X, m_pan.Y +
 m_d2dContext->GetSize().height);

// Apply the scale first
m_d2dContext->SetTransform(scale*panMatrix*m_orientationTransform2D);

// Draw the axes
m_axes->Render(m_d2dContext, m_pan.X, m_pan.Y, m_zoomX*1.0f, m_zoomY*-1.0f);

//
// Draw objects here

//

 118

Upon making this change, you should be able to run the application and zoom in and out without
altering the thickness of the axis lines, and without making their ends visible. See Figure 37.

Figure 37: Zooming with Scaling Axes

 119

Chapter 13: Hit Testing or Picking

It is often useful in a charting application to determine if the user has clicked the mouse on a node
or other object in the chart. This is called hit testing or picking.

Tip: The Direct2D geometries have a method called FillContainsPoint, which returns a BOOL
indicating whether the filled geometry contains a specified point. This method is not useful for hit
testing a collection of simple primitives, because the geometries are device independent and are
very slow at this type of task. Geometries will determine if a point lies within a complex shape fairly
quickly, but they are not good at telling which of a large collection of nodes is closest to a given

point.

We will examine actual hit testing (determining if a point lies inside a shape) using Direct2D in the
Geometries section that follows. This section will concentrate on a more efficient way to select a
node with the pointer. The particular mechanism we will create is common in graphing software; it
allows the user of the chart a little freedom when they are selecting a node. The pointer doesn't
need to be exactly on top of a tiny node, but just close enough. This mechanism makes selecting a
single small node from a collection of many much easier for the user.

All we have to do is figure out which node is closest to the pointer, and then whether the pointer is
close enough to the node. For example, if the pointer is distant from all nodes, then no nodes
should be picked. If we wish to know which node the pointer is closest to, we can very quickly
examine all the nodes and calculate the distance to each, determining which is the smallest. We
will edit the ScatterPlot class and have it show the user which node is being selected by
enlarging the selected node. The ellipses and points that comprise the scatter plot are all device
independent resources, so the CPU is in control of them. Open the ScatterPlot.h file and add a
public method prototype called PickPoint. This method will take the x and y position position of the
cursor as parameters. I have added this prototype at the end of the class.

Add a private member variable to the same class. This will be used to keep track of the index of
the node that is selected.

Initialize the m_selectedNode to -1 in the ScatterPlot constructor.

virtual void
CreateDeviceDependentResources(Microsoft::WRL::ComPtr<ID2D1DeviceContext>
context) override;
 virtual void Render(Microsoft::WRL::ComPtr<ID2D1DeviceContext> context)
override;

 // Method to select a node
 void PickPoint(float x, float y);
};

NodeShape m_NodeShape; // The shape of the nodes

 // Selected node index
 int m_selectedNode;

public:

ScatterPlot::ScatterPlot(float* x, float* y, float nodeSize,

 120

Add the body of the PickPoint method to the end of the ScatterPlot.cpp file.

 D2D1::ColorF nodeColor, NodeShape nodeShape, int count):
 m_NodeColor(0), GraphVariable(x, y, count), m_selectedNode(-1)
{
// Save half the node size. The nodes are drawn with
// the point they're representing at the middle of the shape.
this->m_HalfNodeSize = nodeSize / 2;

this->m_NodeShape = nodeShape;
this->m_NodeColor = nodeColor;

}

void ScatterPlot::PickPoint(float x, float y) {

float smallestDistance = (x - m_points[0].x) * (x - m_points[0].x) +

 (y - m_points[0].y) * (y - m_points[0].y);

int indexOfSmallest = 0; // Assume closest node is the first one

// Run through all nodes and see if any are closer

for(int i = 1; i < m_nodeCount; i++) {

 // Approximate the distance, don't take the sqrt()!

 float thisDistance = ((x - m_points[i].x) * (x - m_points[i].x) +

 (y - m_points[i].y) * (y - m_points[i].y));

 // If this one's closer, update the index and dist

 if(thisDistance < smallestDistance) {

 smallestDistance = thisDistance;

 indexOfSmallest = i;

 }

 }

// Calculate the sqrt to get the real Euclidean distance

 121

To work out which node is closest to our pointer, we must calculate the distance (I have used the
Euclidean distance) from each of the nodes to the pointer, and decide which node is closest.
Initially, I assumed the pointer is closest to the first node. Then I ran through every other node
checking the distance to the pointer. If the pointer is closer to a node than our current shortest
distance, update the shortest distance and the index of the node. In this way, by the time we reach
the final node, we will have the index of the node that is closest to the pointer.

Finally, alter the render method of the ScatterPlot class (in the ScatterPlot.cpp file) such that it
renders the selected node a different color and size. I have only included example code for circle
nodes, but the idea could be extended to the square shape.

smallestDistance = sqrt(smallestDistance);

// If the distance is greater than a threshhold (50.0f), assume

// no points are selected at all:

if(smallestDistance > 50.0f)

 m_selectedNode = -1; // Nothing is selected

// Otherwise, select the node that's closest to the pointer

else

 m_selectedNode = indexOfSmallest;

}

void ScatterPlot::Render(
 Microsoft::WRL::ComPtr<ID2D1DeviceContext> context) {
switch(m_NodeShape) {
 // Draw as circle nodes
 case NodeShape::Circle:
 for(int i = 0; i < m_nodeCount; i++) {
 context->FillEllipse(D2D1::Ellipse(m_points[i],
 m_HalfNodeSize, m_HalfNodeSize), m_brush);
 }
 if(m_selectedNode != -1) // If a node is selected, render it
larger
 context->FillEllipse(
 D2D1::Ellipse(m_points[m_selectedNode],
 m_HalfNodeSize*2.0f, m_HalfNodeSize*2.0f),
m_brush);
 break;

 // Draw as square nodes
 case NodeShape::Square:
 for(int i = 0; i < m_nodeCount; i++) {
 context->FillRectangle(D2D1::RectF(m_points[i].x -
 m_HalfNodeSize,
 m_points[i].y - m_HalfNodeSize, m_points[i].x +
m_HalfNodeSize,

 122

We want the PickPoint method to execute when the pointer moves at the moment the
GraphRenderer class has a PointerMoved method. However, it is only called when the pointer is
depressed, either the mouse button is down or the user is sliding his or her finger.

Add a new public member method to the GraphRenderer class called UpdatePointerPosition. I
have placed the prototype after the PointerMoved method in the GraphRenderer.h file.

Add two private member variables to the GraphRenderer class for recording the pointer’s position.

Add the body of UpdatePointerPosition method to the GraphRenderer.cpp file. I have added it

at the end.

 m_points[i].y + m_HalfNodeSize), m_brush);
 }
 break;

 // Additional shapes could follow

 default:
 break;
 }

}

 // Capture the pointer movements so the user can pan the chart
 void PointerMoved(Windows::Foundation::Point point);

 // Record pointers x and t value
 void UpdatePointerPosition(Windows::Foundation::Point point);

 // Method for updating time-dependent objects.

 void Update(float timeTotal, float timeDelta);

 float m_zoomX; // The amount the x-axis is scaled by
 float m_zoomY; // The amount the y-axis is scaled by
 float m_pointerX; // X position of pointer in pixels
 float m_pointerY; // Y position of pointer in pixels
 Microsoft::WRL::ComPtr<IDWriteTextFormat> m_textFormat;

 Microsoft::WRL::ComPtr<ID2D1SolidColorBrush> m_blackBrush;

void GraphRenderer::UpdatePointerPosition(Windows::Foundation::Point point)
{
m_pointerX = point.X;
m_pointerY = point.Y;

}

 123

And finally, we need to call the m_graphVariable->PickPoint method. We could call this in the

UpdatePosition method every time the pointer moves, but PickPoint is a slow method so we
should call it less frequently. I have placed the call in the GraphRenderer::Update method inside
a new condition, which will cause it to execute once every 32 frames.

The member variables m_pointerX and m_pointerY are screen coordinates of the pointer so we

have to convert them to the graph’s coordinates when we use them as parameters to the
PickPoint method.

Tip: Avoid using sqrt in tight loops. I have removed the sqrt function (used to properly calculate the
Euclidean distances between the pointer and the nodes) from the body of my loop in the previoud
codesamplee. We do not need to know the actual distance in the middle of this loop. All we need to
know is the index of the node that has the shortest distance. I have calculated the actual distance
using the square root only once after the loop. Removing the square root from the loop allows it to

execute around 100 times faster.

I have included a threshold in the previous code (50.0f). If the cursor is more than 50.0f units from
all the nodes we conclude that it is too far and no node is selected, setting the selected node to -1.
If the cursor is within 50.0f of one or more nodes, this function will set the index of the nearest
node. If the threshold value is equal to the radius of a collection of circular nodes (the
m_halfNodeSize member variable in our ScatterPlot class), this method becomes a hit test, and
the cursor must be exactly on a node to select it instead of being near.

The next section contains another interesting and flexible method for performing hit tests, this time
using geometries. The geometries are capable of real hit testing on a pixel level, not the simple
nearest neighbor search I presented previously. The use of geometries is potentially far slower
than the manual hit testing we have just examined. The reason is that geometries themselves are
complex, device independent structures; they are very flexible but they are also heavy weight.

We have now reached the end of developing our graphing application. The remainder of this book
is a discussion of some extra topics and tools which will not be applied to the current application.

void GraphRenderer::Update(float timeTotal, float timeDelta) {
static int fpsCounter = -1; // Start at -1 so frame 0 updates timers
fpsCounter++;
if((fpsCounter & 15) == 0) { // Update every 16 frames
 // Record the times for display in the render method:
 m_timeDelta = timeDelta;
 m_timeTotal = timeTotal;
 }

if((fpsCounter & 31) == 0) {
 ((ScatterPlot*)m_graphVariable)->PickPoint(
 (m_pointerX-m_pan.X)/m_zoomX,
 (-m_pointerY + m_d2dContext->GetSize().height + m_pan.Y)/m_zoomY
);
 }

}

 124

Chapter 14: Direct2D Geometry

Geometries allow us to specify shapes for clipping regions, hit testing, and paths for animations.
They are device independent resources, and should be created outside of any tight loops. The
most basic geometries are those for the primitive shapes, ellipses, rectangles, and rounded
rectangles. The information in this chapter is not designed to extend the graphing application we
have been working on up to this point. It is an introduction to the syntax and concepts of some
more advanced topics. The following code samples could easily be added to our graphing
application, but I assumed the project is a new DirectX (XAML) project and the rendering class is
called SimpleTextRenderer.

Simple Geometries

To render geometries in your project, add these three member variables to your rendering class.

Call the m_d2dFactory create geometry methods in the device independent resource creation

method (CreateDeviceIndependentResources() in the SimpleTextRenderer class).

 ID2D1RectangleGeometry *m_rectangle;

 ID2D1EllipseGeometry *m_ellipse;

 ID2D1RoundedRectangleGeometry *m_roundedRectangle;

m_d2dFactory->CreateRectangleGeometry(

 D2D1::RectF(0, 0, 100, 100),

 &m_rectangle); // 100 × 100 rectangle

m_d2dFactory->CreateEllipseGeometry(

 D2D1::Ellipse(D2D1::Point2F(100, 10), 150, 100),

 &m_ellipse); // 150 × 100 ellipse

m_d2dFactory->CreateRoundedRectangleGeometry(

 D2D1::RoundedRect(

 D2D1::RectF(-100, -100, 100, 100),

 25, 25), &m_roundedRectangle); // 200 × 200 rectangle w/ rounded
corners

 125

The creation methods for making the geometry types is almost the same as those creating the
corresponding shapes. For instance, the CreateEllipseGeometry syntax is very similar to the
m_d2dContext::DrawEllipse method. To render previously created geometry, call the Render
Geometry method of the Context in your render method.

As mentioned previously, geometries are very slow to render (compared to primitives). However,
geometries are very flexible and can be used for more than just rendering shapes. For instance,
they have many interesting methods like ComputeLength and ComputeArea, which return the
length and area of the shape, and consider the transform matrices as part of the calculation. That
is, they consider scaling and skew. They can also be used to build geometry sinks and hit testing
with the FillContainsPoint method. All of these functions and others make the geometry a very

flexible class, but one that, unless you require these particular abilities, is slower for the computer
to manipulate and render.

Once you have created geometries, you can render the filled shapes with a solid color brush using
the context's FillGeometry method. The context’s DrawGeometry method can be used to render

only the outline of the geometry.

Transformed Geometry

Transformed geometry allows us to attach a matrix transformation to a geometry. This is useful for
creating shapes that scale and translate, but the stroke thickness (the thickness of the pen)
remains the same. A transformed geometry is basically just a regular geometry, but it carries its
own transformation matrix. Geometrical shapes rendered with DrawGeometry are transformed
using the transformation matrix in the context.

 // I've assumed the m_blackBrush brush exists!

 m_d2dContext->DrawGeometry(

 m_rectangle, m_blackBrush.Get());

 m_d2dContext->DrawGeometry(

 m_ellipse, m_blackBrush.Get());

 m_d2dContext->DrawGeometry(

 m_roundedRectangle, m_blackBrush.Get());

 m_d2dFactory->CreateTransformedGeometry(

 m_rectangle, // Pointer to original geometry

 Matrix3x2F::Scale(1.0f, 12.0f), // Tranformation Matrix

 &m_transformed); // Pointer to our transformed geometry

 126

The code example uses the factory to create a transformed geometry with the m_rectangle from

the start of the chapter. The transformation matrix supplied is a scale of 1.0f along the x-axis and
12.0f along the y-axis, so the shape will be stretched by 12 units. The important thing to note is that
stroke will not be stretched when the shape is rendered, only the shape itself.

To render the transformed geometry you can use the context's regular DrawGeometry method.

Tip: In our original line chart, the line was scaled in a strange way when the x-axis and y-axis were
scaled by different values. Depending on the angles of the lines, the stroke thickness was also
being stretched. This produces an effect that is like a calligraphy pen, and is undesirable for a line
chart. It may be better to use a TransformedGeometry for our line chart, since the line can be scaled
with a static stroke width.

Complex Geometries

One of the powerful features of geometries is the fact that simple shapes can be combined
together to form more complex geometries. The resulting geometries have all the abilities of the
original ones, calculating the area, length, and hit testing. To combine several geometries together,
use the CombineWithGeometry method of the geometries.

To create a custom geometry from a collection of lines, you can use the PathGeometry class. This
allows us to specify a set of points, connect them with lines, and render the final shape. An
ID2D1GeometrySink is an object which is used to describe a path built from lines, arcs, and other
geometric line primitives. The path geometry uses an ID2D1GeometrySink to build the shape, and
once it is built you can use the Context's DrawGeometry or FillGeometry methods to render the
shape. In the following example, I have set up a collection of random points and have specified
that the points create a closed shape. I have indicated that the geometry shape is filled
alternatively. First, add a Path Geometry member variable to your rendering class
(SimpleTextRenderer.h file).

The path geometry is a device independent resource like the other geometries, so you can specify
the shape in the CreateDeviceIndependentResources method of your renderer.

m_d2dContext->DrawGeometry(

 m_transformed, m_blackBrush.Get());

Microsoft::WRL::ComPtr<ID2D1PathGeometry> m_pathGeometry;

 // Create or load some data into a points array.

 int count = 25;

 D2D1_POINT_2F * points = new D2D1_POINT_2F[count*2];

 for(int i = 0; i < count; i++) {

 127

 points[i].x = 50;

 points[i].y = i * 10;

 points[i+count].x = (count * 10)-(i * 10);

 points[i+count].y = 50;

 }

 // Create the path geometry:

 DX::ThrowIfFailed(m_d2dFactory->CreatePathGeometry(&m_pathGeometry));

 // Use the path geometry to create a geometry sink:

 ID2D1GeometrySink *geometrySink;

 DX::ThrowIfFailed(m_pathGeometry->Open(&geometrySink));

 // Set the fill mode:

 geometrySink->SetFillMode(D2D1_FILL_MODE::D2D1_FILL_MODE_ALTERNATE);

 // Set the start point and specify the figure is to be filled

 geometrySink->BeginFigure(points[0], D2D1_FIGURE_BEGIN_FILLED);

 // Add the other points

 for(int i = 1; i < count; i++) {

 // Add a line to the sink connecting the current point to the
last:

 geometrySink->AddLine(points[i+count]);

 geometrySink->AddLine(points[i]);

 }

 // End the figure, connect the final point to first

 geometrySink->EndFigure(D2D1_FIGURE_END_CLOSED);

 // Release the geometry sink from RAM

 geometrySink->Close();

 geometrySink->Release();

 delete[] points;

 128

Note: A geometry sink is a temporary geometry building tool. It is not needed once the geometries
are built, so I have used a local pointer and released it once I have finished creating the geometry

with it.

Finally, the geometry can be rendered in your render method with a call to either FillGeometry or

DrawGeometry.

Figure 38: Unfilled Geometry

Figure 38 is the output of the drawn (not filled) geometry. If you render the geometry using the
context's FillGeometry method you will get something like the following.

Figure 39: Filled Geometry

 m_d2dContext->DrawGeometry(m_pathGeometry.Get(), m_blackBrush.Get());

 129

Figure 39 is the same geometric figure as the previous one, only every second shape created by
the lines in the geometry has been filled in. This is due to the alternate FILL_MODE specified in the
geometry sink. You can also set the fill mode to D2D1_FILL_MODE_WINDING.

The implementation of the fill mode is as follows. For the case of alternate fill mode: for each pixel
in the shape, an imaginary line is drawn in an arbitrary direction (it does not matter what the
direction is, the result is the same so long as the line is infinite). If this line crosses an odd number
of lines in the geometry, the pixel is filled. Otherwise, it is transparent.

In the case of the Winding Fill Mode, for each pixel, an infinite line is drawn in an arbitrary direction.
If there are as many lines from the geometry that cross this imaginary line from left to right (from
the perspective of the imaginary line), as those that cross from right to left, the shape is not filled.
Otherwise, it is.

As mentioned previously, geometries are able to do a lot more than render shapes. For instance,
you could calculate the length and area, or perform a hit test with ease with the following code.
This code is best called outside the Render() method because it is very slow. The scale and
translation matrices used in this code could be member variables of the SimpleTextRenderer
class.

Tip: In these examples, I have assumed there are translation, scale, and orientation matrices which
have transformed the geometry, and these are considered in the calculations. For instance, if the
current scale matrix is 3.0f in the x-axis and y-axis, then the length reported by the calculate length
method will be three times the original length of the shape. If you want to get the area or length of
the shape without the scaling or other transformations, you can use the Matrix3x2F::Identity() as the

transform matrix.

// Compute the area of the geometry

float area;

m_pathGeometry->ComputeArea(scale * translation *

m_orientationTransform2D, &area);

// Compute the length of the geometry

float length;

m_pathGeometry->ComputeLength(scale * translation *

m_orientationTransform2D, &length);

// Specify a point for hit test:

D2D1_POINT_2F point = D2D1::Point2F(120.0f, 150.0f);

BOOL result = false;

m_pathGeometry->FillContainsPoint(point, scale *

translation * m_orientationTransform2D, &result);

 130

Note: The way Direct2D uses points and a geometry sink to create a collection of lines is very
similar to the way that Direct3D uses vertices and index buffers. The points are specified in an
array, and then lines can be created between any two points using their indices within the array.
Make sure you have a good grasp of this concept before you examine the vertex and index buffers;
it is simpler in 2-D than it is in 3-D, but it is exactly the same concept.

In the previous example we looked at rendering straight lines. Although we used a geometry sink,
we could have used a simplified geometry sink since there are no curves in the path we rendered.
If you require adding Bézier curves or arc segments to your path, you can use the AddBezier,

AddQuadraticBezier, and AddArc methods of the geometry sink.

In the following example, a set of marching shapes is rendered from a collection of points loaded
into the geometry using the AddBezier method. This example assumes the code from the last

example. For example, there is a member variable called m_pathGeometry and a black brush from
the SimpleTextRenderer sample, and so on.

Add Bézier curves to the geometry using the points.

 // Create or load some data into a points array.

 int count = 50;

 D2D1_POINT_2F * points = new D2D1_POINT_2F[count];

 for(int i = 0; i < count; i++) {

 points[i].x = (i*i);

 points[i].y = (i%2)*(i*10+i*10);

 }

// Set the fill mode:

geometrySink->SetFillMode(D2D1_FILL_MODE::D2D1_FILL_MODE_ALTERNATE);

// Set the start point and specify the figure is to be filled

geometrySink->BeginFigure(points[0], D2D1_FIGURE_BEGIN_FILLED);

// Add the other points

for(int i = 1; i < count-1; i++) {

// Create Beziers from the points:

geometrySink->AddBezier(D2D1::BezierSegment(

points[i-1],points[i], points[i+1]));

 131

And render the geometry in the render method.

Upon running the application you should see something like Figure 40.

Figure 40: Curved Geometry

Tip: Curves can be a simple way to approximate intermediate values in a line chart. Instead of
connecting the nodes in a line chart with straight lines, they can be rendered as curves. Any point
between nodes could be approximated by the curves, and in addition, a curved line looks much more
appealing than the jagged straight lines that are normally employed to render charts. The actual
intermediate values may be no closer to a curve than the straight lines, but (particularly with highly

correlated or otherwise well-behaved data sets) the curve may be a closer approximation.

 }

 m_d2dContext->FillGeometry(m_pathGeometry.Get(), m_blackBrush.Get());

 132

Part 2 Direct3D

The remainder of this book is dedicated to exploring some of the basics of Direct3D. We will only
examine some fundamentals of Direct3D here. We will look into the topic with much more depth in
the Direct3D Succinctly e-book. The Direct3D API is much more powerful than Direct2D. It can
obviously render 3-D graphics, but it is also capable of faster 2-D graphics than Direct2D. The
Direct2D API is built on top of the Direct3D API. The Direct3D API is closer to the hardware, and
the instructions and methods for programming Direct3D give programmers more control over what
the GPU does and how it does it. Direct3D is an immense topic and the vast majority of its
capabilities have little application to rendering charts.

 133

Chapter 15: Rendering Pipeline

The rendering pipeline, sometimes called graphics pipeline, or simply pipeline, is the set of steps to
transform vertices and other structures from a collection of floating point values into 3-D graphics.
In order to create graphics, the programmer uses code and data to create a collection of points,
triangles, vertices, and so on. They must be transformed and manipulated by the hardware such
that a 3-D scene can be displayed on the user’s 2-D screen.

Each API and each generation of each API has its own rendering pipeline. The Direct3D rendering
Pipeline (although related in some ways) is different from the OpenGL one. The Direct3D 9
pipeline is very different from the Direct3D 11 pipeline. Things have gradually become more
flexible as the power of the hardware has scaled. The present pipeline has several stages that are
programmable. This means the programmer is able to code instructions for the graphics card
directly. Other steps in the pipeline are automated, or at least semiautomated. The programmer
can select some settings but cannot dictate what the GPU is to do directly. Each stage of the
pipeline takes input from the previous stage and gives input to the next stage. Several of the
stages are optional. These are the steps to the current (DirectX 11) rendering pipeline:

1. Input Assembler
2. Vertex Shader
3. Hull Shader
4. Tessellator
5. Domain Shader
6. Geometry Shader
7. Rasterizer
8. Pixel Shader
9. Output Merger

Input Assembler

This stage of the pipeline is where we set up the resources, vertices, colors, and so on—anything
we need the GPU to render.

Vertex Shader

This stage is completely programmable. A vertex shader is a small chunk of code that is to be run
for every vertex from the previous stage.

Hull Shader, Tesselator, Domain Shader

The next three shaders are new to DirectX 11, and they are for tessellation. Tessellation can
increase and decrease the level of detail in a polygon to scale with the hardware running the
application. This book will not cover the topic of tessellation.

Geometry Shader

The geometry shader was new to DirectX 10. It is a programmable shader that works on whole
shapes, whereas the vertex shader just worked on a single vertex. It is optional and we will not
cover geometry shaders in this book.

 134

Rasterizer

The rasterizer takes the vertices from the previous stage and determines which pixels are visible.
This is very important because if a pixel is not visible, there is no point in computing its eventual
color. The rasterizer clips the scene and performs backface culling. Backface culling is the removal
of polygons that are facing away from the camera and are therefore not visible.

Pixel Shader

The pixel shader is another programmable stage in the pipeline. Pixel shaders are executed once
for every visible pixel in the scene. There can be significantly more than a million pixels visible in a
scene, so it is important to keep pixel shaders very efficient.

Output Merger

This stage puts all the information together and displays the image.

Note: Since this is only a very short introduction to Direct3D, the only shaders we will be using are
the vertex shader and the pixel shader. In the follow-up book, Direct3D Succinctly, we will examine
the API in greater detail.

 135

Chapter 16: Starting a Direct3D Project

To begin a new Direct3D app, click File > New Project in the main menu of Visual Studio. You will
be presented with the New Project screen. Click Visual C++ on the left panel, and then click
Direct3D App on the middle panel. Give your new project a name. Mine is called Direct3DTesting,
as shown in Figure 41.

Figure 41: Creating a Direct3D App

Once Visual Studio has created the project you can click Start Debugging and you should see a
spinning colored cube (as depicted in the preview pane of Figure 41).

Terms and Concepts

3-D Coordinates

We will describe points in our 3-D examples using a standard Cartesian x, y, and z system. Each
of the x, y, and z values refers to an point in 3-D space. Each axis can be thought of as an infinite
plane perpendicular to the other two axes. They are often summarized as three lines, as shown in
Figure 42.

 136

Figure 42: 3-D Axes

We will use the x value of a coordinate to represent how far left or right a point is, the y value to
represent how high or low the coordinate is, and the z value to represent how far into or out of the
screen the coordinate is. In addition, as an object's x value increases, the object moves rightward.
As the object's y value increases, it moves upward. As the object's z value increases, the object
moves closer to the camera (or out of the screen).

Vertices

A vertex is a point in 3-D space used to represent the corner of an object, shape, or the end of a
line. To specify a 3-D vertex, we need to supply the three coordinates mentioned previously. The
coordinates are almost always 32-bit floating point values. Each element (x, y, or z) specifies a
position along the dimension, and collectively they describe an exact and unique point in 3-D
space.

Note: I will be using x, y, then z as the order for my elements when describing vertices. So

something like (9.0f, 8.0f, 5.0f) means 9 along the x-axis, 8 along the y-axis and 5 along the z-axis.

In Figure 43 the yellow ball represents a vertex. In reality, the vertex does not have a physical
form; it represents an infinitely small point. The vertex is at position (1.2f, 0.4f, 0.7f). This means it
is 1.2 units right of the blue x-axis origin, 0.4 units above the origin of the green y-axis, and 0.7
units away from the origin of the red z-axis.

 137

Figure 43: A Point

In Direct3D, vertices are far more flexible than simple points in space. A vertex can carry lighting
and coloring information about a point, as well as any other information required. In their most
basic form (and the way we will be using them, they consist of a position and color, each described
with three or four floating point values.

Lines

A 3-D line can be formed from any two vertices. They are exactly the same as lines in 2-D space,
only the points which define the ends each have 3 dimensions. Lines are important in DirectX,
because three of them makes a triangle (and as we shall see, 3-D graphics is almost nothing but
rendering massive numbers of triangles). Lines also allow us to render 3-D objects as wire frames,
so we can easily see the triangles from which the objects are made.

Triangle

Instead of describing 3-D objects with billions of points, objects are usually summarized and are
described as a collection of small triangles. The triangles collectively form a mesh, which is a net-
like structure. Each triangle is made up of three vertices and three lines. Any three distinct vertices
can be used to form a triangle, and if there are enough triangles almost any imaginable shape can
be approximated. Modern graphics cards are staggeringly efficient at rendering triangles.

 138

Matrices

Everything from scaling, placement, and the rotation of objects is controlled by matrices in
Direct3D. Displaying 3-D graphics consists of multiplying large data sets of vertices and triangles
by transformation matrices. There are some matrices which are almost always used; they have a
special purpose in 3-D graphics and they have come to be known as the world matrix, the view
matrix, and the projection matrix.

 World Matrix: When we define objects in 3-D, we usually define them individually with their
own origins, scale, and rotation. For instance, when we create a model using a 3-D
modeling program, we will probably use the origin and define the model with respect to its
own local coordinates. When the model is added to a virtual 3-D world, it will probably not
be placed at the origin. Maybe it is moving around in the virtual world. It has its own
coordinate system, but when we place it into a scene these coordinates must be translated
to world space. That is, the position in the world that the object resides. The world matrix
performs this operation.

 View Matrix: Once the world matrix has positioned all the objects that may (or may not)
need to be rendered, we have to position an eye or camera in the scene. By placing a
camera into the scene, we are defining another origin of sorts. The world matrix with all of
its objects must be rotated, scaled, and translated to appear as though the camera has
been placed at some point among the 3-D objects, and is looking at the virtual world. The
view matrix accomplishes this operation.

 Projection Matrix: Once the world and its 3-D objects are positioned with respect to some
camera, the whole scene can be translated from 3-D coordinates and color vectors to pixels
to be displayed on a 2-D monitor. This involves working out which objects appear in front of
other objects with respect to the camera, which objects are too near or behind the camera
to see, and which objects are too far away. The projection matrix is the final matrix involved
in turning a scene into pixels.

 139

Chapter 17: Rendering a Triangle with Direct3D

Getting back to Visual Studio’s Direct3D template, we will now look at how to define a triangle.
Open the CubeRenderer.cpp file and examine its contents. This file creates the cube, the colors,
rotates it, positions the eye, and does almost all of the runtime work. Scroll down to the definition of
the CreateDeviceResources method (this should around line 15 of the CubeRenderer.cpp file).

Firstly, you will see the creation of a couple of shaders (more on these in a moment), but then at
line 69 you will see an array of VertexPositionColor structures called cubeVertices. It is here
that the program sets the positions and the colors of each of the cube's eight corners.

The VertexPositionColor structure type is declared at the top of the CubeRenderer.h file as

containing two XMFLOAT3 types, one for the position and the other for the color of the vertices. The
first element of each item in this array is the position of the vertex, and the second element is a
normalized RGB color specification.

To render a single triangle instead of the cube, change the positions to the following.

 auto createCubeTask = (createPSTask &&createVSTask).then([this]()

{

 VertexPositionColor cubeVertices[] = {

 {XMFLOAT3(-0.5f, -0.5f, -0.5f), XMFLOAT3(0.0f, 0.0f,
0.0f)},

 {XMFLOAT3(-0.5f, -0.5f, 0.5f), XMFLOAT3(0.0f, 0.0f,
1.0f)},

 {XMFLOAT3(-0.5f, 0.5f, -0.5f), XMFLOAT3(0.0f, 1.0f,
0.0f)},

auto createCubeTask = (createPSTask && createVSTask).then([this] () {

 VertexPositionColor cubeVertices[] = {

 {XMFLOAT3(-0.5f, -0.5f, -0.5f), XMFLOAT3(1.0f, 0.0f,
0.0f)},

 {XMFLOAT3(0.0f, 0.5f, -0.5f), XMFLOAT3(0.0f, 1.0f, 0.0f)},

 {XMFLOAT3(0.5f, -0.5f, -0.5f), XMFLOAT3(0.0f, 0.0f,
1.0f)},

 };

 140

These three vertices describe a triangle with red, green, and blue corners. The triangle is 2.0f units
away from the camera. The camera is presently being positioned at 1.5f in the z-axis in the Update
method. Scroll the code down to around line 89, and you will see another local array, this one
called cubeIndices. This array is composed of unsigned short integers. It is used to initialize an
index buffer. Change the values in this array to match the indices of our new triangle.

You should now be able to run the application and view a beautiful rainbow colored triangle, as
shown in Figure 44.

Figure 44: Triangle

You will note that, like the cube, our triangle is spinning about the y-axis. You will also see that
when it turns around and the back is facing our camera, Direct3D draws nothing at all. This is the
result of backface culling.

Vertex and Index Buffers

In the example code, we described three colored vertices. After the definition of the vertex array,
there is a call to the d3dDevice's CreateBuffer method. This method takes our array and copies
the data to the device (GPU) RAM. Thus, a vertex buffer is a Device Resource.

 unsigned short cubeIndices[] = {

 0,1, 2, // A triangle from 3 points

 };

 D3D11_SUBRESOURCE_DATA vertexBufferData = {0};

 vertexBufferData.pSysMem = cubeVertices;

 vertexBufferData.SysMemPitch = 0;

 141

We do not have direct access to the GPU's RAM. For example, we cannot create a pointer in C++
to an address in GPU RAM, and change the value at will. This is why we first create the array in
system RAM, then use the CreateBuffer method to copy the data to the GPU.

A vertex buffer is an area of memory on the graphics card that is used to store vertices. Vertices
are usually created in system RAM by the CPU, and then copied to the graphics card's on board
RAM, since the card's on board RAM is usually much faster than system RAM. It is also common
to load vertices from a model file created with 3-D modelling software. Once the buffer is copied to
the graphics card, it is no longer needed in system RAM, unless it is to be changed by the CPU,
reloaded at some point onto the GPU, or both.

An index buffer references the vertices in a vertex buffer. Each of the triangles is made up of three
points from the vertex buffer, but the graphics card does not just guess that nearby points are from
the same triangle. We have to tell it exactly which points create every one of the triangles we wish
to render. We do this by creating an index buffer. Index buffers are integer arrays whose elements
specify the triangles by referencing the points in the vertex buffer. Every three integers (unsigned
short integers are often used) creates a triangle from any of the three vertices in the vertex buffer.
The purpose of separating the vertex buffer and the index buffer is that it avoids duplicate points.
The same point can be used by multiple vertices.

Backface Culling

The order in which vertices are defined for a triangle determines which side of the triangle is the
front and which is the back. The index buffer describes this order by specifying the sequence of
points from the vertex buffer to be used to construct our shapes (this is very similar to the way we
used a geometry sink in the Direct2D geometries). We said the first point of the triangle was 0,
then 1, then 2 (these are the indices of the vertices in the vertex buffer we just described). It is very
important to see that this describes the triangle in a clockwise order of points when viewed from
one side only. When viewed from the front, the points are arranged in a clockwise order; when
viewed from the back, they are arranged in a counter-clockwise order.

 vertexBufferData.SysMemSlicePitch = 0;

 CD3D11_BUFFER_DESC vertexBufferDesc(sizeof(cubeVertices),

 D3D11_BIND_VERTEX_BUFFER);

 DX::ThrowIfFailed(

 m_d3dDevice->CreateBuffer(

 &vertexBufferDesc,&vertexBufferData,

 &m_vertexBuffer));

 142

Figure 45: Indices

The triangle spins around the y-axis and from the back we can see straight through it. This is the
result of a process called backface culling. Normally a triangle in a 3-D scene will only be viewed
from one side. Consider the cube we had originally: it was made up of 12 triangles (two for each
side) and the camera was viewing the outside of it. If the camera went into the cube, we would see
that DirectX is actually not bothering to draw the other sides of the triangles; it is assuming our
cube is solid and we will only ever look at the outside of it. This assumption saves the GPU a lot of
processing. You could imagine that roughly half the triangles in a complex 3-D scene (consisting of
perhaps hundreds of thousands of triangles) will be facing the insides of 3-D objects, and the GPU
doesn't need to render them at all.

DirectX determines the front face of any particular triangle based on the order of the points in the
index buffer being clockwise or counterclockwise. The face which is described with the points in a
clockwise direction is the front face and is rendered by the GPU. The counterclockwise side is the
back face and it is culled, or not rendered.

If we want our triangle to be visible from both sides, we can tell DirectX to render two triangles with
the same vertex buffer. One is the front face which uses the three points in the order 0, 1, then 2,
and the other is the back face which uses the points in the opposite order, 0, 2, then 1. Note that
we need not change the vertex buffer, only the index buffer.

Upon running the application you will see the triangle now spins and is visible from both sides. It
should be clear at this point that the vertices in the vertex buffer can be used more than once. The
indices in the index buffer reference the elements in the vertex buffer and describe the order which
they are to be used to create triangles.

 unsigned short cubeIndices[] = {

 0,1,2, // The front face

 0,2,1 // The back face

 };

 143

Positioning the Eye

The eye (or the viewer of the scene) is positioned in the Update method of the CubeRenderer
class.

The three XMVECTORs described here are the position, rotation, and up vector of the eye. The
first vector is the eye’s position. It is on the x-axis, 0.7 units above the y-axis, and 1.5 units away
from the z-axis origin.

The second XMVECTOR describes the point the eye is looking at; it is looking at a spot -0.1 below
the y-axis (this happens to be directly at the cube or triangle we described earlier).

The final of the three XMVECTORs is the up vector for the eye; this specifies which direction is to
be used as up in relation to the eye. Here, it is 1.0 in the y-axis. That is to say, the direction that our
eye considers as upwards is the same as positive values in the y-axis.

Note: The up vector is important, because although we have positioned the eye and described the
point that it is looking at, the eye is still free to roll. It can stay in the same place and look at the
same pixel, but be upside down. The up vector can be used to specify that the eye is upside down,
lying on its side, or the right way up. For instance, an up vector of (0.0f, -1.0f, 0.0f, 0.0f) would mean
that the eye is upside down, its top is pointing towards negative values in the y-axis. Setting the up
vector to (0.0f, 0.0f, 0.0f) for all elements is meaningless, and will cause a crash. In the specification
of the up vector, all negative numbers are read as -1.0, all positive numbers are read as 1.0, and 0.0

is read as 0.0.

Two matrices are stored in the constantBufferData, the eye (which is the view member) we

have just looked at, and a second model matrix. The model matrix contains the rotation about the
y-axis. If you want your triangle to stop rotating, you can replace the multiplication by the rotation
matrix with the Identity matrix.

void CubeRenderer::Update(float timeTotal, float timeDelta) {

 (void) timeDelta; // Unused parameter.

 XMVECTOR eye = XMVectorSet(0.0f, 0.7f, 1.5f, 0.0f);

 XMVECTOR at = XMVectorSet(0.0f, -0.1f, 0.0f, 0.0f);

 XMVECTOR up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);

 XMStoreFloat4x4(&m_constantBufferData.view,

 XMMatrixTranspose(XMMatrixLookAtRH(eye, at, up)));

 XMStoreFloat4x4(&m_constantBufferData.model,

 XMMatrixTranspose(XMMatrixRotationY(timeTotal *XM_PIDIV4)));

}

 XMStoreFloat4x4(&m_constantBufferData.model, XMMatrixIdentity());

 144

This will cause our model to be positioned in the world space exactly as it is described in its own
model space. You could also change the y rotation to another type of rotation and examine the
effects of animated rotations about the different axes. Remember also that matrix multiplication is
cumulative, so you could rotate the triangle about all axes by multiplying the rotation matrices
together.

Note: The angles in the previous rotation (and elsewhere in Direct3D) are in radians. Radians are a
measure of angle linked to the constant pi (π). One radian is equal to (180/π) degrees. 2π radians is
the same as a full 360 degrees. Arbitrary angles of rotation can be specified in radians by
multiplying 2π radians (the full 360 degrees) by the amount to rotate. For instance, to rotate by 50%
(180 degrees) we could use 0.5*(2π), and to rotate by 67.58% we could use 0.6758*(2π).
DirectXMath.h has some useful constants (one of which we can see in the following table,

XM_PIDIV4).

Constant Value Meaning Degrees

XM_PI 3.141592654 PI 180

XM_2PI 6.283185307 2*PI 360

XM_1DIVPI 0.318309886 1/PI 18.24

XM_1DIV2PI 0.159154943 1/(2*PI) 9.12

XM_PIDIV2 1.570796327 PI/2 90

XM_PIDIV4 0.785398163 PI/4 45

 //XMMatrixTranspose(XMMatrixRotationY(timeTotal * XM_PIDIV4)));

 XMStoreFloat4x4(&m_constantBufferData.model,

 XMMatrixTranspose(

 XMMatrixRotationX(timeTotal * XM_PIDIV4)

 *XMMatrixRotationY(timeTotal * XM_PIDIV4)

 *XMMatrixRotationZ(timeTotal * XM_PIDIV4)

));

 145

Note: The XMVector is a vector type from the DirectXMath library (the header is DirectXMath.h). This
library consists of a collection of helper functions to achieve many standard Math operations. The
XMVector is a simple structure with four floating point values or integers, aligned to 16 bytes. The
DirectXMath library has optimized methods for dealing with this data type (depending on the hardware,
the library uses SIMD extensions to perform operations in parallel). The XMVector is used for many

different things, including storing and specifying the positions of vertices and their colors.

Primitive Topologies

A primitive’s topology is the basic type of primitive that the GPU renders with a collection of
vertices. A collection of vertices can be rendered as points, lines, or triangles by using the
POINTLIST, LINELIST or TRIANGLELIST topologies, respectively. The GPU can also connect the
adjacent primitives together (so the first is connected to the second, and the second to the third,
and so on) by using the LINESTRIP or the TRIANGLESTRIP. The following code sample lists some
common primitive topologies. This is not a complete list; the complete list is described in the
direct3dcommon.h file.

The topology is set using the IASetPrimitiveTopology method of the D3D context. This offers a

very quick and easy way to switch between rendering solid shapes (triangles and triangle strips)
and rendering wire frames (lines and line strips).

When vertices are rendered as a point list, every vertex will be rendered as a single point or a
pixel. The line list renders the points as lines. Every pair of points is used to render a line. The lines
are not necessarily connected (depending on the index buffer, they may or may not be connected
but they will not be connected automatically).

The line strip topology renders a line list, but it also connects adjacent the lines together. This will
create a single long continuous line connecting all the points in the vertex buffer. It is useful for
rendering wire frame meshes.

The triangle list takes every group of three points from the points list and renders them as a solid
triangle. The triangles are not necessarily connected (again they may be connected using the
index buffer but they will not be connected automatically).

The triangle strip is the same as the triangle list, but all of the triangles are connected. Vertices are
shared among adjacent triangles.

D3D11_PRIMITIVE_TOPOLOGY_POINTLIST = D3D_PRIMITIVE_TOPOLOGY_POINTLIST,

 D3D11_PRIMITIVE_TOPOLOGY_LINELIST = D3D_PRIMITIVE_TOPOLOGY_LINELIST,

 D3D11_PRIMITIVE_TOPOLOGY_LINESTRIP= D3D_PRIMITIVE_TOPOLOGY_LINESTRIP,

 D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST = D3D_PRIMITIVE_TOPOLOGY_TRIANGLELIST,

 D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP =
D3D_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP,

 146

Chapter 18: Rendering a Height Map

Now we will examine one very common way to render 3-D data known as a height map. Height
maps are an important visualization tool for 3-D data sets (data with at least three parametric
variables). They are often used in games for terrain generation, as they can be made to look like
mountainous terrain. They can be thought of as the 3-D equivalent to the line chart; instead of a
single line being rendered to represent the data, a mountainous surface is rendered.

The height map we will render will be a collection of points connected with solid triangles. The x
and z values will form a grid or surface, and the y values will be rendered as the heights of
elements in the grid. This type of height map could be used if a researcher wants to visualize the
effect of two variables (x and z) on a third variable (y).

To create a height map, we can alter the vertices of the cube in the standard Direct3D template.
Create a new Direct3D application and open the CubeRenderer.cpp file. Find the line with
VertexPositionColor cubeVertices[] = and replace the definition of the vertices with the
following. I have commented out the lines to replace in the following code listing to show where the
new code goes.

 /*VertexPositionColor cubeVertices[] =
 {
 {XMFLOAT3(-0.5f, -0.5f, -0.5f), XMFLOAT3(0.0f, 0.0f,
0.0f)},
 {XMFLOAT3(-0.5f, -0.5f, 0.5f), XMFLOAT3(0.0f, 0.0f,
1.0f)},
 {XMFLOAT3(-0.5f, 0.5f, -0.5f), XMFLOAT3(0.0f, 1.0f,
0.0f)},
 {XMFLOAT3(-0.5f, 0.5f, 0.5f), XMFLOAT3(0.0f, 1.0f,
1.0f)},
 {XMFLOAT3(0.5f, -0.5f, -0.5f), XMFLOAT3(1.0f, 0.0f,
0.0f)},
 {XMFLOAT3(0.5f, -0.5f, 0.5f), XMFLOAT3(1.0f, 0.0f,
1.0f)},
 {XMFLOAT3(0.5f, 0.5f, -0.5f), XMFLOAT3(1.0f, 1.0f,
0.0f)},
 {XMFLOAT3(0.5f, 0.5f, 0.5f), XMFLOAT3(1.0f, 1.0f,
1.0f)},

 };*/

 const int mapSize = 10;

 VertexPositionColor cubeVertices[mapSize*mapSize];

 float height = 0.0f;

 for(int z = 0; z < mapSize; z++) {

 for(int x = 0; x < mapSize; x++) {

 height = (float)(rand()%100) / 100.0f;

 147

This code defines a 2-D grid running left to right and into the screen. The y values are the data
points we will be plotting. In this example they are random values from 0.0f to 1.0f, but you would
usually load these values from a data source. This is our vertex buffer in system RAM.

Now that we have stored the points to render for our height map in the vertex buffer, we need to
construct a list of triangles that describes adjacent points. The vertex buffer does not describe any
shapes, it is just a list of points. We wish to specify a collection of flat triangles connecting adjacent
points, such that when the data is rendered, each of the y values from the nested for loops in the
previous code becomes little mountains and crevices. The following code creates an index buffer
for this purpose (again, I have commented out the original cubeIndices definition, which we are

replacing):

 cubeVertices[x+(z * mapSize)].pos = XMFLOAT3(x, height, z);

 cubeVertices[x+(z * mapSize)].color = XMFLOAT3(0.0f,
height,

 0.0f);

 }

 }

 /*unsigned short cubeIndices[] =
 {
 0,2,1, // -x
 1,2,3,

 4,5,6, // +x
 5,7,6,

 0,1,5, // -y
 0,5,4,

 2,6,7, // +y
 2,7,3,

 0,4,6, // -z
 0,6,2,

 1,3,7, // +z
 1,7,5,

 };*/

// There's (mapSize-1)*(mapSize-1) squares and 2 triangles per square,

// so 6 points each.

unsigned short cubeIndices[(6*(mapSize-1))*(mapSize - 1)];

int idx = 0; // Index counter to keep track of which square we're defining

 148

As mentioned previously, it is normal for an index buffer to reference the same vertices more than
once to describe adjacent triangles. If two triangles are directly beside each other and they share a
line, we need not store six vertices (one for each point of each of the two triangles). We can store
four vertices and describe the two adjacent triangles with our index buffer, reusing two of the
vertices:

// Step through the points and define the indices that create adjacent
squares

// from them.

for(int z = 0; z < (mapSize-1); z++){

 for(int x = 0; x < (mapSize-1); x++){

 unsigned short farLeftPoint = x + z * mapSize; // Far left point

 unsigned short farRightPoint = farLeftPoint+1; // Far right point

 unsigned short nearLeftPoint = x + (z+1)*mapSize;// Near left
point

 unsigned short nearRightPoint = nearLeftPoint+1; // Near right
point

 // Define 6 points that create 2 triangles that are the square

 cubeIndices[idx++] = farLeftPoint;

 cubeIndices[idx++] = nearRightPoint;

 cubeIndices[idx++] = nearLeftPoint;

 cubeIndices[idx++] = farLeftPoint;

 cubeIndices[idx++] = farRightPoint;

 cubeIndices[idx++] = nearRightPoint;

 }

 }

 149

Figure 46: Triangles Forming a Square

In Figure 46, there are two triangles formed by drawing lines from four points. Our vertex buffer
holds the four points and our index buffer holds the indices that create the triangles: { 0, 1, 3, 1, 2,
3}. The first three integers in the index buffer describe the lines that create the yellow colored
triangle { 0, 1, 3 }. The next three indices describe the lines that make the green colored triangle {
1, 2, 3 }. In this way, vertices 1 and 3 are reused, and memory use and processing time is
improved on the GPU.

In this height map code, we are stepping through the points one at a time, defining triangles with
each. Two triangles make a square, and we step through to mapSize-1 because the final points on
the edges of the map are the right-hand sides of the squares. In other words, there is one less
square than the number of points. When you execute the program, you should see a spinning,
green height map. Higher values are rendered more green than lower ones.

In the Render method, there is a call to IASetPrimitiveTopology which asks the GPU to render

the points as triangles. Another good way to render a height map is to use lines. You can change
the parameter of this method from D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST to
D3D11_PRIMITIVE_TOPOLOGY_LINELIST and your height map will be rendered as a collection of
colored lines.

Tip: In the previous example, I used local arrays to store the indices and vertices in system
memory; with even a moderately sized height map this will very quickly lead to a stack overflow.
Parameters local to functions are stored on the stack such that memory allocated for them is
automatically cleared when the function returns. If you require a larger height map, you should

consider using the heap with the “new” operator.

 150

Chapter 19: Projection Options

The projection of a scene is the method by which the scene is transformed from 3-D data points in
RAM to a 2-D projection for display on the monitor. Desktop computers have 2-D monitors for
displaying graphics; 3-D graphics are an illusion simulated by projecting a set of 3-D coordinates
onto a 2-D surface (the computer monitor).

Perspective Projection

The projection matrix is defined in the CreateWindowSizeDependentResources method of the

CubeRenderer.cpp file. The default definition is as follows.

XMMatrixPerspectiveFovRH

In the previous code we have defined a perspective field of view (FOV). The farther objects are
away from the camera, the smaller they appear. Perspective is good for mimicking reality since our
own visual system describes distance using a similar algorithm (coupled with binocular depth
perception). The matrix used here is the FovRH (Right-Handed Field of View). A detailed
discussion of right versus left handed coordinates is provided in the followup book Direct3D
Succinctly.

float aspectRatio = m_windowBounds.Width / m_windowBounds.Height;

 float fovAngleY = 70.0f * XM_PI / 180.0f;

// Note that the m_orientationTransform3D matrix is post-multiplied here

// …

// this transform should not be applied.

 XMStoreFloat4x4(

 &m_constantBufferData.projection,

 XMMatrixTranspose(

 XMMatrixMultiply(

 XMMatrixPerspectiveFovRH(

 fovAngleY,aspectRatio,

 0.01f, 100.0f),

 XMLoadFloat4x4(&m_orientationTransform3D)

)));

 151

Aspect Ratio

This parameter is the aspect ratio of the projection. This will usually be the same as the aspect
ratio of the screen as we see here. This is the screen's width divided by its height. If this value is
greater than the aspect ratio of the screen, objects will appear much taller when projected; if it is
less than the screen, objects will appear squashed.

Field of View (FOV) Angle

This is the angle of the field of view. The parameter expects radians, so the 70 degrees in the
definition of this variable is converted to radians by multiplying it by pi/180. This is the angle of
visible objects from the camera. For humans it is around 180 degrees, but most of the sides of
what we can see is very blurry. In projection matrices, it is conventional to use a value less than
180 degrees. The value 70 means the camera can see things 35 degrees left of its center and 35
degrees right.

Near Clipping Plane

It is conventional to clip objects too near the camera, because if they are rendered they block the
rest of the scene. The closer an object is to the camera, the larger it will appear when rendered
with perspective. The value given as a near clipping plane is the closest an object can be before it
is no longer rendered. Here the value 0.01f is used to mean that anything closer to the camera
than 0.01 units should be clipped or not rendered.

Far Clipping Plane

To save processing time, objects which are far from the camera may not need to be rendered. The
value given for the far clipping plane is the farthest an object can be from the camera before it is no
longer rendered. It is the viewing distance in units. It should be some value greater than the near
clipping plane, otherwise the camera would not be able to see anything. For charting applications,
the far clipping plane will usually be far enough that all the data is visible at all times.

Orthographic Projection

By default, the Direct3D template presents a cube rendered with perspective. Sometimes it is
easier to understand data when it is not rendered in this way. After all, perspective is a distortion
effect, and it may obscure the meaning of the data. An orthographic projection is the same as a
perspective projection except that objects maintain their apparent size despite their distance from
the camera. This looks a little unnatural, but it can be a very clear way to render data. Distant data
points will not appear smaller than closer data points, and they can be compared more easily.
Distant data is as clear as nearer data, whereas with a perspective projection, distant data is all
squashed together approaching a point on the horizon line. See Figure 47 for a depiction of the
difference between these projections.

 152

Figure 47: Projection Options

To use an orthographic projection, replace the XMMatrixPerspectiveFovRH (in the
CubeRenderer's CreateWindowSizeDependentResources method) with the following.

ViewWidth

This is number of units visible in the horizontal axis. If, for instance, you have rendered a 20 × 20
height map, you might set this value to 25.0f to make all the data points visible with an additional
2.5 units (half of 5.0) of extra padding on the side.

XMMatrixOrthographicRH(

 25.0f, // Horizontal units visible

 25.0f, // Vertical units visible

 0.01f, // Distance to closest renderable point

 500.0f), // Distance to farthest renderable point

 153

ViewHeight

This is the number of units visible in the vertical axis. For instance, to view a height map with data
from 0.0f to 20.0f, you might set this value to 25.0f to allow all the data to be visible with a little
extra for padding.

Near and Far Clipping Planes

These values have an identical meaning in an orthographic projection to the perspective projection.
They represent the nearest and farthest points an object can be from the camera and still be
rendered.

Direct3D Scatter Plot

As a final example of rendering data using Direct3D, we will examine rendering a collection of
unconnected triangles (like the nodes in a scatter plot). The basic scatter plot we examined earlier
was fairly good at rendering thousands of nodes, but when the count reaches tens or hundreds of
thousands of nodes, this technique is no longer useful; it is simply too slow. The problem is the
rendering loop. This loop is performed by the CPU. One node is drawn to the render target per
iteration and this is a severe bottleneck. The CPU is running through the loop and relaying the
drawing instructions to the GPU. Remember that Direct2D was an extra layer of abstraction on top
of Direct3D. It is far more efficient to exclude the CPU and loop altogether, and render nodes in
parallel using only the GPU.

Drawing many thousands of triangular nodes is extremely efficient in Direct3D. Instead of
rendering the nodes as circles using a “for loop,” we could simply store them as a collection of
triangles on the GPU and render them directly with Direct3D. The CPU does not need to perform
any calculations once the nodes are loaded onto the graphics card. The performance gained by
using the GPU to render triangles, instead of rendering circles with Direct2D, is vast. For instance,
the original Direct2D scatter plot could render around 10,000 nodes comfortably on the machine I
am writing with. This new method can easily render 1,000,000 at a steady 60 frames per second.
This machine has only a moderately powerful GPU (nVidia GT 430) and it has no trouble. It
becomes very choppy only at around 10,000,000 nodes.

For this, we will use a new Direct3D cube template. Open a new Direct3D application, and change
the DeviceResources loading method to the following.

void CubeRenderer::CreateDeviceResources() {

 Direct3DBase::CreateDeviceResources();

 auto loadVSTask = DX::ReadDataAsync("SimpleVertexShader.cso");

 auto loadPSTask = DX::ReadDataAsync("SimplePixelShader.cso");

 auto createVSTask = loadVSTask.then([this](Platform::Array<byte>^ fileData) {

 DX::ThrowIfFailed(

 m_d3dDevice->CreateVertexShader(

 fileData->Data,fileData->Length, nullptr,

 154

 &m_vertexShader));

 const D3D11_INPUT_ELEMENT_DESC vertexDesc[] = {

 { "POSITION", 0,

 DXGI_FORMAT_R32G32B32_FLOAT,0,0,D3D11_INPUT_PER_VERTEX_DATA, 0 },

 { "COLOR", 0,

 DXGI_FORMAT_R32G32B32_FLOAT,0,12,D3D11_INPUT_PER_VERTEX_DATA, 0 },

 };

 DX::ThrowIfFailed(

 m_d3dDevice->CreateInputLayout(

 vertexDesc,ARRAYSIZE(vertexDesc),

 fileData->Data,fileData->Length,&m_inputLayout

));

 });

 auto createPSTask = loadPSTask.then([this](Platform::Array<byte>^ fileData) {

 DX::ThrowIfFailed(

 m_d3dDevice->CreatePixelShader(

 fileData->Data,fileData->Length,

 nullptr,&m_pixelShader

));

 CD3D11_BUFFER_DESC

 constantBufferDesc(sizeof(ModelViewProjectionConstantBuffer),

 D3D11_BIND_CONSTANT_BUFFER);

 DX::ThrowIfFailed(

 m_d3dDevice->CreateBuffer(

 &constantBufferDesc, nullptr,

 &m_constantBuffer)

 155

);

 });

 auto createCubeTask = (createPSTask && createVSTask).then([this] () {

 int count = 100;

 float x, y, r, g, b;

 m_CubeVertices = new VertexPositionColor[count * 3];

 float sze = 0.01f;

 float z = 0.0f;

 for(int i = 0; i < count; i++){

 x = (float(rand() % 5000)/5000.0f)-0.5f;

 y = (float(rand() % 5000)/5000.0f)-0.5f;

 r = (float(rand() % 10)/10.0f);

 g = (float(rand() % 10)/10.0f);

 b = (float(rand() % 10)/10.0f);

 m_CubeVertices[(i*3)+0].pos = XMFLOAT3(x, y, z);

 m_CubeVertices[(i*3)+0].color = XMFLOAT3(r, g, b);

 m_CubeVertices[(i*3)+1].pos = XMFLOAT3(x-sze, y+sze, z);

 m_CubeVertices[(i*3)+1].color = XMFLOAT3(r, g, b);

 m_CubeVertices[(i*3)+2].pos = XMFLOAT3(x+sze, y+sze, z);

 m_CubeVertices[(i*3)+2].color = XMFLOAT3(r, g, b);

 z+= 0.0000001f;

 }

 D3D11_SUBRESOURCE_DATA vertexBufferData = {0};

 vertexBufferData.pSysMem = m_CubeVertices;

 156

 vertexBufferData.SysMemPitch = 0;

 vertexBufferData.SysMemSlicePitch = 0;

 CD3D11_BUFFER_DESC vertexBufferDesc(

 count*2*3*sizeof(XMFLOAT3), D3D11_BIND_VERTEX_BUFFER);

 DX::ThrowIfFailed(

 m_d3dDevice->CreateBuffer(

 &vertexBufferDesc,&vertexBufferData,

 &m_vertexBuffer)

);

 m_CubeIndices = new unsigned short[count * 3];

 for(int i = 0; i < count * 3; i++){

 m_CubeIndices[i] = i;

 }

 m_indexCount = count * 3;

 D3D11_SUBRESOURCE_DATA indexBufferData = {0};

 indexBufferData.pSysMem = m_CubeIndices;

 indexBufferData.SysMemPitch = 0;

 indexBufferData.SysMemSlicePitch = 0;

 CD3D11_BUFFER_DESC indexBufferDesc(2*count * 3, D3D11_BIND_INDEX_BUFFER);

 DX::ThrowIfFailed(

 m_d3dDevice->CreateBuffer(&indexBufferDesc,

 &indexBufferData,&m_indexBuffer

));

 });

 createCubeTask.then([this] () {

 m_loadingComplete = true;

 157

Add the m_CubeVertices and m_CubeIndices arrays to the CubeRenderer.h file.

Most of this code should be familiar. I have created a vertex buffer, an index buffer, and rendered
the data. This is a demonstration of rendering 100 colored triangles. The number can be increased
by changing the line that contains count = 100. You should find that you can increase the number
of triangles far in excess of the number of triangles you could possibly plot with Direct2D geometry.

Tip: I have added a slowly incrementing z value for each of the triangles in the code sample. This
was added so that no two triangles would lie exactly in the same position. If two triangles lie in
exactly the same position, the GPU will sometimes render one first, and at other times it will render
the other triangle first. This leads to an unpleasant flickering artifact. By creating each triangle on a

slightly different z plane, we eliminate this flickering.

 });

}

VertexPositionColor *m_CubeVertices;

unsigned short *m_CubeIndices;

 158

Conclusion

We have looked at printing, programming for the new WinRT devices, hit testing, rendering 2-D
and 3-D primitives, and many other aspects of basic DirectX. The adventure has just begun. This
book will shortly be followed by another, which will be aimed at DirectX graphics for computer and
video games, and will pick up where this one left off.

Direct2D is a simple and efficient API for 2-D graphics. It is capable of rendering almost any data
set, even those consisting of thousands of nodes. There are many aspects of Direct2D which we
did not cover such as sprites, animation, bitmap atlases, and so on. These items will be covered in
the next book.

The final part of this book was a small dip into the fascinating waters of Direct3D. The follow-up
book will describe much more about Direct3D. It is an extremely powerful API. We have glanced
over, and taken for granted, almost all the boilerplate code. I have completely and purposely
neglected shaders and the High Level Shader Language, which is arguably the most powerful
aspect of Direct3D. Even with our tiny exploration of Direct3D, we have seen that the GPU is
capable of rendering data extremely efficiently, especially if it is rendered as points, lines, or
triangles. In this introduction we have examined the API on a rather low level; we built our models
(the height map and our triangles) manually.

I hope you have enjoyed reading this book, and seeing some of the aspects of this gigantic and
very powerful API in action. I hope you will enjoy the follow-up book also. I have enjoyed writing,
and DirectX only gets better the more we explore. This is not the end of using the API for
representing data. The next book, although it will concentrate on graphics for games, will introduce
many concepts which can easily be used to render data with much more flexibility than what we
have seen so far.

 159

Appendix A: Microsoft Limited Public License

MICROSOFT LIMITED PUBLIC LICENSE version 1.1

This license governs use of code marked as “sample” or “example” available on this web site
without a license agreement, as provided under the section above titled “NOTICE SPECIFIC TO
SOFTWARE AVAILABLE ON THIS WEB SITE.” If you use such code (the “software”), you accept
this license. If you do not accept the license, do not use the software.

1. Definitions

The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the same
meaning here as under U.S. copyright law.

A “contribution” is the original software, or any additions or changes to the software.

A “contributor” is any person that distributes its contribution under this license.

“Licensed patents” are a contributor’s patent claims that read directly on its contribution.

2. Grant of Rights

(A) Copyright Grant - Subject to the terms of this license, including the license conditions and
limitations in section 3, each contributor grants you a non-exclusive, worldwide, royalty-free
copyright license to reproduce its contribution, prepare derivative works of its contribution, and
distribute its contribution or any derivative works that you create.

(B) Patent Grant - Subject to the terms of this license, including the license conditions and
limitations in section 3, each contributor grants you a non-exclusive, worldwide, royalty-free license
under its licensed patents to make, have made, use, sell, offer for sale, import, and/or otherwise
dispose of its contribution in the software or derivative works of the contribution in the software.

3. Conditions and Limitations

(A) No Trademark License- This license does not grant you rights to use any contributors’ name,
logo, or trademarks.

(B) If you bring a patent claim against any contributor over patents that you claim are infringed by
the software, your patent license from such contributor to the software ends automatically.

(C) If you distribute any portion of the software, you must retain all copyright, patent, trademark,
and attribution notices that are present in the software.

 160

(D) If you distribute any portion of the software in source code form, you may do so only under this
license by including a complete copy of this license with your distribution. If you distribute any
portion of the software in compiled or object code form, you may only do so under a license that
complies with this license.

(E) The software is licensed “as-is.” You bear the risk of using it. The contributors give no express
warranties, guarantees or conditions. You may have additional consumer rights under your local
laws which this license cannot change. To the extent permitted under your local laws, the
contributors exclude the implied warranties of merchantability, fitness for a particular purpose and
non-infringement.

(F) Platform Limitation - The licenses granted in sections 2(A) and 2(B) extend only to the software
or derivative works that you create that run directly on a Microsoft Windows operating system
product, Microsoft run-time technology (such as the .NET Framework or Silverlight), or Microsoft
application platform (such as Microsoft Office or Microsoft Dynamics).

 161

Appendix B: DirectXPage.xaml Class Listing

The events and methods to handle the background color changing and other aspects of the
Direct2D (XAML) app should be removed from this class, since we are going to remove these
methods from the SimpleTextRenderer class. At the top of these class files is a reference to the
namespace PrinterApplication; this must be changed to match your application's namespace (I
have highlighted the line in green).

DirectXPage.xaml.h

//

// DirectXPage.xaml.h

// Declaration of the DirectXPage.xaml class.

//

#pragma once

#include "DirectXPage.g.h"

#include "SimpleTextRenderer.h"

#include "BasicTimer.h"

namespace PrinterApplication {

 [Windows::Foundation::Metadata::WebHostHidden]

 public ref class DirectXPage sealed{

 public:

 DirectXPage();

 private:

 void OnPointerMoved(Platform::Object^ sender,

 Windows::UI::Xaml::Input::PointerRoutedEventArgs^ args);

 void OnPointerReleased(Platform::Object^ sender,

 Windows::UI::Xaml::Input::PointerRoutedEventArgs^ args);

 void OnWindowSizeChanged(Windows::UI::Core::CoreWindow^ sender,

 Windows::UI::Core::WindowSizeChangedEventArgs^ args);

 void OnLogicalDpiChanged(Platform::Object^ sender);

 void OnOrientationChanged(Platform::Object^ sender);

 162

 void OnDisplayContentsInvalidated(Platform::Object^ sender);

 void OnRendering(Object^ sender, Object^ args);

 Windows::Foundation::EventRegistrationToken m_eventToken;

 SimpleTextRenderer^ m_renderer;

 bool m_renderNeeded;

 BasicTimer^ m_timer;

 Windows::Graphics::Printing::PrintManager^ m_printManager;

 internal:

 // Print task requested event handler method

 void SetPrintTask(_In_

Windows::Graphics::Printing::PrintManager^ sender,

 In

Windows::Graphics::Printing::PrintTaskRequestedEventArgs^ args);

 };

}

//

// DirectXPage.xaml.cpp

// Implementation of the DirectXPage.xaml class.

//

#include "pch.h"

#include "DirectXPage.xaml.h"

#include "DocSource.h"

using namespace PrinterApplication;

using namespace Platform;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

 163

using namespace Windows::Graphics::Display;

using namespace Windows::UI::Input;

using namespace Windows::UI::Core;

using namespace Windows::UI::Xaml;

using namespace Windows::UI::Xaml::Controls;

using namespace Windows::UI::Xaml::Controls::Primitives;

using namespace Windows::UI::Xaml::Data;

using namespace Windows::UI::Xaml::Input;

using namespace Windows::UI::Xaml::Media;

using namespace Windows::UI::Xaml::Navigation;

using namespace Windows::Graphics::Printing;

DirectXPage::DirectXPage() :m_renderNeeded(true) {

 InitializeComponent();

 m_renderer = ref new SimpleTextRenderer();

 m_renderer->Initialize(

 Window::Current->CoreWindow,

 SwapChainPanel,

 DisplayProperties::LogicalDpi

);

 Window::Current->CoreWindow->SizeChanged +=

 ref new TypedEventHandler<CoreWindow^,

 WindowSizeChangedEventArgs^>(this,
&DirectXPage::OnWindowSizeChanged);

 DisplayProperties::LogicalDpiChanged +=

 ref new DisplayPropertiesEventHandler(this,

 &DirectXPage::OnLogicalDpiChanged);

 DisplayProperties::OrientationChanged +=

 ref new DisplayPropertiesEventHandler(this,

 &DirectXPage::OnOrientationChanged);

 164

 DisplayProperties::DisplayContentsInvalidated +=

 ref new DisplayPropertiesEventHandler(this,

 &DirectXPage::OnDisplayContentsInvalidated);

 m_eventToken = CompositionTarget::Rendering::add(

 ref new EventHandler<Object^>(this, &DirectXPage::OnRendering));

 m_timer = ref new BasicTimer();

 // Grab the print manager for the current view

 m_printManager =

 Windows::Graphics::Printing::PrintManager::GetForCurrentView();

 // Add an event handler to capture when the user requests a print task

 m_printManager->PrintTaskRequested +=

 ref new TypedEventHandler<PrintManager^,

 PrintTaskRequestedEventArgs^>(this,

 &DirectXPage::SetPrintTask);

}

void DirectXPage::OnPointerMoved(Object^ sender, PointerRoutedEventArgs^
args) {

 m_renderNeeded = true;

}

void DirectXPage::OnPointerReleased(Object^ sender,

PointerRoutedEventArgs^ args) { }

void DirectXPage::OnWindowSizeChanged(CoreWindow^ sender,

 WindowSizeChangedEventArgs^ args) {

 m_renderer->UpdateForWindowSizeChange();

 m_renderNeeded = true;

}

 165

void DirectXPage::OnLogicalDpiChanged(Object^ sender) {

 m_renderer->SetDpi(DisplayProperties::LogicalDpi);

 m_renderNeeded = true;

}

void DirectXPage::OnOrientationChanged(Object^ sender) {

 m_renderer->UpdateForWindowSizeChange();

 m_renderNeeded = true;

}

void DirectXPage::OnDisplayContentsInvalidated(Object^ sender) {

 m_renderer->ValidateDevice();

 m_renderNeeded = true;

}

void DirectXPage::OnRendering(Object^ sender, Object^ args) {

 if (m_renderNeeded) {

 m_timer->Update();

 m_renderer->Update(m_timer->Total, m_timer->Delta);

 m_renderer->Render();

 m_renderNeeded = false;

 }

}

void DirectXPage::SetPrintTask(_In_ PrintManager^ sender,

 In PrintTaskRequestedEventArgs^ args) {

// Create a new source requested handler

PrintTaskSourceRequestedHandler^ sourceRequestedHandler = ref new

 166

 PrintTaskSourceRequestedHandler(

 [this](PrintTaskSourceRequestedArgs^ args)-> void {

 Microsoft::WRL::ComPtr<CDocumentSource> documentSource;

 DX::ThrowIfFailed (

 Microsoft::WRL::MakeAndInitialize<CDocumentSource>(

 &documentSource,

 reinterpret_cast<IUnknown*>(m_renderer)));

 // Cast the document to an object

 IPrintDocumentSource^ objSource(

 reinterpret_cast<IPrintDocumentSource^>(documentSource.Get())

);

 args->SetSource(objSource);

 });

// Create the print task

PrintTask^ printTask = args->Request->CreatePrintTask(L"Direct 2D Printing
Example", sourceRequestedHandler);

}

 167

Appendix C: CDocSource Class Code Listing

The following code is from the "Direct2Dapp printing sample (Windows 8.1)" available from
Microsoft. I have altered the formatting to better fit the pages of this book; this has led to far more
difficult to read code. This code is included here for convenience, and the original (which you can
download with the Microsoft Windows 8 samples) is far more readable. All comments are
Microsoft’s. I have only altered the formatting as mentioned. They refer to the sample from which
the code was downloaded.

The class name in the sample code as provided by Microsoft is D2DPageRenderer. For our
printing application this should be changed to “SimpleTextRenderer”. I have highlighted the line in
green in the code that follows. The main renderer class in our code is called SimpleTextRenderer
so you must also change all references to the PageRenderer class to SimpleTextRenderer. I have
highlighted these lines in red.

DocSource.h listing

//// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF

//// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO

//// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

//// PARTICULAR PURPOSE.

////

//// Copyright (c) Microsoft Corporation. All rights reserved

#pragma once

#include <windows.graphics.printing.h>

#include <printpreview.h>

#include <documentsource.h>

#include "D2DPageRenderer.h"

class CDocumentSource : public
Microsoft::WRL::RuntimeClass<Microsoft::WRL::RuntimeClassFlags<Microsoft::WRL::
WinRtClassicComMix>,

 ABI::Windows::Graphics::Printing::IPrintDocumentSource,

 IPrintDocumentPageSource,

 IPrintPreviewPageCollection>

{

private:

http://code.msdn.microsoft.com/windowsapps/Direct2Dapp-printing-sample-9869f99c#content

 168

InspectableClass(L"Windows.Graphics.Printing.IPrintDocumentSource",

 BaseTrust);

public:

 HRESULT RuntimeClassInitialize(

 In IUnknown* pageRenderer) {

 HRESULT hr = (pageRenderer != nullptr) ? S_OK : E_INVALIDARG;

 if (SUCCEEDED(hr)){

 m_paginateCalled = false;

 m_totalPages = 1;

 m_height = 0.f;

 m_width = 0.f;

 // Cast d2dRender back to PageRenderer object.

 m_renderer = reinterpret_cast<PageRenderer^>(pageRenderer);

 }

 return hr;

 }

 //

 // classic COM interface IDocumentPageSource methods

 //

 IFACEMETHODIMP

 GetPreviewPageCollection(

 In IPrintDocumentPackageTarget* docPackageTarget,

 Out IPrintPreviewPageCollection** docPageCollection

);

 169

 IFACEMETHODIMP

 MakeDocument(

 In IInspectable* docOptions,

 In IPrintDocumentPackageTarget* docPackageTarget

);

 //

 // classic COM interface IPrintPreviewPageCollection methods

 //

 IFACEMETHODIMP

 Paginate(

 In uint32 currentJobPage,

 In IInspectable* docOptions);

 IFACEMETHODIMP

 MakePage(

 In uint32 desiredJobPage,

 In float width,

 In float height);

private:

 float TransformedPageSize(

 In float desiredWidth,

 In float desiredHeight,

 Out Windows::Foundation::Size* previewSize);

 uint32 m_totalPages;

 bool m_paginateCalled;

 float m_height;

 float m_width;

 D2D1_RECT_F m_imageableRect;

 170

DocSource.cpp listing

 PageRenderer^ m_renderer;

 Microsoft::WRL::ComPtr<IPrintPreviewDxgiPackageTarget>
m_dxgiPreviewTarget;

};

//// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF

//// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO

//// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

//// PARTICULAR PURPOSE.

////

//// Copyright (c) Microsoft Corporation. All rights reserved

#include "pch.h"

#include "docsource.h"

using namespace Microsoft::WRL;

using namespace Windows::Graphics::Printing;

#pragma region IDocumentPageSource Methods

IFACEMETHODIMP

CDocumentSource::GetPreviewPageCollection(

 In IPrintDocumentPackageTarget* docPackageTarget,

 Out IPrintPreviewPageCollection** docPageCollection

)

{

 HRESULT hr = (docPackageTarget != nullptr) ? S_OK : E_INVALIDARG;

 // Get for IPrintPreviewDxgiPackageTarget interface.

 if (SUCCEEDED(hr)){

 hr = docPackageTarget->GetPackageTarget(

 ID_PREVIEWPACKAGETARGET_DXGI,

 171

 IID_PPV_ARGS(&m_dxgiPreviewTarget));

 }

 ComPtr<IPrintPreviewPageCollection> pageCollection;

 if (SUCCEEDED(hr)){

 ComPtr<CDocumentSource> docSource(this);

 hr = docSource.As<IPrintPreviewPageCollection>(&pageCollection);

 }

 if (SUCCEEDED(hr)){

 hr = pageCollection.CopyTo(docPageCollection);

 }

 return hr;

}

IFACEMETHODIMP

CDocumentSource::MakeDocument(

 In IInspectable* docOptions,

 In IPrintDocumentPackageTarget* docPackageTarget)

{

 if (docOptions == nullptr || docPackageTarget == nullptr){

 return E_INVALIDARG;

 }

// Get print settings from PrintTaskOptions for printing,

// such as page description,

 // which contains page size, imageable area, DPI.

 // User can obtain other print settings in the same way, such as
ColorMode,

 // NumberOfCopies, etc., which are not shown in this sample.

 PrintTaskOptions^ option =
reinterpret_cast<PrintTaskOptions^>(docOptions);

 172

 // Get the description of the first page.

 PrintPageDescription pageDesc = option->GetPageDescription(1);

 // Create a print control properties and set DPI from
PrintPageDescription.

 D2D1_PRINT_CONTROL_PROPERTIES printControlProperties;

 // DPI for rasterization of all unsupported D2D commands or options

printControlProperties.rasterDPI = (float)(min(pageDesc.DpiX,

 pageDesc.DpiY));

 // Color space for vector graphics in D2D print control.

 printControlProperties.colorSpace = D2D1_COLOR_SPACE_SRGB;

// Subset for used glyphs, send and discard font resource after every

// five pages

 printControlProperties.fontSubset = D2D1_PRINT_FONT_SUBSET_MODE_DEFAULT;

 HRESULT hr = S_OK;

 try {

 // Create a new print control linked to the package target.

 m_renderer-
>CreatePrintControl(docPackageTarget,&printControlProperties);

 // Calculate imageable area and page size from PrintPageDescription.

 D2D1_RECT_F imageableRect = D2D1::RectF(

 pageDesc.ImageableRect.X, pageDesc.ImageableRect.Y,

 pageDesc.ImageableRect.X + pageDesc.ImageableRect.Width,

 pageDesc.ImageableRect.Y + pageDesc.ImageableRect.Height

);

 D2D1_SIZE_F pageSize = D2D1::SizeF(pageDesc.PageSize.Width,

 pageDesc.PageSize.Height);

 // Loop to add page command list to d2d print control.

 for (uint32 pageNum = 1; pageNum <= m_totalPages; ++pageNum){

 173

 m_renderer->PrintPage(pageNum, imageableRect, pageSize,

 nullptr // If a page-level print ticket is not specified
here, the

 //package print ticket is applied for each page.

);

 }

 }

 catch (Platform::Exception^ e){

 hr = e->HResult;

 if (hr == D2DERR_RECREATE_TARGET){

 // In case of device lost, the whole print job will be aborted,

// and we should recover

 // so that the device is ready when used again. At the same time,

// we should propagate this error to the Modern Print Dialog.

 m_renderer->HandleDeviceLost();

 }

 }

 // Make sure to close d2d print control even if AddPage fails.

 HRESULT hrClose = m_renderer->ClosePrintControl();

 if (SUCCEEDED(hr)){

 hr = hrClose;

 }

 return hr;

}

#pragma endregion IDocumentPageSource Methods

#pragma region IPrintPreviewPageCollection Methods

IFACEMETHODIMP CDocumentSource::Paginate(

 In uint32 currentJobPage,

 174

 In IInspectable* docOptions

)

{

 HRESULT hr = (docOptions != nullptr) ? S_OK : E_INVALIDARG;

 if (SUCCEEDED(hr)) {

 // Get print settings from PrintTaskOptions for preview, such as page

// description, which contains page size, imageable area, DPI.

 // User can obtain other print settings in the same way, such

// as ColorMode,

// NumberOfCopies, etc., which are not shown in this sample.

 PrintTaskOptions^ option =

 reinterpret_cast<PrintTaskOptions^>(docOptions);

 PrintPageDescription pageDesc =

 option->GetPageDescription(currentJobPage);

 hr = m_dxgiPreviewTarget->InvalidatePreview();

 // Set the total page number.

 if (SUCCEEDED(hr)){

 hr = m_dxgiPreviewTarget->SetJobPageCount(

PageCountType::FinalPageCount, m_totalPages);

 }

 if (SUCCEEDED(hr)) {

 m_width = pageDesc.PageSize.Width;

 m_height = pageDesc.PageSize.Height;

 m_imageableRect = D2D1::RectF(

 pageDesc.ImageableRect.X,

 pageDesc.ImageableRect.Y,

 pageDesc.ImageableRect.X + pageDesc.ImageableRect.Width,

 pageDesc.ImageableRect.Y + pageDesc.ImageableRect.Height

 175

);

 // Now we are ready to let MakePage to be called.

 m_paginateCalled = true;

 }

 }

 return hr;

}

// Here, desiredWidth/desiredHeight is the desired size of preview surface

// by print mananger in system. The final size of the preview surface must

// have the same proportion as that of the desired width/height.

// In this sample, we just use it as preview size and return the scale
variant

// for surface drawing.

// The size here is in DIPs.

Float CDocumentSource::TransformedPageSize(

 In float desiredWidth,

 In float desiredHeight,

 Out Windows::Foundation::Size* previewSize

){

 float scale = 1.0f;

 if (desiredWidth > 0 && desiredHeight > 0) {

 previewSize->Width = desiredWidth;

 previewSize->Height = desiredHeight;

 scale = m_width / desiredWidth;

 }

 else {

 previewSize->Width = 0;

 previewSize->Height = 0;

 176

 }

 return scale;

}

// This sample only acts upon orientation setting for an example.

// The orientation is read from the user selection in the Print Experience

// and is then used to reflow the content in a different way.

IFACEMETHODIMP CDocumentSource::MakePage(

 In uint32 desiredJobPage,

 In float width,

 In float height){

 HRESULT hr = (width > 0 && height > 0) ? S_OK : E_INVALIDARG;

// When desiredJobPage is JOB_PAGE_APPLICATION_DEFINED, it means a new

// preview begins. If the implementation here is by an async way,

// for example, queue MakePage calls for preview, app needs to clean

// resources for previous preview before next.

 // In this sample, we will reset page number if Paginate() has been
called.

 if (desiredJobPage == JOB_PAGE_APPLICATION_DEFINED && m_paginateCalled){

 desiredJobPage = 1;

 }

 if (SUCCEEDED(hr) && m_paginateCalled){

 // Calculate the size of preview surface, according to desired width
and

// height.

 Windows::Foundation::Size previewSize;

 float scale = TransformedPageSize(width, height, &previewSize);

 try {

 m_renderer->DrawPreviewSurface(

 177

 previewSize.Width, previewSize.Height, scale,
m_imageableRect,

 desiredJobPage,m_dxgiPreviewTarget.Get());

 }

 catch (Platform::Exception^ e) {

 hr = e->HResult;

 if (hr == D2DERR_RECREATE_TARGET){

// In case of device lost, we should recover so that the device is

 // ready to render the next preview page when requested. At the same
time,

 // we should propagate this error to the Modern Print Dialog.

 m_renderer->HandleDeviceLost();

 }

 }

 }

 return hr;

}

#pragma region IPrintPreviewPageCollection Methods

 178

Appendix D: Code Listing for
SimpleTextRenderer Printing

Following is a listing for the altered simple text renderer class based on building an application that
requires printing. Most of this code comes from the Microsoft Windows 8 Samples. I have changed
the formatting to better fit the pages of this book, but it is far less readable than the original,
available from Microsoft.

SimpleTextRenderer.h

#pragma once

#include "DirectXBase.h"

#include <PrintPreview.h>

enum class DrawTypes { Rendering, Preview, Printing };

// RAII (Resource Acquisition Is Initialization) class for manually

// acquiring/releasing the D2D lock.

class D2DFactoryLock {

public:

D2DFactoryLock(_In_ ID2D1Factory* d2dFactory) {

 DX::ThrowIfFailed(

 d2dFactory->QueryInterface(IID_PPV_ARGS(&m_d2dMultithread))

);

 m_d2dMultithread->Enter();

 }

~D2DFactoryLock() {

 m_d2dMultithread->Leave();

 }

private:

 Microsoft::WRL::ComPtr<ID2D1Multithread> m_d2dMultithread;

};

 179

// Renders or prints drawings using Direct2D

ref class SimpleTextRenderer sealed : public DirectXBase {

public:

 SimpleTextRenderer();

 // DirectXBase methods.

 virtual void CreateDeviceIndependentResources() override;

 virtual void CreateDeviceResources() override;

 virtual void CreateWindowSizeDependentResources() override;

 virtual void Render() override;

 void Update(float timeTotal, float timeDelta);

internal:

 // These two methods return immutable resources shared amongst contexts

 SimpleTextRenderer(

 In D2D1_RECT_F targetBox,

 In ID2D1DeviceContext* d2dContext,

 In DrawTypes type,

 In SimpleTextRenderer^ myParent

);

 void UpdateTargetBox(_In_ D2D1_RECT_F& targetBox);

 void Draw(_In_ float scale);

 void CreatePrintControl(_In_ IPrintDocumentPackageTarget*
docPackageTarget,

 In D2D1_PRINT_CONTROL_PROPERTIES*
printControlProperties);

 HRESULT ClosePrintControl();

 void DrawPreviewSurface(_In_ float width, _In_ float height, _In_
float scale,

 In D2D1_RECT_F contentBox, _In_ uint32 desiredJobPage,

 180

SimpleTextRenderer.cpp

 In IPrintPreviewDxgiPackageTarget* previewTarget);

 void PrintPage(_In_ uint32 pageNumber, _In_ D2D1_RECT_F imageableArea,

 In D2D1_SIZE_F pageSize, _In_opt_ IStream*
pagePrintTicketStream);

private:

 Microsoft::WRL::ComPtr<ID2D1SolidColorBrush> m_blackBrush;

 bool m_renderNeeded;

 // The main print control

 Microsoft::WRL::ComPtr<ID2D1PrintControl> m_d2dPrintControl;

 float m_margin; // The margin size is in DIPs.

 D2D1_RECT_F m_targetBox; // Region to format for.

 DrawTypes m_type; // Record of context type, screen/preview/printing

};

#include "pch.h"

#include "SimpleTextRenderer.h"

using namespace D2D1;

using namespace DirectX;

using namespace Microsoft::WRL;

using namespace Windows::Foundation;

using namespace Windows::Foundation::Collections;

using namespace Windows::UI::Core;

SimpleTextRenderer::SimpleTextRenderer() :

 m_renderNeeded(true),

 m_type(DrawTypes::Rendering), // By default the context is rendering to
screen

 181

 m_margin(96.0f) // Default margin size

{}

SimpleTextRenderer::SimpleTextRenderer(_In_ D2D1_RECT_F targetBox,

 In ID2D1DeviceContext* d2dContext, _In_ DrawTypes type,

 In SimpleTextRenderer^ myParent) {

m_margin = 96.0f;

m_d2dContext = d2dContext;

m_type = type;

UpdateTargetBox(targetBox);

DX::ThrowIfFailed(

 d2dContext->CreateSolidColorBrush(

 D2D1::ColorF(D2D1::ColorF::Black),

 &m_blackBrush));

}

void SimpleTextRenderer::CreateDeviceIndependentResources() {

 DirectXBase::CreateDeviceIndependentResources();

}

void SimpleTextRenderer::CreateDeviceResources() {

 DirectXBase::CreateDeviceResources();

 DX::ThrowIfFailed(

 m_d2dContext->CreateSolidColorBrush(

 ColorF(ColorF::Black),

 &m_blackBrush

)

);

}

 182

void SimpleTextRenderer::CreateWindowSizeDependentResources() {

 DirectXBase::CreateWindowSizeDependentResources();

 // Make the target box the whole screen

 D2D1_SIZE_F size = m_d2dContext->GetSize();

 m_targetBox = D2D1::RectF(0, 0, size.width, size.height);

}

void SimpleTextRenderer::Update(float timeTotal, float timeDelta) {

 (void) timeTotal; // Unused parameter.

 (void) timeDelta; // Unused parameter.

}

void SimpleTextRenderer::Render() {

m_d2dContext->BeginDraw();

// Microsoft check that the current screen is not snapped here but we will

// assume it is not.

// Render page context.

Draw(1.0f);

// We ignore D2DERR_RECREATE_TARGET here. This error indicates that the
device

// is lost. It will be handled during the next call to Present.

HRESULT hr = m_d2dContext->EndDraw();

if (hr != D2DERR_RECREATE_TARGET) DX::ThrowIfFailed(hr);

// We are accessing D3D resources directly in Present() without D2D's
knowledge,

// so we must manually acquire the D2D factory lock.

//

// Note: it's absolutely critical that the factory lock be released upon

 183

// exiting this function, or else the entire app will deadlock. This is

// ensured via the following RAII class.

D2DFactoryLock factoryLock(m_d2dFactory.Get());

Present();

}

void SimpleTextRenderer::UpdateTargetBox(_In_ D2D1_RECT_F& targetBox) {

 m_targetBox = targetBox;

}

// Draws the scene to a rendering device context or a printing device
context.

void SimpleTextRenderer::Draw(_In_ float scale)

{

if (m_type == DrawTypes::Rendering) { // Clear to CornFlowerBlue if rendering
to screen

 m_d2dContext->Clear(D2D1::ColorF(D2D1::ColorF::CornflowerBlue)); }

else if (m_type == DrawTypes::Preview) { // Do not clear when printing

 m_d2dContext->Clear(D2D1::ColorF(D2D1::ColorF::White)); }

// We use scale matrix to shrink the image when previewing.

// On-screen rendering or printing scale is 1.f.

m_d2dContext->SetTransform(D2D1::Matrix3x2F(1/scale, 0, 0, 1/scale, 0, 0));

// This is where the drawing of the chart takes place. Below is a pattern

// of colored circles as an example:

D2D1_ELLIPSE ell;

for(float y = 0; y < 16; y++) {

 for(float x = 0; x < 16; x++) {

 ell = D2D1::Ellipse(D2D1::Point2F(x * 50.0f, y * 50.0f), 100.0f,
100.0f);

 m_blackBrush->SetColor(D2D1::ColorF(

 (x * 16.0f) / 256.0f,

 184

 (y * 16.0f) / 256.0f,

 ((x + y) * 8.0f) / 256.0f));

 m_d2dContext->DrawEllipse(ell, m_blackBrush.Get());

 }

 }

}

HRESULT SimpleTextRenderer::ClosePrintControl() {

return (m_d2dPrintControl == nullptr) ? S_OK : m_d2dPrintControl->Close();

}

void SimpleTextRenderer::CreatePrintControl(_In_
IPrintDocumentPackageTarget* docPackageTarget, _In_
D2D1_PRINT_CONTROL_PROPERTIES* printControlProperties){

// Explicitly release existing D2D print control.

m_d2dPrintControl = nullptr;

DX::ThrowIfFailed(

 m_d2dDevice->CreatePrintControl(m_wicFactory.Get(),

 docPackageTarget, printControlProperties, &m_d2dPrintControl));

}

void SimpleTextRenderer::DrawPreviewSurface(_In_ float width, _In_ float
height,

 In float scale, _In_ D2D1_RECT_F contentBox, _In_ uint32
desiredJobPage,

 In IPrintPreviewDxgiPackageTarget* previewTarget)

{

D2DFactoryLock factoryLock(m_d2dFactory.Get());

CD3D11_TEXTURE2D_DESC textureDesc(DXGI_FORMAT_B8G8R8A8_UNORM,
static_cast<uint32>(ceil(width * m_dpi / 96)),

 185

 static_cast<uint32>(ceil(height * m_dpi / 96)), 1, 1,

 D3D11_BIND_RENDER_TARGET | D3D11_BIND_SHADER_RESOURCE);

ComPtr<ID3D11Texture2D> texture;

DX::ThrowIfFailed(m_d3dDevice->CreateTexture2D(&textureDesc, nullptr,
&texture));

// Create a preview DXGI surface with given size.

ComPtr<IDXGISurface> dxgiSurface;

DX::ThrowIfFailed(texture.As<IDXGISurface>(&dxgiSurface));

// Create a new D2D device context for rendering the preview surface. D2D

// device contexts are stateful, and hence a unique device context must be

// used on each thread.

ComPtr<ID2D1DeviceContext> d2dContext;

DX::ThrowIfFailed(m_d2dDevice->CreateDeviceContext(

D2D1_DEVICE_CONTEXT_OPTIONS_NONE, &d2dContext));

// Update DPI for preview surface as well.

d2dContext->SetDpi(m_dpi, m_dpi);

// Recommend using the screen DPI for better fidelity and better performance
in the print preview.

D2D1_BITMAP_PROPERTIES1 bitmapProperties = D2D1::BitmapProperties1(

 D2D1_BITMAP_OPTIONS_TARGET | D2D1_BITMAP_OPTIONS_CANNOT_DRAW,

 D2D1::PixelFormat(DXGI_FORMAT_B8G8R8A8_UNORM,
D2D1_ALPHA_MODE_PREMULTIPLIED));

// Create surface bitmap on which page content is drawn.

ComPtr<ID2D1Bitmap1> d2dSurfaceBitmap;

DX::ThrowIfFailed(

 d2dContext->CreateBitmapFromDxgiSurface(dxgiSurface.Get(),

&bitmapProperties, &d2dSurfaceBitmap));

 186

d2dContext->SetTarget(d2dSurfaceBitmap.Get());

// Create and initialize the page renderer context for preview.

SimpleTextRenderer^ previewTextRenderer = ref new
SimpleTextRenderer(contentBox, d2dContext.Get(), DrawTypes::Preview, this);

d2dContext->BeginDraw();

// Draw page content on the preview surface.

previewTextRenderer->Draw(scale);

// The document source handles D2DERR_RECREATETARGET, so it's okay to throw
here.

DX::ThrowIfFailed(d2dContext->EndDraw());

// Must pass the same DPI used to create the DXGI surface for the correct
print

// preview.

DX::ThrowIfFailed(

 previewTarget->DrawPage(desiredJobPage,dxgiSurface.Get(), m_dpi, m_dpi)

);

}

void SimpleTextRenderer::PrintPage(_In_ uint32 pageNumber,

 In D2D1_RECT_F imageableArea, _In_ D2D1_SIZE_F pageSize,

 _In_opt_ IStream* pagePrintTicketStream)

{

// Create a new D2D device context for generating the print command list.

// D2D device contexts are stateful, and hence a unique device context must

// be used on each thread.

ComPtr<ID2D1DeviceContext> d2dContext;

DX::ThrowIfFailed(

 m_d2dDevice->CreateDeviceContext(D2D1_DEVICE_CONTEXT_OPTIONS_NONE,
&d2dContext)

);

 187

ComPtr<ID2D1CommandList> printCommandList;

DX::ThrowIfFailed(

 d2dContext->CreateCommandList(&printCommandList)

);

d2dContext->SetTarget(printCommandList.Get());

// Create and initialize the page renderer context for print.

// In this case, we want to use the bitmap source that already has

// the color context embedded in it. Thus, we pass NULL for the

// color context parameter.

SimpleTextRenderer^ printPageRendererContext = ref new
SimpleTextRenderer(imageableArea, d2dContext.Get(),

 DrawTypes::Printing, this);

d2dContext->BeginDraw();

// Draw page content on a command list.

// 1.0f below indicates that the printing content does not scale.

// "DrawTypes::Printing" below indicates it is a printing case.

printPageRendererContext->Draw(1.0f);

// The document source handles D2DERR_RECREATETARGET, so it's okay to throw
here.

DX::ThrowIfFailed(d2dContext->EndDraw());

DX::ThrowIfFailed(printCommandList->Close());

DX::ThrowIfFailed(m_d2dPrintControl->AddPage(printCommandList.Get(),
pageSize,

 pagePrintTicketStream));

}

	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	Part 1 Direct2D
	Chapter 1: Direct2D (XAML) Template
	SimpleTextRenderer Class
	VSync, Swap Chain, and Buffering

	Chapter 2: Debugging with a WinRT Device
	Chapter 3: Beginning a Graph Rendering App
	Chapter 4: Graph Backgrounds
	Solid Color Background
	DirectX Colors
	Gradient Background
	Bitmap Backgrounds

	Chapter 5: 2-D Data Plots
	Scatter Plot
	2-D Transformations
	Translating the Scatter Plot

	Chapter 6: Infinite Lines and the Axes
	Chapter 7: Displaying FPS (Frames per Second)
	Chapter 8: Line Charts
	Chapter 9: Navigating between Multiple XAML Pages
	Chapter 10: Printing Direct2D
	Chapter 11: Margins
	Chapter 12: Zooming
	Chapter 13: Hit Testing or Picking
	Chapter 14: Direct2D Geometry
	Simple Geometries
	Complex Geometries

	Part 2 Direct3D
	Chapter 15: Rendering Pipeline
	Chapter 16: Starting a Direct3D Project
	Terms and Concepts

	Chapter 17: Rendering a Triangle with Direct3D
	Vertex and Index Buffers
	Backface Culling
	Positioning the Eye
	Primitive Topologies

	Chapter 18: Rendering a Height Map
	Chapter 19: Projection Options
	Perspective Projection
	Orthographic Projection
	Direct3D Scatter Plot

	Conclusion
	Appendix A: Microsoft Limited Public License
	MICROSOFT LIMITED PUBLIC LICENSE version 1.1

	Appendix B: DirectXPage.xaml Class Listing
	Appendix C: CDocSource Class Code Listing
	Appendix D: Code Listing for SimpleTextRenderer Printing

