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The Story behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for 
the Microsoft platform. This puts us in the exciting but challenging position of 
always being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every 
other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.  

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit 
us is the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and 
customers to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books 
that would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics 
can be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authors’ tireless work. You will find original content that is guaranteed to get you up and 
running in about the time it takes to drink a few cups of coffee. 

Free forever  

Syncfusion will be working to produce books on several topics. The books will always be 
free. Any updates we publish will also be free.  

S 
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Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market 
and sell against competing vendors who promise to “enable AJAX support with one click,” or 
“turn the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us 
at succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the 
topic of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 

                      

mailto:succinctly-series@syncfusion.com
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Introduction 

Assembly Language 

This book is an introduction to x64 assembly language. This is the language used by almost 
all modern desktop and laptop computers. x64 is a generic term for the newest generation of 
the x86 CPU used by AMD, Intel, VIA, and other CPU manufacturers. x64 assembly has a 
steep learning curve and very few concepts from high-level languages are applicable. It is 
the most powerful language available to x64 CPU programmers, but it is not often the most 
practical language. 

An assembly language is the language of a CPU, but the numbers of the machine code are 
replaced by easy-to-remember mnemonics. Instead of programming using pure 
hexadecimal, such as 83 C4 04, programmers can use something easier to remember and 

read, such as ADD ESP, 4, which adds 4 to ESP. The human readable version is read by a 

program called an assembler, and then it is translated into machine code by a process called 
assembling (analogous to compiling in high-level languages). A modern assembly language 
is the result of both the physical CPU and the assembler. Modern assembly languages also 
have high-level features such as macros and user-defined data types. 

Why Learn Assembly? 

Many high-level languages (Java, C#, Python, etc.) share common characteristics. If a 
programmer is familiar with any one of them, then he or she will have no trouble picking up 
one of the others after a few weeks of study. Assembly language is very different; it shares 
almost nothing with high-level languages. Assembly languages for different CPU 
architectures often have little in common. For instance, the MIPS R4400 assembly language 
is very different from the x86 language. There are no compound statements. There are no if 
statements, and the goto instruction (JMP) is used all the time. There are no objects, and 

there is no type safety. Programmers have to build their own looping structures, and there is 
no difference between a float and an int. There is nothing to assist programmers in 
preventing logical errors, and there is no difference between execute instructions and data. 
There are many differences between assembly languages. 

I could go on forever listing the useful features that x64 assembly language is missing when 
compared to high-level languages, but in a sense, this means that assembly language has 
fewer obstacles. Type safety, predefined calling conventions, and separating code from data 
are all restrictions. These restrictions do not exist in assembly; the only restrictions are those 
imposed by the hardware itself. If the machine is capable of doing something, it can be told 
to do so using its own assembly language. 

A French person might know English as their second language and they could be instructed 
to do a task in English, but if the task is too complicated, some concepts may be lost in 
translation. The best way to explain how to perform a complex task to a French person is to 
explain it in French. Likewise, C++ and other high-level languages are not the CPU's native 
language. The computer is very good at taking instructions in C++, but when you need to 
explain exactly how to do something very complicated, the CPU's native language is the only 
option. 
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Another important reason to learn an assembly language is simply to understand the CPU. A 
CPU is not distinct from its assembly language. The language is etched into the silicon of the 
CPU itself.  

Intended Audience 

This book is aimed at developers using Microsoft's Visual Studio. This is a versatile and very 
powerful assembly language IDE. This book is targeted at programmers with a good 
foundation in C++ and a desire to program native assembly using the Visual Studio IDE 
(professional versions and the express editions). The examples have been tested using 
Visual Studio and the assembler that comes bundled with it, ML64.exe (the 64-bit version of 
MASM, Microsoft's Macro Assembler). 

Having knowledge of assembly language programming also helps programmers understand 
high-level languages like Java and C#. These languages are compiled to virtual machine 
code (Java Byte Code for Java and CIL or Common Intermediate Language for .NET 
languages). The virtual machine code can be disassembled and examined from .NET 
executables or DLL files using the ILDasm.exe tool, which comes with Visual Studio. When a 
.NET application is executed by another tool, ILAsm.exe, it translates the CIL machine code 
into native x86 machine code, which is then executed by the CPU. CIL is similar to an 
assembly language, and a thorough knowledge of x86 assembly makes most of CIL 
readable, even though they are different languages. This book is focused on C++, but this 
information is similarly applicable to programming high-level languages. 

This book is about the assembly language of most desktop and laptop PCs. Almost all 
modern desktop PCs have a 64-bit CPU based on the x86 architecture. The legacy 32-bit 
and 16-bit CPUs and their assembly languages will not be covered in any great detail. 

MASM uses Intel syntax, and the code in this book is not compatible with AT&T assemblers. 
Most of the instructions are the same in other popular Intel syntax assemblers, such as 
YASM and NASM, but the directive syntax for each assembler is different. 
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Chapter 1  Assembly in Visual Studio 

There would be little point in describing x64 assembly language without having examined a 
few methods for coding assembly. There are a number of ways to code assembly in both 
32-bit and 64-bit applications. This book will mostly concentrate on 64-bit assembly, but first 
let us examine some ways of coding 32-bit assembly, since 32-bit x86 assembly shares 
many characteristics with 64-bit x86. 

Inline Assembly in 32-Bit Applications 

Visual C++ Express and Visual Studio Professional allow what is called inline assembly in 
32-bit applications. I have used Visual Studio 2010 for the code in this book, but the steps 
are identical for newer versions of the IDE. All of this information is applicable to users of 
Visual Studio 2010, 2012, and 2013, both Express and Professional editions. Inline 
assembly is where assembly code is embedded into otherwise normal C++ in either single 
lines or code blocks marked with the __asm keyword. 

 

Note: You can also use _asm with a single underscore at the start. This is an older directive 
maintained for backwards compatibility. Initially the keyword was asm with no leading 
underscores, but this is no longer accepted by Visual Studio. 

You can inject a single line of assembly code into C++ code by using the __asm keyword 

without opening a code block. Anything to the right of this keyword will be treated by the C++ 
compiler as native assembly code. 

 int i = 0; 

 _asm mov i, 25  // Inline assembly for i = 25  

 cout<<"The value of i is: "<<i<<endl; 

You can inject multiple lines of assembly code into regular C++. This is achieved by placing 
the __asm keyword and opening a code block directly after it. 

float Sqrt(float f) { 

 __asm { 

  fld f  // Push f to x87 stack 

  fsqrt  // Calculate sqrt 

  } 

 } 
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There are several benefits to using inline assembly instead of a native 32-bit assembly file. 
Passing parameters to procedures is handled entirely by the C++ compiler, and the 
programmer can refer to local and global variables by name. In native assembly, the stack 
must be manipulated manually. Parameters passed to procedures, as well as local variables, 
must be referred to as offsets from the RSP (stack pointer) or the RBP (base pointer). This 

requires some background knowledge. 

There is absolutely no overhead for using inline assembly. The C++ compiler will inject the 
exact machine code the inline assembly generates into the machine code it is generating 
from the C++ source. Some things are simply easier to describe in assembly, and it is 
sometimes not convenient to add an entire native assembly file to a project. 

Another benefit of inline assembly is that it uses the same commenting syntax as C++ since 
we have not actually left the C++ code file. Not having to add separate assembly source 
code files to a project may make navigating the project easier and enable better 
maintainability. 

The downside to using inline assembly is that programmers lose some of the control they 
would have otherwise. They lose the ability to manually manipulate the stack and define their 
own calling convention, as well as the ability to describe segments in detail. The most 
important compromise is in Visual Studio’s lack of support for x64 inline assembly. Visual 
Studio does not support inline assembly for 64-bit applications, so any programs with inline 
assembly will already be obsolete because they are confined to the legacy 32-bit x86. This 
may not be a problem, since applications that require the larger addressing space and 
registers provided by x64 are rare. 

Native Assembly Files in C++ 

Inline assembly offers a good deal of flexibility, but there are some things that programmers 
cannot access with inline assembly. For this reason, it is common to add a separate, native 
assembly code file to your project. 

Visual Studio Professional installs all the components to easily change a project's target 
CPU from 32-bit to 64-bit, but the express versions of Visual C++ require the additional 
installation of the Windows 7 SDK. 

 
Note: If you are using Visual C++ Express, download and install the latest Windows 7 SDK 
(version 7.1 or higher for .NET 4). 

You will now go through a guide on how to add a native assembly to a simple C++ project. 

1. Create a new Empty C++ project. I have created an empty project for this example, 
but adding assembly files to Windows applications is the same. 

2. Add a C++ file to your project called main.cpp. As mentioned previously, this book is 
not about making entire applications in assembly. For this reason, we shall make a 
basic C++ front end that calls upon assembly whenever it requires more 
performance. 
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3. Right-click on your project name in the Solution Explorer and choose Build 
Customizations.... The build customizations are important because they contain the 
rules for how Visual Studio deals with assembly files. We do not want the C++ 
compiler to compile .asm files, we wish for Visual Studio to give these files to MASM 
for assembling. MASM assembles the .asm files, and they are linked with the C++ 
files after compilation to form the final executable. 

 

Figure 1  

4. Select the box named masm (.targets, .props). It is important to do this step prior to 
actually adding an assembly code file, because Visual Studio assigns what is to be 
done with a file when the file is created, not when the project is built. 

 

Figure 2  

5. Add another C++ code file, this time with an .asm extension. I have used 
asmfunctions.asm for my second file name in the sample code). The file name can 
be anything other than the name you selected for your main program file. Do not 
name your assembly file main.asm because the compiler may have trouble 
identifying where your main method is. 
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Figure 3  

 

Note: If your project is 32-bit, then you should be able to compile the following 32-bit test 
program (the code is presented in step six). This small application passes a list of integers from 
C++ to assembly. It uses a native assembly procedure to find the smallest integer of the array. 

 

 

Note: If you are compiling to 64-bit, then this program will not work with 32-bit MASM, since 64-
bit MASM requires different code. For more information on using 64-bit MASM, please read the 
Additional Steps for x64 section where setting up a 64-bit application for use with native 
assembly is explained. 

6. Type the 32-bit sample code into each of the source code files you have created. The 
first listing is for the C++ file and the second is for assembly. 

// Listing: Main.cpp 

#include <iostream> 

 

using namespace std; 

 

// External procedure defined in asmfunctions.asm 

extern "C" int FindSmallest(int* i, int count); 

 

int main() { 

 int arr[] = { 4, 2, 6, 4, 5, 1, 8, 9, 5, -5 }; 
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 cout<<"Smallest is "<<FindSmallest(arr, 10)<<endl; 

 

 cin.get(); 

 

 return 0; 

} 

 

; asmfunctions.asm 

.xmm 

.model flat, c 

 

.data 

 

.code 

FindSmallest proc export 

 mov edx, dword ptr [esp+4] ; edx = *int 

 mov ecx, dword ptr [esp+8] ; ecx = Count 

 

 mov eax, 7fffffffh ; eax will be our answer 

 

 cmp ecx, 0  ; Are there 0 items? 

 jle Finished ; If so we're done 

 

MainLoop: 

 cmp dword ptr [edx], eax ; Is *edx < eax? 

 cmovl eax, dword ptr [edx] ; If so, eax = edx 

 

 add edx, 4  ; Move *edx to next int 
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 dec ecx   ; Decrement counter 

 jnz MainLoop ; Loop if there's more 

 

Finished: 

 ret  ; Return with lowest in eax 

FindSmallest endp 

end 

 

Additional Steps for x64 

Visual Studio 2010, 2012, and 2013 Professional come with all the tools needed to quickly 
add native assembly code files to your C++ projects. These steps provide one method of 
adding native assembly code to a C++ project. The screenshots are taken from Visual 
Studio 2010, but 2012 is almost identical in these aspects. Steps one through six for creating 
this project are identical to those described for 32-bit applications. After you have completed 
these steps, the project must be changed to compile for the x64 architecture. 

7. Open the Build menu and select Configuration Manager. 

 

Figure 4  

8. In the configuration manager window, select <New...> from the Platform column. 
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Figure 5  

9. In the New Project Platform window, select x64 from the New Platform drop-down 
list. Ensure that Copy Settings from is set to Win32, and that the Create new 
solution platforms box is selected. This will make Visual Studio do almost all the 
work in changing our paths from 32-bit libraries to 64-bit. The compiler will change 
from ML.exe (the 32-bit version of MASM) to ML64.exe (the 64-bit version) only if the 
create new solutions platforms is selected, and only if the Windows 7 SDK is 
installed. 

 

Figure 6  

If you are using Visual Studio Professional edition, you should now be able to compile the 
example at the end of this section. If you are using Visual C++ Express edition, then there is 
one more thing to do. 

The Windows 7 SDK does not set up the library directories properly for x64 compilation. If 
you try to run a program with a native assembly file, then you will get an error saying the 
compiler needs kernel32.lib, the main Windows kernel library. 

LINK : fatal error LNK1104: cannot open file 'kernel32.lib' 
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You can easily add the library by telling your project to search for the x64 libraries in the 
directory that the Windows SDK was installed to. 

10. Right-click on your solution and select Properties. 

 

Figure 7  

11. Select Linker, and then select General. Click Additional Library Directories and 
choose <Edit…>. 

 

Figure 8  

12. Click the New Folder icon in the top-right corner of the window. This will add a new 
line in the box below it. To the right of the box is a button with an ellipsis in it. Click 
the ellipsis box and you will be presented with a standard folder browser used to 
locate the directory with kernel32.lib. 
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Figure 9 

The C:\Program Files\Microsoft SDKs\Windows\v7.1\Lib\x64 directory shown in the 
following figure is the directory where Windows 7 SDK installs the kernel32.lib library by 
default. Once this directory is opened, click Select Folder. In the Additional Library 
Directories window, click OK. This will take you back to the Project Properties page. Click 
Apply and close the properties window. 

You should now be able to compile x64 and successfully link to a native assembly file. 

 

Figure 10 

 

Note: There is a kernel32.lib for 32-bit applications and a kernel32.lib for x64. They are named 
exactly the same but they are not the same libraries. Make sure the kernel32.lib file you are 
trying to link to is in an x64 directory, not an x86 directory. 
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64-bit Code Example 

Add the following two code listings to the C++ source and assembly files we added to the 
project. 

// Listing: Main.cpp 

#include <iostream> 

 

using namespace std; 

 

// External procedure defined in asmfunctions.asm 

extern "C" int FindSmallest(int* i, int count); 

 

int main() { 

 int arr[] = { 4, 2, 6, 4, 5, 1, 8, 9, 5, -5 }; 

 

 cout<<"Smallest is "<<FindSmallest(arr, 10)<<endl; 

 

 cin.get(); 

 

 return 0; 

} 

 

; Listing: asmfunctions.asm 

.code 

; int FindSmallest(int* arr, int count) 

FindSmallest proc  ; Start of the procedure 

 mov eax, 7fffffffh ; Assume the smallest is maximum int 

  

 cmp edx, 0  ; Is the count <= 0? 
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 jle Finished  ; If yes get out of here 

 

MainLoop: 

 cmp dword ptr [rcx], eax ; Compare an int with our smallest so far 

 cmovl eax, dword ptr [rcx] ; If the new int is smaller update our smallest 

 add rcx, 4   ; Move RCX to point to the next int 

 

 dec edx   ; Decrement the counter 

 jnz MainLoop  ; Loop if there's more 

 

Finished: 

 ret  ; Return whatever is in EAX 

FindSmallest endp ; End of the procedure 

end ; Required at the end of x64 ASM files, closes the segments 
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Chapter 2  Fundamentals 

Now that we have some methods for coding assembly, we can begin to examine the 
language itself. Assembly code is written into a plain text document that is assembled by 
MASM and linked to our program at compile time or stored in a library for later use. The 
assembling and linking is mostly done automatically in the background by Visual Studio. 

 

Note: Assembly language files are not said to be compiled, but are said to be assembled. The 
program that assembles assembly code files is called an assembler, not a compiler (MASM in 
our case). 

Blank lines and other white space is completely ignored in the assembly code file, except 
within a string. As in all programming, intelligent use of white space can make code much 
more readable. 

MASM is not case sensitive. All register names, instruction mnemonics, directives, and other 
keywords need not match any particular case. In this document, they will invariably be 
written as lowercase in any code examples. Instructions and registers will be written in upper 
case when referred to by name (this convention has been adopted from the AMD 
programmer's manuals, and it makes register names easier to read). 

 

Note: If you would like MASM to treat variable names and labels in a case sensitive way, you 
can include the following option at the top of your assembly code file: "option casemap: 
none." 

Statements in assembly are called instructions; they are usually very simple and do some 
tiny, almost insignificant tasks. They map directly to an actual operation the CPU knows how 
to perform. The CPU uses only machine code. The instructions you type when programming 
assembly are memory aids so that you don’t need to remember machine code. For this 
reason, the words used for instructions (MOV, ADD, XOR, etc.) are often called mnemonics. 

Assembly code consists of a list of these instructions one after the other, each on a new line. 
There are no compound instructions. In this way, assembly is very different from high-level 
languages where programmers are free to create complex conditional statements or 
mathematical expressions from simpler forms and parentheses. MASM is actually a high-
level assembler, and complex statements can be formed by using its macro facilities, but 
that is not covered in detail in this book. In addition, MASM often allows mathematical 
expressions in place of constants, so long as the expressions evaluate to a constant (for 
instance, MOV AX, 5 is the same as MOV AX, 2+3). 

Skeleton of an x64 Assembly File 

The most basic native x64 assembly file of all would consist of just End written at the top of 

the file. This sample file is slightly more useful; it contains a .data and a .code segment, 
although no segments are actually necessary. 

.data 

  ; Define variables here 
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.code 

  ; Define procedures here 

End 

Skeleton of an x32 Assembly File 

The skeleton of a basic 32-bit assembly file is slightly more verbose than the 64-bit version. 

 

.xmm 

.model flat, c 

 

.data 

 

.code 

Function1 proc export 

 push ebp 

 mov ebp, esp 

 

 ; Place your code here 

  

 pop ebp 

 ret 

Function1 endp 

End 

The very first line describes the CPU the program is meant to run on. I have used .xmm, 
which means that the program requires a CPU with SSE instruction sets. This instruction set 
will be discussed in detail in Chapter 8). Almost all CPUs used nowadays have these 
instruction sets to some degree. 

 

Note: Some other possible CPU values are .MMX, .586, .286. It is best to use the best possible 
CPU you wish your program to run on, since selecting an old CPU will enable backwards 
compatibility but at the expense of modern, powerful instruction sets. 
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I have included a procedure called Function1 in this skeleton. Sometimes the push, mov, 
and pop lines are not required, but I have included them here as a reminder that in 32-bit 
assembly, parameters are always passed on the stack and accessing them is very different 
in 32-bit assembly compared to 64-bit. 

Comments 

Anything to the right of a semicolon (;) is a comment. Comments can be placed on a line by 
themselves or they can be placed after an instruction. 

; This is a comment on a line by itself 

mov eax, 24 ; This comment is after an instruction  

 

 

Note: It is a good idea to comment almost every line of assembly. Debugging uncommented 
assembly is extremely time consuming, even more so than uncommented high-level 
language code. 

You can also use multiline or block comments with the comment directive shown in the 
sample code. The comment directive is followed by a single character; this character is 
selected by the programmer. MASM will treat all text until the next occurrence of this same 
character as a comment. Often the carat (^) or the tilde (~) characters are used, as they are 

uncommon in regular assembly code. Any character is fine as long as it does not appear 
within the text of the comment. 

CalculateDistance proc 

 comment ~ 

 movapd xmm0, xmmword ptr [rcx] 

 subpd xmm0, xmmword ptr [rdx] 

 mulpd xmm0, xmm0 

 haddpd xmm0, xmm0 

 ~ 

 sqrtpd xmm0, xmm0 

  

 ret 

CalculateDistance endp 

In the sample code, the comment directive appears with the tilde. This would comment out 
the four lines of code that are surrounded by the tilde. Only the final two lines would actually 
be assembled by MASM. 
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Destination and Source Operands 

Throughout this reference, parameters to instructions will be called parameters, operands, or 
destination and source. 

Destination: This is almost always the first operand; it is the operand to which the answer is 
written. In most two-operand instructions, the destination also acts as a source operand. 

Source: This is almost always the second operand. The source of a computation can be 
either of the two operands, but in this book I have used the term source to exclusively mean 
the second parameter. 

For instance, consider the following. 

add rbx, rcx 

RBX is the destination; it is the place that the answer is to be stored. RCX is the source; it is 

the value being added to the destination. 

Segments 

Assembly programs consist of a number of sections called segments; each segment is 
usually for a particular purpose. The code segment holds the instructions to be executed, 
which is the actual code for the CPU to run. The data segment holds the program's global 
data, variables, structure, and other data type definitions. Each segment resides in a 
different page in RAM when the program is executed. 

In high-level languages, you can usually mix data and code together. Although this is 
possible in assembly, it is very messy and not recommended. Segments are usually defined 
by one of the following quick directives: 

Table 1: Common Segment Directives 

Directive Segment Characteristics 

.code Code Segment Read, Execute 

.data Data Segment Read, Write 

.const Constant Data Segment Read 

.data? Uninitialized Data Segment Read, Write 

 

 

Note: .code, .data, and the other segment directives mentioned in the previous table are 
predefined segment types. If you require more flexibility with your segment's characteristics, 
then look up the segment directive for MASM from Microsoft. 

The constant data segment holds data that is read only. The uninitialized data segment 
holds data that is initialized to 0 (even if the data is defined as having some other value, it is 
set to 0). The uninitialized data segment is useful when a programmer does not care what 
value data should have when the application first starts. 

 
Note: Instead of using the uninitialized data segment, it is also common to simply use a 
regular .data segment and initialize the data elements with “?”. 
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The characteristics column in the sample table indicates what can be done with the data in 
the segment. For instance, the code segment is read only and executable, whereas the data 
segment can be read and written. 

Segments can be named by placing the name after the segment directive. 

.code MainCodeSegment 

This is useful for defining sections of the same segment in different files, or mixing data and 
code together. 

 

Note: Each segment becomes a part of the compiled .exe file. If you create a 5-MB array in 
your data segment your .exe will be 5 MB larger. The data defined in the data segment is not 
dynamic. 

Labels 

Labels are positions in the code segment to which the IP can jump using the JMP 

instructions. 

[LabelName]: 

Where [LabelName] is any valid variable name. To jump to a defined label you can use the 

JMP, Jcc (conditional jumps), or the CALL instruction. 

SomeLabel: 

 ; Some code 

 jmp SomeLabel ; Immediately moves the IP to SomeLabel 

You can store a label in a register and jump to it indirectly. This is essentially using the 
register as a pointer to some spot in the code segment. 

SomeLabel: 

 mov rax, SomeLabel 

 jmp rax ; Moves the IP to the address specified in RAX, SomeLabel 

Anonymous Labels 

Sometimes it is not convenient to think of names for all the labels in a block of code. You can 
use the anonymous label syntax instead of naming labels. An anonymous label is specified 
by @@:. MASM will give it a unique name. 

You can jump forward to an address higher than the current instruction pointer (IP) by using 
@F as the parameter to a JMP instruction. You can jump backwards to an address lower than 

the current IP by using @B as the parameter to a JMP instruction. 
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@@:       ; An anonymous label 

jmp @F    ; Instruction to jump forwards to the nearest anonymous label 

jmp @b    ; Instruction to jump backwards to the nearest anonymous label 

Anonymous labels tend to become confusing and difficult to maintain, unless there is only a 
small number of them. It is usually better to define label names yourself. 

Data Types 

Most of the familiar fundamental data items from any high-level language are also inherent 
to assembly, but they all have different names. 

The following table lists the data types referred to by assembly and C++. The sizes of the 
data types are extremely important in assembly because pointer arithmetic is not automatic. 
If you add 1 to an integer (dword) pointer it will move to the next byte, not the next integer as 
in C++. 

Some of the data types do not have standardized names; for example, the XMM word and 
the REAL10 are just groups of 128 bits and 80 bits. They are referred to as XMM words or 
REAL10 in this book, despite that not being their name but a description of their size. 

Some of the data types in the ASM column have a short version in parentheses. When 
defining data in the data segment, you can use either the long name or the short one. The 
short names are abbreviations. For example, "define byte" becomes “db”. 

 
Note: Throughout this book, I will always refer to double words as dwords, and double-
precision floats as doubles. 

Table 2: Fundamental Data Types 

Type ASM C++ Bits Bytes 

Byte byte (db) char 8 1 

Signed byte sbyte char 8 1 

Word word (dw) unsigned short 16 2 

Signed word sword short 16 2 

Double word dword (dd) unsigned int 32 4 

Signed double word sdword int 32 4 

Quad word qword (dq) unsigned long long 64 8 

Signed quad word sqword long long 64 8 

XMM word (dqword) xmmword  128 16 

YMM word ymmword  128 16 

Single real4 float 32 4 



 

 

 32 

Type ASM C++ Bits Bytes 

Double real8 double 64 8 

Ten byte float real10 (tbyte, dt)  80 10 

Data is usually drawn with the most significant bit to the left and the least significant to the 
right. There is no real direction in memory, but this book will refer to data in this manner. All 
data types are a collection of bytes, and all data types except the REAL10 occupy a number 
of bytes that is some power of two. 

There is no difference between data types of the same size to the CPU. A REAL4 is exactly 
the same as a dword; both are simply 4-byte chunks of RAM. The CPU can treat a 4-byte 
block of code as a REAL4, and then treat the same block as a dword in the very next 
instruction. It is the instructions that define whether the CPU is to use a particular chunk of 
RAM as a dword or a REAL4. The variable types are not defined for the CPU; they are 
defined for the programmer. It is best to define data correctly in your data segment because 
Visual Studio's debugging windows display data as signed or unsigned and integer or 
floating point based on their declarations. 

There are several data types which have no native equivalent in C++. The XMM and YMM 
word types are for Single Instruction Multiple Data (SIMD), and the rather oddball REAL10 is 
from the old x87 floating point unit. 

 

Note: This book will not cover the x87 floating point unit's instructions, but it is worth noting 
that this unit, although legacy, is actually capable of performing tasks the modern SSE 
instructions cannot. The REAL10 type adds a large degree of precision to floating point 
calculations by using an additional 2 bytes of precision above a C++ double. 

Little and Big Endian 

x86 and x64 processors use little endian (as opposed to big endian) byte order to represent 
data. So the byte at the lowest address of a multiple byte data type (words, dwords, etc.) is 
the least significant, and the byte at the highest address is the most significant. Imagine 
RAM as a single long array of bytes from left to right. 

If there is a word or 2-byte integer at some address (let us use 0x00f08480, although in 
reality a quad word would be used to store this pointer so it would be twice as long) with the 
values 153 in the upper byte and 34 in the lower, then the 34 would be at the exact address 
of the word (0x00f08480). The upper byte would have 153 and would be at the next byte 
address (0x00f08481), one byte higher. The number the word is storing in this example is 
the combination of these bytes as a base 256 number (34+153×256). 

 

Figure 11 
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This word would actually be holding the integer 39,202. It can be thought of as a number in 
base 256 where the 34 is the first digit and the 153 is the second, or 39202 = 
34+153×(256^1). 

Two’s and One’s Complement 

In addition to being little endian, x86 and x64 processors use two’s complement to represent 
signed, negative numbers. In this system, the most significant bit (usually drawn as the 
leftmost) is the sign bit. When this bit is 0, the number being represented is positive and 
when this bit is 1, the number is negative. In addition, when a number is negative, the 
number it represents is the same as flipping all the bits and adding 1 to this result. So for 
example, the bit pattern 10110101 in a signed byte is negative since the left bit is 1. To find 
the actual value of the number, flip all the bits and add 1. 

Flipping each bit of 10110101 gives you 01001010. 

01001010 + 1 =  01001011 

01001011 in binary is the number 75 in decimal. 

So the bit pattern 10110101 in a signed byte on a system that represents signed numbers 
with two's complement is representing the value -75. 

 

Note: Flipping the bits is called the one's complement, bitwise complement, or the 
complement. Flipping the bits and adding one is called the two's complement or the 
negative. Computers use two's complement, as it enables the same circuitry used for 
addition to be used for subtraction. Using two's complement means there is a single 
representation of 0 instead of -0 and +0. 
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Chapter 3  Memory Spaces 

Computers are made of many components, some of which have memory or spaces to store 
information. The speed of these various memory spaces and the amount of memory each is 
capable of holding are quite different. Generally, the closer to the CPU the memory space, 
the faster the data can be read and written. 

There are countless possible memory spaces inside a computer: the graphics card, USB 
sticks, and even printers and other external devices all add memory spaces to the system. 
Usually the memory of a peripheral device is accessed by the drivers that come with the 
devices. The following table lists just a few standard memory spaces. 

Table 3: Memory Spaces 

Memory Space Speed Capacity 

Human input Unknown Unknown 

Hard drives and external storage Extremely slow Massive, > 100 gigabytes 

RAM Fast Large, gigabytes 

CPU caches Very fast Small, megabytes 

CPU registers Fastest Tiny, < 1 kilobyte 

The two most important memory spaces to an assembly program are the RAM and the CPU 
memories. RAM is the system memory; it is large and quite fast. In the 32-bit days, RAM 
was segmented, but nowadays we use a flat memory model where the entire system RAM is 
one massive array of bytes. RAM is fairly close to the CPU, as there are special buses 
designed to traffic data to and from the RAM hundreds of times quicker than a hard drive. 

There are small areas of memory on the CPU. These include the caches, which store copies 
of data read from external RAM so that it can be quickly accessed if required. There are 
usually different levels of cache on a modern CPU, perhaps up to 3. Level 1 (abbreviated to 
L1 cache) is the smallest but quickest, and level 3 (abbreviated to L3 cache) is the slowest 
cache but may be megabytes in size. The operation of the caches is almost entirely 
automatic. The CPU handles its own caches based on the data coming into it and being 
written to RAM, but there are a few instructions that deal specifically with how data should or 
should not be cached. 

It is important to be aware of the caches, even though in x86 programmers are not granted 
direct control over them. When some value from an address in RAM is already in the L1 
cache, reading or writing to it is almost as fast as reading and writing to the registers. 
Generally, if data is read or written, the CPU will expect two things: 

 The same data will probably be required again in the near future (temporal locality). 

 The neighboring data will probably also be required (spatial locality). 

As a result of these two expectations, the CPU will store both the values requested by an 
instruction from RAM and its cache. It will also fetch and store the neighboring values. 
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More important than the CPU caches are the registers. The CPU cannot perform 
calculations on data in RAM; data must be loaded to the CPU before it can be used. Once 
loaded from RAM, the data is stored in the CPU registers. These registers are the fastest 
memory in the entire computer. They are not just close to the CPU, they are the CPU. The 
registers are just a handful of variables that reside on the CPU, and they have some very 
strange characteristics. 

Registers 

The registers are variables residing on the CPU. The registers have no data type. 
Specifically, they are all data types, bytes, words, dwords, and qwords. They have no 
address because they do not reside in RAM. They cannot be accessed by pointers or 
dereferenced like data segment variables. 

The present register set (x64) comes from earlier x86 CPUs. It is easiest to understand why 
you have these registers when you examine the older CPU register sets. This small trip 
through history is not just for general knowledge, as most of the registers from 1970s CPUs 
are still with us. 

 

Note: There is no actual definition for what makes a CPU 64-bit, 32-bit, or 16-bit, but one of 
the main defining characteristics is the size of the general purpose registers. x64 CPUs have 
16 general purpose registers and they are all 64 bits wide. 

16-Bit Register Set 

 

Figure 12  
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Let us begin by examining the original 16-bit 8086 register set from the 1970s. Each of the 
original 8086 registers had a name indicating what the register was mainly used for. The first 
important thing to note is that AX, BX, CX, and DX can each be used as a single 16-bit 
register or as two 8-bit registers. 

AX, BX, CX, and DX: The register AL (which means A Low) is the low byte of AX, and the 
register AH (which means A High) is the upper byte. The same is true for BX, CX, and DX; 
each 16-bit register has two 8-bit versions. This means that changing one of the low bytes 
(AL, BL, CL, or DL) will change the value in the word-sized version (AX, BX, CX, or DX). The 
same is true of changing the high bytes (AH, BH, CH, and DH). This also means that 
programmers can perform arithmetic on bytes or words. The four 16-bit registers can be 
used as eight 8-bit registers, four 16-bit registers, or any other combination. 

SI and DI: These are the source and destination index registers. They are used for string 
instructions where SI points to the source of the instruction and DI points to the destination. 
They were originally only available in 16-bit versions, but there were no byte versions of 
these registers like there are for AX, BX, CX, and DX. 

BP: This is the base pointer; it is used in conjunction with the SP to assist in maintaining a 
stack frame when calling procedures. 

SP: This is the stack pointer; it points to the address of the first item that will be popped from 
the stack upon executing the POP instructions. 

IP: This is the instruction pointer (called PC for Program Counter in some assembly 
languages); it points to the spot in RAM that is to be read for the next machine code bytes. 
The IP register is not a general purpose register, and IP cannot be referenced in instructions 
that allow the general purpose registers as parameters. Instead, the IP is manipulated 
implicitly by calling the jump instructions (JMP, JE, JL, etc.). Usually the IP simply counts up 

one instruction at a time. As the code is executed, instructions are fetched from RAM at the 
address the IP indicates, and they are fed into the CPU's arithmetic units and executed. 
Jumping instructions and procedure calls cause the IP to move to some other spot in RAM 
and continue reading code from the new address. 

Flags: This is another special register; it cannot be referenced as a general purpose 
register. It holds information about various aspects of the state of the CPU. It is used to 
perform conditional statements, such as jumps and conditional moves. The flags register is a 
set of 16 bits that each tell something about the recent events that have occurred in the 
CPU. Many arithmetic and compare instructions set the bits in the flags register, and with 
subsequent conditional jumps and moves performs the instructions based on the status of 
the bits of this register. There are many more flag bits in the flags register, but the following 
table lists the important ones for general application programming. 

Table 4: Flags Register 

Flag Name Bit Abbrev. Description 

Carry 0 CF Last arithmetic instruction resulted in carry or borrow. 

Parity 2 PF 1 if lowest byte of last operation has even 1 count. 

Auxiliary Carry 4 AF Carry for BCD (not used any more). 

Zero 6 ZF Last result equaled zero. 

Sign 7 SF Sign of last operation, 1 for – and 0 for +. 
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Flag Name Bit Abbrev. Description 

Direction 10 DF Direction for string operations to proceed. 

Overflow 11 OF Carry flag for signed operations. 

The individual flag bits of the flags register are not only used for what they were originally 
named. The names of the flags also reflect the most general use for each. For instance, CF 
is used to indicate whether the last addition or subtraction resulted in a final carry or borrow, 
but it is also set by the rotating instructions.  

The parity flag was originally used in error checking, but it is now almost completely useless. 
It is set based on the count of bits set to 1 in the lowest byte of the last operation's result. If 
there is an even number of 1 bits set by the last result, the parity flag will be set to 1. If not, it 
will be cleared to 0. The auxiliary carry flag was used in Binary Coded Decimal (BCD) 
operations, but most of the BCD instructions are no longer available in x64. 

The final four registers in the 8086 list (SS, CS, DS, and ES) are the segment pointers. They 
were used to point to segments in RAM. A 16-bit pointer can point to at most 64 kilobytes of 
different RAM addresses. Some systems at the time had more than 64 kilobytes of RAM. In 
order to access more than this 64-KB limit, RAM was segmented and the segment pointers 
specified a segment of the total installed RAM, while another pointer register held a 16-bit 
offset into the segment. In this way, a segment pointer in conjunction with an offset pointer 
could be thought of as a single 32-bit pointer. This is a simplification, but we no longer use 
segmented memory. 

32-Bit Register Set 

When 32-bit CPUs came about, backwards compatibility was a driving force in the register 
set. All previous registers were kept but were also extended to allow for 32-bit operations. 
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Figure 13  

The original registers can all still be referenced as the low 16 bits of the new 32-bit versions. 
For example, AX is the lowest word of EAX, and AL is still the lowest byte of AX, while AH is 
the upper byte of AX. The same is true for EBX, ECX, and EDX. As a result of this 
expansion to the register set, the 386 and 486 CPUs could perform arithmetic on bytes, 
words, and dwords. 

The SI, DI, BP, and SP registers also added a 32-bit version and the original 16-bit registers 
were the low word of this. There was no byte form of these registers at that point. 

The segment registers were also present and another two were added (GS and FS). Again, 
the segment registers are no longer as useful as they were, since modern Windows systems 
use a flat memory model. 

 

Note: It is perfectly acceptable to use the different parts of a single register as two different 
operands to an instruction. For instance, “mov al, ah” moves the data from AH to AL. This is 
possible because the CPU has internal temporary registers to which it copies the values 
prior to performing arithmetic. 
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64-bit Register Set 

Finally, we arrive at our present register set. This was a massive change, but once again, 
almost all backwards compatibility was maintained. In addition to increasing all general 
purpose registers to 64 bits wide by adding another 32 bits to the left of the 32-bit versions 
(EAX, EBX, etc.), eight new general purpose registers were added (R8 to R15). BP, SP, DI, 
and SI could also now have their lowest bytes referenced, as well as the lowest word or 
lowest dword. 

 

Figure 14  

The general purpose registers AX, BX, CX, and DX still have high bytes (AH, BH, CH, and 
DH), but none of the other registers have their second byte addressable (there is no RDH, a 
high byte version of RDI). The high bytes of RAX, RBX, RCX, or RDX cannot be used with 
the low bytes of the other registers in a single instruction. For example, mov al, r8b is 

legal, but mov ah, r8b is not. 
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Figure 15  

These are the new 64-bit general purpose registers R8 to R15. They can be used for 
anything the original RAX, RBX, RCX, or RDX registers can be used for. It is not clear in the 
diagram, but the lowest 32 bits of the new registers are addressable as R8D. The lowest 16 
bits of R8 are called R8W and the lowest byte is called R8B. Although the image seems to 
depict R8D adjacent to R8W and R8B, R8W is actually the low 16 bits, exactly the same as 
RAX, EAX, AX, and AL. 
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Chapter 4  Addressing Modes 

The different types of parameters an instruction can take are called addressing modes. This 
term is not to be confused with addresses in memory. The addressing modes include 
methods for addressing memory as well as the registers. Addressing modes are defined 
both by the CPU and the assembler. They are methods by which a programmer can address 
operands. 

Registers Addressing Mode 

The registers addressing mode is fairly self-explanatory. Any of the x86 registers can be 
used. 

mov eax, ebx      ; EAX and EBX are both registers 

add rcx, rdx      ; RCX and RDX are 64-bit registers 

sub al, bl        ; AL and BL are the low 8-bit registers of RAX and RBX 

Immediate Addressing Mode 

The immediate or literal addressing mode is where a literal number appears as a parameter 
to an instruction, such as mov eax, 128 where 128 would be the literal or immediate value. 

MASM understands literal numbers in several different bases. 

Table 5: Common Bases 

Base Name Suffix Digits Example 

2 Binary b 0 and 1 1001b 

8 Octal o 0 to 7 77723o 

10 Decimal d or none 0 to 9 1893 or 235d 

16 Hexadecimal h 0 to F 783ffh or 0fch 

 

 

Note: When describing numbers in hexadecimal, if they begin with a letter digit (leftmost digit 
is A, B, C, D, E, or F), then an additional zero must be placed before it; “ffh” must be “0ffh”. 
This does not change the size of the operand. 

In addition to using a number, you can also use mathematical expressions, so long as they 
evaluate to a constant. The mathematical expressions will not be evaluated by the CPU at 
run time, but MASM will translate them to their constant values prior to assembling. 

mov rax, 29+23 ; This is fine, will become mov rax, 52 

mov rcx, 32/(19-4); Evaluates to 2, so MASM will translate to mov rax, 2 

mov rdx, rbx*82 ; rbx*82 is not constant, this statement will not work 
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Implied Addressing Mode 

Many instructions manipulate a register or some part of memory pointed to by a register, 
even though the register or memory address does not appear as a parameter. For instance, 
the string instructions (MOVSxx, SCASxx, LODSxx, etc.) reference memory, RAX, RCX, RSI, 

and RDI even though they take no parameters. This usage is called the implied addressing 
mode; parameters are implied by the instructions themselves and do not appear in the code. 

REP SCASB ; Scan string at [RDI] for AL and scan the number of bytes in RCX 

CPUID  ; CPUID takes EAX as input and outputs to EAX, EBX, ECX, and EDX 

Memory Addressing Mode 

There is a multitude of ways to reference memory in MASM. They all do essentially the 
same thing; they read or write data from some address in RAM. The most basic usage of the 
memory addressing mode is using a variable defined in the data segment by name. 

.data 

xyzVar db ?    ; Define some variable in the data segment 

 

.code 

SomeFunction proc 

 mov al, xyzVar ; Move *xyzVar, the value of xyzVar, into AL 

      . 

      . Code continues 

      . 

 

 

Note: Because a label defined in the data segment is actually a pointer, some people tend not 
to call them variables but rather pointers or labels. The usage of “xyzVar” in the sample code 
is actually something like “mov al, byte ptr [xyzVar]” where xyzVar is a literal address. 

It is often necessary to tell MASM what size the memory operand is, so that it knows what 
machine code to generate. For instance, there are many MOV instructions: there is one that 

moves bytes, one for words, and another for dwords. The same MOV mnemonic is used for 

all of them, but they generate completely different machine code and the CPU does different 
things for each of them. 

These prefixes can be placed to the left of the square braces. The size prefixes are as 
follows. 
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Table 6: Pointer Size Prefixes 

Size in 
Bytes 

Prefix 

1 byte ptr 

2 word ptr 

4 dword ptr 

8 qword ptr 

10 real10 ptr 

16 xmmword ptr 

32 ymmword ptr 

 

 

Note: Signed, unsigned, or float versus integer is irrelevant here. A signed word is two bytes 
long, just as an unsigned word is two bytes long. These prefixes are only telling MASM the 
amount of data in bytes; they do not need to specify with any more clarity. For instance, to 
move a double (64-bit float) you can use the qword ptr, since 8 bytes is a quad word and it 
does not matter that the data happens to be a real8. You can also use real8 to move this 
amount of data. 

In addition to using simple variables defined in the data segment, you can use registers as 
pointers. 

mov eax, dword ptr [rcx]; Move 4 bytes starting where RCX is pointing 

mov bl, byte ptr [r8] ; Move a byte from *R8 into BL 

add dx, word ptr [rax] ; Add the word at *RAX to the value in DX 

You can also add two registers together in the square braces. This allows a single base 
register to point to the first element of an array and a second offset pointer to step through 
the array. You can also use a register and add or subtract some literal value from it. 

 

Note: Values being added or subtracted from a register can be complex expressions so long 
as they evaluate to a constant. MASM will calculate the expression prior to assembling the 
file. 

sub rbx, qword ptr [rcx+rax] ; Perhaps the base is RCX and RAX is an offset 

add dword ptr [r8+68], r9d ; Here we have added a constant to r8 

add dword ptr [r8-51], r9d ; Here we have subtracted a constant from r8 

 

 

Note: Whenever values are being subtracted or added to addresses, either by using literal 
numbers or by using registers, the amount being added or subtracted always represents a 
number of bytes. Assembly is not like C++ with its pointer arithmetic. All pointers in 
assembly increment and decrement a single byte at a time, whereas in C++ an integer pointer 
will increment and decrement 4 bytes at a time automatically. 
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The most flexible of all memory addressing modes is perhaps the SIB (Scale, Index, Base) 
memory addressing mode. This involves a base register pointing to the start of some array, 
an index register that is being used as an offset into the array, and a scale multiplier that can 
be 1, 2, 4, or 8, and is used to multiply the value the index holds to properly access elements 
of different sizes. 

mov bx, byte ptr [rcx+rdx*2] ; RCX is the base, RDX is an offset and we 

                             ; are using words so the scale is 2 

add qword ptr [rax+rcx*8], r12 ; RAX is the base, RCX is the index 

                                   ; and we are referencing qwords so the 

                                   ; scale is 8 

This addressing mode is useful for stepping through arrays in a manner similar to C++. Set 
the base register to the first element of the array, and then increment the index register and 
set the scale to the data size of the elements of the array. 

mov rax, qword ptr [rcx+rbx*8]; Traverse a qword array at *RCX with RBX 

mov cx, word ptr [rax+r8*2]   ; Traverse a word array at *RAX with R8 
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Chapter 5  Data Segment 

The data segment is the place in RAM that a program stores its global and static data. This 
data is defined at compile time. The data segment does not hold variables that are allocated 
at run time (the heap is used for this purpose) or variables that are local to subprocedures 
(the stack is used to hold these). Most of the information presented here is to be used in any 
segment. For instance, variables can be declared in the uninitialized data segment (.data) or 
the constant data segment (.constant). 

 

Note: All variables declared in your data segment will become bytes in your actual .exe file. 
They are not generated when the program is run; they are read from the .exe file. Creating a 
data segment with 150-MB of variables will generate a 150-MB .exe file and will take a very 
long time to compile. 

Scalar Data 

Scalar data defined in the data segment is given a name, size, and optional initial value. To 
declare a variable in the data segment is to name an offset from the start of the data 
segment. All the variable names are actually pointers; they are a number referring to an 
offset into the data segment in RAM, so programmers do not have to remember the offsets 
as numbers. 

 
Note: Variables in assembly are sometimes referred to as labels, but to avoid confusion with 
labels in the code segment, I will refer to data segment labels as variables. 

To define a variable in the data segment, the general layout is as follows: 

[VarName] [Type]  [Initial Value] 

Where [VarName] is any legal variable name and will be the name of the point in data that 

you wish to use to as a reference. 

 

Note: The rules for variable names are the same as those for C++. They cannot begin with a 
digit, and they can contain letters, digits, and underscores. You can also use some additional 
symbols that are illegal in C++, such as @ and ?. 

[Type] is the data type and can be any one of the data types or short versions in the ASM 

column of the Fundamental Data Types table. 

The initial value can be either a literal value or it can be “?”. The question mark means the 
data is not given an initial value. In actuality, data will be given a value even if it is 
uninitialized. The point of the “?” is to declare that the programmer does not care what value 
the data is set to initially and presumably the program will set some other initial value prior to 
using the data. 

Here are some examples of defining simple scalar data types in a data segment. 
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.data 

myByte db 0            ; Defines a byte set to 0 called myByte 

patientID dw ?      ; Defines a word, uninitialized called patientID 

averageSpeed dt 0.0    ; Defines 10-byte real, reals must have a decimal  

                       ; point if initialized 

totalCost sdword 5000  ; Defines signed dword set to 5000, called totalCost 

 

 

Note: The first variable is placed at the DS:0 (it is placed at the first byte of the data segment) 
and the second straight after that (there is no padding paced between variables). If the first 
variable was 1 byte then the second would be at DS:1. If the first variable was a word then the 
second would be at DS:2. The way consecutive variables are stored in RAM is called 
alignment and it is important for performance as some of the fastest data processing 
instructions require data to be aligned to 16 bytes. 

Arrays 

After scalar data types, the next most fundamental data type is probably the array. An array 
is a list of elements of the same data type in contiguous memory. In assembly, an array is 
just a block of memory and the first element of the array is given a name. 

Arrays Declared with Commas 

You can declare the elements of an array separated by commas. 

MyWord dw 1, 2, 3, 4 ; Makes a 4 word array with 1, 2, 3, and 4 as elements 

If you need to use more than one line, finish the line with a comma and continue on the next. 

MyWord dw 1, 2, 3, 4, ; Four words in an array 

  5, 6, 7, 8 ; Another four words in the same array! 

This is legal because you actually do not need the label at all. The MyWord name of the 
variable is completely optional. 

Duplicate Syntax for Larger Arrays 

You can create larger arrays in your data segment using the duplicate syntax, but remember 
that every byte in your data segment is a byte in your final file. 

To create larger arrays you can declare an array of values with the following pattern (the 
duplicate syntax): 

[Name] [type] [n] [dup (?)] 
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Where [Name] is the array name, any legal variable name. [Type] is one of the data types 

from the Fundamental Data Types table, and [n] is the number of items in the array. DUP is 

short for duplicate, and the data that it duplicates is in the parentheses. To make 50 words 
all set to 25 in an array called MyArray, the array declaration using the duplicate syntax 
would be the following:  

MyArray word 50 dup (25) 

You can combine the simple comma separated array definition syntax with the duplicate 
syntax and produce arrays of repeating patterns. 

MyArray byte 50 dup (1, 6, 8) 

This will define an array 150 bytes long (50×3) with the repeating pattern 1, 6, 8, 1, 6, 8, 1, 6, 
8.... 

You can nest the duplicate directive to create multidimensional arrays. For example, to 
create a 10×25 dimensional byte array and to set all elements to A, you could use the 
following: 

MyMArray byte 10 dup (25 dup ('A')) 

 

 

Note: RAM is linear. Whether the sample code actually defines a 10×25 or a 25×10 array must 
be decided by the programmer. To the CPU, it is just a block of linear RAM and there is no 
such thing as a multidimensional array. 

For a three-dimensional array, you could use something like this: 

My3dArray byte 10 dup (25 dup (100 dup (0))) 

This will create a 10×25×100 3-D array of bytes all set to 0. From the CPU's point of view, 
this 3-D array is exactly the same as the following: 

My3dArray byte 25000 dup (0) 

Getting Information about an Array 

Once defined, MASM has some directives to retrieve information about the array:  

lengthof: Returns the length of the array in elements. 

sizeof: Returns the length of the array in bytes. 

type: Returns the element size of the array in bytes. 
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For example, if you have an array called myArray and you want to move information about it 
into AX, you would do the following:  

mov ax, lengthof myArray ; Move length in elements of the array 

mov ax, sizeof myArray              ; Move the size in bytes of the array 

mov ax, type myArray              ; Move the element size into AX 

 

 

Note: These directives are translated to immediate values prior to assembling the file; 
therefore, "mov lengthof myArray, 200" is actually translated to "mov 16, 200". Moving a 
value into a literal constant means nothing (we cannot change the meaning of 16, even in 
assembly), so the line is illegal. 

Defining Strings 

In MASM, single and double quotes are exactly the same. They are used for both strings 
and single characters. 

Note: A string in C and C++ is a byte array often with a null, 0, at the end. These types of strings 
are called zero delimited strings. Many C++ functions are designed to work with zero delimited 
strings. 

To define a string of text characters, you can use this string syntax: 

errMess db 'You do not have permission to do this thing, lol', 0 

This is equivalent to defining a byte array with the values set to the ASCII numbers of the 
characters in the string. The Y at the start will be the first (least significant) byte of the array. 

 

Note: The comma and zero at the end are the final null. This makes the string a null-
terminated string as understood by cout and other C++ functions. Cout stops writing a string 
when it reaches the 0 character. In C++, the 0 is added automatically when we use the double 
quotes; in assembly, it must be explicit. 

To define a string that does not fit on a single line, you can use the following: 

myLongString db "This is a ", 

 "string that does not ", 

 "fit on a single lion!", 0 

In each of the previous examples, the single quote could also have been used to the same 
effect: 
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myLongString db 'This is a ', 

 'string that does not', 

 'fit on a single lion!', 0 

If you need to use either a single quote in a single quote array or a double quote in a double 
quote array, place two of them together: 

myArr1 db "This ""IS"" Tom's array!", 0     ; This "IS" Tom's array! 

myArr2 db 'That''s good, who''s Tom?', 0    ; That's good, who's Tom? 

Typedef 

You can declare your own names for data types with the type definition (typedef) directive. 

integer  typedef sword ; Defines “integer” to mean sword 

MyInteger integer  ? ; Defines a new sword called MyInteger 

You cannot use reserved words for your typedefs, so trying to make a signed dword type 
called “int” will not work, since “int” is the x86 instruction to call an interrupt. 

 
Note: You can use typedef to define new names for user-defined types, fundamental types, 
structures, unions, and records. 

Structures and Unions 

To define a structure (analogous to a C++ struct), you can use the struc (or struct) directive. 

ExampleStructure struct    ; Structure name followed by "struct" or "struc" 

 X word 0 

 Y word 0 

 Z word 0 

 ID byte 0 

ExampleStructure ends  ; The name followed by “ends” closes the definition 

This would create a structure with four variables; three are words set to 0 and called X, Y, 
and Z, and the final variable is a byte called ID, also set to 0 by default. 

The previous example was the prototype. To create an instance of the previous structure 
prototype, you can use the following: 
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person1 ExampleStructure { } ; Declares person1 with default values 

person2 ExampleStructure { 10, 25, 8, ? } ; Declares person2 with  

      ; specific values 

      ; and ID of ?, or 0 probably 

Each field of the instance of the structure can be initialized with the value supplied in 
respective order in curly brackets. Use “?” to initialize to MASM's default value (0). You can 
initialize less than the amount of values the structure and the rest are automatically given. 
These are their default values as per the structure's prototype. 

person2 ExampleStructure { 10 } ; Declares person2 with 10 for x 

      ; but the rest are as per the 

      ; structure's prototype 

With a prototype declaration, you can create an instance of this structure with some of the 
values initialized, and others with their defaults, by not including any value. Just place 
whitespace with a comma to indicate where the value would have been. 

MyStructure struct 

 x word 5 

 y word 7 

MyStructure ends 

 

InstanceOfStruct MyStructure { 9, } ; Change x to 9 but keep y 

           ; as 5 as per prototype 

To change the values of a previously instantiated structure from code, you can use a period 
in a similar manner to accessing structure elements in C++. 

mov person1.X, 25  ; Moves 25 into person1's X 

mov person2.ID, 90 ; Moves 90 into person2's ID 

 

 

Note: When structures are passed to functions from C++, they are not passed by reference. 
They are copied to the registers and stack depending on the size of the structure. If a 
structure has two integers, then the whole instance of the structure will be copied to RCX 
(since two 32-bit dwords fit into the 64-bit RCX). This is awkward because you cannot 
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reference the separate elements of the structure when they are in a register. For instance, 
there is no way to reference the top dword of RCX. For this reason, it may be easier to pass 
structures from C++ as pointers. 

You can load the effective address of a previously instantiated structure with the LEA 
instruction (load effective address). To use a register (RCX in this example) as a pointer to 
an instance of a structure, you must tell MASM the address, type of structure being pointed 
to, and the field. 

lea rcx, person1 ; Loads the address of person1 into RCX 

mov [rcx].ExampleStructure.X, 200 ; Moves 200 into person1.X using 

           ; RCX as a pointer 

The CPU does not check to make sure RCX is actually pointing to an ExampleStructure 
instance. RCX could be pointing to anything. [RCX].ExampleStructure.X simply means 

find what RCX is pointing to and add the amount that X was offset in the ExampleStructure 
prototype to this address. In other words, [RCX].ExampleStructure.X translates to RCX+0, 

since X was at byte number 0 in the prototype of ExampleStructure. 
[RCX].ExampleStructure.Y translates to RCX+2, since Y was the second element after the 

two byte word X. 

To pass an instance of a structure as a parameter to a function, it is usual to pass its 
address and manipulate it as per the previous point. This is passing by reference, and the 
initial object will be changed, but it is much faster than copying the data of the structure to 
the registers and stack in the manner of C++. 

; This is the function that is initially called 

Function1 proc 

 lea rcx, person2 ; Load *person2 into RCX to be passed to Fiddle 

 call Fiddle ; Call Fiddle with RCX param 1 

 ret 

Function1 endp 

 

; Fiddle, RCX = *ExampleStructure 

Fiddle proc 

 mov [rcx].ExampleStructure.Y, 89 ; Change something 

 ret 

Fiddle endp 
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Structures of Structures 

To define a structure that has a smaller substructure as its member variables, declare the 
smaller one first. Then place the instances of the substructure inside the declaration of the 
larger structure. 

; This is the smaller sub-structure 

Point struct 

 X word 0 

 y word 0 

Point ends 

 

; This is the larger structure that owns a Point as one of its parameters: 

Square struct 

 cnr1 Point { 7, 4 } ; This one uses 7 and 4 

 cnr2 Point { }  ; Use default parameters! 

Square ends 

To declare an instance of a structure that contains substructures in the data segment, you 
can use nested curly braces. 

MySquare Square { { 9, 8 }, { ?, 7 } } 

 

 
Note: If you do not want to set any of the values of a struct, you can use {} to mean defaults 
for all values, even if the structure has substructures within it. 

To set the value of a structure's substructure, append a period to specify which variable you 
wish to change. 

mov MySquare.cnr1.Y, 5 

You can use a register as a pointer and reference the nested structure’s elements as 
follows: 

mov word ptr [rcx].Square.cnr1.X, 10 
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Unions 

A union is similar to a structure, except the actual memory used for each of the elements in 
the union is physically at the same place in RAM. Unions are a way to reference the same 
address in RAM as more than one data type. 

MyUnion union 

 w1 word 0 

 d1 dword 0 

MyUnion ends ; Note that it is ends, not endu! 

Here, MyUnion.w1 has exactly the same address as MyUnion.w2. The dword version is 4 
bytes long and the word is only 2 bytes, but the least significant byte of both has the same 
address. 

Records 

Records are another complex data type of MASM. They are like structures, but they work on 
and are defined at the bit level. The syntax for definition is as follows: 

[name] RECORD [fldName:sz], [fldName:sz]... 

Where [name] is the name of the record, [fldName] is the name of a field, and [sz] is the 

size of the field in bits.  

color RECORD blBit:1, hueNib:4 

The sample code in the data segment is the prototype to a record called color. The record 
can then be accessed by the following: 

mov cl, blBit 

This would move 4 into CL, since blBit was defined as bit number 4 in the record. hueNib 
takes bits 0, 1, 2, and 3, and blBit comes after this. 

You cannot use a record to access bits directly. 

mov [rax].color.blBit, 1 ; Won't change the 4th bit from RAX to 1 

A record is just a form of directive; it defines a set of constants to be used with bitwise 
operations. The constants are bit indices. You can use a record for rotating. 
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mov cl, blBit ; Move the index of the record's blBit into cl 

rol rax, cl ; Use this to rotate the bits in RAX 

You can define records in your data segment and initialize the values of the bit fields just as 
you can with a structure. This is the only time you can set each element of a record without 
using bitwise operations. 

.data 

color RECORD qlBit:3, blBit:1, hueNib:4 ; Defines a record 

 

; Following defines a new byte with the bits set as specified 

; by the record declaration: 

; qlBit gets 0, blBit gets 1 and the hueNib gets 2 

; So MyColor will actuall be a byte set to  00010010b 

MyColor color { 0, 1, 2 } ; Declare a color record with initializers 

 

.code _text 

Function1 proc 

 mov cl, MyColor ; Moves 000:1:0010b, or 18 in decimal 

 ret 

Function1 endp 

 

 

 
Note: The qlBit, blBit and hueBit from the previous record become constants of their bit 
indices: hueBit = 0, blBit = 4, qlBit = 5. 

You can get the width in bits of a field in a record by using MASM's WIDTH directive. 

mov ax, WIDTH color.hueNib 

You can get a bit mask of the record's field by using MASM's MASK directive. 

and al, mask myCol.blBit; AND contents of AL with bit mask of defined color  

                        ; record 
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You can specify NOT prior to the MASK directive to flip the bit mask. 

and al, NOT MASK myCol.blBit 

Constants Using Equates To 

You can define a numerical constant using the = symbol, and you can define numerical and 

text constants using the equ directive. This is short for “equates to.” 

Somevar = 25           ; Somevar becomes a constant immediate value 25 

name equ 237  ; "name" is the symbol for the constant 

mov eax, name  ; Translates to “mov eax, 237” 

moc ecx, SomeVar        ; Sets ECX to 25 

You can also use the EQU directive to define text constants by surrounding the value with 

triangle braces. 

quickMove equ <mov eax, 23> 

quickMove     ; Translates to “mov eax, 23” 

You can use the equates directive to define machine code by using a db (define byte) in the 

value. 

NoOperation equ <db 90h>     ; 90h is machine code for the NOP instruction 

NoOperation                  ; Translates to NOP or 90h 

This usage of db in the code segment is fine because db does nothing more than place the 

exact byte values you specify at the position in the file. Using db in the code segment 

effectively enables us to program in pure machine code. 

; This procedure returns 1 if ECX is odd 

; otherwise it returns 0, it is programmed 

; in pure machine code using db. 

IsOdd proc 

db 83h, 0E1h, 01h,  ; and ecx, 1 
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 8Bh, 0C1h,   ; mov eax, ecx 

 0C3h    ; ret 

IsOdd endp 

The point of using pure machine code is that sometimes an assembler may not understand 
some instructions that the CPU can understand. An older assembler may not understand the 
SSE instructions. By using EQU and db in the manner described previously, a programmer 

can define his or her own way of specifying SSE instructions, whether the assembler 
understands them naturally or not. 

Macros 

You can define macro functions using the macro directive.  

[name] MACRO [p1], [p2]... 

 ; Macro body 

ENDM 

Where [name] is the symbol associated with the macro, MACRO and ENDM are keywords, and 

[p1], [p2], and any other symbols are the parameters as they are referred to in the body of 

the macro. 

 

Halve macro dest, input ; dest and input are the parameters 

 mov dest, input ;; Refer to parameters in body 

 shr dest, 1 

endm    ; endm with no macro name preceding 

 

; And later in your code: 

Halve ecx, 50 ; Moves 25 into ecx 

Halve eax, ecx ; Moves 12 into eax 

Halve ecx, ecx ; Moves 12 into ecx 

Halve 25, ecx ; Error, ecx/2 cannot be stored in 25! 
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The symbol name is swapped for the corresponding code each time MASM finds the macro 
name when assembling. This means that if there are labels in the macro code (if the code 
has jumps to other points within its code), MASM will write the labels again and again. Each 
time the macro is used, the labels will appear. Since MASM cannot allow duplicate labels 
and still know where to jump, you can define labels as local in the macro definition. Labels 
defined as local will actually be replaced by an automatically generated, unique label. 

SomeMacro macro dest, input 

local label1, label2 

 test dest, 1 

 jnz label1 

 jz label2  

label1:   ;; Automatically renamed ??0000 

 mov eax, 3 

label2:   ;; Automatically renamed ??0001 

 mov ecx, 12       ;; Each label each time SomeMacro is 

    ;; called will increment the counter, 

    ;; next will be ??0002 the ??0003 etc. 

Endm 

 

 

Note: You may have noticed the “;;” comments in the body of the macros; these are macro 
comments. They are useful when generating listing files, since these comments will not 
appear every time a macro function is referenced in code, only once at the macro's definition. 
If you use the single “;” comments the same comments will appear over and over throughout 
the generated listing file. 

In your macro definition you can specify default values for any parameters, allowing you to 
call the macro without specifying every parameter (place := and then the default value after 

the parameter's name, somevariable:=<eax>). You can also indicate that particular 

parameters are required (place a colon followed by req, somevariable:req). 

 
Note: When specifying the default values, the syntax is similar to the “equ” directive; instead 
of “eax” you must use “<eax>”. 

 

SomeMacro macro p1:=<eax>, p2:req, p3:=<49> 

 ;; Macro body 

Endm 
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The macro definition in the sample code would allow us to omit values for both first and third 
parameters. Only the second is required, and the others can be left to defaults. 

; Specify all parameters: 

SomeMacro ecx, 389, 12 ; p1 = ecx 

    ; p2 = 389 

    ; p3 = 12 

 

; Just specify parameter 2: 

SomeMacro , ebx,   ; p1 = eax from default 

    ; p2 = ebx 

    ; p3 = 49 from default 
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Chapter 6  C Calling Convention 

A calling convention is a set of steps that must be undertaken by a caller (the code calling 
the procedure) and a callee (the procedure being called). High-level languages take care of 
all the calling convention intricacies, and one can simply pass parameters to and from 
functions without caring about how they are being passed. When programming in assembly, 
the callee needs to know where or how the caller has passed the function's parameters, and 
the caller needs to know how the callee will return the answer. At the assembly level, the 
calling convention is not restricted at all, and programmers are free to define their own. The 
C++ compilers that ship with Visual Studio use the C calling convention, so it is usually 
advantageous to adopt this when programming assembly routines, especially if the routines 
are called from C++ or if they themselves call procedures written in C++. 

The Stack 

The stack is a portion of memory that is used as a semiautomatic last-in-first-out data 
structure for passing parameters to functions. It allows function calls to be recursive, handles 
parameter passing, return addresses, and is used to save registers or other values 
temporarily. Values are added to the stack using the PUSH and CALL instructions, and they 

are removed from the stack using the POP and RET instructions in the opposite order they 

were pushed. The stack is used to save the address in the .code segment of the caller of the 
function, such that when the subroutine is finished, the return address can be popped from 
the stack (using the RET instruction) and control can resume from the caller's position in 

code. 

The stack is pointed to by a special pointer, the RSP (stack pointer). The instructions PUSH 

and POP both MOV data to the point RSP points to and the decrement (PUSH) or increment 

(POP) the stack pointer, such that the next value to be pushed will be done at the next 

address in the stack segment. 

In the past, passing parameters and saving the return addresses was exclusively the task of 
the stack, but in x64 some parameters are passed via the registers. It is common to avoid 
the PUSH and POP instructions in favor of incrementing and decrementing the stack pointer 

manually and using MOV instructions. Manually manipulating the stack is common in x64, 

since the PUSH and POP instructions do not allow operands of any size. It is often faster to set 

the position of the RSP using ADD and SUB and using MOV instead of repeatedly calling PUSH. 

The stack is simply another segment in RAM that has been marked as read/write. The only 
difference between the stack and any other segment in the program is that the stack pointer 
(RSP) happens to point to it. 

Scratch versus Non-Scratch Registers 

In the C calling convention used by Visual Studio, some of the registers are expected to 
maintain the same values across function calls. Functions should not change the value of 
these registers in their code without restoring the original values prior to returning. These 
registers are called non-scratch. 

Table 7: Register's Scratch/Non-Scratch Status 

Register Scratch/Non-Scratch 

RAX Scratch 
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Register Scratch/Non-Scratch 

RBX Non-Scratch 

RCX Scratch 

RDX Scratch 

RSI Non-Scratch 

RDI Non-Scratch 

RBP Non-Scratch 

RSP Non-Scratch 

R8 to R11 Scratch 

R12 to R15 Non-Scratch 

XMM0 to XMM5 Scratch 

XMM6 to XMM15 Non-Scratch 

ST(0) to ST(7) Scratch 

MM0 to MM7 Scratch 

YMM0 to YMM5 Scratch 

YMM6 to YMM15 Non-Scratch 

Some of the registers can be modified at will by a subprocedure or function, and the caller 
does not expect that the subprocedure will maintain any particular values. These registers 
are called scratch. 

There is nothing wrong with using a non-scratch register in your code. The following 
example uses RBX and RSI to sum the values from 100 to 1 together (both RBX and RSI 
are non-scratch). The important thing to note is that the non-scratch registers are pushed to 
the stack at the start of the procedure and popped just prior to returning. 

Sum100 proc 

 push rbx     ; Save RBX 

 push rsi     ; Save RSI 

 xor rsi, rsi 

 mov rbx, 100 

MyLoop: 

 add rsi, rbx 

 dec rbx 

 jnz MyLoop 
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 mov rax, rsi 

 

 pop rsi     ; Restore RSI 

 pop rbx     ; Restore RBX 

 ret 

Sum100 endp 

The push instruction saves the value of the register to the stack, and the pop instruction 
pops it back into the register again. By the time the subprocedure returns, all of the non-
scratch registers will have exactly the same values they had when the subprocedure was 
called. 

It is often better to use scratch registers instead of pushing and popping non-scratch 
registers. Pushing and popping requires reading and writing to RAM, which is always slower 
than using the registers. 

Passing Parameters 

When we specify a procedure as using the C calling convention in x64 applications, 
Microsoft's C++ compiler uses fastcall, which means that some parameters are passed via 
the registers instead of using the stack. Only the first four parameters are passed via 
registers. Any additional parameters are passed via the stack. 

Table 8: Integer and Float Parameters 

Parameter Number If integer If float 

1 RCX XMM0 

2 RDX XMM1 

3 R8 XMM2 

4 R9 XMM3 

Integer parameters are passed in RCX, RDX, R8, and R9 while floating point parameters 
use the first four SSE registers (XMM0 to XMM3). The appropriate size of the register is 
used such that if you are passing integers (32-bit values), then ECX, EDX, R8D, and R9D 
will be used. If you are passing bytes, then CL, DL, R8B, and R9B will be used. Likewise, if a 
floating point parameter is 32 bits (float in C++), it will occupy the lowest 32 bits of the 
appropriate SSE register, and if it is 64 bits (a C++ double), then it will occupy the lowest 64 
bits of the SSE register. 

 

Note: The first parameter is always passed in RCX or XMM0; the second is always passed in 
RDX or XMM2. If the first parameter is an integer and the second is a float, then the second 
will be passed in XMM1 and XMM0 will go unused. If the first parameter is a floating point 
value and the second is an integer, then the second will be passed in RDX and RCX will go 
unused. 

As an example, consider the following C++ function prototype: 
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int SomeProc(int a, int b, float c, int d); 

This procedure takes four parameters, which are floating point or integer values, so all of 
them are going to be passed via the registers (only the 5th and subsequent parameters 
require the stack). 

The following is how the C++ compiler will pass the parameters, or how it will expect you to 
pass them if you are calling a C++ procedure from assembly: 

 a will be passed in ECX 

 b will be passed in EDX 

 c will be passed in the lowest dword of XMM2 

 d will be passed in R9D 

Integer values are always returned in RAX and floating point values are returned in XMM0. 
Pointers or references are also always returned in RAX. 

The following example takes two integer parameters from a caller and adds them together, 
returning the result in RAX: 

; First parameter is passed in ECX, second is passed in EDX 

; The prototype would be something like: int AddInts(int a, int b); 

AddInts proc 

 add ecx, edx ; Add the second parameter's value to the first 

 mov eax, ecx ; Place this result into EAX for return 

 ret  ; Caller will read EAX for the return value 

AddInts endp 

Shadow Space 

In the past, all parameters were passed to procedures via the stack. In the C calling 
convention, the caller still has to allocate blank stack space as if parameters were being 
passed on the stack, even though the values are being passed in the registers. The space 
you create on the stack in place of passing parameters when calling a function or 
subprocedure is called shadow space. It is the space where the parameters would have 
been passed had they not been placed into registers instead. 

The amount of shadow space is supposed to be no less than 32 bytes, regardless of the 
number of parameters being passed. Even if you are passing a single byte, you reserve 32 
bytes on the stack. 

 

Note: This wasteful use of the stack is possibly due to it being easier to program the C++ 
compiler. Many things on this level of programming have little to no clear documentation or 
explanation available. The exact reasons for the Microsoft C calling convention using 
shadow space the way it does are not clear. 
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To call a function with the following prototype, use the following: 

void Uppercase(char a); 

The C++ compiler would use something like the following: 

sub rsp, 20h ; Make 32 bytes of shadow space 

mov cl, 'a'  ; Move parameter in to cl 

call Uppercase ; Call the function 

add rsp, 20h ; Deallocate the shadow space from the stack 

To call a function with six parameters, use the following: 

void Sum(int a, int b, int c, int d, int e, int f); 

Some parameters must be passed on the stack; only the first four will be passed using the 
registers. 

sub rsp 20h ; Allocate 32 bytes of shadow space 

mov ecx, a ; Move the four register parameters into their registers 

mov edx, b  

mov r8d, c  

mov r9d, d  

push f ; Push the remaining parameters onto the stack 

push e 

call  Sum ; Call the function 

 

add rsp, 28h; Delete shadow space and the parameters we passed via the stack 

 

 

Note: Parameters passed via the stack are not actually removed from memory when the 
subroutine returns. The stack pointer is simply incremented such that newly pushed 
parameters will overwrite the old values. 

To call a function written in C++ from an external assembly file, both C++ and assembly 
must have an extern keyword to say the function is available externally. 

// C++ File: 

#include <iostream> 
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using namespace std; 

 

extern "C" void SubProc(); 

 

extern "C" int SumIntegers(int a, int b, int c, int d, int e, int f) 

{ 

 return a + b + c + d + e + f; 

} 

 

int main() 

{ 

 SubProc(); 

 

 return 0; 

} 

 

; Assembly file in the same project 

extern SumIntegers: proc 

 

.code 

SubProc proc 

 push 60  ; Push two params that don't 

 push 50  ; fit int regs. Opposite order! 

 

 sub rsp, 20h ; Allocate shadow space 

 

 mov ecx, 10  ; Move the first four params 

 mov edx, 20  ; into their regs in any order 
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 mov r8d, 30 

 mov r9d, 40 

 

 call SumIntegers 

 

 add rsp, 30h ; Deallocate shadow space 

    ; and space from params 

    ; this is 6x8=48 bytes. 

 ret 

SubProc endp 

End 

The stack is decreased as parameters are pushed onto it. Parameters are pushed from right 
to left (reverse order to that of a function's C++ prototype). 

Bytes and dwords cannot be pushed onto the stack, as the PUSH instruction only takes a 

word or qword for its operand. For this reason, the stack pointer can be decremented to its 
final position (this is the number of operands multiplied by 8) in the instruction where shadow 
space is allocated. Parameters can then be moved into their appropriate positions in the 
stack segment with MOV instructions in place of the pushes. 

The first parameter is moved into RCX, then the second into RDX, the third into R8, and the 
fourth into R9. The subsequent parameters are moved into RAM starting at RSP+20h, then 
RSP+28h, RSP+30h, and so on, leaving 8 bytes of space for each parameter on the stack 
whether they are qwords or bytes. Each additional parameter is RSP+xxh where xx is 8 
multiplied by the parameter index. 

 

Note: As an alternate to hexadecimal, it may be more natural to use octal. In octal, the fourth 
parameter is passed at RSP+40o, the fifth is RSP+50o, and the sixth is RSP+60o. This pattern 
continues until RSP+100o, which is the 8th parameter. 

 

; Assembly file alternate version without PUSH 

extern SumIntegers: proc 

.code 

SubProc proc 

 sub rsp, 30h  ; Sub enough for 6 parameters from RSP 

 mov ecx, 10  ; Move the first four params 

 mov edx, 20  ; into their regs in any order 
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 mov r8d, 30 

 mov r9d, 40 

 ; And we can use MOV to move dwords 

 ; bytes or whatever we need to the stack 

 ; as if we'd pushed them! 

 mov dword ptr [rsp+20h], 50 

 mov dword ptr [rsp+28h], 60 

 call SumIntegers 

 add rsp, 30h ; Deallocate shadow space 

   ; and space from params 

   ; this is 6x8=48 bytes. 

 ret 

SubProc endp 

End 
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Chapter 7  Instruction Reference 

The following instruction reference is intended to summarize some of the information in the 
Intel and AMD programmer's manuals, and provide an easy-to-reference but detailed 
description of the most common and useful instructions. Full details of all instructions can be 
found in the Intel and AMD manuals (see the Recommended Reading section for a link to 
these documents). 

This reference covers only application programming instruction sets. System programming 
instructions (or privileged instructions) are not included, nor are instructions that are now 
obsolete and have been removed from x64 assembly. Instructions are not included even 
where they are still supported in compatibility mode (for instance the Binary Coded Decimal 
(BCD) instructions, etc.). Only the most common and useful instructions have been included, 
but there are many hundreds more. 

CISC Instruction Sets 

Modern x64 CPUs are CISC (Complex Instruction Set Computing), as opposed to RISC 
(Reduced Instruction Set Computing). This means there are a very large number of 
specialized instructions, which are almost useless for general purpose programming, but 
have been added to the instruction sets for particular purposes such as 3-D graphics 
algorithms, encryption, and others. 

There is almost no consistent logic to the naming of the instructions because they have been 
added over several decades and belong to different instruction sets. 

Many instructions require hardware support from the CPU, such as each of the SIMD 
instruction sets and the conditional moves. Please refer to the CPUID instruction for details 

on how to detect if hardware is capable of particular instructions. 

Parameter Format 

The following table lists the shorthand for instruction parameter types I have used in this 
reference: 

Table 9: Shorthand Instruction Parameters 

Shorthand Meaning 

reg x86 register eax, ebx etc. 

mmx 64-bit MMX register 

xmm 128-bit SSE register 

ymm 256-bit AVX register 

mem Memory operand, data segment variable 

imm Immediate value, literal or constant 

st Floating point unity register 
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It is very important to note that you can never use two memory operands as parameters for 
an instruction, despite what the parameter shorthand appears to state. For instance, one of 
the parameters to the MOV instruction can be a memory operand, but both of them cannot; 

one must be an immediate or a register. There is only one address generation unit per 
arithmetic logic unit. By the time the arithmetic logic unit has the instruction to execute, it can 
only generate at most one memory address. 

Unless expressly stated otherwise, all parameters to an instruction must match in size. You 
cannot move a word into a dword nor a dword into a word. There is no notion of implicit 
casting in assembly. There are some instructions (for instance, the move and sign/zero 
extend instructions) that are designed to convert one data size to another and must 
necessarily take operands of differing sizes, but almost all other instructions adhere to this 
rule. 

The possible sizes of the operands have been included in the shorthand for the instructions. 
Some instructions do not work for all sized operands. For example, the mnemonic and 
parameters for the conditional move instructions might look like this: 

CMOVcc [reg16/32/64], [reg16/32/64/mem16/32/64] 

This means the instructions take two operands, and each operand is in square braces, 
though in the code they are not surrounded by square braces unless they are a pointer. The 
first can be an x86 register of sizes 16 bits, 32 bits, or 64 bits, and the second can be 
another x86 register of the same size or a memory operand. 

CMOVE ax, bx; This would be fine, CMOVcc [reg16], [reg16] 

CMOVE al, bl; This will not work because AL and BL are 8 bit registers 

 

 

Note: As mentioned previously, the high byte forms of the original x86 registers cannot be 
used with the low byte forms of the new x64 registers. Something like “MOV AH, R8B” will 
not compile, as it uses the high byte form AH along with a new byte form R8B. The high byte 
forms are included in x64 only for backwards compatibility. The CPU knows no machine 
code to achieve “MOV AH, R8B” in a single instruction. 

Flags Register 

Many of the x86 instructions alter the state of the flags register so that subsequent 
conditional jumps or moves can be used based on the results of the previous instructions. 
The flags registers abbreviations appear differently in Visual Studio compared to almost all 
other sources. The meaning of the flags and their abbreviations in this manual and Visual 
Studio's Register Window are as follows: 

Table 10: Flags Register Abbreviations 

Flag Name Abbreviation Visual Studio 

Carry Flag CF CY 

Parity Flag PF PE 

Zero Flag ZF ZR 

Sign Flag SF PL 
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Flag Name Abbreviation Visual Studio 

Direction Flag DF UP 

Overflow Flag OF OV 

A flags field of carry, zero would mean that both the carry flag and the zero flag are 

altered by the instruction in some way. This means that all other flags are either not altered 
or undefined. It is not safe to trust that an instruction will not modify a flag when the flag is 
undefined. Where it is not obvious how an instruction would alter the flags, see the 
instruction's description for details. If more information is required on whether flags are 
modified or left undefined, see the programmer's manuals of your CPU manufacturer. 

If an instruction does not affect the flags register (such as the MOV instruction), the flags field 

will appear as Flags: (None). If the flags field to an instruction is (None), then the 

instruction will not alter the flags register at all. 

Almost all of the SIMD instructions do not modify the x86 flags register, so the flags field has 
been left out for their descriptions. 

Prefixes 

Some instructions allow prefixes that alter the way the instructions work. If an instruction 
allows prefixes, it will have a prefix field in its description. 

Repeat Prefixes 

The repeat prefixes are used for the string instructions to enable blocks of memory to be 
searched. They are set to a particular value or copied. They are not designed to be used 
with any other instructions, even where the compiler allows. The results of using the repeat 
prefixes are undefined when they are used with non-string instructions. 

 REP: Repeats the following instruction the number of times in RCX. REP is used in 

conjunction with store string (STOS) and move string (MOVS) instructions. Although this 

prefix can also be used with LODS, there is no point in doing this. Each repetition of 

the instruction following the REP prefix decrements RCX. 

 REPZ, REPE: Repeat while zero or repeat while equal are two different prefixes for 
exactly the same thing. This means repeat the following instruction while the zero 
flag is set to 1 and while RCX is not zero. As in the REP prefix, this prefix also 

decrements RCX at each repetition of the instruction following it. This prefix is used 
to scan arrays (SCAS instruction) and compare arrays (CMPS instruction) 

 REPNZ, REPNE: Repeat while not zero or repeat while not equal are the opposites 
of REPZ or REPE. This prefix will repeatedly execute the instruction while the zero flag 

is set to 0 and RCX is not 0. Like the other repeat prefixes it decrements RCX at 
each repetition. This prefix is used with the same instructions as the REPZ and REPE 

prefixes. 

Lock Prefix 

Assembly instructions are not atomic (they do not happen in a single uninterruptible move by 
the CPU) by default.  
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add dword ptr [rcx], 2 

This sample code will result in what is called a read-modify-write operation. The original 
value in RAM that RCX is pointing to will be read, 2 will added, and the result will be written. 
There are three steps to this operation (read-modify-write). In multithreaded applications, 
while one thread is in the middle of this three step operation, another thread may begin 
reading, writing, or modifying exactly the same address. This could lead to the second 
thread reading the same value as the first and only one of the threads successfully writing 
the actual result of the value +2. 

This is known as a race condition; threads are racing to read-modify-write the same value. 
The problem is that the programmer is no longer in control of which threads will successfully 
complete their instructions and which will overlap and produce some other results. If there 
are race conditions in a multithreaded application, then by definition the output of the code 
cannot be ascertained and is potentially any one of a number of scenarios. 

The LOCK prefix makes the following instruction atomic; it guarantees that only one thread is 

able to operate on some particular point in RAM at a time. While only valid for instructions 
that reference memory, it prevents another thread from accessing the memory until the 
current thread has finished the operation. This assures no race conditions occur, but at the 
cost of speed. Adding the LOCK prefix to every line of code will make any threads that try to 

access the same RAM work in sequence, not parallel, thus negating the performance 
increase that would otherwise be gained through multithreading. 

lock add dword ptr [rcx], 2 

In the example, the LOCK prefix has been placed beside the instruction. Now no matter how 

many threads try to access this dword, whether they are running this exact code or any other 
code that references this exact point in RAM, they will be queued and their accesses will 
become sequential. This ADD instruction is atomic; it is guaranteed not to be interrupted. 

The LOCK prefix is useful for creating multithreading synchronization primitives such as 

mutexes and semaphores. There are no such primitives inherent to assembly and 
programmers must create their own or use a library. 

x86 Data Movement Instructions 

Move 

MOV [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32/64] 

The MOV instruction copies data from the second operand to the first. Both operands must be 

the same size. Although its name suggests that data will be moved, the data is actually 
copied; it will remain in the second operand after the instruction. 

The MOV instruction is the standard assignment operator. 

// C++ assignment 
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rax = 25 

 

; Assembly equivalent 

mov rax, 25 

 

Note: When the first operand is a 32-bit register, this instruction clears the top 32 bits of the 
64-bit version of the register to 0. This leads to a special use for MOV in x64. When you wish 
to clear the top 32 bits of an x86 register (for example, RDX), you can use the 32-bit version 
of the register as both operands: 

mov edx, edx ; Clears the top 32 bits of RDX to 0 

Flags: (None) 

Conditional Moves 

CMOVcc [reg16/32/64], [reg16/32/64mem16/32/64] 

This moves data from the second operand to the first operand, but only if the condition 
specified is true. This instruction reads the flags register to determine whether to perform a 
MOV or not. The condition code is placed in the mnemonic where the cc is; some common 

condition codes are listed in the following table. Simply replace the cc with the appropriate 

condition code to find the mnemonic you require. 

Table 11: Some Useful Conditions for CMOVcc 

Condition Code Meaning 

O Overflow, signed overflow 

NO Not overflow, no signed overflow 

Z or E Zero or equal to, signed and unsigned 

NZ or NE Not zero or not equal to, signed and unsigned 

B Below, unsigned less than 

A Above, unsigned greater than 

AE Above or equal, unsigned 

BE Below or equal, unsigned 

L Less, signed less than 

G Greater, signed greater than 

GE Greater or equal, signed 

LE Less or equal, signed 

C Carry, unsigned overflow 

NC Not carry, no unsigned overflow 
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Condition Code Meaning 

S Sign, answer was negative 

NS Not sign, answer was positive 

PE Parity even, 1's count in low byte is even 

PO Parity odd, 1's count in low byte is odd 

If the second is a memory location, it must be readable whether the instruction's condition is 
true or not. These instructions cannot be used with 8-bit operands, only 16 bits and above. 

It is often better to use conditional moves in place of conditional jumps. Conditional moves 
are much faster than branching (using Jcc instructions). A modern CPU reads ahead of the 

code it is actually executing, so that it can be sure the next instructions have been fetched 
from RAM when it requires them. When it finds a conditional branch, it guesses which of the 
two is most likely using a manufacturer-specific algorithm called a branch predictor. If it 
guesses incorrectly, there is a large performance penalty. All the machine code it had read 
and attempted to execute needs to be flushed from the CPU, and it has to read the code 
from the actual branch. It is for this reason that CMOVcc instructions were invented and why 

they are often so much faster than Jcc instructions. 

; To move data from AX to CX only if the signed value in DX is 

; equal to the value in R8W: 

cmp dx, r8w 

cmove cx, ax ; Only moves if dx = rw8 

 

; To move data from AX to CX only if the unsigned value in DX is 

; above (unsigned greater than) the value in R8W: 

cmp dx, r8w 

cmova cx, ax ; Only moves if dx > r8w? 

 

 

Note: With a similar behavior to that of the MOV instruction, this instruction clears the top 32 
bits of the 64-bit version of first operand when the operands are 32-bit registers. Even if the 
condition is false, the top will be cleared to 0, while the low 32 bits will be unchanged. If the 
condition is true, the top will be cleared to 0 and the value of the second operand will be 
moved into the low 32 bits. 

Flags: (None) 

CPUID: Function 1; read bit 15 of EDX to ensure a CPU is capable of conditional moves. 

Nontemporal Move 

MOVNTI [mem32/64], [reg32/64] 
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The nontemporal move instruction moves a value from a register into memory and lets the 
CPU know that the value will not be needed in cache. Different CPUs will do different things 
based on this. The CPU may ignore the nontemporal hint completely, placing the value in 
cache regardless of your instruction. Some CPUs will use the nontemporal hint to ensure the 
data is not cached, thus allowing more space in cache for data that will be needed again in 
the near future. 

Flags: (None) 

CPUID: Function1; read bit 26 (SSE2) of EDX to ensure a CPU is capable of the MOVNTI 
instruction. 

Move and Zero Extend 

MOVZX [reg16/32/64], [reg8/16/mem8/16] 

This moves the value from the second operand into the first operand, but extends it to the 
second operand's size by adding zeros to the left. The source operand can only be 8 bits or 
16 bits wide and it can be extended to 16 bits, 32 bits, or 64 bits. 

There is no limitation on the difference between the operands. This means you can use a 
byte as the second and extend it to a 64-bit qword. 

Flags: (None) 

Move and Sign Extend 

MOVSX [reg16/32/64], [reg8/16/mem8/16] 

This converts a smaller signed integer to a larger type by copying the smaller source value 
to the destination's low half, and then copying the sign of the source across the upper half of 
the destination. This instruction cannot sign extend from a 32-bit source to a 64-bit 
destination, which requires using the MOVSXD instruction instead. 

There is no limitation on the difference between the operands, meaning one can use a byte 
as the second and extend it to a 64-bit qword. 

Flags: (None) 

Move and Sign Extend Dword to Qword 

MOVSXD [reg64], [reg32/mem32] 

Converts a 32-bit signed integer to a 64-bit signed integer. The source is moved into the low 
half of the destination and the sign bit of the source is copied across all bits of the 
destination. 

Flags: (None) 

Exchange 

XCHG [reg8/16/32/64/mem8/16/32/64], [reg8/16/32/64/mem8/16/32/64] 
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This swaps or exchanges the values of the two operands. This instruction can be used in 
place of BSWAP for the 16-bit registers since BSWAP does not allow 8-bit operands; instead of 

bswap ax you can use xchg al, ah. 

This instruction is automatically atomic (applies the LOCK prefix automatically) if a memory 

operand is used. 

Flags: (None) 

Prefix: LOCK 

Translate Table 

XLAT [mem8] 

XLATB 

This instruction translates the value in AL to that of the table pointed to by RBX. Point RBX 
to a byte array of up to 256 different values and set AL to the index in the array you want to 
translate. 

This instruction does not affect the top 7 bytes of RAX; only AL is altered. The instruction 
accomplishes something like the otherwise illegal address calculation of adding RBX to AL. 

mov al, byte ptr [rbx+al] 

The memory operand version does exactly the same thing, and the memory operand is 
completely ignored. The only purpose of the memory operand is to document where RBX 
may be pointing. Do not be misled; no matter what the memory operand, the table is 
specified by RBX as a pointer. 

XLAT myTable ; myTable is completely ignored, [RBX] is always used! 

Flags: (None) 

Sign Extend AL, AX, and EAX 

CBW 

CWDE 

CDQE 

These instructions sign extend the various versions of RAX to larger versions. The operand 
is implied, and it is always AL for CBW, AX for CWDE, and EAX for CDQE. 

CBW copies the sign of AL across AH, effectively making AX the sign extended version of 

what was in AL. CWDE copies the sign of AX across the upper half of EAX, effectively sign 

extending from AX to EAX. CDQE sign extends EAX to RAX by copying the sign of EAX 

across the upper half of RAX, and sign extending EAX to RAX. 
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Flags: (None) 

Copy Sign of RAX across RDX 

CWD 

CDQ 

CQO 

These instructions create the signed combination of RDX:RAX used by the division 
instructions IDIV and DIV. They copy the sign of AX, EAX, or RAX across the same sized 

version of the RDX register. 

CWD copies the sign of AX across DX such that DX is FFFFh if AX was negative, or 0000h if 

AX was positive. This creates the 32-bit composite register DX:AX. CDQ copies the sign of 

EAX across EDX such that EDX becomes FFFFFFFFh if EAX is negative, and 0 if AX is 

positive. This creates the composite register EDX:EAX. CQO copies the sign of RAX across 

all bits of RDX. This creates the 128-bit composite register RDX:RAX. 

Flags: (None) 

Push to Data to Stack 

PUSH [reg16/32/64/mem16/32/64/imm16/32/64/seg16] 

This pushes a value to the stack. This results in the stack pointer being decremented by the 
size of the value in bytes and the value being moved into RAM. This is used to pass 
parameters between procedures, and also to save the return address prior to calling a 
procedure. 

In addition to its role as the backbone to passing parameters, the stack is also used to save 
temporary values to free the register for some other use. 

8-bit operands cannot be pushed to the stack, but you can push the segment registers FS 
and ES. Pushing an odd number of 16-bit values results in a misaligned stack pointer (one 
that is not on an address divisible by 32). You should always push an even number of 
values, as a misaligned stack pointer will result in a crash. 

Flags: (None) 

Pop Data from Stack 

POP [reg16/32/64/mem16/32/64/seg16] 

This pops data previously pushed onto the stack. This results in incrementing the stack 
pointer to point to the next data to be popped, and the last pushed data item being read from 
memory. 

Flags: (None) 
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Push Flags Register 

PUSHF 

PUSHFQ 

This pushes the flags register to the stack. You have the option of pushing only the low 16 
bits (PUSHF) or the entire 64-bit rflags register (PUSHFQ). This instruction is useful for saving 

the exact state of the flags register prior to calling procedures, since the procedures will most 
likely alter its state. This instruction and the pop flags register instructions can also be used 
to set the bits of the flags register: 

PUSHF   ; Push the state of the flags register 

POP AX  ; Pop the flags register into ax 

OR AX, 64 ; Set the bits using OR, BTS, BTR, or AND  

PUSH AX ; Push the altered flags 

POPF  ; Pop the altered flags back into the real flags register 

There are instructions to easily set and clear the carry and direction flags. See CLD, CLC, 

STC, and STD. Pushing and popping the flags register need not be used to set or clear these 

particular flags. 

Flags: (None) 

Pop Flags Register 

POPF 

POPFQ 

This pops the values from the stack into the flags register. The flags register cannot be 
directly manipulated like the general purpose registers (excepting the CLD, CLC, and STC 

instructions). If you need to set particular bits of rflags, follow the example in the push flags 
register instruction. 

Flags: Carry, Parity, Zero, Sign, Direction, Overflow 

Load Effective Address 

LEA [reg16/32/64], [mem] 

This loads the effective address of the memory location into the source. If the source is 16 
bits, only the lowest 16 bits of the address are loaded; if the source is 32 bits, then only the 
low 32 bits of the address are loaded into the source. Usually the source is 64 bits and the 
LEA instruction loads the entire effective address of the memory operand. 

This instruction actually calculates an address and moves this into the source. It is similar to 
the MOV instruction but LEA does not actually read memory. It just calculates an address.  
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.data 

myVar dq 23  ; Define a variable and set it to 23 

 

.code 

MyProc proc 

 mov rax, myVar; MOV will read the contents of myVar into RAX 

 lea rax, myVar; LEA loads the address of myVar to RAX 

 

 ; From the LEA instruction RAX has the address of myVar 

 mov qword ptr [rax], 0 ; So we could set myVar to 0 like this 

 ret 

MyProc endp 

End 

 

 

Note: Because this instruction actually just calculates an address and complex addressing 
modes (e.g. [RBX+RCX*8]), the instruction can be used, but it does not make any attempt to 
read from the address, and it can be used to perform fast arithmetic. 

For example, to set RAX to 5 * RCX you could use the following: 

LEA RAX, [RCX+RCX*4] 

To set RBX to R9+12 you could use the following: 

LEA RBX, [R9+12] 

This optimization technique and a multitude more are detailed in Michael Abrash's Black 
Book of Graphics Programming (see the Recommended Reading section for a link). 

Flags: (None) 

Byte Swap 

BSWAP [reg32/64] 

This reverses the order of the bytes in the source. This instruction was designed to swap the 
endianness of values. That is, it is used to change from little endian to big endian and vice 
versa. With the dominance of x86-based CPUs (x86 uses little endian), the desire to change 
endianness is almost gone, so the instruction is also useful in reversing character strings. 
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Note: If you need to "BSWAP reg16" you should use XCHG instruction. The BSWAP 
instruction does not allow for 16-bit parameters, so instead of “BSWAP AX” you can use 
“XCHG AL, AH”. 

Flags: (None) 

x86 Arithmetic Instructions 

Addition and Subtraction 

ADD [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

SUB [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

This adds or subtracts the second operand from the first and stores the result in the first 
operand. For addition it does not matter, but when using SUB it is important to note that the 

second operand is subtracted from the first, not the other way round. 

These instructions can be used for both signed and unsigned arithmetic; it is important to 
know how to read the flags, since the flags reflect both the signed and unsigned result. 

If you are doing unsigned arithmetic, you should read the carry flag. The carry flag will be 0 if 
there was no final overflow. If there was a final overflow (indicating a carry or borrow on the 
final bit of the operation), it will be set to 1. 

If you are doing signed arithmetic, or if there was no final carry or borrow on the second to 
last bit of the operation (since the final bit is the sign bit), the overflow flag will be 0. If there 
was a final carry or borrow, the overflow flag will be set to 1. 

If the result of the addition or subtraction is exactly 0, then the zero flag will be set. 

If the result was a negative number (this can be ignored if unsigned arithmetic is being 
done), then the sign flag will be set. 

Flags: Carry, Parity, Zero, Sign, Overflow 

Prefix: LOCK 

Add with Carry and Subtract with Borrow 

ADC [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

SBB [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 
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These instructions do the same as the ADD and SUB instructions, except that they also add or 

subtract the carry flag (they add or subtract an additional 1 or 0 depending on the state of 
the carry flag). They are useful for performing arbitrarily large integer additions or 
subtractions where the number being worked on does not fit inside a 64-bit register, but is 
broken into multiple 64-bit digits. 

You can also use these instructions to set a register to the carry flag. To set EAX to the carry 
flag you can use the following: 

MOV EAX, 0  ; Clear EAX to 0. 

   ; You can't use XOR here because that would clear 

   ; the carry flag to 0. 

ADC EAX, EAX ; Sets EAX to 1 or 0 based on the carry flag 

Flags: Carry, Parity, Zero, Sign, Overflow 

Prefix: LOCK 

Increment and Decrement 

INC [reg8/16/32/64/mem8/16/32/64] 

DEC [reg8/16/32/64/mem8/16/32/64] 

These instructions increment (add 1 to) or decrement (subtract 1 from) a register or memory 
variable. They are often used in conjunction with a register to create looping structures. A 
common pattern is something like the following which will loop 100 times: 

mov cx, 100 ; Number of times to loop 

 

LoopHead: ; Start of the loop 

 

  ; Body of the loop 

 

 dec cx  ; Decrement counter 

 jnz LoopHead ; Loop if there's more, i.e. 100 times 

 

 
Note: INC and DEC do not set the carry flag. If you need to perform INC or DEC but also set 
the carry flag, it is recommended to use ADD or SUB with 1 as the second operand. 

Flags:  Parity, Zero, Sign, Overflow 
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Prefix: Lock 

Negate 

NEG [reg8/16/32/64/mem8/16/32/64] 

This negates a signed number so that negative values become their positive counterparts 
and vice versa. This is the equivalent to flipping each of the bits and adding 1 to the result. 
This is called two’s complement of a number, as opposed to the one’s complement, which 
can be obtained with the NOT instruction. 

 

Note: x86 and x64 CPUs perform multiplication slowly compared to many of the bit 
manipulation instructions; if you need to multiply a number by -1 it is always quicker to use 
NEG than IMUL. 

Flags: Carry, Parity, Zero, Sign, Overflow 

Prefix: LOCK 

Compare 

CMP [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

This compares the two operands and sets the flags register to indicate the relationship 
between the two operands. 

This instruction actually does exactly the same as the SUB instruction, but it does not store 

the result, it just sets the flags. The second operand is subtracted from the first operand and 
the flags are set accordingly, but the destination operand is not altered. Usually the compare 
instruction is followed by conditional jumps or conditional moves. 

This instruction is used to set the flags and subsequently perform some conditional operation 
based on the results. It is very important to note how the operands are being compared by 
the CMP instruction, since comparisons such as >, >=, <, and <=  are important to the order of 

the operands. 

cmp dx, ax 

jg SomeLabel ; Jump if DX > AX 

 

 
Note: CMP op1, op2 is the same as asking, “what relation does the first operand have to the 
second,“ not the other way round. The second operand is subtracted from the first. 

Flags: Carry, Parity, Zero, Sign, Overflow 

Multiply 

MUL [reg8/16/32/64] 

IMUL [reg8/16/32/64] 
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IMUL [reg8/16/32/64], [reg8/16/32/64/mem8/16/32/64/imm] 

IMUL [reg8/16/32/64], [reg8/16/32/64/mem8/16/32/64], [imm8] 

MUL performs unsigned integer multiplication and IMUL performs signed integer 

multiplication. 

There is only a single-operand version of MUL, whereas IMUL has three versions. In the 

single-operand version of IMUL or MUL, the second operand is implied and the answer is 

stored in predefined implied registers. The implied second operand is the appropriate size of 
the RAX register, so if the operand is 8 bits, then the second implied operand is AL. If the 
source operand is 64 bits then the implied second operand is RAX. 

The answer to the multiplication is stored in AX for 8-bit multiplications. For the other data 
sizes (16-bit, 32-bit, and 64-bit operands), the answer is stored with the upper half in the 
appropriate size of RDX and the lower half in the appropriate size of RAX. This is because 
the original 16-bit CPUs did not possess registers large enough to store the possible 32-bit 
result from a 16-bit multiplication, so the composite 32-bit of DX:AX was used. When 32-bit 
CPUs came about, exactly the same thing happened. The 64-bit answer from a 32-bit 
multiplication could not be stored in a 32-bit register, so the composite of EDX:EAX is used. 
And now with our 64-bit CPUs, the 128-bit answer is stored in the composite of RDX:RAX. 

If anything ends up in the top half of the answer (AH, DX, EDX, or RDX), then the carry and 
overflow flags are set to 1, otherwise they are 0. 

Table 12 

Operand 1 Implied Operand 2 Answer 

8 bits AL AX 

16 bits AX DX:AX 

32 bits EAX EDX:EAX 

64 bits RAX RDX:RAX 

The two-operand version of IMUL simply multiplies the second operand by the first and 

stores the result in the first. The overflow (any bits from the result that do not fit into the first 
operand) are lost and the carry and overflow flags are set to 1. If there is no overflow, the 
entire answer fits into the first operand and the carry and overflow flags are set to 0. 

In the three-operand version of IMUL, the second operand is multiplied by the third operand 

(an immediate value) and the result is stored in the first operand. Once again, if the result 
overflows, both the carry and overflow flags are set to 1, otherwise they are cleared. 

 
Note: These instructions are quite slow, so if it is possible it may be quicker to swap a 
multiplication for a shift (SHL) or use the LEA instruction. 

Flags: Carry, Overflow  
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Signed and Unsigned Division 

DIV [reg8/16/32/64/mem8/16/32/64] 

IDIV [reg8/16/32/64/mem8/16/32/64] 

Unlike IMUL, there are only single-operand versions of the division instructions. DIV divides 

unsigned integers and IDIV divides signed integers. These instructions return both the 

quotient and remainder of the division. 

The single operand given to the instruction is the divisor (the y in x/y of the division). The 
dividend (the x in the x/y division) is implied. See the examples in Table 13 for the location of 
the implied dividend. The quotient ends up in the appropriate size of RAX and the remainder 
goes in RDX. 

 

Note: Division has always been one of the slowest instructions (perhaps 30–40 times slower 
than addition). This is still the case today. If possible, division should be avoided completely 
in tight loops. If a number is to be divided by a power of 2, use the SAR (Arithmetic Shift 
Right) instead of signed division and SHR instead of unsigned. If there are many divisions to 
be performed, consider using SSE. 

 

 

Note: Be very careful about what is in RDX. If the number being divided is small enough to fit 
entirely in the appropriate size of RAX, you must remember RDX! Either clear RDX using XOR 
for unsigned division or copy RAX's sign across it using CWD, CDQ, or CQO. 

For example, if we wanted to calculate 100/43 using signed dwords (this code would work 
for -100/43 as well), use something like the following: 

mov eax, 100 ; Move implied dividend into EAX 

mov ecx, 43 ; Move divisor into ECX 

cdq  ; Copy sign of EAX across EDX 

idiv ecx ; Perform division, EAX gets quotient, EDX gets remainder! 

Table 13: Summary of Divide Instruction Operands and Results 

Operand 1 
(Divisor) 

Implied 
Dividend 

Quotient Remainder 

8 bits AX AL AH 

16 bits DX:AX AX DX 

32 bits EDX:EAX EAX EDX 

64 bits RDX:RAX RAX RDX 

Flags: None (All flags are undefined after a divide!) 
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x86 Boolean Instructions 

Boolean And, Or, Xor 

AND [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

OR [reg8/16/32/64/mem8/16/32/64], [reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

XOR [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

These instructions AND, OR, or XOR the operands and store the result in the first operand. 

Each pair of bits (one from the source and the corresponding one from the destination) has 
the operation applied and the answer stored exactly the same as C++ Boolean operations. 

Table 14: AND Truth Table 

Bit 1 Bit 2 Result 

0 0 0 

0 1 0 

0 0 0 

1 1 1 

 

Table 15: OR Truth Table 

Bit 1 Bit 2 Result 

0 0 0 

0 1 1 

0 0 1 

1 1 1 

 

Table 16: XOR Truth Table 

Bit 1 Bit 2 Result 

0 0 0 

0 1 1 

0 0 1 

1 1 0 

The overflow and carry flags are cleared to 0 while the sign and zero flags indicate the 
result. 
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Note: Traditionally the XOR instruction is faster than MOV so programmers usually use XOR 
to clear a register to 0. If both operands to an XOR have exactly the same value, then XOR 
returns 0, so to clear RAX to 0 “XOR RAX, RAX” is more common than “MOV RAX, 0” even 
though today's CPUs probably perform the XOR no faster. 

Flags: Carry, Parity, Zero, Sign, Overflow 

Prefix: LOCK 

Boolean Not (Flip Every Bit) 

NOT [reg8/16/32/64/mem8/16/32/64] 

This instruction flips every bit in the operand given such that zeroes become ones and ones 
become zeroes. It is the bitwise or Boolean NOT and is sometimes called the one's 

complement, as opposed to the NEG instruction, which returns the two's complement. 

Flags: (None) 

Prefix: LOCK 

Test Bits 

TEST [reg8/16/32/64/mem8/16/32/64], 
[reg8/16/32/64/mem8/16/32/64/imm8/16/32] 

This instruction is to bitwise tests as CMP is to arithmetic tests. It performs a Boolean AND 

instruction between the source and destination, but does not set the result in the destination. 
Instead it just alters the flags. 

The carry flag is always reset to 0, the parity flag is set, and the zero and sign flags reflect 
the result of the Boolean AND. 

For example, if you wish to know if any bits in the third byte of EAX are set to 1, you could 
use TEST as follows: 

test eax, 00ff0000h  ; 00ff0000h is only 1's in the 3rd byte 

jnz ThereAreOnes     ; If zero flag isn't set, EAX has something in 3rd byte 

jz ThirdByteIsClear  ; If zero flag is set then EAX has nothing in 3rd byte 

If you wish to test whether RDX contains an even number, you can employ the TEST 

instruction as follows: 

test rdx, 1    ; Is the first bit 1? 

jz EvenNumber  ; If it is not, the number is even 

jnz OddNumber  ; Otherwise the number in RDX is odd 
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Flags:  Carry, Parity, Zero, Sign, Overflow 

Shift Right and Left 

SHL [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

SHR [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

SAR [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

This shifts the bits in the first operand by the amount specified in the second operand. These 
instructions shift the bits left (SHL), right (SHR), or arithmetically right (SAR). The second 

operand can be the CL register or an immediate 8-bit value (there is also a special version of 
this instruction when this operand is the immediate value 1). 

SHL can be used to multiply a signed or unsigned number by a power of 2. SHR can be used 

to divide an unsigned number by a power of 2. 

shl rax, 5 ; RAX = RAX * (2 ^ 5) 

 

shr rdx, 3 ; RDX = RDX / (2 ^ 3) where RDX is unsigned, use SAR for signed 

With the SHL and SHR instructions, the vacated bits on the right and left side are filled with 0 

just as the shift operations in C++. The arithmetic right shift (SAR) shifts the bits right, but fills 

the vacant bits on the left with the sign bit, so it can be used to divide a signed number by a 
power of 2. 

If the second operand is 0 (whether it is immediate or CL) the flags will not be set. 

If the shift is not zero, then the flags are affected. The carry flag holds the final bit that was 
shifted out of the destination. 

Flags: Carry, Parity, Zero, Sign, Overflow 

Rotate Left and Right 

ROL [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

ROR [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

This rotates the first operand by the number of bits specified in the source. The rotate 
operation is the same as bit shifting, only as bits are shifted out on the right (ROR) they 

reenter on the left, or as bits are shifted out on the left (ROL) they reenter on the right. 

 

Note: There are special versions of these rotate and shift instructions. If the immediate 
operand is used and it is exactly 1, the overflow flag is set. This indicates whether the sign of 
the first operand has changed. If the overflow flag is 1 after the instruction then the sign of 
the destination operand has been changed, otherwise it has stayed the same. 

Flags: Carry, Overflow 
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Rotate Left and Right Through the Carry Flag 

RCL [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

RCR [reg8/16/32/64/mem8/16/32/64], [CL/imm8] 

This rotates the destination left (RCL) or right (RCR) through the carry flag. These instructions 

are the same as the ROL and ROR rotate instructions, only they also rotate the carry flag from 

the flags register as if it was part of the destination. 

For RCL (rotate left through the carry flag), the register being rotated can be thought of as 

having the carry flag as its ninth bit (most significant). For RCR (rotate right through the carry 

flag), the register being rotated has the carry flag as the first bit (least significant). 

Flags: Carry, Overflow 

Shift Double Left or Right 

SHLD [reg/mem16/32/64], [reg16/32/64], [CL/imm8] 

SHRD [reg/mem16/32/64], [reg16/32/64], [CL/imm8] 

This shifts the first operand left (SHLD) or right (SHRD), and shifts in the bits of the second 

operand from the left (SHRD) or right (SHLD). The number of bits to shift is specified in the 

third operand. This instruction lets you shift the contents of a register into another register or 
memory location. The instruction does not alter the second operand. 

 

Note: There is no version of these instructions that take 8-bit operands; if an 8-bit SHLD or 
SHRD is required, you should use one of the 16-bit x86 registers. For example, you can use 
AX to shift the bits from AL to and from the bits in AH. 

Flags: Overflow, Sign, Zero, Parity, Carry 

Bit Test 

BT [reg16/32/64/mem16/32/64], [reg16/32/64/imm8] 

BTC [reg16/32/64/mem16/32/64], [reg16/32/64/imm8] 

BTR [reg16/32/64/mem16/32/64], [reg16/32/64/imm8] 

BTS [reg16/32/64/mem16/32/64], [reg16/32/64/imm8] 

This copies the bit at the zero-based index specified by the second operand from the first 
operand into the carry flag. 

bt eax, 4 ; Copy the 4th bit of EAX into the Carry Flag 
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A special version of these instructions is used when the first operand is memory and the 
second is a register. In this case, the entirety of RAM becomes a bit array instead of the 
regular byte array! The parameter passed becomes the base of the bit array (its zero bit, the 
rightmost, is the start of the bit array whose expanse is the remainder of RAM). All the rules 
for accessing memory still apply and segmentation faults will be generated. 

mov eax, 27873 ; We wish to know what the 27873th bit is. 

bt MyVariable, eax  ; Beginning from rightmost bit in MyVariable. 

BT tests the bit and copies its value to the carry flag. BTC tests the bit and then complements 

it in the first operand. BTR tests the bit and then resets it to 0 in the first operand. BTS tests 

the bit and then sets it to 1 in the first operand. 

Flags: Carry (all others except for direction are undefined)  

Prefix: LOCK (But not on BT since it cannot write to memory) 

Bit Scan Forward and Reverse 

BSF [reg16/32/64], [reg16/32/64/mem16/32/64] 

BSR [reg16/32/64], [reg16/32/64/mem16/32/64] 

This searches the second operand right to left (forward, BSF) or left to right (reverse, BSR) for 

the first bit set to 1. If a bit is found set to 1, the first operand is set to its index and the zero 
flag is cleared. If there is no bit set to 1 at all in the second operand, the zero flag is set to 1.  

The bit indices do not change regardless of the scan's direction. If there is only one bit set in 
the operand, both BSF and BSR will return exactly the same value. If there is more than one 

bit set, they will return different values. 

mov ax, 2 

bsf bx, ax ; Places 1 into bx 

bsr bx, ax ; Places 1 into bx 

Flags: Zero (all the rest except for direction are undefined) 

Conditional Byte Set 

SETO [reg8/mem8] Overflow OF = 1 

SETNO [reg8/mem8] Overflow OF = 0 

SETB, SETC, SETNAE [reg8/mem8] Below, carry CF = 1 

SETNB, SETNC, SETAE [reg8/mem8] Above or equal, carry CF = 0 
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SETZ, SETE [reg8/mem8] Equal, zero ZF = 1 

SETNZ, SETNE [reg8/mem8] Not equal, zero ZF = 0 

SETBE, SETNA [reg8/mem8] Below or equal, CF = 1 or ZF = 1 

SETNBE, SETA [reg8/mem8] Above, CF = 0 and ZF = 0 

SETS [reg8/mem8] Sign SF = 1 

SETNS [reg8/mem8] Sign SF = 0 

SETP, SETPE [reg8/mem8] Parity is even PF = 1 

SETNP, SETPO [reg8/mem8] Parity is odd PF = 0 

SETL, SETNGE [reg8/mem8] Less than SF <> OF 

SETNL, SETGE [reg8/mem8] Not less than SF = OF 

SETLE, SETNG [reg8/mem8] Less or equal ZF = 1 or SF <> OF 

SETNLE, SETG [reg8/mem8] Greater than ZF = 0 and SF <> OF 

These instructions set the operand to 0 or 1 based on whether the flags meet the specified 
condition. The destination becomes 1 if the condition is met, otherwise it becomes 0. The 
conditions all reference the flags so this instruction is usually placed after a CMP or TEST; it is 

similar to the CMOVcc instructions, only it moves 0 or 1 instead of moving the second 

operand into the first like the CMOVcc instructions. 

Flags: (None) 

Set and Clear the Carry or Direction Flags 

STC Set carry flag CF = 1 

CLC Clears the carry flag to 0 

STD Set direction flag DF = 1 

CLD Clears the direction flag 

STC sets the carry flag to 1 while CLC clears it to 0. Likewise, STD sets the direction flag to 1 

while CLD clears it to 0. Setting or clearing the direction flag is useful for setting the direction 

the string instructions move their automatic pointers. 

Flags: Carry (STC and CLC), Direction (STD and CLD) 
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Jumps 

JMP Unconditionally jump 

JO Jump on overflow 

JNO Jump on no overflow 

JB,JC,JNAE Jump if below, CF = 1, not above or equal 

JNB,JNC,JAE Jump if not below, CF = 0, above or equal 

JZ,JE ZF = 1, jump if equal 

JNZ,JNE ZF = 0, jump if not equal 

JBE,JNA Jump if below or equal, not above, CF or ZF = 1 

JNBE,JA Jump if not below or equal, above, CF and ZF = 0 

JS Jump on sign, SF = 1 

JNS Jump on no sign, SF = 0 

JP,JPE Jump on parity, parity even, PF = 1 

JNP,JPO Jump on no parity, parity odd, PF = 0 

JL,JNGE Jump if less, not greater or equal, SF != OF 

JNL,JGE Jump if not less, greater, or equal, SF = OF 

JLE,JNG Jump if less or equal, not greater than, ZF = 1 or SF != OF 

JNLE,JG Jump if not less or equal, greater than, ZF = 0 and SF = OF 

JCXZ Jump if CX = 0 

JECXZ  Jump if ECX = 0 

JRCXZ  Jump if RCX = 0 

Each of the jump instructions takes a single operand. This operand is usually a label defined 
somewhere in the code but it is actually fairly flexible. The addressing modes available to the 
Jxx instructions are as follows: 

 JMP [reg/mem/imm] 

 Jcc [imm8/16/32] 

 JcCX [imm/8/16/32] 

The instructions are sometimes called branching; the RIP register will fall through to the 
operand if the condition is true, otherwise the RIP will fall through to the next line of code. 

Usually the operand is a label. 
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 cmp edx, eax 

 jg SomeLabel ; Jump if greater 

 

  ; Some code to skip 

 

SomeLabel: 

Flags: (None) 

Call a Function 

CALL [reg16/32/64/mem16/32/64] 

CALL [imm16/32] 

This calls a procedure. This instruction pushes the offset of the next instruction to the stack 
and jumps the RIP register to the procedure or label given as the first operand. It is 
essentially exactly the same as a jump instruction, only the return address is pushed to the 
stack so the RIP can return and resume execution of the calling function using a RET 

instruction from within the body of the subprocedure. 

 
Note: There used to be a distinction between near and far calls. Far calls ended up in another 
code segment. However, since x64 uses a flat memory model, all calls are near calls. 

Flags: (None) 

Return from Function 

RET 

This instruction returns from a function called with the CALL instruction. This is achieved by 

popping from the return address into the RIP. 

Flags: (None) 

x86 String Instructions 

Load String 

LODS [mem8/16/32/64] 

LODSB  Load byte 

LODSW Load word 

LODSD Load dword 
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LODSQ Load qword 

These instructions load a byte, word, dword, or qword into the appropriate size of the RAX 
register, and then they increment (or decrement depending on the direction flag) RSI to point 
to the next byte, word, dword, or qword. They read whatever RSI (the source index register) 
is pointing to in RAX and then move RSI to point to the next data of the same size. 

The REP prefix can be used, but it is pointless since no operation can be performed on the 

consecutive values being stored in RAX; the loop will simply run through the string and leave 
you with only the final value in RAX. 

 

Note: Even the versions with a memory operand read only from whatever RSI is pointing to. 
The memory operand is almost completely ignored. Its only purpose is to indicate both what 
size data should be read and into what version of RAX it should be placed. 

 

 
Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will 
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment. 

Flags: (None) 

Prefix: REP 

Store String 

STOS [mem8/16/32/64] 

STOSB Store byte 

STOSW Store word 

STOSD Store dword 

STOSQ Store qword 

This stores AL, AX, EAX, or RAX to the memory pointed to by RDI and increments (or 
decrements depending on the direction flag) RDI. This instruction can be used to quickly set 
a large number of values to the same thing. RDI is incremented or decremented by the size 
of the data type each repetition. 

To set 100 words to 56, make sure RDI is pointing to the start of the 100 words in memory. 

lea rdi, someArray ; Point RDI to the start of the array 

mov rcx, 100 

mov ax, 56 

rep stosw 

 

 

Note: Even the versions with a memory operand only store to RDI. The memory operand is 
almost completely ignored. The memory operand‘s only purpose is to indicate which of AL, 
AX, EAX, or RAX should be stored and how much to increment RDI. 
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Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will 
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment. 

Flags: (None) 

Prefix: REP 

Move String 

MOVS [mem8/16/32/64], [mem8/16/32/64] 

MOVSB 

MOVSW 

MOVSD 

MOVSQ 

This moves the byte, word, dword, or qword pointed to by RSI to that pointed to by RDI and 
increments both RSI and RDI to point to the next (or decrements depending on the direction 
flag). Both RSI and RDI are incremented by the size of the data type each repetition. This 
instruction can be used to quickly move data from one array to another. Set RSI at the start 
of the source array and RDI to the start of the destination and place the number of elements 
to copy into RCX. 

lea rsi, SomeArray 

lea rdi, SomeOtherArray 

mov rcx, 1000 

 

rep movsq ; Copy 8000 byes 

 

 
Note: Even the versions with memory operands copy data from RSI to RDI; the memory 
operand's only use is to specify the size of the data to copy. 

 

 
Note: If the direction flag, DF, is 1, as set by the STD instruction, the string instructions will 
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment. 

Prefix: REP 

Scan String 

SCAS [mem8/16/32/64], [mem8/16/32/64] 

SCASB 

SCASW 
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SCASD 

SCASQ 

This compares the byte, word, dword, or qword pointed to by RDI to the appropriate size of 
RAX and sets the flags accordingly. It then increments (or decrements depending on the 
direction flag) RDI to point to the next element of the same size in RAM. This instruction is 
meant to be used with the REPE, Z, NE, and NZ prefixes, and it scans a string for the element 

in RAX or until the count in RCX reaches 0. 

To scan an array of bytes up to 100 bytes to find the first occurrence of the character “a,” 
use the following: 

 lea rdi, arr     ; Point RDI to some array 

 mov rcx, 100     ; Load max into RCX 

 mov al, 'a'      ; Load value to seek into AL 

repnz scasb             ; Search for AL in *RDI 

 jnz NotFound     ; If the zero flag is not set after the  

       ; scan AL is not in arr 

 lea rax, [arr+1] ; Otherwise we can find the index of the  

       ; first occurrence of AL 

 sub rdi, rax     ; By subtracting arr+1 from the address where we found AL 

 

 

Note: Even the versions with a memory operand scan only whatever RDI is pointing to. The 
memory operand is almost completely ignored. The memory operand’s only purpose is to 
indicate which of AL, AX, EAX, or RAX should be compared to RDI and how much to 
increment RDI. 

 

 
Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will 
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment. 

Flags: Overflow, Sign, Zero, Parity, Carry 

Prefix: REPE, REPZ, REPNE, REPNZ 

Compare String 

CMPS [mem8/16/32/64], [mem8/16/32/64] 

CMPSB 

CMPSW 

CMPSD 

CMPSQ 
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These instructions compare the data pointed to by RSI to the data pointed to by RDI, and set 
the flags accordingly. They increment (or decrement depending on the direction flag) RSI 
and RDI depending on the operand size. They can be used to scan *RSI and *RDI for the 
first byte, word, dword, or qword that is different or the first that is the same between the two 
arrays. 

 

Note: Even the versions with a memory operand compare only RSI to RDI. The memory 
operand is almost completely ignored. The memory operand‘s only purpose is to indicate 
how much RDI and RSI should be incremented or decremented each round. 

 

 
Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will 
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment. 

Prefix: REPE, REPZ, REPNE, REPNZ 

x86 Miscellaneous Instructions 

No Operation 

NOP 

This instruction does nothing but wait for a clock cycle. However, it is useful for optimizing 
pipeline usage and patching code. 

Flags: (None) 

Pause 

Pause 

This instruction is similar to NOP, but it also indicates to the CPU that the thread is in a spin 

loop so that the CPU can use any power-saving features it has. 

Flags: (None) 

Read Time Stamp Counter 

RDTSC 

This instruction loads the time stamp counter into EDX:EAX. The time stamp counter is the 
number of clock cycles that have elapsed since the CPU was reset. This is useful for getting 
extremely fine grained timing readings. 

The following could be a small function to read the time stamp counter: 

ReadTimeStamp proc 

 rdtsc 

 shl rdx, 32 
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 or rax, rdx 

 ret 

ReadTimeStamp endp 

Getting performance readings at the level of single clock cycles is difficult, since Windows is 
constantly switching between the running applications and multitasking. The best thing to do 
is run tests repeatedly. You should test how long the ReadTimeStamp procedure takes, and 

subtract this from subsequent tests, and then take the average or best clock cycle readings 
as the benchmark. 

Flags: (None) 

Loop 

LOOP [Label] 

LOOPE [Label] 

LOOPNE [Label] 

LOOPZ [Label] 

LOOPNZ [Label] 

These will decrement the RCX counter and jump to the specified label if a condition is met. 
For example, the LOOP instruction decrements RCX and repeats from the label until it is 0. 

Then it does not branch, but falls through to execute the code following the loop. The LOOP 

instructions are almost never used, because the manual decrement and jump is faster. 

dec rcx 

jnz LoopTop 

In addition to being faster, the manual two-line version allows the programmer to specify 
which register is used as the counter where LOOPxx makes use of RCX. 

The LOOP instructions are interesting, but they do not set the flags register at all where the 

manual DEC and JNZ does. When RCX reaches 0 in the LOOP, the RIP register will fall 

through, but the zero flag will not be altered from the last setting it had in the body of the 
loop. 

If it is important for a loop’s structural components not to alter the flags register, then using 
the LOOP instruction in place of the manual two-line loops may be worth investigating. With 

LOOPE and LOOPZ, if the zero flag is 1, the loop falls through. With LOOPNE and LOOPNZ, if the 

zero flag is 0, the loop falls through. 

The loops can be broken either by RCX becoming 0 or on the condition of the zero flag. This 
may lead to some confusion. If the zero flag happens to be set during the first iteration of a 
long loop, then the LOOPE instruction will not decrement RCX and repeat the loop. The loop 

will break on the condition of the zero flag. 
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As mentioned previously, the LOOP instructions are often not used. They are slower than the 

two-line manual loop tail in the last sample because they do more than simply DEC the 

counter and jump. If the LOOP instructions happen to perform exactly what you need, they 

may give a good performance increase as opposed to checking the zero flag. However, in 
the vast majority of cases a simple DEC and JNZ will be faster. 

CPUID 

MOV EAX, [function] ; Move the function number into EAX first 

CPUID 

This instruction returns information on the executing CPU, including data on the CPU 
vendor, cache size, number of cores, and the available instruction sets. 

The CPUID instruction itself may not be available on older CPUs. The recommended method 

for testing if the CPUID instruction can be executed is to toggle the 21st bit of the flags 

register. If this bit can be set to 1 by the program, then the CPU understands the CPUID 

instruction. Otherwise, the CPU does not understand the CPUID instruction. 

The following is an example of testing for the availability of the CPUID instruction: 

 pushfq  ; Save the flags register 

 push 200000h ; Push nothing but bit 21 

 popfq  ; Pop this into the flags 

 pushfq  ; Push the flags again 

 pop rax ; This time popping it back into RAX 

 popfq  ; Restore the original flag's state 

 cmp rax, 0 ; Check if our bit 21 was changed or stuck 

 je No_CPUID ; If it reverted back to 0, there's no CPUID 

Not all CPUs are able to execute all instructions. Modern CPUs are usually capable of 
executing more instruction sets than older ones. In order to know if the CPU executing your 
code is aware of any particular instruction set, you can call the special CPUID instruction. 

The CPUID instruction takes no operands, but EAX is implied. The value in EAX when the 

instruction is called is read by the CPU as the function number. 

There is a great number of different functions, and each CPU manufacturer is able to define 
its own. Manufacturer-specific functions usually have the top 16 bits of EAX set to 8000, for 
example. The functions for determining many instruction sets are standard across Intel, 
AMD, and VIA. 

To call a particular function, first MOV the function number into EAX and then use the CPUID 

instruction. 
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mov eax, 1 ; Function number 1 

cpuid  ; No formal parameters but EAX is implied! 

CPUID function 1 (calling CPUID when EAX is set to 1) lists the feature identifiers; feature 

identifiers are the instruction sets that the CPU knows. It lists the possible instruction sets by 
storing a series of bit flags in ECX and EDX. Bits are set to 1 to indicate that the CPU is 
capable of a particular feature, and 0 to indicate that it is not. In the following table, some of 
the most useful features have been listed with the register (ECX or EDX) and the bit number 
to check for the feature. There are many more features with additional features added with 
each new generation of CPU. 

Table 17: Abridged Feature Identifiers 

Function 
Number (EAX) 

Register 
(ECX/EDX) 

Bit Index in 
ECX/EDX 

Feature 

1 
ECX 

28 
AVX 

1 
ECX 

25 
AES 

1 
ECX 

23 
Pop Count, POPCNT 

1 
ECX 

20 
SSE4.2 

1 
ECX 

19 
SSE4.1 

1 
ECX 

9 
SSSE3 

1 
ECX 

0 
SSE3 

1 
EDX 

26 
SSE2 

1 
EDX 

25 
SSE 

1 
EDX 

23 
MMX 

1 
EDX 

15 
Conditional Moves 

1 
EDX 

4 
RDTSC 

1 
EDX 

0 
x87 FPU 
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The following example tests for MMX and SSE4.2. In the assembly file, the register (ECX or 
EDX) and the bit number can be changed to test for any feature. For a full list of what CPUID 

can do on AMD chips, consult CPUID Specification by AMD. For a full list of what CPUID can 

do on Intel chips, consult Intel Processor Identification and the CPUID Instruction by Intel. 
Links to the manuals and other recommended reading can be found at the end of this book. 

// This is the C++ file 

#include <iostream> 

using namespace std; 

extern "C" bool MMXCapable(); 

extern "C" bool SSE42Capable(); 

 

int main() 

{ 

 if(MMXCapable()) cout<<"This CPU is MMX capable!"<<endl; 

 else cout<<"This CPU does not have the MMX instruction set :("<<endl; 

 

 if(SSE42Capable()) cout<<"This CPU is SSE4.2 capable!"<<endl; 

 else cout<<"This CPU does not have the SSE4.2 instruction set"<<endl; 

 cin.get(); 

 return 0; 

} 

 

; This is the assembly file 

.code 

; bool MMXCapable() 

; Returns true if the current CPU knows MMX 

; else returns false 

MMXCapable proc  

 mov eax, 1  ; Move function 1 into EAX 

 cpuid   ; Call CPUID 
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 shr edx, 23  ; Shift the MMX bit to position 0 

 and edx, 1  ; Mask out all but this bit in EDX 

 mov eax, edx  ; Move this answer, 1 or 0, into EAX 

 ret   ; And return it 

MMXCapable endp 

 

; bool SSE42Capable() 

; Returns true if the current CPU knows SSE4.2 

; else returns false 

SSE42Capable proc 

 mov eax, 1  ; Move function 1 into EAX 

 cpuid   ; Call CPUID 

 shr ecx, 20  ; Shift SSE4.2 bit to position 0 

 and ecx, 1  ; Mask out all but this bit 

 mov eax, ecx  ; Move this bit into EAX 

 ret   ; And return it 

SSE42Capable endp 

end 

 

 

Note: It was common in the past to simply call an instruction and let an exception be thrown 
by the CPU if the instruction set was not supported. There is a slight possibility that a given 
machine code will execute on an older CPU without throwing an exception, but it will actually 
execute some other instruction. For this reason, the CPUID instruction is the recommended 
method for testing if instruction sets are available. 



 

 

 100 

Chapter 8  SIMD Instruction Sets 

SIMD stands for Single Instruction, Multiple Data. It is a type of parallel programming. The 
idea of SIMD is to perform the same instructions on multiple pieces of data at once. The 
SIMD instructions added to the x86 architecture were originally used to speed up multimedia 
processing. It is common in multimedia programming to perform the same operation for 
every pixel on the screen or perhaps every byte in a stream of sound data. 

Since its introduction, hundreds of new instructions have been added to x86 CPUs. It is a 
very different way to program. It requires a new set of eyes, debugging skills, new 
algorithms, and data structures. The SIMD instruction sets have their own new registers and 
instructions. These new registers are often larger than the original x86 registers, and they 
can be thought of as holding a small array of values. For instance, a 64-bit SIMD register 
can hold an array of 8 bytes, 4 words, or 2 dwords. 

Many of the SIMD style instructions operate on corresponding elements in two registers. 
Addition of bytes in SIMD involves adding the two lowest bytes from both operands and 
storing the answer in the lowest byte, adding the two second-to-lowest and storing this in the 
second lowest byte of the answer—this goes on until the two top bytes are added together, 
and their result is stored in the top element of the answer. Although many instructions work 
in this manner, just as many do something completely different. 

As an example, consider a loop in scalar programming which adds the elements from two 
arrays. Perhaps the arrays contain 8 elements. The elements might be added with C++ as 
follows: 

for(int i = 0; i < 8; i++) 

{ 

 arr1[i] += arr2[i]; 

} 

This results in around twenty-four lines of assembly being generated when optimizations are 
switched on in Visual Studio. The C++ compiler unrolls the entire loop and uses eight ADD 

instructions. Unrolling loops is a good optimization technique, and modern compilers are 
experts at exactly this kind of optimization. 

However, using even the most basic SIMD instructions (MMX is used in this example), the 
same addition of 8-byte arrays can be accomplished in just four instructions. 

movq mm0, qword ptr arr1 ; Load 8 bytes from arr1 into MM0 

paddb mm0, qword ptr arr2 ; Add the 8 bytes from arr2 

movq qword ptr arr1, mm0 ; Store the answer back in arr1 

emms    ; Close multimedia state 
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The most important thing to note is that there is no loop in the SIMD version. All eight 
iterations of the loop can be carried out in a single instruction (PADDB, the add packed bytes 

instruction). The addition instruction is a single step for the CPU; it takes one or two clock 
cycles (depending on the CPU and pipeline issues, and assuming the arrays are in cache). 
MMX can perform eight operations at once, but it will not perform eight times the speed of 
regular scalar code. While it won’t perform eight times faster, you will see a performance 
increase, particularly with compute-intensive functions. Compute-intensive functions are 
those that load data from RAM, perform many operations on the data, and then store the 
results. 

SIMD Concepts 

Saturating Arithmetic versus Wraparound Arithmetic 

In the regular x86 instructions, when a result is too large to fit into the destination, the top of 
the result is lost and only the bits that do fit into the destination are actually written. This 
effectively wraps the results around at the top and bottom, such as the following: 

mov al, 255 

inc al  ; AL will wrap around to 0 since 256 is too large 

 

mov al, 0 

dec al  ; AL will wrap to 255 if unsigned and -1 if signed 

This is called wraparound arithmetic, or modular arithmetic. It is often all that is needed, but 
there are some problems. Many operations on multimedia do not benefit from this type of 
arithmetic. For example, consider an algorithm to increase the brightness of an image by 
adding some value to each pixel. Some of the pixels may already be almost white, having a 
value near 255, 255, 255, which is a white pixel in the standard RGB24 color modes. If the 
extra brightness is added to these pixels, they will suddenly go very dark. Our original pixel 
has a value of 252 for its red component, we add 12 to the brightness to make 264, but due 
to wrapping round at 256, we will end up with 8. Our pixel will go from very light to very dark, 
making the adjust brightness algorithm appear incorrect. 

For this exact reason, saturating arithmetic was incorporated into many instructions in the 
SIMD instruction sets. Saturating arithmetic sets a maximum and minimum value for each of 
the data types, and instead of wrapping around, the answer will be capped at these values. 
The 252 + 12 in our example would be saturated to 255. 

Each data size and type (unsigned or signed) has two saturating values: one is the minimum 
and the other is the maximum. 

Table 18: Saturating Values 

Data Type Minimum Saturate Maximum Saturate 

Unsigned Byte 0 255 
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Data Type Minimum Saturate Maximum Saturate 

Signed Byte -128 127 

Unsigned Word  0 65535 

Signed Word -32768 32767 

Unsigned Dword 0 4294967295 

Signed Dword -2147483648 2147483647 

Packed/SIMD versus Scalar 

Operations on more than one data element at once are called SIMD or packed operations. 
Operations on single elements, as in the x86 instructions, are called scalar. Some of the 
SIMD instruction sets perform scalar operations as well as SIMD. 

MMX 

MMX was the first SIMD instruction set added to the x86 architecture. It was added by Intel 
in 1996 (other x86 CPU manufacturers also include these SIMD instruction sets such as 
AMD and VIA). At the time it was added, Intel did not wish to add new registers to the CPUs. 
Instead, they used the same registers as the x87 floating point unit (the MMX registers are 
said to be aliased to the x87 registers and vice versa). The x87 floating point unit has a dual 
role; it can perform its regular x87 floating point arithmetic or it can be in its multimedia 
mode, performing MMX instructions. The x87 unit will change to MMX mode simply by 
executing an MMX instruction, but once the program is finished with MMX, you have to call 
the EMMS (exit multimedia state) instruction to have the x87 return to its regular floating 
point mode. 

It is important to note that the MMX instructions were also added to the SSE2 instruction set. 
When using these instructions with the SSE registers, they perform double the workload, 
working with 128-bit SSE registers instead of the 64-bit MMX registers. Most of the SSE 
instruction sets work with floating point, but you can also use any of the MMX instructions in 
conjunction with 128-bit SSE registers to perform operations on integers if the CPU is SSE2 
capable. Almost all CPUs today are SSE2 capable. Windows 8 and Office 2013 require 
SSE2 capable CPUs, which indicates how widespread SSE2 CPUs are. Where the 
difference between the MMX and SSE2 versions of the instruction is important, I have 
included the instruction in both the MMX and the SSE reference sections. 
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Registers 

There are eight MMX registers aliased to the x87 registers (ST0 to ST7). We will not 
examine x87 in this book, since SSE has made it mostly legacy. The MMX registers are 
named MM0, MM2, MM3, MM4, MM5, MM6, and MM7. Each register is 64 bits wide. An 
MMX register can be used as 8 bytes, 4 words, 2 dwords, or occasionally a single qword. 
The size of data that an MMX register is being used for is dictated by the instruction. The 
data size a particular register is holding is not fixed; you are free to change it whenever you 
need to. Traditionally, the registers are drawn as arrays with the first byte on the far right and 
the last one on the left. The bytes in each element are also an array of bits, with the least 
significant bits on the right of each element and the most significant bits on the left. 

The MMX registers can be used in the following ways: 

8 bytes  

4 words  

2 Dwords  

1 Qword  

Most MMX instructions take two operands; the first is the destination and the second is the 
source. Like the x86 instructions, the destination often also acts as a source. For instance, 
with the add instructions, the destination becomes the destination plus the source. Since this 
might be misleading, I will use the terms operand 1 and 2 or parameter 1 and 2. 

Referencing Memory 

To reference memory in an MMX instruction, use the following: 

movq mm5, qword ptr [A] 

A is an array of at least 64 bits. You cannot use A by itself (without the pointer prefix); MMX 

needs to know there is a qword of data there. You can also use the x86 complex addressing 
modes. 

mov mm0, qword ptr [rax+rdx*2] 

mov qword ptr [rdx], mm3 

Most MMX (and SSE as well) instructions do not allow for the first operand to be memory. 
Usually, the first operand must be an MMX register and the second can be either a MMX 
register or a memory operand. 

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 

Word 3 Word 2 Word 1 Word 0 

Dword 0 Dword 1 

Qword 0 
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Exit Multimedia State 

EMMS 

The eight MMX registers physically use the floating point unit's ST(x) registers. As soon as 
an MMX instruction is executed, the CPU enters multimedia state, or MMX mode. To resume 
regular floating point use for these registers, you must call EMMS. 

movq mm0, mm1 ; Call some MMX instruction to begin MMX mode 

emms ; After you are done in MMX, call emms to restore floating point mode 

 

 

Note: Almost all floating point arithmetic is performed by using the SSE scalar instructions 
instead of the rather lonesome and increasingly neglected x87 unit. In x64, not calling EMMS 
will usually not cause a problem. EMMS is always a good idea though, since it may be 
difficult to track the bugs that this type of heinous neglect of good practices would 
instantiate. 

Do not call EMMS in the middle of a loop, since (particularly on older Intel CPUs) the 
instruction is quite slow to execute. It is better to do large chunks of MMX processing 
together and call this instruction only once all MMX processing is complete. 

Moving Data into MMX Registers 

There are two data movement instructions in MMX; one moves 64 bits of data and the other 
moves 32 bits. When moving 32 bits, if the destination operand is an MMX register, the top 
is cleared to 0 and the data is only moved into the bottom half. 

Move Quad-Word 

MOVQ [mmx], [mmx/mem64] 

MOVQ [mmx/mem64], [mmx] 

This instruction copies 64 bits of data from the second operand into the first. 

Move Dword 

MOVD [mmx], [mmx/mem32/reg32] 

MOVD [mmx/mem32/re32], [mmx] 

This instruction moves 32 bits from the second operand into the bottom of the MMX register 
first operand; it can also be used to move 32 bits of data from a general purpose register or 
memory location to an MMX register. 

 
Note: When the first operand is an MMX register, this instruction clears the top 32 bits to 0. 

mov eax, 12 
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mov mm0, eax ; MM0 would have the following dwords: [0, 12] 

Boolean Instructions 

PAND [mmx], [mmx/mem64] 

POR [mmx], [mmx/mem64] 

PXOR [mmx], [mmx/mem64] 

PANDN [mmx], [mmx/mem64] 

These instructions apply the Boolean operation between the bits of the two operands and 
store the result in the first operand. 

Packed AND NOT (PANDN) has no x86 equivalent; it performs a bitwise AND with the source 

and the inverse (bitwise NOT) of the destination (first operand). The first operand is 

complemented, then has the AND performed with the second operand. For truth tables of the 

other bitwise instructions, please consult the entries for OR, AND, and XOR in the x86 

instruction set. 

Table 19: Truth Table for PANDN 

Operand 1 Operand 2 Result in Operand 1 

0 0 0 

0 1 1 

1 0 0 

1 1 0 

 
Note: To clear an MMX register to 0, you can use PXOR with the register to clear as both 
operands. 

pxor mm0, mm0 ; Clear MM0 to 0 

pandn mm0, mm0 ; The new ANDN instruction will clear a register to 0 

There is no difference between the data types when using the Boolean instructions. Using 
XOR on data in words produces exactly the same result as using XOR on data in bytes. Unlike 

many other instructions, the Boolean instructions do not have any specified data types. 

Shifting Bits 

PSLLW [mmx], [mmx/mem64/imm8] ; Left, Logical, Words 

PSLLD [mmx], [mmx/mem64/imm8] ; Left, Logical, dwords 

PSLLQ [mmx], [mmx/mem64/imm8] ; Left, Logical, qword 

PSRLW [mmx], [mmx/mem64/imm8] ; Right, Logical, Words 
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PSRLD [mmx], [mmx/mem64/imm8] ; Right, Logical, dwords 

PSRLQ [mmx], [mmx/mem64/imm8] ; Right, Logical, qword 

PSRAW [mmx], [mmx/mem64/imm8] ; Right, Arithmetic, Words 

PSRAD [mmx], [mmx/mem64/imm8] ; Right, Arithmetic, dwords 

These instructions shift the elements in the destination right or left by the number of bits 
specified in the second operand. Left shifting effectively multiplies data by a power of two, 
while right shifting shifts the bits right, and divides by a power of two. 

Logical shifts move 0 into the vacant spots, while the arithmetic right shifts duplicate the sign 
bit and can be used for signed division of integers by powers of two. 

 

Note: If the second operand is a 64-bit memory location or an MMX register, it is not read 
SIMD style. It is read as a single 64-bit number. You cannot shift the individual elements in an 
MMX register by different amounts; they are all shifted the same number of bits. 

The shifting instructions do not wrap data around, so you can clear a register to 0 by shifting 
left more bits than the data size, and shifting left 64 bits or more clears the register to 0. 

You can also copy the sign of elements across the entire element by using the arithmetic 
right shifts and a value greater or equal to the data element size. 

psraw mm0, 16; Sets each of MM0's words to 1s if negative, otherwise 0 

Arithmetic Instructions 

PADDB [mmx], [mmx/mem64] ; Add unsigned/signed bytes, wrap around 

PADDSB [mmx], [mmx/mem64] ; Add signed bytes, saturate 

PADDUSB [mmx], [mmx/mem64] ; Add unsigned bytes, saturate 

PADDW [mmx], [mmx/mem64] ; Add unsigned/signed words, wrap around 

PADDSW [mmx], [mmx/mem64] ; Add signed words, saturate 

PADDUSW [mmx], [mmx/mem64] ; Add unsigned words, saturate 

PADDD [mmx], [mmx/mem64] ; Add unsigned/signed double-words, wrap 
around 

PSUBB [mmx], [mmx/mem64] ; Subtract signed/unsigned bytes, wrap 
around 

PSUBSB [mmx], [mmx/mem64] ; Subtract signed words, saturate 

PSUBUSB [mmx], [mmx/mem64] ; Subtract unsigned bytes, saturate 
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PSUBW [mmx], [mmx/mem64] ; Subtract unsigned/signed words, wrap 
around 

PSUBSW [mmx], [mmx/mem64] ; Subtract signed words, saturate 

PSUBUSW [mmx], [mmx/mem64] ; Subtract unsigned words, saturate 

PSUBD [mmx], [mmx/mem64] ; Subtract signed/unsigned doubles 

These instructions add and subtract bytes, words, or dwords. Each element in the second 
operand is subtracted from or added to the corresponding element in the first operand, and 
the results from the packed additions and subtractions are stored in the first operand. These 
instructions have the option to use wrap around or saturation arithmetic. There are no 
saturation or unsigned instructions that operate on dwords in MMX; if this functionality is 
required, then use SSE. 

There is an instruction for each data type where it does not matter if the data type is signed 
or unsigned, since the result is the same. PADDB, PADDW, PADDD, PSUBB, PSUBW, and PSUBD 
all give the same answer if the data is signed or unsigned. None of them use saturation. 

 

Note: When you need to detect what elements overflowed in SIMD operations, you can 
perform both the saturating version of the operation and the wrap around version, and 
compare the results. Any elements that are not identical in both answers have overflowed. 
This is useful because there is no carry flag or overflow available in SIMD. 

The instruction PADDW mm0, mm1 is illustrated as follows: 

 

Figure 16 

The next example is of PSUBW mm0, mm1. Note the second operand is subtracted from the 

first. 

 

Figure 17 
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Multiplication 

PMULHW [mmx], [mmx/mem64] ; Multiply and keep high 16 bits of 32 bit 
result 

PMULLW [mmx], [mmx/mem64] ; Multiply and keep low 16 bits of 32 bit 
result 

PMADDWD [mm0], [mmx/mem64] ; Multiply and add words to double-words 

You can multiply two MMX registers or an MMX register with a memory location, but all 
these instructions only operate on signed words. For multiplication of other integer data 
types, use SSE2. When multiplying, you can choose to keep either the top 16 bits (PMULHW) 

or the bottom 16 bits (PMULLW) of the multiplication. 

There is also a fused multiply add instruction (PMADDWD, assumed words are signed) that 

allows you to multiply and add in a single operation with added precision. Each word in the 
destination is multiplied by the corresponding word in the destination to give four results: A, 
B, C, and D. A is then added to B, C is added to D, and both these answers form the final 
two dwords in the destination. The initial multiplication is able to result in 32 bits since a 
larger temporary register is used. 

 

Note: If one of your operands for the PMADDWD is { 1, 1, 1, 1 } (four words all set to 1), the 
operation performs a horizontal add. It adds each adjacent pair of words in the destination 
and stores the two results as two dwords. 

 

 
Note: If every second word in both operands to a PMADDWD is 0, then the instruction will 
result in two word multiplication, but the entire 32-bit result will be kept. 

Comparisons 

pcmpeqb [mmx], [mmx/mem64] ; Compare bytes for equality 

pcmpgtb [mmx], [mmx/mem64] ; Compare signed bytes for greater than 

pcmpeqw [mmx], [mmx/mem64] ; Compare words for equality 

pcmpgtw [mmx], [mmx/mem64] ; Compare signed words for greater than 

pcmpeqd [mmx], [mmx/mem64] ; Compare double-words for equality 

pcmpgtd [mmx], [mmx/mem64] ; Compare signed double-words for greater 
than 

MMX has a comparison instruction for testing equality and greater-than only. All other 
comparisons must be built from these and the Boolean instructions. 

Comparisons in MMX (and the other SIMD instruction sets) result in setting all of the bits of 
each element to either 1 or 0. Elements are set to a mask of all 1s where they pass the 
condition and all 0s where they do not. All “greater than” comparisons are signed in MMX. 

For instance, if mm0 has { 9, 14, 21, 40 } as four words, and MM1 has { 9, 4, 21, 4 }, then the 
following code will result in MM0 having { ffffh, 0000h, ffffh, 0000h }: 
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pcmpeqw mm0, mm1  ; Packed compare words for equality 

This is because there are two words that are the same in MM0 and MM1, and two that are 
not the same. MM0 effectively becomes a mask of words that are the same between MM0 
and MM1. 

 

Note: The PCMPEQB instruction (and the other equality comparison instructions) can be 
used to set an MMX register to all 1s or ffffffffffffffffh by using the same register as both 
operands. 

pcmpeqb mm0, mm0  ; Set MM0 to all 1s 

Creating the Remaining Comparison Operators 

There are a number of ways to create the other comparisons (!=, >=, etc.). To perform the 

not-equal operation (!=) between MM0 and MM1 using MM7 as a temporary register, use 

the following: 

pcmpeqb mm0, mm1 

pcmpeqb mm7, mm7 

pxor mm0, mm7 

To perform the greater than or equal to operation (>=) between MM0 and MM1 using MM7 

as a temporary register, use the following: 

movq mm7, mm0    ; Backup parameter to mm7 

pcmpeqb mm0, mm1 ; Find where they are equal 

pcmpgb mm7, mm1  ; Find where they are greater 

por mm0, mm7     ; OR these two results 

To perform the less-than operation (<) between MM0 and MM1 using MM7 as a temporary 

register, use the following: 

movq mm7, mm0   ; Backup parameter to mm7 

pcmpeqd mm0, mm1  ; Does mm0 = mm1 ? 

pcmpgd mm7, mm1  ; Is mm7 > mm1 ? 

por mm0, mm7   ; mm0 is now >= mm1 

pcmpeqd mm7, mm7  ; Get mm7 ready to complement mm0 

pxor mm0, mm7   ; mm0 is now < mm1 
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Packing 

PACKSSDW [mmx], [mmx/mem64] ; Pack signed double-words to words and 
saturate 

PACKSSWB [mmx], [mmx/mem64] ; Pack signed words to bytes and saturate 

PACKUSWB [mmx], [mmx/mem64] ; Pack unsigned words to bytes and saturate 

Packing instructions convert large data types into smaller ones, and then take the elements 
of two operands and resize them so that they fit into a single operand. You can convert 
dwords to words or words to bytes. You can use signed or unsigned words when converting 
bytes. All the MMX packing instructions use saturation. 

PACKSSDW converts dwords to words by saturating the dwords and storing the two converted 

dwords from the first operand in the lower half of the answer, and storing the two converted 
words from the second operand in the upper half of the answer. 

 

Figure 18 

PACKSSWB and PACKUSWB convert words to bytes by first applying saturation. The PACKSSWB 

range is -128 to 127, and the PACKUSWB range is 0 to 255. The four words from the first 

operand are converted to bytes and stored in the lower half of the answer, and the four 
words from the second operand are converted to bytes and stored in the upper half of the 
answer. 
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Figure 19 

Unpacking 

PUNPCKLBW [mmx], [mmx/mem64] ; Unpack low bytes to words 

PUNPCKHBW [mmx], [mmx/mem64] ; Unpack high bytes to words and interleave 

PUNPCKLWD [mmx], [mmx/mem64] ; Unpack low words to double-words 

PUNPCKHWD [mmx], [mmx/mem64] ; Unpack high words to double-words  

PUNPCKLDQ [mmx], [mmx/mem64] ; Unpack low double-words to quad-words 

PUNPCKHDQ [mmx], [mmx/mem64] ; Unpack high dwords to qword and interleave 

The unpacking instructions convert from smaller data types to larger ones. They are MOV 

instructions, as there is actually no data conversion at all. For example, converting the eight 
bytes in the source to eight words would require more space than can fit in an MMX register, 
so you must choose to convert either the lower or upper half. 

The conversion is performed using what is called interleaving. Elements from the first 
operand are interleaved with those from the second operand. 
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Figure 20 

The interleaving system was invented to allow the greatest flexibility while adding the fewest 
number of instructions to the CPU. If the second operand contains all zeros, then these 
instructions have the effect of zero-extending (unsigned extending) the data in the first 
operand. 

Initially, these instructions were also used to broadcast values (duplicate elements across 
the whole register). However, the SSE shuffle instructions make broadcasting a lot easier. 

Some examples of using the packing and unpacking instructions are as follows: 

; To duplicate the bottom 32 bits of mm0 into the top: 

punpckldq mm0, mm0 

 

; To fill MM0 with 8 copies of a byte from AL (9 in this example): 

xor eax, eax   ; Make sure the top of EAX is 0 

mov al, 9   ; Copy the byte into eax, 9 in this example 

movd mm0, eax   ; Copy eax to the low dword of mm0 

punpckldq mm0, mm0  ; Duplicate the bottom into the topof MM0 

packssdw mm0, mm0  ; Copy these two 9s into 4 

packuswb mm0, mm0       ; Copy those four 9s into 8 

 

; Sign extending: If the second operand contains the signs of the 

; elements in the first operand (use the PSRAW instruction to get this) 

; then these instructions have the effect of sign extending the data 
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; in the first operand: 

movq mm1, mm0  ; Copy words 

psraw mm1, 16  ; Fill mm1 with signs of elements in mm0 

punpcklwd mm0, mm1 ; Unpack interleaving with signs, sign extend to dwords! 

SSE Instruction Sets 

Introduction 

The SSE (Streaming SIMD Extensions) instruction sets perform SIMD operation on new 
128-bit registers. Over the years, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, and SSE4a 
instruction sets have been created. The original SSE instruction set's purpose was to allow 
SIMD floating point instructions and the ability to work on four single-precision floating point 
values at once. The additional instruction sets added a multitude of instructions for doing 
almost anything in both SIMD and scalar. For instance, the SSE2 instruction set added 
integer instructions as well as many double-precision floating point instructions. 

Where MMX registers were aliased to the x87 unit's registers, the SSE registers occupy a 
new register space on the CPU. There is no need to switch from multimedia mode to floating 
point when using SSE. Some of the SSE instructions do use the MMX registers in 
conjunction with the SSE registers, and these instructions still cause a switch in the x87 unit. 
Just as in the MMX instruction set, whenever an SSE instruction references the MMX 
registers, EMMS must be called to restore the x87 unit to floating point mode. 

Originally there were eight SSE registers named from XMM0 to XMM7. In x64 applications, 
this has been increased to sixteen registers named from XMM0 to XMM15. Each SSE 
register is 128 bits wide and can be used for the data sizes shown in Figure 21. 

In the instruction listings that follow, I have included the instruction sets (beside the 
mnemonics). This is where the instructions come from. Be sure to check that the CPU is 
capable of an instruction with the CPUID Function 1 prior to using it. 
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Figure 21 

Collectively, the SSE instruction sets present a programmer with a staggering array of 
instructions numbering in the hundreds. Many instructions have scalar as well as SIMD 
versions. 

 
Note: The Microsoft compiler users scalar SSE instructions to perform floating point 
operations, instead of using the x87 FPU. 

In x64, the C calling convention used by the C++ compiler passes floating point parameters 
using the XMM0 register. Only the lowest single or double precision element of XMM0 is 
used to return values, but the lowest elements of XMM0, XMM1, XMM2, and XMM3 are 
used to pass the first four floating point values to functions. 

Data alignment is very important for many of the SSE instructions that reference memory. 
Data must be aligned to 16 bytes where memory is read or written, or else a segmentation 
fault will occur. 

AVX 

Included in this reference are some of the new AVX instructions. These instructions are only 
available on the new CPUs. The AVX instruction set is the largest addition of instructions 
since the original SSE in 1999. The instruction set consists of new AVX versions of many of 
the SSE instructions and new 256-bit SIMD registers. 

Unlike the earlier instruction sets, AVX requires the support of the operating system. 
Windows 7 does not support AVX by default and must be upgraded by installing the Service 
Pack 1 (SP1). AVX is natively supported by Windows 8 and later. 

There are sixteen AVX registers named from YMM0 to YMM15. They are all 256 bits wide 
and are aliased to the sixteen SSE registers, so the low 128 bits of YMM0 is the SSE 
register XMM0. 



 

 115 

 

 

Each AVX register can be broken up exactly as the SSE registers, only there are twice the 
number of elements available in the AVX registers. The AVX instructions begin with "V" and 
the mnemonic is otherwise similar to the SSE versions of the instructions. 

In addition to larger registers, the new AVX instructions often offer nondestructive versions of 
many instructions. 

ADDPD XMM0, XMM2  ; Destructive, XMM0 is overwritten 

VADDPD XMM0, XMM2, XMM7 ; Non destructive, XMM0 = XMM2 + XMM7 

This instruction adds corresponding packed doubles in a similar way to the SSE version; 
only operands 2 and 3 are added and the answers are stored in operand 1. This allows for 
the destination to be a different operand to both sources. 

Data Moving Instructions 

Move Aligned Packed Doubles/Singles 

MOVAPD [xmm/mem128], [xmm/mem128]  - SSE2 

VMOVAPD [xmm/mem128], [xmm/mem128] - AVX 

VMOVAPD [ymm/mem256], [ymm/mem256] - AVX 

MOVAPS [xmm/mem128], [xmm/mem128]  - SSE2 

VMOVAPS [xmm/mem128], [xmm/mem128] - AVX 

VMOVAPS [ymm/mem256], [ymm/mem256] - AVX 

The move aligned instructions move 128 bits or 256 bits of data from the second operand 
into the first. If either of the operands is a memory location, then it must be aligned to 16 
bytes. 

Data can be aligned in C++ to 16 bytes using the _declspec(align(16)) directive prior to the 
data type of the variable in its declaration. 

Data can be aligned in the .data segment in assembly by using align 16 on the line prior to 
the declaration of the variable. 

The CPU performs operations faster on aligned data, although many instructions in SSE and 
AVX require aligned data or else they will generate a segmentation fault. 

Move Unaligned Packed Doubles/Singles 

MOVUPD [xmm/mem128], [xmm/mem128]  - SSE2 

VMOVUPD [xmm/mem128], [xmm/mem128] - AVX 

VMOVUPD [ymm/mem256], [ymm/mem256] - AVX 

MOVUPS [xmm/mem128], [xmm/mem128]  - SSE 



 

 

 116 

VMOVUPS [xmm/mem128], [xmm/mem128] - AVX 

VMOVUPS [ymm/mem256], [ymm/mem256] - AVX 

The move unaligned packed doubles and singles instructions move 128 bits or 256 bits of 
data from the second operand into the first. Unlike the aligned move instructions, if one of 
the operands is a memory operand, then it need not be aligned to 16 bytes. 

Arithmetic Instructions 

Arithmetic on integer types can be performed using the SSE registers and the same 
instruction mnemonics as MMX instructions. The MMX instruction mnemonics can be used 
with the SSE registers only if the SSE2 instruction set is available. 

Adding Floating Point Values 

Table 20 

Mnemonic Meaning Operands Instruction Set 

ADDPD Add packed doubles [xmm], [xmm/mem128] SSE2 

VADDPD Add packed doubles [xmm], [xmm], [xmm/mem128] AVX 

VADDPD Add packed doubles [ymm], [ymm], [ymm/mem256] AVX 

ADDPS Add packed singles [xmm], [xmm/mem128] SSE 

VADDPS Add packed singles [xmm]/[xmm], [xmm/mem128] AVX 

VADDPS Add packed singles [ymm]/[ymm], [ymm/mem256] AVX 

ADDSD Add scalar double [xmm], [xmm/mem64] SSE2 

VADDSD Add scalar double [xmm], [xmm], [xmm/mem64] AVX 

ADDSS Add scalar single [xmm], [xmm/mem32] SSE 

VADDSS Add scalar single [xmm], [xmm], [xmm/mem32] AVX 

These instructions are used to add elements from one SSE or AVX register to another. The 
two-operand SSE and AVX versions add elements from the second operand to the 
corresponding elements in the first, and store the answers in the first operand. The three-
operand AVX versions add the elements in the second operand and third operand together, 
and then store the answers in the first operand. 

The following example illustrates the way the add instructions operate. Here, the ADDPS (add 

packed singles) instruction is used to add the values in XMM1 to those in XMM0: 
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Figure 22 

Subtracting Floating Point Values 

Table 21 

Mnemonic Meaning Operands Instruction 
Set 

SUBPD Subtract packed doubles [xmm], [xmm/mem128] SSE2 

VSUBPD Subtract packed doubles [xmm], [xmm], [xmm/mem128] AVX 

VSUBPD Subtract packed doubles [ymm], [ymm], [ymm/mem256] AVX 

SUBPS Subtract packed singles [xmm], [xmm/mem128] SSE 

VSUBPS Subtract packed singles [xmm], [xmm], [xmm/mem128] AVX 

VSUBPS Subtract packed singles [ymm], [ymm], [ymm/mem256] AVX 

SUBSD Subtract scalar double [xmm], [xmm/mem64] SSE2 

VSUBSD Subtract scalar double [xmm], [xmm], [xmm/mem64] AVX 

SUBSS Subtract scalar single [xmm], [xmm/mem32] SSE 

VSUBSS Subtract scalar single [xmm], [xmm], [xmm/mem32] AVX 

The subtraction instructions subtract elements in one register or memory from the 
corresponding elements in another register. The two-operand versions of the instructions 
subtract the elements of the second operand from the corresponding elements in the first, 
and store the answer in the first operand. The three-operand AVX versions subtract the 
elements of the third operand from those in the second, and store the result in the first 
operand. 

The following example illustrates a SUBPS instruction using XMM0 and XMM1 as operands. 

The four single-precision floats in XMM1 are subtracted from those in XMM0, and the result 
is placed into XMM0. 
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Figure 23  

Dividing Floating Point Values 

Table 22  

Mnemonic Meaning Operands Instruction Set 

DIVPD Divide packed doubles [xmm], [xmm/mem128] SSE2 

VDIVPD Divide packed doubles [xmm], [xmm], [xmm/mem128] AVX 

VDIVPD Divide packed doubles [ymm], [ymm], [ymm/mem256] AVX 

DIVPS Divide packed singles [xmm], [xmm/mem128] SSE 

VDIVPS Divide packed singles [xmm], [xmm], [xmm/mem128] AVX 

VDIVPS Divide packed singles [ymm], [ymm], [ymm/mem256] AVX 

DIVSD Divide scalar double [xmm], [xmm/mem64] SSE2 

VDIVSD Divide scalar double [xmm], [xmm], [xmm/mem64] AVX 

DIVSS Divide scalar single [xmm], [xmm/mem32] SSE 

VDIVSS Divide scalar single [xmm], [xmm], [xmm/mem32] AVX 

The division instructions divide elements in one register or memory by the corresponding 
elements in another. The two-operand versions divide the values in the first operand by the 
corresponding values in the second, and store the results in the first. The three-operand 
versions divide the elements in the second operand by those in the third and store the 
results in the first operand. 

The sample illustration is of the DIVPD instruction with XMM0 and XMM1 as operands. The 

elements in XMM0 are divided by those in XMM1 and the resulting doubles are stored in 
XMM0. 
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Figure 24  

Multiplying Floating Point Values 

Table 23 

Mnemonic Meaning Operands Instruction Set 

MULPD Multiply packed doubles [xmm], [xmm/mem128] SSE2 

VMULPD Multiply packed doubles [xmm], [xmm], [xmm/mem128] AVX 

VMULPD Multiply packed doubles [ymm], [ymm], [ymm/mem256] AVX 

MULPS Multiply packed singles [xmm], [xmm/mem128] SSE 

VMULPS Multiply packed singles [xmm], [xmm], [xmm/mem128] AVX 

VMULPS Multiply packed singles [ymm], [ymm], [ymm/mem256] AVX 

MULSD Multiply scalar double [xmm], [xmm/mem64] SSE2 

VMULSD Multiply scalar double [xmm], [xmm], [xmm/mem64] AVX 

MULSS Multiply scalar single [xmm], [xmm/mem32] SSE 

VMULSS Multiply scalar single [xmm], [xmm], [xmm/mem32] AVX 

The multiplication instructions multiply the elements in one register by the corresponding 
elements in another register or memory. The two-operand versions multiply the values in the 
first operand by those in the second and store the results in the first operand. The three-
operand versions multiply the values in the third operand by those in the second, and store 
the results in the first operand. 

The following figure is the MULPD instruction using XMM0 and XMM1 as operands. The 

doubles in XMM0 are multiplied by those in XMM1 and the result is stored in XMM0. 
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Figure 25 

Square Root of Floating Point Values 

Table 24  

Mnemonic Meaning Operands Instruction Set 

SQRTPD Square root packed doubles [xmm], [xmm/mem128] SSE2 

VSQRTPD Square root packed doubles [xmm], [xmm/mem128] AVX 

VSQRTPD Square root packed doubles [ymm], [ymm/mem256] AVX 

SQRTPS Square root packed singles [xmm], [xmm/mem128] SEE 

VSQRTPS Square root packed singles [xmm], [xmm/mem128] AVX 

VSQRTPS Square root packed singles [ymm], [ymm/mem256] AVX 

SQRTSD Square root scalar double [xmm], [xmm/mem64] SSE2 

VSQRTSD Square root scalar double [xmm], [xmm/mem64] AVX 

SQRTSS Square root scalar single [xmm], [xmm/mem32] SSE 

VSQRTSS Square root scalar single [xmm], [xmm/mem32] AVX 

The square root instructions calculate the square root of the elements in the second operand 
and store the answers in the first operand. 

The following figure is the SQRTPD instruction using the registers XMM0 and XMM1 as 

operands. The first operand (XMM0) is ignored in the calculation; its elements have been 
grayed out. The final results in the elements of XMM0 are the square root of the doubles in 
XMM1. 
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Figure 26 

Reciprocal of Single-Precision Floats 

Table 25  

Mnemonic Meaning Operands Instruction Set 

RCPPS Reciprocal packed singles [xmm], pxmm/mem128] SSE 

VRCPPS Reciprocal packed singles [xmm], [xmm/mem128] AVX 

VRCPPS Reciprocal packed singles [ymm], [ymm/mem128] AVX 

RCPSS Reciprocal scalar single [xmm], [xmm/mem32] SSE 

VRCPSS Reciprocal scalar single [xmm], [xmm/mem32] AVX 

VRCPSS Reciprocal scalar single [ymm], [ymm/mem32] AVX 

The reciprocal instructions calculate the reciprocal (1/x, where x is the element) of the 
elements in the second operand and store the result in the elements of the first operand. The 
elements of the first operand are ignored for the calculation. The result of dividing by zero in 
these instructions is infinity. These instructions only give a quick approximation of the real 
reciprocal; they are intended to be used when exact precision is not required. 

The following figure shows the RCPPS instruction with XMM0 and XMM1 as operands. The 

initial values in XMM0 are ignored by the instruction and are overwritten by the reciprocal of 
the elements in XMM1. They are grayed out in Figure 27. 

 

Figure 27 
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Reciprocal of Square Root of Single-Precision Floats 

RSQRTPS [xmm], [xmm/mem128] – SSE 

VRSQRTPS [xmm], [xmm/mem128] – AVX 

VRSQRTPS [ymm], [ymm/mem256] – AVX 

RSQRTSS [xmm], [xmm/mem32] – SSE 

VRSQRTSS [xmm], [xmm], [xmm/mem32] – AVX 

These instructions calculate the reciprocal of the square root (1/sqrt(x) or sqrt(x)/x, where x 
is the element) of the elements in the second operand and store the results in the first 
operand. In other words, they divide one by the square root of the elements in the second 
operand and store the results in the first operand. The answers are not precise and the 
instruction is intended for use only when a quick approximation is required. 

The following figure shows the RSQRTPS instruction using XMM0 and XMM1 as operands. 

The values in XMM0 are ignored for the calculation and have been grayed out. The resulting 
reciprocal square roots are only those from the second operand. 

 

Figure 28 

Boolean Operations 

All of these operations essentially do exactly the same thing despite the data types in the 
registers, since a bitwise operation on packed doubles has the same effect on a SIMD 
register as a bitwise operation on packed singles. Some CPUs suffer a minor performance 
penalty when data in SIMD registers is not treated as the same size. For this reason, it is 
safest to use the bitwise or Boolean instructions designed for the particular data type you are 
working with. 

AND NOT Packed Doubles/Singles 

ANDNPD [xmm], [xmm/mem128] – SSE2 

PANDN [xmm], [xmm/mem128] – SSE2 

VANDNPD [xmm], [xmm], [xmm/mem128] - AVX 
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VANDNPD [ymm], [ymm], [ymm/mem256] – AVX 

ANDNPS [xmm], [xmm/mem128] – SSE2 

VANDNPS [xmm], [xmm], [xmm/mem128] – AVX 

VPANDN [xmm], [xmm], [xmm/mem128] - AVX 

VANDNPS [ymm], [ymm], [ymm/mem256] – AVX 

The AND NOT instructions first complement an operand, then perform a bitwise AND between 

two operands. They store the result in the destination (see the MMX Boolean instructions for 
the truth table for this instruction). For the two-operand versions of these instructions, the 
first operand is complemented and then a bitwise AND is performed between the bits of both 

operands. The result is stored in the first operand.  

For the three-operand versions of these instructions, the second operand is complemented 
and then a bitwise AND is performed between the second and third operands. The result is 

stored in the first operand. 

This instruction is useful for creating bit masks that represent negative comparisons. 

AND Packed Doubles/Singles 

ANDPD [xmm], [xmm/mem128] – SSE2 

PAND [xmm], [xmm/mem128] – SSE2 

VANDPD [xmm], [xmm], [xmm/mem128] - AVX 

VPAND [xmm], [xmm], [xmm/mem128] - AVX 

VANDPD [ymm], [ymm], [ymm/mem256] – AVX 

ANDPS [xmm], [xmm/mem128] – SSE 

VANDPS [xmm], [xmm], [xmm/mem128] - AVX 

VANDPS [ymm], [ymm], [ymm/mem256] – AVX 

These instructions perform a bitwise AND between two operands. The two-operand versions 

of this instruction perform a bitwise AND between the first and second operands, storing the 

result in the first operand. The three-operand versions perform a bitwise AND between the 

second and third operand and store the results in the first operand. 

OR Packed Doubles/Singles 

ORPD [xmm], [xmm/mem128] – SSE2 

POR [xmm], [xmm/mem128] – SSE2 

VORPD [xmm], [xmm], [xmm/mem128] - AVX 

VPOR [xmm], [xmm], [xmm/mem128] – AVX 
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VORPD [ymm], [ymm], [ymm/mem256] – AVX 

ORPS [xmm], [xmm/mem128] – SSE 

VORPS [xmm], [xmm], [xmm/mem128] - AVX 

VORPS [ymm], [ymm], [ymm/mem256] – AVX 

The OR instructions perform a bitwise OR between two operands. The two-operand versions 

perform a bitwise OR between the first and second operand and store the results in the first 

operand. The three-operand AVX versions perform a bitwise OR between the second and 

third operands, storing the results in the first operand. 

XOR Packed Doubles/Singles 

XORPD [xmm], [xmm/mem128] – SSE2 

PXOR [xmm], [xmm/mem128] – SSE2 

VXORPD [xmm], [xmm], [xmm/mem128] - AVX 

VXORPD [ymm], [ymm], [ymm/mem256] – AVX 

VPXOR [xmm], [xmm], [xmm/mem128] – AVX 

XORPS [xmm], [xmm/mem128] – SSE 

VXORPS [xmm], [xmm], [xmm/mem128] - AVX 

VXORPS [ymm], [ymm], [ymm/mem256] – AVX 

The XOR instructions perform a bitwise XOR operation between two operands. The two-

operand versions of these instructions perform a bitwise XOR between the first and second 

operands and store the results in the first operand. The three-operand versions perform a 
bitwise XOR between the second and third operands and store the result in the first operand. 

Comparison Instructions 

Comparing Packed Doubles and Singles 

CMPxxPtt [xmm], [xmm/mem128]   - SSE and SSE2 versions 

VCMPxxPtt [xmm], [xmm], [xmm/mem128] - AVX versions 

VCMPxxPtt [ymm], [ymm], [ymm/mem256] - AVX versions 

There are many comparison instructions; the mnemonics follow the outline (CMPxxPtt or 

VCMPxxPtt) where the xx is replaced by the operator abbreviation (from the Comparison 

Operators table that follows) and the tt is replaced by the data type (D for packed double-

precision floats and S for packed single-precision floats). 
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Table 26: Comparison Operators 

Abbreviation Meaning 

EQ Equal to 

LT Less than 

LE Less than or equal to 

UNORD Unordered (NaN or Undefined) 

ORD Ordered (not NaN or Undefined) 

NEQ Not equal to 

NLT Greater than or equal to, not less than 

NLE Greater than, not less or equal to 

They perform the comparison operator between corresponding elements of two operands. 
All bits of any elements that the operator is true are set to 1. All bits of any elements where 
the operator is false are set to 0. 

In the SSE and SSE2 versions, the comparison is performed between operands one and two 
and the resulting bit masks are stored in the first operand. 

In the AVX versions, the comparison is performed between operands two and three, and the 
resulting bit masks are placed into the first operand. 

The UNORD and ORD comparison operators are used to determine where various NaN (not a 

number) elements are. NaN values in doubles or floats are unordered and will return true if 
the UNORD comparison is used and false if ORD is used. All numerically orderable values 

(those that are not NaN or #IND) return true when the ORD operator is used and false when 

the UNORD operator is used. 

Comparing Scalar Doubles and Singles 

CMPxxStt [xmm], [xmm/mem64/mem32] - SSE and SSE2 versions 

VCMPxxStt [xmm], [xmm], [xmm/mem64/mem32] - AVX versions 

The scalar versions of the comparison instructions are the same as their packed 
counterparts, only they perform the comparison on the lowest double or single. They have 
an S for scalar in their mnemonic instead of the P for packed. 

Comparing and Setting rFlags 

COMISD [xmm], [xmm/mem64]  - SSE2 

VCOMISD [xmm], [xmm/mem64] - AVX 
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COMISS [xmm], [xmm/mem32]  - SSE 

VCOMISS [xmm], [xmm/mem32] – AVX 

These interesting instructions bridge the gap between the SIMD instruction sets and the 
regular x86 instruction sets by comparing SSE or AVX registers, but setting the rFlags 
register. The instructions are scalar, and compare either the lowest single-precision floats 
(COMISS and VCOMISS) or the lowest doubles (COMISD and VCOMISD). They set the flags 

register in the following manner: 

Table 27: x86 Flags after xCOMISxx 

Condition Zero Flag Parity Flag Carry Flag 

NaN 1 1 1 

Parameter 1 > Parameter 2 0 0 0 

Parameter 1 < Parameter 2 0 0 1 

Parameter 1 = Parameter 2 1 0 0 

Converting Data Types/Casting 

Conversion Instructions 

Converting to Doubles 

CVTDQ2PD [xmm], [xmm/mem64]  ; Converts two dwords to doubles using SSE2 

VCVTDQ2PD [xmm], [xmm/mem64]  ; Converts two dwords to doubles using AVX 

VCVTDQ2PD [ymm], [ymm/mem128] ; Converts two dwords to doubles using AVX 

CVTPS2PD [xmm], [xmm/mem64]  ; Converts packed singles to packed doubles 
using SSE2 

VCVTPS2PD [xmm], [xmm/mem64]  ; Converts packed singles to packed doubles 
using AVX 

VCVTPS2PD [ymm], [ymm/mem128] ; Converts packed singles to packed doubles 
using AVX 

CVTSI2SD [xmm], [reg32/64]  ; Converts from x86 register to double using 
SSE2 

VCVTSI2SD [ymm], [ymm], [reg32/64]  ; Converts from x86 register to double 
using AVX 

CVTSS2SD [xmm], [xmm/mem64]  ; Converts a scalar single to a scalar 
double using SSE2 

VCVTSS2SD [ymm], [ymm], [ymm/mem64] ; Converts a scalar single to a scalar 
double using AVX 
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Converting to Singles 

CVTDQ2PS [xmm], [xmm/mem128]  ; Converts packed dwords to singles using 
SSE2 

VCVTDQ2PS [xmm], [xmm/mem128] ; Converts packed dwords to singles using 
AVX 

VCVTDQ2PS [ymm], [ymm/mem256] ; Converts packed dwords to singles using 
AVX 

CVTPD2PS [xmm], [xmm/mem128]  ; Converts packed doubles to singles using 
SSE2 

VCVTPD2PS [xmm], [xmm/mem128] ; Converts packed doubles to singles using 
AVX 

VCVTPD2PS [ymm], [ymm/mem256] ; Converts packed doubles to singles using 
AVX 

CVTSD2SS [xmm], [xmm/mem64]  ; Converts scalar double to scalar single 
using SSE2 

VCVTSD2SS [ymm], [ymm], [ymm/mem64] ; Converts scalar double to scalar 
single using AVX 

CVTSI2SS [xmm], [reg32/64]  ; Converts from x86 registers to a scalar 
single using SSE2 

VCVTSI2SS [ymm], [ymm], [reg32/64] ; Converts from x86 registers to a 
scalar single using AVX 

 

Converting to Integers 

CVT(T)PD2DQ [xmm], [xmm/mem128]  ; Converts packed doubles to dwords using 
SSE2 

VCVT(T)PD2DQ [xmm], [xmm/mem128] ; Converts packed doubles to dwords using 
AVX 

VCVT(T)PD2DQ [ymm], [ymm/mem256] ; Converts packed doubles to dwords using 
AVX 

CVT(T)PS2DQ [xmm], [xmm/mem128]  ; Converts singles to dwords using SSE2 

VCVT(T)PS2DQ [xmm], [xmm/mem128] ; Converts singles to dwords using AVX 

VCVT(T)PS2DQ [ymm], [ymm/mem256] ; Converts singles to dwords using AVX 

CVT(T)SD2SI [reg32/64], [xmm/mem32/64]  ; Converts double to x86 register 
using SSE2 
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VCVT(T)SD2SI [reg32/64], [ymm/mem32/64] ; Converts double to x86 register 
using AVX 

CVT(T)SS2SI [reg32/64], [mem32/64]      ; Converts scalar single to scalar 
integer using SSE2 

VCVT(T)SS2SI [reg32/64], [mem32/64]     ; Converts scalar single to scalar 
integer using AVX 

The data conversion instructions convert between doubles, singles, and integer data. They 
convert the elements (or element) in the second operand to some other data type and store 
the converted results in the elements of the first operand. The conversion is analogous to a 
C++ type cast. 

The versions that convert floating point values to x86 registers only work on scalar values, 
since the x86 registers are essentially scalar in nature. They are useful because they allow 
answers calculated using SSE floating point to be quickly and easily cast to integers in the 
x86 registers. 

When converting to integers, you have the option of either using truncation (by placing the 
additional T in the middle of the mnemonic, indicated in the previous list by the (T)) or using 

the rounding function specified in the MXCSR register.  

Selecting the Rounding Function 

STMXCSR [mem32] – Store MXCSR 

LDMXCSR [mem32] – Load MXCSR 

The conversion instructions that convert from a floating point value to an integer perform 
rounding based on the rounding function (bits 13 and 14) of the MXCSR register. 

Table 28: Rounding Function Bits in MXCSR 

Bit 14 Bit 13 Rounding Function 

0 0 Round to nearest integer 

0 1 Round down to nearest integer 

1 0 Round up to nearest integer 

1 1 Truncate (round toward 0) 

To set the rounding function in MXCSR, the register must first be copied to RAM using the 
store MXCSR instruction, STMCXSR. Then bits 13 and 14 can be set in RAM using the bit test 

instructions, BTS and BTR (or the Boolean instructions). Finally, this altered value of MXCSR 

can be loaded from RAM back into the real MXCSR using the load MXCSR instruction, 
LDMXCSR. 

The LDMXCSR and STMCXSR instructions both take a single 32-bit memory operand. In 

STMXCSR, this operand is a variable to store the MXCSR in RAM. In LDMXCSR, the operand is 

the memory location from which to copy the new values of the MXCSR. 
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; Example of selecting Round to Nearest, 00 

STMXCSR mxcsrState ; Copy MXCSR to the 32-bit memory operand 

btr mxcsrState, 13 ; Unset both bits, set it to 0 

btr mxcsrState, 14 

LDMXCSR mxcsrState ; Load the altered value back into MXCSR 

 

; Example of selecting Round Down, 01 

STMXCSR mxcsrState ; Copy MXCSR to the 32-bit memory operand 

bts mxcsrState, 13 ; Set bit 13 to 1 

btr mxcsrState, 14 ; And bit 14 to 0 

LDMXCSR mxcsrState ; Load the altered value back into MXCSR 



 

 

 130 

Conclusion 

This book has been a brief introduction to a massive topic, including the most basic aspects 
of modern x64 assembly programming. The SSE instruction sets have not been covered to 
any degree of detail, and there are simply far too many instructions to do these instruction 
sets any justice within a hundred pages. 

Assembly programming is very different from high-level languages. It requires practice and a 
very detailed knowledge of the hardware with which the application is executing. If the CPU's 
native assembly language is used, there is an excellent opportunity to speed up data 
processing. This language and the CPUs it runs on are at the very cutting edge of 
technology. CPUs and their assembly languages are the result of thousands of very 
intelligent people working very hard over generations. It is complex but extraordinarily 
powerful. 

I recommend having the AMD, Intel, and VIA manufacturer’s manuals as references. They 
are available from the manufacturer’s websites (there is a link in the Recommended Reading 
section). These books have many thousands of pages and are a testament to just how large 
the topic of modern x64 CPUs and their assembly language can be. They are excellent 
references and should be kept within reach at all times when programming these CPUs. 
They are the most complete descriptions available. 

To output the assembly code from a C++ project, click Properties, and then click C/C++ 
Output Files and change the Assembler Output option. This outputs the assembly code 
produced by the C++ compiler. Modern C++ compilers generate extremely efficient 
assembly code, and this output is an excellent place to study how to use this language. 

Thank you very much for reading this book, and I hope it has been a helpful introduction to a 
fascinating topic. 
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Recommended Reading 

Intel Programmer’s Manuals: There is really no better reference on how Intel CPUs should 
be programmed and how they operate than the company’s own programmer’s manuals. 
Even if you are coding for AMD hardware, it is recommended that you keep the Intel 
manuals as well, because they offer a second explanation of every instruction. The manuals 
are available from the company’s website: 

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html 

AMD Programmer’s Manuals: The AMD programmer’s manuals are worth keeping as a 
reference, even if you are developing specifically for Intel hardware, as they offer a second 
explanation of each instruction. Intel and AMD CPUs are functionally identical in many 
respects. They are available from the company’s website: 

http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/ 

Agner Fog’s Optimization Manuals: After the Intel and AMD programmer’s manuals, the 
most comprehensive work on low-level modern CPU programming is the Optimization 
Manuals by Agner Fog. These manuals contain an extraordinary amount of information, 
including instruction latency and throughput for many modern CPUs. A large amount of this 
information is not even published by Intel or AMD. 

http://www.agner.org/optimize/#manuals 

Graphics Programming Black Book by Michael Abrash: Michael Abrash is responsible 
(with John Carmack and others) for programming and optimizing early 3-D engines, such as 
those used for Doom II and Quake. These engines allowed gamers to play 3-D games on 
very primitive hardware, such as 486s and the original Pentium processors. Hardware has 
changed considerably since this book was written, but most of the information is still 
applicable to some degree on modern hardware. 

http://www.nondot.org/sabre/Mirrored/GraphicsProgrammingBlackBook/ 

Art of Assembly by Randall Hyde: The Art of Assembly has now moved its focus away 
from MASM and towards Randall’s new HLA (High Level Assembler). It is a very good read 
whether you use HLA or MASM. Early chapters focus on basic concepts like number 
systems, data types, Boolean arithmetic, and memory. All of which Hyde explains in great 
detail, and yet the book is very accessible and easy to understand. 

http://www.plantation-productions.com/Webster/ 

The Art of Computer Programming by Donald Knuth: This is a series of books on the 
study of computer algorithms. It is written in MMIX assembler, which is the language of a 
hypothetical CPU designed to illustrate machine-level programming. It is easily the most 
comprehensive and important text on computer algorithms ever written. The set is available 
from Amazon. 

http://www.amazon.com/Computer-Programming-Volumes-1-4A-Boxed/dp/0321751043 

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://www.agner.org/optimize/#manuals
http://www.nondot.org/sabre/Mirrored/GraphicsProgrammingBlackBook/
http://www.plantation-productions.com/Webster/
http://www.amazon.com/Computer-Programming-Volumes-1-4A-Boxed/dp/0321751043
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C++ Compiler Assembly Listings: Possibly the best way to study assembly language is to 
examine the output of the C++ compiler. It is difficult to be more optimized than the compiler 
without studying how the compiler optimizes. Assembly code can be generated from any 
C++ projects. 

Open the File menu and select the Project option, and from that select the Project 
Options. Then click C/C++, Output Files, and finally click Assembler Output. 

You can also open the Disassembly window at runtime while debugging a program by 
opening the Debug menu, selecting Windows, and then clicking Disassembly when the 
program halts at a breakpoint. This is very helpful as you can step through the code one 
instruction at a time, and view the results on the registers and memory. 
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