

 2

By

Christopher Rose

Foreword by Daniel Jebaraj

 3

Copyright © 2013 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration

form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability

arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are

the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Jarred Capellman

Copy Editor: Ben Ball

Acquisitions Coordinator: Jessica Rightmer, senior marketing strategist, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story behind the Succinctly Series of Books ... 10

About the Author ... 12

Introduction ... 13

Assembly Language .. 13

Why Learn Assembly? ... 13

Intended Audience ... 14

Chapter 1 Assembly in Visual Studio .. 15

Inline Assembly in 32-Bit Applications ... 15

Native Assembly Files in C++ .. 16

Additional Steps for x64 ... 20

64-bit Code Example ... 24

Chapter 2 Fundamentals ... 26

Skeleton of an x64 Assembly File .. 26

Skeleton of an x32 Assembly File .. 27

Comments .. 28

Destination and Source Operands ... 29

Segments ... 29

Labels... 30

Anonymous Labels .. 30

Data Types ... 31

Little and Big Endian .. 32

Two’s and One’s Complement ... 33

Chapter 3 Memory Spaces .. 34

Registers .. 35

16-Bit Register Set ... 35

32-Bit Register Set ... 37

 5

64-bit Register Set ... 39

Chapter 4 Addressing Modes ... 41

Registers Addressing Mode ... 41

Immediate Addressing Mode ... 41

Implied Addressing Mode .. 42

Memory Addressing Mode ... 42

Chapter 5 Data Segment .. 45

Scalar Data .. 45

Arrays ... 46

Arrays Declared with Commas .. 46

Duplicate Syntax for Larger Arrays .. 46

Getting Information about an Array.. 47

Defining Strings .. 48

Typedef .. 49

Structures and Unions ... 49

Structures of Structures ... 52

Unions .. 53

Records .. 53

Constants Using Equates To ... 55

Macros ... 56

Chapter 6 C Calling Convention ... 59

The Stack ... 59

Scratch versus Non-Scratch Registers .. 59

Passing Parameters... 61

Shadow Space ... 62

Chapter 7 Instruction Reference .. 67

CISC Instruction Sets .. 67

Parameter Format .. 67

Flags Register .. 68

 6

Prefixes .. 69

Repeat Prefixes ... 69

Lock Prefix ... 69

x86 Data Movement Instructions ... 70

Move .. 70

Conditional Moves ... 71

Nontemporal Move... 72

Move and Zero Extend .. 73

Move and Sign Extend ... 73

Move and Sign Extend Dword to Qword ... 73

Exchange ... 73

Translate Table .. 74

Sign Extend AL, AX, and EAX ... 74

Copy Sign of RAX across RDX .. 75

Push to Data to Stack .. 75

Pop Data from Stack .. 75

Push Flags Register... 76

Pop Flags Register .. 76

Load Effective Address .. 76

Byte Swap .. 77

x86 Arithmetic Instructions ... 78

Addition and Subtraction .. 78

Add with Carry and Subtract with Borrow .. 78

Increment and Decrement ... 79

Negate ... 80

Compare .. 80

Multiply ... 80

Signed and Unsigned Division ... 82

x86 Boolean Instructions.. 83

Boolean And, Or, Xor ... 83

 7

Boolean Not (Flip Every Bit) .. 84

Test Bits ... 84

Shift Right and Left .. 85

Rotate Left and Right ... 85

Rotate Left and Right Through the Carry Flag .. 86

Shift Double Left or Right ... 86

Bit Test ... 86

Bit Scan Forward and Reverse .. 87

Conditional Byte Set .. 87

Set and Clear the Carry or Direction Flags .. 88

Jumps .. 89

Call a Function ... 90

Return from Function ... 90

x86 String Instructions ... 90

Load String ... 90

Store String .. 91

Move String .. 92

Scan String .. 92

Compare String .. 93

x86 Miscellaneous Instructions .. 94

No Operation .. 94

Pause ... 94

Read Time Stamp Counter .. 94

Loop ... 95

CPUID .. 96

Chapter 8 SIMD Instruction Sets .. 100

SIMD Concepts .. 101

Saturating Arithmetic versus Wraparound Arithmetic .. 101

Packed/SIMD versus Scalar .. 102

 8

MMX ... 102

Registers .. 103

Referencing Memory.. 103

Exit Multimedia State ... 104

Moving Data into MMX Registers .. 104

Move Quad-Word... 104

Move Dword ... 104

Boolean Instructions .. 105

Shifting Bits .. 105

Arithmetic Instructions .. 106

Multiplication .. 108

Comparisons .. 108

Creating the Remaining Comparison Operators ... 109

Packing .. 110

Unpacking .. 111

SSE Instruction Sets .. 113

Introduction .. 113

AVX .. 114

Data Moving Instructions ... 115

Move Aligned Packed Doubles/Singles ... 115

Move Unaligned Packed Doubles/Singles ... 115

Arithmetic Instructions .. 116

Adding Floating Point Values ... 116

Subtracting Floating Point Values .. 117

Dividing Floating Point Values ... 118

Multiplying Floating Point Values ... 119

Square Root of Floating Point Values.. 120

Reciprocal of Single-Precision Floats .. 121

Reciprocal of Square Root of Single-Precision Floats... 122

Boolean Operations ... 122

 9

AND NOT Packed Doubles/Singles ... 122

AND Packed Doubles/Singles ... 123

OR Packed Doubles/Singles ... 123

XOR Packed Doubles/Singles ... 124

Comparison Instructions .. 124

Comparing Packed Doubles and Singles .. 124

Comparing Scalar Doubles and Singles .. 125

Comparing and Setting rFlags ... 125

Converting Data Types/Casting ... 126

Conversion Instructions ... 126

Selecting the Rounding Function ... 128

Conclusion ... 130

Recommended Reading ... 131

 10

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for
the Microsoft platform. This puts us in the exciting but challenging position of
always being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every
other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit
us is the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and
customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books
that would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics
can be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and
running in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be
free. Any updates we publish will also be free.

S

 11

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market
and sell against competing vendors who promise to “enable AJAX support with one click,” or
“turn the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us
at succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the
topic of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 12

About the Author

Chris Rose is an Australian software engineer. His background is mainly in data mining and
charting software for medical research. He has also developed desktop and mobile apps and
a series of programming videos for an educational channel on YouTube. He is a musician
and can often be found accompanying silent films at the Pomona Majestic Theatre in
Queensland.

 13

Introduction

Assembly Language

This book is an introduction to x64 assembly language. This is the language used by almost
all modern desktop and laptop computers. x64 is a generic term for the newest generation of
the x86 CPU used by AMD, Intel, VIA, and other CPU manufacturers. x64 assembly has a
steep learning curve and very few concepts from high-level languages are applicable. It is
the most powerful language available to x64 CPU programmers, but it is not often the most
practical language.

An assembly language is the language of a CPU, but the numbers of the machine code are
replaced by easy-to-remember mnemonics. Instead of programming using pure
hexadecimal, such as 83 C4 04, programmers can use something easier to remember and

read, such as ADD ESP, 4, which adds 4 to ESP. The human readable version is read by a

program called an assembler, and then it is translated into machine code by a process called
assembling (analogous to compiling in high-level languages). A modern assembly language
is the result of both the physical CPU and the assembler. Modern assembly languages also
have high-level features such as macros and user-defined data types.

Why Learn Assembly?

Many high-level languages (Java, C#, Python, etc.) share common characteristics. If a
programmer is familiar with any one of them, then he or she will have no trouble picking up
one of the others after a few weeks of study. Assembly language is very different; it shares
almost nothing with high-level languages. Assembly languages for different CPU
architectures often have little in common. For instance, the MIPS R4400 assembly language
is very different from the x86 language. There are no compound statements. There are no if
statements, and the goto instruction (JMP) is used all the time. There are no objects, and

there is no type safety. Programmers have to build their own looping structures, and there is
no difference between a float and an int. There is nothing to assist programmers in
preventing logical errors, and there is no difference between execute instructions and data.
There are many differences between assembly languages.

I could go on forever listing the useful features that x64 assembly language is missing when
compared to high-level languages, but in a sense, this means that assembly language has
fewer obstacles. Type safety, predefined calling conventions, and separating code from data
are all restrictions. These restrictions do not exist in assembly; the only restrictions are those
imposed by the hardware itself. If the machine is capable of doing something, it can be told
to do so using its own assembly language.

A French person might know English as their second language and they could be instructed
to do a task in English, but if the task is too complicated, some concepts may be lost in
translation. The best way to explain how to perform a complex task to a French person is to
explain it in French. Likewise, C++ and other high-level languages are not the CPU's native
language. The computer is very good at taking instructions in C++, but when you need to
explain exactly how to do something very complicated, the CPU's native language is the only
option.

 14

Another important reason to learn an assembly language is simply to understand the CPU. A
CPU is not distinct from its assembly language. The language is etched into the silicon of the
CPU itself.

Intended Audience

This book is aimed at developers using Microsoft's Visual Studio. This is a versatile and very
powerful assembly language IDE. This book is targeted at programmers with a good
foundation in C++ and a desire to program native assembly using the Visual Studio IDE
(professional versions and the express editions). The examples have been tested using
Visual Studio and the assembler that comes bundled with it, ML64.exe (the 64-bit version of
MASM, Microsoft's Macro Assembler).

Having knowledge of assembly language programming also helps programmers understand
high-level languages like Java and C#. These languages are compiled to virtual machine
code (Java Byte Code for Java and CIL or Common Intermediate Language for .NET
languages). The virtual machine code can be disassembled and examined from .NET
executables or DLL files using the ILDasm.exe tool, which comes with Visual Studio. When a
.NET application is executed by another tool, ILAsm.exe, it translates the CIL machine code
into native x86 machine code, which is then executed by the CPU. CIL is similar to an
assembly language, and a thorough knowledge of x86 assembly makes most of CIL
readable, even though they are different languages. This book is focused on C++, but this
information is similarly applicable to programming high-level languages.

This book is about the assembly language of most desktop and laptop PCs. Almost all
modern desktop PCs have a 64-bit CPU based on the x86 architecture. The legacy 32-bit
and 16-bit CPUs and their assembly languages will not be covered in any great detail.

MASM uses Intel syntax, and the code in this book is not compatible with AT&T assemblers.
Most of the instructions are the same in other popular Intel syntax assemblers, such as
YASM and NASM, but the directive syntax for each assembler is different.

 15

Chapter 1 Assembly in Visual Studio

There would be little point in describing x64 assembly language without having examined a
few methods for coding assembly. There are a number of ways to code assembly in both
32-bit and 64-bit applications. This book will mostly concentrate on 64-bit assembly, but first
let us examine some ways of coding 32-bit assembly, since 32-bit x86 assembly shares
many characteristics with 64-bit x86.

Inline Assembly in 32-Bit Applications

Visual C++ Express and Visual Studio Professional allow what is called inline assembly in
32-bit applications. I have used Visual Studio 2010 for the code in this book, but the steps
are identical for newer versions of the IDE. All of this information is applicable to users of
Visual Studio 2010, 2012, and 2013, both Express and Professional editions. Inline
assembly is where assembly code is embedded into otherwise normal C++ in either single
lines or code blocks marked with the __asm keyword.

Note: You can also use _asm with a single underscore at the start. This is an older directive
maintained for backwards compatibility. Initially the keyword was asm with no leading
underscores, but this is no longer accepted by Visual Studio.

You can inject a single line of assembly code into C++ code by using the __asm keyword

without opening a code block. Anything to the right of this keyword will be treated by the C++
compiler as native assembly code.

 int i = 0;

 _asm mov i, 25 // Inline assembly for i = 25

 cout<<"The value of i is: "<<i<<endl;

You can inject multiple lines of assembly code into regular C++. This is achieved by placing
the __asm keyword and opening a code block directly after it.

float Sqrt(float f) {

 __asm {

 fld f // Push f to x87 stack

 fsqrt // Calculate sqrt

 }

 }

 16

There are several benefits to using inline assembly instead of a native 32-bit assembly file.
Passing parameters to procedures is handled entirely by the C++ compiler, and the
programmer can refer to local and global variables by name. In native assembly, the stack
must be manipulated manually. Parameters passed to procedures, as well as local variables,
must be referred to as offsets from the RSP (stack pointer) or the RBP (base pointer). This

requires some background knowledge.

There is absolutely no overhead for using inline assembly. The C++ compiler will inject the
exact machine code the inline assembly generates into the machine code it is generating
from the C++ source. Some things are simply easier to describe in assembly, and it is
sometimes not convenient to add an entire native assembly file to a project.

Another benefit of inline assembly is that it uses the same commenting syntax as C++ since
we have not actually left the C++ code file. Not having to add separate assembly source
code files to a project may make navigating the project easier and enable better
maintainability.

The downside to using inline assembly is that programmers lose some of the control they
would have otherwise. They lose the ability to manually manipulate the stack and define their
own calling convention, as well as the ability to describe segments in detail. The most
important compromise is in Visual Studio’s lack of support for x64 inline assembly. Visual
Studio does not support inline assembly for 64-bit applications, so any programs with inline
assembly will already be obsolete because they are confined to the legacy 32-bit x86. This
may not be a problem, since applications that require the larger addressing space and
registers provided by x64 are rare.

Native Assembly Files in C++

Inline assembly offers a good deal of flexibility, but there are some things that programmers
cannot access with inline assembly. For this reason, it is common to add a separate, native
assembly code file to your project.

Visual Studio Professional installs all the components to easily change a project's target
CPU from 32-bit to 64-bit, but the express versions of Visual C++ require the additional
installation of the Windows 7 SDK.

Note: If you are using Visual C++ Express, download and install the latest Windows 7 SDK
(version 7.1 or higher for .NET 4).

You will now go through a guide on how to add a native assembly to a simple C++ project.

1. Create a new Empty C++ project. I have created an empty project for this example,
but adding assembly files to Windows applications is the same.

2. Add a C++ file to your project called main.cpp. As mentioned previously, this book is
not about making entire applications in assembly. For this reason, we shall make a
basic C++ front end that calls upon assembly whenever it requires more
performance.

 17

3. Right-click on your project name in the Solution Explorer and choose Build
Customizations.... The build customizations are important because they contain the
rules for how Visual Studio deals with assembly files. We do not want the C++
compiler to compile .asm files, we wish for Visual Studio to give these files to MASM
for assembling. MASM assembles the .asm files, and they are linked with the C++
files after compilation to form the final executable.

Figure 1

4. Select the box named masm (.targets, .props). It is important to do this step prior to
actually adding an assembly code file, because Visual Studio assigns what is to be
done with a file when the file is created, not when the project is built.

Figure 2

5. Add another C++ code file, this time with an .asm extension. I have used
asmfunctions.asm for my second file name in the sample code). The file name can
be anything other than the name you selected for your main program file. Do not
name your assembly file main.asm because the compiler may have trouble
identifying where your main method is.

 18

Figure 3

Note: If your project is 32-bit, then you should be able to compile the following 32-bit test
program (the code is presented in step six). This small application passes a list of integers from
C++ to assembly. It uses a native assembly procedure to find the smallest integer of the array.

Note: If you are compiling to 64-bit, then this program will not work with 32-bit MASM, since 64-
bit MASM requires different code. For more information on using 64-bit MASM, please read the
Additional Steps for x64 section where setting up a 64-bit application for use with native
assembly is explained.

6. Type the 32-bit sample code into each of the source code files you have created. The
first listing is for the C++ file and the second is for assembly.

// Listing: Main.cpp

#include <iostream>

using namespace std;

// External procedure defined in asmfunctions.asm

extern "C" int FindSmallest(int* i, int count);

int main() {

 int arr[] = { 4, 2, 6, 4, 5, 1, 8, 9, 5, -5 };

 19

 cout<<"Smallest is "<<FindSmallest(arr, 10)<<endl;

 cin.get();

 return 0;

}

; asmfunctions.asm

.xmm

.model flat, c

.data

.code

FindSmallest proc export

 mov edx, dword ptr [esp+4] ; edx = *int

 mov ecx, dword ptr [esp+8] ; ecx = Count

 mov eax, 7fffffffh ; eax will be our answer

 cmp ecx, 0 ; Are there 0 items?

 jle Finished ; If so we're done

MainLoop:

 cmp dword ptr [edx], eax ; Is *edx < eax?

 cmovl eax, dword ptr [edx] ; If so, eax = edx

 add edx, 4 ; Move *edx to next int

 20

 dec ecx ; Decrement counter

 jnz MainLoop ; Loop if there's more

Finished:

 ret ; Return with lowest in eax

FindSmallest endp

end

Additional Steps for x64

Visual Studio 2010, 2012, and 2013 Professional come with all the tools needed to quickly
add native assembly code files to your C++ projects. These steps provide one method of
adding native assembly code to a C++ project. The screenshots are taken from Visual
Studio 2010, but 2012 is almost identical in these aspects. Steps one through six for creating
this project are identical to those described for 32-bit applications. After you have completed
these steps, the project must be changed to compile for the x64 architecture.

7. Open the Build menu and select Configuration Manager.

Figure 4

8. In the configuration manager window, select <New...> from the Platform column.

 21

Figure 5

9. In the New Project Platform window, select x64 from the New Platform drop-down
list. Ensure that Copy Settings from is set to Win32, and that the Create new
solution platforms box is selected. This will make Visual Studio do almost all the
work in changing our paths from 32-bit libraries to 64-bit. The compiler will change
from ML.exe (the 32-bit version of MASM) to ML64.exe (the 64-bit version) only if the
create new solutions platforms is selected, and only if the Windows 7 SDK is
installed.

Figure 6

If you are using Visual Studio Professional edition, you should now be able to compile the
example at the end of this section. If you are using Visual C++ Express edition, then there is
one more thing to do.

The Windows 7 SDK does not set up the library directories properly for x64 compilation. If
you try to run a program with a native assembly file, then you will get an error saying the
compiler needs kernel32.lib, the main Windows kernel library.

LINK : fatal error LNK1104: cannot open file 'kernel32.lib'

 22

You can easily add the library by telling your project to search for the x64 libraries in the
directory that the Windows SDK was installed to.

10. Right-click on your solution and select Properties.

Figure 7

11. Select Linker, and then select General. Click Additional Library Directories and
choose <Edit…>.

Figure 8

12. Click the New Folder icon in the top-right corner of the window. This will add a new
line in the box below it. To the right of the box is a button with an ellipsis in it. Click
the ellipsis box and you will be presented with a standard folder browser used to
locate the directory with kernel32.lib.

 23

Figure 9

The C:\Program Files\Microsoft SDKs\Windows\v7.1\Lib\x64 directory shown in the
following figure is the directory where Windows 7 SDK installs the kernel32.lib library by
default. Once this directory is opened, click Select Folder. In the Additional Library
Directories window, click OK. This will take you back to the Project Properties page. Click
Apply and close the properties window.

You should now be able to compile x64 and successfully link to a native assembly file.

Figure 10

Note: There is a kernel32.lib for 32-bit applications and a kernel32.lib for x64. They are named
exactly the same but they are not the same libraries. Make sure the kernel32.lib file you are
trying to link to is in an x64 directory, not an x86 directory.

 24

64-bit Code Example

Add the following two code listings to the C++ source and assembly files we added to the
project.

// Listing: Main.cpp

#include <iostream>

using namespace std;

// External procedure defined in asmfunctions.asm

extern "C" int FindSmallest(int* i, int count);

int main() {

 int arr[] = { 4, 2, 6, 4, 5, 1, 8, 9, 5, -5 };

 cout<<"Smallest is "<<FindSmallest(arr, 10)<<endl;

 cin.get();

 return 0;

}

; Listing: asmfunctions.asm

.code

; int FindSmallest(int* arr, int count)

FindSmallest proc ; Start of the procedure

 mov eax, 7fffffffh ; Assume the smallest is maximum int

 cmp edx, 0 ; Is the count <= 0?

 25

 jle Finished ; If yes get out of here

MainLoop:

 cmp dword ptr [rcx], eax ; Compare an int with our smallest so far

 cmovl eax, dword ptr [rcx] ; If the new int is smaller update our smallest

 add rcx, 4 ; Move RCX to point to the next int

 dec edx ; Decrement the counter

 jnz MainLoop ; Loop if there's more

Finished:

 ret ; Return whatever is in EAX

FindSmallest endp ; End of the procedure

end ; Required at the end of x64 ASM files, closes the segments

 26

Chapter 2 Fundamentals

Now that we have some methods for coding assembly, we can begin to examine the
language itself. Assembly code is written into a plain text document that is assembled by
MASM and linked to our program at compile time or stored in a library for later use. The
assembling and linking is mostly done automatically in the background by Visual Studio.

Note: Assembly language files are not said to be compiled, but are said to be assembled. The
program that assembles assembly code files is called an assembler, not a compiler (MASM in
our case).

Blank lines and other white space is completely ignored in the assembly code file, except
within a string. As in all programming, intelligent use of white space can make code much
more readable.

MASM is not case sensitive. All register names, instruction mnemonics, directives, and other
keywords need not match any particular case. In this document, they will invariably be
written as lowercase in any code examples. Instructions and registers will be written in upper
case when referred to by name (this convention has been adopted from the AMD
programmer's manuals, and it makes register names easier to read).

Note: If you would like MASM to treat variable names and labels in a case sensitive way, you
can include the following option at the top of your assembly code file: "option casemap:
none."

Statements in assembly are called instructions; they are usually very simple and do some
tiny, almost insignificant tasks. They map directly to an actual operation the CPU knows how
to perform. The CPU uses only machine code. The instructions you type when programming
assembly are memory aids so that you don’t need to remember machine code. For this
reason, the words used for instructions (MOV, ADD, XOR, etc.) are often called mnemonics.

Assembly code consists of a list of these instructions one after the other, each on a new line.
There are no compound instructions. In this way, assembly is very different from high-level
languages where programmers are free to create complex conditional statements or
mathematical expressions from simpler forms and parentheses. MASM is actually a high-
level assembler, and complex statements can be formed by using its macro facilities, but
that is not covered in detail in this book. In addition, MASM often allows mathematical
expressions in place of constants, so long as the expressions evaluate to a constant (for
instance, MOV AX, 5 is the same as MOV AX, 2+3).

Skeleton of an x64 Assembly File

The most basic native x64 assembly file of all would consist of just End written at the top of

the file. This sample file is slightly more useful; it contains a .data and a .code segment,
although no segments are actually necessary.

.data

 ; Define variables here

 27

.code

 ; Define procedures here

End

Skeleton of an x32 Assembly File

The skeleton of a basic 32-bit assembly file is slightly more verbose than the 64-bit version.

.xmm

.model flat, c

.data

.code

Function1 proc export

 push ebp

 mov ebp, esp

 ; Place your code here

 pop ebp

 ret

Function1 endp

End

The very first line describes the CPU the program is meant to run on. I have used .xmm,
which means that the program requires a CPU with SSE instruction sets. This instruction set
will be discussed in detail in Chapter 8). Almost all CPUs used nowadays have these
instruction sets to some degree.

Note: Some other possible CPU values are .MMX, .586, .286. It is best to use the best possible
CPU you wish your program to run on, since selecting an old CPU will enable backwards
compatibility but at the expense of modern, powerful instruction sets.

 28

I have included a procedure called Function1 in this skeleton. Sometimes the push, mov,
and pop lines are not required, but I have included them here as a reminder that in 32-bit
assembly, parameters are always passed on the stack and accessing them is very different
in 32-bit assembly compared to 64-bit.

Comments

Anything to the right of a semicolon (;) is a comment. Comments can be placed on a line by
themselves or they can be placed after an instruction.

; This is a comment on a line by itself

mov eax, 24 ; This comment is after an instruction

Note: It is a good idea to comment almost every line of assembly. Debugging uncommented
assembly is extremely time consuming, even more so than uncommented high-level
language code.

You can also use multiline or block comments with the comment directive shown in the
sample code. The comment directive is followed by a single character; this character is
selected by the programmer. MASM will treat all text until the next occurrence of this same
character as a comment. Often the carat (^) or the tilde (~) characters are used, as they are

uncommon in regular assembly code. Any character is fine as long as it does not appear
within the text of the comment.

CalculateDistance proc

 comment ~

 movapd xmm0, xmmword ptr [rcx]

 subpd xmm0, xmmword ptr [rdx]

 mulpd xmm0, xmm0

 haddpd xmm0, xmm0

 ~

 sqrtpd xmm0, xmm0

 ret

CalculateDistance endp

In the sample code, the comment directive appears with the tilde. This would comment out
the four lines of code that are surrounded by the tilde. Only the final two lines would actually
be assembled by MASM.

 29

Destination and Source Operands

Throughout this reference, parameters to instructions will be called parameters, operands, or
destination and source.

Destination: This is almost always the first operand; it is the operand to which the answer is
written. In most two-operand instructions, the destination also acts as a source operand.

Source: This is almost always the second operand. The source of a computation can be
either of the two operands, but in this book I have used the term source to exclusively mean
the second parameter.

For instance, consider the following.

add rbx, rcx

RBX is the destination; it is the place that the answer is to be stored. RCX is the source; it is

the value being added to the destination.

Segments

Assembly programs consist of a number of sections called segments; each segment is
usually for a particular purpose. The code segment holds the instructions to be executed,
which is the actual code for the CPU to run. The data segment holds the program's global
data, variables, structure, and other data type definitions. Each segment resides in a
different page in RAM when the program is executed.

In high-level languages, you can usually mix data and code together. Although this is
possible in assembly, it is very messy and not recommended. Segments are usually defined
by one of the following quick directives:

Table 1: Common Segment Directives

Directive Segment Characteristics

.code Code Segment Read, Execute

.data Data Segment Read, Write

.const Constant Data Segment Read

.data? Uninitialized Data Segment Read, Write

Note: .code, .data, and the other segment directives mentioned in the previous table are
predefined segment types. If you require more flexibility with your segment's characteristics,
then look up the segment directive for MASM from Microsoft.

The constant data segment holds data that is read only. The uninitialized data segment
holds data that is initialized to 0 (even if the data is defined as having some other value, it is
set to 0). The uninitialized data segment is useful when a programmer does not care what
value data should have when the application first starts.

Note: Instead of using the uninitialized data segment, it is also common to simply use a
regular .data segment and initialize the data elements with “?”.

 30

The characteristics column in the sample table indicates what can be done with the data in
the segment. For instance, the code segment is read only and executable, whereas the data
segment can be read and written.

Segments can be named by placing the name after the segment directive.

.code MainCodeSegment

This is useful for defining sections of the same segment in different files, or mixing data and
code together.

Note: Each segment becomes a part of the compiled .exe file. If you create a 5-MB array in
your data segment your .exe will be 5 MB larger. The data defined in the data segment is not
dynamic.

Labels

Labels are positions in the code segment to which the IP can jump using the JMP

instructions.

[LabelName]:

Where [LabelName] is any valid variable name. To jump to a defined label you can use the

JMP, Jcc (conditional jumps), or the CALL instruction.

SomeLabel:

 ; Some code

 jmp SomeLabel ; Immediately moves the IP to SomeLabel

You can store a label in a register and jump to it indirectly. This is essentially using the
register as a pointer to some spot in the code segment.

SomeLabel:

 mov rax, SomeLabel

 jmp rax ; Moves the IP to the address specified in RAX, SomeLabel

Anonymous Labels

Sometimes it is not convenient to think of names for all the labels in a block of code. You can
use the anonymous label syntax instead of naming labels. An anonymous label is specified
by @@:. MASM will give it a unique name.

You can jump forward to an address higher than the current instruction pointer (IP) by using
@F as the parameter to a JMP instruction. You can jump backwards to an address lower than

the current IP by using @B as the parameter to a JMP instruction.

 31

@@: ; An anonymous label

jmp @F ; Instruction to jump forwards to the nearest anonymous label

jmp @b ; Instruction to jump backwards to the nearest anonymous label

Anonymous labels tend to become confusing and difficult to maintain, unless there is only a
small number of them. It is usually better to define label names yourself.

Data Types

Most of the familiar fundamental data items from any high-level language are also inherent
to assembly, but they all have different names.

The following table lists the data types referred to by assembly and C++. The sizes of the
data types are extremely important in assembly because pointer arithmetic is not automatic.
If you add 1 to an integer (dword) pointer it will move to the next byte, not the next integer as
in C++.

Some of the data types do not have standardized names; for example, the XMM word and
the REAL10 are just groups of 128 bits and 80 bits. They are referred to as XMM words or
REAL10 in this book, despite that not being their name but a description of their size.

Some of the data types in the ASM column have a short version in parentheses. When
defining data in the data segment, you can use either the long name or the short one. The
short names are abbreviations. For example, "define byte" becomes “db”.

Note: Throughout this book, I will always refer to double words as dwords, and double-
precision floats as doubles.

Table 2: Fundamental Data Types

Type ASM C++ Bits Bytes

Byte byte (db) char 8 1

Signed byte sbyte char 8 1

Word word (dw) unsigned short 16 2

Signed word sword short 16 2

Double word dword (dd) unsigned int 32 4

Signed double word sdword int 32 4

Quad word qword (dq) unsigned long long 64 8

Signed quad word sqword long long 64 8

XMM word (dqword) xmmword 128 16

YMM word ymmword 128 16

Single real4 float 32 4

 32

Type ASM C++ Bits Bytes

Double real8 double 64 8

Ten byte float real10 (tbyte, dt) 80 10

Data is usually drawn with the most significant bit to the left and the least significant to the
right. There is no real direction in memory, but this book will refer to data in this manner. All
data types are a collection of bytes, and all data types except the REAL10 occupy a number
of bytes that is some power of two.

There is no difference between data types of the same size to the CPU. A REAL4 is exactly
the same as a dword; both are simply 4-byte chunks of RAM. The CPU can treat a 4-byte
block of code as a REAL4, and then treat the same block as a dword in the very next
instruction. It is the instructions that define whether the CPU is to use a particular chunk of
RAM as a dword or a REAL4. The variable types are not defined for the CPU; they are
defined for the programmer. It is best to define data correctly in your data segment because
Visual Studio's debugging windows display data as signed or unsigned and integer or
floating point based on their declarations.

There are several data types which have no native equivalent in C++. The XMM and YMM
word types are for Single Instruction Multiple Data (SIMD), and the rather oddball REAL10 is
from the old x87 floating point unit.

Note: This book will not cover the x87 floating point unit's instructions, but it is worth noting
that this unit, although legacy, is actually capable of performing tasks the modern SSE
instructions cannot. The REAL10 type adds a large degree of precision to floating point
calculations by using an additional 2 bytes of precision above a C++ double.

Little and Big Endian

x86 and x64 processors use little endian (as opposed to big endian) byte order to represent
data. So the byte at the lowest address of a multiple byte data type (words, dwords, etc.) is
the least significant, and the byte at the highest address is the most significant. Imagine
RAM as a single long array of bytes from left to right.

If there is a word or 2-byte integer at some address (let us use 0x00f08480, although in
reality a quad word would be used to store this pointer so it would be twice as long) with the
values 153 in the upper byte and 34 in the lower, then the 34 would be at the exact address
of the word (0x00f08480). The upper byte would have 153 and would be at the next byte
address (0x00f08481), one byte higher. The number the word is storing in this example is
the combination of these bytes as a base 256 number (34+153×256).

Figure 11

 33

This word would actually be holding the integer 39,202. It can be thought of as a number in
base 256 where the 34 is the first digit and the 153 is the second, or 39202 =
34+153×(256^1).

Two’s and One’s Complement

In addition to being little endian, x86 and x64 processors use two’s complement to represent
signed, negative numbers. In this system, the most significant bit (usually drawn as the
leftmost) is the sign bit. When this bit is 0, the number being represented is positive and
when this bit is 1, the number is negative. In addition, when a number is negative, the
number it represents is the same as flipping all the bits and adding 1 to this result. So for
example, the bit pattern 10110101 in a signed byte is negative since the left bit is 1. To find
the actual value of the number, flip all the bits and add 1.

Flipping each bit of 10110101 gives you 01001010.

01001010 + 1 = 01001011

01001011 in binary is the number 75 in decimal.

So the bit pattern 10110101 in a signed byte on a system that represents signed numbers
with two's complement is representing the value -75.

Note: Flipping the bits is called the one's complement, bitwise complement, or the
complement. Flipping the bits and adding one is called the two's complement or the
negative. Computers use two's complement, as it enables the same circuitry used for
addition to be used for subtraction. Using two's complement means there is a single
representation of 0 instead of -0 and +0.

 34

Chapter 3 Memory Spaces

Computers are made of many components, some of which have memory or spaces to store
information. The speed of these various memory spaces and the amount of memory each is
capable of holding are quite different. Generally, the closer to the CPU the memory space,
the faster the data can be read and written.

There are countless possible memory spaces inside a computer: the graphics card, USB
sticks, and even printers and other external devices all add memory spaces to the system.
Usually the memory of a peripheral device is accessed by the drivers that come with the
devices. The following table lists just a few standard memory spaces.

Table 3: Memory Spaces

Memory Space Speed Capacity

Human input Unknown Unknown

Hard drives and external storage Extremely slow Massive, > 100 gigabytes

RAM Fast Large, gigabytes

CPU caches Very fast Small, megabytes

CPU registers Fastest Tiny, < 1 kilobyte

The two most important memory spaces to an assembly program are the RAM and the CPU
memories. RAM is the system memory; it is large and quite fast. In the 32-bit days, RAM
was segmented, but nowadays we use a flat memory model where the entire system RAM is
one massive array of bytes. RAM is fairly close to the CPU, as there are special buses
designed to traffic data to and from the RAM hundreds of times quicker than a hard drive.

There are small areas of memory on the CPU. These include the caches, which store copies
of data read from external RAM so that it can be quickly accessed if required. There are
usually different levels of cache on a modern CPU, perhaps up to 3. Level 1 (abbreviated to
L1 cache) is the smallest but quickest, and level 3 (abbreviated to L3 cache) is the slowest
cache but may be megabytes in size. The operation of the caches is almost entirely
automatic. The CPU handles its own caches based on the data coming into it and being
written to RAM, but there are a few instructions that deal specifically with how data should or
should not be cached.

It is important to be aware of the caches, even though in x86 programmers are not granted
direct control over them. When some value from an address in RAM is already in the L1
cache, reading or writing to it is almost as fast as reading and writing to the registers.
Generally, if data is read or written, the CPU will expect two things:

 The same data will probably be required again in the near future (temporal locality).

 The neighboring data will probably also be required (spatial locality).

As a result of these two expectations, the CPU will store both the values requested by an
instruction from RAM and its cache. It will also fetch and store the neighboring values.

 35

More important than the CPU caches are the registers. The CPU cannot perform
calculations on data in RAM; data must be loaded to the CPU before it can be used. Once
loaded from RAM, the data is stored in the CPU registers. These registers are the fastest
memory in the entire computer. They are not just close to the CPU, they are the CPU. The
registers are just a handful of variables that reside on the CPU, and they have some very
strange characteristics.

Registers

The registers are variables residing on the CPU. The registers have no data type.
Specifically, they are all data types, bytes, words, dwords, and qwords. They have no
address because they do not reside in RAM. They cannot be accessed by pointers or
dereferenced like data segment variables.

The present register set (x64) comes from earlier x86 CPUs. It is easiest to understand why
you have these registers when you examine the older CPU register sets. This small trip
through history is not just for general knowledge, as most of the registers from 1970s CPUs
are still with us.

Note: There is no actual definition for what makes a CPU 64-bit, 32-bit, or 16-bit, but one of
the main defining characteristics is the size of the general purpose registers. x64 CPUs have
16 general purpose registers and they are all 64 bits wide.

16-Bit Register Set

Figure 12

 36

Let us begin by examining the original 16-bit 8086 register set from the 1970s. Each of the
original 8086 registers had a name indicating what the register was mainly used for. The first
important thing to note is that AX, BX, CX, and DX can each be used as a single 16-bit
register or as two 8-bit registers.

AX, BX, CX, and DX: The register AL (which means A Low) is the low byte of AX, and the
register AH (which means A High) is the upper byte. The same is true for BX, CX, and DX;
each 16-bit register has two 8-bit versions. This means that changing one of the low bytes
(AL, BL, CL, or DL) will change the value in the word-sized version (AX, BX, CX, or DX). The
same is true of changing the high bytes (AH, BH, CH, and DH). This also means that
programmers can perform arithmetic on bytes or words. The four 16-bit registers can be
used as eight 8-bit registers, four 16-bit registers, or any other combination.

SI and DI: These are the source and destination index registers. They are used for string
instructions where SI points to the source of the instruction and DI points to the destination.
They were originally only available in 16-bit versions, but there were no byte versions of
these registers like there are for AX, BX, CX, and DX.

BP: This is the base pointer; it is used in conjunction with the SP to assist in maintaining a
stack frame when calling procedures.

SP: This is the stack pointer; it points to the address of the first item that will be popped from
the stack upon executing the POP instructions.

IP: This is the instruction pointer (called PC for Program Counter in some assembly
languages); it points to the spot in RAM that is to be read for the next machine code bytes.
The IP register is not a general purpose register, and IP cannot be referenced in instructions
that allow the general purpose registers as parameters. Instead, the IP is manipulated
implicitly by calling the jump instructions (JMP, JE, JL, etc.). Usually the IP simply counts up

one instruction at a time. As the code is executed, instructions are fetched from RAM at the
address the IP indicates, and they are fed into the CPU's arithmetic units and executed.
Jumping instructions and procedure calls cause the IP to move to some other spot in RAM
and continue reading code from the new address.

Flags: This is another special register; it cannot be referenced as a general purpose
register. It holds information about various aspects of the state of the CPU. It is used to
perform conditional statements, such as jumps and conditional moves. The flags register is a
set of 16 bits that each tell something about the recent events that have occurred in the
CPU. Many arithmetic and compare instructions set the bits in the flags register, and with
subsequent conditional jumps and moves performs the instructions based on the status of
the bits of this register. There are many more flag bits in the flags register, but the following
table lists the important ones for general application programming.

Table 4: Flags Register

Flag Name Bit Abbrev. Description

Carry 0 CF Last arithmetic instruction resulted in carry or borrow.

Parity 2 PF 1 if lowest byte of last operation has even 1 count.

Auxiliary Carry 4 AF Carry for BCD (not used any more).

Zero 6 ZF Last result equaled zero.

Sign 7 SF Sign of last operation, 1 for – and 0 for +.

 37

Flag Name Bit Abbrev. Description

Direction 10 DF Direction for string operations to proceed.

Overflow 11 OF Carry flag for signed operations.

The individual flag bits of the flags register are not only used for what they were originally
named. The names of the flags also reflect the most general use for each. For instance, CF
is used to indicate whether the last addition or subtraction resulted in a final carry or borrow,
but it is also set by the rotating instructions.

The parity flag was originally used in error checking, but it is now almost completely useless.
It is set based on the count of bits set to 1 in the lowest byte of the last operation's result. If
there is an even number of 1 bits set by the last result, the parity flag will be set to 1. If not, it
will be cleared to 0. The auxiliary carry flag was used in Binary Coded Decimal (BCD)
operations, but most of the BCD instructions are no longer available in x64.

The final four registers in the 8086 list (SS, CS, DS, and ES) are the segment pointers. They
were used to point to segments in RAM. A 16-bit pointer can point to at most 64 kilobytes of
different RAM addresses. Some systems at the time had more than 64 kilobytes of RAM. In
order to access more than this 64-KB limit, RAM was segmented and the segment pointers
specified a segment of the total installed RAM, while another pointer register held a 16-bit
offset into the segment. In this way, a segment pointer in conjunction with an offset pointer
could be thought of as a single 32-bit pointer. This is a simplification, but we no longer use
segmented memory.

32-Bit Register Set

When 32-bit CPUs came about, backwards compatibility was a driving force in the register
set. All previous registers were kept but were also extended to allow for 32-bit operations.

 38

Figure 13

The original registers can all still be referenced as the low 16 bits of the new 32-bit versions.
For example, AX is the lowest word of EAX, and AL is still the lowest byte of AX, while AH is
the upper byte of AX. The same is true for EBX, ECX, and EDX. As a result of this
expansion to the register set, the 386 and 486 CPUs could perform arithmetic on bytes,
words, and dwords.

The SI, DI, BP, and SP registers also added a 32-bit version and the original 16-bit registers
were the low word of this. There was no byte form of these registers at that point.

The segment registers were also present and another two were added (GS and FS). Again,
the segment registers are no longer as useful as they were, since modern Windows systems
use a flat memory model.

Note: It is perfectly acceptable to use the different parts of a single register as two different
operands to an instruction. For instance, “mov al, ah” moves the data from AH to AL. This is
possible because the CPU has internal temporary registers to which it copies the values
prior to performing arithmetic.

 39

64-bit Register Set

Finally, we arrive at our present register set. This was a massive change, but once again,
almost all backwards compatibility was maintained. In addition to increasing all general
purpose registers to 64 bits wide by adding another 32 bits to the left of the 32-bit versions
(EAX, EBX, etc.), eight new general purpose registers were added (R8 to R15). BP, SP, DI,
and SI could also now have their lowest bytes referenced, as well as the lowest word or
lowest dword.

Figure 14

The general purpose registers AX, BX, CX, and DX still have high bytes (AH, BH, CH, and
DH), but none of the other registers have their second byte addressable (there is no RDH, a
high byte version of RDI). The high bytes of RAX, RBX, RCX, or RDX cannot be used with
the low bytes of the other registers in a single instruction. For example, mov al, r8b is

legal, but mov ah, r8b is not.

 40

Figure 15

These are the new 64-bit general purpose registers R8 to R15. They can be used for
anything the original RAX, RBX, RCX, or RDX registers can be used for. It is not clear in the
diagram, but the lowest 32 bits of the new registers are addressable as R8D. The lowest 16
bits of R8 are called R8W and the lowest byte is called R8B. Although the image seems to
depict R8D adjacent to R8W and R8B, R8W is actually the low 16 bits, exactly the same as
RAX, EAX, AX, and AL.

 41

Chapter 4 Addressing Modes

The different types of parameters an instruction can take are called addressing modes. This
term is not to be confused with addresses in memory. The addressing modes include
methods for addressing memory as well as the registers. Addressing modes are defined
both by the CPU and the assembler. They are methods by which a programmer can address
operands.

Registers Addressing Mode

The registers addressing mode is fairly self-explanatory. Any of the x86 registers can be
used.

mov eax, ebx ; EAX and EBX are both registers

add rcx, rdx ; RCX and RDX are 64-bit registers

sub al, bl ; AL and BL are the low 8-bit registers of RAX and RBX

Immediate Addressing Mode

The immediate or literal addressing mode is where a literal number appears as a parameter
to an instruction, such as mov eax, 128 where 128 would be the literal or immediate value.

MASM understands literal numbers in several different bases.

Table 5: Common Bases

Base Name Suffix Digits Example

2 Binary b 0 and 1 1001b

8 Octal o 0 to 7 77723o

10 Decimal d or none 0 to 9 1893 or 235d

16 Hexadecimal h 0 to F 783ffh or 0fch

Note: When describing numbers in hexadecimal, if they begin with a letter digit (leftmost digit
is A, B, C, D, E, or F), then an additional zero must be placed before it; “ffh” must be “0ffh”.
This does not change the size of the operand.

In addition to using a number, you can also use mathematical expressions, so long as they
evaluate to a constant. The mathematical expressions will not be evaluated by the CPU at
run time, but MASM will translate them to their constant values prior to assembling.

mov rax, 29+23 ; This is fine, will become mov rax, 52

mov rcx, 32/(19-4); Evaluates to 2, so MASM will translate to mov rax, 2

mov rdx, rbx*82 ; rbx*82 is not constant, this statement will not work

 42

Implied Addressing Mode

Many instructions manipulate a register or some part of memory pointed to by a register,
even though the register or memory address does not appear as a parameter. For instance,
the string instructions (MOVSxx, SCASxx, LODSxx, etc.) reference memory, RAX, RCX, RSI,

and RDI even though they take no parameters. This usage is called the implied addressing
mode; parameters are implied by the instructions themselves and do not appear in the code.

REP SCASB ; Scan string at [RDI] for AL and scan the number of bytes in RCX

CPUID ; CPUID takes EAX as input and outputs to EAX, EBX, ECX, and EDX

Memory Addressing Mode

There is a multitude of ways to reference memory in MASM. They all do essentially the
same thing; they read or write data from some address in RAM. The most basic usage of the
memory addressing mode is using a variable defined in the data segment by name.

.data

xyzVar db ? ; Define some variable in the data segment

.code

SomeFunction proc

 mov al, xyzVar ; Move *xyzVar, the value of xyzVar, into AL

 .

 . Code continues

 .

Note: Because a label defined in the data segment is actually a pointer, some people tend not
to call them variables but rather pointers or labels. The usage of “xyzVar” in the sample code
is actually something like “mov al, byte ptr [xyzVar]” where xyzVar is a literal address.

It is often necessary to tell MASM what size the memory operand is, so that it knows what
machine code to generate. For instance, there are many MOV instructions: there is one that

moves bytes, one for words, and another for dwords. The same MOV mnemonic is used for

all of them, but they generate completely different machine code and the CPU does different
things for each of them.

These prefixes can be placed to the left of the square braces. The size prefixes are as
follows.

 43

Table 6: Pointer Size Prefixes

Size in
Bytes

Prefix

1 byte ptr

2 word ptr

4 dword ptr

8 qword ptr

10 real10 ptr

16 xmmword ptr

32 ymmword ptr

Note: Signed, unsigned, or float versus integer is irrelevant here. A signed word is two bytes
long, just as an unsigned word is two bytes long. These prefixes are only telling MASM the
amount of data in bytes; they do not need to specify with any more clarity. For instance, to
move a double (64-bit float) you can use the qword ptr, since 8 bytes is a quad word and it
does not matter that the data happens to be a real8. You can also use real8 to move this
amount of data.

In addition to using simple variables defined in the data segment, you can use registers as
pointers.

mov eax, dword ptr [rcx]; Move 4 bytes starting where RCX is pointing

mov bl, byte ptr [r8] ; Move a byte from *R8 into BL

add dx, word ptr [rax] ; Add the word at *RAX to the value in DX

You can also add two registers together in the square braces. This allows a single base
register to point to the first element of an array and a second offset pointer to step through
the array. You can also use a register and add or subtract some literal value from it.

Note: Values being added or subtracted from a register can be complex expressions so long
as they evaluate to a constant. MASM will calculate the expression prior to assembling the
file.

sub rbx, qword ptr [rcx+rax] ; Perhaps the base is RCX and RAX is an offset

add dword ptr [r8+68], r9d ; Here we have added a constant to r8

add dword ptr [r8-51], r9d ; Here we have subtracted a constant from r8

Note: Whenever values are being subtracted or added to addresses, either by using literal
numbers or by using registers, the amount being added or subtracted always represents a
number of bytes. Assembly is not like C++ with its pointer arithmetic. All pointers in
assembly increment and decrement a single byte at a time, whereas in C++ an integer pointer
will increment and decrement 4 bytes at a time automatically.

 44

The most flexible of all memory addressing modes is perhaps the SIB (Scale, Index, Base)
memory addressing mode. This involves a base register pointing to the start of some array,
an index register that is being used as an offset into the array, and a scale multiplier that can
be 1, 2, 4, or 8, and is used to multiply the value the index holds to properly access elements
of different sizes.

mov bx, byte ptr [rcx+rdx*2] ; RCX is the base, RDX is an offset and we

 ; are using words so the scale is 2

add qword ptr [rax+rcx*8], r12 ; RAX is the base, RCX is the index

 ; and we are referencing qwords so the

 ; scale is 8

This addressing mode is useful for stepping through arrays in a manner similar to C++. Set
the base register to the first element of the array, and then increment the index register and
set the scale to the data size of the elements of the array.

mov rax, qword ptr [rcx+rbx*8]; Traverse a qword array at *RCX with RBX

mov cx, word ptr [rax+r8*2] ; Traverse a word array at *RAX with R8

 45

Chapter 5 Data Segment

The data segment is the place in RAM that a program stores its global and static data. This
data is defined at compile time. The data segment does not hold variables that are allocated
at run time (the heap is used for this purpose) or variables that are local to subprocedures
(the stack is used to hold these). Most of the information presented here is to be used in any
segment. For instance, variables can be declared in the uninitialized data segment (.data) or
the constant data segment (.constant).

Note: All variables declared in your data segment will become bytes in your actual .exe file.
They are not generated when the program is run; they are read from the .exe file. Creating a
data segment with 150-MB of variables will generate a 150-MB .exe file and will take a very
long time to compile.

Scalar Data

Scalar data defined in the data segment is given a name, size, and optional initial value. To
declare a variable in the data segment is to name an offset from the start of the data
segment. All the variable names are actually pointers; they are a number referring to an
offset into the data segment in RAM, so programmers do not have to remember the offsets
as numbers.

Note: Variables in assembly are sometimes referred to as labels, but to avoid confusion with
labels in the code segment, I will refer to data segment labels as variables.

To define a variable in the data segment, the general layout is as follows:

[VarName] [Type] [Initial Value]

Where [VarName] is any legal variable name and will be the name of the point in data that

you wish to use to as a reference.

Note: The rules for variable names are the same as those for C++. They cannot begin with a
digit, and they can contain letters, digits, and underscores. You can also use some additional
symbols that are illegal in C++, such as @ and ?.

[Type] is the data type and can be any one of the data types or short versions in the ASM

column of the Fundamental Data Types table.

The initial value can be either a literal value or it can be “?”. The question mark means the
data is not given an initial value. In actuality, data will be given a value even if it is
uninitialized. The point of the “?” is to declare that the programmer does not care what value
the data is set to initially and presumably the program will set some other initial value prior to
using the data.

Here are some examples of defining simple scalar data types in a data segment.

 46

.data

myByte db 0 ; Defines a byte set to 0 called myByte

patientID dw ? ; Defines a word, uninitialized called patientID

averageSpeed dt 0.0 ; Defines 10-byte real, reals must have a decimal

 ; point if initialized

totalCost sdword 5000 ; Defines signed dword set to 5000, called totalCost

Note: The first variable is placed at the DS:0 (it is placed at the first byte of the data segment)
and the second straight after that (there is no padding paced between variables). If the first
variable was 1 byte then the second would be at DS:1. If the first variable was a word then the
second would be at DS:2. The way consecutive variables are stored in RAM is called
alignment and it is important for performance as some of the fastest data processing
instructions require data to be aligned to 16 bytes.

Arrays

After scalar data types, the next most fundamental data type is probably the array. An array
is a list of elements of the same data type in contiguous memory. In assembly, an array is
just a block of memory and the first element of the array is given a name.

Arrays Declared with Commas

You can declare the elements of an array separated by commas.

MyWord dw 1, 2, 3, 4 ; Makes a 4 word array with 1, 2, 3, and 4 as elements

If you need to use more than one line, finish the line with a comma and continue on the next.

MyWord dw 1, 2, 3, 4, ; Four words in an array

 5, 6, 7, 8 ; Another four words in the same array!

This is legal because you actually do not need the label at all. The MyWord name of the
variable is completely optional.

Duplicate Syntax for Larger Arrays

You can create larger arrays in your data segment using the duplicate syntax, but remember
that every byte in your data segment is a byte in your final file.

To create larger arrays you can declare an array of values with the following pattern (the
duplicate syntax):

[Name] [type] [n] [dup (?)]

 47

Where [Name] is the array name, any legal variable name. [Type] is one of the data types

from the Fundamental Data Types table, and [n] is the number of items in the array. DUP is

short for duplicate, and the data that it duplicates is in the parentheses. To make 50 words
all set to 25 in an array called MyArray, the array declaration using the duplicate syntax
would be the following:

MyArray word 50 dup (25)

You can combine the simple comma separated array definition syntax with the duplicate
syntax and produce arrays of repeating patterns.

MyArray byte 50 dup (1, 6, 8)

This will define an array 150 bytes long (50×3) with the repeating pattern 1, 6, 8, 1, 6, 8, 1, 6,
8....

You can nest the duplicate directive to create multidimensional arrays. For example, to
create a 10×25 dimensional byte array and to set all elements to A, you could use the
following:

MyMArray byte 10 dup (25 dup ('A'))

Note: RAM is linear. Whether the sample code actually defines a 10×25 or a 25×10 array must
be decided by the programmer. To the CPU, it is just a block of linear RAM and there is no
such thing as a multidimensional array.

For a three-dimensional array, you could use something like this:

My3dArray byte 10 dup (25 dup (100 dup (0)))

This will create a 10×25×100 3-D array of bytes all set to 0. From the CPU's point of view,
this 3-D array is exactly the same as the following:

My3dArray byte 25000 dup (0)

Getting Information about an Array

Once defined, MASM has some directives to retrieve information about the array:

lengthof: Returns the length of the array in elements.

sizeof: Returns the length of the array in bytes.

type: Returns the element size of the array in bytes.

 48

For example, if you have an array called myArray and you want to move information about it
into AX, you would do the following:

mov ax, lengthof myArray ; Move length in elements of the array

mov ax, sizeof myArray ; Move the size in bytes of the array

mov ax, type myArray ; Move the element size into AX

Note: These directives are translated to immediate values prior to assembling the file;
therefore, "mov lengthof myArray, 200" is actually translated to "mov 16, 200". Moving a
value into a literal constant means nothing (we cannot change the meaning of 16, even in
assembly), so the line is illegal.

Defining Strings

In MASM, single and double quotes are exactly the same. They are used for both strings
and single characters.

Note: A string in C and C++ is a byte array often with a null, 0, at the end. These types of strings
are called zero delimited strings. Many C++ functions are designed to work with zero delimited
strings.

To define a string of text characters, you can use this string syntax:

errMess db 'You do not have permission to do this thing, lol', 0

This is equivalent to defining a byte array with the values set to the ASCII numbers of the
characters in the string. The Y at the start will be the first (least significant) byte of the array.

Note: The comma and zero at the end are the final null. This makes the string a null-
terminated string as understood by cout and other C++ functions. Cout stops writing a string
when it reaches the 0 character. In C++, the 0 is added automatically when we use the double
quotes; in assembly, it must be explicit.

To define a string that does not fit on a single line, you can use the following:

myLongString db "This is a ",

 "string that does not ",

 "fit on a single lion!", 0

In each of the previous examples, the single quote could also have been used to the same
effect:

 49

myLongString db 'This is a ',

 'string that does not',

 'fit on a single lion!', 0

If you need to use either a single quote in a single quote array or a double quote in a double
quote array, place two of them together:

myArr1 db "This ""IS"" Tom's array!", 0 ; This "IS" Tom's array!

myArr2 db 'That''s good, who''s Tom?', 0 ; That's good, who's Tom?

Typedef

You can declare your own names for data types with the type definition (typedef) directive.

integer typedef sword ; Defines “integer” to mean sword

MyInteger integer ? ; Defines a new sword called MyInteger

You cannot use reserved words for your typedefs, so trying to make a signed dword type
called “int” will not work, since “int” is the x86 instruction to call an interrupt.

Note: You can use typedef to define new names for user-defined types, fundamental types,
structures, unions, and records.

Structures and Unions

To define a structure (analogous to a C++ struct), you can use the struc (or struct) directive.

ExampleStructure struct ; Structure name followed by "struct" or "struc"

 X word 0

 Y word 0

 Z word 0

 ID byte 0

ExampleStructure ends ; The name followed by “ends” closes the definition

This would create a structure with four variables; three are words set to 0 and called X, Y,
and Z, and the final variable is a byte called ID, also set to 0 by default.

The previous example was the prototype. To create an instance of the previous structure
prototype, you can use the following:

 50

person1 ExampleStructure { } ; Declares person1 with default values

person2 ExampleStructure { 10, 25, 8, ? } ; Declares person2 with

 ; specific values

 ; and ID of ?, or 0 probably

Each field of the instance of the structure can be initialized with the value supplied in
respective order in curly brackets. Use “?” to initialize to MASM's default value (0). You can
initialize less than the amount of values the structure and the rest are automatically given.
These are their default values as per the structure's prototype.

person2 ExampleStructure { 10 } ; Declares person2 with 10 for x

 ; but the rest are as per the

 ; structure's prototype

With a prototype declaration, you can create an instance of this structure with some of the
values initialized, and others with their defaults, by not including any value. Just place
whitespace with a comma to indicate where the value would have been.

MyStructure struct

 x word 5

 y word 7

MyStructure ends

InstanceOfStruct MyStructure { 9, } ; Change x to 9 but keep y

 ; as 5 as per prototype

To change the values of a previously instantiated structure from code, you can use a period
in a similar manner to accessing structure elements in C++.

mov person1.X, 25 ; Moves 25 into person1's X

mov person2.ID, 90 ; Moves 90 into person2's ID

Note: When structures are passed to functions from C++, they are not passed by reference.
They are copied to the registers and stack depending on the size of the structure. If a
structure has two integers, then the whole instance of the structure will be copied to RCX
(since two 32-bit dwords fit into the 64-bit RCX). This is awkward because you cannot

 51

reference the separate elements of the structure when they are in a register. For instance,
there is no way to reference the top dword of RCX. For this reason, it may be easier to pass
structures from C++ as pointers.

You can load the effective address of a previously instantiated structure with the LEA
instruction (load effective address). To use a register (RCX in this example) as a pointer to
an instance of a structure, you must tell MASM the address, type of structure being pointed
to, and the field.

lea rcx, person1 ; Loads the address of person1 into RCX

mov [rcx].ExampleStructure.X, 200 ; Moves 200 into person1.X using

 ; RCX as a pointer

The CPU does not check to make sure RCX is actually pointing to an ExampleStructure
instance. RCX could be pointing to anything. [RCX].ExampleStructure.X simply means

find what RCX is pointing to and add the amount that X was offset in the ExampleStructure
prototype to this address. In other words, [RCX].ExampleStructure.X translates to RCX+0,

since X was at byte number 0 in the prototype of ExampleStructure.
[RCX].ExampleStructure.Y translates to RCX+2, since Y was the second element after the

two byte word X.

To pass an instance of a structure as a parameter to a function, it is usual to pass its
address and manipulate it as per the previous point. This is passing by reference, and the
initial object will be changed, but it is much faster than copying the data of the structure to
the registers and stack in the manner of C++.

; This is the function that is initially called

Function1 proc

 lea rcx, person2 ; Load *person2 into RCX to be passed to Fiddle

 call Fiddle ; Call Fiddle with RCX param 1

 ret

Function1 endp

; Fiddle, RCX = *ExampleStructure

Fiddle proc

 mov [rcx].ExampleStructure.Y, 89 ; Change something

 ret

Fiddle endp

 52

Structures of Structures

To define a structure that has a smaller substructure as its member variables, declare the
smaller one first. Then place the instances of the substructure inside the declaration of the
larger structure.

; This is the smaller sub-structure

Point struct

 X word 0

 y word 0

Point ends

; This is the larger structure that owns a Point as one of its parameters:

Square struct

 cnr1 Point { 7, 4 } ; This one uses 7 and 4

 cnr2 Point { } ; Use default parameters!

Square ends

To declare an instance of a structure that contains substructures in the data segment, you
can use nested curly braces.

MySquare Square { { 9, 8 }, { ?, 7 } }

Note: If you do not want to set any of the values of a struct, you can use {} to mean defaults
for all values, even if the structure has substructures within it.

To set the value of a structure's substructure, append a period to specify which variable you
wish to change.

mov MySquare.cnr1.Y, 5

You can use a register as a pointer and reference the nested structure’s elements as
follows:

mov word ptr [rcx].Square.cnr1.X, 10

 53

Unions

A union is similar to a structure, except the actual memory used for each of the elements in
the union is physically at the same place in RAM. Unions are a way to reference the same
address in RAM as more than one data type.

MyUnion union

 w1 word 0

 d1 dword 0

MyUnion ends ; Note that it is ends, not endu!

Here, MyUnion.w1 has exactly the same address as MyUnion.w2. The dword version is 4
bytes long and the word is only 2 bytes, but the least significant byte of both has the same
address.

Records

Records are another complex data type of MASM. They are like structures, but they work on
and are defined at the bit level. The syntax for definition is as follows:

[name] RECORD [fldName:sz], [fldName:sz]...

Where [name] is the name of the record, [fldName] is the name of a field, and [sz] is the

size of the field in bits.

color RECORD blBit:1, hueNib:4

The sample code in the data segment is the prototype to a record called color. The record
can then be accessed by the following:

mov cl, blBit

This would move 4 into CL, since blBit was defined as bit number 4 in the record. hueNib
takes bits 0, 1, 2, and 3, and blBit comes after this.

You cannot use a record to access bits directly.

mov [rax].color.blBit, 1 ; Won't change the 4th bit from RAX to 1

A record is just a form of directive; it defines a set of constants to be used with bitwise
operations. The constants are bit indices. You can use a record for rotating.

 54

mov cl, blBit ; Move the index of the record's blBit into cl

rol rax, cl ; Use this to rotate the bits in RAX

You can define records in your data segment and initialize the values of the bit fields just as
you can with a structure. This is the only time you can set each element of a record without
using bitwise operations.

.data

color RECORD qlBit:3, blBit:1, hueNib:4 ; Defines a record

; Following defines a new byte with the bits set as specified

; by the record declaration:

; qlBit gets 0, blBit gets 1 and the hueNib gets 2

; So MyColor will actuall be a byte set to 00010010b

MyColor color { 0, 1, 2 } ; Declare a color record with initializers

.code _text

Function1 proc

 mov cl, MyColor ; Moves 000:1:0010b, or 18 in decimal

 ret

Function1 endp

Note: The qlBit, blBit and hueBit from the previous record become constants of their bit
indices: hueBit = 0, blBit = 4, qlBit = 5.

You can get the width in bits of a field in a record by using MASM's WIDTH directive.

mov ax, WIDTH color.hueNib

You can get a bit mask of the record's field by using MASM's MASK directive.

and al, mask myCol.blBit; AND contents of AL with bit mask of defined color

 ; record

 55

You can specify NOT prior to the MASK directive to flip the bit mask.

and al, NOT MASK myCol.blBit

Constants Using Equates To

You can define a numerical constant using the = symbol, and you can define numerical and

text constants using the equ directive. This is short for “equates to.”

Somevar = 25 ; Somevar becomes a constant immediate value 25

name equ 237 ; "name" is the symbol for the constant

mov eax, name ; Translates to “mov eax, 237”

moc ecx, SomeVar ; Sets ECX to 25

You can also use the EQU directive to define text constants by surrounding the value with

triangle braces.

quickMove equ <mov eax, 23>

quickMove ; Translates to “mov eax, 23”

You can use the equates directive to define machine code by using a db (define byte) in the

value.

NoOperation equ <db 90h> ; 90h is machine code for the NOP instruction

NoOperation ; Translates to NOP or 90h

This usage of db in the code segment is fine because db does nothing more than place the

exact byte values you specify at the position in the file. Using db in the code segment

effectively enables us to program in pure machine code.

; This procedure returns 1 if ECX is odd

; otherwise it returns 0, it is programmed

; in pure machine code using db.

IsOdd proc

db 83h, 0E1h, 01h, ; and ecx, 1

 56

 8Bh, 0C1h, ; mov eax, ecx

 0C3h ; ret

IsOdd endp

The point of using pure machine code is that sometimes an assembler may not understand
some instructions that the CPU can understand. An older assembler may not understand the
SSE instructions. By using EQU and db in the manner described previously, a programmer

can define his or her own way of specifying SSE instructions, whether the assembler
understands them naturally or not.

Macros

You can define macro functions using the macro directive.

[name] MACRO [p1], [p2]...

 ; Macro body

ENDM

Where [name] is the symbol associated with the macro, MACRO and ENDM are keywords, and

[p1], [p2], and any other symbols are the parameters as they are referred to in the body of

the macro.

Halve macro dest, input ; dest and input are the parameters

 mov dest, input ;; Refer to parameters in body

 shr dest, 1

endm ; endm with no macro name preceding

; And later in your code:

Halve ecx, 50 ; Moves 25 into ecx

Halve eax, ecx ; Moves 12 into eax

Halve ecx, ecx ; Moves 12 into ecx

Halve 25, ecx ; Error, ecx/2 cannot be stored in 25!

 57

The symbol name is swapped for the corresponding code each time MASM finds the macro
name when assembling. This means that if there are labels in the macro code (if the code
has jumps to other points within its code), MASM will write the labels again and again. Each
time the macro is used, the labels will appear. Since MASM cannot allow duplicate labels
and still know where to jump, you can define labels as local in the macro definition. Labels
defined as local will actually be replaced by an automatically generated, unique label.

SomeMacro macro dest, input

local label1, label2

 test dest, 1

 jnz label1

 jz label2

label1: ;; Automatically renamed ??0000

 mov eax, 3

label2: ;; Automatically renamed ??0001

 mov ecx, 12 ;; Each label each time SomeMacro is

 ;; called will increment the counter,

 ;; next will be ??0002 the ??0003 etc.

Endm

Note: You may have noticed the “;;” comments in the body of the macros; these are macro
comments. They are useful when generating listing files, since these comments will not
appear every time a macro function is referenced in code, only once at the macro's definition.
If you use the single “;” comments the same comments will appear over and over throughout
the generated listing file.

In your macro definition you can specify default values for any parameters, allowing you to
call the macro without specifying every parameter (place := and then the default value after

the parameter's name, somevariable:=<eax>). You can also indicate that particular

parameters are required (place a colon followed by req, somevariable:req).

Note: When specifying the default values, the syntax is similar to the “equ” directive; instead
of “eax” you must use “<eax>”.

SomeMacro macro p1:=<eax>, p2:req, p3:=<49>

 ;; Macro body

Endm

 58

The macro definition in the sample code would allow us to omit values for both first and third
parameters. Only the second is required, and the others can be left to defaults.

; Specify all parameters:

SomeMacro ecx, 389, 12 ; p1 = ecx

 ; p2 = 389

 ; p3 = 12

; Just specify parameter 2:

SomeMacro , ebx, ; p1 = eax from default

 ; p2 = ebx

 ; p3 = 49 from default

 59

Chapter 6 C Calling Convention

A calling convention is a set of steps that must be undertaken by a caller (the code calling
the procedure) and a callee (the procedure being called). High-level languages take care of
all the calling convention intricacies, and one can simply pass parameters to and from
functions without caring about how they are being passed. When programming in assembly,
the callee needs to know where or how the caller has passed the function's parameters, and
the caller needs to know how the callee will return the answer. At the assembly level, the
calling convention is not restricted at all, and programmers are free to define their own. The
C++ compilers that ship with Visual Studio use the C calling convention, so it is usually
advantageous to adopt this when programming assembly routines, especially if the routines
are called from C++ or if they themselves call procedures written in C++.

The Stack

The stack is a portion of memory that is used as a semiautomatic last-in-first-out data
structure for passing parameters to functions. It allows function calls to be recursive, handles
parameter passing, return addresses, and is used to save registers or other values
temporarily. Values are added to the stack using the PUSH and CALL instructions, and they

are removed from the stack using the POP and RET instructions in the opposite order they

were pushed. The stack is used to save the address in the .code segment of the caller of the
function, such that when the subroutine is finished, the return address can be popped from
the stack (using the RET instruction) and control can resume from the caller's position in

code.

The stack is pointed to by a special pointer, the RSP (stack pointer). The instructions PUSH

and POP both MOV data to the point RSP points to and the decrement (PUSH) or increment

(POP) the stack pointer, such that the next value to be pushed will be done at the next

address in the stack segment.

In the past, passing parameters and saving the return addresses was exclusively the task of
the stack, but in x64 some parameters are passed via the registers. It is common to avoid
the PUSH and POP instructions in favor of incrementing and decrementing the stack pointer

manually and using MOV instructions. Manually manipulating the stack is common in x64,

since the PUSH and POP instructions do not allow operands of any size. It is often faster to set

the position of the RSP using ADD and SUB and using MOV instead of repeatedly calling PUSH.

The stack is simply another segment in RAM that has been marked as read/write. The only
difference between the stack and any other segment in the program is that the stack pointer
(RSP) happens to point to it.

Scratch versus Non-Scratch Registers

In the C calling convention used by Visual Studio, some of the registers are expected to
maintain the same values across function calls. Functions should not change the value of
these registers in their code without restoring the original values prior to returning. These
registers are called non-scratch.

Table 7: Register's Scratch/Non-Scratch Status

Register Scratch/Non-Scratch

RAX Scratch

 60

Register Scratch/Non-Scratch

RBX Non-Scratch

RCX Scratch

RDX Scratch

RSI Non-Scratch

RDI Non-Scratch

RBP Non-Scratch

RSP Non-Scratch

R8 to R11 Scratch

R12 to R15 Non-Scratch

XMM0 to XMM5 Scratch

XMM6 to XMM15 Non-Scratch

ST(0) to ST(7) Scratch

MM0 to MM7 Scratch

YMM0 to YMM5 Scratch

YMM6 to YMM15 Non-Scratch

Some of the registers can be modified at will by a subprocedure or function, and the caller
does not expect that the subprocedure will maintain any particular values. These registers
are called scratch.

There is nothing wrong with using a non-scratch register in your code. The following
example uses RBX and RSI to sum the values from 100 to 1 together (both RBX and RSI
are non-scratch). The important thing to note is that the non-scratch registers are pushed to
the stack at the start of the procedure and popped just prior to returning.

Sum100 proc

 push rbx ; Save RBX

 push rsi ; Save RSI

 xor rsi, rsi

 mov rbx, 100

MyLoop:

 add rsi, rbx

 dec rbx

 jnz MyLoop

 61

 mov rax, rsi

 pop rsi ; Restore RSI

 pop rbx ; Restore RBX

 ret

Sum100 endp

The push instruction saves the value of the register to the stack, and the pop instruction
pops it back into the register again. By the time the subprocedure returns, all of the non-
scratch registers will have exactly the same values they had when the subprocedure was
called.

It is often better to use scratch registers instead of pushing and popping non-scratch
registers. Pushing and popping requires reading and writing to RAM, which is always slower
than using the registers.

Passing Parameters

When we specify a procedure as using the C calling convention in x64 applications,
Microsoft's C++ compiler uses fastcall, which means that some parameters are passed via
the registers instead of using the stack. Only the first four parameters are passed via
registers. Any additional parameters are passed via the stack.

Table 8: Integer and Float Parameters

Parameter Number If integer If float

1 RCX XMM0

2 RDX XMM1

3 R8 XMM2

4 R9 XMM3

Integer parameters are passed in RCX, RDX, R8, and R9 while floating point parameters
use the first four SSE registers (XMM0 to XMM3). The appropriate size of the register is
used such that if you are passing integers (32-bit values), then ECX, EDX, R8D, and R9D
will be used. If you are passing bytes, then CL, DL, R8B, and R9B will be used. Likewise, if a
floating point parameter is 32 bits (float in C++), it will occupy the lowest 32 bits of the
appropriate SSE register, and if it is 64 bits (a C++ double), then it will occupy the lowest 64
bits of the SSE register.

Note: The first parameter is always passed in RCX or XMM0; the second is always passed in
RDX or XMM2. If the first parameter is an integer and the second is a float, then the second
will be passed in XMM1 and XMM0 will go unused. If the first parameter is a floating point
value and the second is an integer, then the second will be passed in RDX and RCX will go
unused.

As an example, consider the following C++ function prototype:

 62

int SomeProc(int a, int b, float c, int d);

This procedure takes four parameters, which are floating point or integer values, so all of
them are going to be passed via the registers (only the 5th and subsequent parameters
require the stack).

The following is how the C++ compiler will pass the parameters, or how it will expect you to
pass them if you are calling a C++ procedure from assembly:

 a will be passed in ECX

 b will be passed in EDX

 c will be passed in the lowest dword of XMM2

 d will be passed in R9D

Integer values are always returned in RAX and floating point values are returned in XMM0.
Pointers or references are also always returned in RAX.

The following example takes two integer parameters from a caller and adds them together,
returning the result in RAX:

; First parameter is passed in ECX, second is passed in EDX

; The prototype would be something like: int AddInts(int a, int b);

AddInts proc

 add ecx, edx ; Add the second parameter's value to the first

 mov eax, ecx ; Place this result into EAX for return

 ret ; Caller will read EAX for the return value

AddInts endp

Shadow Space

In the past, all parameters were passed to procedures via the stack. In the C calling
convention, the caller still has to allocate blank stack space as if parameters were being
passed on the stack, even though the values are being passed in the registers. The space
you create on the stack in place of passing parameters when calling a function or
subprocedure is called shadow space. It is the space where the parameters would have
been passed had they not been placed into registers instead.

The amount of shadow space is supposed to be no less than 32 bytes, regardless of the
number of parameters being passed. Even if you are passing a single byte, you reserve 32
bytes on the stack.

Note: This wasteful use of the stack is possibly due to it being easier to program the C++
compiler. Many things on this level of programming have little to no clear documentation or
explanation available. The exact reasons for the Microsoft C calling convention using
shadow space the way it does are not clear.

 63

To call a function with the following prototype, use the following:

void Uppercase(char a);

The C++ compiler would use something like the following:

sub rsp, 20h ; Make 32 bytes of shadow space

mov cl, 'a' ; Move parameter in to cl

call Uppercase ; Call the function

add rsp, 20h ; Deallocate the shadow space from the stack

To call a function with six parameters, use the following:

void Sum(int a, int b, int c, int d, int e, int f);

Some parameters must be passed on the stack; only the first four will be passed using the
registers.

sub rsp 20h ; Allocate 32 bytes of shadow space

mov ecx, a ; Move the four register parameters into their registers

mov edx, b

mov r8d, c

mov r9d, d

push f ; Push the remaining parameters onto the stack

push e

call Sum ; Call the function

add rsp, 28h; Delete shadow space and the parameters we passed via the stack

Note: Parameters passed via the stack are not actually removed from memory when the
subroutine returns. The stack pointer is simply incremented such that newly pushed
parameters will overwrite the old values.

To call a function written in C++ from an external assembly file, both C++ and assembly
must have an extern keyword to say the function is available externally.

// C++ File:

#include <iostream>

 64

using namespace std;

extern "C" void SubProc();

extern "C" int SumIntegers(int a, int b, int c, int d, int e, int f)

{

 return a + b + c + d + e + f;

}

int main()

{

 SubProc();

 return 0;

}

; Assembly file in the same project

extern SumIntegers: proc

.code

SubProc proc

 push 60 ; Push two params that don't

 push 50 ; fit int regs. Opposite order!

 sub rsp, 20h ; Allocate shadow space

 mov ecx, 10 ; Move the first four params

 mov edx, 20 ; into their regs in any order

 65

 mov r8d, 30

 mov r9d, 40

 call SumIntegers

 add rsp, 30h ; Deallocate shadow space

 ; and space from params

 ; this is 6x8=48 bytes.

 ret

SubProc endp

End

The stack is decreased as parameters are pushed onto it. Parameters are pushed from right
to left (reverse order to that of a function's C++ prototype).

Bytes and dwords cannot be pushed onto the stack, as the PUSH instruction only takes a

word or qword for its operand. For this reason, the stack pointer can be decremented to its
final position (this is the number of operands multiplied by 8) in the instruction where shadow
space is allocated. Parameters can then be moved into their appropriate positions in the
stack segment with MOV instructions in place of the pushes.

The first parameter is moved into RCX, then the second into RDX, the third into R8, and the
fourth into R9. The subsequent parameters are moved into RAM starting at RSP+20h, then
RSP+28h, RSP+30h, and so on, leaving 8 bytes of space for each parameter on the stack
whether they are qwords or bytes. Each additional parameter is RSP+xxh where xx is 8
multiplied by the parameter index.

Note: As an alternate to hexadecimal, it may be more natural to use octal. In octal, the fourth
parameter is passed at RSP+40o, the fifth is RSP+50o, and the sixth is RSP+60o. This pattern
continues until RSP+100o, which is the 8th parameter.

; Assembly file alternate version without PUSH

extern SumIntegers: proc

.code

SubProc proc

 sub rsp, 30h ; Sub enough for 6 parameters from RSP

 mov ecx, 10 ; Move the first four params

 mov edx, 20 ; into their regs in any order

 66

 mov r8d, 30

 mov r9d, 40

 ; And we can use MOV to move dwords

 ; bytes or whatever we need to the stack

 ; as if we'd pushed them!

 mov dword ptr [rsp+20h], 50

 mov dword ptr [rsp+28h], 60

 call SumIntegers

 add rsp, 30h ; Deallocate shadow space

 ; and space from params

 ; this is 6x8=48 bytes.

 ret

SubProc endp

End

 67

Chapter 7 Instruction Reference

The following instruction reference is intended to summarize some of the information in the
Intel and AMD programmer's manuals, and provide an easy-to-reference but detailed
description of the most common and useful instructions. Full details of all instructions can be
found in the Intel and AMD manuals (see the Recommended Reading section for a link to
these documents).

This reference covers only application programming instruction sets. System programming
instructions (or privileged instructions) are not included, nor are instructions that are now
obsolete and have been removed from x64 assembly. Instructions are not included even
where they are still supported in compatibility mode (for instance the Binary Coded Decimal
(BCD) instructions, etc.). Only the most common and useful instructions have been included,
but there are many hundreds more.

CISC Instruction Sets

Modern x64 CPUs are CISC (Complex Instruction Set Computing), as opposed to RISC
(Reduced Instruction Set Computing). This means there are a very large number of
specialized instructions, which are almost useless for general purpose programming, but
have been added to the instruction sets for particular purposes such as 3-D graphics
algorithms, encryption, and others.

There is almost no consistent logic to the naming of the instructions because they have been
added over several decades and belong to different instruction sets.

Many instructions require hardware support from the CPU, such as each of the SIMD
instruction sets and the conditional moves. Please refer to the CPUID instruction for details

on how to detect if hardware is capable of particular instructions.

Parameter Format

The following table lists the shorthand for instruction parameter types I have used in this
reference:

Table 9: Shorthand Instruction Parameters

Shorthand Meaning

reg x86 register eax, ebx etc.

mmx 64-bit MMX register

xmm 128-bit SSE register

ymm 256-bit AVX register

mem Memory operand, data segment variable

imm Immediate value, literal or constant

st Floating point unity register

 68

It is very important to note that you can never use two memory operands as parameters for
an instruction, despite what the parameter shorthand appears to state. For instance, one of
the parameters to the MOV instruction can be a memory operand, but both of them cannot;

one must be an immediate or a register. There is only one address generation unit per
arithmetic logic unit. By the time the arithmetic logic unit has the instruction to execute, it can
only generate at most one memory address.

Unless expressly stated otherwise, all parameters to an instruction must match in size. You
cannot move a word into a dword nor a dword into a word. There is no notion of implicit
casting in assembly. There are some instructions (for instance, the move and sign/zero
extend instructions) that are designed to convert one data size to another and must
necessarily take operands of differing sizes, but almost all other instructions adhere to this
rule.

The possible sizes of the operands have been included in the shorthand for the instructions.
Some instructions do not work for all sized operands. For example, the mnemonic and
parameters for the conditional move instructions might look like this:

CMOVcc [reg16/32/64], [reg16/32/64/mem16/32/64]

This means the instructions take two operands, and each operand is in square braces,
though in the code they are not surrounded by square braces unless they are a pointer. The
first can be an x86 register of sizes 16 bits, 32 bits, or 64 bits, and the second can be
another x86 register of the same size or a memory operand.

CMOVE ax, bx; This would be fine, CMOVcc [reg16], [reg16]

CMOVE al, bl; This will not work because AL and BL are 8 bit registers

Note: As mentioned previously, the high byte forms of the original x86 registers cannot be
used with the low byte forms of the new x64 registers. Something like “MOV AH, R8B” will
not compile, as it uses the high byte form AH along with a new byte form R8B. The high byte
forms are included in x64 only for backwards compatibility. The CPU knows no machine
code to achieve “MOV AH, R8B” in a single instruction.

Flags Register

Many of the x86 instructions alter the state of the flags register so that subsequent
conditional jumps or moves can be used based on the results of the previous instructions.
The flags registers abbreviations appear differently in Visual Studio compared to almost all
other sources. The meaning of the flags and their abbreviations in this manual and Visual
Studio's Register Window are as follows:

Table 10: Flags Register Abbreviations

Flag Name Abbreviation Visual Studio

Carry Flag CF CY

Parity Flag PF PE

Zero Flag ZF ZR

Sign Flag SF PL

 69

Flag Name Abbreviation Visual Studio

Direction Flag DF UP

Overflow Flag OF OV

A flags field of carry, zero would mean that both the carry flag and the zero flag are

altered by the instruction in some way. This means that all other flags are either not altered
or undefined. It is not safe to trust that an instruction will not modify a flag when the flag is
undefined. Where it is not obvious how an instruction would alter the flags, see the
instruction's description for details. If more information is required on whether flags are
modified or left undefined, see the programmer's manuals of your CPU manufacturer.

If an instruction does not affect the flags register (such as the MOV instruction), the flags field

will appear as Flags: (None). If the flags field to an instruction is (None), then the

instruction will not alter the flags register at all.

Almost all of the SIMD instructions do not modify the x86 flags register, so the flags field has
been left out for their descriptions.

Prefixes

Some instructions allow prefixes that alter the way the instructions work. If an instruction
allows prefixes, it will have a prefix field in its description.

Repeat Prefixes

The repeat prefixes are used for the string instructions to enable blocks of memory to be
searched. They are set to a particular value or copied. They are not designed to be used
with any other instructions, even where the compiler allows. The results of using the repeat
prefixes are undefined when they are used with non-string instructions.

 REP: Repeats the following instruction the number of times in RCX. REP is used in

conjunction with store string (STOS) and move string (MOVS) instructions. Although this

prefix can also be used with LODS, there is no point in doing this. Each repetition of

the instruction following the REP prefix decrements RCX.

 REPZ, REPE: Repeat while zero or repeat while equal are two different prefixes for
exactly the same thing. This means repeat the following instruction while the zero
flag is set to 1 and while RCX is not zero. As in the REP prefix, this prefix also

decrements RCX at each repetition of the instruction following it. This prefix is used
to scan arrays (SCAS instruction) and compare arrays (CMPS instruction)

 REPNZ, REPNE: Repeat while not zero or repeat while not equal are the opposites
of REPZ or REPE. This prefix will repeatedly execute the instruction while the zero flag

is set to 0 and RCX is not 0. Like the other repeat prefixes it decrements RCX at
each repetition. This prefix is used with the same instructions as the REPZ and REPE

prefixes.

Lock Prefix

Assembly instructions are not atomic (they do not happen in a single uninterruptible move by
the CPU) by default.

 70

add dword ptr [rcx], 2

This sample code will result in what is called a read-modify-write operation. The original
value in RAM that RCX is pointing to will be read, 2 will added, and the result will be written.
There are three steps to this operation (read-modify-write). In multithreaded applications,
while one thread is in the middle of this three step operation, another thread may begin
reading, writing, or modifying exactly the same address. This could lead to the second
thread reading the same value as the first and only one of the threads successfully writing
the actual result of the value +2.

This is known as a race condition; threads are racing to read-modify-write the same value.
The problem is that the programmer is no longer in control of which threads will successfully
complete their instructions and which will overlap and produce some other results. If there
are race conditions in a multithreaded application, then by definition the output of the code
cannot be ascertained and is potentially any one of a number of scenarios.

The LOCK prefix makes the following instruction atomic; it guarantees that only one thread is

able to operate on some particular point in RAM at a time. While only valid for instructions
that reference memory, it prevents another thread from accessing the memory until the
current thread has finished the operation. This assures no race conditions occur, but at the
cost of speed. Adding the LOCK prefix to every line of code will make any threads that try to

access the same RAM work in sequence, not parallel, thus negating the performance
increase that would otherwise be gained through multithreading.

lock add dword ptr [rcx], 2

In the example, the LOCK prefix has been placed beside the instruction. Now no matter how

many threads try to access this dword, whether they are running this exact code or any other
code that references this exact point in RAM, they will be queued and their accesses will
become sequential. This ADD instruction is atomic; it is guaranteed not to be interrupted.

The LOCK prefix is useful for creating multithreading synchronization primitives such as

mutexes and semaphores. There are no such primitives inherent to assembly and
programmers must create their own or use a library.

x86 Data Movement Instructions

Move

MOV [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32/64]

The MOV instruction copies data from the second operand to the first. Both operands must be

the same size. Although its name suggests that data will be moved, the data is actually
copied; it will remain in the second operand after the instruction.

The MOV instruction is the standard assignment operator.

// C++ assignment

 71

rax = 25

; Assembly equivalent

mov rax, 25

Note: When the first operand is a 32-bit register, this instruction clears the top 32 bits of the
64-bit version of the register to 0. This leads to a special use for MOV in x64. When you wish
to clear the top 32 bits of an x86 register (for example, RDX), you can use the 32-bit version
of the register as both operands:

mov edx, edx ; Clears the top 32 bits of RDX to 0

Flags: (None)

Conditional Moves

CMOVcc [reg16/32/64], [reg16/32/64mem16/32/64]

This moves data from the second operand to the first operand, but only if the condition
specified is true. This instruction reads the flags register to determine whether to perform a
MOV or not. The condition code is placed in the mnemonic where the cc is; some common

condition codes are listed in the following table. Simply replace the cc with the appropriate

condition code to find the mnemonic you require.

Table 11: Some Useful Conditions for CMOVcc

Condition Code Meaning

O Overflow, signed overflow

NO Not overflow, no signed overflow

Z or E Zero or equal to, signed and unsigned

NZ or NE Not zero or not equal to, signed and unsigned

B Below, unsigned less than

A Above, unsigned greater than

AE Above or equal, unsigned

BE Below or equal, unsigned

L Less, signed less than

G Greater, signed greater than

GE Greater or equal, signed

LE Less or equal, signed

C Carry, unsigned overflow

NC Not carry, no unsigned overflow

 72

Condition Code Meaning

S Sign, answer was negative

NS Not sign, answer was positive

PE Parity even, 1's count in low byte is even

PO Parity odd, 1's count in low byte is odd

If the second is a memory location, it must be readable whether the instruction's condition is
true or not. These instructions cannot be used with 8-bit operands, only 16 bits and above.

It is often better to use conditional moves in place of conditional jumps. Conditional moves
are much faster than branching (using Jcc instructions). A modern CPU reads ahead of the

code it is actually executing, so that it can be sure the next instructions have been fetched
from RAM when it requires them. When it finds a conditional branch, it guesses which of the
two is most likely using a manufacturer-specific algorithm called a branch predictor. If it
guesses incorrectly, there is a large performance penalty. All the machine code it had read
and attempted to execute needs to be flushed from the CPU, and it has to read the code
from the actual branch. It is for this reason that CMOVcc instructions were invented and why

they are often so much faster than Jcc instructions.

; To move data from AX to CX only if the signed value in DX is

; equal to the value in R8W:

cmp dx, r8w

cmove cx, ax ; Only moves if dx = rw8

; To move data from AX to CX only if the unsigned value in DX is

; above (unsigned greater than) the value in R8W:

cmp dx, r8w

cmova cx, ax ; Only moves if dx > r8w?

Note: With a similar behavior to that of the MOV instruction, this instruction clears the top 32
bits of the 64-bit version of first operand when the operands are 32-bit registers. Even if the
condition is false, the top will be cleared to 0, while the low 32 bits will be unchanged. If the
condition is true, the top will be cleared to 0 and the value of the second operand will be
moved into the low 32 bits.

Flags: (None)

CPUID: Function 1; read bit 15 of EDX to ensure a CPU is capable of conditional moves.

Nontemporal Move

MOVNTI [mem32/64], [reg32/64]

 73

The nontemporal move instruction moves a value from a register into memory and lets the
CPU know that the value will not be needed in cache. Different CPUs will do different things
based on this. The CPU may ignore the nontemporal hint completely, placing the value in
cache regardless of your instruction. Some CPUs will use the nontemporal hint to ensure the
data is not cached, thus allowing more space in cache for data that will be needed again in
the near future.

Flags: (None)

CPUID: Function1; read bit 26 (SSE2) of EDX to ensure a CPU is capable of the MOVNTI
instruction.

Move and Zero Extend

MOVZX [reg16/32/64], [reg8/16/mem8/16]

This moves the value from the second operand into the first operand, but extends it to the
second operand's size by adding zeros to the left. The source operand can only be 8 bits or
16 bits wide and it can be extended to 16 bits, 32 bits, or 64 bits.

There is no limitation on the difference between the operands. This means you can use a
byte as the second and extend it to a 64-bit qword.

Flags: (None)

Move and Sign Extend

MOVSX [reg16/32/64], [reg8/16/mem8/16]

This converts a smaller signed integer to a larger type by copying the smaller source value
to the destination's low half, and then copying the sign of the source across the upper half of
the destination. This instruction cannot sign extend from a 32-bit source to a 64-bit
destination, which requires using the MOVSXD instruction instead.

There is no limitation on the difference between the operands, meaning one can use a byte
as the second and extend it to a 64-bit qword.

Flags: (None)

Move and Sign Extend Dword to Qword

MOVSXD [reg64], [reg32/mem32]

Converts a 32-bit signed integer to a 64-bit signed integer. The source is moved into the low
half of the destination and the sign bit of the source is copied across all bits of the
destination.

Flags: (None)

Exchange

XCHG [reg8/16/32/64/mem8/16/32/64], [reg8/16/32/64/mem8/16/32/64]

 74

This swaps or exchanges the values of the two operands. This instruction can be used in
place of BSWAP for the 16-bit registers since BSWAP does not allow 8-bit operands; instead of

bswap ax you can use xchg al, ah.

This instruction is automatically atomic (applies the LOCK prefix automatically) if a memory

operand is used.

Flags: (None)

Prefix: LOCK

Translate Table

XLAT [mem8]

XLATB

This instruction translates the value in AL to that of the table pointed to by RBX. Point RBX
to a byte array of up to 256 different values and set AL to the index in the array you want to
translate.

This instruction does not affect the top 7 bytes of RAX; only AL is altered. The instruction
accomplishes something like the otherwise illegal address calculation of adding RBX to AL.

mov al, byte ptr [rbx+al]

The memory operand version does exactly the same thing, and the memory operand is
completely ignored. The only purpose of the memory operand is to document where RBX
may be pointing. Do not be misled; no matter what the memory operand, the table is
specified by RBX as a pointer.

XLAT myTable ; myTable is completely ignored, [RBX] is always used!

Flags: (None)

Sign Extend AL, AX, and EAX

CBW

CWDE

CDQE

These instructions sign extend the various versions of RAX to larger versions. The operand
is implied, and it is always AL for CBW, AX for CWDE, and EAX for CDQE.

CBW copies the sign of AL across AH, effectively making AX the sign extended version of

what was in AL. CWDE copies the sign of AX across the upper half of EAX, effectively sign

extending from AX to EAX. CDQE sign extends EAX to RAX by copying the sign of EAX

across the upper half of RAX, and sign extending EAX to RAX.

 75

Flags: (None)

Copy Sign of RAX across RDX

CWD

CDQ

CQO

These instructions create the signed combination of RDX:RAX used by the division
instructions IDIV and DIV. They copy the sign of AX, EAX, or RAX across the same sized

version of the RDX register.

CWD copies the sign of AX across DX such that DX is FFFFh if AX was negative, or 0000h if

AX was positive. This creates the 32-bit composite register DX:AX. CDQ copies the sign of

EAX across EDX such that EDX becomes FFFFFFFFh if EAX is negative, and 0 if AX is

positive. This creates the composite register EDX:EAX. CQO copies the sign of RAX across

all bits of RDX. This creates the 128-bit composite register RDX:RAX.

Flags: (None)

Push to Data to Stack

PUSH [reg16/32/64/mem16/32/64/imm16/32/64/seg16]

This pushes a value to the stack. This results in the stack pointer being decremented by the
size of the value in bytes and the value being moved into RAM. This is used to pass
parameters between procedures, and also to save the return address prior to calling a
procedure.

In addition to its role as the backbone to passing parameters, the stack is also used to save
temporary values to free the register for some other use.

8-bit operands cannot be pushed to the stack, but you can push the segment registers FS
and ES. Pushing an odd number of 16-bit values results in a misaligned stack pointer (one
that is not on an address divisible by 32). You should always push an even number of
values, as a misaligned stack pointer will result in a crash.

Flags: (None)

Pop Data from Stack

POP [reg16/32/64/mem16/32/64/seg16]

This pops data previously pushed onto the stack. This results in incrementing the stack
pointer to point to the next data to be popped, and the last pushed data item being read from
memory.

Flags: (None)

 76

Push Flags Register

PUSHF

PUSHFQ

This pushes the flags register to the stack. You have the option of pushing only the low 16
bits (PUSHF) or the entire 64-bit rflags register (PUSHFQ). This instruction is useful for saving

the exact state of the flags register prior to calling procedures, since the procedures will most
likely alter its state. This instruction and the pop flags register instructions can also be used
to set the bits of the flags register:

PUSHF ; Push the state of the flags register

POP AX ; Pop the flags register into ax

OR AX, 64 ; Set the bits using OR, BTS, BTR, or AND

PUSH AX ; Push the altered flags

POPF ; Pop the altered flags back into the real flags register

There are instructions to easily set and clear the carry and direction flags. See CLD, CLC,

STC, and STD. Pushing and popping the flags register need not be used to set or clear these

particular flags.

Flags: (None)

Pop Flags Register

POPF

POPFQ

This pops the values from the stack into the flags register. The flags register cannot be
directly manipulated like the general purpose registers (excepting the CLD, CLC, and STC

instructions). If you need to set particular bits of rflags, follow the example in the push flags
register instruction.

Flags: Carry, Parity, Zero, Sign, Direction, Overflow

Load Effective Address

LEA [reg16/32/64], [mem]

This loads the effective address of the memory location into the source. If the source is 16
bits, only the lowest 16 bits of the address are loaded; if the source is 32 bits, then only the
low 32 bits of the address are loaded into the source. Usually the source is 64 bits and the
LEA instruction loads the entire effective address of the memory operand.

This instruction actually calculates an address and moves this into the source. It is similar to
the MOV instruction but LEA does not actually read memory. It just calculates an address.

 77

.data

myVar dq 23 ; Define a variable and set it to 23

.code

MyProc proc

 mov rax, myVar; MOV will read the contents of myVar into RAX

 lea rax, myVar; LEA loads the address of myVar to RAX

 ; From the LEA instruction RAX has the address of myVar

 mov qword ptr [rax], 0 ; So we could set myVar to 0 like this

 ret

MyProc endp

End

Note: Because this instruction actually just calculates an address and complex addressing
modes (e.g. [RBX+RCX*8]), the instruction can be used, but it does not make any attempt to
read from the address, and it can be used to perform fast arithmetic.

For example, to set RAX to 5 * RCX you could use the following:

LEA RAX, [RCX+RCX*4]

To set RBX to R9+12 you could use the following:

LEA RBX, [R9+12]

This optimization technique and a multitude more are detailed in Michael Abrash's Black
Book of Graphics Programming (see the Recommended Reading section for a link).

Flags: (None)

Byte Swap

BSWAP [reg32/64]

This reverses the order of the bytes in the source. This instruction was designed to swap the
endianness of values. That is, it is used to change from little endian to big endian and vice
versa. With the dominance of x86-based CPUs (x86 uses little endian), the desire to change
endianness is almost gone, so the instruction is also useful in reversing character strings.

 78

Note: If you need to "BSWAP reg16" you should use XCHG instruction. The BSWAP
instruction does not allow for 16-bit parameters, so instead of “BSWAP AX” you can use
“XCHG AL, AH”.

Flags: (None)

x86 Arithmetic Instructions

Addition and Subtraction

ADD [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

SUB [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

This adds or subtracts the second operand from the first and stores the result in the first
operand. For addition it does not matter, but when using SUB it is important to note that the

second operand is subtracted from the first, not the other way round.

These instructions can be used for both signed and unsigned arithmetic; it is important to
know how to read the flags, since the flags reflect both the signed and unsigned result.

If you are doing unsigned arithmetic, you should read the carry flag. The carry flag will be 0 if
there was no final overflow. If there was a final overflow (indicating a carry or borrow on the
final bit of the operation), it will be set to 1.

If you are doing signed arithmetic, or if there was no final carry or borrow on the second to
last bit of the operation (since the final bit is the sign bit), the overflow flag will be 0. If there
was a final carry or borrow, the overflow flag will be set to 1.

If the result of the addition or subtraction is exactly 0, then the zero flag will be set.

If the result was a negative number (this can be ignored if unsigned arithmetic is being
done), then the sign flag will be set.

Flags: Carry, Parity, Zero, Sign, Overflow

Prefix: LOCK

Add with Carry and Subtract with Borrow

ADC [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

SBB [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

 79

These instructions do the same as the ADD and SUB instructions, except that they also add or

subtract the carry flag (they add or subtract an additional 1 or 0 depending on the state of
the carry flag). They are useful for performing arbitrarily large integer additions or
subtractions where the number being worked on does not fit inside a 64-bit register, but is
broken into multiple 64-bit digits.

You can also use these instructions to set a register to the carry flag. To set EAX to the carry
flag you can use the following:

MOV EAX, 0 ; Clear EAX to 0.

 ; You can't use XOR here because that would clear

 ; the carry flag to 0.

ADC EAX, EAX ; Sets EAX to 1 or 0 based on the carry flag

Flags: Carry, Parity, Zero, Sign, Overflow

Prefix: LOCK

Increment and Decrement

INC [reg8/16/32/64/mem8/16/32/64]

DEC [reg8/16/32/64/mem8/16/32/64]

These instructions increment (add 1 to) or decrement (subtract 1 from) a register or memory
variable. They are often used in conjunction with a register to create looping structures. A
common pattern is something like the following which will loop 100 times:

mov cx, 100 ; Number of times to loop

LoopHead: ; Start of the loop

 ; Body of the loop

 dec cx ; Decrement counter

 jnz LoopHead ; Loop if there's more, i.e. 100 times

Note: INC and DEC do not set the carry flag. If you need to perform INC or DEC but also set
the carry flag, it is recommended to use ADD or SUB with 1 as the second operand.

Flags: Parity, Zero, Sign, Overflow

 80

Prefix: Lock

Negate

NEG [reg8/16/32/64/mem8/16/32/64]

This negates a signed number so that negative values become their positive counterparts
and vice versa. This is the equivalent to flipping each of the bits and adding 1 to the result.
This is called two’s complement of a number, as opposed to the one’s complement, which
can be obtained with the NOT instruction.

Note: x86 and x64 CPUs perform multiplication slowly compared to many of the bit
manipulation instructions; if you need to multiply a number by -1 it is always quicker to use
NEG than IMUL.

Flags: Carry, Parity, Zero, Sign, Overflow

Prefix: LOCK

Compare

CMP [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

This compares the two operands and sets the flags register to indicate the relationship
between the two operands.

This instruction actually does exactly the same as the SUB instruction, but it does not store

the result, it just sets the flags. The second operand is subtracted from the first operand and
the flags are set accordingly, but the destination operand is not altered. Usually the compare
instruction is followed by conditional jumps or conditional moves.

This instruction is used to set the flags and subsequently perform some conditional operation
based on the results. It is very important to note how the operands are being compared by
the CMP instruction, since comparisons such as >, >=, <, and <= are important to the order of

the operands.

cmp dx, ax

jg SomeLabel ; Jump if DX > AX

Note: CMP op1, op2 is the same as asking, “what relation does the first operand have to the
second,“ not the other way round. The second operand is subtracted from the first.

Flags: Carry, Parity, Zero, Sign, Overflow

Multiply

MUL [reg8/16/32/64]

IMUL [reg8/16/32/64]

 81

IMUL [reg8/16/32/64], [reg8/16/32/64/mem8/16/32/64/imm]

IMUL [reg8/16/32/64], [reg8/16/32/64/mem8/16/32/64], [imm8]

MUL performs unsigned integer multiplication and IMUL performs signed integer

multiplication.

There is only a single-operand version of MUL, whereas IMUL has three versions. In the

single-operand version of IMUL or MUL, the second operand is implied and the answer is

stored in predefined implied registers. The implied second operand is the appropriate size of
the RAX register, so if the operand is 8 bits, then the second implied operand is AL. If the
source operand is 64 bits then the implied second operand is RAX.

The answer to the multiplication is stored in AX for 8-bit multiplications. For the other data
sizes (16-bit, 32-bit, and 64-bit operands), the answer is stored with the upper half in the
appropriate size of RDX and the lower half in the appropriate size of RAX. This is because
the original 16-bit CPUs did not possess registers large enough to store the possible 32-bit
result from a 16-bit multiplication, so the composite 32-bit of DX:AX was used. When 32-bit
CPUs came about, exactly the same thing happened. The 64-bit answer from a 32-bit
multiplication could not be stored in a 32-bit register, so the composite of EDX:EAX is used.
And now with our 64-bit CPUs, the 128-bit answer is stored in the composite of RDX:RAX.

If anything ends up in the top half of the answer (AH, DX, EDX, or RDX), then the carry and
overflow flags are set to 1, otherwise they are 0.

Table 12

Operand 1 Implied Operand 2 Answer

8 bits AL AX

16 bits AX DX:AX

32 bits EAX EDX:EAX

64 bits RAX RDX:RAX

The two-operand version of IMUL simply multiplies the second operand by the first and

stores the result in the first. The overflow (any bits from the result that do not fit into the first
operand) are lost and the carry and overflow flags are set to 1. If there is no overflow, the
entire answer fits into the first operand and the carry and overflow flags are set to 0.

In the three-operand version of IMUL, the second operand is multiplied by the third operand

(an immediate value) and the result is stored in the first operand. Once again, if the result
overflows, both the carry and overflow flags are set to 1, otherwise they are cleared.

Note: These instructions are quite slow, so if it is possible it may be quicker to swap a
multiplication for a shift (SHL) or use the LEA instruction.

Flags: Carry, Overflow

 82

Signed and Unsigned Division

DIV [reg8/16/32/64/mem8/16/32/64]

IDIV [reg8/16/32/64/mem8/16/32/64]

Unlike IMUL, there are only single-operand versions of the division instructions. DIV divides

unsigned integers and IDIV divides signed integers. These instructions return both the

quotient and remainder of the division.

The single operand given to the instruction is the divisor (the y in x/y of the division). The
dividend (the x in the x/y division) is implied. See the examples in Table 13 for the location of
the implied dividend. The quotient ends up in the appropriate size of RAX and the remainder
goes in RDX.

Note: Division has always been one of the slowest instructions (perhaps 30–40 times slower
than addition). This is still the case today. If possible, division should be avoided completely
in tight loops. If a number is to be divided by a power of 2, use the SAR (Arithmetic Shift
Right) instead of signed division and SHR instead of unsigned. If there are many divisions to
be performed, consider using SSE.

Note: Be very careful about what is in RDX. If the number being divided is small enough to fit
entirely in the appropriate size of RAX, you must remember RDX! Either clear RDX using XOR
for unsigned division or copy RAX's sign across it using CWD, CDQ, or CQO.

For example, if we wanted to calculate 100/43 using signed dwords (this code would work
for -100/43 as well), use something like the following:

mov eax, 100 ; Move implied dividend into EAX

mov ecx, 43 ; Move divisor into ECX

cdq ; Copy sign of EAX across EDX

idiv ecx ; Perform division, EAX gets quotient, EDX gets remainder!

Table 13: Summary of Divide Instruction Operands and Results

Operand 1
(Divisor)

Implied
Dividend

Quotient Remainder

8 bits AX AL AH

16 bits DX:AX AX DX

32 bits EDX:EAX EAX EDX

64 bits RDX:RAX RAX RDX

Flags: None (All flags are undefined after a divide!)

 83

x86 Boolean Instructions

Boolean And, Or, Xor

AND [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

OR [reg8/16/32/64/mem8/16/32/64], [reg8/16/32/64/mem8/16/32/64/imm8/16/32]

XOR [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

These instructions AND, OR, or XOR the operands and store the result in the first operand.

Each pair of bits (one from the source and the corresponding one from the destination) has
the operation applied and the answer stored exactly the same as C++ Boolean operations.

Table 14: AND Truth Table

Bit 1 Bit 2 Result

0 0 0

0 1 0

0 0 0

1 1 1

Table 15: OR Truth Table

Bit 1 Bit 2 Result

0 0 0

0 1 1

0 0 1

1 1 1

Table 16: XOR Truth Table

Bit 1 Bit 2 Result

0 0 0

0 1 1

0 0 1

1 1 0

The overflow and carry flags are cleared to 0 while the sign and zero flags indicate the
result.

 84

Note: Traditionally the XOR instruction is faster than MOV so programmers usually use XOR
to clear a register to 0. If both operands to an XOR have exactly the same value, then XOR
returns 0, so to clear RAX to 0 “XOR RAX, RAX” is more common than “MOV RAX, 0” even
though today's CPUs probably perform the XOR no faster.

Flags: Carry, Parity, Zero, Sign, Overflow

Prefix: LOCK

Boolean Not (Flip Every Bit)

NOT [reg8/16/32/64/mem8/16/32/64]

This instruction flips every bit in the operand given such that zeroes become ones and ones
become zeroes. It is the bitwise or Boolean NOT and is sometimes called the one's

complement, as opposed to the NEG instruction, which returns the two's complement.

Flags: (None)

Prefix: LOCK

Test Bits

TEST [reg8/16/32/64/mem8/16/32/64],
[reg8/16/32/64/mem8/16/32/64/imm8/16/32]

This instruction is to bitwise tests as CMP is to arithmetic tests. It performs a Boolean AND

instruction between the source and destination, but does not set the result in the destination.
Instead it just alters the flags.

The carry flag is always reset to 0, the parity flag is set, and the zero and sign flags reflect
the result of the Boolean AND.

For example, if you wish to know if any bits in the third byte of EAX are set to 1, you could
use TEST as follows:

test eax, 00ff0000h ; 00ff0000h is only 1's in the 3rd byte

jnz ThereAreOnes ; If zero flag isn't set, EAX has something in 3rd byte

jz ThirdByteIsClear ; If zero flag is set then EAX has nothing in 3rd byte

If you wish to test whether RDX contains an even number, you can employ the TEST

instruction as follows:

test rdx, 1 ; Is the first bit 1?

jz EvenNumber ; If it is not, the number is even

jnz OddNumber ; Otherwise the number in RDX is odd

 85

Flags: Carry, Parity, Zero, Sign, Overflow

Shift Right and Left

SHL [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

SHR [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

SAR [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

This shifts the bits in the first operand by the amount specified in the second operand. These
instructions shift the bits left (SHL), right (SHR), or arithmetically right (SAR). The second

operand can be the CL register or an immediate 8-bit value (there is also a special version of
this instruction when this operand is the immediate value 1).

SHL can be used to multiply a signed or unsigned number by a power of 2. SHR can be used

to divide an unsigned number by a power of 2.

shl rax, 5 ; RAX = RAX * (2 ^ 5)

shr rdx, 3 ; RDX = RDX / (2 ^ 3) where RDX is unsigned, use SAR for signed

With the SHL and SHR instructions, the vacated bits on the right and left side are filled with 0

just as the shift operations in C++. The arithmetic right shift (SAR) shifts the bits right, but fills

the vacant bits on the left with the sign bit, so it can be used to divide a signed number by a
power of 2.

If the second operand is 0 (whether it is immediate or CL) the flags will not be set.

If the shift is not zero, then the flags are affected. The carry flag holds the final bit that was
shifted out of the destination.

Flags: Carry, Parity, Zero, Sign, Overflow

Rotate Left and Right

ROL [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

ROR [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

This rotates the first operand by the number of bits specified in the source. The rotate
operation is the same as bit shifting, only as bits are shifted out on the right (ROR) they

reenter on the left, or as bits are shifted out on the left (ROL) they reenter on the right.

Note: There are special versions of these rotate and shift instructions. If the immediate
operand is used and it is exactly 1, the overflow flag is set. This indicates whether the sign of
the first operand has changed. If the overflow flag is 1 after the instruction then the sign of
the destination operand has been changed, otherwise it has stayed the same.

Flags: Carry, Overflow

 86

Rotate Left and Right Through the Carry Flag

RCL [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

RCR [reg8/16/32/64/mem8/16/32/64], [CL/imm8]

This rotates the destination left (RCL) or right (RCR) through the carry flag. These instructions

are the same as the ROL and ROR rotate instructions, only they also rotate the carry flag from

the flags register as if it was part of the destination.

For RCL (rotate left through the carry flag), the register being rotated can be thought of as

having the carry flag as its ninth bit (most significant). For RCR (rotate right through the carry

flag), the register being rotated has the carry flag as the first bit (least significant).

Flags: Carry, Overflow

Shift Double Left or Right

SHLD [reg/mem16/32/64], [reg16/32/64], [CL/imm8]

SHRD [reg/mem16/32/64], [reg16/32/64], [CL/imm8]

This shifts the first operand left (SHLD) or right (SHRD), and shifts in the bits of the second

operand from the left (SHRD) or right (SHLD). The number of bits to shift is specified in the

third operand. This instruction lets you shift the contents of a register into another register or
memory location. The instruction does not alter the second operand.

Note: There is no version of these instructions that take 8-bit operands; if an 8-bit SHLD or
SHRD is required, you should use one of the 16-bit x86 registers. For example, you can use
AX to shift the bits from AL to and from the bits in AH.

Flags: Overflow, Sign, Zero, Parity, Carry

Bit Test

BT [reg16/32/64/mem16/32/64], [reg16/32/64/imm8]

BTC [reg16/32/64/mem16/32/64], [reg16/32/64/imm8]

BTR [reg16/32/64/mem16/32/64], [reg16/32/64/imm8]

BTS [reg16/32/64/mem16/32/64], [reg16/32/64/imm8]

This copies the bit at the zero-based index specified by the second operand from the first
operand into the carry flag.

bt eax, 4 ; Copy the 4th bit of EAX into the Carry Flag

 87

A special version of these instructions is used when the first operand is memory and the
second is a register. In this case, the entirety of RAM becomes a bit array instead of the
regular byte array! The parameter passed becomes the base of the bit array (its zero bit, the
rightmost, is the start of the bit array whose expanse is the remainder of RAM). All the rules
for accessing memory still apply and segmentation faults will be generated.

mov eax, 27873 ; We wish to know what the 27873th bit is.

bt MyVariable, eax ; Beginning from rightmost bit in MyVariable.

BT tests the bit and copies its value to the carry flag. BTC tests the bit and then complements

it in the first operand. BTR tests the bit and then resets it to 0 in the first operand. BTS tests

the bit and then sets it to 1 in the first operand.

Flags: Carry (all others except for direction are undefined)

Prefix: LOCK (But not on BT since it cannot write to memory)

Bit Scan Forward and Reverse

BSF [reg16/32/64], [reg16/32/64/mem16/32/64]

BSR [reg16/32/64], [reg16/32/64/mem16/32/64]

This searches the second operand right to left (forward, BSF) or left to right (reverse, BSR) for

the first bit set to 1. If a bit is found set to 1, the first operand is set to its index and the zero
flag is cleared. If there is no bit set to 1 at all in the second operand, the zero flag is set to 1.

The bit indices do not change regardless of the scan's direction. If there is only one bit set in
the operand, both BSF and BSR will return exactly the same value. If there is more than one

bit set, they will return different values.

mov ax, 2

bsf bx, ax ; Places 1 into bx

bsr bx, ax ; Places 1 into bx

Flags: Zero (all the rest except for direction are undefined)

Conditional Byte Set

SETO [reg8/mem8] Overflow OF = 1

SETNO [reg8/mem8] Overflow OF = 0

SETB, SETC, SETNAE [reg8/mem8] Below, carry CF = 1

SETNB, SETNC, SETAE [reg8/mem8] Above or equal, carry CF = 0

 88

SETZ, SETE [reg8/mem8] Equal, zero ZF = 1

SETNZ, SETNE [reg8/mem8] Not equal, zero ZF = 0

SETBE, SETNA [reg8/mem8] Below or equal, CF = 1 or ZF = 1

SETNBE, SETA [reg8/mem8] Above, CF = 0 and ZF = 0

SETS [reg8/mem8] Sign SF = 1

SETNS [reg8/mem8] Sign SF = 0

SETP, SETPE [reg8/mem8] Parity is even PF = 1

SETNP, SETPO [reg8/mem8] Parity is odd PF = 0

SETL, SETNGE [reg8/mem8] Less than SF <> OF

SETNL, SETGE [reg8/mem8] Not less than SF = OF

SETLE, SETNG [reg8/mem8] Less or equal ZF = 1 or SF <> OF

SETNLE, SETG [reg8/mem8] Greater than ZF = 0 and SF <> OF

These instructions set the operand to 0 or 1 based on whether the flags meet the specified
condition. The destination becomes 1 if the condition is met, otherwise it becomes 0. The
conditions all reference the flags so this instruction is usually placed after a CMP or TEST; it is

similar to the CMOVcc instructions, only it moves 0 or 1 instead of moving the second

operand into the first like the CMOVcc instructions.

Flags: (None)

Set and Clear the Carry or Direction Flags

STC Set carry flag CF = 1

CLC Clears the carry flag to 0

STD Set direction flag DF = 1

CLD Clears the direction flag

STC sets the carry flag to 1 while CLC clears it to 0. Likewise, STD sets the direction flag to 1

while CLD clears it to 0. Setting or clearing the direction flag is useful for setting the direction

the string instructions move their automatic pointers.

Flags: Carry (STC and CLC), Direction (STD and CLD)

 89

Jumps

JMP Unconditionally jump

JO Jump on overflow

JNO Jump on no overflow

JB,JC,JNAE Jump if below, CF = 1, not above or equal

JNB,JNC,JAE Jump if not below, CF = 0, above or equal

JZ,JE ZF = 1, jump if equal

JNZ,JNE ZF = 0, jump if not equal

JBE,JNA Jump if below or equal, not above, CF or ZF = 1

JNBE,JA Jump if not below or equal, above, CF and ZF = 0

JS Jump on sign, SF = 1

JNS Jump on no sign, SF = 0

JP,JPE Jump on parity, parity even, PF = 1

JNP,JPO Jump on no parity, parity odd, PF = 0

JL,JNGE Jump if less, not greater or equal, SF != OF

JNL,JGE Jump if not less, greater, or equal, SF = OF

JLE,JNG Jump if less or equal, not greater than, ZF = 1 or SF != OF

JNLE,JG Jump if not less or equal, greater than, ZF = 0 and SF = OF

JCXZ Jump if CX = 0

JECXZ Jump if ECX = 0

JRCXZ Jump if RCX = 0

Each of the jump instructions takes a single operand. This operand is usually a label defined
somewhere in the code but it is actually fairly flexible. The addressing modes available to the
Jxx instructions are as follows:

 JMP [reg/mem/imm]

 Jcc [imm8/16/32]

 JcCX [imm/8/16/32]

The instructions are sometimes called branching; the RIP register will fall through to the
operand if the condition is true, otherwise the RIP will fall through to the next line of code.

Usually the operand is a label.

 90

 cmp edx, eax

 jg SomeLabel ; Jump if greater

 ; Some code to skip

SomeLabel:

Flags: (None)

Call a Function

CALL [reg16/32/64/mem16/32/64]

CALL [imm16/32]

This calls a procedure. This instruction pushes the offset of the next instruction to the stack
and jumps the RIP register to the procedure or label given as the first operand. It is
essentially exactly the same as a jump instruction, only the return address is pushed to the
stack so the RIP can return and resume execution of the calling function using a RET

instruction from within the body of the subprocedure.

Note: There used to be a distinction between near and far calls. Far calls ended up in another
code segment. However, since x64 uses a flat memory model, all calls are near calls.

Flags: (None)

Return from Function

RET

This instruction returns from a function called with the CALL instruction. This is achieved by

popping from the return address into the RIP.

Flags: (None)

x86 String Instructions

Load String

LODS [mem8/16/32/64]

LODSB Load byte

LODSW Load word

LODSD Load dword

 91

LODSQ Load qword

These instructions load a byte, word, dword, or qword into the appropriate size of the RAX
register, and then they increment (or decrement depending on the direction flag) RSI to point
to the next byte, word, dword, or qword. They read whatever RSI (the source index register)
is pointing to in RAX and then move RSI to point to the next data of the same size.

The REP prefix can be used, but it is pointless since no operation can be performed on the

consecutive values being stored in RAX; the loop will simply run through the string and leave
you with only the final value in RAX.

Note: Even the versions with a memory operand read only from whatever RSI is pointing to.
The memory operand is almost completely ignored. Its only purpose is to indicate both what
size data should be read and into what version of RAX it should be placed.

Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment.

Flags: (None)

Prefix: REP

Store String

STOS [mem8/16/32/64]

STOSB Store byte

STOSW Store word

STOSD Store dword

STOSQ Store qword

This stores AL, AX, EAX, or RAX to the memory pointed to by RDI and increments (or
decrements depending on the direction flag) RDI. This instruction can be used to quickly set
a large number of values to the same thing. RDI is incremented or decremented by the size
of the data type each repetition.

To set 100 words to 56, make sure RDI is pointing to the start of the 100 words in memory.

lea rdi, someArray ; Point RDI to the start of the array

mov rcx, 100

mov ax, 56

rep stosw

Note: Even the versions with a memory operand only store to RDI. The memory operand is
almost completely ignored. The memory operand‘s only purpose is to indicate which of AL,
AX, EAX, or RAX should be stored and how much to increment RDI.

 92

Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment.

Flags: (None)

Prefix: REP

Move String

MOVS [mem8/16/32/64], [mem8/16/32/64]

MOVSB

MOVSW

MOVSD

MOVSQ

This moves the byte, word, dword, or qword pointed to by RSI to that pointed to by RDI and
increments both RSI and RDI to point to the next (or decrements depending on the direction
flag). Both RSI and RDI are incremented by the size of the data type each repetition. This
instruction can be used to quickly move data from one array to another. Set RSI at the start
of the source array and RDI to the start of the destination and place the number of elements
to copy into RCX.

lea rsi, SomeArray

lea rdi, SomeOtherArray

mov rcx, 1000

rep movsq ; Copy 8000 byes

Note: Even the versions with memory operands copy data from RSI to RDI; the memory
operand's only use is to specify the size of the data to copy.

Note: If the direction flag, DF, is 1, as set by the STD instruction, the string instructions will
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment.

Prefix: REP

Scan String

SCAS [mem8/16/32/64], [mem8/16/32/64]

SCASB

SCASW

 93

SCASD

SCASQ

This compares the byte, word, dword, or qword pointed to by RDI to the appropriate size of
RAX and sets the flags accordingly. It then increments (or decrements depending on the
direction flag) RDI to point to the next element of the same size in RAM. This instruction is
meant to be used with the REPE, Z, NE, and NZ prefixes, and it scans a string for the element

in RAX or until the count in RCX reaches 0.

To scan an array of bytes up to 100 bytes to find the first occurrence of the character “a,”
use the following:

 lea rdi, arr ; Point RDI to some array

 mov rcx, 100 ; Load max into RCX

 mov al, 'a' ; Load value to seek into AL

repnz scasb ; Search for AL in *RDI

 jnz NotFound ; If the zero flag is not set after the

 ; scan AL is not in arr

 lea rax, [arr+1] ; Otherwise we can find the index of the

 ; first occurrence of AL

 sub rdi, rax ; By subtracting arr+1 from the address where we found AL

Note: Even the versions with a memory operand scan only whatever RDI is pointing to. The
memory operand is almost completely ignored. The memory operand’s only purpose is to
indicate which of AL, AX, EAX, or RAX should be compared to RDI and how much to
increment RDI.

Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment.

Flags: Overflow, Sign, Zero, Parity, Carry

Prefix: REPE, REPZ, REPNE, REPNZ

Compare String

CMPS [mem8/16/32/64], [mem8/16/32/64]

CMPSB

CMPSW

CMPSD

CMPSQ

 94

These instructions compare the data pointed to by RSI to the data pointed to by RDI, and set
the flags accordingly. They increment (or decrement depending on the direction flag) RSI
and RDI depending on the operand size. They can be used to scan *RSI and *RDI for the
first byte, word, dword, or qword that is different or the first that is the same between the two
arrays.

Note: Even the versions with a memory operand compare only RSI to RDI. The memory
operand is almost completely ignored. The memory operand‘s only purpose is to indicate
how much RDI and RSI should be incremented or decremented each round.

Note: If the direction flag, DF, is 1 as set by the STD instruction, the string instructions will
decrement RDI and RSI instead of incrementing. Otherwise the instruction will increment.

Prefix: REPE, REPZ, REPNE, REPNZ

x86 Miscellaneous Instructions

No Operation

NOP

This instruction does nothing but wait for a clock cycle. However, it is useful for optimizing
pipeline usage and patching code.

Flags: (None)

Pause

Pause

This instruction is similar to NOP, but it also indicates to the CPU that the thread is in a spin

loop so that the CPU can use any power-saving features it has.

Flags: (None)

Read Time Stamp Counter

RDTSC

This instruction loads the time stamp counter into EDX:EAX. The time stamp counter is the
number of clock cycles that have elapsed since the CPU was reset. This is useful for getting
extremely fine grained timing readings.

The following could be a small function to read the time stamp counter:

ReadTimeStamp proc

 rdtsc

 shl rdx, 32

 95

 or rax, rdx

 ret

ReadTimeStamp endp

Getting performance readings at the level of single clock cycles is difficult, since Windows is
constantly switching between the running applications and multitasking. The best thing to do
is run tests repeatedly. You should test how long the ReadTimeStamp procedure takes, and

subtract this from subsequent tests, and then take the average or best clock cycle readings
as the benchmark.

Flags: (None)

Loop

LOOP [Label]

LOOPE [Label]

LOOPNE [Label]

LOOPZ [Label]

LOOPNZ [Label]

These will decrement the RCX counter and jump to the specified label if a condition is met.
For example, the LOOP instruction decrements RCX and repeats from the label until it is 0.

Then it does not branch, but falls through to execute the code following the loop. The LOOP

instructions are almost never used, because the manual decrement and jump is faster.

dec rcx

jnz LoopTop

In addition to being faster, the manual two-line version allows the programmer to specify
which register is used as the counter where LOOPxx makes use of RCX.

The LOOP instructions are interesting, but they do not set the flags register at all where the

manual DEC and JNZ does. When RCX reaches 0 in the LOOP, the RIP register will fall

through, but the zero flag will not be altered from the last setting it had in the body of the
loop.

If it is important for a loop’s structural components not to alter the flags register, then using
the LOOP instruction in place of the manual two-line loops may be worth investigating. With

LOOPE and LOOPZ, if the zero flag is 1, the loop falls through. With LOOPNE and LOOPNZ, if the

zero flag is 0, the loop falls through.

The loops can be broken either by RCX becoming 0 or on the condition of the zero flag. This
may lead to some confusion. If the zero flag happens to be set during the first iteration of a
long loop, then the LOOPE instruction will not decrement RCX and repeat the loop. The loop

will break on the condition of the zero flag.

 96

As mentioned previously, the LOOP instructions are often not used. They are slower than the

two-line manual loop tail in the last sample because they do more than simply DEC the

counter and jump. If the LOOP instructions happen to perform exactly what you need, they

may give a good performance increase as opposed to checking the zero flag. However, in
the vast majority of cases a simple DEC and JNZ will be faster.

CPUID

MOV EAX, [function] ; Move the function number into EAX first

CPUID

This instruction returns information on the executing CPU, including data on the CPU
vendor, cache size, number of cores, and the available instruction sets.

The CPUID instruction itself may not be available on older CPUs. The recommended method

for testing if the CPUID instruction can be executed is to toggle the 21st bit of the flags

register. If this bit can be set to 1 by the program, then the CPU understands the CPUID

instruction. Otherwise, the CPU does not understand the CPUID instruction.

The following is an example of testing for the availability of the CPUID instruction:

 pushfq ; Save the flags register

 push 200000h ; Push nothing but bit 21

 popfq ; Pop this into the flags

 pushfq ; Push the flags again

 pop rax ; This time popping it back into RAX

 popfq ; Restore the original flag's state

 cmp rax, 0 ; Check if our bit 21 was changed or stuck

 je No_CPUID ; If it reverted back to 0, there's no CPUID

Not all CPUs are able to execute all instructions. Modern CPUs are usually capable of
executing more instruction sets than older ones. In order to know if the CPU executing your
code is aware of any particular instruction set, you can call the special CPUID instruction.

The CPUID instruction takes no operands, but EAX is implied. The value in EAX when the

instruction is called is read by the CPU as the function number.

There is a great number of different functions, and each CPU manufacturer is able to define
its own. Manufacturer-specific functions usually have the top 16 bits of EAX set to 8000, for
example. The functions for determining many instruction sets are standard across Intel,
AMD, and VIA.

To call a particular function, first MOV the function number into EAX and then use the CPUID

instruction.

 97

mov eax, 1 ; Function number 1

cpuid ; No formal parameters but EAX is implied!

CPUID function 1 (calling CPUID when EAX is set to 1) lists the feature identifiers; feature

identifiers are the instruction sets that the CPU knows. It lists the possible instruction sets by
storing a series of bit flags in ECX and EDX. Bits are set to 1 to indicate that the CPU is
capable of a particular feature, and 0 to indicate that it is not. In the following table, some of
the most useful features have been listed with the register (ECX or EDX) and the bit number
to check for the feature. There are many more features with additional features added with
each new generation of CPU.

Table 17: Abridged Feature Identifiers

Function
Number (EAX)

Register
(ECX/EDX)

Bit Index in
ECX/EDX

Feature

1
ECX

28
AVX

1
ECX

25
AES

1
ECX

23
Pop Count, POPCNT

1
ECX

20
SSE4.2

1
ECX

19
SSE4.1

1
ECX

9
SSSE3

1
ECX

0
SSE3

1
EDX

26
SSE2

1
EDX

25
SSE

1
EDX

23
MMX

1
EDX

15
Conditional Moves

1
EDX

4
RDTSC

1
EDX

0
x87 FPU

 98

The following example tests for MMX and SSE4.2. In the assembly file, the register (ECX or
EDX) and the bit number can be changed to test for any feature. For a full list of what CPUID

can do on AMD chips, consult CPUID Specification by AMD. For a full list of what CPUID can

do on Intel chips, consult Intel Processor Identification and the CPUID Instruction by Intel.
Links to the manuals and other recommended reading can be found at the end of this book.

// This is the C++ file

#include <iostream>

using namespace std;

extern "C" bool MMXCapable();

extern "C" bool SSE42Capable();

int main()

{

 if(MMXCapable()) cout<<"This CPU is MMX capable!"<<endl;

 else cout<<"This CPU does not have the MMX instruction set :("<<endl;

 if(SSE42Capable()) cout<<"This CPU is SSE4.2 capable!"<<endl;

 else cout<<"This CPU does not have the SSE4.2 instruction set"<<endl;

 cin.get();

 return 0;

}

; This is the assembly file

.code

; bool MMXCapable()

; Returns true if the current CPU knows MMX

; else returns false

MMXCapable proc

 mov eax, 1 ; Move function 1 into EAX

 cpuid ; Call CPUID

 99

 shr edx, 23 ; Shift the MMX bit to position 0

 and edx, 1 ; Mask out all but this bit in EDX

 mov eax, edx ; Move this answer, 1 or 0, into EAX

 ret ; And return it

MMXCapable endp

; bool SSE42Capable()

; Returns true if the current CPU knows SSE4.2

; else returns false

SSE42Capable proc

 mov eax, 1 ; Move function 1 into EAX

 cpuid ; Call CPUID

 shr ecx, 20 ; Shift SSE4.2 bit to position 0

 and ecx, 1 ; Mask out all but this bit

 mov eax, ecx ; Move this bit into EAX

 ret ; And return it

SSE42Capable endp

end

Note: It was common in the past to simply call an instruction and let an exception be thrown
by the CPU if the instruction set was not supported. There is a slight possibility that a given
machine code will execute on an older CPU without throwing an exception, but it will actually
execute some other instruction. For this reason, the CPUID instruction is the recommended
method for testing if instruction sets are available.

 100

Chapter 8 SIMD Instruction Sets

SIMD stands for Single Instruction, Multiple Data. It is a type of parallel programming. The
idea of SIMD is to perform the same instructions on multiple pieces of data at once. The
SIMD instructions added to the x86 architecture were originally used to speed up multimedia
processing. It is common in multimedia programming to perform the same operation for
every pixel on the screen or perhaps every byte in a stream of sound data.

Since its introduction, hundreds of new instructions have been added to x86 CPUs. It is a
very different way to program. It requires a new set of eyes, debugging skills, new
algorithms, and data structures. The SIMD instruction sets have their own new registers and
instructions. These new registers are often larger than the original x86 registers, and they
can be thought of as holding a small array of values. For instance, a 64-bit SIMD register
can hold an array of 8 bytes, 4 words, or 2 dwords.

Many of the SIMD style instructions operate on corresponding elements in two registers.
Addition of bytes in SIMD involves adding the two lowest bytes from both operands and
storing the answer in the lowest byte, adding the two second-to-lowest and storing this in the
second lowest byte of the answer—this goes on until the two top bytes are added together,
and their result is stored in the top element of the answer. Although many instructions work
in this manner, just as many do something completely different.

As an example, consider a loop in scalar programming which adds the elements from two
arrays. Perhaps the arrays contain 8 elements. The elements might be added with C++ as
follows:

for(int i = 0; i < 8; i++)

{

 arr1[i] += arr2[i];

}

This results in around twenty-four lines of assembly being generated when optimizations are
switched on in Visual Studio. The C++ compiler unrolls the entire loop and uses eight ADD

instructions. Unrolling loops is a good optimization technique, and modern compilers are
experts at exactly this kind of optimization.

However, using even the most basic SIMD instructions (MMX is used in this example), the
same addition of 8-byte arrays can be accomplished in just four instructions.

movq mm0, qword ptr arr1 ; Load 8 bytes from arr1 into MM0

paddb mm0, qword ptr arr2 ; Add the 8 bytes from arr2

movq qword ptr arr1, mm0 ; Store the answer back in arr1

emms ; Close multimedia state

 101

The most important thing to note is that there is no loop in the SIMD version. All eight
iterations of the loop can be carried out in a single instruction (PADDB, the add packed bytes

instruction). The addition instruction is a single step for the CPU; it takes one or two clock
cycles (depending on the CPU and pipeline issues, and assuming the arrays are in cache).
MMX can perform eight operations at once, but it will not perform eight times the speed of
regular scalar code. While it won’t perform eight times faster, you will see a performance
increase, particularly with compute-intensive functions. Compute-intensive functions are
those that load data from RAM, perform many operations on the data, and then store the
results.

SIMD Concepts

Saturating Arithmetic versus Wraparound Arithmetic

In the regular x86 instructions, when a result is too large to fit into the destination, the top of
the result is lost and only the bits that do fit into the destination are actually written. This
effectively wraps the results around at the top and bottom, such as the following:

mov al, 255

inc al ; AL will wrap around to 0 since 256 is too large

mov al, 0

dec al ; AL will wrap to 255 if unsigned and -1 if signed

This is called wraparound arithmetic, or modular arithmetic. It is often all that is needed, but
there are some problems. Many operations on multimedia do not benefit from this type of
arithmetic. For example, consider an algorithm to increase the brightness of an image by
adding some value to each pixel. Some of the pixels may already be almost white, having a
value near 255, 255, 255, which is a white pixel in the standard RGB24 color modes. If the
extra brightness is added to these pixels, they will suddenly go very dark. Our original pixel
has a value of 252 for its red component, we add 12 to the brightness to make 264, but due
to wrapping round at 256, we will end up with 8. Our pixel will go from very light to very dark,
making the adjust brightness algorithm appear incorrect.

For this exact reason, saturating arithmetic was incorporated into many instructions in the
SIMD instruction sets. Saturating arithmetic sets a maximum and minimum value for each of
the data types, and instead of wrapping around, the answer will be capped at these values.
The 252 + 12 in our example would be saturated to 255.

Each data size and type (unsigned or signed) has two saturating values: one is the minimum
and the other is the maximum.

Table 18: Saturating Values

Data Type Minimum Saturate Maximum Saturate

Unsigned Byte 0 255

 102

Data Type Minimum Saturate Maximum Saturate

Signed Byte -128 127

Unsigned Word 0 65535

Signed Word -32768 32767

Unsigned Dword 0 4294967295

Signed Dword -2147483648 2147483647

Packed/SIMD versus Scalar

Operations on more than one data element at once are called SIMD or packed operations.
Operations on single elements, as in the x86 instructions, are called scalar. Some of the
SIMD instruction sets perform scalar operations as well as SIMD.

MMX

MMX was the first SIMD instruction set added to the x86 architecture. It was added by Intel
in 1996 (other x86 CPU manufacturers also include these SIMD instruction sets such as
AMD and VIA). At the time it was added, Intel did not wish to add new registers to the CPUs.
Instead, they used the same registers as the x87 floating point unit (the MMX registers are
said to be aliased to the x87 registers and vice versa). The x87 floating point unit has a dual
role; it can perform its regular x87 floating point arithmetic or it can be in its multimedia
mode, performing MMX instructions. The x87 unit will change to MMX mode simply by
executing an MMX instruction, but once the program is finished with MMX, you have to call
the EMMS (exit multimedia state) instruction to have the x87 return to its regular floating
point mode.

It is important to note that the MMX instructions were also added to the SSE2 instruction set.
When using these instructions with the SSE registers, they perform double the workload,
working with 128-bit SSE registers instead of the 64-bit MMX registers. Most of the SSE
instruction sets work with floating point, but you can also use any of the MMX instructions in
conjunction with 128-bit SSE registers to perform operations on integers if the CPU is SSE2
capable. Almost all CPUs today are SSE2 capable. Windows 8 and Office 2013 require
SSE2 capable CPUs, which indicates how widespread SSE2 CPUs are. Where the
difference between the MMX and SSE2 versions of the instruction is important, I have
included the instruction in both the MMX and the SSE reference sections.

 103

Registers

There are eight MMX registers aliased to the x87 registers (ST0 to ST7). We will not
examine x87 in this book, since SSE has made it mostly legacy. The MMX registers are
named MM0, MM2, MM3, MM4, MM5, MM6, and MM7. Each register is 64 bits wide. An
MMX register can be used as 8 bytes, 4 words, 2 dwords, or occasionally a single qword.
The size of data that an MMX register is being used for is dictated by the instruction. The
data size a particular register is holding is not fixed; you are free to change it whenever you
need to. Traditionally, the registers are drawn as arrays with the first byte on the far right and
the last one on the left. The bytes in each element are also an array of bits, with the least
significant bits on the right of each element and the most significant bits on the left.

The MMX registers can be used in the following ways:

8 bytes

4 words

2 Dwords

1 Qword

Most MMX instructions take two operands; the first is the destination and the second is the
source. Like the x86 instructions, the destination often also acts as a source. For instance,
with the add instructions, the destination becomes the destination plus the source. Since this
might be misleading, I will use the terms operand 1 and 2 or parameter 1 and 2.

Referencing Memory

To reference memory in an MMX instruction, use the following:

movq mm5, qword ptr [A]

A is an array of at least 64 bits. You cannot use A by itself (without the pointer prefix); MMX

needs to know there is a qword of data there. You can also use the x86 complex addressing
modes.

mov mm0, qword ptr [rax+rdx*2]

mov qword ptr [rdx], mm3

Most MMX (and SSE as well) instructions do not allow for the first operand to be memory.
Usually, the first operand must be an MMX register and the second can be either a MMX
register or a memory operand.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Word 3 Word 2 Word 1 Word 0

Dword 0 Dword 1

Qword 0

 104

Exit Multimedia State

EMMS

The eight MMX registers physically use the floating point unit's ST(x) registers. As soon as
an MMX instruction is executed, the CPU enters multimedia state, or MMX mode. To resume
regular floating point use for these registers, you must call EMMS.

movq mm0, mm1 ; Call some MMX instruction to begin MMX mode

emms ; After you are done in MMX, call emms to restore floating point mode

Note: Almost all floating point arithmetic is performed by using the SSE scalar instructions
instead of the rather lonesome and increasingly neglected x87 unit. In x64, not calling EMMS
will usually not cause a problem. EMMS is always a good idea though, since it may be
difficult to track the bugs that this type of heinous neglect of good practices would
instantiate.

Do not call EMMS in the middle of a loop, since (particularly on older Intel CPUs) the
instruction is quite slow to execute. It is better to do large chunks of MMX processing
together and call this instruction only once all MMX processing is complete.

Moving Data into MMX Registers

There are two data movement instructions in MMX; one moves 64 bits of data and the other
moves 32 bits. When moving 32 bits, if the destination operand is an MMX register, the top
is cleared to 0 and the data is only moved into the bottom half.

Move Quad-Word

MOVQ [mmx], [mmx/mem64]

MOVQ [mmx/mem64], [mmx]

This instruction copies 64 bits of data from the second operand into the first.

Move Dword

MOVD [mmx], [mmx/mem32/reg32]

MOVD [mmx/mem32/re32], [mmx]

This instruction moves 32 bits from the second operand into the bottom of the MMX register
first operand; it can also be used to move 32 bits of data from a general purpose register or
memory location to an MMX register.

Note: When the first operand is an MMX register, this instruction clears the top 32 bits to 0.

mov eax, 12

 105

mov mm0, eax ; MM0 would have the following dwords: [0, 12]

Boolean Instructions

PAND [mmx], [mmx/mem64]

POR [mmx], [mmx/mem64]

PXOR [mmx], [mmx/mem64]

PANDN [mmx], [mmx/mem64]

These instructions apply the Boolean operation between the bits of the two operands and
store the result in the first operand.

Packed AND NOT (PANDN) has no x86 equivalent; it performs a bitwise AND with the source

and the inverse (bitwise NOT) of the destination (first operand). The first operand is

complemented, then has the AND performed with the second operand. For truth tables of the

other bitwise instructions, please consult the entries for OR, AND, and XOR in the x86

instruction set.

Table 19: Truth Table for PANDN

Operand 1 Operand 2 Result in Operand 1

0 0 0

0 1 1

1 0 0

1 1 0

Note: To clear an MMX register to 0, you can use PXOR with the register to clear as both
operands.

pxor mm0, mm0 ; Clear MM0 to 0

pandn mm0, mm0 ; The new ANDN instruction will clear a register to 0

There is no difference between the data types when using the Boolean instructions. Using
XOR on data in words produces exactly the same result as using XOR on data in bytes. Unlike

many other instructions, the Boolean instructions do not have any specified data types.

Shifting Bits

PSLLW [mmx], [mmx/mem64/imm8] ; Left, Logical, Words

PSLLD [mmx], [mmx/mem64/imm8] ; Left, Logical, dwords

PSLLQ [mmx], [mmx/mem64/imm8] ; Left, Logical, qword

PSRLW [mmx], [mmx/mem64/imm8] ; Right, Logical, Words

 106

PSRLD [mmx], [mmx/mem64/imm8] ; Right, Logical, dwords

PSRLQ [mmx], [mmx/mem64/imm8] ; Right, Logical, qword

PSRAW [mmx], [mmx/mem64/imm8] ; Right, Arithmetic, Words

PSRAD [mmx], [mmx/mem64/imm8] ; Right, Arithmetic, dwords

These instructions shift the elements in the destination right or left by the number of bits
specified in the second operand. Left shifting effectively multiplies data by a power of two,
while right shifting shifts the bits right, and divides by a power of two.

Logical shifts move 0 into the vacant spots, while the arithmetic right shifts duplicate the sign
bit and can be used for signed division of integers by powers of two.

Note: If the second operand is a 64-bit memory location or an MMX register, it is not read
SIMD style. It is read as a single 64-bit number. You cannot shift the individual elements in an
MMX register by different amounts; they are all shifted the same number of bits.

The shifting instructions do not wrap data around, so you can clear a register to 0 by shifting
left more bits than the data size, and shifting left 64 bits or more clears the register to 0.

You can also copy the sign of elements across the entire element by using the arithmetic
right shifts and a value greater or equal to the data element size.

psraw mm0, 16; Sets each of MM0's words to 1s if negative, otherwise 0

Arithmetic Instructions

PADDB [mmx], [mmx/mem64] ; Add unsigned/signed bytes, wrap around

PADDSB [mmx], [mmx/mem64] ; Add signed bytes, saturate

PADDUSB [mmx], [mmx/mem64] ; Add unsigned bytes, saturate

PADDW [mmx], [mmx/mem64] ; Add unsigned/signed words, wrap around

PADDSW [mmx], [mmx/mem64] ; Add signed words, saturate

PADDUSW [mmx], [mmx/mem64] ; Add unsigned words, saturate

PADDD [mmx], [mmx/mem64] ; Add unsigned/signed double-words, wrap
around

PSUBB [mmx], [mmx/mem64] ; Subtract signed/unsigned bytes, wrap
around

PSUBSB [mmx], [mmx/mem64] ; Subtract signed words, saturate

PSUBUSB [mmx], [mmx/mem64] ; Subtract unsigned bytes, saturate

 107

PSUBW [mmx], [mmx/mem64] ; Subtract unsigned/signed words, wrap
around

PSUBSW [mmx], [mmx/mem64] ; Subtract signed words, saturate

PSUBUSW [mmx], [mmx/mem64] ; Subtract unsigned words, saturate

PSUBD [mmx], [mmx/mem64] ; Subtract signed/unsigned doubles

These instructions add and subtract bytes, words, or dwords. Each element in the second
operand is subtracted from or added to the corresponding element in the first operand, and
the results from the packed additions and subtractions are stored in the first operand. These
instructions have the option to use wrap around or saturation arithmetic. There are no
saturation or unsigned instructions that operate on dwords in MMX; if this functionality is
required, then use SSE.

There is an instruction for each data type where it does not matter if the data type is signed
or unsigned, since the result is the same. PADDB, PADDW, PADDD, PSUBB, PSUBW, and PSUBD
all give the same answer if the data is signed or unsigned. None of them use saturation.

Note: When you need to detect what elements overflowed in SIMD operations, you can
perform both the saturating version of the operation and the wrap around version, and
compare the results. Any elements that are not identical in both answers have overflowed.
This is useful because there is no carry flag or overflow available in SIMD.

The instruction PADDW mm0, mm1 is illustrated as follows:

Figure 16

The next example is of PSUBW mm0, mm1. Note the second operand is subtracted from the

first.

Figure 17

 108

Multiplication

PMULHW [mmx], [mmx/mem64] ; Multiply and keep high 16 bits of 32 bit
result

PMULLW [mmx], [mmx/mem64] ; Multiply and keep low 16 bits of 32 bit
result

PMADDWD [mm0], [mmx/mem64] ; Multiply and add words to double-words

You can multiply two MMX registers or an MMX register with a memory location, but all
these instructions only operate on signed words. For multiplication of other integer data
types, use SSE2. When multiplying, you can choose to keep either the top 16 bits (PMULHW)

or the bottom 16 bits (PMULLW) of the multiplication.

There is also a fused multiply add instruction (PMADDWD, assumed words are signed) that

allows you to multiply and add in a single operation with added precision. Each word in the
destination is multiplied by the corresponding word in the destination to give four results: A,
B, C, and D. A is then added to B, C is added to D, and both these answers form the final
two dwords in the destination. The initial multiplication is able to result in 32 bits since a
larger temporary register is used.

Note: If one of your operands for the PMADDWD is { 1, 1, 1, 1 } (four words all set to 1), the
operation performs a horizontal add. It adds each adjacent pair of words in the destination
and stores the two results as two dwords.

Note: If every second word in both operands to a PMADDWD is 0, then the instruction will
result in two word multiplication, but the entire 32-bit result will be kept.

Comparisons

pcmpeqb [mmx], [mmx/mem64] ; Compare bytes for equality

pcmpgtb [mmx], [mmx/mem64] ; Compare signed bytes for greater than

pcmpeqw [mmx], [mmx/mem64] ; Compare words for equality

pcmpgtw [mmx], [mmx/mem64] ; Compare signed words for greater than

pcmpeqd [mmx], [mmx/mem64] ; Compare double-words for equality

pcmpgtd [mmx], [mmx/mem64] ; Compare signed double-words for greater
than

MMX has a comparison instruction for testing equality and greater-than only. All other
comparisons must be built from these and the Boolean instructions.

Comparisons in MMX (and the other SIMD instruction sets) result in setting all of the bits of
each element to either 1 or 0. Elements are set to a mask of all 1s where they pass the
condition and all 0s where they do not. All “greater than” comparisons are signed in MMX.

For instance, if mm0 has { 9, 14, 21, 40 } as four words, and MM1 has { 9, 4, 21, 4 }, then the
following code will result in MM0 having { ffffh, 0000h, ffffh, 0000h }:

 109

pcmpeqw mm0, mm1 ; Packed compare words for equality

This is because there are two words that are the same in MM0 and MM1, and two that are
not the same. MM0 effectively becomes a mask of words that are the same between MM0
and MM1.

Note: The PCMPEQB instruction (and the other equality comparison instructions) can be
used to set an MMX register to all 1s or ffffffffffffffffh by using the same register as both
operands.

pcmpeqb mm0, mm0 ; Set MM0 to all 1s

Creating the Remaining Comparison Operators

There are a number of ways to create the other comparisons (!=, >=, etc.). To perform the

not-equal operation (!=) between MM0 and MM1 using MM7 as a temporary register, use

the following:

pcmpeqb mm0, mm1

pcmpeqb mm7, mm7

pxor mm0, mm7

To perform the greater than or equal to operation (>=) between MM0 and MM1 using MM7

as a temporary register, use the following:

movq mm7, mm0 ; Backup parameter to mm7

pcmpeqb mm0, mm1 ; Find where they are equal

pcmpgb mm7, mm1 ; Find where they are greater

por mm0, mm7 ; OR these two results

To perform the less-than operation (<) between MM0 and MM1 using MM7 as a temporary

register, use the following:

movq mm7, mm0 ; Backup parameter to mm7

pcmpeqd mm0, mm1 ; Does mm0 = mm1 ?

pcmpgd mm7, mm1 ; Is mm7 > mm1 ?

por mm0, mm7 ; mm0 is now >= mm1

pcmpeqd mm7, mm7 ; Get mm7 ready to complement mm0

pxor mm0, mm7 ; mm0 is now < mm1

 110

Packing

PACKSSDW [mmx], [mmx/mem64] ; Pack signed double-words to words and
saturate

PACKSSWB [mmx], [mmx/mem64] ; Pack signed words to bytes and saturate

PACKUSWB [mmx], [mmx/mem64] ; Pack unsigned words to bytes and saturate

Packing instructions convert large data types into smaller ones, and then take the elements
of two operands and resize them so that they fit into a single operand. You can convert
dwords to words or words to bytes. You can use signed or unsigned words when converting
bytes. All the MMX packing instructions use saturation.

PACKSSDW converts dwords to words by saturating the dwords and storing the two converted

dwords from the first operand in the lower half of the answer, and storing the two converted
words from the second operand in the upper half of the answer.

Figure 18

PACKSSWB and PACKUSWB convert words to bytes by first applying saturation. The PACKSSWB

range is -128 to 127, and the PACKUSWB range is 0 to 255. The four words from the first

operand are converted to bytes and stored in the lower half of the answer, and the four
words from the second operand are converted to bytes and stored in the upper half of the
answer.

 111

Figure 19

Unpacking

PUNPCKLBW [mmx], [mmx/mem64] ; Unpack low bytes to words

PUNPCKHBW [mmx], [mmx/mem64] ; Unpack high bytes to words and interleave

PUNPCKLWD [mmx], [mmx/mem64] ; Unpack low words to double-words

PUNPCKHWD [mmx], [mmx/mem64] ; Unpack high words to double-words

PUNPCKLDQ [mmx], [mmx/mem64] ; Unpack low double-words to quad-words

PUNPCKHDQ [mmx], [mmx/mem64] ; Unpack high dwords to qword and interleave

The unpacking instructions convert from smaller data types to larger ones. They are MOV

instructions, as there is actually no data conversion at all. For example, converting the eight
bytes in the source to eight words would require more space than can fit in an MMX register,
so you must choose to convert either the lower or upper half.

The conversion is performed using what is called interleaving. Elements from the first
operand are interleaved with those from the second operand.

 112

Figure 20

The interleaving system was invented to allow the greatest flexibility while adding the fewest
number of instructions to the CPU. If the second operand contains all zeros, then these
instructions have the effect of zero-extending (unsigned extending) the data in the first
operand.

Initially, these instructions were also used to broadcast values (duplicate elements across
the whole register). However, the SSE shuffle instructions make broadcasting a lot easier.

Some examples of using the packing and unpacking instructions are as follows:

; To duplicate the bottom 32 bits of mm0 into the top:

punpckldq mm0, mm0

; To fill MM0 with 8 copies of a byte from AL (9 in this example):

xor eax, eax ; Make sure the top of EAX is 0

mov al, 9 ; Copy the byte into eax, 9 in this example

movd mm0, eax ; Copy eax to the low dword of mm0

punpckldq mm0, mm0 ; Duplicate the bottom into the topof MM0

packssdw mm0, mm0 ; Copy these two 9s into 4

packuswb mm0, mm0 ; Copy those four 9s into 8

; Sign extending: If the second operand contains the signs of the

; elements in the first operand (use the PSRAW instruction to get this)

; then these instructions have the effect of sign extending the data

 113

; in the first operand:

movq mm1, mm0 ; Copy words

psraw mm1, 16 ; Fill mm1 with signs of elements in mm0

punpcklwd mm0, mm1 ; Unpack interleaving with signs, sign extend to dwords!

SSE Instruction Sets

Introduction

The SSE (Streaming SIMD Extensions) instruction sets perform SIMD operation on new
128-bit registers. Over the years, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, and SSE4a
instruction sets have been created. The original SSE instruction set's purpose was to allow
SIMD floating point instructions and the ability to work on four single-precision floating point
values at once. The additional instruction sets added a multitude of instructions for doing
almost anything in both SIMD and scalar. For instance, the SSE2 instruction set added
integer instructions as well as many double-precision floating point instructions.

Where MMX registers were aliased to the x87 unit's registers, the SSE registers occupy a
new register space on the CPU. There is no need to switch from multimedia mode to floating
point when using SSE. Some of the SSE instructions do use the MMX registers in
conjunction with the SSE registers, and these instructions still cause a switch in the x87 unit.
Just as in the MMX instruction set, whenever an SSE instruction references the MMX
registers, EMMS must be called to restore the x87 unit to floating point mode.

Originally there were eight SSE registers named from XMM0 to XMM7. In x64 applications,
this has been increased to sixteen registers named from XMM0 to XMM15. Each SSE
register is 128 bits wide and can be used for the data sizes shown in Figure 21.

In the instruction listings that follow, I have included the instruction sets (beside the
mnemonics). This is where the instructions come from. Be sure to check that the CPU is
capable of an instruction with the CPUID Function 1 prior to using it.

 114

Figure 21

Collectively, the SSE instruction sets present a programmer with a staggering array of
instructions numbering in the hundreds. Many instructions have scalar as well as SIMD
versions.

Note: The Microsoft compiler users scalar SSE instructions to perform floating point
operations, instead of using the x87 FPU.

In x64, the C calling convention used by the C++ compiler passes floating point parameters
using the XMM0 register. Only the lowest single or double precision element of XMM0 is
used to return values, but the lowest elements of XMM0, XMM1, XMM2, and XMM3 are
used to pass the first four floating point values to functions.

Data alignment is very important for many of the SSE instructions that reference memory.
Data must be aligned to 16 bytes where memory is read or written, or else a segmentation
fault will occur.

AVX

Included in this reference are some of the new AVX instructions. These instructions are only
available on the new CPUs. The AVX instruction set is the largest addition of instructions
since the original SSE in 1999. The instruction set consists of new AVX versions of many of
the SSE instructions and new 256-bit SIMD registers.

Unlike the earlier instruction sets, AVX requires the support of the operating system.
Windows 7 does not support AVX by default and must be upgraded by installing the Service
Pack 1 (SP1). AVX is natively supported by Windows 8 and later.

There are sixteen AVX registers named from YMM0 to YMM15. They are all 256 bits wide
and are aliased to the sixteen SSE registers, so the low 128 bits of YMM0 is the SSE
register XMM0.

 115

Each AVX register can be broken up exactly as the SSE registers, only there are twice the
number of elements available in the AVX registers. The AVX instructions begin with "V" and
the mnemonic is otherwise similar to the SSE versions of the instructions.

In addition to larger registers, the new AVX instructions often offer nondestructive versions of
many instructions.

ADDPD XMM0, XMM2 ; Destructive, XMM0 is overwritten

VADDPD XMM0, XMM2, XMM7 ; Non destructive, XMM0 = XMM2 + XMM7

This instruction adds corresponding packed doubles in a similar way to the SSE version;
only operands 2 and 3 are added and the answers are stored in operand 1. This allows for
the destination to be a different operand to both sources.

Data Moving Instructions

Move Aligned Packed Doubles/Singles

MOVAPD [xmm/mem128], [xmm/mem128] - SSE2

VMOVAPD [xmm/mem128], [xmm/mem128] - AVX

VMOVAPD [ymm/mem256], [ymm/mem256] - AVX

MOVAPS [xmm/mem128], [xmm/mem128] - SSE2

VMOVAPS [xmm/mem128], [xmm/mem128] - AVX

VMOVAPS [ymm/mem256], [ymm/mem256] - AVX

The move aligned instructions move 128 bits or 256 bits of data from the second operand
into the first. If either of the operands is a memory location, then it must be aligned to 16
bytes.

Data can be aligned in C++ to 16 bytes using the _declspec(align(16)) directive prior to the
data type of the variable in its declaration.

Data can be aligned in the .data segment in assembly by using align 16 on the line prior to
the declaration of the variable.

The CPU performs operations faster on aligned data, although many instructions in SSE and
AVX require aligned data or else they will generate a segmentation fault.

Move Unaligned Packed Doubles/Singles

MOVUPD [xmm/mem128], [xmm/mem128] - SSE2

VMOVUPD [xmm/mem128], [xmm/mem128] - AVX

VMOVUPD [ymm/mem256], [ymm/mem256] - AVX

MOVUPS [xmm/mem128], [xmm/mem128] - SSE

 116

VMOVUPS [xmm/mem128], [xmm/mem128] - AVX

VMOVUPS [ymm/mem256], [ymm/mem256] - AVX

The move unaligned packed doubles and singles instructions move 128 bits or 256 bits of
data from the second operand into the first. Unlike the aligned move instructions, if one of
the operands is a memory operand, then it need not be aligned to 16 bytes.

Arithmetic Instructions

Arithmetic on integer types can be performed using the SSE registers and the same
instruction mnemonics as MMX instructions. The MMX instruction mnemonics can be used
with the SSE registers only if the SSE2 instruction set is available.

Adding Floating Point Values

Table 20

Mnemonic Meaning Operands Instruction Set

ADDPD Add packed doubles [xmm], [xmm/mem128] SSE2

VADDPD Add packed doubles [xmm], [xmm], [xmm/mem128] AVX

VADDPD Add packed doubles [ymm], [ymm], [ymm/mem256] AVX

ADDPS Add packed singles [xmm], [xmm/mem128] SSE

VADDPS Add packed singles [xmm]/[xmm], [xmm/mem128] AVX

VADDPS Add packed singles [ymm]/[ymm], [ymm/mem256] AVX

ADDSD Add scalar double [xmm], [xmm/mem64] SSE2

VADDSD Add scalar double [xmm], [xmm], [xmm/mem64] AVX

ADDSS Add scalar single [xmm], [xmm/mem32] SSE

VADDSS Add scalar single [xmm], [xmm], [xmm/mem32] AVX

These instructions are used to add elements from one SSE or AVX register to another. The
two-operand SSE and AVX versions add elements from the second operand to the
corresponding elements in the first, and store the answers in the first operand. The three-
operand AVX versions add the elements in the second operand and third operand together,
and then store the answers in the first operand.

The following example illustrates the way the add instructions operate. Here, the ADDPS (add

packed singles) instruction is used to add the values in XMM1 to those in XMM0:

 117

Figure 22

Subtracting Floating Point Values

Table 21

Mnemonic Meaning Operands Instruction
Set

SUBPD Subtract packed doubles [xmm], [xmm/mem128] SSE2

VSUBPD Subtract packed doubles [xmm], [xmm], [xmm/mem128] AVX

VSUBPD Subtract packed doubles [ymm], [ymm], [ymm/mem256] AVX

SUBPS Subtract packed singles [xmm], [xmm/mem128] SSE

VSUBPS Subtract packed singles [xmm], [xmm], [xmm/mem128] AVX

VSUBPS Subtract packed singles [ymm], [ymm], [ymm/mem256] AVX

SUBSD Subtract scalar double [xmm], [xmm/mem64] SSE2

VSUBSD Subtract scalar double [xmm], [xmm], [xmm/mem64] AVX

SUBSS Subtract scalar single [xmm], [xmm/mem32] SSE

VSUBSS Subtract scalar single [xmm], [xmm], [xmm/mem32] AVX

The subtraction instructions subtract elements in one register or memory from the
corresponding elements in another register. The two-operand versions of the instructions
subtract the elements of the second operand from the corresponding elements in the first,
and store the answer in the first operand. The three-operand AVX versions subtract the
elements of the third operand from those in the second, and store the result in the first
operand.

The following example illustrates a SUBPS instruction using XMM0 and XMM1 as operands.

The four single-precision floats in XMM1 are subtracted from those in XMM0, and the result
is placed into XMM0.

 118

Figure 23

Dividing Floating Point Values

Table 22

Mnemonic Meaning Operands Instruction Set

DIVPD Divide packed doubles [xmm], [xmm/mem128] SSE2

VDIVPD Divide packed doubles [xmm], [xmm], [xmm/mem128] AVX

VDIVPD Divide packed doubles [ymm], [ymm], [ymm/mem256] AVX

DIVPS Divide packed singles [xmm], [xmm/mem128] SSE

VDIVPS Divide packed singles [xmm], [xmm], [xmm/mem128] AVX

VDIVPS Divide packed singles [ymm], [ymm], [ymm/mem256] AVX

DIVSD Divide scalar double [xmm], [xmm/mem64] SSE2

VDIVSD Divide scalar double [xmm], [xmm], [xmm/mem64] AVX

DIVSS Divide scalar single [xmm], [xmm/mem32] SSE

VDIVSS Divide scalar single [xmm], [xmm], [xmm/mem32] AVX

The division instructions divide elements in one register or memory by the corresponding
elements in another. The two-operand versions divide the values in the first operand by the
corresponding values in the second, and store the results in the first. The three-operand
versions divide the elements in the second operand by those in the third and store the
results in the first operand.

The sample illustration is of the DIVPD instruction with XMM0 and XMM1 as operands. The

elements in XMM0 are divided by those in XMM1 and the resulting doubles are stored in
XMM0.

 119

Figure 24

Multiplying Floating Point Values

Table 23

Mnemonic Meaning Operands Instruction Set

MULPD Multiply packed doubles [xmm], [xmm/mem128] SSE2

VMULPD Multiply packed doubles [xmm], [xmm], [xmm/mem128] AVX

VMULPD Multiply packed doubles [ymm], [ymm], [ymm/mem256] AVX

MULPS Multiply packed singles [xmm], [xmm/mem128] SSE

VMULPS Multiply packed singles [xmm], [xmm], [xmm/mem128] AVX

VMULPS Multiply packed singles [ymm], [ymm], [ymm/mem256] AVX

MULSD Multiply scalar double [xmm], [xmm/mem64] SSE2

VMULSD Multiply scalar double [xmm], [xmm], [xmm/mem64] AVX

MULSS Multiply scalar single [xmm], [xmm/mem32] SSE

VMULSS Multiply scalar single [xmm], [xmm], [xmm/mem32] AVX

The multiplication instructions multiply the elements in one register by the corresponding
elements in another register or memory. The two-operand versions multiply the values in the
first operand by those in the second and store the results in the first operand. The three-
operand versions multiply the values in the third operand by those in the second, and store
the results in the first operand.

The following figure is the MULPD instruction using XMM0 and XMM1 as operands. The

doubles in XMM0 are multiplied by those in XMM1 and the result is stored in XMM0.

 120

Figure 25

Square Root of Floating Point Values

Table 24

Mnemonic Meaning Operands Instruction Set

SQRTPD Square root packed doubles [xmm], [xmm/mem128] SSE2

VSQRTPD Square root packed doubles [xmm], [xmm/mem128] AVX

VSQRTPD Square root packed doubles [ymm], [ymm/mem256] AVX

SQRTPS Square root packed singles [xmm], [xmm/mem128] SEE

VSQRTPS Square root packed singles [xmm], [xmm/mem128] AVX

VSQRTPS Square root packed singles [ymm], [ymm/mem256] AVX

SQRTSD Square root scalar double [xmm], [xmm/mem64] SSE2

VSQRTSD Square root scalar double [xmm], [xmm/mem64] AVX

SQRTSS Square root scalar single [xmm], [xmm/mem32] SSE

VSQRTSS Square root scalar single [xmm], [xmm/mem32] AVX

The square root instructions calculate the square root of the elements in the second operand
and store the answers in the first operand.

The following figure is the SQRTPD instruction using the registers XMM0 and XMM1 as

operands. The first operand (XMM0) is ignored in the calculation; its elements have been
grayed out. The final results in the elements of XMM0 are the square root of the doubles in
XMM1.

 121

Figure 26

Reciprocal of Single-Precision Floats

Table 25

Mnemonic Meaning Operands Instruction Set

RCPPS Reciprocal packed singles [xmm], pxmm/mem128] SSE

VRCPPS Reciprocal packed singles [xmm], [xmm/mem128] AVX

VRCPPS Reciprocal packed singles [ymm], [ymm/mem128] AVX

RCPSS Reciprocal scalar single [xmm], [xmm/mem32] SSE

VRCPSS Reciprocal scalar single [xmm], [xmm/mem32] AVX

VRCPSS Reciprocal scalar single [ymm], [ymm/mem32] AVX

The reciprocal instructions calculate the reciprocal (1/x, where x is the element) of the
elements in the second operand and store the result in the elements of the first operand. The
elements of the first operand are ignored for the calculation. The result of dividing by zero in
these instructions is infinity. These instructions only give a quick approximation of the real
reciprocal; they are intended to be used when exact precision is not required.

The following figure shows the RCPPS instruction with XMM0 and XMM1 as operands. The

initial values in XMM0 are ignored by the instruction and are overwritten by the reciprocal of
the elements in XMM1. They are grayed out in Figure 27.

Figure 27

 122

Reciprocal of Square Root of Single-Precision Floats

RSQRTPS [xmm], [xmm/mem128] – SSE

VRSQRTPS [xmm], [xmm/mem128] – AVX

VRSQRTPS [ymm], [ymm/mem256] – AVX

RSQRTSS [xmm], [xmm/mem32] – SSE

VRSQRTSS [xmm], [xmm], [xmm/mem32] – AVX

These instructions calculate the reciprocal of the square root (1/sqrt(x) or sqrt(x)/x, where x
is the element) of the elements in the second operand and store the results in the first
operand. In other words, they divide one by the square root of the elements in the second
operand and store the results in the first operand. The answers are not precise and the
instruction is intended for use only when a quick approximation is required.

The following figure shows the RSQRTPS instruction using XMM0 and XMM1 as operands.

The values in XMM0 are ignored for the calculation and have been grayed out. The resulting
reciprocal square roots are only those from the second operand.

Figure 28

Boolean Operations

All of these operations essentially do exactly the same thing despite the data types in the
registers, since a bitwise operation on packed doubles has the same effect on a SIMD
register as a bitwise operation on packed singles. Some CPUs suffer a minor performance
penalty when data in SIMD registers is not treated as the same size. For this reason, it is
safest to use the bitwise or Boolean instructions designed for the particular data type you are
working with.

AND NOT Packed Doubles/Singles

ANDNPD [xmm], [xmm/mem128] – SSE2

PANDN [xmm], [xmm/mem128] – SSE2

VANDNPD [xmm], [xmm], [xmm/mem128] - AVX

 123

VANDNPD [ymm], [ymm], [ymm/mem256] – AVX

ANDNPS [xmm], [xmm/mem128] – SSE2

VANDNPS [xmm], [xmm], [xmm/mem128] – AVX

VPANDN [xmm], [xmm], [xmm/mem128] - AVX

VANDNPS [ymm], [ymm], [ymm/mem256] – AVX

The AND NOT instructions first complement an operand, then perform a bitwise AND between

two operands. They store the result in the destination (see the MMX Boolean instructions for
the truth table for this instruction). For the two-operand versions of these instructions, the
first operand is complemented and then a bitwise AND is performed between the bits of both

operands. The result is stored in the first operand.

For the three-operand versions of these instructions, the second operand is complemented
and then a bitwise AND is performed between the second and third operands. The result is

stored in the first operand.

This instruction is useful for creating bit masks that represent negative comparisons.

AND Packed Doubles/Singles

ANDPD [xmm], [xmm/mem128] – SSE2

PAND [xmm], [xmm/mem128] – SSE2

VANDPD [xmm], [xmm], [xmm/mem128] - AVX

VPAND [xmm], [xmm], [xmm/mem128] - AVX

VANDPD [ymm], [ymm], [ymm/mem256] – AVX

ANDPS [xmm], [xmm/mem128] – SSE

VANDPS [xmm], [xmm], [xmm/mem128] - AVX

VANDPS [ymm], [ymm], [ymm/mem256] – AVX

These instructions perform a bitwise AND between two operands. The two-operand versions

of this instruction perform a bitwise AND between the first and second operands, storing the

result in the first operand. The three-operand versions perform a bitwise AND between the

second and third operand and store the results in the first operand.

OR Packed Doubles/Singles

ORPD [xmm], [xmm/mem128] – SSE2

POR [xmm], [xmm/mem128] – SSE2

VORPD [xmm], [xmm], [xmm/mem128] - AVX

VPOR [xmm], [xmm], [xmm/mem128] – AVX

 124

VORPD [ymm], [ymm], [ymm/mem256] – AVX

ORPS [xmm], [xmm/mem128] – SSE

VORPS [xmm], [xmm], [xmm/mem128] - AVX

VORPS [ymm], [ymm], [ymm/mem256] – AVX

The OR instructions perform a bitwise OR between two operands. The two-operand versions

perform a bitwise OR between the first and second operand and store the results in the first

operand. The three-operand AVX versions perform a bitwise OR between the second and

third operands, storing the results in the first operand.

XOR Packed Doubles/Singles

XORPD [xmm], [xmm/mem128] – SSE2

PXOR [xmm], [xmm/mem128] – SSE2

VXORPD [xmm], [xmm], [xmm/mem128] - AVX

VXORPD [ymm], [ymm], [ymm/mem256] – AVX

VPXOR [xmm], [xmm], [xmm/mem128] – AVX

XORPS [xmm], [xmm/mem128] – SSE

VXORPS [xmm], [xmm], [xmm/mem128] - AVX

VXORPS [ymm], [ymm], [ymm/mem256] – AVX

The XOR instructions perform a bitwise XOR operation between two operands. The two-

operand versions of these instructions perform a bitwise XOR between the first and second

operands and store the results in the first operand. The three-operand versions perform a
bitwise XOR between the second and third operands and store the result in the first operand.

Comparison Instructions

Comparing Packed Doubles and Singles

CMPxxPtt [xmm], [xmm/mem128] - SSE and SSE2 versions

VCMPxxPtt [xmm], [xmm], [xmm/mem128] - AVX versions

VCMPxxPtt [ymm], [ymm], [ymm/mem256] - AVX versions

There are many comparison instructions; the mnemonics follow the outline (CMPxxPtt or

VCMPxxPtt) where the xx is replaced by the operator abbreviation (from the Comparison

Operators table that follows) and the tt is replaced by the data type (D for packed double-

precision floats and S for packed single-precision floats).

 125

Table 26: Comparison Operators

Abbreviation Meaning

EQ Equal to

LT Less than

LE Less than or equal to

UNORD Unordered (NaN or Undefined)

ORD Ordered (not NaN or Undefined)

NEQ Not equal to

NLT Greater than or equal to, not less than

NLE Greater than, not less or equal to

They perform the comparison operator between corresponding elements of two operands.
All bits of any elements that the operator is true are set to 1. All bits of any elements where
the operator is false are set to 0.

In the SSE and SSE2 versions, the comparison is performed between operands one and two
and the resulting bit masks are stored in the first operand.

In the AVX versions, the comparison is performed between operands two and three, and the
resulting bit masks are placed into the first operand.

The UNORD and ORD comparison operators are used to determine where various NaN (not a

number) elements are. NaN values in doubles or floats are unordered and will return true if
the UNORD comparison is used and false if ORD is used. All numerically orderable values

(those that are not NaN or #IND) return true when the ORD operator is used and false when

the UNORD operator is used.

Comparing Scalar Doubles and Singles

CMPxxStt [xmm], [xmm/mem64/mem32] - SSE and SSE2 versions

VCMPxxStt [xmm], [xmm], [xmm/mem64/mem32] - AVX versions

The scalar versions of the comparison instructions are the same as their packed
counterparts, only they perform the comparison on the lowest double or single. They have
an S for scalar in their mnemonic instead of the P for packed.

Comparing and Setting rFlags

COMISD [xmm], [xmm/mem64] - SSE2

VCOMISD [xmm], [xmm/mem64] - AVX

 126

COMISS [xmm], [xmm/mem32] - SSE

VCOMISS [xmm], [xmm/mem32] – AVX

These interesting instructions bridge the gap between the SIMD instruction sets and the
regular x86 instruction sets by comparing SSE or AVX registers, but setting the rFlags
register. The instructions are scalar, and compare either the lowest single-precision floats
(COMISS and VCOMISS) or the lowest doubles (COMISD and VCOMISD). They set the flags

register in the following manner:

Table 27: x86 Flags after xCOMISxx

Condition Zero Flag Parity Flag Carry Flag

NaN 1 1 1

Parameter 1 > Parameter 2 0 0 0

Parameter 1 < Parameter 2 0 0 1

Parameter 1 = Parameter 2 1 0 0

Converting Data Types/Casting

Conversion Instructions

Converting to Doubles

CVTDQ2PD [xmm], [xmm/mem64] ; Converts two dwords to doubles using SSE2

VCVTDQ2PD [xmm], [xmm/mem64] ; Converts two dwords to doubles using AVX

VCVTDQ2PD [ymm], [ymm/mem128] ; Converts two dwords to doubles using AVX

CVTPS2PD [xmm], [xmm/mem64] ; Converts packed singles to packed doubles
using SSE2

VCVTPS2PD [xmm], [xmm/mem64] ; Converts packed singles to packed doubles
using AVX

VCVTPS2PD [ymm], [ymm/mem128] ; Converts packed singles to packed doubles
using AVX

CVTSI2SD [xmm], [reg32/64] ; Converts from x86 register to double using
SSE2

VCVTSI2SD [ymm], [ymm], [reg32/64] ; Converts from x86 register to double
using AVX

CVTSS2SD [xmm], [xmm/mem64] ; Converts a scalar single to a scalar
double using SSE2

VCVTSS2SD [ymm], [ymm], [ymm/mem64] ; Converts a scalar single to a scalar
double using AVX

 127

Converting to Singles

CVTDQ2PS [xmm], [xmm/mem128] ; Converts packed dwords to singles using
SSE2

VCVTDQ2PS [xmm], [xmm/mem128] ; Converts packed dwords to singles using
AVX

VCVTDQ2PS [ymm], [ymm/mem256] ; Converts packed dwords to singles using
AVX

CVTPD2PS [xmm], [xmm/mem128] ; Converts packed doubles to singles using
SSE2

VCVTPD2PS [xmm], [xmm/mem128] ; Converts packed doubles to singles using
AVX

VCVTPD2PS [ymm], [ymm/mem256] ; Converts packed doubles to singles using
AVX

CVTSD2SS [xmm], [xmm/mem64] ; Converts scalar double to scalar single
using SSE2

VCVTSD2SS [ymm], [ymm], [ymm/mem64] ; Converts scalar double to scalar
single using AVX

CVTSI2SS [xmm], [reg32/64] ; Converts from x86 registers to a scalar
single using SSE2

VCVTSI2SS [ymm], [ymm], [reg32/64] ; Converts from x86 registers to a
scalar single using AVX

Converting to Integers

CVT(T)PD2DQ [xmm], [xmm/mem128] ; Converts packed doubles to dwords using
SSE2

VCVT(T)PD2DQ [xmm], [xmm/mem128] ; Converts packed doubles to dwords using
AVX

VCVT(T)PD2DQ [ymm], [ymm/mem256] ; Converts packed doubles to dwords using
AVX

CVT(T)PS2DQ [xmm], [xmm/mem128] ; Converts singles to dwords using SSE2

VCVT(T)PS2DQ [xmm], [xmm/mem128] ; Converts singles to dwords using AVX

VCVT(T)PS2DQ [ymm], [ymm/mem256] ; Converts singles to dwords using AVX

CVT(T)SD2SI [reg32/64], [xmm/mem32/64] ; Converts double to x86 register
using SSE2

 128

VCVT(T)SD2SI [reg32/64], [ymm/mem32/64] ; Converts double to x86 register
using AVX

CVT(T)SS2SI [reg32/64], [mem32/64] ; Converts scalar single to scalar
integer using SSE2

VCVT(T)SS2SI [reg32/64], [mem32/64] ; Converts scalar single to scalar
integer using AVX

The data conversion instructions convert between doubles, singles, and integer data. They
convert the elements (or element) in the second operand to some other data type and store
the converted results in the elements of the first operand. The conversion is analogous to a
C++ type cast.

The versions that convert floating point values to x86 registers only work on scalar values,
since the x86 registers are essentially scalar in nature. They are useful because they allow
answers calculated using SSE floating point to be quickly and easily cast to integers in the
x86 registers.

When converting to integers, you have the option of either using truncation (by placing the
additional T in the middle of the mnemonic, indicated in the previous list by the (T)) or using

the rounding function specified in the MXCSR register.

Selecting the Rounding Function

STMXCSR [mem32] – Store MXCSR

LDMXCSR [mem32] – Load MXCSR

The conversion instructions that convert from a floating point value to an integer perform
rounding based on the rounding function (bits 13 and 14) of the MXCSR register.

Table 28: Rounding Function Bits in MXCSR

Bit 14 Bit 13 Rounding Function

0 0 Round to nearest integer

0 1 Round down to nearest integer

1 0 Round up to nearest integer

1 1 Truncate (round toward 0)

To set the rounding function in MXCSR, the register must first be copied to RAM using the
store MXCSR instruction, STMCXSR. Then bits 13 and 14 can be set in RAM using the bit test

instructions, BTS and BTR (or the Boolean instructions). Finally, this altered value of MXCSR

can be loaded from RAM back into the real MXCSR using the load MXCSR instruction,
LDMXCSR.

The LDMXCSR and STMCXSR instructions both take a single 32-bit memory operand. In

STMXCSR, this operand is a variable to store the MXCSR in RAM. In LDMXCSR, the operand is

the memory location from which to copy the new values of the MXCSR.

 129

; Example of selecting Round to Nearest, 00

STMXCSR mxcsrState ; Copy MXCSR to the 32-bit memory operand

btr mxcsrState, 13 ; Unset both bits, set it to 0

btr mxcsrState, 14

LDMXCSR mxcsrState ; Load the altered value back into MXCSR

; Example of selecting Round Down, 01

STMXCSR mxcsrState ; Copy MXCSR to the 32-bit memory operand

bts mxcsrState, 13 ; Set bit 13 to 1

btr mxcsrState, 14 ; And bit 14 to 0

LDMXCSR mxcsrState ; Load the altered value back into MXCSR

 130

Conclusion

This book has been a brief introduction to a massive topic, including the most basic aspects
of modern x64 assembly programming. The SSE instruction sets have not been covered to
any degree of detail, and there are simply far too many instructions to do these instruction
sets any justice within a hundred pages.

Assembly programming is very different from high-level languages. It requires practice and a
very detailed knowledge of the hardware with which the application is executing. If the CPU's
native assembly language is used, there is an excellent opportunity to speed up data
processing. This language and the CPUs it runs on are at the very cutting edge of
technology. CPUs and their assembly languages are the result of thousands of very
intelligent people working very hard over generations. It is complex but extraordinarily
powerful.

I recommend having the AMD, Intel, and VIA manufacturer’s manuals as references. They
are available from the manufacturer’s websites (there is a link in the Recommended Reading
section). These books have many thousands of pages and are a testament to just how large
the topic of modern x64 CPUs and their assembly language can be. They are excellent
references and should be kept within reach at all times when programming these CPUs.
They are the most complete descriptions available.

To output the assembly code from a C++ project, click Properties, and then click C/C++
Output Files and change the Assembler Output option. This outputs the assembly code
produced by the C++ compiler. Modern C++ compilers generate extremely efficient
assembly code, and this output is an excellent place to study how to use this language.

Thank you very much for reading this book, and I hope it has been a helpful introduction to a
fascinating topic.

 131

Recommended Reading

Intel Programmer’s Manuals: There is really no better reference on how Intel CPUs should
be programmed and how they operate than the company’s own programmer’s manuals.
Even if you are coding for AMD hardware, it is recommended that you keep the Intel
manuals as well, because they offer a second explanation of every instruction. The manuals
are available from the company’s website:

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html

AMD Programmer’s Manuals: The AMD programmer’s manuals are worth keeping as a
reference, even if you are developing specifically for Intel hardware, as they offer a second
explanation of each instruction. Intel and AMD CPUs are functionally identical in many
respects. They are available from the company’s website:

http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/

Agner Fog’s Optimization Manuals: After the Intel and AMD programmer’s manuals, the
most comprehensive work on low-level modern CPU programming is the Optimization
Manuals by Agner Fog. These manuals contain an extraordinary amount of information,
including instruction latency and throughput for many modern CPUs. A large amount of this
information is not even published by Intel or AMD.

http://www.agner.org/optimize/#manuals

Graphics Programming Black Book by Michael Abrash: Michael Abrash is responsible
(with John Carmack and others) for programming and optimizing early 3-D engines, such as
those used for Doom II and Quake. These engines allowed gamers to play 3-D games on
very primitive hardware, such as 486s and the original Pentium processors. Hardware has
changed considerably since this book was written, but most of the information is still
applicable to some degree on modern hardware.

http://www.nondot.org/sabre/Mirrored/GraphicsProgrammingBlackBook/

Art of Assembly by Randall Hyde: The Art of Assembly has now moved its focus away
from MASM and towards Randall’s new HLA (High Level Assembler). It is a very good read
whether you use HLA or MASM. Early chapters focus on basic concepts like number
systems, data types, Boolean arithmetic, and memory. All of which Hyde explains in great
detail, and yet the book is very accessible and easy to understand.

http://www.plantation-productions.com/Webster/

The Art of Computer Programming by Donald Knuth: This is a series of books on the
study of computer algorithms. It is written in MMIX assembler, which is the language of a
hypothetical CPU designed to illustrate machine-level programming. It is easily the most
comprehensive and important text on computer algorithms ever written. The set is available
from Amazon.

http://www.amazon.com/Computer-Programming-Volumes-1-4A-Boxed/dp/0321751043

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://www.agner.org/optimize/#manuals
http://www.nondot.org/sabre/Mirrored/GraphicsProgrammingBlackBook/
http://www.plantation-productions.com/Webster/
http://www.amazon.com/Computer-Programming-Volumes-1-4A-Boxed/dp/0321751043

 132

C++ Compiler Assembly Listings: Possibly the best way to study assembly language is to
examine the output of the C++ compiler. It is difficult to be more optimized than the compiler
without studying how the compiler optimizes. Assembly code can be generated from any
C++ projects.

Open the File menu and select the Project option, and from that select the Project
Options. Then click C/C++, Output Files, and finally click Assembler Output.

You can also open the Disassembly window at runtime while debugging a program by
opening the Debug menu, selecting Windows, and then clicking Disassembly when the
program halts at a breakpoint. This is very helpful as you can step through the code one
instruction at a time, and view the results on the registers and memory.

	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	Assembly Language
	Why Learn Assembly?
	Intended Audience

	Chapter 1 Assembly in Visual Studio
	Inline Assembly in 32-Bit Applications
	Native Assembly Files in C++
	Additional Steps for x64
	64-bit Code Example

	Chapter 2 Fundamentals
	Skeleton of an x64 Assembly File
	Skeleton of an x32 Assembly File
	Comments
	Destination and Source Operands
	Segments
	Labels
	Anonymous Labels

	Data Types
	Little and Big Endian
	Two’s and One’s Complement

	Chapter 3 Memory Spaces
	Registers
	16-Bit Register Set
	32-Bit Register Set
	64-bit Register Set

	Chapter 4 Addressing Modes
	Registers Addressing Mode
	Immediate Addressing Mode
	Implied Addressing Mode
	Memory Addressing Mode

	Chapter 5 Data Segment
	Scalar Data
	Arrays
	Arrays Declared with Commas
	Duplicate Syntax for Larger Arrays
	Getting Information about an Array
	Defining Strings

	Typedef
	Structures and Unions
	Structures of Structures
	Unions
	Records

	Constants Using Equates To
	Macros

	Chapter 6 C Calling Convention
	The Stack
	Scratch versus Non-Scratch Registers
	Passing Parameters
	Shadow Space

	Chapter 7 Instruction Reference
	CISC Instruction Sets
	Parameter Format
	Flags Register
	Prefixes
	Repeat Prefixes
	Lock Prefix

	x86 Data Movement Instructions
	Move
	Conditional Moves
	Nontemporal Move
	Move and Zero Extend
	Move and Sign Extend
	Move and Sign Extend Dword to Qword
	Exchange
	Translate Table
	Sign Extend AL, AX, and EAX
	Copy Sign of RAX across RDX
	Push to Data to Stack
	Pop Data from Stack
	Push Flags Register
	Pop Flags Register
	Load Effective Address
	Byte Swap

	x86 Arithmetic Instructions
	Addition and Subtraction
	Add with Carry and Subtract with Borrow
	Increment and Decrement
	Negate
	Compare
	Multiply
	Signed and Unsigned Division

	x86 Boolean Instructions
	Boolean And, Or, Xor
	Boolean Not (Flip Every Bit)
	Test Bits
	Shift Right and Left
	Rotate Left and Right
	Rotate Left and Right Through the Carry Flag
	Shift Double Left or Right
	Bit Test
	Bit Scan Forward and Reverse
	Conditional Byte Set
	Set and Clear the Carry or Direction Flags
	Jumps
	Call a Function
	Return from Function

	x86 String Instructions
	Load String
	Store String
	Move String
	Scan String
	Compare String

	x86 Miscellaneous Instructions
	No Operation
	Pause
	Read Time Stamp Counter
	Loop

	CPUID

	Chapter 8 SIMD Instruction Sets
	SIMD Concepts
	Saturating Arithmetic versus Wraparound Arithmetic
	Packed/SIMD versus Scalar

	MMX
	Registers
	Referencing Memory
	Exit Multimedia State

	Moving Data into MMX Registers
	Move Quad-Word
	Move Dword

	Boolean Instructions
	Shifting Bits
	Arithmetic Instructions
	Multiplication

	Comparisons
	Creating the Remaining Comparison Operators

	Packing
	Unpacking

	SSE Instruction Sets
	Introduction
	AVX

	Data Moving Instructions
	Move Aligned Packed Doubles/Singles
	Move Unaligned Packed Doubles/Singles

	Arithmetic Instructions
	Adding Floating Point Values
	Subtracting Floating Point Values
	Dividing Floating Point Values
	Multiplying Floating Point Values
	Square Root of Floating Point Values
	Reciprocal of Single-Precision Floats
	Reciprocal of Square Root of Single-Precision Floats

	Boolean Operations
	AND NOT Packed Doubles/Singles
	AND Packed Doubles/Singles
	OR Packed Doubles/Singles
	XOR Packed Doubles/Singles

	Comparison Instructions
	Comparing Packed Doubles and Singles
	Comparing Scalar Doubles and Singles
	Comparing and Setting rFlags

	Converting Data Types/Casting
	Conversion Instructions
	Selecting the Rounding Function

	Conclusion
	Recommended Reading

