

Mastering Windows
PowerShell Scripting
Third Edition

Automate and manage your environment using PowerShell
Core 6.0

Chris Dent

BIRMINGHAM - MUMBAI

Mastering Windows PowerShell Scripting
Third Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani
Content Development Editor: Nithin George Varghese
Technical Editor: Rutuja Patade
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tom Scaria
Production Coordinator: Jisha Chirayil

First published: April 2015
Second edition: October 2017
Third edition: February 2019

Production reference: 1280219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-666-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Chris Dent is an automation specialist with a deep interest in the PowerShell language.
Chris is often found lurking and answering questions about PowerShell in both the UK and
virtual PowerShell user groups. Chris has been developing in PowerShell since 2007 and
has released several modules over the years.

My thanks, first and foremost, must go to my wife and two children for their forbearance
as I have written this book. I want to express my thanks to the technical reviewers, Paul
Broadwith and Graham Beer, for their invaluable comments and feedback throughout this
journey. Finally, I would like to thank the members of the Virtual PowerShell User Group
for putting up with my weekend rambling and musing as I work through each of the
chapters.

About the reviewers
Paul Broadwith is a senior technology professional freelancing in Scotland, with over 25
years of experience in diverse sectors, from manufacturing and financial services to the
public sector and managed IT services. He has been involved in the open source and
PowerShell communities for several years. His love of not doing things twice motivates him
to automate as much as possible with PowerShell, and you will find much of it on GitHub.
You'll find him working between there and the Chocolatey community, where he works on
several open source projects. In what's left of his spare time (which isn't much), you can
find him blogging at pauby.com and tweeting from @pauby.

Graham Beer is an experienced IT professional with excellent PowerShell skills and a flair
for automation with Microsoft and AWS products. He is a regular contributor to 4sysops
articles and was named in SQLShack's top 50 PowerShell bloggers of 2018. He recently had
a chapter published in The PowerShell Conference Book about extending type data. He co-
founded a PowerShell user group in the South of England, which has been running for over
a year.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Exploring PowerShell Fundamentals
Chapter 1: Introduction to PowerShell 8

Technical requirements 9
What is PowerShell? 9
PowerShell editors 10
Getting help 10

Updatable help 11
The Get-Help command 12

Syntax 13
Examples 14
Parameter 14
Detailed and full switches 15

Save-Help 16
Update-Help 16
About help files 18

Command naming and discovery 19
Verbs 19
Nouns 19
Finding commands 20
Aliases 21

Parameters and parameter sets 22
Parameters 22

Optional parameters 22
Optional positional parameters 23
Mandatory parameters 23
Mandatory positional parameters 23
Switch parameters 24
Common parameters 24

Parameter values 25
Parameter sets 26
Confirm, WhatIf, and Force 27

Confirm parameter 27
ConfirmPreference 28
WhatIf parameter 30
WhatIfPreference 30
Force parameter 31

Introduction to providers 31
Drives using providers 32

Table of Contents

[ii]

Using providers 34
Introduction to splatting 35

Splatting to avoid escaped end-of-line 36
Splatting to avoid repetition 38
Splatting and positional parameters 39

Summary 39

Chapter 2: Modules and Snap-ins 40
Introducing modules 40

What is the PowerShell Gallery? 42
The Get-Module command 43

PSModulePath in Windows PowerShell 43
PSModulePath in PowerShell Core 44
Get-Module, PSCompatibility, and PSEdition 45

The Import-Module command 45
The Remove-Module command 47
The Find-Module command 47
The Install-Module command 48
The Update-Module command 49
The Save-Module command 49

PowerShell Core and the WindowsCompatibility module 49
The compatibility session 50
Add-WindowsPSModulePath 51
Get-WinModule and Import-WinModule 52
Copy-WinModule 52
Invoke-WinCommand 53

Introducing snap-ins 53
Using snap-ins 54

Summary 54

Chapter 3: Working with Objects in PowerShell 55
Pipelines 56

Standard output 56
Non-standard output 56
The object pipeline 57

Members 57
The Get-Member command 58
Accessing properties 59
Using methods 60
Access modifiers 61
The Add-Member command 63

Enumerating and filtering 65
The ForEach-Object command 65
Where-Object command 66

Selecting and sorting 67
The Select-Object command 67

Table of Contents

[iii]

The Sort-Object command 70
Grouping and measuring 73

The Group-Object command 73
The Measure-Object command 76

Comparing 77
Importing, exporting, and converting 79

The Export-Csv command 79
The Import-Csv command 81
Export-Clixml and Import-Clixml 83

Summary 84

Chapter 4: Operators 85
Arithmetic operators 86

Operator precedence 86
Addition and subtraction operators 87

Addition operators 87
Subtraction operator 88

Multiplication, division, and remainder operators 88
Multiplication operator 89
Division operator 89
Remainder operator 90

Shift left and shift right operators 90
Assignment operators 93

Assign, add and assign, and subtract and assign 93
Multiply and assign, divide and assign, and modulus and assign 95

Comparison operators 96
Case-sensitivity 96
Comparison operators and arrays 97
Equal to and not equal to 98
Like and not like 99
Greater than and less than 99
Contains and in 100

Regular expression-based operators 101
Match and not match 101
Replace 102
Split 103

Binary operators 104
Binary and 104
Binary or 105
Binary exclusive or 105
Binary not 106

Logical operators 106
And 106
Or 107
Exclusive or 107
Not 107

Table of Contents

[iv]

Type operators 108
As 108
is and isnot 109

Redirection operators 109
Redirection to a file 110
Redirecting streams to standard output 112
Redirection to null 113

Other operators 114
Call 114
Comma 114
Format 115
Increment and decrement 116
Join 117

Summary 117

Section 2: Section 2: Working with Data
Chapter 5: Variables, Arrays, and Hashtables 119

Naming and creating variables 120
Variable commands 121

Clear 122
Get 122
New 122
Remove 123
Set 123

Variable provider 124
Variable scope 125

Local and global scope 126
Private scope 127
Script scope 128

Type and type conversion 129
Objects assigned to variables 131
Arrays 132

Creating an array 133
Arrays with a type 133
Adding elements to an array 134
Selecting elements from an array 135
Changing element values in an array 136
Removing elements from an array 136

Removing elements by index 137
Removing elements by value 138
Clearing an array 138

Filling variables from arrays 138
Multi-dimensional and jagged arrays 139

Hashtables 140

Table of Contents

[v]

Creating a hashtable 141
Adding and changing elements to a hashtable 141
Selecting elements from a hashtable 143
Enumerating a hashtable 144
Removing elements from a hashtable 144

Lists, dictionaries, queues, and stacks 145
Lists 146

Creating a list 146
Adding elements to the list 146
Selecting elements from the list 147
Removing elements from the list 148
Changing element values in a list 148

Dictionaries 148
Creating a dictionary 149
Adding and changing elements in a dictionary 149
Selecting elements from a dictionary 150
Enumerating a dictionary 150
Removing elements from a dictionary 151

Queues 151
Creating a queue 151
Enumerating the queue 152
Adding elements to the queue 152
Removing elements from the queue 152

Stacks 153
Creating a stack 153
Enumerating the stack 153
Adding elements to the stack 154
Removing elements from the stack 154

Summary 155

Chapter 6: Branching and Looping 156
Conditional statements 156

if, else, and elseif 157
Assignment within if statements 158

switch 159
wildcard and regex 160
Expressions 161

Loops 161
foreach 161
for 162
do until and do while 162
while 163
break and continue 163

Branching and assignment 165
Summary 166

Chapter 7: Working with .NET 167
Assemblies 168

Table of Contents

[vi]

Namespaces 169
Types 169
Classes 170
Constructors 170

Calling constructors 171
Calling constructors with lists of arguments 172
Arguments as an array 173
Creating objects from hashtables 176

Properties and methods 176
Static properties 178
Static methods 180
Non-public classes 182
Type accelerators 183
The using keyword 184

Using assemblies 184
Using namespaces 185

Summary 187

Chapter 8: Strings, Numbers, and Dates 188
Manipulating strings 188

Indexing into strings 188
String methods and arrays 189
Substring 190
Split 190
Replace 192
Trim, TrimStart, and TrimEnd 192
Insert and remove 193
IndexOf and LastIndexOf 194
PadLeft and PadRight 195
ToUpper, ToLower, and ToTitleCase 196
Contains, StartsWith, and EndsWith 196
Chaining methods 197

Converting strings 197
Working with Base64 197
Working with comma-separated value strings 199
Convert-String 200
ConvertFrom-String 201

Manipulating numbers 202
Large byte values 202
Power of 10 203
Hexadecimal 203
Using System.Math 203

Converting strings into numeric values 204
Manipulating dates and times 205

DateTime parameters 205

Table of Contents

[vii]

Parsing dates 206
Changing dates 207
Comparing dates 209

Summary 210

Chapter 9: Regular Expressions 211
Regex basics 212

Debugging regular expressions 212
Literal characters 213
Any character (.) 214
Repetition with * and + 215
The escape character (\) 215
Optional characters 216
Non-printable characters 217

Anchors 217
Repetition 218

Exploring the quantifiers 219
Character classes 220

Ranges 220
Negated character class 222
Character class subtraction 222
Shorthand character classes 223

Alternation 223
Grouping 224

Repeating groups 224
Restricting alternation 225
Capturing values 226
Named capture groups 227
Non-capturing groups 228

Examples of regular expressions 229
MAC addresses 229
IP addresses 231
The netstat command 231
Formatting certificates 233

Summary 234

Chapter 10: Files, Folders, and the Registry 235
Working with providers 235

Navigating 236
Getting items 236
Drives 237

Items 238
Testing for existing items 238
Creating and deleting items 239
Invoking items 240

Table of Contents

[viii]

Item properties 241
Filesystem properties 241
Adding and removing file attributes 241
Registry values 244

Windows permissions 245
Ownership 245
Access and audit 246
Rule protection 247
Inheritance and propagation flags 249
Removing access control entries 250
Copying lists and entries 251
Adding access control entries 252

Filesystem rights 252
Registry rights 254
Numeric values in the access control list 255

Transactions 256
File catalogs 257

New-FileCatalog 257
Test-FileCatalog 258

Summary 259

Chapter 11: Windows Management Instrumentation 260
Working with WMI 260

WMI classes 261
WMI commands 261
The WMI Query Language 262

Understanding SELECT, WHERE, and FROM 262
Escape sequences and wildcard characters 263
Logic operators 264
Comparison operators 264
Quoting values 264

Associated classes 265
WMI object paths 266
Using ASSOCIATORS OF 267

CIM cmdlets 268
Getting instances 269
Getting classes 269
Calling methods 270
Creating instances 273
Working with CIM sessions 274
Associated classes 275

The WMI cmdlets 276
Getting instances 277
Working with dates 277
Getting classes 277
Calling methods 278

Table of Contents

[ix]

Creating instances 280
Associated classes 280

Permissions 281
Sharing permissions 281

Creating a shared directory 281
Getting a security descriptor 282
Adding an access control entry 284
Setting the security descriptor 285

WMI permissions 285
Getting a security descriptor 285
The access mask 285

WMI and SDDL 286
Summary 288

Chapter 12: HTML, XML, and JSON 289
HTML 289

ConvertTo-Html 289
Multiple tables 290
Adding style 290
HTML and special characters 291

XML 292
Elements and attributes 292
Namespaces 293
Schemas 293

System.Xml 294
ConvertTo-Xml 294
XML type accelerator 295
XPath and Select-Xml 295
Working with namespaces 297
Creating documents 299
Modifying element and attribute values 300
Adding elements 301
Copying nodes between documents 301
Removing elements and attributes 302
Schema validation 303

System.Xml.Linq 304
Opening documents 304
Selecting nodes 305
Creating documents 306
Working with namespaces 307
Modifying element and attribute values 308
Adding nodes 309
Removing nodes 309
Schema validation 310

JSON 311
ConvertTo-Json 311

Table of Contents

[x]

ConvertFrom-Json 312
Summary 314

Chapter 13: Web Requests and Web Services 315
Technical requirements 315
Web requests 315

HTTP methods 316
HTTPS 317
Bypassing SSL errors in Windows PowerShell 318
Capturing SSL errors 319

Working with REST 321
Invoke-RestMethod 321
Simple requests 322
Requests with arguments 323
Working with paging 325
Working with authentication 327

Using basic authentication 327
OAuth 328
Creating an application 329
Getting an authorization code 329
Requesting an access token 331
Using a token 331

Working with SOAP 332
Finding a SOAP service 332
New-WebServiceProxy 333
Methods 334
Methods and enumerations 335
Methods and SOAP objects 336
Overlapping services 337

Summary 339

Section 3: Section 3: Automating with PowerShell
Chapter 14: Remoting and Remote Management 341

Technical requirements 341
WS-Management 342

Enabling remoting 342
Get-WSManInstance 343
The WSMan drive 343
Remoting and SSL 343

Set-WSManQuickConfig 344
Remoting and permissions 346

Remoting permissions GUI 346
Remoting permissions by script 347

User Account Control 350
Trusted hosts 351

PSSessions 351

Table of Contents

[xi]

New-PSSession 352
Get-PSSession 352
Invoke-Command 353

Local functions and remote sessions 354
Using splatting with ArgumentList 354
The AsJob parameter 355
Disconnected sessions 355
The using variable scope 356

The Enter-PSSession command 357
Import-PSSession 357
Export-PSSession 358
Copying items between sessions 358

Remoting on Linux 359
Remoting over SSH 360

Connecting from Windows to Linux 360
Connecting from Linux to Windows 361

The double-hop problem 364
CredSSP 364
Passing credentials 365

CIM sessions 365
New-CimSession 366
Get-CimSession 367
Using CIM sessions 367

Summary 368

Chapter 15: Asynchronous Processing 369
Working with jobs 369

The Start-Job, Get-Job, and Remove-Job commands 370
The Receive-Job command 371
The Wait-Job command 372

Reacting to events 373
The Register-ObjectEvent and *-Event commands 374
The Get-EventSubscriber and Unregister-Event commands 376
The Action, Event, EventArgs, and MessageData parameters 376

Using Runspaces and Runspace pools 378
Creating a PowerShell instance 379
The Invoke and BeginInvoke methods 380
The EndInvoke method and the PSDataCollection object 382
Running multiple instances 384
Using the RunspacePool object 385
About the InitialSessionState object 386

Adding modules and snap-ins 387
Adding variables 388
Adding functions 389

Using the InitialSessionState and RunspacePool objects 390
Using Runspace-synchronized objects 390

Table of Contents

[xii]

Summary 392

Section 4: Section 4: Extending PowerShell
Chapter 16: Scripts, Functions, and Filters 394

Introducing scripts, functions, and filters 394
Scripts and Requires 395
Scripts and using statements 395
Nesting functions 396
Comment-based help 396

Parameter help 398
Examples 400

Working with long lines 400
Line break after pipe 401
Line break after an operator 401
Using the array operator to break up lines 401

Begin, process, and end 403
Begin 404
Process 404
End 405
Named blocks and return 406
Leaky functions 407

The Out-Null command 408
Assigning to null 409
Redirecting to null 409
Casting to Void 409

Param, parameters, and CmdletBinding 410
Parameter types 410

Nullable types 411
Default values 411
Cross-referencing parameters 412
The CmdletBinding attribute 413

Common parameters 413
CmdletBinding properties 414

ShouldProcess and ShouldContinue 415
ShouldProcess 415
ShouldContinue 417

Summary 420

Chapter 17: Parameters, Validation, and Dynamic Parameters 421
The Parameter attribute 421

Position and positional binding 423
The DontShow property 425
The ValueFromRemainingArguments property 426
The HelpMessage property 427

Validating input 428
The PSTypeName attribute 428

Table of Contents

[xiii]

Validation attributes 430
The ValidateNotNull attribute 431
The ValidateNotNullOrEmpty attribute 432
The ValidateCount attribute 432
The ValidateDrive attribute 433
The ValidateLength attribute 433
The ValidatePattern attribute 433
The ValidateRange attribute 435
The ValidateScript attribute 436
The ValidateSet attribute 437

The Allow attributes 437
The AllowNull attribute 437
The AllowEmptyString attribute 438
The AllowEmptyCollection attribute 438

PSReference parameters 439
Pipeline input 440

About ValueFromPipeline 440
Accepting null input 441
Input object types 442
Using ValueFromPipeline for multiple parameters 443
Using PSTypeName 444

About ValueFromPipelineByPropertyName 445
ValueFromPipelineByPropertyName and parameter aliases 446

Defining parameter sets 447
Argument-completers 451

The argument-completer attribute 452
Using Register-ArgumentCompleter 452
Listing registered argument-completers 453

Dynamic parameters 454
Creating a RuntimeDefinedParameter object 456
Using the RuntimeDefinedParameterDictionary 457
Using dynamic parameters 458
Conditional parameters 460

Summary 461

Chapter 18: Classes and Enumerations 462
Defining an enumeration 462

Enum and underlying types 463
Automatic value assignment 464
Enum or ValidateSet 465
The flags attribute 465
Using enumerations to convert values 467

Creating a class 467
Properties 468
Constructors 469
Methods 470
Inheritance 471

Table of Contents

[xiv]

Constructor inheritance 471
Chaining constructors 472

The Hidden modifier 473
The Static modifier 474

Argument-transformation attribute classes 475
Validation attribute classes 477

ValidateArgumentsAttribute 477
ValidateEnumeratedArgumentsAttribute 478

Classes and DSC 480
Implementing Get 482
Implementing Set 483
Implementing Test 484
Using the resource 485

Summary 488

Chapter 19: Building Modules 489
Technical requirements 489
Module layout 490

The root module 490
The Export-ModuleMember command 491
Module manifest 492
Export-ModuleMember or FunctionsToExport 494
Side-by-side versioning 494
Dependencies 495

Multi-file module layout 495
Dot-sourcing module content 496
Merging module content 498

Module scope 499
Accessing module scope 501

Initializing and removing modules 502
The ScriptsToProcess key 502
The OnRemove event 502

Summary 503

Chapter 20: Testing 504
Technical requirement 504
Static analysis 505

AST 505
Tokenizer 506
PSScriptAnalyzer 508
Suppressing rules 509
Custom script analyzer rules 510

Creating a custom rule 510
AST-based rules 511
Token-based rules 512
Using custom rules 512

Table of Contents

[xv]

Testing with Pester 513
Why write tests? 514
What to test 514
Describe and It 515
Test cases 517
Independent verification 518
Assertions 519

Testing for errors 519
Context 522
Before and after 522
TestDrive 526
Mock 526

Assert-MockCalled 527
Parameter filtering 528
Mocking non-local commands 529

Mocking objects 531
Fabricating objects 531
Mocking existing members 533
Using New-MockObject 535
Mocking CIM objects 537

Pester in practice 538
Summary 543

Chapter 21: Error Handling 544
Error types 544

Terminating errors 545
Non-terminating errors 545

Error actions 546
Raising errors 547

Error records 547
Write-Error 549
throw and ThrowTerminatingError 550
Error and ErrorVariable 551

Catching errors 553
try, catch, and finally 553

try 553
catch 553
finally 555

Re-throwing errors 556
Inconsistent error behavior 559
throw and ErrorAction 561
Nesting try-catch-finally 563
Terminating or non-terminating 565
trap 566

Using trap 566
trap, scope, and continue 567

Summary 568

Table of Contents

[xvi]

Other Books You May Enjoy 569

Index 572

Preface
Windows PowerShell is an established language. Over the years, it has become increasingly
important to Microsoft Windows-based services, and of course, cloud services such as
Azure.

PowerShell Core represents a significant step forward; PowerShell Core expands out to
Linux and macOS, opening up more opportunities to use the language.

The move to open source with PowerShell Core has opened the floodgates for new features,
tweaks, and fixes. This is clearly where the future of PowerShell lies. Fortunately, the
lessons learned using Windows PowerShell are transferable.

PowerShell Core is great but, perhaps, not quite ready to completely replace Windows
PowerShell. Module developers need to test, update, and in some cases rewrite modules to
make them compatible with PowerShell Core to complete the move. Much of this work
must be undertaken by Microsoft themselves. A large number of modules have been
written for Windows PowerShell over the years.

This book favors a PowerShell is PowerShell stance. There are differences between
Windows PowerShell and PowerShell Core, but these details sit on the edge. Knowing how
to use the help system, and how to explore objects, how to use PowerShell to meet an
objective, is vital in either case.

Who this book is for
If you are a system administrator who wants to become an expert in controlling and
automating your Windows environment, then Mastering Windows PowerShell Scripting is for
you. It is also ideal for those new to the PowerShell language.

What this book covers
Chapter 1, Introduction to PowerShell, offers a brief introduction to some of the most
important parts of PowerShell. Including the help subsystem, command naming, providers,
and splatting.

Chapter 2, Modules and Snap-Ins, explores the use of modules in PowerShell and
PowerShell Core, followed by a brief look at snap-ins in Windows PowerShell.

Preface

[2]

Chapter 3, Working with Objects in PowerShell, explores the different commands available to
interact with objects. These utility commands are used again and again.

Chapter 4, Operators, takes a look at the different operators available in PowerShell.
Operators are a fundamental part of life in PowerShell.

Chapter 5, Variables, Arrays, and Hashtables, takes a deep dive into the use of variables
within PowerShell, including concepts such as variable scope.

Chapter 6, Branching and Looping, explores different loop operators, such as foreach, for,
while, and do.

Chapter 7, Working with .NET, focuses on what .NET means to PowerShell and takes a look
at type accelerators and the new using keyword.

Chapter 8, Strings, Numbers, and Dates, explores working with some of the most common
datatypes in PowerShell.

Chapter 9, Regular Expressions, takes a look at the use of regular expressions in PowerShell
with a number of detailed examples.

Chapter 10, Files, Folders, and the Registry, explains that working with the filesystem is an
important part of any scripting language. The registry has long been a core part of the
Microsoft operating system. This chapter takes a look at the commands used to interact
with both the filesystem and the registry.

Chapter 11, Windows Management Instrumentation, explains that when there are no specific
commands, WMI is often the first stop. This chapter explores the commands used to
interact with WMI.

Chapter 12, HTML, XML, and JSON, are common text-based formats that must be either
generated or interrogated using PowerShell. This chapter looks at some of the methods
available and a number of the common pitfalls.

Chapter 13, Web Requests and Web Services, explains that the last 5 years has seen the use of
web services, particularly REST, soar. This chapter takes a good look at working with REST,
using GitHub as a reference site. SOAP is explored in Windows PowerShell using a custom-
built site.

Chapter 14, Remoting and Remote Management, covers PowerShell remoting, which is an
import tool stretching PowerShell out from a local machine. The introduction of PowerShell
Core adds the ability to use PowerShell remoting to Mac and Linux machines.

Preface

[3]

Chapter 15, Asynchronous Processing, starts off with a brief exploration of jobs before taking
a look at events and, finally, Runspace Pools.

Chapter 16, Scripts, Functions, and Filters, covers the building blocks of larger scripts and
modules. This chapter explores the structure of scripts and functions and the use of named
blocks in relation to the pipeline.

Chapter 17, Parameters, Validation, and Dynamic Parameters, explores the param block in
PowerShell. The param block is incredibly versatile, allowing immediately input validation,
and offering features such as argument completion.

Chapter 18, Classes and Enumerations, explores classes in PowerShell and showcases a few
possible uses of classes, including parameter validation, argument transformation, and
class-based DSC resources.

Chapter 19, Building Modules, explains that a module draws together groups of functions
into a single unit. This chapter also explores differences in structure and requirements
between development and runtime.

Chapter 20, Testing, explores static analysis and unit testing using Pester. Testing requires a
great deal of practice but can be used to offer confidence that a script or function behaves
they way it was intended to.

Chapter 21, Error Handling, explores the different types of errors in PowerShell and how
they might be handled. This chapter includes the use of try, catch, finally, and trap.

To get the most out of this book
Some familiarity with the technologies the scripts interact with is required. A general
familiarity with the Windows operating system, the filesystem, web services, and so on is
required.

This book is based around PowerShell 5.1, PowerShell Core 6.1, and it includes small
references to PowerShell Core 6.2.

The examples are predominantly Windows-based, as it is the most mature.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

http://www.packt.com
http://www.packt.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- Windows- PowerShell- Scripting- Third- Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789536669_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "As seen while looking at syntax in Get-Help, commands accept a mixture of
parameters."

http://www.packt.com
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/Mastering-Windows-PowerShell-Scripting-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789536669_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

Get-Command -CommandType Cmdlet, Function | Where-Object
{
$metadata = New-Object
System.Management.Automation.CommandMetadata($_)
$metadata.ConfirmImpact -eq 'High'
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Get-Command -CommandType Cmdlet, Function | Where-Object
{
$metadata = New-Object
System.Management.Automation.CommandMetadata($_)
$metadata.ConfirmImpact -eq 'High'
}

Any command-line input or output is written as follows:

 PS> Get-Help Out-Null

Bold: Indicates a new term, an important word, or words that you see onscreen. Here is an
example: "Extensible Markup Language (XML) is a plain text format that's used to
store structured data."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Section 1: Exploring

PowerShell Fundamentals
In this section, we will explore the basics of the PowerShell language.

The following chapters are included in this section:

Chapter 1, Introduction to PowerShell
Chapter 2, Modules and Snap-ins
Chapter 3, Working with Objects in PowerShell
Chapter 4, Operators

1
Introduction to PowerShell

PowerShell has reached a point where it has split into Windows PowerShell
and PowerShell Core. Windows PowerShell accounts for versions up to, and including,
PowerShell 5.1. Windows PowerShell is based on the .NET full framework. PowerShell
Core accounts for version 6 and over and is based on the .NET core framework.

The future of PowerShell is in PowerShell Core; it opens up cross-platform scripting with
PowerShell, that is, support for Linux and macOS.

As well as the change to .NET, there are an increasing number of differences between
Windows PowerShell and PowerShell Core that must be accounted for.

The differences between Windows PowerShell and PowerShell Core will be highlighted
throughout this book.

This book is split into a number of sections. Much of this book is intended to act as a
reference. We will cover the following topics in this book:

Exploring PowerShell fundamentals
Working with data
Automating with PowerShell
Extending PowerShell

In the first section of this book, while exploring the PowerShell fundamentals, we will look
at the use of language and cover as many building blocks as possible.

Introduction to PowerShell Chapter 1

[9]

In this chapter, we will briefly look at a number of short, diverse topics:

What is PowerShell?
PowerShell editors
Getting help
Command naming
Command discovery
Parameters and parameter sets
Introduction to providers
Introduction to splatting

Technical requirements
This chapter makes use of the following on the Windows platform:

Windows PowerShell 5
PowerShell Core 6.1

What is PowerShell?
PowerShell is a mixture of a command line, a functional programming language, and an
object-oriented programming language. PowerShell is based on Microsoft .NET, which
gives it a level of open flexibility that was not available in Microsoft's scripting languages
(such as VBScript or batch) before this.

PowerShell is an explorer's scripting language. With built-in help, command discovery, and
with access to much of the .NET framework, it is possible to dig down through the layers.

This book is based on PowerShell Core 6.1 with references to PowerShell 5.1; some of the
features that are discussed in this book may not be available in the earlier versions of
PowerShell.

PowerShell Core may be installed side by side with Windows PowerShell. Preview versions
of PowerShell Core can often be installed side by side with full releases of PowerShell Core.

Introduction to PowerShell Chapter 1

[10]

PowerShell editors
While it is possible to write for PowerShell using the notepad application alone, it is rarely
desirable. Using an editor that was designed to work with PowerShell can save a lot of
time.

Specialized PowerShell editors such as Visual Studio Code (VS Code), PowerShell Studio,
and PowerShell ISE offer automatic completion (IntelliSense), which reduces the amount of
cross-referencing required while writing code. Finding a comfortable editor early on is a
good way to ease into PowerShell; memorizing commands and parameters is not necessary.

PowerShell ISE is not planned to be released to support PowerShell 6 at this time. VS
Code is the most commonly recommended editor for PowerShell. VS Code is a free open
source editor that was published by Microsoft VS Code and may be downloaded from
http://code.visualstudio.com.

The PowerShell extension should be installed, and other extensions may be found on the
marketplace: https:/ / marketplace. visualstudio. com/ VSCode.

VS Code provides support for PowerShell Core; the following screenshot shows how to
change the version of PowerShell that's used when editing a script:

Getting help
Gaining confidence using the built-in help system is an important part of working with
PowerShell. In PowerShell, help is extensive; authors can easily write their own help
content when working with functions, scripts, and script modules.

http://code.visualstudio.com
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode
https://marketplace.visualstudio.com/VSCode

Introduction to PowerShell Chapter 1

[11]

A number of commands are available to interact with the help system, as follows:

Get-Help

Save-Help

Update-Help

Before exploring these commands, the concept of Updatable help should be discussed, as
help may not be present on a system after installation.

Updatable help
Updatable help was introduced with PowerShell 3. It gives authors the option to store the
most recent versions of their help documentation outside of PowerShell on web servers.

Which modules support updatable help?

A list of modules that support updatable help may be viewed by running
the following command: Get-Module -ListAvailable | Where-
Object HelpInfoURI -like *.

Help for the core components of PowerShell is no longer a part of the Windows
Management Framework package and must be downloaded before it can be viewed. The
first time Get-Help is run, you will be prompted to update help.

If the previous prompt is accepted, PowerShell will attempt to download content for any
module that supports updatable help.

Computers with no internet access or computers behind a restrictive proxy server may not
be able to download the help content directly. The Save-Help command, which will be
discussed later in this section, may be used to work around this problem. If PowerShell is
unable to download help, it can only show a small amount of information about a
command; for example, without downloading help, the content for the Out-Null
command is minimal, as shown here:

PS> Get-Help Out-Null

NAME
 Out-Null
SYNTAX
 Out-Null [-InputObject <psobject>] [<CommonParameters>]

ALIASES
 None

Introduction to PowerShell Chapter 1

[12]

REMARKS
 Get-Help cannot find the Help files for this cmdlet on this computer.
 It is displaying only partial help.
 -- To download and install Help files for the module that
 includes this cmdlet, use Update-Help.
 -- To view the Help topic for this cmdlet online, type:
 "Get-Help Out-Null -Online" or go to
 http://go.microsoft.com/fwlink/?LinkID=113366.

Updatable help as a help file may be viewed using the following command:

Get-Help about_Updatable_Help

The Get-Help command
Without any arguments or parameters, Get-Help will show introductory help about the
help system. This content is taken from the default help file (Get-Help default); a
snippet of this is as follows:

PS> Get-Help

TOPIC
 Windows PowerShell Help System

SHORT DESCRIPTION
 Displays help about Windows PowerShell cmdlets and concepts.

LONG DESCRIPTION
 Windows PowerShell Help describes Windows PowerShell cmdlets,

The help content can be long

The help content, in most cases, will not fit on a single screen. The help
command differs from Get-Help in that it pauses (waiting for a key to be
pressed) after each page, for example: help default.

The previous command is equivalent to running Get-Help and piping it into the more
command:

Get-Help default | more

Introduction to PowerShell Chapter 1

[13]

Alternatively, in Windows PowerShell, but not PowerShell Core, Get-Help can be asked to
show a window:

Get-Help default -ShowWindow

The available help content may be listed using either of the following two commands:

Get-Help *
Get-Help -Category All

Help for a command may be viewed as follows:

Get-Help <CommandName>

Let's look at an example:

Get-Help Get-Variable

If a help document includes an online version link, it may be opened in a browser by using
this:

Get-Help Get-Command -Online

The help content is broken down into a number of visible sections: name, synopsis, syntax,
description, related links, and remarks. Syntax is covered in the following section in more
detail as it is the most complex.

Syntax
The syntax section lists each of the possible combinations of parameters a command will
accept; each of these is known as a parameter set.

A command that has more than one parameter set is displayed as follows:

SYNTAX
 Get-Process [[-Name] <String[]>] [-ComputerName <String[]>]
 [-FileVersionInfo] [-Module] [<CommonParameters>]

 Get-Process [-ComputerName [<String[]>]] [-FileVersionInfo]
 [-Module] -InputObject <Process[]> [<CommonParameters>]

The syntax elements written in square brackets are optional; for example, syntax help for
Get-Process shows that all of its parameters are optional, as shown in the following code:

SYNTAX
 Get-Process [[-Name] <String[]>] [-ComputerName <String[]>] [-
FileVersionInfo] [-Module] [<CommonParameters>]

Introduction to PowerShell Chapter 1

[14]

Get-Process may be run without any parameters at all, or it may be run with a value only
and no parameter name, or it may include the parameter name as well as the value. Each of
the following examples is a valid use of Get-Process:

Get-Process
Get-Process powershell
Get-Process -Name powershell

Get-Command can show syntax

Get-Command may be used to quickly view the syntax for a command, for
example, by running the following code: Get-Command Get-Variable
-Syntax.

Later in this chapter, we will take a more detailed look at the different parameters and how
they might be used.

Examples
The examples section of help is often invaluable. In some cases, a command is sufficiently
complex to require a detailed example to accompany parameter descriptions; in others, the
command is simple, and a good example may serve in lieu of reading the help
documentation.

Examples for a command may be requested using Get-Help, as shown in the following
example:

Get-Help Get-Process -Examples

It is common for a command to list several examples of its use, especially if the command
has more than one parameter set.

Parameter
Help for specific parameters may be requested as follows:

Get-Help Get-Command -Parameter <ParameterName>

Introduction to PowerShell Chapter 1

[15]

This option allows for the quick retrieval of specific help for a single parameter; for
example, help for the Path parameter of the Import-Csv command may be quickly
viewed:

PS> Get-Help Import-Csv -Parameter Path

-Path [<String[]>]
 Specifies the path to the CSV file to import. You can also pipe
 a path to Import-Csv.
 Required? false
 Position? 1
 Default value None
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? false

Detailed and full switches
The Detailed switch parameter asks Get-Help to return the most help content. This adds
information about each parameter and the set of examples to name, synopsis, syntax, and
description. Related links are excluded when using this parameter.

The Detailed parameter is used as follows:

Get-Help Get-Process -Detailed

Using a Full switch adds more technical details (compared to using the Detailed
parameter). Inputs, outputs, notes, and related links are added to those that are seen using
Detailed. For example, the sections detailing input and output types from Get-Process
may be extracted from the full help document:

PS> Get-Help Get-Process –Full
...
INPUTS
 System.Diagnostics.Process
 You can pipe a process object to Get-Process.

OUTPUTS
 System.Diagnostics.Process, System.Diagnotics.FileVersionInfo,
System.Diagnostics.ProcessModule
 By default, Get-Process returns a System.Diagnostics.Process
 object. If you use the FileVersionInfo parameter, it returns a
 System.Diagnotics.FileVersionInfo object. If you use the Module
 parameter (without the FileVersionInfo parameter), it returns a

Introduction to PowerShell Chapter 1

[16]

Save-Help
The Save-Help command can be used with modules that support updatable help. It saves
help content for modules to a folder; for example, the help content for the DnsClient
module can be saved to C:\PSHelp (the directory must already exist):

Save-Help -DestinationPath C:\PSHelp -Module DnsClient

Alternatively, the help content for all modules may be saved as follows:

Save-Help -DestinationPath C:\PSHelp

The process creates an XML formatted HelpInfo file that holds the source of the help
content and a CAB (cabinet) file that's named after the module and culture.

Opening the CAB file shows that it contains a number of XML formatted help files, as
shown in the following screenshot:

Saved help content can be copied over to another computer and imported using Update-
Help. This technique is very useful for computers that do not have internet access as it
means help content can be made available.

Update-Help
The Update-Help command can perform two tasks:

Update help files from the internet
Import previously saved help files

Introduction to PowerShell Chapter 1

[17]

To update help from the internet, Update-Help may be run without any parameters:

Update-Help

Administrator rights are required

Updating help for some modules will require administrative rights (run as
administrator). This applies to modules that are stored in protected areas
of the filesystem, such as those in $PSHost
(%SystemRoot%\System32\WindowsPowerShell\v1.0) or under
program files.

When updating help information from the internet, by default, Update-Help will not
download help content more than once every 24 hours. This restriction is documented in
the help command and may be seen in action when using the Verbose switch:

PS> Update-Help -Module DnsClient -Verbose
VERBOSE: Help was not updated for the module DnsClient, because the Update-
Help command was run on this computer within the last 24 hours.
To update help again, add the Force parameter to your command.

As described in the preceding message, using the Force switch parameter will ignore the
time restriction. Importing help from a set of saved files uses the SourcePath parameter:

Update-Help -SourcePath C:\temp

The following error message may be generated when attempting to import help from
another culture:

PS> Update-Help -SourcePath C:\Temp -Module DnsClient
Update-Help : Failed to update Help for the module(s) 'DnsClient' with
UIculture(s) {en-GB} :
Unable to retrieve the HelpInfo XML file for UI culture en-GB. Make sure
the HelpInfoUri property in the module manifest is valid or check your
network connection and then try the command again.
At line:1 char:1
+ Update-Help -SourcePath C:\Temp -Module DnsClient -Verbose -Force
+ ~~~
 + CategoryInfo : ResourceUnavailable: (:) [Update-Help],
Exception
 + FullyQualifiedErrorId :
UnableToRetrieveHelpInfoXml,Microsoft.PowerShell.Commands.UpdateHelpCommand

The culture of the computer in question is set to en-GB (Get-UICulture), but the help files
are for en-US.

Introduction to PowerShell Chapter 1

[18]

It is possible to work around this problem with the UICulture parameter for Update-
Help, as follows:

Update-Help -SourcePath C:\Temp -Module DnsClient -UICulture en-US

About help files
About documents describe features of a language or concepts that apply to more than one
command. These items do not fit into help for individual commands.

PowerShell Core: Where is About?

The PowerShell Core help files are not available as I write this at the time
of writing. The examples that are shown here can only be applied to
PowerShell 5.1 or lower.

The list of help files may be viewed by running Get-Help with the category as HelpFile,
as demonstrated in the following code:

Get-Help -Category HelpFile

These files cover a huge variety of topics from aliases, to modules, to WMI:

Name Category Synopsis
---- -------- --------
about_Aliases HelpFile SHORT DESCRIPTION
about_Arithmetic_Operators HelpFile SHORT DESCRIPTION
about_Arrays HelpFile SHORT DESCRIPTION
about_Assignment_Operators HelpFile SHORT DESCRIPTION
about_Automatic_Variables HelpFile SHORT DESCRIPTION
about_Break HelpFile SHORT DESCRIPTION
about_Classes HelpFile SHORT DESCRIPTION
about_Command_Precedence HelpFile SHORT DESCRIPTION
about_Command_Syntax HelpFile SHORT DESCRIPTION
about_Comment_Based_Help HelpFile SHORT DESCRIPTION
about_CommonParameters HelpFile SHORT DESCRIPTION
about_Comparison_Operators HelpFile SHORT DESCRIPTION
about_Continue HelpFile SHORT DESCRIPTION
about_Core_Commands HelpFile SHORT DESCRIPTION
about_Data_Sections HelpFile SHORT DESCRIPTION
...

Introduction to PowerShell Chapter 1

[19]

Command naming and discovery
Commands in PowerShell are formed around verb and noun pairs in the form verb-noun.

This feature is useful when finding commands; it allows you to make educated guesses so
that there is little need to memorize long lists of commands.

Verbs
The list of verbs is maintained by Microsoft. This formal approach to naming commands
greatly assists in discovery.

Verbs are words such as Add, Get, Set, and New. In addition to these, we have
ConvertFrom and ConvertTo.

The list of verbs that are available in PowerShell can be accessed as follows:

Get-Verb

Each verb has a group, such as data, life cycle, or security. Complementary actions such as
encryption and decryption tend to use verbs in the same group; for example, the verb
Protect may be used to encrypt something and the verb Unprotect may be used to
decrypt something.

Verb descriptions

A detailed list of verbs, along with use cases, is available on
MSDN: https:/ / docs. microsoft. com/ en-gb/ powershell/ developer/
cmdlet/ approved- verbs- for- windows- powershell- commands.

It is possible to use verbs other than the approved list. However, if a command using an
unapproved verb is part of a module, a warning will be shown every time the module is
imported.

Nouns
A noun provides a very short description of the object the command is expecting to act on.
The noun part may be a single word, as is the case with Get-Process, New-Item, or Get-
Help, or more than one word, as seen with Get-ChildItem, Invoke-WebRequest, or
Send-MailMessage.

https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands
https://docs.microsoft.com/en-gb/powershell/developer/cmdlet/approved-verbs-for-windows-powershell-commands

Introduction to PowerShell Chapter 1

[20]

Finding commands
The verb-noun pairing can make it a lot easier to find commands (without resorting to
search engines).

For example, if we want to list firewall rules and we already know of the NetSecurity
module that's available in Windows PowerShell, we can run the following command,
which shows the Get commands in that module:

PS> Get-Command Get-*Firewall* -Module NetSecurity

CommandType Name Version Source
----------- ---- ------- ------
Function Get-NetFirewallAddressFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallApplicationFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallInterfaceFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallInterfaceTypeFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallPortFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallProfile 2.0.0.0 NetSecurity
Function Get-NetFirewallRule 2.0.0.0 NetSecurity
Function Get-NetFirewallSecurityFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallServiceFilter 2.0.0.0 NetSecurity
Function Get-NetFirewallSetting 2.0.0.0 NetSecurity

From the previous list, Get-NetFirewallRule closely matches the requirement (to see a
list of firewall rules) and should be explored.

Taking a broader approach, if the module was not known, we might still be able to guess by
searching for commands containing specific nouns, for example, commands to get existing
items that mention a firewall:

Get-Command Get-*Firewall*

Once a potential command has been found, Get-Help can be used to assess whether or not
the command is suitable.

NetSecurity and PowerShell Core

The NetSecurity module is not available using PowerShell Core by
default. Using modules such as NetSecurity in PowerShell Core is
discussed in Chapter 2, Modules and Snap-ins.

Introduction to PowerShell Chapter 1

[21]

Aliases
An alias in PowerShell is an alternate name for a command. A command may have more
than one alias.

The list of aliases may be viewed by using Get-Alias, as shown in the following example:

PS> Get-Alias

CommandType Name
----------- ----
Alias % -> ForEach-Object
Alias ? -> Where-Object
Alias ac -> Add-Content
Alias asnp -> Add-PSSnapin
Alias cat -> Get-Content
Alias cd -> Set-Location

Get-Alias may be used to find the command behind an alias:

Get-Alias dir

It can also be used to find the aliases for a command name:

Get-Alias -Definition Get-ChildItem

Examples of aliases that are frequently used in examples on the internet include the
following:

% for ForEach-Object
? for Where-Object
cd for Set-Location
gc or cat for Get-Content
ls or dir for Get-ChildItem
man for help (and then Get-Help)

An alias does not change how a command is used. There is no practical difference between
the following two commands:

cd $env:TEMP
Set-Location $env:TEMP

Introduction to PowerShell Chapter 1

[22]

New aliases are created with the New-Alias command; for example, we might choose to
create an alias named grep for Select-String:

New-Alias grep -Value Select-String

Each alias exists until the PowerShell session is closed.

More information is available about aliases in the help file, which may be
viewed using the following command: Get-Help about_Aliases.

Parameters and parameter sets
As we saw while looking at syntax in Get-Help, commands accept a mixture of
parameters. The following sections show how these parameters are described in help and
how to use them.

Parameters
When viewing help for a command, we can see many different approaches to different
parameters.

Optional parameters
Optional parameters are surrounded by square brackets. This denotes an optional
parameter that requires a value when used:

SYNTAX
 Get-Process [-ComputerName <String[]>] ...

In this case, if a value for a parameter is to be specified, the name of the parameter must
also be specified, as shown in the following example:

Get-Process -ComputerName somecomputer

Introduction to PowerShell Chapter 1

[23]

Optional positional parameters
It is not uncommon to see an optional positional parameter as the first parameter:

SYNTAX
 Get-Process [[-Name] <String[]>] ...

In this example, we may use either of the following:

Get-Process -Name powershell
Get-Process powershell

Mandatory parameters
A mandatory parameter must always be supplied and is written as follows:

SYNTAX
 Get-ADUser -Filter <string> ...

In this case, the Filter parameter name must be written and it must be given a value. For
example, to supply a Filter for the command, the Filter parameter must be explicitly
written:

Get-ADUser -Filter 'sAMAccountName -eq "SomeName"'

Mandatory positional parameters
Parameters that are mandatory and accept values based on position are written as follows:

SYNTAX
 Get-ADUser [-Identity] <ADUser> ...

In this case, the Identity parameter name is optional but the value is not. This command
may be used as described by either of the following examples:

Get-ADUser -Identity useridentity
Get-ADUser useridentity

In both cases, the supplied value fills the Identity parameter. A command with more than
one mandatory positional parameter may appear as follows:

SYNTAX
 Add-Member [-NotePropertyName] <String> [-NotePropertyValue] <Object>
...

Introduction to PowerShell Chapter 1

[24]

In this case, the command may be called as follows:

Add-Member -NotePropertyName Name -NotePropertyValue "value"
Add-Member -NotePropertyValue "value" -NotePropertyName Name
Add-Member Name -NotePropertyValue "value"
Add-Member Name "value"

Switch parameters
Switch parameters have no arguments (values); the presence of a switch parameter is
sufficient. For example, Recurse is a switch parameter for Get-ChildItem:

SYNTAX
 Get-ChildItem ... [-Recurse] ...

As with the other types of parameters, optional use is denoted by square brackets. Switch
parameters, by default, are false (not set). If a switch parameter is true (set) by default, it
is possible to set the value to false using the notation, as shown in the following code:

Get-ChildItem -Recurse:$false

In the case of Get-ChildItem, this does nothing; this technique is most widely used with
the Confirm switch parameter, which we will discuss later in this chapter.

Common parameters
When looking at the syntax, you will see that most commands end with a
CommonParameters item:

SYNTAX
 Get-Process ... [<CommonParameters>]

These common parameters are documented inside PowerShell:

Get-Help about_CommonParameters

These parameters let you control some of the standardized functionality PowerShell
provides, such as verbose output and actions to take when errors occur.

Introduction to PowerShell Chapter 1

[25]

For example, Stop-Process does not explicitly state that it has a Verbose parameter, but
as Verbose is a common parameter it may be used. This can be seen if notepad is started
and immediately stopped:

PS> Start-Process notepad -Verbose -PassThru | Stop-Process -Verbose
VERBOSE: Performing the operation "Stop-Process" on target "notepad
(5592)".

Not so verbose

Just because a command supports a set of common parameters does not
mean it must use them; for example, Get-Process supports the Verbose
parameter, yet it does not write any verbose output.

Parameter values
Value types of arguments (the type of value expected by a parameter) are enclosed in
angular brackets, as shown in the following example:

<string>
<string[]>

If a value is in the <string> form, a single value is expected. If the value is in the
<string[]> form, an array (or list) of values is expected.

For example, Get-CimInstance accepts a single value only for the ClassName parameter:

SYNTAX
 Get-CimInstance [-ClassName] <String> ...

The command may be called as follows:

Get-CimInstance -ClassName Win32_OperatingSystem

In comparison, Get-Process accepts multiple values for the Name parameter:

SYNTAX
 Get-Process [[-Name] <String[]>] ...

Get-Process may be called as follows:

Get-Process -Name powershell, explorer, smss

Introduction to PowerShell Chapter 1

[26]

Parameter sets
Many of the commands in PowerShell have more than one parameter set. This was seen
while looking at the syntax section of help; for example, Stop-Process has three
parameter sets:

SYNTAX
 Stop-Process [-Id] <Int32[]> [-Confirm] [-Force] [-PassThru] [-WhatIf]
[<CommonParameters>]
 Stop-Process [-InputObject] <Process[]> [-Confirm] [-Force] [-PassThru]
[-WhatIf] [<CommonParameters>]
 Stop-Process [-Confirm] [-Force] -Name <String[]> [-PassThru] [-WhatIf]
[<CommonParameters>]

Each parameter set must have one or more parameters unique to that set. This allows each
set to be distinguished from the other. In the previous example, Id, InputObject, and
Name are used as differentiators.

The first parameter set expects a process ID, and this ID may be supplied with the
parameter name or based on position; for example, both of these commands close the
current PowerShell console:

Stop-Process -Id $PID
Stop-Process $PID

The second parameter set needs a value for InputObject. Again, this may be supplied as a
positional parameter. In this case, it will be distinguished based on its type:

$process = Start-Process notepad -PassThru
Stop-Process -InputObject $process
Stop-Process $process
$process | Stop-Process

Pipeline input

Get-Help should help show which parameters accept pipeline input, and
examples are likely to show how.

If Get-Help is incomplete, Get-Command can be used to explore
parameters:
(Get-Command Stop-

Process).Parameters.InputObject.Attributes.

Introduction to PowerShell Chapter 1

[27]

Confirm, WhatIf, and Force
The Confirm, WhatIf, and Force parameters are used with commands that make changes
(to files, variables, data, and so on). These parameters are often used with commands that
use the verbs Set or Remove, but the parameters are not limited to specific verbs.

Confirm and WhatIf have associated preference variables. Preference variables have an
about file, which may be viewed using the following command:

Get-Help about_Preference_Variables

The Force parameter is not one of PowerShell's common parameters, that is, parameters
that are automatically added by PowerShell itself.

Force is often seen in commands that might otherwise prompt for confirmation. There is no
fixed use of the Force parameter. The effect of using Force is a choice a command
developer must make. The Help documentation should state the effect of using Force, as is
the case with the Remove-Item command in the following example:

Get-Help Remove-Item -Parameter Force

Confirm parameter
The Confirm parameter causes a command to prompt before an action is taken; for
example, the Confirm parameter forces Remove-Item to prompt when a file is to be
removed:

PS> Set-Location $env:TEMP
PS> New-Item IMadeThisUp.txt -Force
PS> Remove-Item .\IMadeThisUp.txt -Confirm
Confirm
Are you sure you want to perform this action?
Performing the operation "Remove File" on target
"C:\Users\whoami\AppData\Local\Temp\IMadeThisUp.txt".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default
is "Y"):

We have seen that a confirmation prompt may be forcefully requested in the previous
example. In a similar manner, confirmation prompts may be suppressed; for example, the
value of the Confirm parameter may be explicitly set to false, as shown in the following
code:

Remove-Item .\IMadeThisUp.txt -Confirm:$false

Introduction to PowerShell Chapter 1

[28]

There is more than one way of prompting

There are two ways of requesting confirmation in PowerShell: Confirm
and the associated ConfirmPreference; the variable only acts against
one of these.
Using the parameter or changing the variable will not suppress all
prompts. For example, Remove-Item will always prompt if you attempt
to delete a directory that is not empty without supplying the Recurse
parameter.

This technique is useful for commands that prompt by default; for example, Clear-
RecycleBin will prompt by default:

PS> Clear-RecycleBin
Confirm
Are you sure you want to perform this action?
Performing the operation "Clear-RecycleBin" on target " All of the contents
of the Recycle Bin".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default
is "Y"):

Setting the Confirm parameter to false for Clear-RecycleBin will bypass the prompt
and immediately empty the recycle bin:

Clear-RecycleBin -Confirm:$false

Finding commands with a specific impact

The following snippet will return a list of all commands that state they
have a high impact:
Get-Command -CommandType Cmdlet, Function | Where-Object
{
 $metadata = New-Object
System.Management.Automation.CommandMetadata($_)
 $metadata.ConfirmImpact -eq 'High'
}

ConfirmPreference
If the Confirm parameter is not set, whether or not a prompt is shown is determined by
PowerShell. The value of the ConfirmPreference variable is compared with the stated
impact of a command.

Introduction to PowerShell Chapter 1

[29]

By default, the value of ConfirmPreference is High, as shown in the following code:

PS> $ConfirmPreference
High

By default, commands have a medium impact.

Finding ConfirmImpact

In scripts and functions, the ConfirmImpact setting is part of the
CmdletBinding attribute: [CmdletBinding(ConfirmImpact =
'High')].
If CmdletBinding or ConfirmImpact are not present, the impact is
medium.

The impact of a function or cmdlet may be viewed using the
ConfirmImpact property of a command's metadata:
New-Object
System.Management.Automation.CommandMetadata(Get-Command

Remove-Item).

ConfirmPreference has four possible values:

High: Prompts when command impact is High (default)
Medium: Prompts when command impact is Medium or High
Low: Prompts when command impact is Low, Medium, or High
None: Never prompts

A new value may be set by assigning it in the console; for example, it can be set to Low:

$ConfirmPreference = 'Low'

ConfirmPreference and the Confirm parameter

While ConfirmPreference may be set to None to suppress confirmation
prompts, confirmation may still be explicitly requested. Let's look at an
example:
$ConfirmPreference = 'None'
New-Item NewFile.txt -Confirm

Since the Confirm parameter is supplied, the ConfirmPreference value
within the scope of the command (New-Item) is Low, and therefore the
prompt displays.

Introduction to PowerShell Chapter 1

[30]

WhatIf parameter
The WhatIf parameter replaces the confirmation prompt with a simple statement that
should state what would have been done, using Remove-Item as an example again:

PS> Set-Location $env:TEMP
PS> New-Item IMadeThisUp.txt -Force
PS> Remove-Item .\IMadeThisUp.txt -WhatIf
Confirm
Are you sure you want to perform this action?
What If: Performing the operation "Remove File" on target
"C:\Users\whoami\AppData\Local\Temp\IMadeThisUp.txt".

If both Confirm and WhatIf are used with a command, WhatIf takes precedence.

WhatIf may be unset on a per-command basis by supplying a value of false in the same
manner as the Confirm parameter. Let's look at the following example:

'Some message' | Out-File $env:TEMP\test.txt -WhatIf:$false

The previous technique can be useful if a file (such as a log file) should be written to,
irrespective of whether WhatIf is being used or not.

WhatIfPreference
The WhatIfPreference variable holds a Boolean value (true or false) and has a default
value of false.

If the preference variable is set to true, all commands that support WhatIf will act as if the
parameter is explicitly set. A new value may be set for the variable, as shown in the
following code:

$WhatIfPreference = $true

The WhatIf preference variable takes precedence over the Confirm parameter. For
example, the WhatIf dialog will be shown when running the following New-Item, but the
Confirm prompt will not:

$WhatIfPreference = $true
New-Item NewFile.txt -Confirm

Introduction to PowerShell Chapter 1

[31]

Force parameter
The Force parameter has a different purpose. With the Force parameter, New-Item will
overwrite any existing file with the same path. When used with Remove-Item, the Force
parameter allows the removal of files with Hidden or System attributes. The error that's
generated when attempting to delete a Hidden file is shown in the following code:

PS> Set-Location $env:TEMP
PS> New-Item IMadeThisUp.txt -Force
PS> Set-ItemProperty .\IMadeThisUp.txt –Name Attributes –Value Hidden
PS> Remove-Item IMadeThisUp.txt

Remove-Item : Cannot remove item
C:\Users\whoami\AppData\Local\Temp\IMadeThisUp.txt: You do not have
sufficient access rights to perform this operation.
At line:1 char:1
+ Remove-Item .\IMadeThisUp.txt
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : PermissionDenied:
(C:\Users\uktpcd...IMadeThisUp.txt:FileInfo) [Remove-Item], IOException
 + FullyQualifiedErrorId :
RemoveFileSystemItemUnAuthorizedAccess,Microsoft.PowerShell.Commands.Remove
ItemCommand

Adding the Force parameter allows the operation to continue without the error message:

Set-Location $env:TEMP
New-Item IMadeThisUp.txt -Force
Set-ItemProperty .\IMadeThisUp.txt –Name Attributes –Value Hidden
Remove-Item IMadeThisUp.txt -Force

Introduction to providers
Providers in PowerShell present access to data that is not normally easily accessible. There
are providers for the filesystem, registry, certificate store, and so on. Each provider arranges
data so that it resembles a filesystem.

PowerShell Core: What happened to provider help?

PowerShell Core does not include Provider help files. Help may be
viewed either online or in Windows PowerShell.

Introduction to PowerShell Chapter 1

[32]

A longer description of Providers may be seen by viewing the about file:

Get-Help about_Providers

The list of providers available in the current PowerShell session may be viewed by running
Get-PSProvider, as shown in the following example:

PS> Get-PSProvider
Name Capabilities Drives
---- ------------ ------
Registry ShouldProcess, Transactions {HKLM, HKCU}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Credentials {C, D}
Function ShouldProcess {Function}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {Cert}
WSMan Credentials {WSMan}

Each of the previous providers has a help file associated with it. These can be accessed
using the following code:

Get-Help -Name <ProviderName> -Category Provider

For example, the help file for the certificate provider may be viewed by running the
following code:

Get-Help -Name Certificate -Category Provider

A list of all help files for providers may be seen by running the following code:

Get-Help -Category Provider

Drives using providers
The output from Get-PSProvider shows that each provider has one or more drives
associated with it.

Alternatively, you can see the list of drives (and the associated provider) using Get-
PSDrive, as shown in the following code:

PS> Get-PSDrive

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
Alias Alias

Introduction to PowerShell Chapter 1

[33]

C 89.13 89.13 111.64 FileSystem C:\
Cert Certificate \
D 0.45 21.86 FileSystem D:\
Env Environment
Function Function
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
Variable Variable
WSMan WSMan

As providers are presented as a filesystem, accessing a provider is similar to working with
a drive. This example shows how Get-ChildItem changes when exploring the Cert drive:

PS C:\> Set-Location Cert:\LocalMachine\Root
PS Cert:\LocalMachine\Root> Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::LocalMachine\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certif...
BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte Timestamping C...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Author...

A similar approach may be taken to access the registry. By default, drives are available for
the current user HKCU and local machine HKLM hives. Accessing HKEY_USERS is possible by
adding a new drive with the following command:

New-PSDrive HKU -PSProvider Registry -Root HKEY_USERS

After running the preceding command, a new drive may be used:

PS C:\> Get-ChildItem HKU:

 Hive: HKEY_USERS

Name Property
---- --------
.DEFAULT
S-1-5-19
S-1-5-20

Introduction to PowerShell Chapter 1

[34]

Running HKCU or Cert: does not change the drive

Running C: or D: in the PowerShell console changes to a new drive letter.
This is possible because C: is a function that calls Set-Location: (Get-
Command C:).Definition.

Every letter of the alphabet (A to Z) has a predefined function (Get-
Command*:) but the other drives (for example, Cert, HKCU, and so on) do
not. Set-Location (or its alias cd) must be used to switch into these
drives.

Using providers
As we saw previously, providers may be accessed in the same way as the filesystem.
Commands we might traditionally think of as filesystem commands (such as Get-
ChildItem, New and Remove-Item, Get and Set-Acl, and Get and Set-ItemProperty)
can work with data presented by a provider.

The list of parameters for the filesystem commands changes depending on the provider.
The affected parameters are detailed in the help files for individual providers.

If we look at the FileSystem provider help file (Get-Help FileSystem), we can see that
Get-ChildItem has a file switch parameter that can be used to filter files only:

 -File <System.Management.Automation.SwitchParameter>
 Gets files.
 The File parameter was introduced in Windows PowerShell 3.0.
 To get only files, use the File parameter and omit the
 Directory parameter. To exclude files, use the Directory
 parameter and omit the File parameter, or use the
 Attributes parameter.
 Cmdlets Supported: Get-ChildItem

Let's look at the following example:

Set-Location C:
Get-ChildItem -File

Introduction to PowerShell Chapter 1

[35]

Looking at the Certificate provider help file (Get-Help Certificate), a different
set of parameters is available.

PowerShell Core: The certificate provider

The parameters shown next have been removed from PowerShell Core
but may return in time. In the meantime, the examples here are valid for
Windows PowerShell.

For example, this excerpt shows the ExpiringInDays parameter for Get-ChildItem:

 -ExpiringInDays <System.Int32>
 Gets certificates that are expiring in or before
 the specified number of days. Enter an integer. A
 value of 0 (zero) gets certificates that have
 expired.
 This parameter is valid in all subdirectories of
 the Certificate provider, but it is effective only
 on certificates.
 This parameter was introduced in Windows
 PowerShell 3.0.
 Cmdlets Supported: Get-ChildItem

The previous parameter may be used to find the Root certificates expiring in the next two
years, as shown in the following example:

Get-ChildItem Cert:\LocalMachine\Root -ExpiringInDays 730

Introduction to splatting
Splatting is a technique that was introduced all the way back in PowerShell 2. Splatting is a
way of defining the parameters of a command before calling the command. This is an
important and often underrated technique.

Individual parameters are written in a hashtable (@{}), and then the @ symbol is used to tell
PowerShell that the content of the hashtable should be read as parameters.

This example supplies the Name parameter for the Get-Process command, and is
normally written as Get-Process -Name explorer:

$getProcess = @{
 Name = 'explorer'
}
Get-Process @getProcess

Introduction to PowerShell Chapter 1

[36]

In this example, getProcess is used as the name of the variable for the hashtable. The
name is arbitrary; any variable name can be used.

Splatting may be used with cmdlets, functions, and scripts. Splatting may be used when the
call operator is present, for example:

$getProcess = @{
 Name = 'explorer'
}
& 'Get-Process' @getProcess

Splatting to avoid escaped end-of-line
The benefit of splatting is most obvious when working with commands that expect a larger
number of parameters.

This first example uses the Windows PowerShell module ScheduledTasks to create a
fairly basic task that runs once a day at midnight:

$taskAction = New-ScheduledTaskAction -Execute pwsh.exe -Argument 'Write-
Host "hello world"'
$taskTrigger = New-ScheduledTaskTrigger -Daily -At '00:00:00'
Register-ScheduledTask -TaskName 'TaskName' -Action $taskAction -Trigger
$taskTrigger -RunLevel 'Limited' -Description 'This line is too long to
read'

It is possible to spread the command out, in an attempt to make it easier to read, by
escaping the end-of-line character, for example:

$taskAction = New-ScheduledTaskAction -Execute pwsh.exe `
 -Argument 'Write-Host "hello world"'
$taskTrigger = New-ScheduledTaskTrigger -Daily `
 -At '00:00:00'
Register-ScheduledTask -TaskName 'TaskName' `
 -Action $taskAction `
 -Trigger $taskTrigger `
 -RunLevel 'Limited' `
 -Description 'This line is too long to read'

The approach that's used here is relatively common, but it is fragile. It is easy to miss a tick
from the end-of-line, or to accidentally add a space after a tick character. Both will break
continuation, and the command will still execute but with an incomplete set of parameters;
afterwards, an error may be displayed, or a prompt may be shown, depending on the
parameter (or parameters) it missed.

Introduction to PowerShell Chapter 1

[37]

This problem is shown in the following screenshot, where a space character has been
accidentally included after the Daily switch parameter:

Splatting provides a neater, generally easier to read and more robust alternative. The
following example shows one possible way to tackle these commands when using
splatting:

$newTaskAction = @{
 Execute = 'pwsh.exe'
 Argument = 'Write-Host "hello world"'
}
$newTaskTrigger = @{
 Daily = $true
 At = '00:00:00'
}
$registerTask = @{
 TaskName = 'TaskName'
 Action = New-ScheduledTaskAction @newTaskAction
 Trigger = New-ScheduledTaskTrigger @newTaskTrigger
 RunLevel = 'Limited'
 Description = 'Splatting is easy to read'
}
Register-ScheduledTask @registerTask

What about switch parameters?

Switch parameters may be treated as if they are Boolean when splatting.
The Daily parameter that was defined in the previous example is a
switch parameter.

The same approach will apply to Confirm, Force, WhatIf, Verbose, and
so on.

Introduction to PowerShell Chapter 1

[38]

Splatting to avoid repetition
Splatting may be used to avoid repetition when a parameter must be optionally passed on
to a number of different commands. It is possible to splat more than one set of parameters.

In this example, the ComputerName and Credential parameters are used by two different
commands:

Parameters used to authenticate remote connections
$remoteParams = @{
 Credential = Get-Credential
 ComputerName = $env:COMPUTERNAME
}
Parameters which are specific to Test-WSMan
$testWSMan = @{
 Authentication = 'Default'
 ErrorAction = 'SilentlyContinue'
}
By default, do not pass any extra parameters to New-CimSession
$newCimSession = @{}
if (-not (Test-WSMan @testWSMan @remoteParams)) {
 # If WSMan fails, use DCOM (RPC over TCP) to connect
 $newCimSession.Add('SessionOption', (New-CimSessionOption -Protocol
Dcom))
}
Parameters to pass to Get-CimInstance
$getCimInstance = @{
 ClassName = 'Win32_Service'
 CimSession = New-CimSession @newCimSession @remoteParams
}
Get-CimInstance @getCimInstance

This example takes advantage of a number of features:

It is possible to splat no parameters using an empty hashtable (@{})
It is possible to test conditions and dynamically add parameters at run time (if
needed)
It is possible to splat more than one set of parameters into a command

As the preceding example shows, it is possible to dynamically choose the parameters that
are passed to a command without having to write the command in full more than once in a
script.

Introduction to PowerShell Chapter 1

[39]

Splatting and positional parameters
So far, all of the parameters that have been used were given were names. It is possible,
although rare, to splat positional parameters. This will be demonstrated using the Rename-
Item command, which has two positional parameters: path and new name. It is possible to
run Rename-Item as follows:

Rename-Item oldname.txt newname.txt

An array may be used to splat these positional parameters:

$renameItem = 'oldname.txt', 'newname.txt'
Rename-Item @renameItem

Summary
In this chapter, we explored the help system that's built into PowerShell. We took a brief
look at syntax, examples, and parameters. We also looked at how help content may be
moved between computers.

Command naming and discovery introduced how we might use the verb-noun pairing to
discover commands that can be used. Aliases were introduced briefly.

Parameters and parameter sets were explored, as well as different types of parameters.

We took a basic look at providers and how they are used before taking a look at handling
long command lines using splatting.

In Chapter 2, Modules and Snap-ins, we will explore the commands that are used to find,
install, and load modules in PowerShell.

2
Modules and Snap-ins

Modules and snap-ins are packaged collections of commands that may be loaded inside
PowerShell. Both modules and snap-ins may be used to extend the set of commands
available in PowerShell. Modules are more flexible and are simpler to work with and this
will be clear with the several commands that we will be covering in this chapter. We will
also look at PowerShell Gallery which is a valuable source of modules published by
Microsoft and others. In a nutshell, this chapter will explore the use and discovery of
modules within Windows PowerShell and PowerShell Core.

The chapter will cover the following topics:

Introducing modules
PowerShell Core and the WindowsCompatibility module
Introducing snap-ins

Introducing modules
Modules were introduced with the release of PowerShell version 2.0. Modules represented
a significant step forward over snap-ins. Unlike snap-ins, modules do not have to be
formally installed or registered for use with PowerShell.

It is most common to find a module that targets a specific system or focuses on a small set
of related operations. For example, the Microsoft.PowerShell.LocalAccounts module
contains commands for interacting with the local account database (users and groups).

A module may be binary, script, dynamic, or manifest:

Binary modules: These are written in a language such as C# or VB.NET, and then
compiled into a dynamic-link library (DLL).
Script modules: These are a collection of functions written in the PowerShell
language. The commands typically reside in a script module file (PSM1).

Modules and Snap-ins Chapter 2

[41]

Dynamic modules: These are created using the New-Module command and
exists in memory only. The following command creates a very simple dynamic
module that adds the Get-Number command:

New-Module -Name TestModule -ScriptBlock {
 function Get-Number { return 1 }
}

Manifest modules: These combines different items to make a single consistent
module. For example, a manifest may be used to create a single module out of a
DLL containing cmdlets and a script containing functions,
and Microsoft.PowerShell.Utility is a manifest module that combines a
binary and script module.

A manifest module may also be used to build commands based on WMI classes.
The cmdlets-over-objects feature was added with PowerShell 3, an XML file
with a cdxml extension (cmdlet definition XML). For example, the Defender
module creates commands based on WMI classes in the
ROOT/Microsoft/Windows/Defender namespace.

The cmdlets-over-objects feature is explored by Richard Siddaway in a series of blog
posts on the Scripting Guy site. The first of these is found here: https:/ /blogs. technet.
microsoft.com/heyscriptingguy/ 2015/ 02/ 03/registry- cmdlets- first- steps- with-
cdxml/.

The module manifest file serves a number of purposes, including the following:

Describing the files that should be loaded (such as a script module file, a binary
library, and a cmdlet definition XML file)
Listing any dependencies the module may have (such as other modules, .NET
libraries, or other DLL files)
Listing the commands that should be exported (as in, made available to the end
user)
Recording information about the author or the project

When loading a module with a manifest, PowerShell will try and load any listed
dependencies. If a module fails to load because of a dependency, the commands written as
part of the module will not be imported.

https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/

Modules and Snap-ins Chapter 2

[42]

What is the PowerShell Gallery?
The PowerShell Gallery is a repository and distribution platform for scripts, modules, and
Desired State Configuration (DSC) resources that have been written by Microsoft or other
users of PowerShell.

In February 2016, Microsoft made the PowerShell Gallery public.

The PowerShell Gallery has parallels in other scripting languages, as shown in the
following examples:

Perl has cpan.org
Python has PyPI
Ruby has RubyGems

Support for the gallery is included by default in PowerShell 5. For PowerShell 3 and 4,
PowerShellGet (via the PackageManagement PowerShell modules preview package)
must be installed: https://www.microsoft.com/en-us/download/details.aspx?id=51451.

The PowerShell Gallery may be searched using https:/ /www. powershellgallery. com as
shown in the following screenshot:

https://www.microsoft.com/en-us/download/details.aspx?id=51451
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com
https://www.powershellgallery.com

Modules and Snap-ins Chapter 2

[43]

The Get-Module command
The Microsoft Windows operating system, especially the most recent versions, comes with
a wide variety of modules installed. These, as well as any other modules that have been
installed, can be viewed using the Get-Module command.

By default, Get-Module shows modules that have been imported (either automatically or
using Import-Module); for example, if the command is run from PowerShell ISE, it will
show that the ISE module has been loaded:

PS> Get-Module

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Script 1.0.0.0 ISE {Get-
IseSnippet...}
Manifest 3.1.0.0 Microsoft.PowerShell.Management {Add-Computer...}
Manifest 3.1.0.0 Microsoft.PowerShell.Utility {Add-Member...}

The ListAvailable parameter shows the list of modules that have been loaded, as well as
those PowerShell discovers:

Get-Module -ListAvailable

Modules may exist in more than one location. Get-Module and Import-Module will
consider each path in order. If a matching module is found, the search stops, even if a
newer version exists in a different directory.

Get-Module can show each instance of a module regardless of the path, using
the All parameter:

Get-Module <ModuleName> -All -ListAvailable

$env:PSMODULEPATH determines where both Windows PowerShell and PowerShell Core
find modules when running Get-Module and Import-Module. The source of this variable
is different for each version, and is explored here.

PSModulePath in Windows PowerShell
Windows PowerShell allows the value of $env:PSModulePath to be set using user and
machine environment variables. If the environment variables are not set, Windows
PowerShell uses the default values shown here:

PS> $env:PSModulePath -split ';'

Modules and Snap-ins Chapter 2

[44]

C:\Users\whoami\Documents\WindowsPowerShell\Modules
C:\Program Files\WindowsPowerShell\Modules
c:\windows\system32\windowspowershell\v1.0\Modules

When environment variables are set, the default values are completely replaced, as follows:

The user path, starting C:\users, is replaced with the content of the user
PSModulePath environment variable
The system path, which starts with C:\windows, is replaced with the machine
PSModulePath environment variable

Windows PowerShell merges both instances of the environment variable. C:\Program
Files\WindowsPowerShell\Modules is added immediately after the user paths by
Windows PowerShell; it will always be present.

The next example sets the user PSModulePath environment variable, adding a new path to
the end of the default list. The list is semicolon-delimited. The change will not be visible
until Windows PowerShell is restarted:

Get the value of the environment variable
$environmentVariable =
[Environment]::GetEnvironmentVariable('PSMODULEPATH', 'User')
If it is not set, use the User default path
if (-not $environmentVariable) {
 $environmentVariable = "$home\Documents\WindowsPowerShell\Modules"
}
Add a new path
$paths = "$environmentVariable;C:\SomeNewModulePath"
Set the environment variable
[Environment]::SetEnvironmentVariable('PSMODULEPATH', $paths, 'User')

PSModulePath in PowerShell Core
In PowerShell Core, PSModulePath is hardcoded and has the following values:

PS> $env:PSModulePath -split ';'
C:\Users\whoami\Documents\PowerShell\Modules
C:\Program Files\PowerShell\Modules
c:\program files\powershell\6\Modules
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

PowerShell Core disregards the environment variables set for the user or machine. The
value may only be overridden by making changes after PowerShell Core has started, for
example, by implementing a profile script that explicitly sets a new value for
$env:PSModulePath.

Modules and Snap-ins Chapter 2

[45]

The C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules path is included in
the list shown in the previous snippet. PowerShell Core performs additional filtering on the
content of this directory.

Get-Module, PSCompatibility, and PSEdition
The PSEdition and PSCompatibleEditions fields were added to the module manifest (a
.psd1 file that accompanies a module) with PowerShell 5.1. This allows module authors to
state whether a module is PowerShell Core (Core), Windows PowerShell (Desk), or both.

By default, PowerShell Core will not find or use modules from
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules when running the Get-
Module -ListAvailable command or when using Import-Module.

Modules in this one location are subject to additional checks as they have not been tested
with PowerShell Core and may not load. Modules in this location may be viewed or loaded
in the following circumstances:

The module manifest (.psd1 file) accompanying the module has PSEdition set to
Core
The module manifest uses the PSCompatibleEditions field and includes Core
The switch parameter SkipEditionCheck is used with Get-Module or Import-
Module

For example, the NetSecurity module may be loaded in PowerShell Core directly using this
command:

Import-Module NetSecurity -SkipEditionCheck

Modules loaded from the remaining locations in $env:PSModulePath are not filtered.

The Import-Module command
PowerShell 3 and later will attempt to automatically load modules if a command from that
module is used and the module is under one of the paths in the
$env:PSModulePath environment variable. The Import-Module command is less
important than it was in Windows PowerShell 2.

Modules and Snap-ins Chapter 2

[46]

For example, if PowerShell is started and the PSDesiredStateConfiguration module is
not imported, running the Get-DscResource command will cause the module to be
imported. This is shown in the following example:

PS> Get-Module PSDesiredStateConfiguration
PS> Get-DscResource | Out-Null
PS> Get-Module PSDesiredStateConfiguration

ModuleType Version Name ExportedCommands
---------- ------- ---- ----------------
Manifest 1.1 PSDesiredStateConfiguration ...

In the previous example, the first time Get-Module is executed, the
PSDesiredStateConfiguration module has not yet been loaded. After running Get-
DscResource, a command from the PSDesiredStateConfiguration module, the
module is loaded and the command is immediately executed. Once loaded, the module is
visible when running Get-Module.

Modules in PowerShell may be explicitly imported using the Import-Module command.
Modules may be imported using a name or with a full path, as shown in the following
example:

Import-Module -Name PSWorkflow
Import-Module -Name
C:\Windows\System32\WindowsPowerShell\v1.0\Modules\PSWorkflow\PSWorkflow.ps
d1

Once a module has been imported, the commands within the module may be listed using
Get-Command as follows:

Get-Command -Module PSWorkflow

Modules, Get-Command, and auto-loading

As the commands exported by a module can only be identified by
importing the module, the previous command will trigger automatic
import.

Modules and Snap-ins Chapter 2

[47]

Modules installed in Windows PowerShell 5 and PowerShell Core are placed in a folder
named after the module version. This allows multiple versions of the same module to
coexist, as shown in the following example:

Version 1.8.1 of PSScriptAnalyzer will be imported by default, as it is the highest version
number. It is possible to import a specific version of a module using the MinimumVersion
and MaximumVersion parameters:

Import-Module PSScriptAnalyzer -MaxmimumVersion 1.7.0

The Remove-Module command
The Remove-Module command attempts to remove a previously imported module from
the current session.

For binary modules or manifest modules that incorporate a DLL, commands are removed
from PowerShell but DLLs are not unloaded.

Remove-Module does not remove or delete the files that make up a module from a
computer.

The Find-Module command
The Find-Module command allows you to search the PowerShell Gallery or any other
registered repository for modules.

Modules and Snap-ins Chapter 2

[48]

Modules can be identified by name, as shown in the following example:

Find-Module Carbon
Find-Module -Name Carbon
Find-Module -Name Azure*

If the name is not sufficient for the search, the Filter parameter may be used. Supplying a
value for the Filter parameter is equivalent to using the search field in the PowerShell
Gallery that expands the search to include tags:

Find-Module -Filter IIS

The Install-Module command
The Install-Module command installs or updates modules from the PowerShell Gallery
or any other configured repository. By default, Install-Module adds modules to the path
for AllUsers, at C:\Program Files\WindowsPowerShell\Modules.

Access rights

Installing a module under the AllUsers scope requires an administrator
account.

For example, the posh-git module may be installed using either of the following two
commands:

Find-Module posh-git | Install-Module
Install-Module posh-git

Modules may be installed under a user-specific path
($home\Documents\WindowsPowerShell\Modules) using the Scope parameter:

Install-Module carbon -Scope CurrentUser

If the most recent version of a module is already installed, the command ends without
providing feedback.

In Windows PowerShell, if a newer version is available, it will be automatically installed
alongside the original.

In PowerShell Core, a warning is displayed, indicating that the Force parameter must be
used to install a newer version, such as in the following example:

Install-Module carbon -Scope CurrentUser -Force

Modules and Snap-ins Chapter 2

[49]

Force may be used to re-install a module in both Windows PowerShell and PowerShell
Core:

Install-Module posh-git -Force

The Install-Module command does not provide an option to install modules under the
$PSHOME ($env:SYSTEMROOT\System32\WindowsPowerShell\v1.0) directory. The
$PSHOME path is reserved for modules created by Microsoft that are deployed with the
Windows Management Framework (WMF) or the Windows operating system.

The Update-Module command
The Update-Module command may only be used after a module has been installed using
Install-Module. In both Windows PowerShell and PowerShell Core, it will attempt to
update the module to the latest, or specified, version.

The Save-Module command
The Save-Module command downloads the module from the PowerShell Gallery to a
given path without installing it. For example, the following command downloads the
Carbon module into a Modules directory in the root of the C: drive:

Save-Module -Name Carbon -Path C:\Modules

Save-Module will do the following:

Always download the module and overwrite any previously saved version in the
specified path.
Ignore installed or other saved versions.

PowerShell Core and the
WindowsCompatibility module
The WindowsCompatibility module has been created for PowerShell Core to allow or
simplify the use of Windows PowerShell modules and commands in PowerShell Core.

Modules and Snap-ins Chapter 2

[50]

The module may be installed in PowerShell Core by running the command:

Install-Module WindowsCompatibility -Scope CurrentUser

The module is required for the following sections in which we'll explore its functionality.

The compatibility session
The WindowsCompatibility module uses a technique known as implicit remoting to
make commands from Windows PowerShell available in PowerShell Core.

A compatibility session is automatically created when any of the commands from the
module are run.

By default, the compatibility session is created to use the local computer. To support this,
Windows Remoting must be enabled and configured in Windows PowerShell.

Enabling remoting

Remoting is discussed in greater detail in Chapter 14, Remoting and
Remote Management. Until then, Windows Remoting may be enabled and
configured using the wirm command with the quick config argument:
winrm qc.

The WindowsCompatibility module can use a session on a remote computer. This may be
useful when Windows PowerShell is not available locally, as is the case when running
PowerShell Core on Linux or macOS. The Initialize-WinSession command is used to
to explicitly create a compatibility session.

Remote commands do not run locally

If a remote computer is used for the compatibility session any imported
commands will execute on that remote computer. For example, importing
the NetSecurity module and running Get-NetFirewallRule will display
the rules on that remote computer.

Each of the remaining commands in the WindowsCompatibility module implements the
ComputerName, Credential, and ConfigurationName parameters to support different
command sources if necessary.

Modules and Snap-ins Chapter 2

[51]

Add-WindowsPSModulePath
The Add-WindowsPSModulePath command adds the default Windows PowerShell
module paths and the content of the machine level PSModulePath variable, to the end of
the $env:PSModulePath variable.

For example, before the command is run, $env:PSModulePath may be set to the following:

C:\Users\whoami\Documents\PowerShell\Modules
C:\Program Files\PowerShell\Modules
c:\program files\powershell\6-preview\Modules
C:\WINDOWS\system32\WindowsPowerShell\v1.0\Modules

After the command has run, $env:PSModulePath will have the following added. These
values are hardcoded:

${env:userprofile}\Documents\WindowsPowerShell\Module
${env:programfiles}\WindowsPowerShell\Modules

In addition to these, any paths present in the environment variable are added. This process
may result in some duplication. The outcome is shown in this screenshot:

Modules and Snap-ins Chapter 2

[52]

Get-WinModule and Import-WinModule
The Get-WinModule command lists the modules available to the compatibility session.
This may be considered similar to running Get-Module -ListAvailable.

Import-WinModule attempts to load the requested module (by name) in the compatibility
session. For example, Import-WinModule Pester will attempt to load the latest version
of the Pester module within the compatibility session.

The version number of the loaded module will display as 1.0 when running Get-Module in
PowerShell Core this version is not derived from the source module:

It is not possible at this time to import a specific version of a module in the compatibility
session.

Copy-WinModule
The Copy-WinModule command copies module content from the current location to either
$pshome\Modules or a user-specified destination.

 Copy-WinModule may only be used when the compatibility session is local (the default
behavior).

This command is useful where a module has been tested and found working under Core.
At this point, it may be desirable to load the module directly rather than through a
compatibility session, or from a path that is not listed in PSModulePath.

Modules and Snap-ins Chapter 2

[53]

Invoke-WinCommand
Invoke-WinCommand allows the execution of a script block in the compatibility session.
This may be useful when the commands or command output do not work well through
Windows Remoting.

Introducing snap-ins
Snap-ins are only available in Windows PowerShell; they are not present in PowerShell
Core. A snap-in was the precursor to a module. It was the mechanism available to extend
the set of commands in PowerShell 1.0. The cmdlet implementation inside a snap-in is
similar to a binary module (written in a language such as C#). A snap-in contains a
specialized class that holds the fields that were moved into the module manifest with
PowerShell 2.0.

Snap-ins must be installed or registered before they can be used. This can be done
using installutil, which is part of the .NET framework package. Many vendors
(including Microsoft) took to releasing Microsoft Installer (MSI) packages to simplify the
snap-in installation.

Modules have, for the most part, made snap-ins obsolete. Manifest modules, accompanied
by a binary module, offer the same performance benefits, without the installation or
registration overheads.

The list of snap-ins may be viewed using the following command:

Get-PSSnapIn -Registered

If the Registered parameter is excluded, Get-PSSnapIn will show the snap-ins that have
been imported into the current PowerShell session.

Modules and Snap-ins Chapter 2

[54]

Windows PowerShell and the Microsoft.PowerShell.Core snap-in

The core commands loaded for Windows PowerShell are a part of the
snap-in written into the System.Management.Automation library.
This snap-in does not appear in the list of registered snap-ins.

Registered snap-ins are read from
HKLM:\Software\Microsoft\PowerShell\1\PowerShellSnapIns.

If a computer does not have any registered snap-ins, the registry path may
not exist. The snap-in list is generated by looping through all commands
and reading the PSSnapIn property in a manner similar to the following
command: (Get-Command).PSSnapIn.Name | Select-Object -
Unique.

Using snap-ins
PowerShell will not automatically load commands from a snap-in. All snap-ins,
except Microsoft.PowerShell.Core, must be explicitly imported using the Add-
PSSnapIn command:

Add-PSSnapIn WDeploySnapin3.0

Once a snap-in has been installed (registered) and added, Get-Command may be used to list
the commands:

Get-Command -Module WDeploySnapin3.0

Summary
In this chapter, we primarily looked at modules and snap-ins. We explored that Unlike
snap-ins, modules do not have to be formally installed or registered for use with
PowerShell. Different commands were covered under the modules section and we saw the
various functionalities it handles. In addition to this, PowerShell Core and the
WindowsCompatibility module was introduced. Moreover, we saw that Snap-ins are
rarely used these days, and support has been removed from PowerShell Core.

With this pre-requisites, we move on to the next challenge, Chapter 3, Working with Objects
in PowerShell, where we will dive into the commands available to work with objects in
PowerShell, including Where-Object, and ForEach-Object.

3
Working with Objects in

PowerShell
Everything we do in PowerShell revolves around working with objects. Objects, in
PowerShell, may have properties or methods (or both). It is difficult to describe an object
without resorting to this; an object is a representation of a thing or item of data. We might
use an analogy to attempt to give meaning to the term.

A book is an object and has properties that describe physical characteristics, such as the
number of pages, the weight, or size. It has metadata (information about data) properties
that describe the author, the publisher, the table of contents, and so on.

The book might also have methods. A method affects the change on the state of an object.
For example, there might be methods to open or close the book or methods to jump to
different chapters. A method might also convert an object into a different format. For
example, there might be a method to copy a page, or even destructive methods such as one
to split the book.

PowerShell has a variety of commands that allow us to work with sets (or collections) of
objects in a pipeline.

In this chapter, we are going to cover the following topics:

Pipelines
Members
Enumerating and filtering
Selecting and sorting
Grouping and measuring
Comparing
Importing, exporting, and converting

Working with Objects in PowerShell Chapter 3

[56]

Pipelines
The pipeline is one of the most prominent features of PowerShell. The pipeline is used to
send output from one command (standard out or Stdout) into another command
(standard in or Stdin).

Standard output
The term standard output is used because there are different kinds of output. Each of these
different forms of output is referred to as a stream.

When assigning the output of a command to a variable, the values are taken from the
standard output (the output stream) of a command. For example, the following command
assigns the data from the standard output to a variable:

$stdout = Get-CimInstance -ClassName Win32_ComputerSystem

Non-standard output
In PowerShell there are other output streams; these include error (Write-Error),
information (Write-Information, introduced in PowerShell 5), warning (Write-
Warning), and verbose (Write-Verbose). Each of these has a stream of its own.

In PowerShell 5 and later, the Write-Host command sends output to the information
stream.

Prior to PowerShell 5, Write-Host did not have a dedicated stream; the output could only
be captured via a transcript, that is, using the Start-Transcript command to log console
output to a file.

For example, if the Verbose switch is added to the preceding command, more information
is shown. This extra information is not held in the variable, it is sent to a different stream:

PS> $stdout = Get-CimInstance Win32_ComputerSystem -Verbose
VERBOSE: Perform operation 'Enumerate CimInstances' with following
parameters, ''namespaceName' = root\cimv2,'className' =
Win32_ComputerSystem'.
VERBOSE: Operation 'Enumerate CimInstances' complete.

PS> $stdout

Name PrimaryOwnerName Domain TotalPhysicalMemory Model

Working with Objects in PowerShell Chapter 3

[57]

---- ---------------- ------ ------------------- -----
TITAN Chris WORKGROUP 17076875264 All Series

The object pipeline
Languages such as Batch scripting (on Windows) or Bash scripting (ordinarily on Linux or
Unix) use a pipeline to pass text between commands. It is up to the next command to figure
out what the text means.

PowerShell, on the other hand, sends objects from one command to another.

The pipe (|) symbol is used to send the standard output between commands.

In the following example, the output of Get-Process is sent to the Where-Object
command, which applies a filter. The filter restricts the list of processes to those that are
using more than 50MB of memory:

Get-Process | Where-Object WorkingSet -gt 50MB

Members
At the beginning of this chapter, the idea of properties and methods was introduced. These
are part of a set of items collectively known as members. These members are used
to interact with an object. A few of the more frequently used members are NoteProperty,
ScriptProperty, ScriptMethod, and Event.

What are the member types?

The list of possible member types can be viewed on MSDN, which
includes a short description of each member type: https:/ /msdn.
microsoft. com/ en- us/ library/ system. management. automation.
psmembertypes(v= vs. 85). aspx.

This chapter focuses on the different property members: Property, NoteProperty, and
ScriptProperty. They are the most relevant to the commands in this chapter.

https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/system.management.automation.psmembertypes(v=vs.85).aspx

Working with Objects in PowerShell Chapter 3

[58]

The Get-Member command
The Get-Member command is used to view the different members of an object. For
example, it can be used to list all of the members of a process object (returned by Get-
Process):

Get-Process -Id $PID | Get-Member

Get-Member offers filters using its parameters (MemberType, Static, and View). For
example, if we wished to view only the properties of the PowerShell process, we might run
the following:

Get-Process -Id $PID | Get-Member -MemberType Property

The Static parameter will be covered in Chapter 7, Working with .NET.

The View parameter is set to all by default. It has three additional values:

Base: It shows properties that are derived from a .NET object
Adapted: It shows members handled by PowerShell's Adapted Type System
(ATS)
Extended: It shows members added by PowerShell's Extended Type System
(ETS)

Adapted and Extended Type Systems (ATS and ETS)

ATS and ETS systems make it easy to work with object frameworks other
than .NET in PowerShell, for example, objects returned by ADSI, COM,
WMI, or XML. Each of these frameworks is discussed later in this book.

Microsoft published an article on ATS and ETS in 2011, which is still
relevant today: https:/ /blogs. msdn. microsoft. com/ besidethepoint/
2011/ 11/ 22/ psobject- and- the- adapted- and-extended- type- systems-
ats-and- ets/ .

https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/
https://blogs.msdn.microsoft.com/besidethepoint/2011/11/22/psobject-and-the-adapted-and-extended-type-systems-ats-and-ets/

Working with Objects in PowerShell Chapter 3

[59]

Accessing properties
Properties of an object in PowerShell may be accessed by writing the property name after a
period. For example, the Name property of the current PowerShell process may be accessed
by using the following code:

$process = Get-Process -Id $PID
$process.Name

PowerShell also allows us to access these properties by enclosing a command in
parentheses:

(Get-Process -Id $PID).Name

Properties of an object are objects themselves. For example, the StartTime property of a
process is a DateTime object. We may access the DayOfWeek property by using the
following code:

$process = Get-Process -Id $PID
$process.StartTime.DayOfWeek

The variable assignment step may be skipped if parentheses are used:

(Get-Process -Id $PID).StartTime.DayOfWeek

If a property name has a space, it may be accessed using a number of different notation
styles. For example, a property named 'Some Name' may be accessed by quoting the name
or enclosing the name in curly braces:

$object = [PSCustomObject]@{ 'Some Name' = 'Value' }
$object."Some Name"
$object.'Some Name'
$object.{Some Name}

A variable may also be used to describe a property name:

PS> $object = [PSCustomObject]@{ 'Some Name' = 'Value' }
PS> $propertyName = 'Some Name'
PS> $object.$propertyName
Value

Working with Objects in PowerShell Chapter 3

[60]

Using methods
As we mentioned previously, methods effect a change in state. That may be a change to the
object associated with the method, or it may take the object and convert it into something
else.

Methods are called using the following notation in PowerShell:

<Object>.Method()

If a method expects to have arguments (or parameters), the notation becomes the following:

<Object>.Method(Argument1, Argument2)

When the method is called without parentheses, PowerShell will show the overload
definitions. The overload definitions are a list of the different sets of arguments that can be
used with a method. For example, the Substring method of System.String has two
definitions:

PS> 'thisString'.Substring

OverloadDefinitions

string Substring(int startIndex)
string Substring(int startIndex, int length)

An example of a method that takes an object and converts it into something else is shown
here. In this case, a date is converted into a string:

PS> $date = Get-Date "01/01/2010"
PS> $date.ToLongDateString()
01 January 2010

An example of a method that changes a state might be a TCP socket. TCP connections must
be opened before data can be sent over a network:

$tcpClient = New-Object System.Net.Sockets.TcpClient
$tcpClient.Connect("127.0.0.1", 135)

A TCP client is created, then an attempt is made to connect to the RPC endpoint mapper
port (TCP/135) on the localhost.

Working with Objects in PowerShell Chapter 3

[61]

The Connect method does not return anything (although it will throw an error if the
connection fails). It affects the state of the object and is reflected by the Connected
property:

PS> $tcpClient.Connected
True

The state of the object may be changed again by calling the Close method to disconnect:

$tcpClient.Close()

An example of a method that takes arguments might be the ToString method on a
DateTime object. Get-Date can be used to create a DateTime object:

PS> (Get-Date).ToString('u')
2016-12-08 21:18:49Z

In the preceding example, the letter u is one of the standard date and time format strings
(https://msdn.microsoft. com/ en- us/ library/ az4se3k1(v= vs.110). aspx) and represents
a universal sortable date/time pattern. The same result may be achieved by using the
Format parameter of Get-Date:

PS> Get-Date -Format u
2016-12-08 21:19:31Z

The advantage this method has over the parameter is that the date can be adjusted before
conversion by using some of the other properties and methods:

(Get-Date).Date.AddDays(-1).ToString('u')

The result of this command will be the start of yesterday (midnight, one day before today).

Access modifiers
Depending on the type of object, properties may be read-only or read/write. These may be
identified using Get-Member and by inspecting the access modifiers.

https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

Working with Objects in PowerShell Chapter 3

[62]

In the following example, the value in curly braces at the end of each line is the access
modifier:

PS> $File = New-Item NewFile.txt -Force
PS> $File | Get-Member -MemberType Property

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes
{get;set;}
CreationTime Property datetime CreationTime {get;set;}
CreationTimeUtc Property datetime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property string DirectoryName {get;}
Exists Property bool Exists {get;}

When the modifier is {get;}, the property value is read-only; attempting to change the
value will result in an error:

PS> $File = New-Item NewFile.txt -Force
PS> $File.Name = 'NewName'
'Name' is a ReadOnly property.
At line:1 char:1
+ $File.Name = 'NewName'
+ ~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId : PropertyAssignmentException

When the modifier is {get;set;}, the property value may be read and changed. In the
preceding example, CreationTime has the set access modifier. The value can be changed;
in this case, it may be set to any date after January 1, 1601:

$File = New-Item NewFile.txt -Force
$File.CreationTime = Get-Date -Day 1 -Month 2 -Year 1692

The result of the preceding command can be seen by reviewing the properties for the file in
PowerShell:

Get-Item NewFile.txt | Select-Object -ExpandProperty CreationTime

Working with Objects in PowerShell Chapter 3

[63]

Alternatively, you can use explorer, as shown in the following screenshot:

In the preceding example, the change made to CreationTime is passed from the object
representing the file to the file itself. The object used here, based on the .NET
class System.IO.FileInfo, is written in such a way that it supports the change. A
property may indicate that it can be changed (by supporting the set access modifier in Get-
Member) and still not pass the change back to whatever the object represents.

The Add-Member command
Add-Member allows new members to be added to existing objects.

Working with Objects in PowerShell Chapter 3

[64]

Starting with an empty object, it is possible to add new properties:

PS> $empty = New-Object Object
PS> $empty | Add-Member -Name New -Value 'Hello world' -MemberType
NoteProperty
PS> $empty

New

Hello world

Add-Member may also add a ScriptProperty or a ScriptMethod. When writing script-
based properties and methods, the reserved variable $this is used to refer to itself.

To add calculated properties, which are evaluated when viewed, use the following code:

PS> $empty = New-Object Object
PS> $empty | Add-Member -Name New -Value 'Hello world' -MemberType
NoteProperty
PS> $empty | Add-Member -Name Calculated -Value { $this.New.Length } -
MemberType ScriptProperty
PS> $empty

New Calculated
--- ----------
Hello world 11

Methods may be added as well, for example, a method to replace the word world in the
new property:

PS> $empty = New-Object Object
PS> $empty | Add-Member -Name New -Value 'Hello world' -MemberType
NoteProperty
PS> $params = @{
>> Name = 'Replace'
>> MemberType = 'ScriptMethod'
>> Value = { $this.New -replace 'world', 'everyone' }
>> }
PS> $empty | Add-Member @params
PS> $empty.Replace()
Hello everyone

Working with Objects in PowerShell Chapter 3

[65]

Enumerating and filtering
Enumerating, or listing, the objects in a collection in PowerShell does not need a specialized
command. For example, if the results of Get-PSDrive were assigned to a variable,
enumerating the content of the variable is as simple as writing the variable name and
pressing Enter:

PS> $drives = Get-PSDrive
PS> $drives

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
Alias Alias
C 319.37 611.60 FileSystem C:\
Cert Certificate \
Env Environment
...

ForEach-Object may be used where something complex needs to be done to each object.

Where-Object may be used to filter results.

The ForEach-Object command
ForEach-Object is most often used as a loop (of sorts). For example, the following
command works on each of the results from Get-Process in turn:

Get-Process | ForEach-Object {
 Write-Host $_.Name -ForegroundColor Green
}

In the preceding example, a special variable, $_, is used to access each of the objects from
the input pipeline. In the previous example, it is used to access each of the objects returned
by the Get-Process command.

ForEach-Object may also be used to get a single property, or execute a single method on
each of the objects.

For example, ForEach-Object may be used to return only the Path property when using
Get-Process:

Get-Process | ForEach-Object Path

Working with Objects in PowerShell Chapter 3

[66]

Or, ForEach-Object may be used to run the ToString method on a set of dates:

PS> (Get-Date '01/01/2019'), (Get-Date '01/01/2020') | ForEach-Object
ToString('yyyyMMdd')
20190101
20200101

Where-Object command
Filtering the output from commands may be performed using Where-Object. For
example, we might filter processes that started after 5 pm today:

Get-Process | Where-Object StartTime -gt (Get-Date 17:00:00)

The syntax shown in help for Where-Object does not quite match the syntax used here.
The help text is as follows:

Where-Object [-Property] <String> [[-Value] <Object>] -GT ...

In the preceding example, we see the following:

StartTime is the argument for the Property parameter (first argument by
position
The comparison is greater than, as signified by the gt switch parameter
The date (using the Get-Date command) is the argument for the Value
parameter (second argument by position)

Based on that, the example might be written as follows:

Get-Process | Where-Object -Property StartTime -Value (Get-Date 17:00:00) -
gt

However, it is far easier to read StartTime is greater than <some date>, so most
examples tend to follow that pattern.

Where-Object will also accept filters using the FilterScript parameter. FilterScript
is often used to describe more complex filters, filters where more than one term is used:

Get-Service | Where-Object { $_.StartType -eq 'Manual' -and $_.Status -eq
'Running' }

When a filter like this is used, the conditions are evaluated in the order they are written.
This can be used to avoid conditions that may otherwise cause errors.

Working with Objects in PowerShell Chapter 3

[67]

In the following example, Test-Path is used before Get-Item, which is used to test the
last time a file was written on a remote computer (via the administrative share):

'Computer1', 'Computer2' | Where-Object {
 (Test-Path "\\$_\c$\temp\file.txt") -and
 (Get-Item "\\$_\c$\temp\file.txt").LastWriteTime -lt (Get-
Date).AddDays(-90)
}

If Test-Path is removed, the snippet will throw an error if either the computer or the file
does not exist.

Selecting and sorting
Select-Object allows a subset of data to be returned when executing a command. This
may be a more restrictive number of elements, or a smaller number of properties.

Sort-Object can be used to perform both simple and complex sorting.

The Select-Object command
Select-Object is most frequently used to limit the properties returned by a command.
The command is extremely versatile as it enables you to do the following:

Limit the properties returned by a command by name:

Get-Process | Select-Object -Property Name, Id

Limit the properties returned from a command using wildcards:

Get-Process | Select-Object -Property Name, *Memory

List everything but a few properties:

Get-Process | Select-Object -Property * -Exclude *Memory*

Get the first few objects:

Get-ChildItem C:\ -Recurse | Select-Object -First 2

Working with Objects in PowerShell Chapter 3

[68]

Get the last few objects:

Get-ChildItem C:\ | Select-Object -Last 3

Skip items at the beginning. In this example, this returns the fifth item:

Get-ChildItem C:\ | Select-Object -Skip 4 -First 1

Skip items at the end. This example returns the third from the end:

Get-ChildItem C:\ | Select-Object -Skip 2 -Last 1

Expand properties:

Get-ChildItem C:\ | Select-Object -ExpandProperty FullName
Get-ChildItem $env:SYSTEMROOT*.dll | Select-Object Name,
Length -ExpandProperty VersionInfo

Select-Object can return -Unique values from arrays of simple values:

1, 1, 1, 3, 5, 2, 2, 4 | Select-Object -Unique

About Get-Unique

Get-Unique may also be used to create a list of unique elements. When
using Get-Unique, a list must be sorted first, for example: 1, 1, 1, 3,
5, 2, 2, 4 | Sort-Object | Get-Unique.

Select-Object can also return unique values from arrays of objects, but only if a list of
properties is specified or a wildcard is used for the list of properties.

In the following example, we create an object with one property called Number. The value
for the property is 1, 2, or 3. There are two objects with a value of 1, two with a value of 2,
and two with a value of 3:

PS> (1..3 + 1..3) | ForEach-Object { [PSCustomObject]@{ Number = $_ } }

Number

 1
 2
 3
 1
 2
 3

Working with Objects in PowerShell Chapter 3

[69]

Select-Object can remove the duplicates from the set in this example using the -Unique
parameter if a list of properties (or a wildcard for the properties) is set:

PS> (1..3 + 1..3) |
>> ForEach-Object { [PSCustomObject]@{ Number = $_ } } |
>> Select-Object -Property * -Unique

Number

 1
 2
 3

When using Get-Member, you may have noticed the PropertySet member type. Select-
Object can display the properties within the set. In the following example, Get-Member is
used to view property sets, and Select-Object is used to display the first property set
(PSConfiguration):

PS> Get-Process -Id $PID | Get-Member -MemberType PropertySet

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
PSConfiguration PropertySet PSConfiguration {Name, Id, ...
PSResources PropertySet PSResources {Name, Id, Hand...

PS> Get-Process -Id $PID | Select-Object PSConfiguration

Name Id PriorityClass FileVersion
---- -- ------------- -----------
powershell_ise 5568 Normal 10.0.14393.103
(rs1_release_inmarket.160819-1924)

Select-Object is also able to make new properties. It will build a property if given a
name and a means of calculating it (an expression):

Get-Process | Select-Object -Property Name, Id,
 @{Name='FileOwner'; Expression={ (Get-Acl $_.Path).Owner }}

In the preceding example, @{} is a hashtable. Hashtables are discussed in Chapter 5,
Variables, Arrays, and Hashtables.

Working with Objects in PowerShell Chapter 3

[70]

Select-Object can change objects

When Select-Object is used with the Property parameter, a new
object is created (based on the value Select-Object is working with).
For example, the first process may be selected as shown here. The
resulting object type is Process: (Get-Process | Select-Object -
First 1).GetType().

If Select-Object also requests a list of properties, the object type
changes to PSCustomObject: (Get-Process | Select-Object -
Property Path, Company -First 1).GetType().

This is important if something else is expected to use the process. For
example, Stop-Process will throw an error because the object being
passed is not a process, nor is there sufficient information available to
determine which process must stop (either the Id or Name properties):
Get-Process | Select-Object -Property Path, Company -

First 1 | Stop-Process -WhatIf.

The Sort-Object command
The Sort-Object command allows objects to be sorted on one or more properties.

By default, Sort-Object will sort numbers in ascending order:

PS> 5, 4, 3, 2, 1 | Sort-Object
1
2
3
4
5

Strings are sorted in ascending order, irrespective of uppercase or lowercase:

PS> 'ccc', 'BBB', 'aaa' | Sort-Object
aaa
BBB
ccc

When dealing with complex objects, Sort-Object may be used to sort based on a named
property. For example, processes may be sorted based on the Id property:

Get-Process | Sort-Object -Property Id

Working with Objects in PowerShell Chapter 3

[71]

Objects may be sorted on multiple properties; for example, a list of files may be sorted on
LastWriteTime and then on Name:

Get-ChildItem C:\Windows\System32 |
 Sort-Object LastWriteTime, Name

In the preceding example, items are first sorted on LastWriteTime. Items that have the
same value for LastWriteTime are then sorted based on Name.

Sort-Object is not limited to sorting on existing properties. A script block (a fragment of
script, enclosed in curly braces) can be used to create a calculated value for sorting. For
example, it is possible to order items based on a word, as shown in this example:

PS> $examResults = @(
>> [PSCustomObject]@{ Exam = 'Music'; Result = 'N/A'; Mark = 0 }
>> [PSCustomObject]@{ Exam = 'History'; Result = 'Fail'; Mark = 23 }
>> [PSCustomObject]@{ Exam = 'Biology'; Result = 'Pass'; Mark = 78 }
>> [PSCustomObject]@{ Exam = 'Physics'; Result = 'Pass'; Mark = 86 }
>> [PSCustomObject]@{ Exam = 'Maths'; Result = 'Pass'; Mark = 92 }
>>)
PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }

Exam Result Mark
---- ------ ----
Maths Pass 92
Physics Pass 86
Biology Pass 78
History Fail 23
Music N/A 0

In the preceding example, when Sort-Object encounters a pass result, it is given the
lowest numeric value (1). As Sort-Object defaults to ascending ordering, this means
exams with a result of pass appear first in the list. This process is repeated to give a numeric
value to each of the other possible results.

Sorting within the set varies depending on the version of PowerShell. Windows PowerShell
will change the order of the elements within each set. PowerShell Core on the other hand
maintains the original order, listing Biology, then Physics, then Maths within the
pass set.

Working with Objects in PowerShell Chapter 3

[72]

As Sort-Object is capable of sorting on more than one property, the preceding example
can be taken further to sort on mark next. This makes the output order entirely predictable,
regardless of the version of PowerShell:

PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }, Mark

Exam Result Mark
---- ------ ----
Biology Pass 78
Physics Pass 86
Maths Pass 92
History Fail 23
Music N/A 0

Adding the Descending parameter to Sort-Object will reverse the order of both fields:

PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }, Mark -Descending

Exam Result Mark
---- ------ ----
Music N/A 0
History Fail 23
Maths Pass 92
Physics Pass 86
Biology Pass 78

The ordering behavior can be made property-specific using the notation that's shown in the
following example:

PS> $examResults | Sort-Object {
>> switch ($_.Result) {
>> 'Pass' { 1 }
>> 'Fail' { 2 }
>> 'N/A' { 3 }
>> }
>> }, @{ Expression = { $_.Mark }; Descending = $true }

Working with Objects in PowerShell Chapter 3

[73]

Exam Result Mark
---- ------ ----
Maths Pass 92
Physics Pass 86
Biology Pass 78
History Fail 23
Music N/A 0

The hashtable, @{}, is used to describe an expression (a calculated property; in this case, the
value for mark) and the sorting order, which is either ascending or descending.

In the preceding example, the first sorting property, based on the result property, is sorted
in ascending order as this is the default. The second property, mark, is sorted in descending
order.

Grouping and measuring
Group-Object is a powerful command that allows you to group objects together based on
similar values.

Measure-Object supports a number of simple mathematical operations, such as counting
the number of objects, calculating an average, calculating a sum, and so on. It also allows
characters, words, or lines to be counted in text fields.

The Group-Object command
The Group-Object command shows a group and count for each occurrence of a value in a
collection of objects.

Given the sequence of numbers shown, Group-Object creates a Name that holds the value
it is grouping, a Count as the number of occurrences of that value, and a Group as the set of
similar values:

PS> 6, 7, 7, 8, 8, 8 | Group-Object

Count Name Group
----- ---- -----
 1 6 {6}
 2 7 {7, 7}
 3 8 {8, 8, 8}

Working with Objects in PowerShell Chapter 3

[74]

The Group property may be removed using the NoElement parameter, which simplifies the
output from the command:

PS> 6, 7, 7, 8, 8, 8 | Group-Object -NoElement

Count Name
----- ----
 1 6
 2 7
 3 8

Group-Object can group based on a specific property. For example, it might be desirable
to list the number of occurrences of particular files in an extensive folder structure. In the
following example, the C:\Windows\Assembly folder contains different versions of DLLs
for different versions of packages, including the .NET Framework:

Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |
 Group-Object Name

Combining Group-Object with commands such as Where-Object and Sort-Object
allows reports about the content of a set of data to be generated extremely quickly, for
example, the top five files that appear more than once in a file tree:

PS> Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |
>> Group-Object Name -NoElement |
>> Where-Object Count -gt 1 |
>> Sort-Object Count, Name -Descending |
>> Select-Object Name, Count -First 5

Name Count
---- -----
Microsoft.Web.Diagnostics.resources.dll 14
Microsoft.Web.Deployment.resources.dll 14
Microsoft.Web.Deployment.PowerShell.resources.dll 14
Microsoft.Web.Delegation.resources.dll 14
Microsoft.Web.PlatformInstaller.resources.dll 13

As was seen with Sort-Object, Group-Object can group on more than one property. For
example, we might group on both a filename and the size of a file (the Length property of a
file):

PS> Get-ChildItem C:\Windows\Assembly -Filter *.dll -Recurse |
>> Group-Object Name, Length -NoElement |
>> Where-Object Count -gt 1 |
>> Sort-Object Name -Descending |
>> Select-Object Name, Count -First 6

Working with Objects in PowerShell Chapter 3

[75]

Name Count
---- -----
WindowsBase.ni.dll, 4970496 2
System.Xml.ni.dll, 6968320 2
System.Windows.Interactivity.ni.dll, 121856 2
System.Windows.Forms.ni.dll, 17390080 2
System.Web.ni.dll, 16481792 2
System.Web.ni.dll, 13605888 2

In the preceding example, we can see that System.Web.ni.dll appears four times (a
count of 2, twice) in the folder structure, and that each pair of files has the same size.

Like Sort-Object, Group-Object is not limited to properties that already exist. It can
create calculated properties in much the same way. For example, grouping on an email
domain in a list of email addresses might be useful:

PS> 'one@one.example', 'two@one.example', 'three@two.example' |
>> Group-Object { ($_ -split '@')[1] }

Count Name Group
----- ---- -----
 2 one.example {one@one.example, two@one.example}
 1 two.example {three@two.example}

In this example, the split operator is used to split on the @ character; everything to the left is
stored in index 0, while everything to the right is stored in index 1.

By default, Group-Object returns the collection of objects shown in each of the preceding
examples. Group-Object is also able to return a hashtable using the AsHashtable
parameter.

When using the AsHashTable parameter, the AsString parameter is normally used. The
AsString parameter forces the key for each entry in the hashtable to be a string, for
example:

PS> $hashtable = 'one', 'two', 'two' | Group-Object -AsHashtable -AsString
PS> $hashtable['one']

one

Working with Objects in PowerShell Chapter 3

[76]

By default, Group-Object is case insensitive. The strings one, ONE, and One are all
considered equal. The -CaseSensitive parameter forces Group-Object to differentiate
between items where cases differ:

PS> 'one', 'ONE', 'One' | Group-Object -CaseSensitive

Count Name Group
----- ---- -----
 1 one {one}
 1 ONE {ONE}
 1 One {One}

The Measure-Object command
When used without any parameters, Measure-Object will return a value for Count,
which is the number of items passed in using the pipeline, for example:

PS> 1, 5, 9, 79 | Measure-Object

Count : 4
Average :
Sum :
Maximum :
Minimum :
Property :

Each of the remaining properties is empty, unless requested using their respective
parameters. For example, -Sum may be requested:

PS> 1, 5, 9, 79 | Measure-Object -Sum

Count : 4
Average :
Sum : 94
Maximum :
Minimum :
Property :

Adding the remaining parameters will fill in the rest of the fields (except Property):

PS> 1, 5, 9, 79 | Measure-Object -Average -Maximum -Minimum -Sum

Count : 4
Average : 23.5
Sum : 94
Maximum : 79

Working with Objects in PowerShell Chapter 3

[77]

Minimum : 1
Property :

The value for Property is filled in when Measure-Object is asked to work against a
particular property (instead of a set of numbers), for example:

PS> Get-Process | Measure-Object WorkingSet -Average

Count : 135
Average : 39449395.2
Sum :
Maximum :
Minimum :
Property : WorkingSet

When working with text, Measure-Object can count characters, words, or lines. For
example, it can be used to count the number of lines, words, and characters in a text file:

PS> Get-Content C:\Windows\WindowsUpdate.log | Measure-Object -Line -Word -
Character

Lines Words Characters Property
----- ----- ---------- --------
 3 32 268

Comparing
The Compare-Object command allows collections of objects to be compared to one
another.

Compare-Object must be supplied with a value for the ReferenceObject and
DifferenceObject parameters, which are normally collections or arrays of objects. If both
values are equal, Compare-Object does not return anything by default. For example, both
the Reference and Difference object in the following example are identical:

Compare-Object -ReferenceObject 1, 2 -DifferenceObject 1, 2

If there are differences, Compare-Object will display the results, as shown here:

PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2

InputObject SideIndicator
----------- -------------
 3 <=
 4 <=

Working with Objects in PowerShell Chapter 3

[78]

This shows that the ReferenceObject (the collection on the left) has the values, but the
DifferenceObject (the collection on the right) does not.

Compare-Object has a number of other parameters that may be used to change the
output. The IncludeEqual parameter adds values that are present in both collections to
the output:

PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2 -
IncludeEqual

InputObject SideIndicator
----------- -------------
 1 ==
 2 ==
 3 <=
 4 <=

ExcludeDifferent will omit the results that differ. This parameter makes sense if
IncludeEqual is also set; without this, the command will always return nothing.

The PassThru parameter is used to return the original object instead of the representation
showing the differences. In the following example, it is used to select values that are
common to both the reference and difference objects:

PS> Compare-Object -ReferenceObject 1, 2, 3, 4 -DifferenceObject 1, 2 -
ExcludeDifferent -IncludeEqual -PassThru
1
2

Compare-Object is able to compare based on properties of objects, as well as the simpler
values in the preceding examples. This can be a single property, or a list of properties. For
example, the following command compares the content of C:\Windows\System32 with
C:\Windows\SysWOW64, returning files that have the same name and are the same size in
both:

$reference = Get-ChildItem C:\Windows\System32 -File
$difference = Get-ChildItem C:\Windows\SysWOW64 -File
Compare-Object $reference $difference -Property Name, Length -IncludeEqual
-ExcludeDifferent

Working with Objects in PowerShell Chapter 3

[79]

By default, Compare-Object will write an error if either the reference or difference objects
are null. If Compare-Object is used when there is a chance of either being empty, the
following technique can be used to avoid an error being generated provided neither
contains an explicit null value:

$reference = Get-ChildItem C:\Windows\System32\tcpmon*.ini
$difference = Get-ChildItem C:\Windows\SysWOW64\tcpmon*.ini
Compare-Object @($reference) @($difference) -Property Name

The array, (@()), wrapping each parameter value will be discarded by PowerShell. If
$difference is empty, it will be treated as an empty array instead of it being a null value.

Importing, exporting, and converting
Getting data in and out of PowerShell is a critical part of using the language. There are a
number of commands dedicated to this task by default.

The Export-Csv command
The Export-Csv command writes data from objects to a text file, for example:

Get-Process | Export-Csv processes.csv

By default, Export-Csv will write a comma-delimited file using ASCII encoding and will
completely overwrite any file using the same name.

Export-Csv may be used to add lines to an existing file using the Append parameter.
When the Append parameter is used, the input object must have each of the fields listed in
the CSV header or an error will be thrown unless the Force parameter is used:

PS> Get-Process powershell | Select-Object Name, Id | Export-Csv
.\Processes.csv
PS> Get-Process explorer | Select-Object Name | Export-Csv .\Processes.csv
-Append
Export-Csv : Cannot append CSV content to the following file:
.\Processes.csv.
The appended object does not have a property that corresponds to the
following column: Id. To continue with mismatched properties, add the -
Force parameter, and then retry the command.
At line:2 char:51
 + ... ershell_ise | Select-Object Name | Export-Csv .\Processes.csv -
Append
 + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Working with Objects in PowerShell Chapter 3

[80]

 + CategoryInfo : InvalidData: (Id:String) [Export-Csv],
InvalidOperationException
 + FullyQualifiedErrorId :
CannotAppendCsvWithMismatchedPropertyNames,Microsoft.PowerShell.Commands.Ex
portCsvCommand

If the Append parameter is used and the input object has more fields than the CSV, the extra
fields will be silently dropped when writing the CSV file. For example, the value held in Id
will be ignored when writing the results to the existing CSV file:

Get-Process powershell | Select-Object Name | Export-Csv .\Processes.csv
Get-Process explorer | Select-Object Name, Id | Export-Csv .\Processes.csv
-Append

Export-Csv in Windows PowerShell will write a header line to each file, which details the
.NET type it has just exported. If the preceding example is used, that will be the following:

#TYPE Selected.System.Diagnostics.Process

Export-Csv can be instructed to exclude this header using the NoTypeInformation
parameter:

Get-Process | Export-Csv processes.csv -NoTypeInformation

ConvertTo-Csv in Windows PowerShell is similar to Export-Csv, except that instead of
writing content to a file, content is written as command output:

PS> Get-Process powershell | Select-Object Name, Id | ConvertTo-Csv
#TYPE Selected.System.Diagnostics.Process
"Name","Id"
"powershell","404"

PowerShell Core: No more type information

In PowerShell Core, this behavior has changed. The NoTypeInformation
parameter for Export-Csv and ConvertTo-Csv is present, but it now
has a default value of true. The
IncludeTypeInformation parameter has been added to request this
value in the output.

Both Export-Csv and ConvertTo-Csv are limited in what they can do with arrays of
objects. For example, ConvertTo-Csv is unable to display the values that are in an array:

PS> [PSCustomObject]@{
>> Name = "Numbers"
>> Value = 1, 2, 3, 4, 5

Working with Objects in PowerShell Chapter 3

[81]

>> } | ConvertTo-Csv -NoTypeInformation
"Name","Value"
"Numbers","System.Object[]"

The value it writes is taken from the ToString method, which is called on the property
called Value, for example:

PS> $object = [PSCustomObject]@{
>> Name = "Numbers"
>> Value = 1, 2, 3, 4, 5
>> }
PS> $object.Value.ToString()

System.Object[]

If a CSV file is expected to hold the content of an array, code must be written to convert it
into a suitable format. For example, the content of the array can be written after converting
it in to a string:

PS> [PSCustomObject]@{
>> Name = "Numbers"
>> Value = 1, 2, 3, 4, 5
>> } | ForEach-Object {
>> $_.Value = $_.Value -join ', '
>> $_
>> } | ConvertTo-Csv -NoTypeInformation

"Name","Value"
"Numbers","1, 2, 3, 4, 5"

In the preceding example, the value of the property is joined using a comma followed by a
space. The modified object (held in $_) is passed on to the ConvertTo-Csv command.

The Import-Csv command
Comma-Separated Value (CSV) files are plain text. Applications such as Microsoft Excel
can work with CSV files without changing the file format, although the advanced features
Excel has cannot be saved to a CSV file.

By default, Import-Csv expects input to have a header row, to be comma delimited, and to
use ASCII file encoding. If any of these items are different, the command parameters may be
used. For example, a tab may be set as the delimiter:

Import-Csv TabDelimitedFile.tsv -Delimiter `t

Working with Objects in PowerShell Chapter 3

[82]

A tick followed by t (`t) is used to represent the tab character in PowerShell.

Data that's imported using Import-Csv will always be formatted as a string. If Import-
Csv is used to read a file containing the following text, each of the numbers will be treated
as a string:

Name,Position
Jim,35
Matt,3
Dave,5

Attempting to use Sort-Object on the imported CSV file will result in values being sorted
as if they were strings, not numbers:

PS> Import-Csv .\positions.csv | Sort-Object Position

Name Position
---- --------
Matt 3
Jim 35
Dave 5

Sort-Object can be used to consider the value for Position as an integer by using a
script block expression:

PS> Import-Csv .\positions.csv | Sort-Object { [Int]$_.Position }

Name Position
---- --------
Matt 3
Dave 5
Jim 35

This conversion problem exists regardless of whether the data in a CSV file is a number, or
a date, or any type other than string.

ConvertFrom-Csv is similar to Import-Csv, except that content is read from PowerShell
instead of a file:

PS> "powershell,404" | ConvertFrom-Csv -Header Name, Id

Name Id
---- --
powershell 404

Working with Objects in PowerShell Chapter 3

[83]

Export-Clixml and Import-Clixml
Export-Clixml creates representations of objects in XML files. Export-Clixml is
extremely useful where type information about each property must be preserved.

For example, the following object may be exported using Export-Clixml:

[PSCustomObject]@{
 Number = 1
 Decimal = 2.3
 String = 'Hello world'
} | Export-Clixml .\object.xml

The resulting XML file shows the type for each of the properties it has just exported:

PS> Get-Content object.xml
<Objs Version="1.1.0.1"
xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="0">
 <TN RefId="0">
 <T>System.Management.Automation.PSCustomObject</T>
 <T>System.Object</T>
 </TN>
 <MS>
 <I32 N="Number">1</I32>
 <Db N="Decimal">2.3</Db>
 <S N="String">Hello world</S>
 </MS>
 </Obj>
</Objs>

I32 is a 32-bit integer (Int32). Db is a double-precision floating-point number (double). S is
a string.

With this extra information in the file, PowerShell can rebuild the object, including the
different types, using Import-Clixml, as follows:

$object = Import-Clixml .\object.xml

Once imported, the value types can be inspected using the GetType method:

PS> $object.Decimal.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
 True True Double System.ValueType

Working with Objects in PowerShell Chapter 3

[84]

Summary
In this chapter, we have explored the object pipeline, as well as objects themselves.

Many of the commands for working with objects in a pipeline were introduced. This
includes the ability to filter and select from sets of objects to sort, group, and measure.

Finally, we explored exporting, importing, and converting objects. In Chapter 4, Operators,
we will explore PowerShell's operators.

4
Operators

In programming, an operator is an object that is used to manipulate an item of data.
Operators have a wide variety of uses, from comparing two values and replacing values, to
allowing command names to be expressed as string. An operator is truly a fundamental
part of any programming language and PowerShell is not exception.

PowerShell has a wide variety of operators; most of these will be briefly explored within
this chapter.

In this chapter, we are going to cover the following topics:

Arithmetic operators
Assignment operators
Comparison operators
Regular expression-based operators
Binary operators
Logical operators
Type operators
Redirection operators
Other operators

Operators Chapter 4

[86]

Arithmetic operators
Arithmetic operators are used to perform numeric calculations. The operators that are
available are available to us in PowerShell are as follows:

Addition: +
Subtraction: -
Multiplication: *
Division: /
Remainder: %
Shift left: -shl
Shift right: -shr

As well as its use in numeric calculations, the addition operator may also be used with
strings, arrays, and hashtables, and the multiplication operator may also be used with
strings and arrays.

The sections below explore each of the operators listed above.

Operator precedence
Mathematical operations are executed in a specific order. For example, consider the
following two simple calculations:

3 + 2 * 2
2 * 2 + 3

The result of both of the preceding expressions is 7 (2 multiplied by 2, then add 3).

PowerShell, and most other programming languages, will calculate elements of an
expression using multiplication (*), division (/), and remainder (%) first. Addition (+) and
subtraction (-) are calculated next.

PowerShell has two additional operators in this category, -shl and -shr. These two have
the lowest precedence and are only executed after other operations. For example, the result
of the following calculation will be 128:

2 * 4 -shl 2 + 2

First, 2 * 4 is calculated, followed by 2 + 2, and then -shl is used. The -shl operator is
discussed in detail in Shift left and shift right operators.

Operators Chapter 4

[87]

Consider the following example:

(3 + 2) * 2

Expressions in parentheses are always calculated first to cater for more advanced situations.
For example, the result of the above calculation is 10.

Addition and subtraction operators
The addition and subtraction operators, + and -, are most easily recognisable as arithmetic
operators. The addition operator also serves as a concatenation operator.

Addition operators
The addition operator may be used to add numeric values. For example, the simple
addition operation below will result in the value 5.14159:

2.71828 + 3.14159

The addition operator may also be used to concatenate strings:

'hello' + ' ' + 'world'

If an attempt is made to concatenate a string with a number, the number will be converted
into a string:

'hello number ' + 1

This style of operation will fail if the number is used first. PowerShell expects the entire
expression to be numeric if that is how it begins:

PS> 1 + ' is the number I like to use'
Cannot convert value "is the number I like to use" to type "System.Int32".
Error: "Input string was not in a correct format."
At line:1 char:1
+ 1 + ' is the number I like to use'
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

The addition operator may be used to add single elements to an existing array. As arrays
are of fixed size, PowerShell will create a new array containing 1, 2, and 3:

@(1, 2) + 3

Operators Chapter 4

[88]

Joining arrays with the addition operator is simple. Each of the following three examples
creates an array and each array contains the values 1, 2, 3, and 4:

@(1, 2) + @(3, 4)
(1, 2) + (3, 4)
1, 2 + 3, 4

Hashtables may be joined in a similar manner:

@{key1 = 1} + @{key2 = 2}

The addition operation will fail if keys are duplicated as part of the addition operation:

PS> @{key1 = 1} + @{key1 = 2}
Item has already been added. Key in dictionary: 'key1' Key being added:
'key1'
At line:1 char:1
+ @{key1 = 1} + @{key1 = 2}
+ ~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException

Subtraction operator
The subtraction operator may only be used for numeric expressions. The results of the
following expressions are 3 and -18, respectively:

5 - 2
2 - 20

Subtraction is a simple but important operation. The sections below explore multiplication,
division, and remainder.

Multiplication, division, and remainder operators
Like the addition operator, the multiplication operator is capable of acting on strings. The
division and remainder operators perform mathematical operations only.

Operators Chapter 4

[89]

Multiplication operator
The multiplication operator is able to perform simple numeric operations. For example, the
result of the following expression is 5:

2.5 * 2

The multiplication operator may also be used to duplicate strings, resulting in
hellohellohello:

'hello' * 3

As with the addition operator, the multiplication operator will throw an error if a number is
on the left of the expression:

PS> 3 * 'hello'
Cannot convert value "hello" to type "System.Int32". Error: "Input string
was not in a correct format."
At line:1 char:2
+ 3 * 'hello'
+ ~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

The multiplication operator may also be used to duplicate arrays. Each of the following
examples creates an array containing one, two, one, and two:

@('one', 'two') * 2
('one', 'two') * 2
'one', 'two' * 2

Division operator
The division operator performs numeric division:

20 / 5

An error will be thrown if an attempt to divide by 0 is made:

PS> 1 / 0
Attempted to divide by zero.
At line:1 char:1
+ 1 / 0
+ ~~~~~
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

Operators Chapter 4

[90]

Division using negative numbers is permitted in PowerShell. When a positive number is
divided by a negative number, the result will be negative.

Remainder operator
The remainder operator returns the remainder of the whole-number (integer) division. For
example, the result of the following operation is 1:

3 % 2

The remainder operator can also be used for alternation. That is, performing an action on
every second, third, fourth, and so on iteration of a loop.

1..100 | Where-Object { $_ % 5 -eq 0 } | ForEach-Object {
 Write-Host $_
}

The value will show 5, 10, 15, 20, and so on. Each of those values will have a remainder of
when divided by 5.

Shift left and shift right operators
The -shl and -shr operators were introduced with PowerShell 3.0. These operators
perform bit-shifting.

The possible bit values for a byte can be represented as a table:

Bit position 1 2 3 4 5 6 7 8
Bit value 128 64 32 16 8 4 2 1

For a numeric value of 78, the following bits must be set:

Bit value 128 64 32 16 8 4 2 1
On or off 0 1 0 0 1 1 1 0

When a left shift operation is performed, every bit is moved one to the left. Say we run this
expression:

78 -shl 1

Operators Chapter 4

[91]

The result is 156, which is expressed in this bit table:

Bit value 128 64 32 16 8 4 2 1
Before shift 0 1 0 0 1 1 1 0
After shift 1 0 0 1 1 1 0 0

Shifting one bit to the right will reverse the operation:

PS> 156 -shr 1
78

When converting values using left or right shifting, bits that are set and right-shifted past
the rightmost bit (bit value 1) become 0, for example:

PS> 3 -shr 1
1

This is expressed in the following table. Bits that end up in the rightmost column are
discarded:

Bit value 128 64 32 16 8 4 2 1 Out of range
Before shift 0 0 0 0 0 0 1 1
After shift 0 0 0 0 0 0 0 1 1

If the numeric value is of a specific numeric type, the resulting number cannot exceed the
maximum value for the type. For example, a Byte has a maximum value of 255; if the
value of 255 is shifted one bit to the left, the resulting value will be 254:

PS> ([Byte]255) -shl 1
254

Shifting out of range is shown in this table:

Bit value Out of range 128 64 32 16 8 4 2 1
Before shift 1 1 1 1 1 1 1 1
After shift 1 1 1 1 1 1 1 1 0

If the value were capable of being larger, such as a 16 or 32-bit integer, the value would be
allowed to increase as it no longer falls out of range:

PS> ([Int16]255) -shl 1
510

Operators Chapter 4

[92]

Bit shifting like this is easiest to demonstrate with unsigned types such as Byte, UInt16,
UInt32, and UInt64. Unsigned types cannot support values lower than 0 (negative
numbers).

Signed types, such as SByte, Int16, Int32, and Int64, sacrifice their highest-order bit to
indicate whether the value is positive or negative. For example, this table shows the bit
positions for a signed byte (SByte):

Bit position 1 2 3 4 5 6 7 8
Bit value Signing 64 32 16 8 4 2 1

The preceding bit values may be used to express numbers between 127 and -128. The
binary forms of 1 and -1 are shown as an example in the following table:

Bit value Signing 64 32 16 8 4 2 1
1 0 0 0 0 0 0 0 1
-1 1 1 1 1 1 1 1 1

For a signed type, each bit (except for signing) adds to a minimum value:

When the signing bit is not set, add each value to 0
When the signing bit is set, add each value to -128

When applying this to left shift, if the value of 64 is shifted one bit to the left, it becomes
-128:

PS> ([SByte]64) -shl 1
-128

The shift into the signing bit is expressed in the following table:

Bit value Signing 64 32 16 8 4 2 1
Before shift 0 1 0 0 0 0 0 0
After shift 1 0 0 0 0 0 0 0

Shift operations such as these are common in the networking world. For example, the IP
address 192.168.4.32 may be represented in a number of different ways:

In hexadecimal: C0A80420
As an unsigned 32-bit integer: 3232236576
As a signed 32-bit integer: -1062730720

Operators Chapter 4

[93]

The signed and unsigned versions of an IP address are calculated using left shift. For
example, the IP address 192.168.4.32 may be written as a signed 32-bit integer (Int32):

(192 -shl 24) + (168 -shl 16) + (4 -shl 8) + 32

Shift operations such as these can be useful but are not common. The next section explores
assignment the assignment operator.

Assignment operators
Assignment operators are used to give values to variables. The assignment operators that
are available are as follows:

Assign: =
Add and assign: +=
Subtract and assign: -=
Multiply and assign: *=
Divide and assign: /=
Modulus and assign: %=

As with the arithmetic operators, add and assign may be used with strings, arrays, and
hashtables. Multiply and assign may be used with strings and arrays.

Assign, add and assign, and subtract and assign
The assignment operator (=) is used to assign values to variables and properties, for
example, let's look at assigning a value to a variable:

$variable = 'some value'

Or, we might change the PowerShell window title by assigning a new value to its property:

$host.UI.RawUI.WindowTitle = 'PowerShell window'

The add and assign operator (+=) operates in a similar manner to the addition operator. The
following example assigns the value 1 to a variable, then += is used to add 20 to that value:

$i = 1
$i += 20

Operators Chapter 4

[94]

The preceding example is equivalent to writing the following:

$i = 1
$i = $i + 20

The += operator may be used to concatenate strings:

$string = 'one'
$string += 'one'

As we saw with the addition operator, attempting to add a numeric value to an existing
string is acceptable. Attempting to add a string to a variable containing a numeric value is
not:

PS> $variable = 1
PS> $variable += 'one'
Cannot convert value "one" to type "System.Int32". Error: "Input string was
not in a correct format."
At line:2 char:1
+ $variable += 'one'
+ ~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

It is possible to work around this by assigning a type to the variable:

[String]$string = 1
$string += 'one'

The += operator may be used to add single elements to an existing array:

$array = 1, 2
$array += 3

You can also use it to add another array:

$array = 1, 2
$array += 3, 4

The += operator may be used to join together two hashtables:

$hashtable = @{key1 = 1}
$hashtable += @{key2 = 2}

As we saw using the addition operator, the operation will fail if one of the keys already
exists.

Operators Chapter 4

[95]

The subtract and assign operator (-=) is intended for numeric operations, as shown in the
following examples:

$i = 20
$i -= 2

After this operation has completed, $i will be assigned a value of 18.

Multiply and assign, divide and assign, and
modulus and assign
Numeric assignments using the multiply and assign operator may be performed using *=.
The value held by the variable i will be 4:

$i = 2 $i *= 2

The multiply and assign operator may be used to duplicate a string held in a variable:

$string = 'one'
$string *= 2

The value on the right-hand side of the *= operator must be numeric or must be able to
convert to a number. For example, a string containing the number 2 is acceptable:

$string = 'one'
$string *= '2'

Using a string that is unable to convert to a number results in an error, as follows:

PS> $variable = 'one'
PS> $variable *= 'one'

Cannot convert value "one" to type "System.Int32". Error: "Input string was
not in a correct format."
At line:2 char:1
+ $variable *= 'one'
+ ~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [], RuntimeException
 + FullyQualifiedErrorId : InvalidCastFromStringToInteger

The multiply and assign operator may be used to duplicate an array held in a variable. In
the following example, the variable will hold the values 1, 2 , 1, and 2 after this operation:

$variable = 1, 2
$variable *= 2

Operators Chapter 4

[96]

The assign and divide operator is used to perform numeric operations. The variable will
hold a value of 1 after the following operation:

$variable = 2
$variable /= 2

The remainder and assign operator assigns the result of the remainder operation to a
variable:

$variable = 10
$variable %= 3

After the preceding operation, the variable will hold a value of 1, which is the remainder
when dividing 10 by 3.

Comparison operators
Comparison operators are used for comparing two mathematical expressions which results
in true, false or unknown.

PowerShell has a wide variety of comparison operators which are as follows:

Equal to and not equal to: -eq and -ne
Like and not like: -like and -notlike
Greater than and greater than or equal to: -gt and -ge
Less than and less than or equal to: -lt and -le
Contains and not contains: -contains and -notcontains
In and not in: -in and -notin

Case-sensitivity
None of the comparison operators are case-sensitive by default. Each of the comparison
operators has two additional variants, one which explicitly states it is case-sensitive, and
another which explicitly states it is case insensitive.

For example, the following statement returns true:

'Trees' -eq 'trees'

Operators Chapter 4

[97]

Adding a c modifier in front of the operator name forces PowerShell to make a case-
sensitive comparison. The following statement will return false:

'Trees' -ceq 'trees'

In addition to the case-sensitive modifier, PowerShell also has an explicit case insensitive
modifier. In the following example, the statement returns True:

'Trees' -ieq 'trees'

However, as case insensitive comparison is the default, it is extremely rare to see examples
of the i modifier.

These behaviour modifiers can be applied to all of the comparison operators.

Comparison operators and arrays
When comparison operators are used with scalar values (a single item as opposed to an
array), the comparison will result in true or false.

When used with an array or collection, the result of the comparison is all matching
elements, for example:

1, $null -ne $null # Returns 1
1, 2, 3, 4 -ge 3 # Returns 3, 4
'one', 'two', 'three' -like '*e*' # Returns one and three

This behaviour may be problematic if a comparison is used to test whether or not a variable
holding an array exists. In the following example, -eq is used to test that a value has been
assigned to a variable called array:

$array = 1, 2
if ($array -eq $null) { Write-Host 'Variable not set' }

This test is apparently valid as long as the array does not hold two or more null values.
When two or more values are present, the condition unexpectedly returns true:

PS> $array = 1, 2, $null, $null
PS> if ($array -eq $null) { Write-Host 'No values in array' }

No values in array

Operators Chapter 4

[98]

This happens because the result of the comparison is an array with two null values. If it
were a single null value, PowerShell would flatten the array. With two values, it cannot:

[Boolean]@($null) # Returns false
[Boolean]@($null, $null) # Returns true

To avoid this problem, null must be on the left-hand side of the expression. For example,
the following Write-Host statement will not execute:

$array = 1, 2, $null, $null
if ($null -eq $array) { Write-Host 'Variable not set' }

In this case, the array is not expanded, null is compared with the entire array. The result
will be false, the array variable is set.

Equal to and not equal to
The -eq (equal to) and -ne (not equal to) operators perform exact (and, by default, case
insensitive) comparisons. In the example below, the following returns true:

1 -eq 1
'string' -eq 'string'
[char]'a' -eq 'A'
$true -eq 1
$false -eq 0

Similarly, -ne (not equal) will return true for each of the following:

20 -ne 100
'this' -ne 'that'
$false -ne 'false'

The last example compares $false, the Boolean, with a string containing the word false.
PowerShell will attempt to convert the word, but as the word is not an empty string, the
result will be true.

Operators Chapter 4

[99]

Like and not like
The -like and -notlike operators support simple wildcards. * matches a string of any
length (zero or more) and ? matches a single character. Each of the following examples
returns true:

'The cow jumped over the moon' -like '*moon*'
'Hello world' -like '??llo w*'
'' -like '*'
'' -notlike '?*'

Behind the scenes, PowerShell turns expressions used with -like and -notlike into
regular expressions.

Greater than and less than
When comparing numbers, each of the operators -ge (greater than or equal to), -gt
(greater than), -le (less than or equal to), and -lt (less than) are simple to use:

1 -ge 1 # Returns true
2 -gt 1 # Returns true
1.4 -lt 1.9 # Returns true
1.1 -le 1.1 # Returns true

String comparison with operators follows the generalised pattern
of 0123456789aAbBcCdD..., rather than basing it on a character table (such as ASCII):

Cultural variants of characters, for example, the character å, fall between A and b
in the list.
Other alphabets, for example Cyrillic or Greek, come after the Roman alphabet
(after Z).

Comparison can be culture sensitive when using commands such as Sort-Object with the
culture parameter, but comparisons are always based on en-US when using the
operators:

'apples' -lt 'pears' # Returns true
'Apples' -lt 'pears' # Returns true
'bears' -gt 'Apples' # Returns true

Operators Chapter 4

[100]

This also occurs when using a case-sensitive comparison:

'bears' -gt 'Bears' # False, they are equal to one another
'bears' -clt 'Bears' # True, b before B

The use of greater than and less than with strings may often be difficult to apply. Careful
testing is recommended.

Contains and in
The -contains, -notcontains, -in, and -notin operators are used to test the content of
arrays.

When using -contains or -notcontains, the array is expected to be on the left-hand side
of the operator:

1, 2 -contains 2 # Returns true
1, 2, 3 -contains 4 # Returns false

When using -in or -notin, the array is expected to be on the right-hand side of the
operator:

1 -in 1, 2, 3 # Returns true
4 -in 1, 2, 3 # Returns false

Contains or in?

When using comparison operators, I tend to write the subject on the left
and the object on the right. Comparisons to null are an exception to this
rule. The subject is the variable or property I am testing; the object is the
thing I am testing against. For example, I might set the subject to a user in
Active Directory:
$subject = Get-ADUser -Identity $env:USERNAME -Properties

department, memberOf.

I use contains, where the subject is an array, and the object is a single
value:
$subject.MemberOf -contains

'CN=Group,DC=domain,DC=example'.

I use in, where the subject is a single value, and the object is an array:
$subject.Department -in 'Department1', 'Department2'.

Operators Chapter 4

[101]

Regular expression-based operators
Regular expressions are an advanced form of pattern matching. In PowerShell, a number of
operators have direct support for regular expressions. Regular expressions themselves are
covered in greater detail in Chapter 9, Regular Expressions.

The following operators use regular expressions:

Match: -match
Not match: -notmatch
Replace: -replace
Split: -split

Match and not match
The -match and -notmatch operators return true or false when testing strings:

'The cow jumped over the moon' -match 'cow' # Returns true
'The cow' -match 'The +cow' # Returns true

In the preceding example, the + symbol is reserved; it indicates that The is followed by one
or more spaces before cow.

Match is a comparison operator

Like the other comparison operators, if match is used against an array, it
returns each matching element instead of true or false. The following
comparison will return the values one and three:
"one", "two", "three" -match 'e'

In addition to returning a true or false value about the state of the match, a successful
match will add values to a reserved variable, $matches. For example, the following regular
expression uses a character class to indicate that it should match any character from 0 to 4,
repeated 0 or more times:

'1234567689' -match '[0-4]*'

Operators Chapter 4

[102]

Once the match has been executed, the matches variable (a hashtable) will be populated
with the part of the string that matched the expression:

PS> $matches

Name Value
---- -----
0 1234

Regular expressions use parentheses to denote groups. Groups may be used to capture
interesting elements of a string:

PS> 'Group one, Group two' -match 'Group (.*), Group (.*)'
True

PS> $matches

Name Value
---- -----
2 two
1 one
0 Group one, Group two

In the preceding example, the match operator is run first, then the matches variable is
displayed. The captured value one is held in the first group, and is accessible using either
of the following statements:

$matches[1]
$matches.1

Matches is a hashtable, in the example above 1 is being used as a key to access the capture
group.

Replace
The -replace operator performs replacement based on a regular expression. For example,
it can be used to replace several instances of the same thing:

PS> 'abababab' -replace 'a', 'c'
cbcbcbcb

In the example, a is the regular expression that dictates what must be replaced. 'c' is the
value any matching values should be replaced with.

Operators Chapter 4

[103]

This syntax can be generalised, as follows:

<Value> -replace <Match>, <Replace-With>

If the Replace-With value is omitted, the matches will be replaced with nothing (that is,
they are removed):

PS> 'abababab' -replace 'a'
bbbb

Regular expressions use parentheses to capture groups. The replace operator can use those
groups. Each group may be used in the Replace-With argument. For example, a set of
values can be reversed:

'value1,value2,value3' -replace '(.*),(.*),(.*)', '$3,$2,$1'

The tokens $1, $2, and $3 are references to each of the groups denoted by the
parentheses.When performing this operation, the Replace-With argument must use single
quotes to prevent PowerShell from evaluating the group references as if they were
variables. This problem is shown in the following example. The first attempt works as
expected; the second shows an expanded PowerShell variable instead:

PS> $1 = $2 = $3 = 'Oops'
PS> Write-Host ('value1,value2,value3' -replace '(.*),(.*),(.*)',
'$3,$2,$1') -ForegroundColor Green
PS> Write-Host ('value1,value2,value3' -replace '(.*),(.*),(.*)',
"$3,$2,$1") -ForegroundColor Red

value3,value2,value1
Oops,Oops,Oops

The -replace operator is a incredibly useful and widely used operator in PowerShell.

Split
The -split operator splits a string into an array based on a regular expression.

The following example splits the string into an array containing a, b, c, and d by matching
each of the numbers:

PS> 'a1b2c3d4' -split '[0-9]'
a
b
c
d

Operators Chapter 4

[104]

The results of as split can be assigned to one or more variables. The split operator also
supports a maximum number of split operations, and options for the split operation.
Options include SimpleMatch which changes -split to use a simple wildcard as shown
in the example below.

'a1b2c3d4' -split 'b2', 0, 'SimpleMatch'

The value of 0 in the example above represents an unlimited number of results.

Binary operators
Binary operators are used to perform bitwise operations in PowerShell. That is, operations
based around the bits that make up a numeric value. Each operator returns the numeric
result of a binary operation.

The available operators are:

Binary and: -band
Binary or: -bor
Binary exclusive or: -bxor
Binary not: -bnot

Binary and
The result of -band is a number where each of the bits in both the value on the left and the
value on the right is set.

In the following example, the result is 2:

11 -band 6

This operation can be shown in a table:

Bit value 8 4 2 1
Left-hand side 11 1 0 1 1
Right-hand side 6 0 1 1 0
-band 2 0 0 1 0

The result is a number where both the left-hand side and right-hand side include the bit.

Operators Chapter 4

[105]

Binary or
The result of -bor is a number where the bits are set in either the value on the left or right.

In the following example, the result is 15:

11 -bor 12

This operation can be shown in a table:

Bit value 8 4 2 1
Left-hand side 11 1 0 1 1
Right-hand side 12 1 1 0 0
-band 15 1 1 1 1

The result is a number made up of the bits from each number where either number has the
bit set.

Binary exclusive or
The result of -bxor is a number where the bits are set in either the value on the left or the
value on the right, but not both.

In the following example, the result is 11:

6 -bxor 13

This operation can be shown in a table:

Bit value 8 4 2 1
Left-hand side 6 0 1 1 0
Right-hand side 13 1 1 0 1
-band 11 1 0 1 1

The -bxor operator is useful for toggling bit values. For example, bxor might be used to
toggle the AccountDisable bit of UserAccountControl in Active Directory:

512 -bxor 2 # Result is 514 (Disabled, 2 is set)
514 -bxor 2 # Result is 512 (Enabled, 2 is not set)

Operators Chapter 4

[106]

Binary not
The -bnot operator is applied before a numeric value; it does not use a value on the left-
hand side. The result is a value that's composed of all bits that are not set.

The -bnot operator works with signed and unsigned 32-bit and 64-bit integers (Int32,
UInt32, Int64, and UInt64). When working with 8-bit or 16-bit integers (SByte, Byte,
Int16, and UInt16), the result is always a signed 32-bit integer (Int32).

In the following example, the result is -123:

-bnot 122

As the preceding result is a 32-bit integer (Int32), it is difficult to show the effect in a small
table. If this value were a SByte, the operation could be expressed in a table as follows:

Bit value Signing 64 32 16 8 4 2 1
Before -bnot 122 0 1 1 1 1 0 1 0
After -bnot -123 1 0 0 0 0 1 0 1

As shown in the table above, the -bnot operator reverses the value for each bit. The signing
bit is not treated any differently.

Logical operators
Logical operators are used to evaluate two or more comparisons or other operations that
produce a Boolean (true or false) result.

The following logic operators are available:

And: -and
Or: -or
Exclusive or: -xor
Not: -not and !

And
The -and operator will return true if the values on the left-hand and right-hand side are
both true.

Operators Chapter 4

[107]

For example, each of the following returns true:

$true -and $true
1 -lt 2 -and "string" -like 's*'
1 -eq 1 -and 2 -eq 2 -and 3 -eq 3
(Test-Path C:\Windows) -and (Test-Path 'C:\Program Files')

Or
The -or operator will return true if either the value on the left, or the value on the right, or
both are true.

For example, each of the following returns true:

$true -or $true
2 -gt 1 -or "something" -ne "nothing"
1 -eq 1 -or 2 -eq 1
(Test-Path C:\Windows) -or (Test-Path D:\Windows)

Exclusive or
The -xor operator will return true if either the value on the left is true, or the value on
the right is true, but not both.

For example, each of the following returns true:

$true -xor $false
1 -le 2 -xor 1 -eq 2
(Test-Path C:\Windows) -xor (Test-Path D:\Windows)

The -xor operator is perhaps one of the most rarely used in PowerShell.

Not
The -not (or !) operator may be used to negate the expression that follows it.

Operators Chapter 4

[108]

For example, each of the following returns true:

-not $false
-not (Test-Path X:\)
-not ($true -and $false)
!($true -and $false)

Double negatives

The -not operator has an important place, but it is worth rethinking an
expression if it injects a double negative. For example, the following
expression will return true: -not (1 -ne 1).

The preceding expression is better written using the -eq operator: 1 -eq
1.

Type operators
Type operators are designed to work with .NET types. The following operators are
available:

As: -as
Is: -is
Is not: -isnot

These operators may be used to convert an object of one type into another, or to test
whether or not an object is of a given type.

As
The -as operator is used to convert a value into an object of the specified type. The
operator returns null (without throwing an error) if the conversion cannot be completed.

For example, the operator may be used to perform the following conversions:

"1" -as [Int32]
'String' -as [Type]

The -as operator can be useful for testing whether or not a value can be cast to a specific
type, or whether a specific type exists.

Operators Chapter 4

[109]

For example, the System.Web assembly is not imported by default and the
System.Web.HttpUtility class does not exist. The -as operator may be used to test for
this condition:

PS> if (-not ('System.Web.HttpUtility' -as [Type])) {
>> Write-Host 'Adding assembly' -ForegroundColor Green
>> Add-Type -Assembly System.Web
>> }
Adding assembly

If the System.Web assembly has not been imported, attempting to turn the string,
System.Web.HttpUtility, into a type will fail. The failure to convert will not generate an
error.

is and isnot
The -is and -isnot operators test whether or not a value is of the specified type.

For example, each of the following returns true:

'string' -is [String]
1 -is [Int32]
[String] -is [Type]
123 -isnot [String]

The -is and -isnot operators are very useful for testing the exact type of a value without
needing to use more complex methods.

Redirection operators
In Chapter 3, Working with Objects in PowerShell, we started exploring the different output
streams PowerShell utilizes.

Information from a command may be redirected using the redirection operator >.
Information may be sent to another stream or a file.

For example, the output from a command can be directed to a file. The file will contain the
output as it would have been displayed in the console:

PS> Get-Process -Id $pid > process.txt
PS> Get-Content process.txt

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

Operators Chapter 4

[110]

------- ------ ----- ----- ------ -- -- -----------
 731 57 132264 133156 1.81 11624 1 powershell_ise

Each of the streams in PowerShell has a number associated with it. These are shown in the
following table:

Stream name Stream number
Standard out 1
Error 2
Warning 3
Verbose 4
Debug 5
Information 6

Each of the streams above can be redirected. In most cases PowerShell provides parameters
for commands which can be used to capture the streams when used. For example, the
ErrorVariable and WarningVariable parameters.

About Write-Host

Before PowerShell 5, the output written using the Write-Host command
could not be captured, redirected, or assigned to a variable. In PowerShell
5, Write-Host has become a wrapper for Write-Information and is
sent to the information stream.

Information written using Write-Host is unaffected by the
InformationPreference variable and the InformationAction
parameter, except when either is set to Ignore.

When InformationAction for the Write-Host command is set to
Ignore, the output will be suppressed. When Ignore is set for the
InformationPreference variable, an error is displayed, stating that it is
not supported.

Redirection to a file
Output from a specific stream may be directed by placing the stream number on the left of
the redirect operator.

Operators Chapter 4

[111]

For example, the output written by Write-Warning can be directed to a file:

PS> function Test-Redirect{
>> 'This is standard out'
>> Write-Warning 'This is a warning'
>> }
PS> $stdOut = Test-Redirect 3> 'warnings.txt'
PS> Get-Content 'warnings.txt'
This is a warning

When using the redirect operator, any file of the same name is overwritten. If information
must be added to a file, the operator becomes >>:

$i = 1
function Test-Redirect{
 Write-Warning "Warning $i"
}
Test-Redirect 3> 'warnings.txt' # Overwrite
$i++
Test-Redirect 3>> 'warnings.txt' # Append

It is possible to redirect additional streams, for example, warnings and errors, by adding
more redirect statements. The following example redirects the error and warning streams to
separate files:

function Test-Redirect{
 'This is standard out'
 Write-Error 'This is an error'
 Write-Warning 'This is a warning'
}
Test-Redirect 3> 'warnings.txt' 2> 'errors.txt'

The wildcard character * may be used to represent all streams if all content was to be sent
to a single file:

$verbosePreference = 'continue'
function Test-Redirect {
 'This is standard out'

 Write-Information 'This is information'
 Write-Host 'This is information as well'
 Write-Error 'This is an error'
 Write-Verbose 'This is verbose'
 Write-Warning 'This is a warning'
}
Test-Redirect *> 'alloutput.txt'

Operators Chapter 4

[112]

The preceding example starts by setting the verbosePreference variable. Without this, or
the addition of the verbose parameter to the Write-Verbose command, the output from
Write-Verbose will not be shown at all.

Redirecting streams to standard output
Streams can be redirected to standard output in PowerShell. The destination stream is
written on the right-hand side of the redirect operator (without a space). Stream numbers
on the right-hand side are prefixed with an ampersand (&) to distinguish the stream from a
filename.

Only Stdout

Each of the following examples shows redirection to Stdout. It is not
possible to redirect to streams other than standard output.

For example, the Information output written by the following command is sent to
standard output:

PS> function Test-Redirect{
>> 'This is standard out'
>> Write-Information 'This is information'
>> }
PS> $stdOut = Test-Redirect 6>&1
PS> $stdOut

This is standard out
This is information

It is possible to redirect additional streams, for example, warnings and errors, by adding
more redirect statements. The following example redirects the error and warning streams to
standard output:

function Test-Redirect {
 'This is standard out'
 Write-Error 'This is an error'
 Write-Warning 'This is a warning'
}
$stdOut = Test-Redirect 2>&1 3>&1

Operators Chapter 4

[113]

The wildcard character * may be used to represent all streams if all streams were to be sent
to another stream:

$verbosePreference = 'continue'
function Test-Redirect {
 'This is standard out'
 Write-Information 'This is information'
 Write-Host 'This is information as well'
 Write-Error 'This is an error'
 Write-Verbose 'This is verbose'
 Write-Warning 'This is a warning'
}
$stdOut = Test-Redirect *>&1

The preceding example starts by setting the verbose preference variable. Without this, the
output from Write-Verbose will not be shown at all.

Redirection to null
Redirecting output to null is a technique that's used to drop unwanted output. The
$null variable takes the place of the filename:

Get-Process > $null

The preceding example redirects standard output (stream 1) to nothing. This is equivalent
to using an empty filename:

Get-Process > ''

The stream number or * may be included to the left of the redirect operator. For example,
warnings and errors might be redirected to null:

.\somecommand.exe 2> $null 3> $null

.\somecommand.exe *> $null

Redirection like this is most commonly used with native executables; redirection is often
unnecessary with PowerShell commands.

Operators Chapter 4

[114]

Other operators
PowerShell has a wide variety of operators, a few of which do not easily fall into a specific
category, including the following:

Call: &
Comma: ,
Format: -f
Increment and decrement: ++ and --
Join: -join

Each of these operators is in common use. The call operator can run a command based on a
string, to the format operator which can be used to build up complex strings, and so on.

Call
The call operator is used to execute a string or script block. For example, the call operator
may be used to execute the ipconfig command using a variable:

$command = 'ipconfig'
& $command

Or, it may be used to execute a scriptBlock:

$scriptBlock = { Write-Host 'Hello world' }
& $scriptBlock

The call operator accepts a list of arguments that can be passed to the command. For
example, the displaydns parameter can be passed into the ipconfig command:

& 'ipconfig' '/displaydns'

The call operator is also used when calling a script or a command with a space in the path.
The list of arguments can be placed in an array.

Comma
The comma operator may be used to separate elements in an array, for example:

$array = 1, 2, 3, 4

Operators Chapter 4

[115]

If the comma operator is used before a single value, it creates an array containing one
element:

$array = ,1

When working with functions, the comma operator can be used to emit an array as an
object. PowerShell will expand an array by default. The Write-Output command can be
used with the NoEnumerate parameter to achieve the same thing.

Format
The -f operator can be used to create complex formatted strings. The syntax for the format
operator is inherited from .NET; MSDN has a number of advanced examples: https:/ /
msdn.microsoft.com/ en- us/ library/ system. string. format(v= vs. 110). aspx#Starting.

The -f operator uses a number in curly braces ({<number>}) in a string on the left of the
operator to reference a value in an array on the right, for example:

'1: {0}, 2: {1}, 3: {2}' -f 1, 2, 3

The format operator is one possible way to assemble complex strings in PowerShell. In
addition to this, it may be used to simplify some string operations. For example, a decimal
may be converted into a percentage:

'The pass mark is {0:P}' -f 0.8

An integer may be converted into a hexadecimal string:

'244 in Hexadecimal is {0:X2}' -f 244

A number may be written as a culture-specific currency:

'The price is {0:C2}' -f 199

Reserved characters

When using the -f operator, curly braces are considered reserved
characters. If a curly brace is to be included in a string as a literal value, it
can be escaped: 'The value in {{0}} is {0}' -f 1.

https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting
https://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx#Starting

Operators Chapter 4

[116]

Increment and decrement
The ++ and -- operators are used to increment and decrement numeric values. The
increment and decrement operators are split into pre-increment and post-increment
versions.

The post-increment operators are frequently seen in for loops. The value for $i is used,
and then incremented by one after use. In the case of the for loop, this happens after all the
statements inside the loop block have executed:

for ($i = 0; $i -le 15; $i++) {
 Write-Host $i -ForegroundColor $i
}

The post-decrement reduces the value by one after use:

for ($i = 15; $i -ge 0; $i--) {
 Write-Host $i -ForegroundColor $i
}

Post-increment and post-decrement operators are often seen when iterating through an
array:

$array = 1..15
$i = 0
while ($i -lt $array.Count) {
 # $i will increment after this statement has completed.
 Write-Host $array[$i++] -ForegroundColor $i
}

Pre-increment and pre-decrement are rarely seen. Instead of incrementing or decrementing
a value after use, the change happens before the value is used, for example:

$array = 1..5
$i = 0
do {
 # $i is incremented before use, 2 will be the first printed.
 Write-Host $array[++$i]
 } while ($i -lt $array.Count -1)

The post-increment operator, ++, is the most commonly used, typically in looping scenarios
like those above.

Operators Chapter 4

[117]

Join
The -join operator joins arrays using a string. In the following example, the string is split
based on a comma, and then joined based on a tab (`t):

PS> "a,b,c,d" -split ',' -join "`t"
a b c d

The join operator may also be used in front of an array, when there is no need for a
separator, for example:

PS> -join ('h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd')
hello world

If the parentheses are excluded from the example, the join operation will be confined to the
first element of the array, the first h character.

Summary
In this chapter, we have explored many of the operators PowerShell has to offer, including
operators for performing arithmetic, assignment, and comparison. Several specialized
operators that use regular expressions were introduced for matching, replacing, and
splitting. Binary, logical, and type operators were demonstrated. Finally, a number of other
significant operators were introduced, including call, format, increment, and decrement,
and the join operator.

In Chapter 5, Variables, Arrays, and Hashtables, are explored in detail.

2
Section 2: Working with Data

In this section, we will work with structured and unstructured data in PowerShell.

The following chapters are included in this section:

Chapter 5, Variables, Arrays, and Hashtables
Chapter 6, Branching and Looping
Chapter 7, Working with .NET
Chapter 8, Strings, Numbers, and Dates
Chapter 9, Regular Expressions
Chapter 10, Files, Folders, and the Registry
Chapter 11, Windows Management Instrumentation
Chapter 12, HTML, XML, and JSON
Chapter 13, Web Requests and Web Services

5
Variables, Arrays, and

Hashtables
This chapter explores variables, along with a detailed look at arrays and hashtables, as
these have their own complexities.

A variable in a programming language allows you to assign a label to a piece of
information or data. A variable can be used and reused in the console, script, or function or
in any other piece of code.

In this chapter, we're going to cover the following topics:

Naming and creating variables
Variable commands
Variable provider
Variable scope
Types and type conversion
Objects assigned to variables
Arrays
Hashtables
Lists, dictionaries, queues, and stacks

A variable may be of any .NET type or object instance. The variable may be a string Hello
World, an integer 42, a decimal 3.141, an array, a hashtable, a ScriptBlock, and so on.
Everything a variable might hold is considered to be an object when used in PowerShell.

Variables, Arrays, and Hashtables Chapter 5

[120]

Naming and creating variables
Variables in PowerShell are preceded by the dollar symbol ($), for example:

$MyVariable

The name of a variable may contain numbers, letters, and underscores. For example, each of
the following is a valid name:

$123
$x
$my_variable
$variable
$varIABle
$Path_To_File

Variables are frequently written in either camel case or upper-camel case (also known as
Pascal case). PowerShell doesn't enforce any naming convention, nor does it exhibit a
convention in any of the automatic variables. For example:

$myVariable is camel case
$MyVariable is upper-camel case, or Pascal case

One of the most commonly accepted practices is that variables used as parameters must use
Pascal case. Variables used only within a script or a function must use camel case.

I suggest making your variable names meaningful so that when you revisit your script
again after a long break, you can identify its purpose. I recommend choosing and
maintaining a consistent style in your own code.

It's possible to use more complex variable names using the following notation:

${My Variable}
${My-Variable}

From time to time, the preceding notation appears in PowerShell, perhaps most often in
dynamically generated code. This convention is otherwise rare and harder to read and
therefore not desirable.

The bracing style has at least one important use. The following example shows an attempt
to embed the var variable in a string:

$var = 'var'
"$variable" # Will not expand correctly
"${var}iable" # Will expand var

Variables, Arrays, and Hashtables Chapter 5

[121]

The braces define a boundary for the variable name. It is otherwise unclear whether
PowerShell should attempt to expand the string.

The following notation, where a file path is written as the variable name, allows variables to
be stored on the filesystem:

${C:\Windows\Temp\variable.txt} = "New value"

Inspecting the given file path shows that the variable value has been written there:

PS> Get-Content C:\Windows\Temp\variable.txt
New value

As with the bracing notation, this is non-standard practice. It may confuse or surprise
anyone reading the code.

Variables don't need to be declared prior to use, nor does a variable need to be assigned a
specific type, for example:

$itemCount = 7
$dateFormat = "ddMMyyyy"
$numbers = @(1, 9, 5, 2)
$psProcess = Get-Process -Name PowerShell

It is possible to assign the same value to several variables in one statement. For example,
this creates two variables, i and j, both with a value of 0:

$i = $j = 0

Variable commands
A number of commands are available to interact with the following variables:

Clear

Get

New

Remove

Set

When using the * variable commands, the $ preceding the variable name isn't considered
part of the name.

Variables, Arrays, and Hashtables Chapter 5

[122]

Clear
The Clear variable removes the value from any existing variable. It does not remove the
variable itself. For example, the following example calls Write-Host twice: on the first
occasion, it writes the variable value; on the second occasion, it does not write anything:

PS> $temporaryValue = "Some-Value"
PS> Write-Host $temporaryValue -ForegroundColor Green

Some-Value

PS> Clear-Variable temporaryValue
PS> Write-Host $temporaryValue -ForegroundColor Green

Get
The Get variable provides access to any variable that has been created in the current
session as well as the default (automatic) variables created by PowerShell. For further
information on automatic variables, refer to about_Automatic_Variables (Get-Help
about_Automatic_Variables).

Default or automatic variables often have descriptions; these may be seen by using the
Get variable and selecting the description:

Get-Variable | Select-Object Name, Description

New
The New variable can be used to create a new variable:

New-Variable -Name today -Value (Get-Date)

This command is the equivalent of using the following:

$today = Get-Date

The New variable gives more control over the created variable. For example, you may wish
to create a constant, a variable that can't be changed following its creation:

New-Variable -Name startTime -Value (Get-Date) -Option Constant

Variables, Arrays, and Hashtables Chapter 5

[123]

Any attempt to modify the variable after creation results in an error message; this includes
changing the variable value or its properties and attempts to remove the variable, as shown
here:

PS> $startTime = Get-Date
Cannot overwrite variable startTime because it is read-only or constant.
At line:1 char:1
+ $startTime = Get-Date
+ ~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : WriteError: (startTime:String) [],
SessionStateUnauthorizedAccessException
 + FullyQualifiedErrorId : VariableNotWritable

A variable cannot be changed into a constant after creation.

Remove
As the name suggests, the Remove variable destroys a variable and any data it may hold.

The Remove variable is used as follows:

$psProcesses = Get-Process powershell
Remove-Variable psProcesses

If more than one variable refers to an object, the object won't be removed. For example, the
following command shows the name of the first process running (conhost.exe, in this
particular case):

PS> $object1 = $object2 = Get-Process | Select-Object -First 1
PS> Remove-Variable object1
PS> Write-Host $object2.Name

conhost

Set
The Set variable allows you to change the value and certain aspects of the created variable.
For example, the following sets the value of an existing variable:

$objectCount = 23
Set-Variable objectCount -Value 42

Variables, Arrays, and Hashtables Chapter 5

[124]

It isn't common to see the Set variable being used in this manner; it is simpler to assign the
new value directly, as was done when the variable was created. As with the New variable,
much of the Set variable's utility comes from the additional parameters it offers, as shown
in the following examples.

Setting a description for a variable is effected as follows:

Set-Variable objectCount -Description 'The number of objects in the queue'

Rendering a variable private is effected as follows:

Set-Variable objectCount -Option Private

Private scope

Private scope is accessible using $private:objectCount. The Set
variable may be used but is not required.

Variable provider
PowerShell includes a variable provider that can be queried as a filesystem using Get-
ChildItem, Test-Path, and so on.

Get-ChildItem may be used to list all of the variables in the current scope by running the
command shown as follows:

Get-ChildItem variable:

The output will include the default variables, as well as any variables created by modules
that might have been imported.

As this behaves much like a filesystem, Test-Path may be used to determine whether or
not a variable exists:

Test-Path variable:\VerbosePreference

Variables, Arrays, and Hashtables Chapter 5

[125]

Set-Item may be used to change the value of a variable or create a new variable:

Set-Item variable:\new -Value variable

Get-Content can also be used to retrieve the content of a variable:

Get-Content variable:\OutputEncoding

The backslash character used in the preceding examples is optional. The output from each
command in the following example will be identical:

$new = 123
Get-Item variable:\new
Get-Item variable:new

Variable scope
Variables may be declared in a number of different scopes. The scopes are as follows:

Local
Global
Private
Script
A numeric scope relative to the current scope

More about scopes

The help document, about_scopes (Get-Help about_scopes),
contains further examples and details.

By default, variables are placed in local scope. Access to variables is hierarchical: a child
(scopes created beneath a parent) can access variables created by the parent (or ancestors).
Variables created in a child scope cannot be accessed from a parent scope.

Variables, Arrays, and Hashtables Chapter 5

[126]

Local and global scope
When creating a variable in the console (outside of functions or script blocks), the local
scope is global. The global scope can be accessed from inside a function (child) because it is
a parent scope:

Remove-Variable thisValue -ErrorAction SilentlyContinue
$Local:thisValue = "Some value"
"From Local: $local:thisValue" # Accessible
"From Global: $global:thisValue" # Accessible

function Test-ThisScope {
 "From Local: $local:thisValue" # Does not exist
 "From Global: $global:thisValue" # Accessible
}

Test-ThisScope

When scopes are explicitly named as this, the source of a variable value can be reasonably
clear. If the scope prefix is removed, PowerShell attempts to resolve the variable by
searching the parent scopes, as follows:

Remove-Variable thisValue -ErrorAction SilentlyContinue
This is still "local" scope
$thisValue = "Some value"

function Test-ThisScope {
 "From Local: $local:thisValue" # Does not exist
 "From Global: $global:thisValue" # Accessible
 "Without scope: $thisValue" # Accessible
}

Test-ThisScope

The thisValue variable was created in the global scope. As the function does not have a
similarly named variable in its local scope, it walks up the scope hierarchy and picks out
the variable from the parent scope.

Variables, Arrays, and Hashtables Chapter 5

[127]

Private scope
The private scope may be accessed using the private prefix, as follows:

$private:thisValue = "Some value"

Moving a variable into the private scope will hide the variable from child scopes:

Remove-Variable thisValue -ErrorAction SilentlyContinue
This is still "local" scope
$private:thisValue = "Some value"
"From global: $global:thisValue" # Accessible

function Test-ThisScope {
 "Without scope: $thisValue" # Not accessible
 "From private: $private:thisValue" # Not accessible
 "From global: $global:thisValue" # Not accessible
}

Test-ThisScope

If the stack depth is increased, the variable search can be made to skip a private variable
within an intermediate function and reference the variable from an ancestor, as shown here:

PS> function bottom {
>> $thisValue = "Bottom"
>> Write-Host "Bottom: $thisValue"
>> middle
>> }
PS> function middle {
>> # Hide thisValue from children
>> $private:thisValue = "Middle" # Middle only
>> Write-Host "Middle: $thisValue"
>> top
>> }
PS> function top {
>> Write-Host "Top: $thisValue" # Original value
>> }
PS> bottom

Bottom: Bottom
Middle: Middle
Top: Bottom

Variables, Arrays, and Hashtables Chapter 5

[128]

Script scope
The script scope is shared across all children in a script or script module. The script scope is
a useful place to store variables that must be shared without exposing the variable to the
global scope (and therefore to anyone with access to the session).

For example, the following short script stores a version number in a script-level variable.
The Get-Version and Set-Version functions both interact with the same variable:

Script file: example.ps1
[Version]$Script:Version = "0.1"

function Get-Version {
 Write-Host "Version: $Version"
}

function Set-Version {
 param(
 [Version]$version
)

 $Script:Version = $version
}

Set-Version 0.2
Write-Host (Get-Version)

The Set-Version function implements a local variable in the param block with the same
name as the script scope variable. To access the script scope variable version, the name
must be prefixed with the scope.

Scope confusion

If variables within a named scope are used, I recommend referencing the
scope whenever the variable is used to make it clear where the values
originate from.
In the preceding example, that means using $Script:Version in the
Get-Version command.

Variables, Arrays, and Hashtables Chapter 5

[129]

Type and type conversion
Type conversion in PowerShell is used to switch between different types of a value. Types
are written between square brackets, in which the type name must be a .NET type, a class,
or an enumeration, such as a string, an integer (Int32), and a date (DateTime).

For example, a date may be changed into a string:

PS> [String](Get-Date)
10/27/2016 13:14:32

Or a string may be changed into a date:

PS> [DateTime]"01/01/2016"

01 January 2016 00:00:00

In a similar manner, variables may be assigned a fixed type. To assign a type to a variable,
the following notation is used:

[String]$thisString = "some value"
[Int]$thisNumber = 2
[DateTime]$date = '01/01/2016'

This adds an argument-type converter attribute to the variable. The presence of this
converter is visible using Get-Variable, although the resultant type is not:

PS> [String]$thisString = "some value"
PS> (Get-Variable thisString).Attributes

TransformNullOptionalParameters TypeId
------------------------------- ------
 True
System.Management.Automation.ArgumentTypeConverterAttribute

Subsequent assignments made to the variable will be converted into a string. This remains
so for the lifetime of the variable: until the session is closed, the variable falls out of scope,
or the variable is removed using Remove-Variable.

Variables, Arrays, and Hashtables Chapter 5

[130]

Setting the variable value to $null does not remove the type conversion attribute. This can
be seen here:

PS> [String]$thisString = 'A string value'
PS> $thisString = $null
PS> $thisString = Get-Process powershell
PS> $thisString.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

PowerShell's type conversion is exceptionally powerful. When converting a value,
PowerShell uses the following conversions:

Direct assignment
Language-based conversion
Parse conversion
Static create conversion
Constructor conversion
Cast conversion
IConvertible conversion
IDictionary conversion
PSObject property conversion
TypeConverter conversion

More about type conversion

The conversion process is extensive, but documentation is available.
The preceding list can be found on an MSDN blog: https:/ /blogs. msdn.
microsoft. com/ powershell/ 2013/ 06/ 11/ understanding- powershells-
type- conversion- magic/ .

Experimentation with the process is a vital part of learning.

https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/
https://blogs.msdn.microsoft.com/powershell/2013/06/11/understanding-powershells-type-conversion-magic/

Variables, Arrays, and Hashtables Chapter 5

[131]

Objects assigned to variables
So far, we've explored one-off assignments of simple value types, and while these values
are considered objects, they're still (reasonably) simple objects. Once created, variables
holding simple values, such as integers and strings, can diverge without affecting one
another.

That is, the numeric value assigned to each variable is independent following creation:

$i = $j = 5

Each of the following commands increases the value held in the i variable by creating a
new integer object (based on the original object):

$i = $j = 5
$i++
$i += 1
$i = $i + 1

If each statement is executed in turn, the i variable will be 8, and the j will be 5 variable .

When changing the value of a property on a more complex object, the change will be
reflected in any variable referencing that object. Consider the following example, where we
create a custom object and assign it to two variables, as follows:

$object1 = $object2 = [PSCustomObject]@{
 Name = 'First object'
}

A change to a property on an object will be reflected in both variables. The action of
changing a property value does not create a new copy of the object. The two variables will
continue to reference the same object:

PS> $object1.Name = 'New name'
PS> Write-Host $object2.Name

New name

The same applies when using nested objects; objects that use other objects as properties:

PS> $complexObject = [PSCustomObject]@{
>> OuterNumber = 1
>> InnerObject = [PSCustomObject]@{
>> InnerNumber = 2
>> }
>> }
PS> $innerObject = $complexObject.InnerObject

Variables, Arrays, and Hashtables Chapter 5

[132]

PS> $innerObject.InnerNumber = 5
PS> Write-Host $complexObject.InnerObject.InnerNumber

5

Arrays
An array contains a set of objects of the same type. Each entry in the array is called an
element, and each element has an index (position). Indexing in an array starts from 0.

Arrays are an important part of PowerShell. When the return from a command is assigned
to a variable, an array will be the result if the command returns more than one object. For
example, the following command will yield an array of objects:

$processes = Get-Process

Array type

In PowerShell, arrays are, by default, given the System.Object[] type
(an array of objects where [] is used to signify that it is an array).

Why System.Object?

All object instances are derived from a .NET type or class, and, in .NET,
every object instance is derived from System.Object (including strings
and integers). Therefore, a System.Object array in PowerShell can hold
just about anything.

Arrays in PowerShell (and .NET) are immutable. The size is declared on creation and
cannot be changed. A new array must be created if an element is to be added or removed.
The array operations described next are considered less efficient for large arrays because of
the recreation overhead involved in changing the array size.

We will explore creating arrays, assigning a type to the array, and selecting elements, as
well as adding and removing elements. We will also take a brief look at how arrays may be
used to fill multiple variables and conclude with a look at multi-dimensional arrays and
jagged arrays.

Variables, Arrays, and Hashtables Chapter 5

[133]

Creating an array
There are a number of ways to create arrays. An empty array (containing no elements) can
be created as follows:

$myArray = @()

An empty array of a specific size may be created using the New object. Using [] after the
name of the type denotes that it is an array, and the number following sets the array size:

$myArray = New-Object Object[] 10 # 10 objects
$byteArray = New-Object Byte[] 100 # 100 bytes
$ipAddresses = New-Object IPAddress[] 5 # 5 IP addresses

An array with a few strings in it can be created as follows:

$myGreetings = "Hello world", "Hello sun", "Hello moon"

Or it can be created as follows:

$myGreetings = @("Hello world", "Hello sun", "Hello moon")

An array may be spread over multiple lines in either the console or a script that may make
it easier to read in a script:

$myGreetings = "Hello world",
 "Hello sun",
 "Hello moon"

You can mix values that are considered to be objects without losing anything:

$myThings = "Hello world", 2, 34.23, (Get-Date)

Arrays with a type
An array may be given a type in similar manner to a variable holding a single value. The
difference is that the type name is followed by [], as was the case when creating an empty
array of a specific size. For example, each of these is an array type, which may appear
before a variable name:

[String[]] # An array of strings
[UInt64[]] # An array of unsigned 64-bit integers
[Xml[]] # An array of XML documents

Variables, Arrays, and Hashtables Chapter 5

[134]

If a type is set for the array, more care must be taken as regards assigning values. If a type is
declared, PowerShell will attempt to convert any value assigned to an array element into
that type.

In this example, $null will become 0 and 3.45 (a double) will become 3 (normal rounding
rules apply when converting integers):

[Int32[]]$myNumbers = 1, 2, $null, 3.45

The following example shows an error being thrown, as a string cannot be converted into
an integer:

PS> [Int32[]]$myNumbers = 1, 2, $null, "A string"
Cannot convert value "A string" to type "System.Int32". Error: "Input
string was not in a correct format."
At line:1 char:1
+ [Int32[]]$myNumbers = 1, 2, $null, "A string"
+ ~~~
 + CategoryInfo : MetadataError: (:) [],
ArgumentTransformationMetadataException
 + FullyQualifiedErrorId : RuntimeException

Adding elements to an array
A single item can be added to the end of an array using the assignment by addition
operator:

$myArray = @()
$myArray += "New value"

The preceding command is equivalent to the following:

$myArray = $myArray + "New value"

In the background, PowerShell creates a new array with one extra element, copies the
existing array in, and then adds the value for the new element before disposing of the
original array. The larger the array, the less efficient this operation becomes.

The same technique can be used to join one array to another, demonstrated as follows:

$firstArray = 1, 2, 3
$secondArray = 4, 5, 6
$mergedArray = $firstArray + $secondArray

Variables, Arrays, and Hashtables Chapter 5

[135]

Selecting elements from an array
Individual elements from an array may be selected using an index. The index counts from 0
to the end of the array. The first and second elements are available using index, 0 and 1:

$myArray = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
$myArray[0]
$myArray[1]

In a similar manner, array elements can be accessed counting backward, from the end. The
last element is available using the -1 index, and the penultimate element using the
-2 index, for example:

$myArray[-1]
$myArray[-2]

Ranges of elements may be selected either going forward (starting from 0) or going
backward (starting with -1):

$myArray[2..4]
$myArray[-1..-5]

More than one range can be selected in a single statement:

$myArray[0..2 + 6..8 + -1]

This requires some care. The first part of the index set must be an array for the addition
operation to succeed. The expression in square brackets is evaluated first and converted
into a single array (of indexes) before any elements are selected from the array:

PS> $myArray[0 + 6..8 + -1]
Method invocation failed because [System.Object[]] does not contain a
method named 'op_Addition'.
At line:1 char:1
+ $myArray[0 + 6..8 + -1]
+ ~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidOperation: (op_Addition:String) [],
RuntimeException
 + FullyQualifiedErrorId : MethodNotFound

Exactly the same error would be shown when running the expression within square
brackets alone:

0..2 + 6..8 + -1

Variables, Arrays, and Hashtables Chapter 5

[136]

The following modified command shows two different ways to achieve the intended result:

$myArray[@(0) + 6..8 + -1]
$myArray[0..0 + 6..8 + -1]

Changing element values in an array
Elements within an array may be changed by assigning a new value to a specific index, for
example:

$myArray = 1, 2, 9, 4, 5
$myArray[2] = 3

Values in an array may be changed within a loop, as follows:

$myArray = 1, 2, 3, 4, 5
for ($i = 0; $i -lt $myArray.Count; $i++) {
 $myArray[$i] = 9
}

Removing elements from an array
Removing elements from an array is difficult because arrays are immutable. To remove an
element, a new array must be created.

It is possible to appear to remove an element by setting it to null, for example:

$myArray = 1, 2, 3, 4, 5
$myArray[1] = $null
$myArray

However, observe that the count does not decrease when a value is set to null:

PS> $myArray.Count
5

Loops (or pipelines) consuming the array will not skip the element with the null value
(extra code is needed to guard against the null value):

$myArray | ForEach-Object { Write-Host $_ }

The Where object may be used to remove the null value, creating a new array:

$myArray | Where-Object { $_ } | ForEach-Object { Write-Host $_ }

Variables, Arrays, and Hashtables Chapter 5

[137]

Depending on usage, a number of ways are available to address removal. Removal by
index and removal by value are discussed next.

Removing elements by index
Removing elements based on an index requires the creation of a new array and omission of
the value in the element in that index. In each of the following cases, an array with 100
elements will be used as an example; the element at index 49 (with the value of 50) will be
removed:

$oldArray = 1..100

This method uses indexes to access and add everything we want to keep:

$newArray = $oldArray[0..48] + $oldArray[50..99]

Using the .NET Array.Copy static method (see Chapter 7, Working with .NET), we have
the following:

$newArray = New-Object Object[] ($oldArray.Count - 1)
Before the index
[Array]::Copy(
 $oldArray, # Source
 $newArray, # Destination
 49 # Number of elements to copy
)
After the index
[Array]::Copy(
 $oldArray, # Source
 50, # Copy from index of Source
 $newArray, # Destination
 49, # Copy to index of Destination
 50 # Number of elements to copy
)

This is the outcome using a for loop:

$newArray = for ($i = 0; $i -lt $oldArray.Count; $i++) {
 if ($i -ne 49) {
 $oldArray[$i]
 }
}

Variables, Arrays, and Hashtables Chapter 5

[138]

Removing elements by value
Removing an element with a specific value from an array can be achieved in a number of
different ways.

Again, we start with an array of 100 elements, as follows:

$oldArray = 1..100

The Where object may be used to identify and omit the element with the value 50. If 50
were to occur more than once, all instances would be omitted:

$newArray = $oldArray | Where-Object { $_ -ne 50 }

The index of the element might be identified and removed using the methods explored in
removing elements according to the index:

$index = $oldArray.IndexOf(50)

If the value of the variable index is -1, the value is not present in the array (0 would
indicate that it is the first element):

$index = $oldArray.IndexOf(50)
if ($index -gt -1) {
 $newArray = $oldArray[0..($index - 1)] +
 $oldArray[($index + 1)..99]
}

Unlike the Where object version, which inspects all elements, IndexOf gets the first
occurrence of a value only. A complementary method, LastIndexOf, allows the most
recent occurrence of a value to be removed.

Clearing an array
Finally, an array may be completely emptied by calling the Clear method:

$newArray = 1, 2, 3, 4, 5
$newArray.Clear()

Filling variables from arrays
It is possible to fill two (or more) variables from an array:

$i, $j = 1, 2

Variables, Arrays, and Hashtables Chapter 5

[139]

This is often encountered when splitting a string:

$firstName, $lastName = "First Last" -split " "
$firstName, $lastName = "First Last".Split(" ")

If the array is longer than the number of variables, all remaining elements are assigned to
the last variable. For example, the k variable will hold 3, 4, and 5, as can be seen as follows:

$i, $j, $k = 1, 2, 3, 4, 5

If there are too few elements, the remaining variables will not be assigned a value. In this
example, k will be null:

$i, $j, $k = 1, 2

Multi-dimensional and jagged arrays
Given that an array contains objects, an array can therefore also contain other arrays.

For example, an array that contains other arrays (a multi-dimensional array) might be
created as follows:

$arrayOfArrays = @(
 @(1, 2, 3),
 @(4, 5, 6),
 @(7, 8, 9)
)

Be careful to ensure that the comma following each of the inner arrays (except the last) is in
place. If that comma is missing, the entire structure will be flattened, merging the three
inner arrays.

Elements in the array are accessed by indexing into each array in turn (starting with the
outermost). The element with the value 2 is accessible using the following notation:

PS> $arrayOfArrays[0][1]
2

This states that we wish to retrieve the first element (which is an array) and the second
element of that array.

Variables, Arrays, and Hashtables Chapter 5

[140]

The element with the value 6 is accessible using the following:

PS> $arrayOfArrays[1][2]
6

Jagged arrays are a specific form of multi-dimensional array. An example of a jagged array
is as follows:

$arrayOfArrays = @(
 @(1, 2),
 @(4, 5, 6, 7, 8, 9),
 @(10, 11, 12)
)

As in the first example, it is an array containing arrays. Instead of containing inner arrays,
which all share the same size (dimension), the inner arrays have no consistent size (hence,
they are jagged).

In this example, the element with the value 9 is accessed as follows:

PS> $arrayOfArrays[1][5]
9

Hashtables
A hashtable is an associative array or an indexed array. Individual elements in the array are
created with a unique key. Keys cannot be duplicated within the hashtable.

Hashtables are important in PowerShell. They are used to create custom objects, to pass
parameters into commands, to create custom properties using the Select object, and as the
type for values assigned to parameter values of many different commands, among other
things.

For finding commands that use Hashtable as a parameter, we use the following:

Get-Command -ParameterType Hashtable

This topic explores creating hashtables, selecting elements, enumerating all values in a
hashtable, and adding and removing elements.

Variables, Arrays, and Hashtables Chapter 5

[141]

Creating a hashtable
An empty hashtable is created in the same manner as the following:

$hashtable = @{}

A hashtable with a few objects appears as follows:

$hashtable = @{Key1 = "Value1"; Key2 = "Value2"}

Elements in a hashtable may be spread across multiple lines:

$hashtable = @{
 Key1 = "Value1"
 Key2 = "Value2"
}

Adding and changing elements to a hashtable
Elements may be explicitly added to a hashtable using the Add method:

$hashtable = @{}
$hashtable.Add("Key1", "Value1")

If the value already exists, using Add will generate an error (as shown here):

PS> $hashtable = @{"Existing", "Value0"}
PS> $hashtable.Add("Existing", "Value1")

Exception calling "Add" with "2" argument(s): "Item has already been added.
Key in dictionary: 'Existing' Key being added: 'Existing'"
At line:2 char:1
+ $hashtable.Add("Existing", "Value1")
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : ArgumentException

The Contains method will return true or false, depending on whether or not a key is
present in hashtable. This may be used to test for a key before adding:

$hashtable = @{}
if (-not $hashtable.Contains("Key1")) {
 $hashtable.Add("Key1", "Value1")
}

Variables, Arrays, and Hashtables Chapter 5

[142]

Alternatively, two different ways of adding or changing elements are available. The first
option is as follows:

$hashtable = @{ Existing = "Old" }
$hashtable["New"] = "New" # Add this
$hashtable["Existing"] = "Updated" # Update this

The second option is as follows:

$hashtable = @{ Existing = "Old" }
$hashtable.New = "New" # Add this
$hashtable.Existing = "Updated" # Update this

If a value only has to be changed if it exists, the Contains method may be used:

$hashtable = @{ Existing = "Old" }
 if ($hashtable.Contains("Existing")) {
 $hashtable.Existing = "New"
}

This may also be used to ensure a value is only added if it does not exist:

$hashtable = @{ Existing = "Old" }
if (-not $hashtable.Contains("New")) {
 $hashtable.New = "New"
}

Keys cannot be added nor can values be changed while looping through the keys in a
hashtable using the keys property. Doing so changes the underlying structure of the
hashtable, invalidating the iterator:

PS> $hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
PS> foreach ($key in $hashtable.Keys) {
 $hashtable[$key] = "NewValue"
}

Collection was modified; enumeration operation may not execute.
At line:5 char:10
+ foreach ($key in $hashtable.Keys) {
+ ~~~~
 + CategoryInfo : OperationStopped: (:) [], InvalidOperationException
 + FullyQualifiedErrorId : System.InvalidOperationException

Variables, Arrays, and Hashtables Chapter 5

[143]

It is possible to work around this problem by first creating an array of the keys, as follows:

$hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
[Object[]]$keys = $hashtable.Keys
foreach ($key in $keys) {
 $hashtable[$key] = "NewValue"
}

Notice that the highlighted keys variable is declared as an array of objects. Earlier in this
chapter, we discussed assigning objects to variables, and how an assignment does not
always create a new instance of an object. Using the Object[] type conversion forces the
creation of a new object (a new array of objects) based on the values held in
KeyCollection. Without this step, the preceding error message would repeat.

Another approach uses the ForEach object to create a new array of the keys:

$hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
$keys = $hashtable.Keys | ForEach-Object { $_ }
foreach ($key in $keys) {
 $hashtable[$key] = "NewValue"
}

Selecting elements from a hashtable
Individual elements may be selected by key. A number of different formats are supported
for selecting elements:

$hashtable["Key1"]

Using dot notation, we have the following:

$hashtable.Key1

The key is not case sensitive, but it is type sensitive and will not automatically convert. For
instance, consider the following hashtable:

$hashtable = @{1 = 'one'}

Variables, Arrays, and Hashtables Chapter 5

[144]

The value 1 can be selected if an integer is used as the key, but not if a string is used. In
other words, the following works:

$hashtable.1
$hashtable[1]

The following approach, however, does not:

$hashtable."1"
$hashtable["1"]

Enumerating a hashtable
A hashtable can return the information it holds in several ways. Start with the hashtable:

$hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}

Keys can be returned using the Keys property of the hashtable, which
returns KeyCollection:

$hashtable.Keys

Values can be returned using the Values property, which returns ValueCollection. The
key is discarded when using the Values property:

$hashtable.Values

A simple loop can be used to retain the association between key and value:

foreach ($key in $hashtable.Keys) {
 Write-Host "Key: $key Value: $($hashtable[$key])"
}

Removing elements from a hashtable
Unlike arrays, removing an element from a hashtable is straightforward—an element is
removed using the Remove method:

$hashtable = @{ Existing = "Existing" }
$hashtable.Remove("Existing")

Variables, Arrays, and Hashtables Chapter 5

[145]

If the requested key does not exist, the command does nothing (and does not throw an
error).

The Remove method cannot be used to modify the hashtable while looping through the
keys in a hashtable using the Keys property:

PS> $hashtable = @{
 Key1 = 'Value1'
 Key2 = 'Value2'
}
PS> foreach ($key in $hashtable.Keys) {
 $hashtable.Remove($key)
}

Collection was modified; enumeration operation may not execute.
At line:5 char:10
+ foreach ($key in $hashtable.Keys) {
+ ~~~~
 + CategoryInfo : OperationStopped: (:) [], InvalidOperationException
 + FullyQualifiedErrorId : System.InvalidOperationException

The same method as discussed in the Adding and changing elements to a hashtable section,
may be used.

Finally, a hashtable may be emptied completely by calling the Clear method:

$hashtable = @{one = 1; two = 2; three = 3}
$hashtable.Clear()

Lists, dictionaries, queues, and stacks
Arrays and hashtables are integral to PowerShell, and being able to manipulate these is
critical. If these simpler structures fail to provide an efficient means of working with a set of
data, there are advanced alternatives.

The following .NET collections will be discussed:

System.Collections.Generic.List

System.Collections.Generic.Dictionary

System.Collections.Generic.Queue

System.Collections.Generic.Stack

Variables, Arrays, and Hashtables Chapter 5

[146]

Each of these collections has detailed documentation (for .NET) available on
MSDN: https://msdn. microsoft. com/ en-us/ library/ system. collections. generic(v=
vs.110).aspx.

Lists
A list is the same as an array, but with a larger set of features, such as the ability to add
elements without copying two arrays into a new one. The generic list using the .NET class,
System.Collections.Generic.List, is shown next.

ArrayList is often used in examples requiring advanced array manipulation in PowerShell.
However, ArrayList is older (.NET 2.0) and less efficient (it can use more memory), and
cannot be strongly typed, as will be shown when creating a generic list.

Creating a list
A generic list must have a type declared. A generic list, in this case a list of strings, is
created as follows:

$list = New-Object System.Collections.Generic.List[String]

ArrayList is created in a similar manner. ArrayList cannot have the type declared:

$arrayList = New-object System.Collections.ArrayList

Once created, ArrayList may be used in much the same way as a generic list.

Adding elements to the list
Add can be used to add new elements to the end of the list:

$list.Add("David")

The Insert and InsertRange methods are available to add items elsewhere in the list. For
example, an element may be added at the beginning:

$list.Insert(0, "Sarah")
$list.Insert(2, "Jane")

https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx

Variables, Arrays, and Hashtables Chapter 5

[147]

Selecting elements from the list
As with the array, elements may be selected by index:

$list = New-Object System.Collections.Generic.List[String]
$list.AddRange([String[]]("Tom", "Richard", "Harry"))
$list[1] # Returns Richard

The generic list offers a variety of methods that may be used to find elements when the
index is not known, such as the following:

$index = $list.FindIndex({ $args[0] -eq 'Richard' })

Predicates

In the preceding example, ScriptBlock is a predicate. Arguments are
passed into ScriptBlock and all list items matching the query are
returned.

The predicate is similar in syntax to the Where object, except $args[0] is
used to refer to the item in the list instead of the pipeline variable, $_.

A param block may be declared for ScriptBlock to assign a more
meaningful name to the argument ($args[0]) if desirable.

Alternatively, the IndexOf and LastIndex methods may be used. Both of these methods
support additional arguments (as opposed to Array.IndexOf, which only supports a
restrictive search for a value) to constrain the search. For example, the search may start at a
specific index:

$list.IndexOf('Harry', 2) # Start at index 2
$list.IndexOf('Richard', 1, 2) # Start at index 1, and 2 elements

Finally, a generic list offers a BinarySearch (half-interval) search method. This method
may dramatically cut the time to search very large, sorted, datasets when compared to a
linear search.

In a binary search, the element in the middle of the list is selected, and compared to the
value. If the value is larger, the first half of the list is discarded, and the element in the
middle of the new, smaller, set is selected for comparison. This process repeats (always
cutting the list in half) until the value is found (or it runs out of elements to test):

$list = New-Object System.Collections.Generic.List[Int]
$list.AddRange([Int[]](1..100000000))
Linear and Binary are roughly comparable

Variables, Arrays, and Hashtables Chapter 5

[148]

Measure-Command { $list.IndexOf(24) } # A linear search
Measure-Command { $list.BinarySearch(24) } # A binary search
Binary is more effective
Measure-Command { $list.IndexOf(99767859) } # A linear search
Measure-Command { $list.BinarySearch(99767859) } # A binary search

The time taken to execute a binary search remains fairly constant, regardless of the element
position. The time taken to execute a linear search increases as every element must be read
(in sequence).

Removing elements from the list
Elements in a list may be removed based on the index or value:

$list = New-Object System.Collections.Generic.List[String]
$list.AddRange([String[]]("Tom", "Richard", "Harry", "David"))
$list.RemoveAt(1) # By Richard by index
$list.Remove("Richard") # By Richard by value

All instances of a particular value may be removed using the RemoveAll method:

$list.RemoveAll({ $args[0] -eq "David" })

Changing element values in a list
Elements within a list may be changed by assigning a new value to a specific index, as in
the following example:

$list = New-Object System.Collections.Generic.List[Int]
$list.AddRange([Int[]](1, 2, 2, 4))
$list[2] = 3

Dictionaries
A dictionary, using the .NET class, System.Collections.Generic.Dictionary, is most
similar to a hashtable. Like a hashtable, it is a form of associative array.

Unlike the hashtable, however, a dictionary implements a type for both the key and the
value, which may make it easier to use.

Variables, Arrays, and Hashtables Chapter 5

[149]

Creating a dictionary
A dictionary must declare a type for the key and value when it is created. A dictionary that
uses a string for the key and an IP address for the value may be created using either of the
following examples:

$dictionary = New-Object
System.Collections.Generic.Dictionary"[String,IPAddress]"
$dictionary = New-Object
"System.Collections.Generic.Dictionary[String,IPAddress]"

Adding and changing elements in a dictionary
As with the hashtable, the Add method may be used to add a new value to a dictionary:

$dictionary.Add("Computer1", "192.168.10.222")

If the key already exists, using Add will generate an error, as was the case with the
hashtable.

In a dictionary, the Contains method behaves differently from the same method in the
hashtable. When checking for the existence of a key, the ContainsKey method should be
used as follows:

if (-not $dictionary.ContainsKey("Computer2")) {
 $dictionary.Add("Computer2", "192.168.10.13")
}

The dictionary supports the addition of elements using dot-notation:

$dictionary.Computer3 = "192.168.10.134"

The dictionary leverages PowerShell's type conversion for both the key and the value. For
example, if a numeric key is used, it will be converted into a string. If an IP address is
expressed as a string, it will be converted into an IPAddress object.

For example, consider the addition of the following element:

$dictionary.Add(1, 20)

In this case, key 1 is converted into a string, and the value 20 is converted into an IP
address. Inspecting the element afterward shows the following:

PS> $dictionary."1"

Address : 20

Variables, Arrays, and Hashtables Chapter 5

[150]

AddressFamily : InterNetwork
ScopeId :
IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False
IsIPv6Teredo : False
IsIPv4MappedToIPv6 : False
IPAddressToString : 20.0.0.0

Selecting elements from a dictionary
Individual elements may be selected by a key. As with the hashtable, two different
notations are supported:

$dictionary["Computer1"] # Key reference
$dictionary.Computer1 # Dot-notation

We've seen that, when adding elements, types are converted. Looking back to selecting
elements from a hashtable, we know that the value for the key was sensitive to type. As the
dictionary has a type declared for the key, it can leverage PowerShell's type conversion.

Consider a dictionary created using a number as a string for the key:

$dictionary = New-Object
System.Collections.Generic.Dictionary"[String,IPAddress]"
$dictionary.Add("1", "192.168.10.222")
$dictionary.Add("2", "192.168.10.13")

Each of the following examples works to access the value:

$dictionary."1"
$dictionary[1]
$dictionary["1"]

Enumerating a dictionary
A dictionary can return the information it holds in several ways. Start with this dictionary:

$dictionary = New-Object
System.Collections.Generic.Dictionary"[String,IPAddress]"
$dictionary.Add("Computer1", "192.168.10.222")
$dictionary.Add("Computer2", "192.168.10.13")

Variables, Arrays, and Hashtables Chapter 5

[151]

Keys can be returned using the Keys property of the dictionary, which
returns KeyCollection:

$dictionary.Keys

Values can be returned using the Values property, which returns ValueCollection. The
key is discarded when using the Values property:

$dictionary.Values

A simple loop can be used to retain the association between key and value:

foreach ($key in $dictionary.Keys) {
 Write-Host "Key: $key Value: $($dictionary[$key])"
}

Removing elements from a dictionary
An element may be removed from a dictionary using the Remove method:

$dictionary.Remove("Computer1")

The Remove method cannot be used to modify the dictionary while looping through the
keys in a dictionary using the Keys property.

Queues
A queue is a first-in, first-out array. Elements are added to the end of the queue and taken
from the beginning.

The queue uses the .NET class, System.Collections.Generic.Queue, and must have a
type set.

Creating a queue
A queue of strings may be created as follows:

$queue = New-Object System.Collections.Generic.Queue[String]

Variables, Arrays, and Hashtables Chapter 5

[152]

Enumerating the queue
PowerShell will display the content of a queue in the same way as it would the content of
an array. It isn't possible to access elements of the queue by the index. The ToArray method
may be used to convert the queue into an array if required:

$queue.ToArray()

The preceding command returns an array of the same type as the queue. That is, if the
queue is configured to hold strings, the array will be an array of strings.

The queue has a Peek method that allows retrieval of the next element in the queue
without it being removed:

$queue.Peek()

The Peek method will throw an error if the queue is empty (refer to the Removing elements
from the queue section).

Adding elements to the queue
Elements are added to the end of the queue using the Enqueue method:

$queue.Enqueue("Tom")
$queue.Enqueue("Richard")
$queue.Enqueue("Harry")

Removing elements from the queue
Elements are removed from the end using the Dequeue method:

$queue.Dequeue() # This returns Tom.

If the queue is empty and the Dequeue method is called, an error will be thrown, as shown
here:

PS> $queue.Dequeue()
Exception calling "Dequeue" with "0" argument(s): "Queue empty."
At line:1 char:1
+ $queue.Dequeue()
+ ~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : InvalidOperationException

Variables, Arrays, and Hashtables Chapter 5

[153]

To avoid this, the Count property of the queue may be inspected, for example:

Set-up the queue
$queue = New-Object System.Collections.Generic.Queue[String]
"Tom", "Richard", "Harry" | ForEach-Object {
 $queue.Enqueue($_)
}
Dequeue until the queue is empty
while ($queue.Count -gt 0) {
 Write-Host $queue.Dequeue()
}

Stacks
A stack is a collection of objects in which objects are accessed in Last In First Out (LIFO).
Elements are added and removed from the top of the stack.

The stack uses the .NET class, System.Collections.Generic.Stack, and must have a
type set.

Creating a stack
A stack containing strings may be created as follows:

$stack = New-Object System.Collections.Generic.Stack[String]

Enumerating the stack
PowerShell will display the content of a stack in the same way as it would the content of an
array. It isn't possible to index into a stack. The ToArray() method may be used to convert
the stack into an array if required:

$stack.ToArray()

The preceding command returns an array of the same type as the stack. That is, if a stack is
configured to hold strings, the array will be an array of strings.

The stack has a Peek method that allows retrieval of the top element from the stack without
it being removed:

$stack.Peek()

Variables, Arrays, and Hashtables Chapter 5

[154]

The Peek method will throw an error if the stack is empty (refer to the Removing elements
from the stack section).

Adding elements to the stack
Elements may be added to the stack using the Push method:

$stack.Push("Up the road")
$stack.Push("Over the gate")
$stack.Push("Under the bridge")

Removing elements from the stack
Elements may be removed from the stack using the Pop method:

$stack.Pop() # This returns Under the bridge

If the stack is empty and the Pop method is called, an error will be thrown, as shown here:

PS> $stack.Pop()
Exception calling "Pop" with "0" argument(s): "Stack empty."
At line:1 char:1
+ $stack.Pop()
+ ~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : InvalidOperationException

To avoid this, the Count property of the stack may be inspected, for example:

Set-up the stack
$stack = New-Object System.Collections.Generic.Stack[String]
"Up the road", "Over the gate", "Under the bridge" | ForEach-Object {
 $stack.Push($_)
}
Pop from the stack until the stack is empty
while ($stack.Count -gt 0) {
 Write-Host $stack.Pop()
}

Variables, Arrays, and Hashtables Chapter 5

[155]

Summary
Variables can be created to hold on to information that's to be reused in a function or a
script. A variable may be a simple name, or loaded from a file.

The * variable commands are available to interact with variables beyond changing the
value, such as setting a description, making a variable in a specific scope, or making a
variable private.

A variable scope affects how variables may be accessed. Variables are created in the local
scope by default.

Arrays are sets of objects of the same type. Arrays are immutable, and the size of an array
cannot change after creation. Adding or removing elements from an array requires the
creation of a new array.

Hashtables are associative arrays. An element in a hashtable is accessed using a unique key.

Lists, stacks, queues, and dictionaries are advanced collections that may be used when a
particular behavior is required, or if they offer a desirable performance benefit.

In Chapter 6, Branching and Looping, we will explore branching and looping in PowerShell.

6
Branching and Looping

A branch in a script or command is created every time an if, switch statement, or loop is
added. The branch represents a different set of instructions. Branches can be conditional,
such as one created by an if statement, or unconditional, such as a for loop.

As a script or command increases in complexity, the branches spread out the same as the
limbs of a tree.

In this chapter, we are going to cover the following topics:

Conditional statements
Loops
Branching and assignment

Conditional statements
Statements or lines of code may be executed when certain conditions are met. PowerShell
provides if and select statements for this purpose.

Branching and Looping Chapter 6

[157]

if, else, and elseif
An if statement is written as follows; the statements enclosed by the if statement will
execute if the condition evaluates to true:

if (<condition>) {
 <statements>
}

The else statement is optional and will trigger if all previous conditions evaluate to false:

if (<first-condition>) {
 <first-statements>
} else {
 <second-statements>
}

The elseif statement allows conditions to be stacked:

if (<first-condition>) {
 <first-statements>
} elseif (<second-condition>) {
 <second-statements>
} elseif (<last-condition>) {
 <last-statements>
}

The else statement may be added after any number of elseif statements.

Execution of a block of conditions stops as soon as a single condition evaluates to true. For
example, both the first and second condition would evaluate to true, as shown here, but
only the first will execute:

$value = 1
if ($value -eq 1) {
 Write-Host 'value is 1'
} elseif ($value -lt 10) {
 Write-Host 'value is less than 10'
}

Branching and Looping Chapter 6

[158]

Implicit Boolean

An implicit Boolean is a condition that can evaluate as true (is considered
to be something) without using a comparison operator that would
explicitly return true or false. For example, the number 1 will evaluate
as true:
$value = 1
if ($value) {
 Write-Host 'Implicit true'
}

In the previous example, the statement executes because casting the value
1 to Boolean results in true. If the variable were set to 0, the condition
would evaluate to false.
Each of the following will evaluate to true, as they are considered to be
something when used in this manner:
[Boolean]1
[Boolean]-1
[Boolean]2016
[Boolean]"Hello world"

Each of the following will evaluate to false, as each is considered to be
nothing:
[Boolean]0
[Boolean]""
[Boolean]$null

Assignment within if statements
An if statement can include an assignment step, as follows:

if ($i = 1) {
 Write-Host "Implicit true. The variable i is $i"
}

Branching and Looping Chapter 6

[159]

This is most commonly used when testing for the existence of a value in a variable, for
example:

if ($interface = Get-NetAdapter | Where-Object Status -eq 'Up') {
 Write-Host "$($interface.Name) is up"
}

In the previous example, the statement to the right of the assignment operator (=) is
executed, assigned to the $interface variable, and then the value in the variable is treated
as an implicit Boolean.

switch
A switch statement uses the following generalized notation:

switch [-regex|-wildcard][-casesensitive] (<value>) {
 <condition> { <statements> }
 <condition> { <statements> }
}

The casesensitive parameter applies when testing conditions against a string value.

The switch command can also be used to work on the content of a file using the following
notation:

switch [-regex|-wildcard][-casesensitive] -File <Name> {
 <condition> { <statements> }
 <condition> { <statements> }
}

The File parameter can be used to select from a text file (line by line). The switch
statement differs from conditions written using if-elseif in one important respect. The
switch statement will not stop testing conditions unless the break keyword is used, for
example:

$value = 1
switch ($value) {
 1 { Write-Host 'value is 1' }
 1 { Write-Host 'value is still 1' }
}

Branching and Looping Chapter 6

[160]

Using break, as shown here, will exit the switch statement after a match:

$value = 1
switch ($value) {
 1 { Write-Host 'value is 1'; break }
 1 { Write-Host 'value is still 1' }
}

The default keyword provides the same functionality as the else statement when using
if, for example:

$value = 2
switch ($value) {
 1 { Write-Host 'value is 1' }
 default { Write-Host 'No conditions matched' }
}

A switch statement can test more than one value at once; however, break applies to the
entire statement, not just a single value. For example, without break, both of the following
Write-Host statements execute:

switch (1, 2) {
 1 { Write-Host 'Equals 1' }
 2 { Write-Host 'Equals 2' }
}

If the break keyword is included, as shown here, only the first executes:

switch (1, 2) {
 1 { Write-Host 'Equals 1'; break }
 2 { Write-Host 'Equals 2' }
}

wildcard and regex
The wildcard and regex parameters are used when matching strings. The wildcard
parameter allows for the use of the characters ? (any single character) and * (any character,
repeated 0 or more times) in a condition, for example:

switch -Wildcard ('cat') {
 'c*' { Write-Host 'The word begins with c' }
 '???' { Write-Host 'The word is 3 characters long' }
 '*t' { Write-Host 'The word ends with t' }
}

Branching and Looping Chapter 6

[161]

The Regex parameter allows for the use of regular expressions to perform comparisons
(Chapter 9, Regular Expressions, will explain this syntax in greater detail), for example:

switch -Regex ('cat') {
 '^c' { Write-Host 'The word begins with c' } '[a-z]{3}' { Write-Host 'The
word is 3 characters long' } 't$' { Write-Host 'The word ends with t' } }

Expressions
Switch allows expressions (a ScriptBlock) to be used in place of a simpler condition. The
result of the expression should be an explicit true or false, or an implicit Boolean, for
example:

switch (Get-Date) {
 { $_ -is [DateTime] } { Write-Host 'This is a DateTime type' }
 { $_.Year -ge 2017 } { Write-Host 'It is 2017 or later' }
}

Loops
Loops may be used to iterate through collections, performing an operation against each
element in the collection, or to repeat an operation (or series of operations) until a condition
is met.

foreach
The foreach loop executes against each element of a collection using the following
notation:

foreach (<element> in <collection>) {
 <body-statements>
}

For example, the foreach loop may be used to iterate through each of the processes
returned by Get-Process:

foreach ($process in Get-Process) {
 Write-Host $process.Name
}

If the collection is $null or empty, the body of the loop will not execute.

Branching and Looping Chapter 6

[162]

for
The for loop is typically used to step through a collection using the following notation:

for (<intial>; <exit condition>; <repeat>){
 <body-statements>
}

<initial> represents the state of a variable before the first iteration of the loop. This is
normally used to initialize a counter for the loop.

The exit condition must be true as long as the loop is executing.

<repeat> is executed after each iteration of the body and is often used to increment a
counter.

The for loop is most often used to iterate through a collection, for example:

$processes = Get-Process
for ($i = 0; $i -lt $processes.Count; $i++) {
 Write-Host $processes[$i].Name
}

The for loop provides a significant degree of control over the loop and is useful where the
step needs to be something other than simple ascending order. For example, repeat may
be used to execute the body for every third element:

for ($i = 0; $i -lt $processes.Count; $i += 3) {
 Write-Host $processes[$i].Name
}

The loop parameters may also be used to reverse the direction of the loop, for example:

for ($i = $processes.Count - 1; $i -ge 0; $i--) {
 Write-Host $processes[$i].Name
}

do until and do while
do until and do while each execute the body of the loop at least once, as the condition
test is at the end of the loop statement. Loops based on do until will exit when the
condition evaluates to true; loops based on do while will exit when the condition
evaluates to false.

Branching and Looping Chapter 6

[163]

do loops are written using the following notation:

do {
 <body-statements>
} <until | while> (<condition>)

do until is suited to exit conditions that are expected to be positive. For example, a script
might wait for a computer to respond to a ping:

do {
 Write-Host "Waiting for boot"
 Start-Sleep -Seconds 5
} until (Test-Connection 'SomeComputer' -Quiet -Count 1)

The do while loop is more suitable for exit conditions that are negative. For example, a
loop might wait for a remote computer to stop responding to a ping:

do {
 Write-Host "Waiting for shutdown"
 Start-Sleep -Seconds 5
} while (Test-Connection 'SomeComputer' -Quiet -Count 1)

while
As the condition for a while loop comes first, the body of the loop will only execute if the
condition evaluates to true:

while (<condition>) {
 <body-statements>
}

A while loop may be used to wait for something to happen. For example, it might be used
to wait for a path to exist:

while (-not (Test-Path $env:TEMP\test.txt -PathType Leaf)) {
 Start-Sleep -Seconds 10
}

break and continue
break can be used to end a loop early. The loop in the following example would continue
to 20; break is used to stop the loop at 10:

for ($i = 0; $i -lt 20; $i += 2) {

Branching and Looping Chapter 6

[164]

 Write-Host $i
 if ($i -eq 10) {
 break # Stop this loop
 }
}

break acts on the loop it is nested inside. In the following example, the inner loop breaks
early when the i variable is less than or equal to 2:

PS> $i = 1 # Initial state for i
PS> while ($i -le 3) {
>> Write-Host "i: $i"
>> $k = 1 # Reset k
>> while ($k -lt 5) {
>> Write-Host " k: $k"
>> $k++ # Increment k
>> if ($i -le 2 -and $k -ge 3) {
>> break
>> }
>> }
>> $i++ # Increment i
>> }

i: 1
k: 1
k: 2
i: 2
k: 1
k: 2
i: 3
k: 1
k: 2
k: 3
k: 4

The continue keyword may be used to move on to the next iteration of a loop
immediately. For example, the following loop executes a subset of the loop body when the
value of the i variable is less than 2:

for ($i = 0; $i -le 5; $i++) {
 Write-Host $i
 if ($i -lt 2) {
 continue # Continue to the next iteration
 }
 Write-Host "Remainder when $i is divided by 2 is $($i % 2)"
}

Branching and Looping Chapter 6

[165]

Branching and assignment
PowerShell allows the output from a branching operation (if, switch, foreach, for, and
so on) to be assigned to a variable.

This example assigns a value based on a switch statement when converting a value. The
values of the variables at the top are expected to change:

$value = 20
$units = 'TB'
$bytes = switch ($Units) {
 'TB' { $value * 1TB }
 'GB' { $value * 1GB }
 'MB' { $value * 1MB }
 default { $value }
}

The same approach may be used when working with a loop, such as foreach. The
following example shows a commonly used approach to building an array:

$serviceProcesses = @()
foreach ($service in Get-CimInstance Win32_Service -Filter
'State="Running"') {
 $serviceProcesses += Get-Process -Id $service.ProcessId
}

In this example, a new array must be recreated with one extra element (and the old copied)
for every iteration of the loop.

This operation may be simplified by moving the assignment operation in front of foreach:

$serviceProcesses = foreach ($service in Get-CimInstance Win32_Service -
Filter 'State="Running"') {
 Get-Process -Id $service.ProcessId
}

In this case, the assignment occurs once when the loop finishes running. There is no array
to continually resize.

Branching and Looping Chapter 6

[166]

Summary
In this chapter, we have explored the if and switch statements.

Each of the different loops, foreach, for, do until, do while, and while, have been
introduced.

In Chapter 7, Working with .NET, we will explore working with the .NET Framework.

7
Working with .NET

PowerShell is written in and built on the .NET Framework. Much of the .NET Framework
can be used directly, and doing so adds a tremendous amount of flexibility by removing
many of the borders the language might otherwise have.

The idea of working with objects was introduced in Chapter 3, Working with Objects in
Powershell, and this chapter extends on that, moving from objects created by commands to
objects created from .NET classes. Many of the chapters that follow this one make extensive
use of .NET, simply because it's the foundation of PowerShell.

It's important to understand that the .NET Framework is vast; it isn't possible to cover
everything about the .NET Framework in a single chapter. This chapter aims to show how
the .NET Framework may be used within PowerShell based on the MSDN reference, which
is available at https:/ /docs. microsoft. com/ en- us/dotnet/ api/index? view=
netframework-4.7. 2.

What can you do with .NET?

I enjoy implementing network protocols in PowerShell. To do this, I use
several branches of .NET that specialize in network operations, such as
creating sockets, sending and receiving bytes, and reading and converting
streams of bytes.

Classes implemented in .NET will come up again and again as different
areas of the language are explored. From building strings and working
with Active Directory, to writing graphical interfaces and working with
web services, everything needs a little .NET.

https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/index?view=netframework-4.7.2

Working with .NET Chapter 7

[168]

In this chapter, we're going to cover the following topics:

Assemblies
Namespaces
Types
Classes
Constructors
Properties and methods
Static properties
Static methods
Non-public classes
Type accelerators
The using keyword

Assemblies
.NET objects are implemented within assemblies. An assembly may be static (based on a
file) or dynamic (created in memory).

Many of the most commonly used classes exist in DLL files stored in
%SystemRoot%\Assembly. The list of currently loaded assemblies in a PowerShell session
may be viewed using the following statement:

[System.AppDomain]::CurrentDomain.GetAssemblies()

Once an assembly, and the types it contains, has been loaded into a session, it can't be
unloaded without completely restarting the session.

Much of PowerShell is implemented in the System.Management.Automation DLL.
Details of this can be shown using the following statement:

[System.Management.Automation.PowerShell].Assembly

In this statement, the PowerShell type is chosen to get the assembly. Any other type in the
same assembly is able to show the same information. The PowerShell type could be
replaced with another in the previous command, as follows:

[System.Management.Automation.PSCredential].Assembly
[System.Management.Automation.PSObject].Assembly

Working with .NET Chapter 7

[169]

Namespaces
A namespace is used to organize classes into a hierarchy, often to group types with related
functionalities.

In PowerShell, the system namespace is implicit. The System.AppDomain type was used
previously; this command, used when introducing assemblies, can be shortened:

[AppDomain]::CurrentDomain.GetAssemblies()

The same applies to types with longer names, such as
System.Management.Automation.PowerShell, which can be shortened as follows:

[Management.Automation.PowerShell].Assembly

Types
A type is used to represent the generalized functionality of an object. To use this book as an
example again, it could have a number of types, including the following:

PowerShellBook

TextBook

Book

Each of these types describes the general functionality of the object. The type doesn't say
how this book came to be, nor whether it will do anything (on its own) to help create one.

In PowerShell, types are written between square brackets. The [System.AppDomain] and
[System.Management.Automation.PowerShell] statements, used when discussing
previous assemblies, are types.

Type descriptions are objects in PowerShell

[System.AppDomain] denotes a type, but the syntax used to denote the
type is itself an object. It has properties and methods and a type of its own
(RuntimeType), which can be seen by running the following command:
[System.AppDomain].GetType()

To an extent, the terms type and class are synonymous. A class is used to define a type, but
it isn't the only way of doing so. Another way is to use what is known as a structure
(or struct), which is used to define value types such as integers (Int32, Int64, and so on).

Working with .NET Chapter 7

[170]

A type cannot be used to create an object instance all on its own.

Classes
A class is a set of instructions that dictates how a specific instance of an object is to be
created. A class is, in a sense, a recipe.

In the case of this book, a class includes details of authoring, editorial processes, and
publication steps. These steps are, hopefully, invisible to anyone reading this book; they're
part of the internal implementation of the class. Following these steps will produce an
instance of the PowerShellBook object.

It's often necessary to look up the instructions for using a class in the .NET class library on
MSDN, available at
https://msdn.microsoft.com/en-us/library/mt472912(v=vs.110).aspx.

The starting point for creating an instance of an object is often what's known as a
constructor.

Constructors
The System.Text.StringBuilder class can be used to build complex strings. The
StringBuilder class has a number of constructors that can be viewed on the MSDN class
library, as shown in the following screenshot:

https://msdn.microsoft.com/en-us/library/mt472912(v=vs.110).aspx

Working with .NET Chapter 7

[171]

PowerShell is also able to show the list of constructors. However, PowerShell cannot show
the descriptive text. Still, this may be useful as a reminder if the general functionality is
already known. In PowerShell 5.0, the following syntax may be used to list the constructors:

PS> [System.Text.StringBuilder]::new

OverloadDefinitions

System.Text.StringBuilder new()
System.Text.StringBuilder new(int capacity)
System.Text.StringBuilder new(string value)
System.Text.StringBuilder new(string value, int capacity)
System.Text.StringBuilder new(string value, int startIndex, int length, int
capacity)
System.Text.StringBuilder new(int capacity, int maxCapacity)

For older versions of PowerShell, a longer, less descriptive alternative is available:

PS> [System.Text.StringBuilder].GetConstructors() | ForEach-Object ToString
Void .ctor()
Void .ctor(Int32)
Void .ctor(System.String)
Void .ctor(System.String, Int32)
Void .ctor(System.String, Int32, Int32, Int32)
Void .ctor(Int32, Int32)

Both MSDN and PowerShell show that there are six possible constructors for
StringBuilder. Both show that the first of those does not expect any arguments.

Calling constructors
In PowerShell 5.0 and higher, an object instance may be created using the new static
method:

$stringBuilder = [System.Text.StringBuilder]::new()

For earlier versions of PowerShell, the object instance may be created using the following
syntax:

$stringBuilder = New-Object System.Text.StringBuilder

PowerShell has added the static method (discussed later in this chapter); it can be used if
required, but it isn't documented on the MSDN page for StringBuilder.

Working with .NET Chapter 7

[172]

Once an instance of StringBuilder has been created, it can be viewed:

PS> $stringBuilder = New-Object System.Text.StringBuilder
PS> $stringBuilder

Capacity MaxCapacity Length
-------- ----------- ------
 16 2147483647 0

The StringBuilder object has a number of other constructors. These are used to adjust the
initial state of the instance.

Calling constructors with lists of arguments
Arguments may be passed to the class constructor using a number of different approaches.

Using New-Object and the ArgumentList parameter, passing a single argument will use
the second constructor in the list on MSDN (and in PowerShell):

PS> New-Object -TypeName System.Text.StringBuilder -ArgumentList 10

Capacity MaxCapacity Length
-------- ----------- ------
 10 2147483647 0

Alternatively, the following two approaches may be used:

New-Object System.Text.StringBuilder(10)
[System.Text.StringBuilder]::new(10)

PowerShell decides which constructor to use based on the numbers and types of the
arguments.

In the previous examples, one argument is passed; there are two possible constructors that
accept a single argument. One of these expects a value of the Int32 type, the other a string.

If a string is passed, StringBuilder will be created, with an initial value for the string.
The following example creates a StringBuilder object instance containing the
specified ('Hello world') string:

PS> $stringBuilder = New-Object System.Text.StringBuilder('Hello world')
PS> $stringBuilder.ToString()

Hello world

Working with .NET Chapter 7

[173]

PowerShell will attempt to find a constructor, even if the value type used does not exactly
match one of the definitions. For example, an argument of $true, a Boolean, creates a
StringBuilder object with a capacity set to 1. The value for $true is treated as an Int32
value by PowerShell:

PS> New-Object System.Text.StringBuilder($true)

Capacity MaxCapacity Length
-------- ----------- ------
 1 2147483647 0

If the value for the argument does not match any of the possible constructors, an error will
be thrown:

PS> New-Object System.Text.StringBuilder((Get-Date))

New-Object : Cannot convert argument "0", with value: "23/01/2017
15:26:59", for "StringBuilder" to type "System.Int32": "Cannot convert
value "23/01/2017 15:26:59" to type
"System.Int32". Error: "Invalid cast from 'DateTime' to 'Int32'.""
At line:1 char:1
+ New-Object System.Text.StringBuilder((Get-Date))
+ ~~
+ CategoryInfo : InvalidOperation: (:) [New-Object], MethodException
+ FullyQualifiedErrorId :
ConstructorInvokedThrowException,Microsoft.PowerShell.Commands.NewObjectCom
mand

Arguments as an array
Arguments for constructors can be passed in as an array. Each of the following may be used
to create an instance of a StringBuilder object:

$params = @{
 TypeName = 'System.Text.StringBuilder'
 ArgumentList = 'Initial value', 50
}
$stringBuilder = New-Object @params
$stringBuilder = New-Object System.Text.StringBuilder($argumentList)

Working with .NET Chapter 7

[174]

Attempting to pass in a list of arguments using the new method will produce a different
result; the initial string will be filled with both values:

PS> $argumentList = 'Initial value', 50
PS> $stringBuilder = [System.Text.StringBuilder]::new($argumentList)
PS> Write-Host $stringBuilder.ToString() -ForegroundColor Green
PS> $stringBuilder

Initial value 50
Capacity MaxCapacity Length
-------- ----------- ------
 16 2147483647 16

An array can be passed in using new, by adopting a slightly different approach:

PS> $stringBuilder = [System.Text.StringBuilder]::new.Invoke($argumentList)
PS> Write-Host $stringBuilder.ToString() -ForegroundColor Green
PS> $stringBuilder

Initial value
Capacity MaxCapacity Length
-------- ----------- ------
 50 2147483647 13

The ability to push arguments into an array presents a complication when an argument is
an array. For example, the memoryStream (System.IO.MemoryStream) class has a
number of constructors; two of these expect an array of bytes, as shown in the following
screenshot:

The first of these only expects an array (of bytes) as input. The following example shows an
error generated when attempting to pass in the array:

PS> [Byte[]]$bytes = 97, 98, 99
PS> $memoryStream = New-Object System.IO.MemoryStream($bytes)

New-Object : Exception calling ".ctor" with "3" argument(s): "Offset and
length were out of bounds for the array or count is greater than the number
of elements from index to the end of the source collection."

Working with .NET Chapter 7

[175]

At line:2 char:17
+ $memoryStream = New-Object System.IO.MemoryStream($bytes)
+ ~~~
+ CategoryInfo : InvalidOperation: (:) [New-Object],
MethodInvocationException
+ FullyQualifiedErrorId :
ConstructorInvokedThrowException,Microsoft.PowerShell.Commands.NewObjectCom
mand

PowerShell treats each byte as an individual argument for the constructor, rather than
passing all of the values into the intended constructor.

The new static method does not suffer from this problem:

[Byte[]]$bytes = 97, 98, 99
$memoryStream = [System.IO.MemoryStream]::new($bytes)

To work around the problem in earlier versions of PowerShell, the unary comma operator
may be used as follows:

$memoryStream = New-Object System.IO.MemoryStream(,$bytes)

Using the comma operator prevents PowerShell from expanding the array into a set of
arguments. The array, held in bytes, is wrapped in another array that contains a single
element. When PowerShell executes this, the wrapper is discarded, and the inner array
(bytes) is passed without further expansion.

PowerShell will cast and coerce types

The preceding examples can be significantly shortened, as PowerShell will
do a lot to call appropriate constructors when casting. This extended
example will do the following:

Create an array of characters from a string
Create a byte array from the array of characters
Create a memory stream from the byte array
Create a binary reader from the memory stream

using namespace System.IO
[BinaryReader][MemoryStream][Byte[]][Char[]]'hello world'

Working with .NET Chapter 7

[176]

Creating objects from hashtables
Many classes (or types) implement a constructor that does not require any arguments, for
example, ADSISearcher (the type accelerator for
System.DirectoryServices.DirectorySearcher).

An instance of the searcher may be created as follows, using one of the available
constructors:

$searcher = [ADSISearcher]::new(
 [ADSI]'LDAP://domain.com',
 '(&(objectClass=user)(objectCategory=person))'
)
$searcher.PageSize = 1000

Alternatively, it can be created from a hashtable, which can be easier to read, as each of the
arguments has a clear name:

$searcher = [ADSISearcher]@{
 SearchRoot = [ADSI]'LDAP://domain.com'
 Filter = '(&(objectClass=user)(objectCategory=person))'
 PageSize = 1000
}

This technique is especially useful for classes that have a large number of properties, for
example, those used by the Windows Presentation Framework or Windows Forms.

Properties and methods
In Chapter 3, Working with Objects in PowerShell, the idea of using properties and methods
was introduced. Get-Member was used to list each of these.

Working with .NET Chapter 7

[177]

Properties for objects derived from .NET classes, such as those for the
System.Text.StringBuilder class, are documented on MSDN:

Similarly, methods are described in detail, often with examples of usage (in C#, VB, F#, and
so on):

These methods may be used as long as the argument lists can be satisfied. The fourth item
on the list is difficult to leverage in PowerShell, as Char* represents a pointer to an array of
Unicode characters. A pointer is a reference to a location in memory, something not often
seen in PowerShell and beyond the scope of this chapter.

Working with .NET Chapter 7

[178]

Static properties
Properties require an instance of a type to be created before they can be accessed. Static
properties, on the other hand, don't.

A static property is a piece of data; in some cases, this includes constant values, associated
with class definitions, that can be retrieved without creating an object instance.

MSDN shows static properties using an S symbol in the leftmost column. For example, the
System.Text.Encoding class has a number of static properties denoting different text
encoding types, shown in the following screenshot:

PowerShell is also able to list the static properties for a type (or class) using Get-Member
with the Static switch:

PS> [System.Text.Encoding] | Get-Member -MemberType Property -Static

 TypeName: System.Text.Encoding

Name MemberType Definition
---- ---------- ----------
ASCII Property static System.Text.Encoding ASCII {get;}
BigEndianUnicode Property static System.Text.Encoding BigEndianUnicode
{get;}
Default Property static System.Text.Encoding Default {get;}

Working with .NET Chapter 7

[179]

Unicode Property static System.Text.Encoding Unicode {get;}
UTF32 Property static System.Text.Encoding UTF32 {get;}
UTF7 Property static System.Text.Encoding UTF7 {get;}
UTF8 Property static System.Text.Encoding UTF8 {get;}

These static properties are accessed using the following generalized notation:

[<TypeName>]::<PropertyName>

In the case of System.Text.Encoding, the ASCII property is accessible using the
following syntax:

[System.Text.Encoding]::ASCII

A variable may be used to represent either the type or the property name, as follows:

$type = [System.Text.Encoding]
$propertyName = 'ASCII'
$type::$propertyName

Fields are often used as part of the internal implementation of a class (or structure). Fields
aren't often accessible outside of a class.

The Int32 structure exposes two static fields, holding the maximum and minimum
possible values that the type can hold:

PowerShell does not distinguish between fields and properties. The following statements
show the values of each static field in turn:

[Int32]::MaxValue
[Int32]::MinValue

Working with .NET Chapter 7

[180]

Static methods
As static properties, static methods do not require that an instance of a class is created.

MSDN shows static methods using an S symbol in the leftmost column. For example, the
System.Net.NetworkInformation.NetworkInterface class has a number of static
methods. The first of these is shown in the following screenshot:

PowerShell is also able to list these methods using Get-Member with the Static switch, as
shown here:

PS> [System.Net.NetworkInformation.NetworkInterface] | Get-Member -
MemberType Method -Static

 TypeName: System.Net.NetworkInformation.NetworkInterface

Name MemberType Definition
---- ---------- ----------
Equals Method static bool Equals(System.Object objA,
System.Object objB)
GetAllNetworkInterfaces Method static
System.Net.NetworkInformation.NetworkInterface[] GetAllNetworkInterfaces()
GetIsNetworkAvailable Method static bool GetIsNetworkAvailable()
ReferenceEquals Method static bool
ReferenceEquals(System.Object objA, System.Object objB)

Working with .NET Chapter 7

[181]

Static methods are accessed using the following generalized notation:

[<TypeName>]::<MethodName>(<ArgumentList>)

As the GetAllNetworkInterfaces method does not require arguments, it may be called
as follows:

[System.Net.NetworkInformation.NetworkInterface]::GetAllNetworkInterfaces()

The parentheses at the end of the statement must be included to tell PowerShell that this is
a method.

As was seen with static properties, both type and method may be assigned to variables:

$type = [System.Net.NetworkInformation.NetworkInterface]
$methodName = 'GetAllNetworkInterfaces'
$type::$methodName()

The parentheses are not part of the method name.

Static methods often require arguments. The System.IO.Path class has many static
methods that require arguments, as shown in the following screenshot:

Arguments are passed in as a comma-separated list. For example, the ChangeExtension
method may be used, as follows:

[System.IO.Path]::ChangeExtension("C:\none.exe", "bak")

Working with .NET Chapter 7

[182]

An array containing a list of arguments cannot be directly supplied. Consider the following
example:

$argumentList = "C:\none.exe", "bak"
[System.IO.Path]::ChangeExtension($argumentList)

If a list of arguments is to be supplied from a variable, the method object must be invoked:

$argumentList = "C:\none.exe", "bak"
[System.IO.Path]::ChangeExtension.Invoke($argumentList)

The method object (because everything is an object) is accessed by omitting the parentheses
that normally follow the name of the method:

PS> [System.IO.Path]::ChangeExtension

OverloadDefinitions

static string ChangeExtension(string path, string extension)

Non-public classes
.NET classes come with a number of access modifiers. Each of these affords a different level
of protection and visibility.

Instances of a public class may be created using New-Object (with an appropriate list of
arguments) or the new static method via constructors, as shown previously.

Private and internal (non-public) classes are not directly accessible; they are placed out of
sight by the developer of the class. They are often part of an implementation of a program
or command and are not expected to be directly accessed.

In some cases, the decision to hide something away appears to be counterproductive. One
example of this is the TypeAccelerators class.

The type derived from the class may be accessed using the following notation:

PS> [System.Management.Automation.PowerShell].Assembly.GetType(
 'System.Management.Automation.TypeAccelerators'
)

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
False False TypeAccelerators System.Object

Working with .NET Chapter 7

[183]

Type accelerators
A type accelerator is an alias for a type name. At the beginning of this chapter, the
System.Management.Automation.PowerShell type was used. This type has an
accelerator available. The accelerator allows the following notation to be used:

[PowerShell].Assembly

Another commonly used example is the ADSI accelerator. This represents the
System.DirectoryServices.DirectoryEntry type. This means that the following two
commands are equivalent:

[System.DirectoryServices.DirectoryEntry]"WinNT://$env:COMPUTERNAME"
[ADSI]"WinNT://$env:COMPUTERNAME"

Getting the list of type accelerators isn't quite as easy as it should be. An instance of the
TypeAccelerators type is required first. Once that has been retrieved, a static property
called Get will retrieve the list; the first few results are shown as follows:

$type =
[PowerShell].Assembly.GetType('System.Management.Automation.TypeAccelerator
s')
$type::Get

New accelerators may be added; for example, an accelerator for the TypeAccelerators
class would make life easier. To do this, an accelerator with the name Accelerators is
added, using the TypeAccelerators type as the object that it references:

$type =
[PowerShell].Assembly.GetType('System.Management.Automation.TypeAccelerator
s')
$type::Add('Accelerators', $type)

Once the new accelerator has been added, the previous operations can be simplified.
Getting the list of accelerators is now done as follows:

[Accelerators]::Get

New accelerators may be added using the following syntax:

[Accelerators]::Add('<Name>', [<TypeName>])

Working with .NET Chapter 7

[184]

The using keyword
The using keyword was introduced with PowerShell 5.0. The using keyword may be used
in a script, a module, or in the console.

The using keyword does a number of different things. It can import and declare the
following:

Assemblies
Modules
Namespaces

In the context of working with .NET, assemblies, and namespaces are of particular interest.

Future plans for the using command look to include aliasing, as well as support for type
and command objects. For example, we might expect the following to work in the future:

using namespace NetInfo = System.Net.NetworkInformation

At this time, however, this statement will fail with a not supported error.

Using assemblies
If an assembly is listed in the using statement for a script, it will be loaded. For example,
System.Windows.Forms may be loaded in Windows PowerShell; the assembly is not
available in PowerShell Core:

using assembly System.Windows.Forms

Add-Type is able to do much the same thing:

Add-Type -AssemblyName System.Windows.Forms

Assemblies loaded by name are stored in the Global Assembly Cache (GAC). The GAC is
stored in $env:WINDIR\Assembly. gacutil may be used to find assemblies within the
cache:

gacutil /l System.Windows.Forms

The Gac module, on the PowerShell Gallery, provides a more consistent experience:

PS> Install-Module Gac -Scope CurrentUser
PS> Get-GacAssembly System.Windows.Forms

Working with .NET Chapter 7

[185]

Name Version Culture PublicKeyToken PrArch
---- ------- ------- -------------- ------
System.Windows.Forms 2.0.0.0 b77a5c561934e089 MSIL
System.Windows.Forms 1.0.5000.0 b77a5c561934e089 None
System.Windows.Forms 4.0.0.0 b77a5c561934e089 MSIL

As shown in the preceding code block, more than one version of the same assembly can
exist on a system. If a specific version is required, the full name of the assembly may be
used:

using assembly 'System.Windows.Forms, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089'

This full name is exposed by both gacutil and the Gac module, as shown here:

PS> Get-GacAssembly System.Windows.Forms | Select-Object FullName

FullName

System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
System.Windows.Forms, Version=1.0.5000.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089
System.Windows.Forms, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089

The using assembly statement will load assemblies from a specific path, if one is
supplied, as follows:

using assembly 'C:\SomeDir\someAssembly.dll'

PowerShell allows the using assembly statement any number of times in a script, and
more than one assembly can be loaded in a single script.

Using namespaces
Many of the examples used in this chapter have involved typing the full namespace path to
get to a class name. This requirement can be eased with the using keyword.

For example, if a script does a lot of work with the System.Net.NetworkInformation
class, the requirement to type the namespace every time can be removed. This allows the
System.Net.NetworkInformation.NetworkInterface class to be used with a much
shorter type name:

using namespace System.Net.NetworkInformation

Working with .NET Chapter 7

[186]

With this statement in place, classes can be used without the long namespace:

[NetworkInterface]::GetAllNetworkInterfaces()

If the namespace is present within an assembly that isn't loaded by default, the using
assembly command should be added first. For example, if a script is to work
with Windows Presentation Framework in Windows PowerShell, the following might
be useful:

Load the Windows Presentation Framework
using assembly PresentationFramework
Use the System.Windows namespace
using namespace System.Windows

$window = [Window]@{
 Height = 100
 Width = 150
}
Create a System.Windows.Controls.Button object
$button = [Controls.Button]@{
 Content = 'Close'
}
$button.Add_Click({ $window.Close() })
$window.Content = $button
$window.ShowDialog()

GUIs and PowerShell Core

Like System.Windows.Forms, the Windows Presentation Framework is
not available in .NET Core at this time. Both are planned to reappear in
.NET Core 3 in 2019 (on Windows systems only).

PowerShell only allows one using namespace statement line in the console. If the
statements are made on different lines, only the last will be valid. It is possible to use more
than one namespace in the console by separating the statements with ;. This is
demonstrated in the following code block:

PS> using namespace System.IO; using namespace System.Text
PS> [File].FullName
System.IO.File
PS> [StringBuilder].FullName
System.Text.StringBuilder

In a script, using namespace statements may appear across as many lines as required.

Working with .NET Chapter 7

[187]

Summary
In this chapter, we've explored assemblies, namespaces, types, and classes, before delving
into the creation of objects from a class. Static properties and static methods were
introduced, both of which may be used without creating an instance of a class. Non-public
classes were introduced, before briefly touching on type accelerators. The using keyword
was introduced, along with a peek at its possible future direction.

This chapter brings part one of this book to an end. In part two, we'll explore working with
data in PowerShell, starting with data parsing and manipulation.

8
Strings, Numbers, and Dates

Access to the .NET framework means that PowerShell comes with a wide variety of ways to
work with simple data types, such as strings and numbers.

In this chapter, we're going to cover the following topics:

Manipulating strings
Converting strings
Manipulating numbers
Converting strings into numeric values
Manipulating dates and times

Manipulating strings
The .NET System.String type offers a wide array of methods for manipulating or
inspecting strings. The following methods are case-sensitive, but are, in many cases, faster
alternatives to using regular expressions, for situations when the time that it takes for a
script to run is important.

Working with data held in strings is an important part of any scripting language.

Indexing into strings
In PowerShell, it's possible to index into a string the same way as we select elements from
an array. Consider the following example:

$myString = 'abcdefghijklmnopqrstuvwxyz'
$myString[0] # This is a (the first character in the string)
$myString[-1] # This is z (the last character in the string)

Strings, Numbers, and Dates Chapter 8

[189]

String methods and arrays
In PowerShell, some string methods can be called on an array. The method will be executed
against each of the elements in the array. For example, the Trim method is used against
each of the strings as follows:

('azzz', 'bzzz', 'czzz').Trim('z')

The Split method is also capable of acting against an array:

('a,b', 'c,d').Split(',')

This remains true as long as the array object doesn't have a conflicting method or property.
For example, the Insert method can't be used as an array object has a version of its own.

Properties and methods of array elements

The feature demonstrated here has broader scope than methods, and it
applies to more than string objects.

In the case of strings, you can view the methods that can be used as
follows:
$arrayMembers = (Get-Member -InputObject @() -MemberType
Property, Method).Name
'string' | Get-Member -MemberType Property, Method |

Where-Object Name -notin $arrayMembers.

Using this feature with DateTime objects, the AddDays method may be
called on each element in an array: ((Get-Date '01/01/2017'),
(Get-Date '01/02/2017')).AddDays(5).

Likewise, the DayOfWeek property may be accessed on each element in
the array, as follows: ((Get-Date '01/01/2017'), (Get-Date
'01/02/2017')).DayOfWeek.

A similar Get-Member command reveals the list of properties and
methods that may be used in this manner: Get-Date | Get-Member -
MemberType Property, Method | Where-Object Name -notin

$arrayMembers.

Strings, Numbers, and Dates Chapter 8

[190]

Substring
The Substring method selects part of a string. Substring can select everything after a
specific index:

$myString = 'abcdefghijklmnopqrstuvwxyz'
$myString.Substring(20) # Start at index 20. Returns 'uvwxyz'

Substring can also select a specific number of characters from a starting point:

$myString = 'abcdefghijklmnopqrstuvwxyz'
$myString.Substring(3, 4) # Start at index 3, get 4 characters.

The index starts at 0, counting from the beginning of the string.

Split
The Split method has a relative in PowerShell: the -split operator. The -split operator
expects a regular expression, whereas the split method for a string expects an array of
characters by default:

$myString = 'Surname,GivenName'
$myString.Split(',')

When splitting the following string based on a comma, the resulting array will have three
elements. The first element is Surname, the last is GivenName. The second element in the
array (index 1) is blank:

$string = 'Surname,,GivenName'
$array = $string.Split(',')
$array.Count # This is 3
$array[1] # This is empty

This blank value may be discarded by setting the StringSplitOptions argument of the
Split method:

$string = 'Surname,,GivenName'
$array = $string.Split(',', [StringSplitOptions]::RemoveEmptyEntries)
$array.Count # This is 2

Strings, Numbers, and Dates Chapter 8

[191]

When using the Split method in this manner, individual variables may be filled from each
value as follows:

$surname, $givenName = $string.Split(',',
[StringSplitOptions]::RemoveEmptyEntries)

The Split method is powerful, but care is required when using its different arguments.
Each of the different sets of arguments works as follows:

PS> 'string'.Split

OverloadDefinitions

string[] Split(Params char[] separator)
string[] Split(char[] separator, int count)
string[] Split(char[] separator, System.StringSplitOptions options)
string[] Split(char[] separator, int count, System.StringSplitOptions
options)
string[] Split(string[] separator, System.StringSplitOptions options)
string[] Split(string[] separator, int count, System.StringSplitOptions
options)

PowerShell can create a character array from a string, or an array of strings, provided that
each string is no more than one character long. Both of the following statements will result
in an array of characters (char[]):

[char[]]$characters = [string[]]('a', 'b', 'c') [char[]]$characters = 'abc'

When the Split method is used as follows, the separator is any (and all) of the characters
in the string. The result of the following expression is an array of five elements (one,
<empty>, two, <empty>, and three):

$string = 'one||two||three'
$string.Split('||')

To split using a string, instead of an array of characters, PowerShell must be forced to use
this overload definition:

string[] Split(string[] separator, System.StringSplitOptions options)

This can be achieved with the following cumbersome syntax:

$string = 'one||two||three'
$string.Split([String[]]'||', [StringSplitOptions]::None)

Strings, Numbers, and Dates Chapter 8

[192]

Replace
The Replace method will substitute one string value for another:

$string = 'This is the first example'
$string.Replace('first', 'second')

PowerShell also has a replace operator. The replace operator uses a regular expression
to describe the value that should be replaced.

Regular expressions (discussed in Chapter 9, Regular Expressions) may be more difficult to
work with in some cases, especially when replacing characters that are reserved in regular
expressions (such as the period character, .):

$string = 'Begin the begin.'
$string -replace 'begin.', 'story, please.'
$string.Replace('begin.', 'story, please.')

In these cases, the Replace method may be easier to work with.

Trim, TrimStart, and TrimEnd
The Trim method, by default, removes all white space (spaces, tabs, and line breaks) from
the beginning and end of a string. Consider the following example:

$string = "
 This string has leading and trailing white space "
$string.Trim()

The TrimStart and TrimEnd methods limit their operation to either the start or end of the
string.

Each of the methods accepts a list of characters to trim. Consider the following example:

$string = '*__This string is surrounded by clutter.--#'
$string.Trim('*_-#')

Strings, Numbers, and Dates Chapter 8

[193]

The Trim method does not remove a string from the end of another. The string supplied in
the previous example ('*_-#') is treated as an array. This can be seen in the definition of
the method:

PS> 'string'.Trim

OverloadDefinitions

string Trim(Params char[] trimChars)
string Trim()

A failure to appreciate this can lead to unexpected behavior. The domain name in the
following example ends with the suffix, '.uk.net'. The goal is to trim the suffix from the
end of the string. However, the method goes too far here, taking away part of the name:

PS> $string = 'magnet.uk.net'
PS> $string.TrimEnd('.uk.net')

mag

Insert and remove
The Insert method is able to add one string into another. This method expects an index
from the beginning of the string, counting from 0, and a string to insert, as follows:

$string = 'The letter of the alphabet is a'
$string.Insert(4, 'first ') # Insert this before "letter", include a
trailing space

The Remove method removes characters from a string, based on a start position and the
length of the string to remove:

$string = 'This is is an example'
$string.Remove(4, 3)

The previous statement removes the first instance of is, including the trailing space.

Strings, Numbers, and Dates Chapter 8

[194]

IndexOf and LastIndexOf
IndexOf and LastIndexOf may be used to locate a character or string within a string.
IndexOf finds the first occurrence of a string, and LastIndexOf finds the last occurrence
of the string. In both cases, the zero-based index of the start of the string is returned. If the
character, or string, isn't present, the two methods will return -1:

$string = 'abcdefedcba'
$string.IndexOf('b') # Returns 1
$string.LastIndexOf('b') # Returns 9
$string.IndexOf('ed') # Returns 6

As -1 is used to indicate that the value is absent, the method is not suitable for statements
based on an implicit Boolean. The index 0, a valid position, is considered to be false. The
following example correctly handles the return value from IndexOf in a conditional
statement:

$string = 'abcdef'
if ($string.IndexOf('a') -gt -1) {
 'The string contains an a'
}

The scope of the IndexOf and LastIndexOf methods can be limited using the start index
and count arguments.

Methods that are able to locate a position within a string are useful when combined with
other string methods, as shown here:

PS> $string = 'First,Second,Third'
PS> $string.Substring(
>> $string.IndexOf(',') + 1, # startIndex (6)
>> $string.LastIndexOf(',') - $string.IndexOf(',') - 1 # length (6)
>>)

Second

Strings, Numbers, and Dates Chapter 8

[195]

PadLeft and PadRight
The PadLeft and PadRight options endeavor to increase the length of a string up to a
given maximum length. Both PadLeft and PadRight take the same arguments, as follows:

PS> ''.PadRight

OverloadDefinitions

string PadRight(int totalWidth)
string PadRight(int totalWidth, char paddingChar)

PS> ''.PadLeft

OverloadDefinitions

string PadLeft(int totalWidth)
string PadLeft(int totalWidth, char paddingChar)

Both methods attempt to make a string up to the total width. If the string is already equal
to, or longer than the total width, it won't be changed. Unless another is supplied, the
padding character is a space.

The following example pads the right-hand side of strings, using . as the padding character
argument:

PS> ('one', 'two', 'three').PadRight(10, '.')

one.......
two.......
three.....

Padding a string on the left, in effect, aligns the string on the right:

PS> ('one', 'two', 'three').PadLeft(10, '.')

.......one

.......two

.....three

Strings, Numbers, and Dates Chapter 8

[196]

ToUpper, ToLower, and ToTitleCase
ToUpper converts any lowercase characters in a string into uppercase. ToLower converts
any uppercase characters in a string into lowercase:

'aBc'.ToUpper() # Returns ABC
'AbC'.ToLower() # Returns abc

Considering that the methods discussed here are case sensitive, converting a string into a
known case may be an important first step. Consider the following example:

$string = 'AbN'
$string = $string.ToLower()
$string = $string.Replace('n', 'c')

The ToTitleCase is not a method of the String object. It is a method of the
System.Globalization.TextInfo class. The ToTitleCase method performs limited
culture-specific capitalization of words:

PS> (Get-Culture).TextInfo.ToTitleCase('some title')
Some Title

As this is not a static method, the TextInfo object must be created first. This object cannot
be directly created. TextInfo can be obtained via the
System.Globalization.CultureInfo object, and this object is returned by the Get-
Culture command.

The same TextInfo object may also be accessed using the host automatic variable:

$host.CurrentCulture.TextInfo.ToTitleCase('another title')

The ToTitleCase method will not convert words that are entirely uppercase as they're
considered to be acronyms.

Contains, StartsWith, and EndsWith
The Contains, StartsWith, and EndsWith methods will each return true or false,
depending on whether or not the string contains the specified string.

Contains returns true if the value is found within the subject string:

$string = 'I am the subject'
$string.Contains('the') # Returns $true

Strings, Numbers, and Dates Chapter 8

[197]

StartsWith and EndsWith return true if the subject string starts or ends with the specified
value:

$string = 'abc'
$string.StartsWith('ab')
$string.EndsWith('bc')

Chaining methods
As many of the string methods return a string, it is entirely possible to chain methods
together. For example, each of the following methods return a string, so another method
can be added to the end:

' ONe*? '.Trim().TrimEnd('?*').ToLower().Replace('o', 'O')

This ability to chain methods is not in any way unique to strings.

Converting strings
PowerShell has a variety of commands that can convert strings. These are explained in the
following sections.

Working with Base64
Base64 is a transport encoding that is used to represent binary data, and therefore, any
(relatively simple) data type.

Base64 is particularly useful when storing complex strings in files, or in text-based
transport protocols, such as SMTP.

The .NET System.Convert class contains the following static methods that can be used to
work with Base64:

ToBase64String

FromBase64String

Strings, Numbers, and Dates Chapter 8

[198]

The ToBase64String method takes an array of bytes and converts it into a string. For
example, a simple byte array may be converted as follows:

PS> [Byte[]]$bytes = 97, 98, 99, 100, 101
PS> [Convert]::ToBase64String($bytes)
YWJjZGU=

A more meaningful byte sequence can be made from a few words by getting the byte
values for each character:

PS> $bytes = [System.Text.Encoding]::ASCII.GetBytes('Hello world')
PS> [Convert]::ToBase64String($bytes)
SGVsbG8gd29ybGQ=

If the encoding is ASCII, it is possible in PowerShell to supply the ToBase64String
method with an array of characters. Consider the following example:

PS> [Convert]::ToBase64String('Hello world'.ToCharArray())
SGVsbG8gd29ybGQ=

The text encoding type used here is ASCII (1 byte per character); UTF16 text encoding will
result in a longer Base64 string, as each character is stored in two bytes:

PS> $bytes = [System.Text.Encoding]::Unicode.GetBytes('Hello world')
PS> [Convert]::ToBase64String($bytes)
SABlAGwAbABvACAAdwBvAHIAbABkAA==

Unicode encoding is used to create an encoded command

PowerShell.exe and pwsh.exe both have an EncodedCommand
parameter. This can be any encoded script. The text must be Unicode-
encoded.

Converting from a Base64 string into a sequence of bytes, and then into a string, may be
achieved as follows:

PS> $base64String = 'YWJjZGU='
PS> $bytes = [Convert]::FromBase64String($base64String)
PS> [System.Text.Encoding]::ASCII.GetString($bytes)
abcde

Base64 can be a handy format for storing items such as keys (normally a set of bytes) for use
with the ConvertTo-SecureString command. Consider the following example:

Create a 16-byte key
[Byte[]]$key = 1..16 | ForEach-Object { Get-Random -Minimum 0 -Maximum 256
}

Strings, Numbers, and Dates Chapter 8

[199]

Convert the key to a string and save it in a file
[Convert]::ToBase64String($key) | Out-File 'KeepThisSafe.txt'

Create a secure string (from plain text) to encrypt
$secure = ConvertTo-SecureString -String 'Secure text' -AsPlainText -Force
Encrypt the password using the key (from the file)
$convertFromSecureString = @{
 SecureString = $secure
 Key = [Convert]::FromBase64String((Get-Content
.\KeepThisSafe.txt))
}
$encrypted = ConvertFrom-SecureString @convertFromSecureString

Decrypt the password using the same key
$convertToSecureString = @{
 String = $encrypted
 Key = [Convert]::FromBase64String((Get-Content .\KeepThisSafe.txt))
}
$secure = ConvertTo-SecureString @convertToSecureString

Show the original password
[PSCredential]::new('.', $secure).GetNetworkCredential().Password

Working with comma-separated value strings
ConvertTo-Csv turns objects in PowerShell into comma-separated value (CSV) strings:

PS> Get-Process -Id $pid | Select-Object Name, Id, Path | ConvertTo-Csv
"Name","Id","Path"
"powershell_ise","9956","C:\WINDOWS\System32\WindowsPowerShell\v1.0\powersh
ell_ise.exe"

In the preceding example, Windows PowerShell will also include type data by default.

ConvertFrom-Csv turns CSV-formatted strings into objects:

"David,0123456789,28" | ConvertFrom-Csv -Header Name, Phone, Age

As ConvertFrom-Csv is specifically written to read CSV-formatted data, it will discard
quotes surrounding strings but will allow fields to spread across lines and so on. Consider
the following example:

'David,0123456789,28,"1 Some street, A Lane"' | ConvertFrom-Csv -Header
Name, Phone, Age, Address | Format-Table -Wrap

Strings, Numbers, and Dates Chapter 8

[200]

If the Header parameter is not defined, the first line read by ConvertFrom-Csv is expected
to be a header. If there's only one line of data, nothing will be returned:

'Name,Age', 'David,28' | ConvertFrom-Csv

Export-Csv and Import-Csv complement these two commands by writing and reading
information to a file instead:

Get-Process -Id $pid | Select-Object Name, Id, Path | Export-Csv
'somefile.csv'
Import-Csv somefile.csv

Convert-String
Convert-String and PowerShell Core: Convert-String is not available in
PowerShell Core 6.1. It may reappear in a later version, or may be moved
to a separate module.

The Convert-String command may be used to simplify some string conversion
operations. The conversion is performed based on an example that must be supplied. For
example, Convert-String can generate account names from a list of users:

'Michael Caine', 'Benny Hill', 'Raf Vallone' | Convert-String -Example
'Michael Caine=MCaine'

The Example parameter uses the generalized syntax as follows:

<Before>=<After>

This example text does not have to be one of the set being converted. For example, the
following will work:

'Michael Caine', 'Benny Hill', 'Raf Vallone' | Convert-String -Example
'First Second=FSecond'

The following alternate syntax is also supported:

'Michael Caine', 'Benny Hill', 'Raf Vallone' | Convert-String -Example @{
 Before = 'First Second'
 After = 'FSecond'
}

Strings, Numbers, and Dates Chapter 8

[201]

The Convert-String command is not without its limitations. After may only include
strings, or partial strings, from Before, along with a subset of punctuation characters.
Characters that aren't permitted in After include @, $, ~, `, and !. Because of these
limitations, Convert-String cannot, for example, build an email address for each user in
the list in a single step.

ConvertFrom-String
Convert-FromString and PowerShell Core

ConvertFrom-String is not available in PowerShell Core 6.1. It may
reappear in a later version, or may be moved to a separate module.

ConvertFrom-String has two different styles of operation. The first behaves much as
ConvertFrom-Csv does, except that it doesn't discard characters that make up the CSV
format. In the following example, the quotation marks surrounding the first name are
preserved:

PS> '"bob",tim,geoff' | ConvertFrom-String -Delimiter ',' -PropertyNames
name1, name2, name3

name1 name2 name3
----- ----- -----
"bob" tim geoff

The default delimiter (if the parameter is not supplied) is a space. The second operating
mode of ConvertFrom-String is far more complex. A template must be defined for each
element of data that's to be pushed into a property.

The following example uses ConvertFrom-String to convert the output from the
tasklist command into an object:

$template = '{Task*:{ImageName:System Idle Process} {[Int]PID:0}
{SessionName:Services} {Session:0} {Memory:24 K}}'

tasklist |
 Select-Object -Skip 3 |
 ConvertFrom-String -TemplateContent $template |
 Select-Object -ExpandProperty Task

The Task* element denotes the start of a data record. It allows each of the remaining fields
to be grouped together under a single object.

Strings, Numbers, and Dates Chapter 8

[202]

The ConvertFrom-String command is good at dealing with well formatted data that's
already divided correctly. In the case of the tasklist command, the end of a single task
(or data record) is denoted by a line break.

Manipulating numbers
Basic mathematical operations in PowerShell make use of the operators discussed in
Chapter 4, Operators.

Formatting numbers using the format operators are introduced, along with a number of
features, as follows:

'{0:x}' -f 24244 # Lower-case hexadecimal. Returns 5eb4
'{0:X}' -f 24244 # Upper-case hexadecimal. Returns 5EB4
'{0:P}' -f 0.28232 # Percentage. Returns 28.23%
'{0:N2}' -f 32583.122 # Culture specific number format.
 # 2 decimal places.
 # Returns 32,583.12 (for en-GB)

The format operator is powerful, but it has one major shortcoming: it returns a string. It is
great for when you want to display a number to a user, but will prevent sorting or work
with the numeric form.

Large byte values
PowerShell provides operators for working with bytes. These operators are as follows:

nKB: Kilobytes (n * 10241)
nMB: Megabytes (n * 10242)
nGB: Gigabytes (n * 10243)
nTB: Terabytes (n * 10244)
nPB: Petabytes (n * 10245)

These operators can be used to represent large values:

PS> 22.5GB
24159191040

Strings, Numbers, and Dates Chapter 8

[203]

The operators may also be used to convert large byte values into shorter values. For
example, a shorter value might be added to a message using the format operator, as shown
here:

PS> '{0:F} TB available' -f (123156235234522 / 1TB)
112.01 TB available

Power of 10
PowerShell uses the e operator to represent a scientific notation (power-of-10, "* 10n")
that can be used to represent very large numbers. The exponent can be either positive or
negative:

2e2 # Returns 200 (2 * 102)
2e-1 # Returns 0.2 (2 * 10-1)

Hexadecimal
Hexadecimal formats are accessible in PowerShell without any significant work.
PowerShell will return the decimal form of any given hexadecimal number. The
hexadecimal number should be prefixed with 0x:

PS> 0x5eb4

24244

Using System.Math
While PowerShell itself comes with reasonably basic mathematical operators, the .NET
System.Math class has a far wider variety.

The Round static method can be used to round up to a fixed number of decimal places. In
the following example, the value is rounded to two decimal places:

[Math]::Round(2.123456789, 2)

By default, the Round method in .NET performs what's known as bankers rounding. It will
always prefer to round to an even number. For example, 1.5 will round to 2, and 2.5 will
round to 2.

Strings, Numbers, and Dates Chapter 8

[204]

This behavior can be changed using the MidpointRounding enumeration, as shown here:

[Math]::Round(2.225, 2) # Results in
2.22
[Math]::Round(2.225, 2, [MidpointRounding]::AwayFromZero) # Results in
2.23

The Ceiling and Floor methods are used when performing whole-number rounding:

[Math]::Ceiling(2.1234) # Returns 3
[Math]::Floor(2.9876) # Returns 2

The Abs converts a positive or negative integer into a positive integer (and multiplies by -1
if the value is negative):

[Math]::Abs(-45748)

Numbers may be raised to a power using the following syntax:

[Math]::Pow(2, 8) # Returns 256 (28)

A square root can be calculated as follows:

[Math]::Sqrt(9) # Returns 3

The System.Math class also contains static properties for mathematical constants:

[Math]::pi # π, 3.14159265358979
[Math]::e # e, 2.71828182845905

Methods are also available to work with log, tan, sin, cos, and so on.

For a deeper dive into math in PowerShell, Tim Curwick's blog uncovers
more detail. The article is available at https:/ / www.madwithpowershell.
com/2013/ 10/ math- in- powershell. html.

Converting strings into numeric values
In most cases, strings may be cast back to numeric values. Consider the following example:

[Int]"2" # String to Int32
[Decimal]"3.141" # String to Decimal
[UInt32]10 # Int32 to UInt32
[SByte]-5 # Int32 to SByte

https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html
https://www.madwithpowershell.com/2013/10/math-in-powershell.html

Strings, Numbers, and Dates Chapter 8

[205]

For advanced conversions, the System.Convert class may be used. The Convert class
includes static methods that can take a string and convert it into a number using a specified
base.

A binary (base 2) value is converted as follows:

[Convert]::ToInt32('01000111110101', 2) # Returns 4597

A hexadecimal (base 16) value can be converted like so:

[Convert]::ToInt32('FF9241', 16) # Returns 16749121

The bases that Convert supports are 2 (binary), 8 (octal), 10 (denary), and 16 (hexadecimal).

Manipulating dates and times
DateTime objects may be created in a number of ways. The Get-Date command is one of
these. The methods on the DateTime type has a number of static methods that might be
used, and an instance of DateTime has methods that might be used.

DateTime parameters
While most commands deal with dates in a culture-specific format, care must be taken
when passing dates as strings to parameters that cast to DateTime.

Casting to DateTime does not account for a cultural bias. For example, in the UK, the
format dd/MM/yyyy is often used. Casting this format to DateTime will switch the format
to MM/dd/yyyy (as used in the US):

$string = "11/10/2000" # 11th October 2000
[DateTime]$string # 10th November 2000

If a function is created that accepts DateTime as a parameter, the result may not be as
expected, depending on the local culture:

function Test-DateTime {
 param(
 [DateTime]$Date
)
 $Date
}
Test-DateTime -Date "11/10/2000"

Strings, Numbers, and Dates Chapter 8

[206]

It is possible to work around this problem using the Get-Date command, to ensure the
culture specific conversion is more appropriately handled:

Test-DateTime -Date (Get-Date "11/10/2000")

Parsing dates
The Get-Date command is the best first stop for converting strings into dates. Get-Date
deals with a reasonable number of formats.

If, however, Get-Date is unable to help, the DateTime class has two static methods that
may be used:

ParseExact

TryParseExact

The format strings used by these methods are documented on MSDN, available at https:/ /
msdn.microsoft.com/ en- us/ library/ 8kb3ddd4(v= vs. 110). aspx.

The ParseExact method accepts one or more format strings, and returns a DateTime
object:

$string = '20170102-2030' # Represents 1st February 2017, 20:30
[DateTime]::ParseExact($string, 'yyyyddMM-HHmm', (Get-Culture))

The culture, returned from Get-Culture, used previously, fills in the format provider
argument.

The format string uses the following syntax:

yyyy to represent a four-digit year
dd for a two-digit day
MM for a two-digit month
HH for the hours in the day (this is for 24 hour format; hh is used for 12 hour
format)

This can be extended to account for more than one date format. In this case, two variations
of the format are accepted, the second of which expects seconds (ss):

$strings = '20170102-2030', '20170103-0931.24'
[String[]]$formats = 'yyyyddMM-HHmm', 'yyyyddMM-HHmm.ss'
foreach ($string in $strings) {
 [DateTime]::ParseExact(

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx

Strings, Numbers, and Dates Chapter 8

[207]

 $string,
 $formats,
 (Get-Culture),
 'None'
)
}

The final argument, None, grants greater control over the parsing process. The other
possible values and the effects are documented on MSDN, available at https:/ /msdn.
microsoft.com/en- us/ library/ 91hfhz89(v= vs. 110). aspx.

The TryParseExact method has a safer failure control than ParseExact, which will
throw an exception if it fails. The TryParseExact method itself returns true or false,
depending on whether or not it was able to parse the string.

The parsed date can be extracted using a reference to an existing date. This is an existing
variable that holds DateTime. The method updates the value held in the variable, if parsing
is successful, as follows:

$date = Get-Date 01/01/1601 # A valid DateTime object with an obvious
date
$string = '20170102-2030'
if ([DateTime]::TryParseExact($string, 'yyyyddMM-HHmm', $null, 'None',
[Ref]$date)) {
 $date
}

The updated value of the $date variable is shown when the TryParseExact method
returns true, and the body of the if statement executes.

Changing dates
A date object can be changed in a number of ways.

A Timespan object can be added to or subtracted from a date:

(Get-Date) + (New-Timespan -Hours 6)

The Date property can be used, representing the start of the day:

(Get-Date).Date

https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/91hfhz89(v=vs.110).aspx

Strings, Numbers, and Dates Chapter 8

[208]

The Add<Interval> methods can be used to add and subtract time, as follows:

(Get-Date).AddDays(1) # One day from now
(Get-Date).AddDays(-1) # One day before now

In addition to AddDays, the DateTime object makes the following available:

(Get-Date).AddTicks(1)
(Get-Date).AddMilliseconds(1)
(Get-Date).AddSeconds(1)
(Get-Date).AddMinutes(1)
(Get-Date).AddHours(1)
(Get-Date).AddMonths(1)
(Get-Date).AddYears(1)

By default, dates returned by Get-Date are local (that is, within the context of the current
timezone). A date may be converted into UTC as follows:

(Get-Date).ToUniversalTime()

The ToUniversalTime method only changes the date if the Kind property of the date is set
to Local or Unspecified. This is shown in the following snippet:

PS> Get-Date | Select-Object DateTime, Kind

DateTime Kind
-------- ----
30 October 2018 18:38:41 Local

The ToLocalTime method adjusts the date in accordance with the system's current
timezone. This operation may be performed if Kind is Utc or unspecified.

A date of a specific Kind may be created as follows, enabling appropriate use of
ToLocalTime or ToUniversalTime:

$UtcDate = [DateTime]::new((Get-Date).Ticks, 'Utc')

Dates may be converted into a string, either immediately using Get-Date with the Format
parameter or using the ToString method. The Format parameter and ToString method
accept the same arguments.

Strings, Numbers, and Dates Chapter 8

[209]

The date strings created by the following statements are equal:

Get-Date -Format 'dd/MM/yyyy HH:mm'
(Get-Date).ToString('dd/MM/yyyy HH:mm')

The ToString method is useful, as it means a date can be adjusted by chaining properties
and methods before conversion into a string:

(Get-Date).ToUniversalTime().Date.AddDays(-7).ToString('dd/MM/yyyy HH:mm')

When storing dates, it might be good practice to store them in an unambiguous format,
such as a universal date-time string. Consider the following:

(Get-Date).ToUniversalTime().ToString('u')

Comparing dates
DateTime objects may be compared using PowerShell's comparison operators:

$date1 = (Get-Date).AddDays(-20)
$date2 = (Get-Date).AddDays(1)
$date2 -gt $date1

Dates can be compared to a string; the value on the right-hand side will be converted
into DateTime. As with casting with parameters, a great deal of care is required for date
formats other than those used in the US.

For example, in the UK, I might write the following code, yet the conversion will fail. The
value on the left will convert into 13th January, 2017, but the value on the right will convert
into 1st December, 2017:

(Get-Date "13/01/2017") -gt "12/01/2017"

The corrected conversion is as follows:

(Get-Date "13/01/2017") -gt "01/12/2017"

Strings, Numbers, and Dates Chapter 8

[210]

Summary
In this chapter, some of the methods used to work with strings were introduced. Alternate
formats, such as Base64, were explored, along with the PowerShell commands for working
with CSV formats.

Two new commands from PowerShell 5 were introduced: Convert-String and
ConvertFrom-String.

Working with byte values in PowerShell was explored, as well as the power-of-10
operator.

The System.Math class adds a great deal of functionality, which was briefly
demonstrated. Finally, we took a brief look at working with DateTime objects.

In Chapter 9, Regular Expressions, we'll look at regular expressions.

9
Regular Expressions

Regular expressions (regex) are used to perform advanced searches against a text. For the
uninitiated, anything but a trivial regular expression can be a confusing mess. To make the
topic more difficult, regular expressions differ slightly across different programming
languages, platforms, and tools. Given that PowerShell is built on .NET, PowerShell uses
.NET style regular expressions. There are often several different ways to achieve a goal
when using regular expressions.

In this chapter, we'll cover the following topics:

Regex basics
Anchors
Repetition
Character classes
Alternation
Grouping
Examples

Regular Expressions Chapter 9

[212]

Regex basics
A few basic characters can go a long way. A number of the most widely used characters
and operators introduced in this section are summarized in the following table:

Description Character Example

Literal character Any, except:
[\^$.|?*+()

'a' -match 'a'

Any single character (except carriage return,
line feed, \r, and \n) . 'a' -match '.'

The preceding character repeated zero or
more times

*
'abc' -match 'a*'
'abc' -match '.*'

The preceding character repeated one or
more times

+
'abc' -match 'a+'
'abc' -match '.+'

Escape a character's special meaning \
'*' -match '*'
'\' -match '\\'

Optional character ?
'abc' -match 'ab?c'
'ac' -match 'ab?c'

Debugging regular expressions
Regular expressions can quickly become complicated and difficult to understand.
Modifying a complex regular expression isn't a particularly simple undertaking.

While PowerShell indicates whether there's a syntax error in a regular expression, it can't
do more than that. For example, in the following expression, PowerShell announces that
there is a syntax error:

PS> 'abc' -match '*'
parsing "*" - Quantifier {x,y} following nothing.
At line:1 char:1
+ 'abc' -match '*'
+ ~~~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException

Fortunately, there are a number of websites that can visualize a regular expression and lend
an understanding of how it works against a string.

Regular Expressions Chapter 9

[213]

Debuggex is one such site. This service can pick apart regular expressions, showing how
each element applies to an example. Debuggex can be found at
https://www.debuggex.com/.

Debuggex uses Java regular expressions, so some of the examples used in this chapter may
not be compatible.

Online engines that are .NET-specific, but don't include visualization, are as follows:

https://regextester.github.io/

http://www.regexplanet.com/advanced/dotnet/index.html

Finally, the website (http:/ / www. regular- expressions. info) is an important learning
resource that provides detailed descriptions, examples, and references.

Literal characters
The best place to begin is with the simplest of expressions, that is, expressions that contain
no special characters. These expressions contain what are known as literal characters. A
literal character can be anything except [\^$.|?*+(). Special characters must be escaped
using \ to avoid errors. See the following example:

'9*8'-match '*' # * is reserved
'1+5' -match '\+' # + is reserved

Curly braces ({}) are considered literal in many contexts.

Curly braces become reserved characters if they enclose either a number,
two numbers separated by a comma, or one number followed by a
comma.

In the following two examples, { and } are literal characters:
'{string}' -match '{'
'{string}' -match '{string}'

In the preceding example, the curly braces take on a special meaning. To
match, the string would have to be string followed by 123 of the
character, "g". We'll explore 'string{123}' -match 'string{123}'
{} in detail when discussing repetition.

https://www.debuggex.com/
http://regexhero.net/tester/
http://www.regexplanet.com/advanced/dotnet/index.html
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info

Regular Expressions Chapter 9

[214]

The following statement returns True and fills the matches automatic variable with what
matched. The matches variable is a hash table; it's only updated when something
successfully matches when using the -match operator:

PS> 'The first rule of regex club' -match 'regex'

True

PS> $matches

Name Value
---- -----
0 regex

If a -match fails, the matches variable will continue to hold the last matching value:

PS> 'This match will fail' -match 'regex'

False

PS> $matches

Name Value
---- -----
0 regex

Any character (.)
The next step is to introduce the period, or dot (.). The dot matches any single character,
except the end-of-line characters. The following statement will return True:

'abcdef' -match '......'

As the previous expression matches any six characters anywhere in a string, it will also
return True when a longer string is provided. There are no implied boundaries on the
length of a string, only on the number of characters matched:

'abcdefghijkl' -match '......'

Regular Expressions Chapter 9

[215]

Repetition with * and +
+ and * are two of a set of characters known as quantifiers. Quantifiers are discussed in
great detail later in this chapter.

The * character can be used to repeat the preceding character zero or more times. Consider
the following example:

'aaabc' -match 'a*'# Returns true, matches 'aaa'

However, zero or more means the character in question doesn't have to be present at all:

'bcd' -match 'a*' # Returns true, matches nothing

If a character must be present in a string, the + quantifier is more appropriate:

'aaabc' -match 'a+'# Returns true, matches 'aaa'
'bcd' -match 'a+' # Returns false

Combining * or + with . produces two very simple expressions: .* and .+. These
expressions may be used as follows:

'Anything' -match '.*' # 0 or more. Returns true
'' -match '.*' # 0 or more. Returns true
'Anything' -match '.+' # 1 or more. Returns true

Attempting to use either * or + as a match, without a preceding character, will result in an
error:

PS> '*' -match '*'
parsing "*" - Quantifier {x,y} following nothing.
At line:1 char:1
+ '*' -match '*'
+ ~~~~~~~~~~~~~~
 + CategoryInfo : OperationStopped: (:) [], ArgumentException
 + FullyQualifiedErrorId : System.ArgumentException

The escape character (\)
In this context, \ is an escape character, but it is perhaps more accurate to say that \
changes the behavior of the character that follows. For example, finding a string that
contains the normally reserved character, *, may be accomplished using \, as follows:

'1 * 3' -match '*'

Regular Expressions Chapter 9

[216]

In the following example, \ is used to escape the special meaning of \, making it a literal
character:

'domain\user' -match 'domain\\user'
'domain\user' -match '.*\\.*'

This technique may be used with -replace to change the domain prefix:

'domain\user' -replace 'domain\\', 'newdomain\'

Using \ alone will result in either an invalid expression or an unwanted expression. For
example, the following expression is valid, but it doesn't act as you might expect. The .
character is treated as a literal value because it is escaped. The following -match will return
false:

'domain\user' -match 'domain\.+'

The following string will be matched by the previous expression, as the string contains a
literal .:

'domain.user' -match 'domain\.+'

The -replace operator will allow access to parts of these strings as follows:

'Domain\User' -replace '.+\\' # Everything up to and including \

Alternatively, it can -replace everything after a character:

'Domain\User' -replace '\\.+' # Everything including and after \

Optional characters
The question mark character (?) can be used to make the preceding character optional. For
example, there might be a need to look for either the singular or plural form of a certain
word:

'There are 23 sites in the domain' -match 'sites?'

The regular expression will match the optional s if it can; the ? character is greedy. A
greedy expression will match as many characters as it possibly can..

Regular Expressions Chapter 9

[217]

Non-printable characters
Regular expressions support searches for non-printable characters. The most common of
these are shown in the following table:

Description Character
Tab \t

Line feed \n

Carriage return \r

Anchors
An anchor does not match a character; instead, it matches what comes before (or after) a
character:

Description Character Example
Beginning of a string ^ 'aba' -match '^a'

End of a string $ 'cbc' -match 'c$'

Word boundary \b 'Band and Land' -match '\band\b'

Anchors are useful where a character, string, or word may appear elsewhere in a string and
the position is critical.

For example, there might be a need to get values from the PATH environment variable that
starts with a specific drive letter. One approach to this problem is to use the start of a string
anchor; in this case, retrieving everything that starts with the C drive:

$env:PATH -split ';' | Where-Object { $_ -match '^C' }

Alternatively, there may be a need to get every path that is three or more directories deep
from a given set:

$env:PATH -split ';' | Where-Object { $_ -match '\\.+\\.+\\.+$' }

The word boundary anchor matches both before and after a word. It allows a pattern to
look for a specific word, rather than a string of characters that may be a word or a part of a
word.

Regular Expressions Chapter 9

[218]

For example, if the intent is to -replace the word day in the following string, then
attempting this without the word boundary replaces too much:

'The first day is Monday' -replace 'day', 'night'
'Monday is the first day' -replace 'day', 'night'

Adding the word boundary avoids the problem without significantly increasing the
complexity:

'The first day is Monday' -replace '\bday\b', 'night'
'Monday is the first day' -replace '\bday\b', 'night'

Repetition
A quantifier is used to repeat an element. Three examples of quantifiers have already been
introduced: *, +, and ?. The quantifiers are as follows:

Description Character Example
The preceding character repeated zero or
more times

*
'abc'-match 'a*'
'abc'-match '.*'

The preceding character repeated one or
more times

+
'abc'-match 'a+'
'abc'-match '.+'

Optional character ?
'abc' -match 'ab?c'
'ac' -match 'ab?c'

A fixed number of characters {exactly} 'abbbc' -match 'ab{3}c'

A number of characters within a range {min,max}
'abc' -match 'ab{1,3}c'
'abbc' -match 'ab{1,3}c'
'abbbc' -match 'ab{1,3}c'

Specifies a minimum number of characters {min,} 'abbc' -match 'ab{2,}c'
'abbbbbc' -match 'ab{2,}c'

Each *, +, and ? can be described using a curly brace notation:

* is the same as {0,}
+ is the same as {1,}
? is the same as {0,1}

It's extremely uncommon to find examples where the functionality of special characters is
replaced with curly braces. It is equally uncommon to find examples where the quantifier
{1} is used, as it adds unnecessary complexity to an expression.

Regular Expressions Chapter 9

[219]

Exploring the quantifiers
Each of these different quantifiers is greedy. A greedy quantifier will grab as much as it
possibly can before allowing the regex engine to move on to the next character in the
expression.

In the following example, the expression has been instructed to match everything it can,
ending with a \ character. As a result, it takes everything up to the last \, because the
expression is greedy:

PS> 'C:\long\path\to\some\files' -match '.*\\'; $matches[0]
True
C:\long\path\to\some\

The repetition operators can be made lazy by adding the ? character. A lazy expression, by
contrast, will get as little as it can before it ends:

PS> 'C:\long\path\to\some\files' -match '.*?\\'; $matches[0]
True
C:\

A possible use of a lazy quantifier is parsing HTML. The following line describes a very
simple HTML table. The goal is to get the first table's data (td) element:

<table><tr><td>Value1</td><td>Value2</td></tr></table>

Using a greedy quantifier will potentially take too much:

PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'
$html -match '<td>.+</td>'; $matches[0]
True
<td>Value1</td><td>Value2</td>

Using a character class is one possible way to solve this problem. The character class is used
to take all characters except >, which denotes the end of the next </td> tag:

PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'
PS> $html -match '<td>[^>]+</td>'
True
PS> $matches[0]
<td>Value1</td>

Regular Expressions Chapter 9

[220]

Another way to solve a problem is to use a lazy quantifier:

PS> $html = '<table><tr><td>Value1</td><td>Value2</td></tr></table>'
PS> $html -match '<td>.+?</td>'
True
PS> $matches[0]
<td>Value1</td>

Character classes
A character class is used to match a single character to a set of possible characters. A
character class is denoted using square brackets ([]).

For example, a character class may contain each of the vowels:

'get' -match 'g[aeiou]t'
'got' -match 'g[aeiou]'

Within a character class, the special or reserved characters are as follows:

-: Used to define a range
\: Escape character
^: Negates the character class

Ranges
The hyphen is used to define a range of characters. For example, we might want to match
any number that's repeated one or more times in a set (using +):

'1st place' -match '[0-9]+' # $matches[0] is "1"
'23rd place' -match '[0-9]+' # $matches[0] is "23"

A range in a character class can be any range of ASCII characters, such as the following
examples:

a-z

A-K

0-9

1-5

!-9 (0-9 and the ASCII characters 33 to 47)

Regular Expressions Chapter 9

[221]

The following code returns true, as " is ASCII character 34, and # is ASCII character 35;
that is, they're within the specified !-9 range:

PS> '"#' -match '[!-9]+'; $matches[0]
True
"#

The range notation allows hexadecimal numbers within strings to be identified. A
hexadecimal character can be identified by a character class containing 0-9 and a-f:

PS> 'The registry value is 0xAF9B7' -match '0x[0-9a-f]+'; $matches[0]
True
0xAF9B7

If the comparison operator were case-sensitive, the character class may also define A-F:

'The registry value is 0xAF9B7' -cmatch '0x[0-9a-fA-F]+'

Alternatively, a range might be used to tentatively find an IP address in a string, as follows:

PS> (ipconfig) -match 'IPv4 Address.+: *[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+'
 IPv4 Address. : 172.16.255.30

The range used to find the IP address here is very simple. It matches any string containing
four numbers separated by a period. For example, the following version number matches
this range:

'version 0.1.2.3234' -match '[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+'

This IP address-matching regular expression will be improved as the chapter progresses.

The hyphen is not a reserved character when it is put in a position where it does not
describe a range. If it is the first character (with no start to the range), it will be treated as a
literal. The following split operation demonstrates this:

PS> 'one-two_three,four' -split '[-_,]'
one
two
three
four

The same output is seen when - is placed at the end (that is, when there is no end to the
range):

'one-two_three,four' -split '[_,-]'

Regular Expressions Chapter 9

[222]

Elsewhere in the class, the escape character may be used to remove the special meaning
from the hyphen:

'one-two_three,four' -split '[_\-,]'

Negated character class
Within a character class, the caret (^) is used to negate the class. The character
class, [aeiou], matches vowels, negating it with the caret, [^aeiou], which matches any
character except a vowel (including spaces, punctuation, tabs, and everything else).

As with the hyphen, the caret is only effective if it is in the right position. In this case, it
only negates the class if it is the first character. Elsewhere in the class, it is a literal character.

A negated character class is sometimes the fastest way to tackle a problem. If the list of
expected characters is small, negating that list is a quick way to perform a match.

In the following example, the negated character class is used with the -replace operator to
fix a problem:

'Ba%by8 a12315tthe1231 k#.,154eyboard' -replace '[^a-z]'

Character class subtraction
Character class subtraction is supported by .NET (and hence PowerShell). Character class
subtraction is not commonly used at all.

Inside a character class, one character class may be subtracted from another, reducing the
size of the overall set. One of the best examples of this extends to the character class
containing vowels. The following matches the first vowel in a string:

'The lazy cat sat on the mat' -match '[aeiou]'

To match the first consonant, one approach can be to list all of the consonants:

'The lazy cat sat on the mat' -match '[b-df-hj-np-tv-z]'

Another approach to the problem is to take a larger character class, then subtract the
vowels:

'The lazy cat sat on the mat' -match '[a-z-[aeiou]]'

Regular Expressions Chapter 9

[223]

Shorthand character classes
A number of shorthand character classes are available. The following table shows each of
these:

Shorthand Description Character class
\d Digit character [0-9]

\s
White space (space, tab, carriage return, new line, and form
feed)

[\t\r\n\f]

\w Word character [A-Za-z0-9_]

Each of these shorthand classes can be negated by capitalizing the letter. [^0-9] may be
represented using \D and \S is for any character except white space, and \W for any
character except a word character.

Alternation
The alternation (or) character in a regular expression is a pipe (|). This is used to combine
several possible regular expressions. A simple example is to match a list of words:

'one', 'two', 'three' | Where-Object { $_ -match 'one|three' }

The alternation character has the lowest precedence; in the previous expression, every
value is first tested against the expression to the left of the pipe and then against the
expression to the right of the pipe.

The goal of the following expression is to extract strings that only contain the words one or
three. Adding the start and the end of string anchors ensures that there is a boundary.
However, because the left and right are treated as separate expressions, the result might not
be as expected when using the following expression:

PS> 'one', 'one hundred', 'three', 'eighty three' | Where-Object { $_ -
match '^one|three$' }
one
one hundred
three
eighty three

The two expressions are evaluated as follows:

Look for all strings that start with one
Look for all strings that end with three

Regular Expressions Chapter 9

[224]

There are at least two possible solutions to this problem. The first is to add the start and end
of string characters to both expressions:

'one', 'one hundred', 'three', 'eighty three' |
Where-Object { $_ -match '^one$|^three$' }

Another possible solution is to use a group:

'one', 'one hundred', 'three', 'eighty three' | Where-Object { $_ -match
'^(one|three)$' }

Grouping is discussed in detail in the following section.

Grouping
A group in a regular expression serves a number of different possible purposes:

To denote repetition (of more than a single character)
To restrict alternation to a part of the regular expression
To capture a value

Repeating groups
Groups may be repeated using any of the quantifiers. The regular expression that
tentatively identifies an IP address can be improved using a repeated group. The starting
point for this expression is as follows:

[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+

In this expression, the [0-9]+ term followed by a literal . character is repeated three times.
Therefore, the expression can become as follows:

([0-9]+\.){3}[0-9]+

The expression itself is not very specific—it will match much more than an IP address, but
is also now more concise. This example will be taken further later in this chapter.

If * is used as the quantifier for the group, it becomes optional. If faced with a set of version
numbers ranging in formats from 1 to 1.2.3.4, a similar regular expression might be used:

[0-9]+(\.[0-9]+)*

Regular Expressions Chapter 9

[225]

The result of applying this to a number of different version strings is shown in the
following code:

PS> 'v1', 'Ver 1.000.232.14', 'Version: 0.92', 'Version-7.92.1-alpha' |
 Where-Object { $_ -match '[0-9]+(\.[0-9]+)*' } |
 ForEach-Object { $matches[0] }
1
1.000.232.14
0.92
7.92.1

In the case of the last example, -alpha is ignored; if that were an interesting part of the
version number, the expression would need to be modified to account for that.

Restricting alternation
Alternation is the lowest precedence operator. In a sense, it might be wise to consider it as
describing an ordered list of regular expressions to test.

Placing an alternation statement in parentheses reduces the scope of the expression.

For example, it is possible to match a multi-line string using alternation as follows:

PS> $string = @'
First line
second line
third line
'@

PS> if ($string -match 'First(.|\r?\n)*line') { $matches[0] }
First line
second line
third line

In this example, as . does not match the end of line character, using alternation allows each
character to be tested against a broader set. In this case, each character is tested to see
whether it is any character, \r\n or \n.

A regular expression might be created to look for files with specific words, or parts of
words, in the name:

Get-ChildItem -Recurse -File |
 Where-Object { $_.Name -match '(pwd|pass(word|wd)?).*\.(txt|doc)$' }

Regular Expressions Chapter 9

[226]

The expression that compares filenames looks for strings that contain pwd, pass,
password, or passwd, followed by anything with the .txt or .doc extensions.

This expression will match any of the following (and more):

pwd.txt
server passwords.doc
passwd.txt
my pass.doc
private password list.txt

Capturing values
The ability to capture values from a string is an incredibly useful feature of regular
expressions.

When using the -match operator, groups that have been captured are loaded into the
matches variable (hash table) in the order that they appear in the expression. Consider the
following example:

PS> 'first second third' -match '(first) (second) (third)'
True

PS> $matches

Name Value
---- -----
3 third
2 second
1 first
0 first second third

The first key, 0, is always the string that matched the entire expression. Numbered keys are
added to the hash table for each of the groups in the order that they appear. This applies to
nested groups as well, counting from the leftmost (:

PS> 'first second third' -match '(first) ((second) (third))'
True

PS> $matches

Name Value
---- -----
4 third
3 second

Regular Expressions Chapter 9

[227]

2 second third
1 first
0 first second third

When using the -replace operator, the matches variable is not filled, but the contents of
individual groups are available as tokens for use in Replace-With:

PS>'first second third' -replace '(first) ((second) (third))', '$1, $4, $2'
first, third, second third

Use single quotes when tokens are included: As was mentioned in
Chapter 4, Operators, single quotes should be used when using capture
groups in Replace-With. Tokens in double quotes will expand as if they
were PowerShell variables.

Named capture groups
Capture groups can be given names. The name must be unique within the regular
expression.

The following syntax is used to name a group:

(?<GroupName>Expression)

This may be applied to the previous simple example as follows:

PS> 'first second third' -match '(?<One>first) (?<Two>second)
(?<Three>third)'
True

PS> $matches

Name Value
---- -----
One first
Three third
Two second
0 first second third

Regular Expressions Chapter 9

[228]

In PowerShell, this adds a pleasant additional capability. If the goal is to tear apart text and
turn it into an object, one approach is as follows:

if ('first second third' -match '(first) (second) (third)') {
 [PSCustomObject]@{
 One = $matches[1]
 Two = $matches[2]
 Three = $matches[3]
 }
}

This produces an object that contains the result of each (unnamed) -match group in a
named property.

An alternative is to use named matches and create an object from the matches hash table.
When using this approach, $matches[0] should be removed:

PS> if ('first second third' -match '(?<One>first) (?<Two>second)
(?<Three>third)') {
 $matches.Remove(0)
 [PSCustomObject]$matches
}

One Three Two
--- ----- ---
first third second

A possible disadvantage of this approach is that the output is not ordered, as it has been
created from a hash table.

Non-capturing groups
By default, every group is a capture group. A group can be marked as non-capturing by
using ?: before the expression. In the following example, the third group has been marked
as a non-capturing group:

PS> 'first second third' -match '(?<One>first) (?<Two>second) (?:third)'
True

PS> $matches

Name Value
---- -----
Two second
One first

Regular Expressions Chapter 9

[229]

0 first second third

The outer group, which previously added second third to the matches list, is now
excluded from the results:

PS> 'first second third' -match '(first) (?:(second) (third))'; $matches
True

PS> $matches

Name Value
---- -----
3 third
2 second
1 first
0 first second third

This technique may be useful when using -replace—it simplifies the list of tokens
available, even if an expression grows in complexity:

PS> 'first second third' -replace '(first) (?:(second) (third))', '$1, $2,
$3'
first, second, third

Examples of regular expressions
The following examples walk you through creating regular expressions for a number of
different formats.

MAC addresses
Media Access Control (MAC) is a unique identifier for network interface addresses with 6-
byte fields normally written in hexadecimal.

Tools such as ipconfig show the value of a MAC address with each hexadecimal byte
separated by a hyphen, for example, 1a-2b-3c-4d-5f-6d.

Linux or Unix-based systems tend to separate each hexadecimal byte with :, such
as 1a:2b:3c:4d:5f:6d. This includes Linux and Unix variants, VMWare, JunOS (the
Juniper network device operating system, based on FreeBSD), and so on.

Cisco IOS shows a MAC address as three two-byte pairs, separated by a period (.).

Regular Expressions Chapter 9

[230]

A regular expression can be created to simultaneously match all of these formats.

To match a single hexadecimal character, the following character class may be used:

[0-9a-f]

To account for the first two formats, a pair of hexadecimal characters is followed by a
hyphen or a colon:

[0-9a-f]{2}[-:]

This pattern is repeated 5 times, followed by one last pair:

([0-9a-f]{2}[-:]){5}[0-9a-f]{2}

Adding the Cisco format into the mix will make the expression a little longer:

(([0-9a-f]{2}[-:]?){2}[-:.]){2}([0-9a-f]{2}[-:]?){2}

Another approach is to keep the formats separate and use the alternation operator to divide
the two possibilities:

([0-9a-f]{2}[-:]){5}[0-9a-f]{2}|([0-9a-f]{4}\.){2}[0-9a-f]{4}

A small script can be written to test the regular expressions against some strings. In the
following tests, the first pattern is expected to fail when testing against the Cisco IOS
format:

$patterns = '^([0-9a-f]{2}[-:]){5}[0-9a-f]{2}$',
 '^(([0-9a-f]{2}[-:]?){2}[-:.]){2}([0-9a-f]{2}[-:]?){2}$',
 '^([0-9a-f]{2}[-:]){5}[0-9a-f]{2}|([0-9a-f]{4}\.){2}[0-9a-
f]{4}$'
$strings = '1a-2b-3c-4d-5f-6d',
 '1a:2b:3c:4d:5f:6d',
 '1c2b.3c4d.5f6d'
foreach ($pattern in $patterns) {
 Write-Host "Testing pattern: $pattern" -ForegroundColor Cyan
 foreach ($string in $strings) {
 if ($string -match $pattern) {
 Write-Host "${string}: Matches" -ForegroundColor Green
 } else {
 Write-Host "${string}: Failed" -ForegroundColor Red
 }
 }
}

Regular Expressions Chapter 9

[231]

IP addresses
Validating an IPv4 address using a regular expression is not necessarily a trivial task.

The IP address consists of four octets; each octet can be a value between 0 and 255. When
using a regular expression, the values are considered strings, therefore, the following
strings must be considered:

[0-9]: 0 to 9
[1-9][0-9]: 1 to 9, then 0 to 9 (10 to 99)
1[0-9]{2}: 1, then 0 to 9, then 0 to 9 (100 to 199)
2[0-4][0-9]: 2, then 0 to 4, then 0 to 9 (200 to 249)
25[0-5]: 2, then 5, then 0 to 5 (250 to 255)

Each of these is an exclusive set, so alternation is used to merge all of the previous small
expressions into a single expression. This generates the following group, that matches a
single octet (0 to 255):

([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])

The IP address validation expression contains repetition now, it contains four octets with a
period between each of them:

(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[
0-9]{2}|2[0-4][0-9]|25[0-5])

There are other, perhaps better, ways to do this than using such a long
regex. If a string is a strong candidate for being an IP address, consider
using the TryParse static method on the IPAddress type. It will handle
both v4 and v6 addressing, as follows:
$ipAddress = [IPAddress]0 # Used as a placeholder
if ([IPAddress]::TryParse("::1", [ref]$ipAddress)) {
$ipAddress
}

The netstat command
The netstat command produces tab-delimited, fixed-width tables. The following example
converts the active connections that list active TCP connections, as well as listening TCP
and UDP ports, into an object.

Regular Expressions Chapter 9

[232]

A snippet of the output that the example is intended to parse is shown in the following
code:

PS> netstat -ano

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 124
 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
 TCP 0.0.0.0:5357 0.0.0.0:0 LISTENING 4

When handling text such as this, a pattern based on white space (or not white space) can be
used:

^\s*\S+\s+\S+

For each column, the following expression with a named group is created:

(?<ColumnName>\S+)\s+

The trailing \s+ is omitted for the last column (PID):

^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<S
tate>\S+)\s+(?<PID>\d+)$

The expression is long, but incredibly repetitive. The repetition is desirable in this case,
where each column value is pushed into a differently named group.

The expression can be applied using Where-Object:

$regex =
'^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<
State>\S+)\s+(?<PID>\d+)$'
netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {
 $matches.Remove(0)
 [PSCustomObject]$matches
}

Unfortunately, the output from this command will be missing information about UDP
ports. The regular expression makes having a value in the state column mandatory.
Marking this group as optional will add UDP connection information to the output:

(State>\S+)?

Regular Expressions Chapter 9

[233]

Inserting it back into the regular expression is achieved as follows:

$regex =
'^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<
State>\S+)?\s+(?<PID>\d+)$'
netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {
 $matches.Remove(0)
 [PSCustomObject]$matches
}

Finally, if it is desirable to return the fields in the same order as netstat does, Select-
Object may be used:

PS>$regex =
'^\s*(?<Protocol>\S+)\s+(?<LocalAddress>\S+)\s+(?<ForeignAddress>\S+)\s+(?<
State>\S+)\s+(?<PID>\d+)$'
PS> netstat -ano | Where-Object { $_ -match $regex } | ForEach-Object {
 $matches.Remove(0)
 [PSCustomObject]$matches
} | Select-Object Protocol, LocalAddress, ForeignAddress, State, PID |
 Format-Table

Protocol LocalAddress ForeignAddress State PID
-------- ------------ -------------- ----- ---
TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 124
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4
TCP 0.0.0.0:5357 0.0.0.0:0 LISTENING 4

Formatting certificates
It is occasionally necessary to create certificates in very specific formats to appease other
systems requiring such a certificate.

A certificate may be exported as a Base64 string as follows. The InsertLineBreaks option
splits the string every 76 characters:

$certificate = Get-ChildItem Cert:\LocalMachine\Root | Select-Object -First
1
[Convert]::ToBase64String(
 $certificate.Export('Cert'),
 [System.Base64FormattingOptions]::InsertLineBreaks
)

Regular Expressions Chapter 9

[234]

If a different width is required, a regular expression may be used to tweak the format of the
certificate—in this case, we split the lines every 64 characters:

$certificate = Get-ChildItem Cert:\LocalMachine\Root | Select-Object -First
1
@(
 '-----BEGIN CERTIFICATE-----'
 [Convert]::ToBase64String(
 $certificate.Export('Cert')
) -split '(?<=\G.{64})'
 '-----END CERTIFICATE-----'
) -join "`n"

This makes use of the \G anchor that continues from the end of the previous match. This
anchor is difficult to demonstrate, but is very useful in situations such as this. The anchor is
placed inside a positive look-behind assertion. The length of the string is important, but the
content shouldn't be removed by -split.

Summary
In this chapter, we took a look at regular expressions and their use in PowerShell.

The Regex basics section introduced a number of heavily used characters. Anchors showing
how the start and end of a string or word boundary may be used to restrict the scope of an
expression.

Character classes were introduced as a powerful form of alternation, providing a range of
options for matching a single character. Alternation was demonstrated using different sets
of expressions to be evaluated.

We looked at repetition using "*", +, ?, and curly braces, and discussed the notion of
greedy and lazy expressions.

Grouping was introduced as a means of limiting the scope of alternation in order to repeat
larger expressions or to capture strings.

Finally, a number of examples were included, bringing together the areas covered in this
chapter to solve specific problems.

In Chapter 10, Files, Folders, and the Registry, we will discuss working with files, folders,
and the registry.

10
Files, Folders, and the Registry

The filesystem and the registry are two from among a number of providers available in
PowerShell. A provider represents a data store as a filesystem.

The commands used to work with data within a particular provider, such as filesystems,
are common to all providers.

In this chapter, we will cover the following topics:

Working with providers
Items
Item properties
Item attributes
Windows permissions
Transactions
File catalogs

Working with providers
Each provider shares a common set of commands, such as Set-Location, Get-Item, and
New-Item.

Files, Folders, and the Registry Chapter 10

[236]

Navigating
Set-Location, which has the alias cd, is used to navigate around a provider's hierarchy,
for example:

Set-Location \ # The root of the current drive
Set-Location Windows # A child container named Windows
Set-Location .. # Navigate up one level
Set-Location ..\.. # Navigate up two levels
Set-Location Cert: # Change to a different drive
Set-Location HKLM:\Software # Change to a specific child container under
a drive

Set-Location may only be used to switch to a container object.

The print working directory pwd variable shows the current location across all providers:

PS> $pwd

Path

HKLM:\Software\Microsoft\Windows\CurrentVersion

pwd and .NET

.NET classes and methods are oblivious to PowerShell's current directory.
When the following command is executed, the file will be created in the
Start in path (if a shortcut started PowerShell:
[System.IO.File]::WriteAllLines('file.txt', 'Some

content').

.NET constructors and methods are an ideal place to use the pwd
variable:[System.IO.File]::WriteAllLines("$pwd\file.txt",
'Some content').

Getting items
The Get-Item command is used to get an object represented by a path:

Get-Item \ # The root container
Get-Item . # The current container
Get-Item .. # The parent container
Get-Item C:\Windows\System32\cmd.exe # A leaf item
Get-Item Cert:\LocalMachine\Root #A container item

Files, Folders, and the Registry Chapter 10

[237]

The Get-ChildItem command, which has dir and ls aliases, is used to list the children of
the current item.

Neither Get-ChildItem nor Get-Item will show hidden files and folders by default. The
following error will be returned for a hidden item:

PS> Get-Item $env:USERPROFILE\AppData
Get-Item : Could not find item C:\Users\Someone\AppData.
At line:1 char:1
+ Get-Item $env:USERPROFILE\AppData
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : ObjectNotFound: (C:\Users\Someone \AppData:String) [Get-
Item], IOException
 + FullyQualifiedErrorId :
ItemNotFound,Microsoft.PowerShell.Commands.GetItemCommand

The Force parameter may be added to access hidden items:

PS> Get-Item $env:USERPROFILE\AppData -Force

 Directory: C:\Users\Someone

Mode LastWriteTime Length Name
---- ------------- ------ ----
d--h-- 23/09/2016 18:22 AppData

Drives
PowerShell will automatically create a drive for any disk with a drive letter, any existing
shared drive, the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER registry hives, the
certificate store, and so on.

Additional drives may be added using New-PSDrive; for example, a network drive can be
created:

New-PSDrive X -PSProvider FileSystem -Root \\Server\Share
New-PSDrive HKCR -PSProvider Registry -Root HKEY_CLASSES_ROOT

Existing drives may be removed using Remove-PSDrive. PowerShell allows filesystem
drives to be removed; however, this is not a destructive operation, and it only removes the
reference to the drive from PowerShell.

The filesystem provider supports the use of credentials when creating a drive, allowing
network shares to be mapped using specific credentials.

Files, Folders, and the Registry Chapter 10

[238]

Items
Support for each of the *-Item commands varies from one provider to another. The
filesystem provider supports all of the commands, while the Registry provider supports a
smaller number.

Testing for existing items
The Test-Path command may be used to test for the existence of a specific item under a
drive:

Test-Path HKLM:\Software\Publisher

Test-path distinguishes between item types with the PathType parameter. The container
and leaf terms are used across providers to broadly classify items.

When working with the filesystem, a container is a directory (or folder) and a leaf is a file.
In the registry, a key is a container and there are no leaves. In a certificate provider, a store
or store location is a container and a certificate is a leaf.

The following commands test for items of differing types:

Test-Path C:\Windows -PathType Container
Test-Path C:\Windows\System32\cmd.exe -PathType Leaf

The Test-Path command is often used in an if statement prior to creating a file or
directory:

if (-not (Test-Path C:\Temp\NewDirectory -PathType Container)) {
 New-Item C:\Temp\NewDirectory -ItemType Directory
}

Files, Folders, and the Registry Chapter 10

[239]

Get-Item, Test-Path, and pagefile.sys

Some files in Windows are locked, with the result that Get-Item and
Test-Path are unable to correctly return results. The pagefile.sys file
is one of these.

Get-Item returns an error, indicating that the file does not exist, even
when the Force parameter is used. Test-Path always returns false.

This may be considered to be a bug. To work around the problem, Get-
ChildItem is able to get the file: Get-ChildItem C:\ -Filter
pagefile.sys -Force.

To replace the functionality of Test-Path, the static method Exists may
be used: [System.IO.File]::Exists('c:\pagefile.sys').

Creating and deleting items
The New-Item command is able to create files, directories, keys, and so on depending on
the provider:

New-Item $env:Temp\newfile.txt -ItemType File
New-Item $env:Temp\newdirectory -ItemType Directory
New-Item HKLM:\Software\NewKey -ItemType Key

When creating a file using New-Item in PowerShell, the file is empty (0 bytes).

In PowerShell 5, New-Item gained the ability to create symbolic links, junctions, and hard
links:

A symbolic link is a link to another file or directory. Creating a symbolic link
requires administrator privileges (run as administrator).
A hard link is a link to another file on the same drive.
A junction is a link to another directory on any local drive. Creating a junction
does not require administrative privileges.

Files, Folders, and the Registry Chapter 10

[240]

Links may be created as follows:

New-Item LinkName -ItemType SymbolicLink -Value \\Server\Share New-Item
LinkName.txt -ItemType HardLink -Value OriginalName.txt New-Item LinkName -
ItemType Junction -Value C:\Temp

Temporary files

If a script needs a file to temporarily store data, the New-TemporaryFile
command may be used.

This command was introduced with PowerShell 5. Earlier versions of
PowerShell may use the Path.GetTempFileName static
method: [System.IO.Path]::GetTempFileName().

Both commands create an empty file. The resulting file may be used with
Set-Content, Out-File, or any commands that write data to a file.

The Remove-Item command may be used to remove an existing item under a provider, for
example:

$file = New-TemporaryFile
Set-Content -Path $file -Value 'Temporary: 10'
Remove-Item $file

Providers such as filesystem and registry are reasonably flexible about removing items.
When removing a directory or key with children, the recurse parameter should be used.

The certificate provider restricts the use of Remove-Item to certificates; certificate
stores cannot be removed.

Invoking items
Invoke-Item (which has an alias, ii) has a number of different uses. Invoke-Item will
open or execute an object using the default settings for that file:

Invoke-Item . # Open the current directory in
explorer
Invoke-Item test.ps1 # Open test.ps1 in the default
editor
Invoke-Item $env:windir\system32\cmd.exe # Open cmd
Invoke-Item Cert: # Open the certificate store
MMC for the current user

Files, Folders, and the Registry Chapter 10

[241]

The registry provider does not support Invoke-Item.

Item properties
The Get-ItemProperty and Set-ItemProperty commands allow individual properties
to be modified.

Filesystem properties
When working with the filesystem provider, Get-ItemProperty and Set-ItemProperty
are rarely needed. For example, Set-ItemProperty might be used to make a file read-
only. The following example assumes that the somefile.txt file already exists:

Set-ItemProperty .\somefile.txt -Name IsReadOnly -Value $true

The same property may be directly set from a file object retrieved using Get-Item (or Get-
ChildItem):

(Get-Item 'somefile.txt').IsReadOnly = $true

The IsReadOnly flag affects the attributes of the file object, adding the ReadOnly flag.

Adding and removing file attributes
The attributes property of a file object is a bit field presented as a number and given an
easily understandable value by the System.IO.FileAttributes enumeration.

Files, Folders, and the Registry Chapter 10

[242]

Bit fields

A bit field is a means of exposing multiple settings that have two states
(on or off binary states) using a single number.

A byte, an 8-bit value, can therefore hold eight possible settings. A 32-bit
integer, 4-bytes long, can hold 32 different settings.

The following table, whose state is described by 4 bits, has four settings:
Name: Setting4 Setting3 Setting2 Setting1
State: On Off On Off
Binary: 1 0 1 0
Decimal: 8 4 2 1

When settings 2 and 4 are toggled on, the value of the field is the
conversion of 1010 to decimal. This value is the result of 8 -bor 2, that
is, 10.

A number of the possible attributes are shown in the following table:

Name Compressed Archive System Hidden Read-only
Bit value 2048 32 4 2 1

When a file is hidden and read-only, the value of the attributes property is 3 (2 + 1). The
value 3 can be cast to the FileAttributes type, which shows the names of the individual
flags:

PS> [System.IO.FileAttributes]3
ReadOnly, Hidden

While the value is numeric, the use of the enumeration means words can be used to
describe each property:

PS> [System.IO.FileAttributes]'ReadOnly, Hidden' -eq 3
True

Files, Folders, and the Registry Chapter 10

[243]

This opens up a number of possible ways to set attributes on a file.

Attributes may be replaced entirely:

(Get-Item 'somefile.txt').Attributes = 'ReadOnly, Hidden'

Attributes may be toggled:

$file = Get-Item 'somefile.txt'
$file.Attributes = $file.Attributes -bxor 'ReadOnly'

Attributes may be added:

$file = Get-Item 'somefile.txt'
$file.Attributes = $file.Attributes -bor 'ReadOnly'

The +, -, +=, and -= operators may be used, as this is a numeric operation. Addition or
subtraction operations are not safe, as they do not account for existing flags. For example, if
a file was already read-only and += was used to attempt to make the file read-only, the
result would be a hidden file:

PS> $file = Get-Item 'somefile.txt'
PS> $file.Attributes = 'ReadOnly'
PS> $file.Attributes += 'ReadOnly'
PS> $file.Attributes

Hidden

Finally, regardless of whether or not a flag is present, attributes may be written as a string:

$file = Get-Item 'somefile.txt'
$file.Attributes = "$($file.Attributes), ReadOnly"

This is a feasible approach because casting to the enumeration type will ignore any
duplication:

PS> [System.IO.FileAttributes]'ReadOnly, Hidden, ReadOnly'
ReadOnly, Hidden

Files, Folders, and the Registry Chapter 10

[244]

Registry values
Get-ItemProperty and Set-ItemProperty are most useful when manipulating registry
values.

The following method may be used to get values from the registry:

Get-ItemProperty -Path HKCU:\Environment
Get-ItemProperty -Path HKCU:\Environment -Name Path
Get-ItemProperty -Path HKCU:\Environment -Name Path, Temp

Individual values may be written back to the registry under an existing key:

Set-ItemProperty -Path HKCU:\Environment -Name NewValue -Value 'New'

A value may be subsequently removed:

Remove-ItemProperty -Path HKCU:\Environment -Name NewValue

The Set-ItemProperty command does not directly allow the value type to be influenced.
The command will do as much as it can to fit the value into the existing type. For a property
with type REG_SZ, numbers will be converted to strings.

If a value does not already exist, a registry type will be created according to the value type:

Int32: REG_DWORD
Int64: REG_QWORD
String: REG_SZ
String[]: REG_MULTI_SZ (must use "[String[]]@('value',
'value')")

Byte[]: REG_BINARY
Any other type: REG_SZ

If a value of a specific type is required, the New-ItemProperty command should be used
instead, for instance, if an expanding string must be created:

New-ItemProperty HKCU:\Environment -Name Expand -Value 'User: %USERNAME%' -
PropertyType ExpandString

New-ItemProperty will throw an error if a property already exists. The Force parameter
may be used to overwrite an existing value with the same name.

Files, Folders, and the Registry Chapter 10

[245]

Windows permissions
The filesystem and registry providers both support Get-Acl and Set-Acl, which allow the
different access control lists to be modified.

Working with permissions in PowerShell involves a mixture of PowerShell commands and
.NET objects and methods.

While some values and classes differ between the different providers, many of the same
concepts apply.

The following snippet creates a set of files and folders in C:\Temp. These files and folders
are used in the examples that follow:

New-Item C:\Temp\ACL -ItemType Directory -Force
1..5 | ForEach-Object {
 New-Item C:\Temp\ACL\$_ -ItemType Directory -Force
 'content' | Out-File "C:\Temp\ACL\$_\$_.txt"

 New-Item C:\Temp\ACL\$_\$_ -ItemType Directory -Force
 'content' | Out-File "C:\Temp\ACL\$_\$_\$_.txt"
}

The Get-Acl command is used to retrieve an existing Access Control List (ACL) for an
object. Set-Acl is used to apply an updated ACL to an object.

If Get-Acl is used against a directory, the ACL type is DirectorySecurity; for a file, the
ACL type is FileSecurity and, for a registry key, the ACL type is RegistrySecurity.

Alternatives to .NET classes

The NtfsSecurity module found in the PowerShell Gallery may be an
easier alternative to the native methods discussed in this section.

Ownership
Ownership of a file or directory may be changed using the SetOwner method of the ACL
object. Changing the ownership of a file requires administrative privileges.

Files, Folders, and the Registry Chapter 10

[246]

The owner of the C:\Temp\ACL\1 file is the current user:

PS> Get-Acl C:\Temp\ACL\1 | Select-Object Owner

Owner

COMPUTER\Chris

The owner may be changed (in this case, to the Administrator account) using the
SetOwner method:

$acl = Get-Acl C:\Temp\ACL\1
$acl.SetOwner([System.Security.Principal.NTAccount]'Administrator')
Set-Acl C:\Temp\ACL\1 -AclObject $acl

This is not taking ownership

Setting ownership when the current user already has full control is one
thing. Very specific privileges are required to take ownership without
existing permissions: SeRestorePrivilege, SeBackupPrivilege, and
SeTakeOwnershipPrivilege.

Access and audit
Access lists come with two different types of access controls.

The discretionary access control list (DACL) is used to grant (or deny) access to a resource.
The DACL is referred to as access in PowerShell.

The system access control list (SACL) is used to define which activities should be audited.
The SACL is referred to as audit in PowerShell.

Reading and setting the audit ACL requires administrator privileges (run as administrator).
Get-Acl will only attempt to read the audit ACL if it is explicitly requested. The -Audit
switch parameter is used to request the list:

Get-Acl C:\Temp\ACL\1 -Audit | Format-List

As none of the folders created have audit ACLs at this time, the -Audit property will be
blank.

Files, Folders, and the Registry Chapter 10

[247]

Rule protection
Access control lists, by default, inherit rules from parent container objects. Access rule
protection blocks the propagation of rules from a parent object.

Rule protection can be enabled for the access ACL using the SetAccessRuleProtection
method or for the audit ACL using the SetAuditRuleProtection method.

Setting rule protection has the same effect as disabling inheritance in the GUI.

Each of the methods expects two arguments. The first argument, isProtected, dictates
whether or not the list should be protected. The second argument, preserveInheritance,
dictates what should be done with existing inherited entries. Inherited entries can either be
copied or discarded.

In the following example, access rule protection is enabled (inheritance is disabled) and the
previously inherited rules are copied into the ACL:

$acl = Get-Acl C:\Temp\ACL\2
$acl.SetAccessRuleProtection($true, $true)
Set-Acl C:\Temp\ACL\2 -AclObject $acl

Copied rules will only appear on the ACL (as explicit rules) after Set-Acl has been run.

If access rule protection is subsequently re-enabled, copied rules are not removed. The
resulting ACL will contain both inherited and explicit versions of each of the rules.
Inheritance can be re-enabled as follows:

$acl = Get-Acl C:\Temp\ACL\2
$acl.SetAccessRuleProtection($false, $false)
Set-Acl C:\Temp\ACL\2 -AclObject $acl

The access control list will have doubled in length:

PS> Get-Acl 2 |
>> Select-Object -ExpandProperty Access |
>> Select-Object FileSystemRights, IdentityReference, IsInherited

FileSystemRights IdentityReference
IsInherited
---------------- ----------------- --------

-536805376 NT AUTHORITY\Authenticated Users False
Modify, Synchronize NT AUTHORITY\Authenticated Users False
FullControl NT AUTHORITY\SYSTEM False
268435456 NT AUTHORITY\SYSTEM False

Files, Folders, and the Registry Chapter 10

[248]

268435456 BUILTIN\Administrators False
FullControl BUILTIN\Administrators False
ReadAndExecute, Synchronize BUILTIN\Users False
FullControl BUILTIN\Administrators True
268435456 BUILTIN\Administrators True
FullControl NT AUTHORITY\SYSTEM True
268435456 NT AUTHORITY\SYSTEM True
ReadAndExecute, Synchronize BUILTIN\Users True
Modify, Synchronize NT AUTHORITY\Authenticated Users True
-536805376 NT AUTHORITY\Authenticated Users True

Discarding access rules will result in an empty ACL:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($true, $false)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

Once this operation completes, any attempt to access the directory will result in access
being denied:

PS> Get-ChildItem C:\Temp\ACL\3
Get-ChildItem : Access to the path 'C:\Temp\ACL\3' is denied.
At line:1 char:1
+ Get-ChildItem C:\Temp\ACL\3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : PermissionDenied: (C:\Temp\ACL\3:String) [Get-
ChildItem], UnauthorizedAccessException
 + FullyQualifiedErrorId :
DirUnauthorizedAccessError,Microsoft.PowerShell.Commands.GetChildItemComman
d

Access to the folder can be restored provided the current user has the
SeSecurityPrivilege privilege, granted to users with administrative privileges (run as
administrator). Re-enabling inheritance is the simplest way to do this, although we might
have taken the opportunity to add rules:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($false, $false)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

In the previous example, the second argument for SetAccessRuleProtection,
preserveInheritance, is set to false. This value has no impact; it only dictates behavior
when access rule protection is enabled.

This loss of access does not apply when using the SetAuditRuleProtection method, as it
does not describe who or what can access an object.

Files, Folders, and the Registry Chapter 10

[249]

Inheritance and propagation flags
Inheritance and propagation flags dictate how individual access control entries are pushed
down to child objects.

Inheritance flags are described by the
System.Security.AccessControl.InheritanceFlags enumeration. The possible
values are as follows:

None: Objects will not inherit this access control entry
ContainerInherit: Only container objects (such as directories) will inherit this
entry
ObjectInherit: Only leaf objects (such as files) will inherit this entry

Propagation flags are described by the
System.Security.AccessControl.PropagationFlags enumeration. The possible
values are as follows:

None: Propagation of inheritance is not changed
NoPropagateInherit: Do not propagate inheritance flags
InheritOnly: This entry does not apply to this object, only children

These two flag fields are used to build the Applies to option shown in the graphical user
interface when setting security on a folder. The following table shows how each option is
created:

Option Flags

This folder only
• Inheritance: None
• Propagation: None

This folder, subfolders, and files
• Inheritance: ContainerInherit, ObjectInherit
• Propagation: None

This folder and subfolders
• Inheritance: ContainerInherit
• Propagation: None

This folder and files
• Inheritance: ObjectInherit
• Propagation: None

Subfolders only
• Inheritance: ContainerInherit
• Propagation: InheritOnly

Files only
• Inheritance: ObjectInherit
• Propagation: InheritOnly

Files, Folders, and the Registry Chapter 10

[250]

The NoPropagateInherit propagation flag comes into play when the tick box only
applies these permissions to objects and/or containers ticked within this container. This
may be used with all but in this folder, only right (where it has no effect).

Removing access control entries
Individual rules may be removed from an access control list using a number of different
methods:

RemoveAccessRule: Matches IdentityReference and AccessMask
RemoveAccessRuleAll: Matches IdentityReference
RemoveAccessRuleSpecific: Exact match

Access mask is a generic term used to refer to specific rights granted (filesystem rights for a
file or directory and registry rights for a registry key).

To demonstrate rule removal, explicit entries might be added to ACL. Enabling then
disabling access rule protection will add new rules: the original inherited set and an
explicitly set copy of the same rules.

To enable access rule protection and copy inherited rules, do the following:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($true, $true)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

In disable protection, once committed, the inherited rules will appear alongside the copied
rules:

$acl = Get-Acl C:\Temp\ACL\3
$acl.SetAccessRuleProtection($false, $true)
Set-Acl C:\Temp\ACL\3 -AclObject $acl

Rules may be viewed in ACL:

PS> $acl = Get-Acl C:\Temp\ACL\3
PS> $acl.Access | Select-Object IdentityReference, FileSystemRights,
IsInherited

IdentityReference FileSystemRights IsInherited
----------------- ---------------- -----------
NT AUTHORITY\Authenticated Users -536805376 False
NT AUTHORITY\Authenticated Users Modify, Synchronize False
NT AUTHORITY\SYSTEM FullControl False

Files, Folders, and the Registry Chapter 10

[251]

NT AUTHORITY\SYSTEM 268435456 False
BUILTIN\Administrators 268435456 False
BUILTIN\Administrators FullControl False
BUILTIN\Users ReadAndExecute, Synchronize False
BUILTIN\Administrators FullControl True
BUILTIN\Administrators 268435456 True
NT AUTHORITY\SYSTEM FullControl True
NT AUTHORITY\SYSTEM 268435456 True
BUILTIN\Users ReadAndExecute, Synchronize True
NT AUTHORITY\Authenticated Users Modify, Synchronize True
NT AUTHORITY\Authenticated Users -536805376 True

The following example finds each explicit rule and removes it from ACL:

$acl = Get-Acl C:\Temp\ACL\3
$acl.Access | Where-Object IsInherited -eq $false | ForEach-Object {
 $acl.RemoveAccessRuleSpecific($_)
}
Set-Acl C:\Temp\ACL\3 -AclObject $acl

Copying lists and entries
Access lists can be copied from one object to another; for example, a template ACL might
have been prepared:

$acl = Get-Acl C:\Temp\ACL\4
$acl.SetAccessRuleProtection($true, $true)
$acl.Access |
 Where-Object IdentityReference -like '*\Authenticated Users' |
 ForEach-Object { $acl.RemoveAccessRule($_) }
Set-Acl C:\Temp\ACL\4 –AclObject $acl

This ACL can be applied to another object:

$acl = Get-Acl C:\Temp\ACL\4
Set-Acl C:\Temp\ACL\5 -AclObject $acl

If ACL contains a mixture of inherited and explicit entries, the inherited entries will be
discarded.

Access control rules may be copied in a similar manner:

Get the ACE to copy
$ace = (Get-Acl C:\Temp\ACL\3).Access | Where-Object {
 $_.IdentityReference -like '*\Authenticated Users' -and
 $_.FileSystemRights -eq 'Modify, Synchronize' -and

Files, Folders, and the Registry Chapter 10

[252]

 -not $_.IsInherited
}

Get the target ACL
$acl = Get-Acl C:\Temp\ACL\5

Add the entry
$acl.AddAccessRule($ace)

Apply the change
Set-Acl C:\Temp\ACL\5 -AclObject $acl

Adding access control entries
Access control entries must be created before they can be added to an access control list.

Creating an access control entry (ACE) for the filesystem or the registry, and for access or
audit purposes, uses a set of .NET classes:

System.Security.AccessControl.FileSystemAccessRule

System.Security.AccessControl.FileSystemAuditRule

System.Security.AccessControl.RegistryAccessRule

System.Security.AccessControl.RegistryAuditRule

There are a number of different ways to use these classes; this section focuses on the most
common.

Filesystem rights
The filesystem access control entry uses the
System.Security.AccessControl.FileSystemRights enumeration to describe the
different rights that might be granted.

PowerShell is able to list each name using the GetNames (or GetValues) static methods of
the Enum type:

[System.Security.AccessControl.FileSystemRights].GetEnumNames()

Files, Folders, and the Registry Chapter 10

[253]

PowerShell might be used to show the names, numeric values, and even the binary values
associated with each. Several of these rights are composites, such as write, which
summarizes CreateFiles, AppendData, WriteExtendedAttributes, and
WriteAttributes:

[System.Security.AccessControl.FileSystemRights].GetEnumValues() | ForEach-
Object {
 [PSCustomObject]@{
 Name = $_
 Value = [Int]$_
 Binary = [Convert]::ToString([Int32]$_, 2).PadLeft(32, '0')
 }
}

Microsoft Docs is a better place to find a descriptive meaning of each of the different
flags: https://docs. microsoft. com/ en- us/dotnet/ api/ system. security.
accesscontrol.filesystemrights? view= netframework- 4.7. 2. This is a bit field, and can
therefore be treated in the same way as FileAttributes earlier in this chapter. The
simplest way to present rights is in a comma-separated list. There is a large number of
possible combinations; the graphical user interface shows a small number of these before
heading into advanced. These options are shown in the following table:

GUI option Filesystem rights
Full control FullControl

Modify Modify, Synchronize
Read and execute ReadAndExecute, Synchronize
List folder contents ReadAndExecute, Synchronize
Read Read, Synchronize
Write Write, Synchronize

The previous table shows that both read and execute and list folder contents have the same
value. This is, in essence, because the access mask is the same. The difference is in the
inheritance flags:

GUI option Inheritance flags
Read and execute ContainerInherit, ObjectInherit
List folder contents ContainerInherit

https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.security.accesscontrol.filesystemrights?view=netframework-4.7.2

Files, Folders, and the Registry Chapter 10

[254]

In all other cases, the inheritance flags are set to ContainerInherit, ObjectInherit.
Propagation flags are set to None for all examples.

Using these, a full control ACE can be created using one of the constructors for
FileSystemAccessRule:

$ace = [System.Security.AccessControl.FileSystemAccessRule]::new(
 'DOMAIN\User', # Identity reference
 'FullControl', # FileSystemRights
 'ContainerInherit, ObjectInherit', # InheritanceFlags
 'None', # PropagationFlags
 'Allow' # ACE type (allow or deny)
)

This ACE can be applied to ACL:

$acl = Get-Acl C:\Temp\ACL\5
$acl.AddAccessRule($ace)
Set-Acl C:\Temp\ACL\5 -AclObject $acl

Registry rights
Creating access control entries for registry keys follows exactly the same pattern as for
filesystem rights. The rights are defined in the
System.Security.AccessControl.RegistryRights enumeration.

PowerShell is able to list these rights, but the descriptions on MSDN are more
useful: https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.r
egistryrights(v=vs.110).aspx.

A rule is created in the same way as a filesystem rule:

$ace = [System.Security.AccessControl.RegistryAccessRule]::new(
 'DOMAIN\User', # Identity reference
 'FullControl', # RegistryRights
 'ContainerInherit, ObjectInherit', # InheritanceFlags
 'None', # PropagationFlags
 'Allow' # ACE type (allow or deny)
)

The rule can be applied to a key (in this case, a newly created key):

$key = New-Item HKCU:\TestKey -ItemType Key -Force
$acl = Get-Acl $key.PSPath
$acl.AddAccessRule($ace)
Set-Acl $key.PSPath -AclObject $acl

https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.registryrights(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.registryrights(v=vs.110).aspx

Files, Folders, and the Registry Chapter 10

[255]

Numeric values in the access control list
The FileSystemRights enumeration used in the previous examples does not quite cover
all of the possible values one might see when inspecting an ACL. In some cases, the rights
will be shown as numeric values rather than names.

The -536805376 and 268435456 values were both included in some earlier examples. The
missing values are part of the generic portion of the access control entry in Microsoft
docs: https://docs. microsoft. com/ en- us/windows/ desktop/ SecAuthZ/ access- mask-
format.

This generic portion is not accounted for by the FileSystemRights enumeration. These
generic values, in turn, represent summarized rights, as shown on this page: https:/ /
docs.microsoft.com/ en- us/ windows/ desktop/ FileIO/ file- security- and-access-
rights.

Converting each of the values to binary goes a long way to showing their composition:

PS> foreach ($value in -536805376, 268435456) {
>> '{0,-10}: {1}' -f $value, [Convert]::ToString($value, 2).PadLeft(32,
'0')
>> }

-536805376: 11100000000000010000000000000000
268435456 : 00010000000000000000000000000000

This script uses a GenericAccessRights enumeration toward show how these values
may be deconstructed:

using namespace System.Security.AccessControl

Define an enumeration which describes the generic access mask (only)
[Flags()]
enum GenericAccessRights {
 GenericRead = 0x80000000
 GenericWrite = 0x40000000
 GenericExecute = 0x20000000
 GenericAll = 0x10000000
}

For each value to convert
foreach ($value in -536805376, 268435456) {
 # For each enum that describes the values
 $accessRights = foreach ($enum in [GenericAccessRights],
[FileSystemRights]) {
 # Find values from the enum where the value in question has that

https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/access-mask-format
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights
https://docs.microsoft.com/en-us/windows/desktop/FileIO/file-security-and-access-rights

Files, Folders, and the Registry Chapter 10

[256]

exact bit set.
 [Enum]::GetValues($enum) | Where-Object { ($value -band $_) -eq $_
}
 }
 # Output the original value and the values from the enum (as a string)
 '{0} : {1}' -f $value, ($accessRights -join ', ')
}

The two values discussed are therefore the following:

-536805376: GenericExecute, GenericWrite, GenericRead, and Delete
268435456: GenericAll

Transactions
A transaction allows a set of changes to be grouped together and committed at the same
time. Transactions are only supported under Windows PowerShell.

The registry provider supports transactions, as shown in the following code:

PS> Get-PSProvider

Name Capabilities Drives
---- ------------ ------
Registry ShouldProcess, Transactions {HKLM, HKCU}
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess, Credentials {B, C, D}
Function ShouldProcess {Function}
Variable ShouldProcess {Variable}

A transaction may be created as follows:

Start-Transaction
$path = 'HKCU:\TestTransaction'
New-Item $path -ItemType Key -UseTransaction
Set-ItemProperty $path -Name 'Name' -Value 'Transaction' -UseTransaction
Set-ItemProperty $path -Name 'Length' -Value 20 -UseTransaction

At this point, the transaction may be undone:

Undo-Transaction

Alternatively, the transaction may be committed:

Complete-Transaction

Files, Folders, and the Registry Chapter 10

[257]

A list of the commands that support transactions may be viewed, although not all of these
may be used with the registry provider:

Get-Command -ParameterName UseTransaction

File catalogs
A file catalog is a new feature with Windows PowerShell 5.1. A file catalog is a reasonably
lightweight form of File Integrity Monitoring (FIM). The file catalog generates and stores
SHA1 hashes for each file within a folder structure and writes the result to a catalog file.

About hashing

Hashing is a one-way process; a hash is not an encryption or encoding. A
hash algorithm converts data of any length to a fixed-length value. The
length of the value depends on the hashing algorithm used.

MD5 hashing is one of the more common algorithms; it produces a 128-bit
hash that can be represented by a 32-character string.

SHA1 is rapidly becoming the default; it produces a 160-bit hash that can
be represented by a 40-character string.

PowerShell has a Get-FileHash command that can be used to calculate
the hash for a file.

As the catalog is the basis for determining integrity, it should be maintained in a secure
location, away from the set of files being analyzed.

New-FileCatalog
The New-FileCatalog command is used to generate (or update) a catalog:

New-FileCatalog -Path <ToWatch> -CatalogFilePath <StateFile>

A hash can only be generated for files that are larger than 0 bytes. However, filenames are
recorded irrespective of the size.

Files, Folders, and the Registry Chapter 10

[258]

The following command creates a file catalog from the files and folders created when
exploring permissions:

New-FileCatalog -Path C:\Temp\ACL -CatalogFilePath
C:\Temp\Security\example.cat

If the CatalogFilePath had been a directory instead of a file, New-FileCatalog would
have automatically created a file named catalog.cat.

Test-FileCatalog
The Test-FileCatalog command compares the content of the catalog file to the
filesystem. Hashes are recalculated for each file.

If none of the content has changed, Test-FileCatalog will return Valid:

PS> Test-FileCatalog -Path C:\Temp\ACL -CatalogFilePath
C:\Temp\Security\example.cat
Valid

If a file has been added, removed, or changed, the Test-FileCatalog command will
return ValidationFailed.

At this point, the Detailed parameter can be used to see which file changed.

Is it faster without Detailed?

The Detailed parameter does not change the amount of work Test-
FileCatalog must do. If the result is to be used, it might be better to use
the Detailed parameter right away. This saves the CPU cycles and I/O
operations required to list the content of a directory and generate the
hashes a second time.

The command does not provide a summary of changes; instead, it returns all files and
hashes from the catalog and all files and hashes from the path being tested:

PS> Set-Content C:\Temp\ACL\3\3.txt –Value 'New content'
PS> $params = @{
>> Path = 'C:\Temp\ACL'
>> CatalogFilePath = 'C:\Temp\Security\example.cat'
>> Detailed = $true
>> }
PS> Test-FileCatalog @params

Files, Folders, and the Registry Chapter 10

[259]

Status : ValidationFailed
HashAlgorithm : SHA1
CatalogItems : {[1\1.txt, 3B88969F774811E6A5D634832BE099EDA42B5E72], ...}
PathItems : {[1\1.txt, 3B88969F774811E6A5D634832BE099EDA42B5E72], ...}
Signature : System.Management.Automation.Signature

These values can be used to find changes. First, assign the result of the command to a
variable:

$params = @{
 Path = 'C:\Temp\ACL'
 CatalogFilePath = 'C:\Temp\Security\example.cat'
 Detailed = $true
}
$result = Test-FileCatalog @params

Once done, files that have been added can be listed with the following code:

$result.PathItems.Keys | Where-Object { -not
$result.CatalogItems.ContainsKey($_) }

Files that have been removed are listed with the following code:

$result.CatalogItems.Keys | Where-Object { -not
$result.PathItems.ContainsKey($_) }

Files that have been modified are listed with the following code:

$result.PathItems.Keys | Where-Object { $result.CatalogItems[$_] -ne
$result.PathItems[$_]}

As the file catalog only stores hashes, the command is unable to describe exactly what has
changed about a file, only that something has.

Summary
This chapter took a look at working with providers, focusing on filesystem and registry
providers. How PowerShell works with items and item properties was demonstrated.
Working with permissions in PowerShell for both filesystem and registry providers was
also demonstrated. Using transactions with supported providers was demonstrated using
the registry provider. Finally, file catalogs were introduced.

Chapter 11, Windows Management Instrumentation, will explore how to work with WMI
using the CIM commands built into Windows PowerShell and PowerShell Core.

11
Windows Management

Instrumentation
Windows Management Instrumentation (WMI) was introduced as a downloadable
component with Windows 95 and NT. Windows 2000 had WMI pre-installed, and it has
since become a core part of the operating system.

WMI can be used to access a huge amount of information about the computer system. This
includes printers, device drivers, user accounts, ODBC, and so on; there are hundreds of
classes to explore.

In this chapter, we will be covering the following topics:

Working with WMI
CIM cmdlets
WMI cmdlets
Permissions

Working with WMI
The scope of WMI is vast, which makes it a fantastic resource for automating processes.
WMI classes are not limited to the core operating system; it is not uncommon to find classes
created after software or device drivers have been installed.

Given the scope of WMI, finding an appropriate class can be difficult. PowerShell itself is
well equipped to explore the available classes.

Windows Management Instrumentation Chapter 11

[261]

WMI classes
PowerShell, as a shell for working with objects, presents WMI classes in a very similar
manner to .NET classes or any other object. There are a number of parallels between WMI
classes and .NET classes.

A WMI class is used as the recipe to create an instance of a WMI object. The WMI class
defines properties and methods. The WMI class Win32_Process is used to gather
information about running processes in a similar manner to the Get-Process command.

The Win32_Process class has properties such as ProcessId, Name, and CommandLine. It
has a terminate method that can be used to kill a process, as well as a create static method
that can be used to spawn a new process.

WMI classes reside within a WMI namespace. The default namespace is root\cimv2;
classes such as Win32_OperatingSystem and Win32_LogicalDisk reside in this
namespace.

WMI commands
PowerShell has two different sets of commands dedicated to working with WMI.

The CIM cmdlets were introduced with PowerShell 3.0. They are compatible with the
Distributed Management Task Force (DMTF) standard DSP0004. A move towards
compliance with open standards is critical as the Microsoft world becomes more diverse.

WMI itself is a proprietary implementation of the CIM server, using the Distributed
Component Object Model (DCOM) API to communicate between the client and server.

Standards compliance and differences in approach aside, there are solid, practical reasons
to consider when choosing which one to use.

Some properties of CIM cmdlets are as follows:

They are available in both Windows PowerShell and PowerShell Core.
They handle date conversion natively.
They have a flexible approach to networking. They use WSMAN for remote
connections by default, but can be configured to use DCOM over RPC.

Windows Management Instrumentation Chapter 11

[262]

Some properties of WMI cmdlets are as follows:

They are only available in Windows PowerShell, not in PowerShell Core
They do not automatically convert dates
They use DCOM over RPC exclusively
They can be used for all WMI operations
They have been superseded by the CIM cmdlets

The WMI Query Language
Before diving into the individual commands, it will help to have a grasp of the query
language used for WMI queries. The query language is useful when querying classes that
return multiple values.

The WMI Query Language (WQL) is used to build queries in WMI for both the CIM and
WMI commands.

WQL implements a subset of Structured Query Language (SQL). The keywords that we
will look at are traditionally written in uppercase; however, WMI queries are not case-
sensitive.

Both the CIM and WMI cmdlets support Filter and Query parameters, which accept
WQL queries.

Understanding SELECT, WHERE, and FROM
The SELECT, WHERE, and FROM keywords are used with the Query parameter.

The generalized syntax for the Query parameter is as follows:

SELECT <Properties> FROM <WMI Class>
SELECT <Properties> FROM <WMI Class> WHERE <Condition>

The wildcard, *, may be used to request all available properties or a list of known
properties may be requested:

Get-CimInstance -Query "SELECT * FROM Win32_Process"
Get-CimInstance -Query "SELECT ProcessID, CommandLine FROM Win32_Process"

Windows Management Instrumentation Chapter 11

[263]

The WHERE keyword is used to filter results returned by SELECT; for example, see the
following:

Get-CimInstance -Query "SELECT * FROM Win32_Process WHERE ProcessID=$PID"

WQL and arrays
WQL cannot filter array-based properties (for example, the capabilities
property of Win32_DiskDrive).

Escape sequences and wildcard characters
The backslash character, \, is used to escape the meaning of characters in a WMI query.
This might be used to escape a wildcard character, quotes, or itself. For example, the
following WMI query uses a path; each instance of \ in the path must be escaped:

Get-CimInstance Win32_Process -Filter
"ExecutablePath='C:\\Windows\\Explorer.exe'"

About Win32_Process and the Path property

The Path property is added to the output from the Win32_Process class
by PowerShell. While it appears in the output, the property cannot be
used to define a filter, nor can Path be selected using the Property
parameter of either Get-CimInstance or Get-WmiObject.

Get-Member shows that it is a ScriptProperty as follows:
Get-CimInstance Win32_Process -Filter "ProcessId=$pid" |
Get-Member -Name Path
Get-WmiObject Win32_Process -Filter "ProcessId=$pid" |
Get-Member -Name Path

WQL defines two wildcard characters that can be used with string queries:

The % (percentage) character matches any number of characters and is equivalent
to using * in a filesystem path or with the -like operator
The _ (underscore) character matches a single character and is equivalent to
using ? in a filesystem path or with the -like operator

The following query filters the results of Win32_Service, including services with paths
starting with a single drive letter and ending with .exe:

Get-CimInstance Win32_Service -Filter 'PathName LIKE "_:\\%.exe"'

Windows Management Instrumentation Chapter 11

[264]

Logic operators
Logic operators may be used with the Filter and Query parameters.

The examples in the following table are based on the following command:

Get-CimInstance Win32_Process -Filter "<Filter>"

Description Operator Syntax Example

Logical and AND
<Condition1> AND
<Condition2>

ProcessID=$pid AND
Name='powershell.exe'

Logical or OR
<Condition1> OR
<Condition2>

ProcessID=$pid OR ProcessID=0

Logical not NOT NOT <Condition> NOT ProcessID=$pid

Comparison operators
Comparison operators may be used with the Filter and Query parameters.

The examples in the following table are based on the following command:

Get-CimInstance Win32_Process -Filter "<Filter>"

Description Operator Example
Equal to = Name='powershell.exe' AND ProcessId=0

Not equal to <> Name<>'powershell.exe'

Greater than > WorkingSetSize>$(100MB)

Greater than or equal to >= WorkingSetSize>=$(100MB)

Less than < WorkingSetSize<$(100MB)

Less than or equal to <= WorkingSetSize<=$(100MB)

Is IS
CommandLine IS NULL
CommandLine IS NOT NULL

Like LIKE CommandLine LIKE '%.exe'

Quoting values
When building a WQL query, string values must be quoted; numeric and Boolean values
do not need quotes.

As the filter is also a string, this often means nesting quotes within one another. The
following techniques may be used to avoid needing to use PowerShell's escape character.

Windows Management Instrumentation Chapter 11

[265]

For filters or queries containing fixed string values, use either of the following styles. Use
single quotes outside and double quotes inside:

Get-CimInstance Win32_Process -Filter 'Name="powershell.exe"'

Alternatively, use double quotes outside and single quotes inside:

Get-CimInstance Win32_Process -Filter "Name='powershell.exe'"

For filters or queries containing PowerShell variables or sub-expressions, use double quotes
outside, as variables within a single-quoted string that will not expand:

Get-CimInstance Win32_Process -Filter "ProcessId=$PID"
Get-CimInstance Win32_Process -Filter "ExecutablePath LIKE '$($pshome -
replace '\\', '\\')%'"

Regex recap

The regular expression '\\' represents a single literal '\', as the
backslash is normally the escape character. Each '\' in the pshome path is
replaced with '\\' to account for WQL using '\' as an escape character
as well.

Finally, if a filter contains several conditions, consider using the format operator, as shown
in this splatting block:

$params = @{
 ClassName = 'Win32_Process'
 Filter = 'ExecutablePath LIKE "{0}%" AND WorkingSetSize<{1}' -f
 ($env:WINDIR -replace '\\', '\\'),
 100MB
}
Get-CimInstance @params

Associated classes
WMI classes often have several different associated or related classes; for example, each
instance of Win32_Process has an associated class, CIM_DataFile.

Associations between two classes are expressed by a third class. In the case of
Win32_Process and CIM_DataFile, the relationship is expressed by
the CIM_ProcessExecutable class.

Windows Management Instrumentation Chapter 11

[266]

The relationship is defined by using the antecedent and dependent properties, as shown in
the following example:

PS> Get-CimInstance CIM_ProcessExecutable |
>> Where-Object Dependent -match $PID |
>> Select-Object -First 1

Antecedent : CIM_DataFile (Name =
"C:\WINDOWS\System32\WindowsPowerShell\v...)
Dependent : Win32_Process (Handle = "11672")
BaseAddress : 2340462460928
GlobalProcessCount :
ModuleInstance : 4000251904
ProcessCount : 0
PSComputerName :

This CIM_ProcessExecutable class does not need to be used directly.

WMI object paths
A WMI path is required to find classes associated with an instance. The WMI object path
uniquely identifies a specific instance of a WMI class.

The object path is made up of a number of components:

<Namespace>:<ClassName>.<KeyName>=<Value>

The namespace can be omitted if the class is under the default namespace, root\cimv2.

The KeyName for a given WMI class can be discovered in a number of ways. In the case of
Win32_Process, the key name might be discovered by using any of the following
methods.

It can be discovered by using the CIM cmdlets:

(Get-CimClass Win32_Process).CimClassProperties |
 Where-Object { $_.Flags -band 'Key' }

It can be discovered by using the MSDN website, which provides the descriptions of each
property (and method) exposed by the
class: https://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx.

https://msdn.microsoft.com/en-us/library/aa394372(v=vs.85).aspx

Windows Management Instrumentation Chapter 11

[267]

Having identified a key, only the value remains to be found. In the case of Win32_Process,
the key (handle) has the same value as the process ID. The object path for the
Win32_Process instance associated with a running PowerShell console is, therefore, the
following:

root\cimv2:Win32_Process.Handle=$PID

The namespace does not need to be included if it uses the default, root\cimv2; the object
path can be shortened to the following:

Win32_Process.Handle=$PID

Get-CimInstance and Get-WmiObject will not retrieve an instance from an object path,
but the Wmi type accelerator can:

PS> [Wmi]"Win32_Process.Handle=$PID" | Select-Object Name, Handle

Name Handle
---- ------
powershell_ise.exe 13020

Using ASSOCIATORS OF
The ASSOCIATORS OF query may be used for any given object path; for example, using the
preceding object path results in the following command:

Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID}"

This query will return objects from three different classes: Win32_LogonSession,
Win32_ComputerSystem, and CIM_DataFile. The classes returned are shown in the
following example:

PS> Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID}" |
>> Select-Object CimClass -Unique

CimClass

root/cimv2:Win32_ComputerSystem
root/cimv2:Win32_LogonSession
root/cimv2:CIM_DataFile

The query can be refined to filter a specific resulting class; an example is as follows:

Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID} WHERE
ResultClass = CIM_DATAFILE"

Windows Management Instrumentation Chapter 11

[268]

The value in the ResultClass condition is deliberately not quoted.

The result of this operation is a long list of files that are used by the PowerShell process. A
snippet of this is shown as follows:

PS> Get-CimInstance -Query "ASSOCIATORS OF {Win32_Process.Handle=$PID}
WHERE ResultClass = CIM_DATAFILE" |
>> Select-Object Name

Name

c:\windows\system32\windowspowershell\v1.0\powershell_ise.exe
c:\windows\system32\ntdll.dll
c:\windows\system32\mscoree.dll
c:\windows\system32\sysfer.dll
c:\windows\system32\kernel32.dll

CIM cmdlets
The Common Information Model (CIM) commands are as follows:

Get-CimAssociatedInstance

Get-CimClass

Get-CimInstance

Get-CimSession

Invoke-CimMethod

New-CimInstance

New-CimSession

New-CimSessionOption

Register-CimIndicationEvent

Remove-CimInstance

Remove-CimSession

Set-CimInstance

Each of the CIM cmdlets uses either the ComputerName or CimSession parameter to target
the operation at another computer.

Windows Management Instrumentation Chapter 11

[269]

Getting instances
The Get-CimInstance command is used to execute queries for instances of WMI objects,
an example is as follows:

Get-CimInstance -ClassName Win32_OperatingSystem
Get-CimInstance -ClassName Win32_Service
Get-CimInstance -ClassName Win32_Share

A number of different parameters are available when using Get-CimInstance. The
command can be used with a filter, as follows:

Get-CimInstance Win32_Directory -Filter "Name='C:\\Windows'"
Get-CimInstance CIM_DataFile -Filter
"Name='C:\\Windows\\System32\\cmd.exe'"
Get-CimInstance Win32_Service -Filter "State='Running'"

When returning large amounts of information, the Property parameter can be used to
reduce the number of fields returned by a query:

Get-CimInstance Win32_UserAccount -Property Name, SID

The Query parameter can also be used, although it is rare to find a use for this that cannot
be served by the individual parameters:

Get-CimInstance -Query "SELECT * FROM Win32_Process"
Get-CimInstance -Query "SELECT Name, SID FROM Win32_UserAccount"

Getting classes
The Get-CimClass command is used to return an instance of a WMI class:

PS> Get-CimClass Win32_Process

NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
Win32_Process {Create, Terminate, Get...} {Caption, Description,
InstallDate, Name...}

The Class object describes the capabilities of that class. By default, Get-CimClass lists
classes from the root\cimv2 namespace.

Windows Management Instrumentation Chapter 11

[270]

The Namespace parameter will fill using tab completion; that is, if the following partial
command is entered, pressing Tab repeatedly will cycle through the possible root
namespaces:

Get-CimClass -Namespace <tab, tab, tab>

The child namespaces of a given namespace are listed in a __Namespace class instance. For
example, the following command returns the namespaces under root:

Get-CimInstance __Namespace -Namespace root

Extending this technique, it is possible to recursively query __Namespace to find all of the
possible namespace values. Certain WMI namespaces are only available to administrative
users (run as administrator); the following function may display errors for some
namespaces:

function Get-CimNamespace {
 param (
 $Namespace = 'root'
)
 Get-CimInstance __Namespace -Namespace $Namespace | ForEach-Object {
 $childNamespace = Join-Path $Namespace $_.Name
 $childNamespace

 Get-CimNamespace -Namespace $childNamespace
 }
}
Get-CimNamespace

Calling methods
The Invoke-CimMethod command may be used to call a method. The CIM class can be
used to find details of the methods that a class supports:

PS> (Get-CimClass Win32_Process).CimClassMethods

Name ReturnType Parameters Qualifiers
---- ---------- ---------- ----------
Create UInt32 {CommandLine...} {Constructor...}
Terminate UInt32 {Reason} {Destructor...}
GetOwner UInt32 {Domain...} {Implemented...}
GetOwnerSid UInt32 {Sid} {Implemented...}

The method with the Constructor qualifier can be used to create a new instance of
Win32_Process.

Windows Management Instrumentation Chapter 11

[271]

The Parameters property of a specific method can be explored to find out how to use a
method:

PS> (Get-CimClass Win32_Process).CimClassMethods['Create'].Parameters

Name CimType Qualifiers
---- ------- ----------
CommandLine String {ID, In, MappingStrings}
CurrentDirectory String {ID, In, MappingStrings}
ProcessStartupInformation Instance {EmbeddedInstance, ID, In,
MappingStrings}
ProcessId UInt32 {ID, MappingStrings, Out}

If an argument has the In qualifier, it can be passed in when creating an object. If an
argument has the Out qualifier, it will be returned after the instance has been created.
Arguments are passed in using a hashtable.

When creating a process, the CommandLine argument is required; the rest can be ignored
until later:

$params = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'notepad.exe'
 }
}
$return = Invoke-CimMethod @params

The return object holds three properties in the case of Win32_Process, as follows:

PS> $return

ProcessId ReturnValue PSComputerName
--------- ----------- --------------
 15172 0

PSComputerName is blank when the request is local. The ProcessId is the Out property
listed under the method parameters. ReturnValue indicates whether or not the operation
succeeded, and 0 indicates that it was successful.

A nonzero value indicates that something went wrong, but the values are not translated in
PowerShell. The return values are documented on MSDN
at https://msdn.microsoft.com/en-us/library/aa389388(v=vs.85).aspx.

https://msdn.microsoft.com/en-us/library/aa389388(v=vs.85).aspx

Windows Management Instrumentation Chapter 11

[272]

The Create method used here creates a new instance. The other methods for
Win32_Process act against an existing instance (an existing process).

Extending the preceding example, a process can be created and then terminated:

$params = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'notepad.exe'
 }
}
$return = Invoke-CimMethod @params

pause

Get-CimInstance Win32_Process -Filter "ProcessID=$($return.ProcessId)" |
 Invoke-CimMethod -MethodName Terminate

The pause command will wait for return to be pressed before continuing; this gives us the
opportunity to show that Notepad was opened before it is terminated.

The Terminate method has an optional argument that is used as the exit code for the
terminate process. This argument may be added using hashtable; in this case, a (made up)
value of 5 is set as the exit code:

$invokeParams = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'notepad.exe'
 }
}
$return = Invoke-CimMethod @invokeParams

$getParams = @{
 ClassName = 'Win32_Process'
 Filter = 'ProcessId={0}' -f $return.ProcessId
}
Get-CimInstance @getParams |
 Invoke-CimMethod -MethodName Terminate -Arguments @{Reason = 5}

Invoke-CimMethod returns an object with a ReturnValue. A return value of 0 indicates
that the command succeeded. A nonzero value indicates an error condition. The meaning of
the value will depend on the WMI class.

Windows Management Instrumentation Chapter 11

[273]

The return values associated with the Terminate method of Win32_Process are
documented on MSDN
at https://msdn.microsoft.com/en-us/library/aa393907(v=vs.85).aspx.

Creating instances
The arguments for Win32_Process, create include a ProcessStartupInformation
parameter. ProcessStartupInformation is described by a WMI class,
Win32_ProcessStartup.

There are no existing instances of Win32_ProcessStartup (Get-CimInstance), and the
class does not have a Create method (or any other constructor).

New-CimInstance can be used to create a class:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = New-CimInstance -CimClass $class -ClientOnly

New-Object can also be used:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = New-Object CimInstance $class

Finally, the new method may be used:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = [CimInstance]::new($class)

Properties may be set on the created instance; the effect of each property is documented on
MSDN at https://msdn.microsoft.com/en-us/library/aa394375(v=vs.85).aspx.

In the following example, properties are set to dictate the position and title of a cmd.exe
window:

$class = Get-CimClass Win32_ProcessStartup
$startupInfo = New-CimInstance -CimClass $class -ClientOnly
$startupInfo.X = 50
$startupInfo.Y = 50
$startupInfo.Title = 'This is the window title'

$params = @{
 ClassName = 'Win32_Process'
 MethodName = 'Create'
 Arguments = @{
 CommandLine = 'cmd.exe'

https://msdn.microsoft.com/en-us/library/aa393907(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394375(v=vs.85).aspx

Windows Management Instrumentation Chapter 11

[274]

 ProcessStartupInformation = $startupInfo
 }
}
$returnObject = Invoke-CimMethod @params

Working with CIM sessions
As mentioned earlier in this chapter, a key feature of the CIM cmdlets is their ability to
change how connections are formed and used.

The Get-CimInstance command has a ComputerName parameter, and when this is used,
the command automatically creates a session to a remote system using WSMAN. The
connection is destroyed as soon as the command completes.

While Get-CimInstance supports basic remote connections, it does not provide a means
of authenticating a connection, nor can the protocol be changed.

The Get-CimSession, New-CimSession, New-CimSessionOption, and Remove-
CimSession commands are optional commands that can be used to define the behavior of
remote connections.

The New-CimSession command creates a connection to a remote server an example is as
follows:

PS> $cimSession = New-CimSession -ComputerName Remote1
PS> $cimSession

Id : 1
Name : CimSession1
InstanceId : 1cc2a889-b649-418c-94a2-f24e033883b4
ComputerName : Remote1
Protocol : WSMAN

Alongside the other parameters, New-CimSession has a Credential parameter that can
be used in conjunction with Get-Credential to authenticate a connection.

If the remote system does not, for any reason, present access to WSMAN, it is possible to
switch the protocol down to DCOM by using the New-CimSessionOption command:

PS> $option = New-CimSessionOption -Protocol DCOM
PS> $cimSession = New-CimSession -ComputerName Remote1 –SessionOption
$option
PS> $cimSession

Id : 2

Windows Management Instrumentation Chapter 11

[275]

Name : CimSession2
InstanceId : 62b2cb56-ec84-472c-a992-4bee59ee0618
ComputerName : Remote1
Protocol : DCOM

The New-CimSessionOption command is not limited to protocol switching; it can affect
many of the other properties of the connection, as shown in the help and the examples for
the command.

Once a session has been created, it exists in the memory until it is removed. The Get-
CimSession command shows a list of connections that have been formed, and the
Remove-CimSession command permanently removes connections.

Associated classes
The Get-CimAssociatedClass command replaces the use of the ASSOCIATORS OF query
type when using the CIM cmdlets.

The following command gets the class instances associated with
Win32_NetworkAdapterConfiguration. As the arguments for the Get-CimInstance
command are long strings, splatting is used to pass the parameters into the command:

$params = @{
 ClassName = 'Win32_NetworkAdapterConfiguration'
 Filter = 'IPEnabled=TRUE AND DHCPEnabled=TRUE'
}
Get-CimInstance @params | Get-CimAssociatedInstance

The following example uses Get-CimAssociatedClass to get the physical interface
associated with the IP configuration:

$params = @{
 ClassName = 'Win32_NetworkAdapterConfiguration'
 Filter = 'IPEnabled=TRUE AND DHCPEnabled=TRUE'
}
Get-CimInstance @params | ForEach-Object {
 $adapter = $_ | Get-CimAssociatedInstance -ResultClassName
Win32_NetworkAdapter

 [PSCustomObject]@{
 NetConnectionID = $adapter.NetConnectionID
 Speed = [Math]::Round($adapter.Speed / 1MB, 2)
 IPAddress = $_.IPAddress
 IPSubnet = $_.IPSubnet
 Index = $_.Index

Windows Management Instrumentation Chapter 11

[276]

 Gateway = $_.DefaultIPGateway
 }
}

The WMI cmdlets
The WMI cmdlets have been superseded by the CIM cmdlets. The WMI
cmdlets are not available in PowerShell Core, but the type accelerators are.

The WMI commands are as follows:

Get-WmiObject

Invoke-WmiMethod

Register-WmiEvent

Remove-WmiObject

Set-WmiInstance

In addition to the commands, three type accelerators are available:

[Wmi]: System.Management.ManagementObject
[WmiClass]: System.Management.ManagementClass
[WmiSearcher]: System.Management.ManagementObjectSearcher

Each of the WMI cmdlets uses the ComputerName parameter to aim the operation at
another computer. The WMI cmdlets also support a credential parameter and other
authentication options affecting the authentication method.

Both the Wmi and WmiClass type accelerators can be written to use a remote computer by
including the computer name an example is as follows:

[Wmi]"\\RemoteComputer\root\cimv2:Win32_Process.Handle=$PID"
[WmiClass]"\\RemoteComputer\root\cimv2:Win32_Process"

Windows Management Instrumentation Chapter 11

[277]

Getting instances
The Get-WmiObject command is used to execute queries for instances of WMI objects an
example is as follows:

Get-WmiObject -Class Win32_ComputerSystem

The type accelerator, WmiSearcher, may also be used to execute queries:

([WmiSearcher]"SELECT * FROM Win32_Process").Get()

Working with dates
The WMI cmdlets do not convert date-time properties found in WMI. Querying the
Win32_Process class for the creation date of a process returns the date-time property as a
long string:

PS> Get-WmiObject Win32_Process -Filter "ProcessId=$PID" | Select-Object
Name, CreationDate

Name CreationDate
---- ------------
powershell_ise.exe 20170209120229.941677+000

The .NET namespace used by the WMI cmdlet, System.Management, includes a class
called ManagementDateTimeConverter, dedicated to converting date and time formats
found in WMI.

The string in the preceding example may be converted, as follows:

Get-WmiObject Win32_Process -Filter "ProcessId=$PID" |
 Select-Object Name, @{Name='CreationDate'; Expression={
[System.Management.ManagementDateTimeConverter]::ToDateTime($_.CreationDate
)
 }}

Getting classes
The Get-WmiObject command is used to get classes:

Get-WmiObject Win32_Process -List

Windows Management Instrumentation Chapter 11

[278]

The WMI cmdlets are able to recursively list classes in namespaces. The following
command lists the classes in root\cimv2 and any child namespaces:

Get-WmiObject -List -Recurse

In addition to the list parameter, the WmiClass type accelerator can be used:

[WmiClass]"Win32_Process"

Calling methods
Calling a method on an existing instance of an object found using Get-WmiObject is
similar to any .NET method call.

The following example gets and restarts the DNS Client service. The following operation
requires administrative access:

$service = Get-WmiObject Win32_Service -Filter "DisplayName='DNS Client'"
$service.StopService() # Call the StopService method
$service.StartService() # Call the StartService method

The WMI class can be used to find the details of a method; for example, the Create method
of Win32_Share, as follows:

PS> (Get-WmiObject Win32_Share -List).Methods['Create']

Name : Create
InParameters : System.Management.ManagementBaseObject
OutParameters : System.Management.ManagementBaseObject
Origin : Win32_Share
Qualifiers : {Constructor, Implemented, MappingStrings, Static}

Where the Invoke-CimMethod command accepts a hashtable, the Invoke-WmiMethod
command expects arguments to be passed as an array, in a specific order. The order can be
retrieved by using the GetMethodParameters method of the WMI class:

PS> (Get-WmiObject Win32_Share -List).GetMethodParameters('Create')

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 7

Windows Management Instrumentation Chapter 11

[279]

__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Access :
Description :
MaximumAllowed :
Name :
Password :
Path :
Type :
PSComputerName :

To create a share, the argument list must therefore contain an argument for Access, then
Description, then MaximumAllowed, and so on. If the argument is optional, it can be set
to null; however, PowerShell is unable to say which are mandatory, so a trip to MSDN is
required: https://msdn.microsoft.com/en-us/library/aa389393(v=vs.85).aspx.

Having established that Path, Name, and Type are mandatory; an array of arguments can
be created in the order described by GetMethodParameters:

$argumentList = $null, # Access
 $null, # Description
 $null, # MaximumAllowed
 'Share1', # Name
 $null, # Password
 'C:\Temp\Share1', # Path
 0 # Type (Disk Drive)
Invoke-WmiMethod Win32_Share -Name Create -ArgumentList $argumentList

The return value describes the result of the operation; a ReturnValue of 0 indicates
success. As this operation requires administrator privileges (run as administrator), a return
value of 2 is used to indicate that it was run without sufficient rights.

If the folder used in the previous example does not exist, the ReturnValue will be set to
24.

Adding the ComputerName parameter to Invoke-WmiMethod will create a share on a
remote machine.

https://msdn.microsoft.com/en-us/library/aa389393(v=vs.85).aspx

Windows Management Instrumentation Chapter 11

[280]

Arrays of null values are messy

This method of supplying arguments to execute a method is difficult to
work with for all but the simplest of methods. An alternative is to use the
.NET method InvokeMethod on the class object:

$class = Get-WmiObject Win32_Share -List
$inParams = $class.GetMethodParameters('Create')
$inParams.Name = 'Share1'
$inParams.Path = 'C:\Temp\Share1'
$inParams.Type = 0
$return = $class.InvokeMethod('Create', $inParams, $null)

The last argument, set to null here, is InvokeMethodOptions, which is
most often used to define a timeout for the operation. Doing so is beyond
the scope of this chapter.

To create a share on a remote computer, use the ComputerName
parameter with Get-WmiObject.

Creating instances
An instance of a WMI class can be created using the CreateInstance method of the class.
The following example creates an instance of Win32_Trustee:

(Get-WmiObject Win32_Trustee -List).CreateInstance()

Associated classes
Objects returned by Get-WmiObject have a GetRelated method that can be used to find
associated instances.

The GetRelated method accepts arguments that can be used to filter the results. The first
argument, relatedClass, is used to limit the instances returned to specific classes, as
shown here:

Get-WmiObject Win32_LogonSession | ForEach-Object {
 [PSCustomObject]@{
 LogonName = $_.GetRelated('Win32_Account').Caption
 SessionStarted =
[System.Management.ManagementDateTimeConverter]::ToDateTime($_.StartTime)

Windows Management Instrumentation Chapter 11

[281]

 }
}

Permissions
Working with permissions in WMI is more difficult than in .NET as the values in use are
not given friendly names. However, the .NET classes can still be used, even if not quite as
intended.

The following working examples demonstrate configuring the permissions.

Sharing permissions
Get-Acl and Set-Acl are fantastic tools for working with filesystem permissions, or
permissions under other providers. However, these commands cannot be used to affect
sharing permissions.

The SmbShare module

The SmbShare module has commands that affect share permissions. This
example uses the older WMI classes to modify permissions. It might be
used if the SmbShare module cannot be.

The Get-SmbShareAccess command might be used to verify the
outcome of this example.

The following operations require administrative privileges; run ISE or PowerShell as an
administrator if attempting to use the examples.

Creating a shared directory
The following snippet creates a directory and shares that directory:

$path = 'C:\Temp\WmiPermissions'
New-Item $path -ItemType Directory

$params = @{
 ClassName = 'Win32_Share'
 MethodName = 'Create'
 Arguments = @{
 Name = 'WmiPerms'

Windows Management Instrumentation Chapter 11

[282]

 Path = $path
 Type = [UInt32]0
 }
}
Invoke-CimMethod @params

The Create method used here will fail if the argument for Type is not correctly defined as
a UInt32 value. PowerShell will otherwise use Int32 for a value of 0.

The requirement for UInt32, in this case, may be viewed by exploring the parameters
required for the method:

PS> (Get-CimClass Win32_Share).CimClassMethods['Create'].Parameters |
Where-Object Name -eq Type

Name CimType Qualifiers ReferenceClassName
---- ------- ---------- ------------------
Type UInt32 {ID, In, MappingStrings}

Getting a security descriptor
When Get-Acl is used, the object that it gets is a security descriptor. The security
descriptor includes a set of control information (ownership, and so on), along with the
discretionary and system access control lists.

The WMI class Win32_LogicalShareSecuritySetting is used to represent the security
for each of the shares on a computer:

$security = Get-CimInstance Win32_LogicalShareSecuritySetting -Filter
"Name='WmiPerms'"

The security settings object can be used to retrieve a security descriptor by calling the
GetSecurityDescriptor method:

$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor
$aclObject = $return.Descriptor

The security descriptor held in the aclObject variable is very different from the result
returned by Get-Acl:

PS> $aclObject

ControlFlags : 32772
DACL : {Win32_ACE}
Group :
Owner :

Windows Management Instrumentation Chapter 11

[283]

SACL :
TIME_CREATED :
PSComputerName :

The DACL, or discretionary access control list, is used to describe the permission levels for
each security principal (a user, group, or computer account). Each entry in this list is an
instance of Win32_ACE:

PS> $aclObject.DACL

AccessMask : 1179817
AceFlags : 0
AceType : 0
GuidInheritedObjectType :
GuidObjectType :
TIME_CREATED :
Trustee : Win32_Trustee
PSComputerName :

The Win32_ACE object has a Trustee property that holds the Name, Domain, and SID of the
security principal (in this case, the Everyone principal):

PS> $aclObject.DACL.Trustee

Domain :
Name : Everyone
SID : {1, 1, 0, 0...}
SidLength : 12
SIDString : S-1-1-0
TIME_CREATED :
PSComputerName :

AceFlags describes how an ACE is to be inherited. As this is a share, the AceFlags
property will always be 0. Nothing can, or will, inherit this entry; .NET can be used to
confirm this:

PS> [System.Security.AccessControl.AceFlags]0
None

The AceType is either AccessAllowed (0) or AccessDenied (1). Again, .NET can be used
to confirm this:

PS> [System.Security.AccessControl.AceType]0
AccessAllowed

Windows Management Instrumentation Chapter 11

[284]

Finally, the AccessMask property can be converted into a meaningful value with .NET, as
well. The access rights that can be granted on a share are a subset of those that might be
assigned to a file or directory:

PS> [System.Security.AccessControl.FileSystemRights]1179817
ReadAndExecute, Synchronize

Putting this together, the entries in a shared DACL can be made much easier to understand:

using namespace System.Security.AccessControl

$aclObject.DACL | ForEach-Object {
 [PSCustomObject]@{
 Rights = [FileSystemRights]$_.AccessMask
 Type = [AceType]$_.AceType
 Flags = [AceFlags]$_.AceFlags
 Identity = $_.Trustee.Name
 }
}

In the preceding example, the domain of the trustee is ignored. If this is something other
than Everyone, it should be included.

Adding an access control entry
To add an access control entry (ACE) to this existing list, an entry must be created.
Creating an ACE requires a Win32_Trustee. The following trustee is created from the
current user:

$trustee = New-CimInstance (Get-CimClass Win32_Trustee) -ClientOnly
$trustee.Domain = $env:USERDOMAIN
$trustee.Name = $env:USERNAME

The SID does not need to be set on the trustee object, but if the security principal is
invalid, the attempt to apply the change to security will fail.

Then, the Win32_ACE can be created. The following ACE grants full control of the share to
the trustee:

$ace = New-CimInstance (Get-CimClass Win32_ACE) -ClientOnly
$ace.AccessMask = [UInt32][FileSystemRights]'FullControl'
$ace.AceType = [UInt32][AceType]'AccessAllowed'
$ace.AceFlags = [UInt32]0
$ace.Trustee = $trustee

Windows Management Instrumentation Chapter 11

[285]

The ACE is added to the DACL by using the += operator:

$aclObject.DACL += $ace

Setting the security descriptor
Once the ACL has been changed, the modified security descriptor must be set. The instance
returned by Win32_LogicalShareSecuritySetting contains a
SetSecurityDescriptor method:

$security | Invoke-CimMethod -MethodName SetSecurityDescriptor -Arguments
@{
 Descriptor = $aclObject
}

WMI permissions
Getting and setting WMI security in PowerShell uses the same approach as share security.
WMI permissions might be set using wmimgmt.msc if the GUI is used. The content of the
DACL differs slightly.

The __SystemSecurity class is used to access the security descriptor. Each WMI
namespace has its own instance of the __SystemSecurity class; an example is as follows:

Get-CimClass __SystemSecurity -Namespace root
Get-CimClass __SystemSecurity -Namespace root\cimv2

Getting a security descriptor
The security descriptor for a given namespace can be retrieved from the
__SystemSecurity class. By default, administrator privileges are required to get the
security descriptor:

$security = Get-CimInstance __SystemSecurity -Namespace root\cimv2
$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor
$aclObject = $return.Descriptor

The access mask
The values of the access mask in the DACL are documented on
MSDN: https://msdn.microsoft.com/en-us/library/aa392710(v=vs.85).aspx.

https://msdn.microsoft.com/en-us/library/aa392710(v=vs.85).aspx

Windows Management Instrumentation Chapter 11

[286]

The standard access rights ReadSecurity and WriteSecurity are also relevant. The
access mask is a composite of the values listed here:

EnableAccount: 1
ExecuteMethods: 2
FullWrite: 4
PartialWrite: 8
WriteProvider: 16
RemoteEnable: 32
ReadSecurity: 131072
WriteSecurity: 262144

WMI and SDDL
Security descriptor definition language (SDDL) is used to describe the content of a
security descriptor as a string.

A security descriptor returned by Get-Acl has a method that can convert the entire
security descriptor to a string, as follows:

PS> (Get-Acl C:\).GetSecurityDescriptorSddlForm('All')
O:S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464G:S-1-5-80-
956008885-3418522649-1831038044-1853292631-2271478464D:PAI(A;;LC;;;AU)(A;OI
CIIO;SDGXGWGR;;;AU)(A;;FA;
;;SY)(A;OICIIO;GA;;;SY)(A;OICIIO;GA;;;BA)(A;;FA;;;BA)(A;OICI;0x1200a9;;;BU)

A security descriptor defined using SDDL can also be imported. If the sddlString variable
is assumed to hold a valid security descriptor, the following command might be used:

$acl = Get-Acl C:\
$acl.SetSecurityDescriptorSddlForm($sddlString)

The imported security descriptor will not apply to the directory until Set-Acl is used.

WMI security descriptors can be converted to and from different formats, including SDDL.
WMI has a specialized class for this: Win32_SecurityDescriptorHelper. The methods
for the class are shown here:

PS> (Get-CimClass Win32_SecurityDescriptorHelper).CimClassMethods

Name ReturnType Parameters Qualifiers
---- ---------- ---------- ----------

Windows Management Instrumentation Chapter 11

[287]

Win32SDToSDDL UInt32 {Descriptor, SDDL} {implemented,
static}
Win32SDToBinarySD UInt32 {Descriptor, BinarySD} {implemented,
static}
SDDLToWin32SD UInt32 {SDDL, Descriptor} {implemented,
static}
SDDLToBinarySD UInt32 {SDDL, BinarySD} {implemented,
static}
BinarySDToWin32SD UInt32 {BinarySD, Descriptor} {implemented,
static}
BinarySDToSDDL UInt32 {BinarySD, SDDL} {implemented,
static}

A WMI security descriptor might be converted to SDDL to create a backup before making a
change, as follows:

$security = Get-CimInstance __SystemSecurity -Namespace root\cimv2
$return = $security | Invoke-CimMethod -MethodName GetSecurityDescriptor
$aclObject = $return.Descriptor

$params = @{
 ClassName = 'Win32_SecurityDescriptorHelper'
 MethodName = 'Win32SDToSDDL'
 Arguments = @{
 Descriptor = $aclObject
 }
}
$return = Invoke-CimMethod @params

If the operation succeeds (that is, if the ReturnValue is 0), the security descriptor in
the SDDL form will be available:

PS> $return.SDDL
O:BAG:BAD:AR(A;CI;CCDCWP;;;S-1-5-21-2114566378-1333126016-908539190-1001)(A
;CI;CCDCLCSWRPWPRCWD;;;BA)(A;CI;CCDCRP;;;NS)(A;CI;CCDCRP;;;LS)(A;CI;CCDCRP;
;;AU)

A security descriptor expressed as an SDDL string can be imported:

$params = @{
 ClassName = 'Win32_SecurityDescriptorHelper'
 MethodName = 'SDDLToWin32SD'
 Arguments = @{
 SDDL =
'O:BAG:BAD:AR(A;CI;CCDCWP;;;S-1-5-21-2114566378-1333126016-908539190-1001)(
A;CI;CCDCLCSWRPWPRCWD;;;BA)(A;CI;CCDCRP;;;NS)(A;CI;CCDCRP;;;LS)(A;CI;CCDCRP
;;;AU)'
 }

Windows Management Instrumentation Chapter 11

[288]

}
$return = Invoke-CimMethod @params
$aclObject = $return.Descriptor

If the ReturnValue is 0, the aclObject variable will contain the imported security
descriptor:

PS> $aclObject

ControlFlags : 33028
DACL : {Win32_ACE, Win32_ACE, Win32_ACE, Win32_ACE...}
Group : Win32_Trustee
Owner : Win32_Trustee
SACL :
TIME_CREATED :
PSComputerName :

Summary
In this chapter, we explored working with WMI classes, the different commands that are
available, and the WMI query language. Both the CIM and WMI cmdlets were explored as
a means of working with WMI. We explored getting and setting permissions with WMI,
using shared security and WMI security as examples.

Chapter 12, HTML, XML, and JSON, will explore working with generating and consuming
data from a variety of different text-based formats.

12
HTML, XML, and JSON

PowerShell has a number of commands for working with HTML, XML, and JavaScript
Object Notation (JSON). These commands, combined with some of the available .NET
classes, provide a rich set of tools for creating or modifying these formats.

In this chapter, the following topics will be covered:

HTML
XML
System.Xml

System.Xml.Linq

JSON

HTML
HTML is frequently used in PowerShell as a means of generating reports by email.
PowerShell includes ConvertTo-Html, which may be used to generate HTML content.

ConvertTo-Html
ConvertTo-Html generates an HTML document with a table based on an input object. The
following example generates a table based on the output from Get-Process:

Get-Process | ConvertTo-Html -Property Name, Id, WorkingSet

HTML, XML, and JSON Chapter 12

[290]

Multiple tables
ConvertTo-Html may be used to build more complex documents by using the Fragment
parameter. The Fragment parameter generates an HTML table only (instead of a full
document). Tables may be combined to create a larger document:

Create the body
$body = '<h1>Services</h1>'
$body += Get-Service |
 Where-Object Status -eq 'Running' |
 ConvertTo-Html -Property Name, DisplayName -Fragment
$body += '<h1>Processes</h1>'
$body += Get-Process |
 Where-Object WorkingSet -gt 50MB |
 ConvertTo-Html -Property Name, Id, WorkingSet-Fragment
Create a document with the merged body
ConvertTo-Html -Body $body -Title Report | Set-Content report.html

Adding style
HTML content can be enhanced by adding a Cascading Style Sheet (CSS) fragment. When
CSS is embedded in an HTML document, it is added between style tags in the head
element.

The following style uses CSS to change the font, color the table headers, define the table
borders, and justify the table content:

$css = @'
<style>
 body { font-family: Arial; }
 table {
 width: 100%;
 border-collapse: collapse;
 }
 table, th, td {
 border: 1px solid Black;
 padding: 5px;
 }
 th {
 text-align: left;
 background-color: LightBlue;
 }
 tr:nth-child(even) {
 background-color: GainsBoro;
 }

HTML, XML, and JSON Chapter 12

[291]

</style>
'@

The Head parameter of ConvertTo-Html is used to add the element to the document:

Get-Process |
 ConvertTo-Html -Property Name, Id, WorkingSet -Head $css |
 Set-Content report.html

The CSS language is complex and very capable. The elements that are used in the preceding
code, and many more, are documented with examples on the W3schools
website: https://www.w3schools.com/css/.

Different browsers support different parts of the CSS language, and email clients tend to
support a smaller set still. Testing in the expected client is an important part of developing
content.

ConvertTo-Html and Send-MailMessage

ConvertTo-Html outputs an array of strings, while Send-MailMessage
will only accept a body as a string. Attempting to use the output from
ConvertTo-Html with Send-MailMessage directly will raise an error.

The Out-String command may be added to ensure the output from
ConvertTo-Html is a string:

$messageBody = Get-Process |
 ConvertTo-Html Name, Id, WorkingSet -Head $css |
 Out-String

HTML and special characters
HTML defines a number of special characters; for example, a literal ampersand (&) in
HTML must be written as &.

ConvertTo-Html will handle the conversion of special characters in input objects, but it
will not work with special characters in raw HTML that are added using the Body, Head,
PreContent, or PostContent parameters.

The Sytem.Web.HttpUtility class includes methods that are able to convert strings
containing such characters.

https://www.w3schools.com/css/

HTML, XML, and JSON Chapter 12

[292]

Before System.Web.HttpUtility can be used, the assembly must be added:

Add-Type -AssemblyName System.Web

The HtmlEncode static method will take a string and replace any reserved characters with
HTML code. For example, the following snippet will replace > with >:

PS>'<h1>{0}</h1>' -f [System.Web.HttpUtility]::HtmlEncode('Files > 100MB')
<h1>Files > 100MB</h1>

The HtmlDecode static method can be used to reverse the process:

PS> [System.Web.HttpUtility]::HtmlDecode("<h1>Files > 100MB</h1>")
<h1>Files > 100MB</h1>

XML
Extensible Markup Language (XML) is a plain text format that's used to store structured
data. XML is written to be both human and machine readable.

XML documents often begin with a declaration, as shown here:

<?xml version="1.0"?>

This declaration has three possible attributes. The version attribute is mandatory when a
declaration is included:

version: The XML version, 1.0 or 1.1
encoding: The file encoding, most frequently utf-8 or utf-16
standalone: Whether or not the XML file uses an internal or external Document
Type Definition (DTD); permissible values are yes or no

Elements and attributes
XML is similar in appearance to HTML. Elements begin and end with a tag name. The tag
name describes the name of an element, for example:

<?xml version="1.0"?>
<rootElement>value</rootElement>

HTML, XML, and JSON Chapter 12

[293]

An XML document can only have one root element, but an element may have many
descendants:

<?xml version="1.0"?>
<rootElement>
 <firstChild>1</firstChild>
 <secondChild>2</secondChild>
</rootElement>

An element may also have attributes. The rootElement element in the following example
has an attribute named attr:

<?xml version="1.0"?>
<rootElement attr="value">
 <child>1</child>
</rootElement>

Namespaces
XML documents can use one or more namespaces, which can be used to provide uniquely
named elements within a document.

XML namespaces are declared in an attribute with a name prefixed by xmlns:, for
example:

<?xml version="1.0"?>
<rootElement xmlns:item="http://namespaces/item">
 <item:child>1</item:child>
</rootElement>

The XML namespace uses a URL as a unique identifier. The identifier is often used to
describe an element as belonging to a schema.

Schemas
An XML schema can be used to describe and constrain the elements, attributes, and values
within an XML document.

About DTD

A document type definition, or DTD, may be used to constrain the content
of an XML file. As a DTD has little bearing on the use of XML in
PowerShell, it is considered beyond the scope of this book.

HTML, XML, and JSON Chapter 12

[294]

XML schema definitions are saved with an XSD extension. Schema files can be used to
validate the content of an XML file.

The following is a simple schema that validates the item namespace:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://namespaces/item"
 xmlns="https://www.w3schools.com"
 elementFormDefault="qualified">
 <xs:element name="rootElement">
 <xs:element name="child" type="xs:string" />
 </xs:element>
</xs:schema>

System.Xml
PowerShell primarily uses the System.Xml.XmlDocument type to work with XML content.
A number of commands are available to work with XML documents based on this type.

ConvertTo-Xml
The ConvertTo-XML command creates an XML representation of an object as an
XmlDocument. For example, the current PowerShell process object might be converted into
XML:

Get-Process -Id $pid | ConvertTo-Xml

XML is text

The command that we used in the previous code creates an XML
representation of the object. All numeric values are stored as strings. The
following example shows that the WorkingSet property, normally an
integer, is held as a string:

$xml = Get-Process -Id $pid | ConvertTo-Xml
$property = $xml.Objects.Object.Property | Where-Object
Name -eq WorkingSet
$property.'#text'.GetType()

HTML, XML, and JSON Chapter 12

[295]

XML type accelerator
The XML type accelerator ([Xml]) can be used to create instances of XmlDocument, as
shown in the following code:

[Xml]$xml = @"
<?xml version="1.0"?>
<cars>
 <car type="Saloon">
 <colour>Green</colour>
 <doors>4</doors>
 <transmission>Automatic</transmission>
 <engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </engine>
 </car>
</cars>
"@

Elements and attributes of an XmlDocument object may be accessed as if they were
properties. This is a feature of the PowerShell language rather than the .NET object:

PS> $xml.cars.car

type : Saloon
colour : Green
doors : 4
transmission : Automatic
engine : engine

If the document contains more than one car element, each of the instances will be returned.

XPath and Select-Xml
XPath can be used to navigate or search an XML document. PowerShell (and .NET) uses
XPath 1.0.

The structure and format of XPath queries are beyond the scope of this
chapter. However, a number of web resources are available,
including https://msdn.microsoft.com/en-us/library/ms256115(v=vs.
110).aspx.

https://msdn.microsoft.com/en-us/library/ms256115(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms256115(v=vs.110).aspx

HTML, XML, and JSON Chapter 12

[296]

Terms and values used in XPath queries, and XML in general, are case-sensitive.

Given the following XML snippet, Select-Xml might use an XPath expression to select the
engines of green cars:

$string = @"
<?xml version="1.0"?>
<cars>
 <car type="Saloon">
 <colour>Green</colour>
 <doors>4</doors>
 <transmission>Automatic</transmission>
 <engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </engine>
 </car>
</cars>
"@

The -XPath expression and the result are shown here:

PS> Select-Xml -XPath '//car[colour="Green"]/engine' -Content $string |
 Select-Object -ExpandProperty Node

size cylinders
---- ---------
2.0 4

A similar result can be achieved using the SelectNodes method of an XML document:

([Xml]$string).SelectNodes('//car[colour="Green"]/engine')

Select-Xml has an advantage, in that it can be used to work against files directly using the
Path parameter:

HTML, XML, and JSON Chapter 12

[297]

SelectNodes and XPathNodeList

If the SelectNodes method is called, and there are no results, an empty
XPathNodeList object is returned. The following condition is flawed:

$nodes = $xml.SelectNodes('//car[colour="Blue"]')
if ($nodes) {
 Write-Host "A blue car record exists"
}

In this case, using the Count property is a better approach:

if ($nodes.Count -gt 1) {
 Write-Host "A blue car record exists"
}

If the search is only concerned with the first matching entry, or the search
always returns a unique result, the SelectSingleNode method can be
used instead.

Working with namespaces
If an XML document includes a namespace, then queries for elements within the document
are more difficult. Not only must the namespace tag be included,
but XmlNamespaceManager must be defined.

HTML, XML, and JSON Chapter 12

[298]

Select-Xml builds a namespace manager based on the content of a hashtable when the
Namespace parameter is used:

[Xml]$xml = @"
<?xml version="1.0"?>
<cars xmlns:c="http://example/cars">
 <car type="Saloon">
 <c:colour>Green</c:colour>
 <c:doors>4</c:doors>
 <c:transmission>Automatic</c:transmission>
 <c:engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </c:engine>
 </car>
</cars>
"@
Select-Xml '//car/c:engine' -Namespace @{c='http://example/cars'} -Xml $xml

If the SelectNodes method is being used, XmlNamespaceManager must be built first and
passed as an argument:

$namespaceManager = New-Object
System.Xml.XmlNamespaceManager($xml.NameTable)
$namespaceManager.AddNamespace('c', 'http://example/cars')
$xml.SelectNodes(
 '//car[c:colour="Green"]/c:engine',
 $namespaceManager
)

XML documents, such as group policy reports, are difficult to work with as they often
contain many different namespaces. Each of the possible namespaces must be added to a
namespace manager.

HTML, XML, and JSON Chapter 12

[299]

Creating documents
PowerShell can be used to create XML documents from scratch. One possible way to do this
is by using the XmlWriter class:

$writer = [System.Xml.XmlWriter]::Create("$pwd\newfile.xml")
$writer.WriteStartDocument()
$writer.WriteStartElement('cars')
$writer.WriteStartElement('car')
$writer.WriteAttributeString('type', 'Saloon')
$writer.WriteElementString('colour', 'Green')
$writer.WriteEndElement()
$writer.WriteEndElement()
$writer.Flush()
$writer.Close()

Elements opened by WriteStartElement must be closed to maintain a consistent
document.

The XmlWriter class is a buffered writer. The Flush method is called at the end to push
the content of the buffer back to the file.

The format of generated XML can be changed by supplying an XmlWriterSettings object
when calling the Create method. For example, it might be desirable to write line breaks
and indent elements, as shown in the following example:

$writerSettings = New-Object System.Xml.XmlWriterSettings
$writerSettings.Indent = $true
$writer = [System.Xml.XmlWriter]::Create(
 "$pwd\newfile.xml",
 $writerSettings
)
$writer.WriteStartDocument()
$writer.WriteStartElement('cars')
$writer.WriteStartElement('car')
$writer.WriteAttributeString('type', 'Saloon')
$writer.WriteElementString('colour', 'Green')
$writer.WriteEndElement()
$writer.WriteEndElement()
$writer.Flush()
$writer.Close()

HTML, XML, and JSON Chapter 12

[300]

Modifying element and attribute values
Existing elements in an XML document can be modified by assigning a new value. For
example, the misspelling of Appliances could be corrected:

[Xml]$xml = @"
<?xml version="1.0"?>
<items>
 <item name='Fridge'>
 <category>Appliancse</category>
 </item>
 <item name='Cooker'>
 <category>Appliances</category>
 </item>
</items>
"@
($xml.items.item | Where-Object name -eq 'Fridge').category = 'Appliances'

Attributes may be changed in the same way; the interface does not distinguish between the
two value types.

A direct assignment of a new value cannot be used if the XML document contains more
than one element or attribute with the same name (at the same level). For example, the
following XML snippet has two values with the same name:

[Xml]$xml = @"
<?xml version="1.0"?>
<list>
 <name>one</name>
 <name>two</name>
</list>
"@

The first value may be changed if it is uniquely identified and selected:

$xml.list.SelectSingleNode('./name[.="one"]').'#text' = 'three'

The following example shows a similar change being made to the value of an attribute:

[Xml]$xml = @"
<?xml version="1.0"?>
<list name='letters'>
<name>1</name>
</list>
"@
$xml.SelectSingleNode('/list[@name="letters"]').SetAttribute('name',
'numbers')

HTML, XML, and JSON Chapter 12

[301]

The @ symbol preceding name in the XPath expression denotes that the value type is an
attribute. If the attribute referred to by the SetAttribute method does not exist, it will be
created.

Adding elements
Elements must be created before they can be added to an existing document. Elements are
created in the context of a document:

[Xml]$xml = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
</list>
"@
$newElement = $xml.CreateElement('name')
$newElement.InnerText = 2
$xml.list.AppendChild($newElement)

Complex elements may be built up by repeatedly using the Create method of the
XmlDocument (held in the $xml variable).

If the new node is substantial, it may be easier to treat the new node set as a separate
document and merge one into the other.

Copying nodes between documents
Nodes (elements, attributes, and so on) may be copied and moved between different XML
documents. To bring a node from an external document into another, it must first be
imported.

The following example creates two simple XML documents. The first (the xml variable) is
the intended destination. The newNodes variable contains a set of elements that should be
copied:

[Xml]$xml = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
</list>
"@
[Xml]$newNodes = @"
<root>

HTML, XML, and JSON Chapter 12

[302]

 <name>2</name>
 <name>3</name>
 <name>4</name>
</root>
"@

Copying the name nodes requires each node to be selected in turn, imported into the
original document, and added to the desired node:

foreach ($node in $newNodes.SelectNodes('/root/name')) {
 $newNode = $xml.ImportNode($node, $true)
 $null = $xml.list.AppendChild($newNode)
}

The ImportNode method requires two parameters: the node from the foreign document
(newNodes) and whether or not the import is deep (one level or fully recursive).

The resulting XML can be viewed by inspecting the OuterXml property of the xml variable:

PS> $xml.OuterXml
<?xml version="1.0"?><list
type="numbers"><name>1</name><name>2</name><name>3</name><name>4</name></li
st>

Removing elements and attributes
Elements may be removed from a document by selecting the node, then calling the
RemoveChild method on the parent:

[Xml]$xml = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>
"@
$node = $xml.SelectSingleNode('/list/*[.="3"]')
$null = $node.ParentNode.RemoveChild($node)

The RemoveAll method is also available; however, this removes all children (and
attributes) of the selected node.

Attributes are also easy to remove from a document:

$xml.list.RemoveAttribute('type')

HTML, XML, and JSON Chapter 12

[303]

Schema validation
XML documents that reference a schema can be validated.

.NET Core and schema validation

.NET Core appears to be unwilling to expand include references in an
XML schema. This apparent bug is exhibited in PowerShell Core.
Windows PowerShell will produce schema validation errors; PowerShell
Core will not at this time.

Windows PowerShell comes with a number of XML files with associated schema in the
help files. For example, the help file for ISE is available:

PS> Get-Item C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-
US\ISE-help.xml

 Directory: C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 29/11/16 07:57 33969 ISE-help.xml

The schema documents used by the help content are saved in
C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml.

The following snippet may be used to load the schema files and then test the content of the
document:

$path = 'C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-US\ISE-
help.xml'

$document = [Xml]::new()
$document.Load($path)

Add the schema to the XmlDocument
$document.Schemas.Add(
 'http://schemas.microsoft.com/maml/2004/10',
 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'
)

Validate the document
$ErrorsAndWarnings = [System.Collections.Generic.List[String]]::new()
$document.Validate({
 param ($sender, $eventArgs)

HTML, XML, and JSON Chapter 12

[304]

 if ($eventArgs.Severity -in 'Error', 'Warning') {
 $Global:ErrorsAndWarnings.Add($eventArgs.Message)
 }
})

The argument for Validate is a script block that is executed each time an error is
encountered. Write-Host is used to print a message to the console. A value cannot be
directly returned as the script block is executed in the background.

Line number and line position information is not available using this technique for a
number of reasons. The XmlDocument object is built from a string (returned by Get-
Content) and not attached to the file.

System.Xml.Linq
The System.Xml.Linq namespace was added with .NET 3.5. This is known as LINQ to
XML. Language Integrated Query (LINQ) is used to describe a query in the same language
as the rest of a program. Therefore, interacting with a complex XML document does not
require the use of XPath queries.

System.Xml.Linq is loaded by default in PowerShell Core. Windows PowerShell can
make use of System.Xml.Linq once the required assembly has been added:

Add-Type -AssemblyName System.Xml.Linq

This can also be phrased as follows:

using assembly System.Xml.Linq

As a newer interface, System.Xml.Linq tends to be more consistent. The same syntax is
used to create a document from scratch that is used to add elements and so on.

Opening documents
The XDocument class is used to load or parse a document. XML content may be cast to an
XDocument in the same way that content is cast using the [Xml] type accelerator:

[System.Xml.Linq.XDocument]$xDocument = @"
<?xml version="1.0"?>
<cars>
 <car type="Saloon">
 <colour>Green</colour>

HTML, XML, and JSON Chapter 12

[305]

 <doors>4</doors>
 <transmission>Automatic</transmission>
 <engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </engine>
 </car>
</cars>
"@
$xDocument.Save("$pwd\cars.xml")

If the content has been saved to a file, the Load method may be used with a filename:

$xDocument = [System.Xml.Linq.XDocument]::Load("$pwd\cars.xml")

Selecting nodes
LINQ to XML uses PowerShell to query the content of XML files. This is achieved by
combining the methods that are made available through an XDocument (or XContainer or
XElement). Methods are available to find attributes and elements, either as immediate
children or deeper within a document:

$xDocument = [System.Xml.Linq.XDocument]::Load("$pwd\cars.xml")
$xDocument.Descendants('car').
 Where({ $_.Element('colour').Value -eq 'Green' }).
 Element('engine')

The XML-specific methods are supplemented by .Linq extension methods, such as the
Where method, to filter content.

As the query a script block encapsulated by the Where method—is native PowerShell, the
comparison operation (-eq) is case insensitive. The selection of the element by name is
case-sensitive.

Although it is not the preferred approach, XPath can still be used by calling
the XPathSelectElements static method, as shown here:

[System.Xml.XPath.Extensions]::XPathSelectElements(
 $xDocument,
 '//car[colour="Green"]/engine'
)

HTML, XML, and JSON Chapter 12

[306]

Creating documents
System.Xml.Linq can be used to create a document from scratch, for example:

using namespace System.Xml.Linq

$xDocument = [XDocument]::new(
 [XDeclaration]::new('1.0', 'utf-8', 'yes'),
 [XElement]::new('list', @(
 [XAttribute]::new('type', 'numbers'),
 [XElement]::new('name', 1),
 [XElement]::new('name', 2),
 [XElement]::new('name', 3)
))
)

Converting the xDocument object into a string shows the document without the
declaration:

PS> $xDocument.ToString()

<list type="numbers">
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>

The Save method may be used to write the document to a file:

$xDocument.Save("$pwd\test.xml")

Reviewing the document shows the declaration:

PS> Get-Content test.xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<list type="numbers">
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>

HTML, XML, and JSON Chapter 12

[307]

Working with namespaces
LINQ to XML handles the specification of namespaces by adding an XNamespace object to
an XName object, for example:

PS> [XNameSpace]'http://example/cars' + [XName]'engine'

LocalName Namespace NamespaceName
--------- --------- -------------
engine http://example/cars http://example/cars

As XNamespace expects to have an XName added to it, casting to that type can be skipped,
simplifying the expression:

[XNamespace]'http://example/cars' + 'engine'

A query for an element in a specific namespace will use the following format:

using namespace System.Xml.Linq

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<cars xmlns:c="http://example/cars">
 <car type="Saloon">
 <c:colour>Green</c:colour>
 <c:doors>4</c:doors>
 <c:transmission>Automatic</c:transmission>
 <c:engine>
 <size>2.0</size>
 <cylinders>4</cylinders>
 </c:engine>
 </car>
</cars>
"@

$xNScars = [XNameSpace]'http://example/cars'
$xDocument.Descendants('car').ForEach({
 $_.Element($xNScars + 'engine')
})

HTML, XML, and JSON Chapter 12

[308]

Modifying element and attribute values
Modifying an existing node, whether it is an attribute or an element value, can be done by
assigning a new value:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<items>
 <item name='Fridge'>
 <category>Appliancse</category>
 </item>
 <item name='Cooker'>
 <category>Appliances</category>
 </item>
</items>
"@

$xDocument.Element('items').
 Elements('item').
 Where({ $_.Attribute('name').Value -eq 'Fridge' }).
 ForEach({ $_.Element('category').Value = 'Appliances' })

Modifying the value of an attribute uses the same syntax:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<list name='letters'>
 <name>1</name>
</list>
"@
$xDocument.Element('list').Attribute('name').Value = 'numbers'

If the attribute does not exist, an error will be thrown:

PS> $xDocument.Element('list').Attribute('other').Value = 'numbers'

The property 'Value' cannot be found on this object. Verify that the
property exists and can be set.
At line:1 char:1
+ $xDocument.Element('list').Attribute('other').Value = 'numbers'
+ ~~~
 + CategoryInfo : InvalidOperation: (:) [], RuntimeException
 + FullyQualifiedErrorId :PropertyNotFound

HTML, XML, and JSON Chapter 12

[309]

Adding nodes
Nodes can be added by using the Add methods, which include Add, AddAfterSelf,
AddBeforeSelf, and AddFirst, for example:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
</list>
"@
$xDocument.Element('list').
 Element('name').
 AddAfterSelf(@(
 [XElement]::new('name', 2),
 [XElement]::new('name', 3),
 [XElement]::new('name', 4)
))

The different Add methods afford a great deal of flexibility over the content of a document;
in this case, the new elements appear after the <name>1</name> element.

Removing nodes
The Remove method of XElement or XAttribute is used to remove the current node.

In the following example, the first name element is removed from the document:

[XDocument]$xDocument = @"
<?xml version="1.0"?>
<list type='numbers'>
 <name>1</name>
 <name>2</name>
 <name>3</name>
</list>
"@
$xDocument.Element('list').FirstNode.Remove()

HTML, XML, and JSON Chapter 12

[310]

Schema validation
LINQ to XML can be used to validate an XML document against a schema file.

.NET Core and schema validation

.NET Core appears to be unwilling to expand include references in an
XML schema. This apparent bug is exhibited in PowerShell Core.
Windows PowerShell will produce schema validation errors; PowerShell
Core will not at this time.

The ISE-help.xml XML document is validated against its schema in the following
example:

using namespace System.Xml.Linq

$path = 'C:\Windows\System32\WindowsPowerShell\v1.0\modules\ISE\en-
US\PSISE-help.xml'
$xDocument = [XDocument]::Load(
 $path,
 [LoadOptions]::SetLineInfo
)

$xmlSchemaSet = [System.Xml.Schema.XmlSchemaSet]::new()
$null = $xmlSchemaSet.Add(
 'http://schemas.microsoft.com/maml/2004/10',
 'C:\Windows\System32\WindowsPowerShell\v1.0\Schemas\PSMaml\maml.xsd'
)
[System.Xml.Schema.Extensions]::Validate(
 $xDocument,
 $xmlSchemaSet,
 {
 param($sender, $eventArgs)

 if ($eventArgs.Severity -in 'Error', 'Warning') {
 Write-Host $eventArgs.Message
 Write-Host (' At {0} column {1}' -f
 $sender.LineNumber,
 $sender.LinePosition
)
 }
 }
)

Positional information is made available by loading XDocument with the SetLineInfo
option.

HTML, XML, and JSON Chapter 12

[311]

JSON
JSON is similar to XML in some respects. It is intended to be both human and machine
readable, and is written in plain text.

Very similar to a hashtable, JSON-formatted objects are made up of key and value pairs, for
example:

{
 "key1": "value1",
 "key2": "value2"
}

ConvertTo-Json
The ConvertTo-Json command can be used to convert a PowerShell object (or hashtable)
into JSON:

PS> Get-Process -Id $PID |
 Select-Object Name, Id, Path |
 ConvertTo-Json

{
 "Name": "powershell_ise",
 "Id": 3944,
 "Path":
"C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell_ise.exe"
}

By default, ConvertTo-Json will convert objects into a depth of two. Running the
following code will show how the value for three is simplified as a string:

@{
 one = @{ # 1st iteration
 two = @{ # 2nd iteration
 three = @{
 four = 'value'
 }
 }
 }
} | ConvertTo-Json

The three property is present, but the value is listed as System.Collections.Hashtable,
as acquiring the value would need a third iteration. Setting the value of the Depth
parameter to three allows ConvertTo-Json to fully inspect the properties of three.

HTML, XML, and JSON Chapter 12

[312]

Going too deep

JSON serialization is a recursive operation. The depth may be increased,
which is useful when converting a complex object.
Some value types may cause ConvertTo-Json to apparently hang. This is
caused by the complexity of those value types. Such value types may
include circular references.

A ScriptBlock object, for example, cannot be effectively serialized as
JSON. The following command takes over 15 seconds to complete and
results in a string that's over 50 million characters long:

Measure-Command { { 'ScriptBlock' } | ConvertTo-Json -
Depth 6 -Compress }

Increasing the recursion depth to 7 results in an error as keys (property
names) begin to duplicate.

ConvertFrom-Json
The ConvertFrom-Json command is used to turn a JSON document into an object, for
example:

'{ "Property": "Value" }' | ConvertFrom-Json

ConvertFrom-Json creates a PSCustomObject.

JSON understands a number of different data types, and each of these types is converted
into an equivalent .NET type. The following example shows how each different type might
be represented:

$object = @"
{
 "Decimal": 1.23,
 "String": "string",
 "Int32": 1,
 "Int64": 2147483648,
 "Boolean": true
}
"@ | ConvertFrom-Json

HTML, XML, and JSON Chapter 12

[313]

Inspecting individual elements after conversion reflects the type, as demonstrated in the
following example:

PS> $object.Int64.GetType()
PS> $object.Boolean.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int64 System.ValueType
True True Boolean System.ValueType

JSON serialization within PowerShell is useful, but it is not perfect. For example, consider
the result of converting Get-Date:

PS> Get-Date | ConvertTo-Json
{
 "value": "\/Date(1489321529249)\/",
 "DisplayHint": 2,
 "DateTime": "12 March 2017 12:25:29"
}

The value includes a DisplayHintNoteProperty and a DateTimeScriptProperty,
added to the DateTime object. These add an extra layer of properties when converting back
from JSON:

PS> Get-Date | ConvertTo-Json | ConvertFrom-Json

value DisplayHint DateTime ----- ----------- -------- 12/03/2017 12:27:25 2
12 March 2017 12:27:25

The DateTime property can be removed using the following code:

Get-TypeData System.DateTime | Remove-TypeData

Dates without type data

Get-Date will appear to return nothing after running the previous
command. The date is still present; this is an aesthetic problem
only. Without the type data, PowerShell does not know how to display
the date, which is ordinarily composed as follows:

$date = Get-Date
'{0} {1}' -f $date.ToLongDateString(),
$date.ToLongTimeString()

HTML, XML, and JSON Chapter 12

[314]

DisplayHint is added by Get-Date, and therefore the command cannot be used in this
context.

Any extraneous members such as this would have to be tested for invalid members prior to
conversion, which makes the solution more of a problem:

PS> Get-TypeData System.DateTime | Remove-TypeData
PS> [DateTime]::Now | ConvertTo-Json | ConvertFrom-Json | Select-Object *

Date : 12/03/2017 00:00:00
Day : 12
DayOfWeek : Sunday
DayOfYear : 71
Hour : 12
Kind : Utc
Millisecond : 58
Minute : 32
Month : 3
Second : 41
Ticks : 636249187610580000
TimeOfDay : 12:32:41.0580000
Year : 2017

Summary
This chapter took a brief look at working with HTML content, and how HTML content is
formatted.

Working with XML content is a common requirement. This chapter introduced the
structure of XML, along with two different approaches to working with XML.

Finally, JSON serialization was introduced, along with the ConvertTo-Json and
ConvertFrom-Json commands.

Chapter 13, Web Requests and Web Services, explores working with Representational State
Transfer (REST) and Simple Object Access Protocol (SOAP)-based web services in
PowerShell.

13
Web Requests and Web

Services
Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) are
often used as labels to refer two different approaches to implementing a web-based
Application Programming Interface (API).

The growth of cloud-based services in recent years has pushed the chances of working with
such interfaces from rare to almost certain.

In this chapter, we are going to cover the following topics:

Web requests
Working with REST
Working with SOAP

SOAP interfaces typically use the New-WebServiceProxy command in Windows
PowerShell. This command is not available in PowerShell Core as the assembly it depends
on is not available. The command is unlikely to be available in PowerShell Core unless it is
rewritten.

Technical requirements
In addition to PowerShell and PowerShell Core, Visual Studio 2015 or 2017 Community
Edition or better is required to use the SOAP service example.

Web requests
A background in web requests is valuable before delving into interfaces that run over the
top of Hyper-Text Transfer Protocol (HTTP).

Web Requests and Web Services Chapter 13

[316]

PowerShell can use Invoke-WebRequest to send HTTP requests. For example, the
following command will return the response to a GET request for the Hey, Scripting Guy
blog:

Invoke-WebRequest https://blogs.technet.microsoft.com/heyscriptingguy/ -
UseBasicParsing

Parsing requires Internet Explorer
In Windows PowerShell, UseBasicParsing was an important parameter.
Use was mandatory when working on Core installations of Windows
server as Internet Explorer is not installed. It was also often used to
improve the performance of the command where parsing was not actually
required.

In PowerShell Core, all requests use basic parsing. The parameter is
deprecated and present to support backward compatibility only. The
parameter does not affect the output of the command.

HTTP methods
HTTP supports a number of different methods, including the following:

GET

HEAD

POST

PUT

DELETE

CONNECT

OPTIONS

TRACE

PATCH

These methods are defined in the HTTP 1.1 specification: https:/ /www. w3. org/Protocols/
rfc2616/rfc2616- sec9. html.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Web Requests and Web Services Chapter 13

[317]

It is common to find that a web server only supports a subset of these. In many cases,
supporting too many methods is deemed to be a security risk. The Invoke-WebRequest
command can be used to verify the list of HTTP methods supported by a site, for example:

PS> Invoke-WebRequest www.indented.co.uk -Method OPTIONS |
>> Select-Object -ExpandProperty Headers

Key Value
--- -----
Allow GET, HEAD

HTTPS
If a connection to a web service uses HTTPS (HTTP over Secure Sockets Layer (SSL)), the
certificate must be validated before a connection can complete and a request can be
completed. If a web service has an invalid certificate, an error will be returned.

How PowerShell reacts to different scenarios can be tested. The badssl site can be used to
test how PowerShell might react to different SSL scenarios: https:/ /badssl. com/.

For example, when attempting to connect to a site with an expired certificate (using
Invoke-WebRequest), the following message will be displayed in Windows PowerShell:

PS> Invoke-WebRequest https://expired.badssl.com/

Invoke-WebRequest : The underlying connection was closed: Could not
establish trust relationship for the SSL/TLS secure channel.
At line:1 char:1
+ Invoke-WebRequest https://expired.badssl.com/
+ ~~~
 + CategoryInfo : InvalidOperation:
(System.Net.HttpWebRequest:HttpWebRequest) [Invoke-WebRequest],
WebException
 + FullyQualifiedErrorId :
WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeWebReques
tCommand

In PowerShell Core, this message changes to The remote certificate is invalid
according to the validation procedure.

In Windows PowerShell, Invoke-WebRequest cannot bypass or ignore an invalid
certificate on its own (using a parameter). Certificate validation behavior may be changed
by adjusting the CertificatePolicy on the ServicePointManager: https:/ / msdn.
microsoft.com/en- us/ library/ system. net. servicepointmanager(v= vs. 110). aspx.

https://badssl.com/
https://badssl.com/
https://badssl.com/
https://badssl.com/
https://badssl.com/
https://badssl.com/
https://badssl.com/
https://badssl.com/
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.net.servicepointmanager(v=vs.110).aspx

Web Requests and Web Services Chapter 13

[318]

In PowerShell Core, Invoke-WebRequest has a new parameter allowing certificate errors
to be ignored, as shown here:

Invoke-WebRequest https://expired.badssl.com/ -SkipCertificateCheck

Chain of trust

Certificates are based on a chain of trust. Authorities are trusted to carry
out sufficient checks to prove the identity of the certificate holder.
Skipping certificate validation is insecure and should only be used against
known hosts which can be trusted.

Bypassing SSL errors in Windows PowerShell
If a service has an invalid certificate, the best response is to fix the problem. When it is not
possible or practical to address the real problem, a workaround can be created.

The approach described here applies to Windows PowerShell only. PowerShell Core does
not include the ICertificatePolicy type.

This modification applies to the current PowerShell session and will reset to default
behavior every time a new PowerShell session is opened.

The certificate policy used by the ServicePointManager may be replaced with a
customized handler by writing a class (PowerShell, version 5) that replaces the
CheckValidationResult method:

Class AcceptAllPolicy: System.Net.ICertificatePolicy {
 [Boolean] CheckValidationResult(
 [System.Net.ServicePoint] $servicePoint,
 [System.Security.Cryptography.X509Certificates.X509Certificate]
$certificate,
 [System.Net.WebRequest] $webRequest,
 [Int32] $problem
) {
 return $true
 }
}
[System.Net.ServicePointManager]::CertificatePolicy =
[AcceptAllPolicy]::new()

Web Requests and Web Services Chapter 13

[319]

Once the policy is in place, certificate errors will be ignored as the previous method returns
true no matter its state:

PS> Invoke-WebRequest "https://expired.badssl.com/"

StatusCode : 200
StatusDescription : OK
...

CertificatePolicy is obsolete

The CertificatePolicy property is marked as obsolete in the
documentation on MSDN.

Until recently, adjusting ServerCertificateValidationCallback was
sufficient. However, with PowerShell 5 this appears to only fix part of the
problem for Invoke-WebRequest.

Requests made by System.Net.WebClient in Windows PowerShell are
satisfied by this simpler approach, which trusts all certificates:

[System.Net.ServicePointManager]::ServerCertificateValida
tionCallback = { $true }

This approach is not feasible with PowerShell Core. Requests made using
WebClient may either by replaced by Invoke-WebRequest or the
HttpClient.

Capturing SSL errors
The ServerCertificateValidationCallback property of ServicePointManager does
not work as expected in PowerShell Core. Attempts to assign and use a script block may
result in an error being displayed, as shown here, when making a web request:

PS> [System.Net.ServicePointManager]::ServerCertificateValidationCallback =
{ $true }
PS>
[System.Net.WebClient]::new().DownloadString('https://expired.badssl.com/')
Exception calling "DownloadString" with "1" argument(s): "The SSL
connection could not be established, see inner exception. There is no
Runspace available to run scripts in this thread. You can provide one in
the DefaultRunspace property of the
System.Management.Automation.Runspaces.Runspace type. The script block you

Web Requests and Web Services Chapter 13

[320]

attempted to invoke was: $true "
At line:1 char:1
+ [System.Net.WebClient]::new().DownloadString('https://expired.badssl. ...
+ ~~~
+ CategoryInfo : NotSpecified: (:) [], MethodInvocationException
+ FullyQualifiedErrorId : WebException

The SslStream type (System.Net.Security.SslStream) offers a potential alternative
for capturing detailed certificate validation information. The method used in the following
example works in both Windows PowerShell and PowerShell Core.

This example converts certificate validation information using Export-CliXml. Assigning
the parameters to a global variable is possible, but certain information is discarded when
the callback ends, including the elements of the certificate chain:

$remoteCertificateValidationCallback = {
 param (
 [Object]$sender,
[System.Security.Cryptography.X509Certificates.X509Certificate2]$certificat
e,
 [System.Security.Cryptography.X509Certificates.X509Chain]$chain,
 [System.Net.Security.SslPolicyErrors]$sslPolicyErrors
)

 $psboundparameters | Export-CliXml C:\temp\CertValidation.xml
 # Always indicate SSL negotiation was successful
 $true
}

try {
 [Uri]$uri = 'https://expired.badssl.com/'

 $tcpClient = [System.Net.Sockets.TcpClient]::new()
 $tcpClient.Connect($Uri.Host, $Uri.Port)
 $sslStream = [System.Net.Security.SslStream]::new(
 $tcpClient.GetStream(),
 $false, # leaveInnerStreamOpen: Close the inner stream when
complete
 $remoteCertificateValidationCallback
)
 $sslStream.AuthenticateAsClient($Uri.Host)
} catch {
 throw
} finally {
 if ($tcpClient.Connected) {
 $tcpClient.Close()
 }

Web Requests and Web Services Chapter 13

[321]

}

$certValidation = Import-CliXml C:\temp\CertValidation.xml

Once the content of the XML file has been loaded, the content may be investigated. For
example, the certificate that was exchanged can be viewed:

$certValidation.Certificate

Or, the response can be used to inspect all of the certificates in the key chain:

$certValidation.Chain.ChainElements | Select-Object -ExpandProperty
Certificate

The ChainStatus property exposes details of any errors during chain validation:

$certValidation.Chain.ChainStatus

ChainStatus is summarized by the SslPolicyErrors property.

Removing the policy

PowerShell should be restarted to reset the certificate policies to system
defaults.

Working with REST
REST is a compliant web service that allows a client to interact with the service using a set
of predefined stateless operations. REST is not a protocol, it is an architectural style.

Whether or not an interface is truly REST compliant is not particularly relevant when the
goal is to use one in PowerShell. Interfaces must be used according to any documentation
that has been published.

Invoke-RestMethod
The Invoke-RestMethod command is able to execute methods exposed by web services.
The name of a method is part of the Uniform Resource Identifier (URI); it is important not
to confuse this with the Method parameter. The Method parameter is used to describe the
HTTP method. By default, Invoke-RestMethod uses HTTP GET.

Web Requests and Web Services Chapter 13

[322]

Simple requests
The REST API provided by GitHub may be used to list repositories made available by the
PowerShell team.

The API entry point is https:/ /api. github. com as documented in this reference: https:/ /
developer.github. com/ v3/ .

When working with REST, documentation is very important. The manner in which an
interface is used is common, but the manner is which it may respond is not (as this is an
architectural style, not a strict protocol).

The specific method being called is documented on a different page of the following
reference: https:/ /developer. github. com/ v3/repos/ #list- user- repositories.

The name of the user forms part of the URI; there are no arguments for this method.
Therefore, the following command will execute the method and return detailed information
about the repositories owned by the PowerShell user (or organization):

Invoke-RestMethod -Uri https://api.github.com/users/powershell/repos

Windows PowerShell is likely to throw an error relating to SSL/TLS when running this
command. This is because the site uses TLS 1.2 whereas, by default, Invoke-RestMethod
reaches as far as TLS 1.0. PowerShell Core users should not experience this problem.

This Windows PowerShell problem can be fixed by tweaking the SecurityProtocol
property of ServicePointManager as follows:

using namespace System.Net
[ServicePointManager]::SecurityProtocol =
[ServicePointManager]::SecurityProtocol -bor 'Tls12'

The bitwise -bor operator is used to add TLS 1.2 to the default list, which includes Ssl3
and Tls. TLS 1.1 (Tls11) may be added in a similar manner if required.

All examples use TLS 1.2

This setting is required for the examples that follow when running
Windows PowerShell.

Older versions of Windows may require a patch from Windows Update to
gain support for TLS 1.2.

https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://api.github.com
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories
https://developer.github.com/v3/repos/#list-user-repositories

Web Requests and Web Services Chapter 13

[323]

Requests with arguments
The search code method of the GitHub REST API is used to demonstrate how arguments
can be passed to a REST method.

The documentation for the method is found in the following API reference: https:/ /
developer.github. com/ v3/ search/ #search- code.

The following example uses the search code method by building a query string and
appending that to the end of the URL. The search looks for occurrences of the Get-
Content term in PowerShell language files in the PowerShell repository. The search term is
therefore the following:

Get-Content language:powershell repo:powershell/powershell

This Get-Content is not PowerShell's Get-Content.

PowerShell has a Get-Content command. The Get-Content term used
in the previous string should not be confused with the PowerShell
command.

Converting the example from the documentation, the URL required is as follows. Spaces
may be replaced by + when encoding the URL:

https://api.github.com/search/code?q=Get-Content+language:powershell+repo:p
owershell/powershell

In Windows PowerShell, which can use the HttpUtility type within the System.Web
assembly, the task of encoding the URL can be simplified:

using assembly System.Web

$queryString = [System.Web.HttpUtility]::ParseQueryString('')
$queryString.Add('q', 'Get-Content language:powershell
repo:powershell/powershell')
Invoke-RestMethod ('https://api.github.com/search/code?{0}' -f
$queryString)

Running $queryString.ToString() will show that the colon character has been replaced
by %3, and the forward slash in the repository name by %2.

https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code
https://developer.github.com/v3/search/#search-code

Web Requests and Web Services Chapter 13

[324]

PowerShell Core cannot use the HttpUtility type, which would leave an author trying to
find a means of properly encoding the URL. However, the arguments for the search do not
necessarily have to be passed as a query string. Instead, a body for the request may be set,
as shown here:

Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
 q = 'Get-Content language:powershell repo:powershell/powershell'
}

Invoke-RestMethod converts the body (a hashtable) to JSON and handles any encoding
required. The result of the search is the same whether the body is set or a query string is
used.

In both cases, details of issues are held within the items property of the response:

Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
 q = 'Get-Content language:powershell repo:powershell/powershell'
} | Select-Object -ExpandProperty items | Select-Object number, title

This pattern, where the actual results are nested under a property in the response, is
frequently seen with REST interfaces. Exploration is often required.

It is critical to note that REST interfaces are case-sensitive; using a parameter named Q
would result in an error message, as shown here:

PS> Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
>> Q = 'Get-Content language:powershell repo:powershell/powershell'
>> }
Invoke-RestMethod : {"message":"Validation
Failed","errors":[{"resource":"Search","field":"q","code":"missing"}],"docu
mentation_url":"https://developer.github.com/v3/search"}
At line:1 char:1
+ Invoke-RestMethod -Uri https://api.github.com/search/code -Body @{
+ ~~
+ CategoryInfo : InvalidOperation: (Method: GET, Re...rShell/6.1.0
}:HttpRequestMessage) [Invoke-RestMethod], HttpResponseException
+ FullyQualifiedErrorId :
WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeRestMetho
dCommand

The GitHub API returns an easily understood error message in this case. This will not be
true of all REST APIs; it is not uncommon to see a generic error returned by an API. An API
may return a simple HTTP 400 error and leave it to the user or developer to figure out what
went wrong.

Web Requests and Web Services Chapter 13

[325]

Working with paging
Many REST interfaces will return large result sets from searches in pages, a sub-set of the
results. The techniques used to retrieve each subsequent page can vary from one API to
another.

The GitHub API exposes the link to the next page in the HTTP header. This is consistent
with RFC 5988 (https:/ /tools. ietf. org/ html/ rfc5988#page- 6).

In PowerShell Core, it is easy to retrieve and view the header when using Invoke-
RestMethod:

$params = @{
 Uri = 'https://api.github.com/search/issues'
 Body = @{
 q = 'documentation state:closed repo:powershell/powershell'
 }
 ResponseHeadersVariable = 'httpHeader'
}
Invoke-RestMethod @params | Select-Object -ExpandProperty items

Once run, the link field of the header may be inspected via the httpHeader variable:

PS> $httpHeader['link']
<https://api.github.com/search/issues?q=documentation+state%3Aclosed+repo%3
Apowershell%2Fpowershell&page=2>; rel="next",
<https://api.github.com/search/issues?q=documentation+state%3Aclosed+repo%3
Apowershell%2Fpowershell&page=34>; rel="last"

PowerShell Core can also automatically follow this link by using the FollowRelLink
parameter. This might be used in conjunction with the MaximumFollowRelLink parameter
to ensure a request stays within any rate limiting imposed by the web service. See https:/ /
developer.github. com/ v3/ #rate- limiting for the GitHub API, for example:

$params = @{
 Uri = 'https://api.github.com/search/issues'
 Body = @{
 q = 'documentation state:closed repo:powershell/powershell'
 }
 FollowRelLink = $true
 MaximumFollowRelLink = 2
}
Invoke-RestMethod @params | Select-Object -ExpandProperty items

https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://tools.ietf.org/html/rfc5988#page-6
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting
https://developer.github.com/v3/#rate-limiting

Web Requests and Web Services Chapter 13

[326]

Windows PowerShell, unfortunately, cannot automatically follow this link. Nor does
the Invoke-RestMethod command expose the header from the response. When working
with complex REST interfaces in Windows PowerShell, it is often necessary to fall back to
Invoke-WebRequest or even HttpWebRequest classes.

The example that follows uses Invoke-WebRequest in Windows PowerShell to follow the
next link in a similar manner to Invoke-RestMethod in PowerShell Core:

Used to limit the number of times "next" is followed
$followLimit = 2
The initial set of parameters, describes the search
$params = @{
 Uri = 'https://api.github.com/search/issues'
 # PowerShell will convert this to JSON
 Body = @{
 q = 'documentation state:closed repo:powershell/powershell'
 }
 ContentType = 'application/json'
}
Just a counter, works in conjunction with followLimit.
$followed = 0

do {
 # Get the next response
 $response = Invoke-WebRequest @params
 # Convert and leave the results as output
 $response.Content | ConvertFrom-Json | Select-Object -ExpandProperty
items

 # Retrive the links from the header and find the next URL
 if ($response.Headers['link'] -match '<([^>]+?)>;\s*rel="next"') {
 $next = $matches[1]
 } else {
 $next = $null
 }

 # Parameters which will be used to get the next page (next loop
iteration)
 $params = @{
 Uri = $next
 }

 # Increment the followed counter
 $followed++
} until (-not $next -or $followed -ge $followLimit)

Web Requests and Web Services Chapter 13

[327]

Because of the flexible nature of REST, implementations of page linking may vary. For
example, links may appear in the body of a response instead of the header. Exploration is a
requirement when working around a web API.

Working with authentication
There are a large number of authentication systems that might be used when working with
web services.

For services that expect to use the current user account to authenticate, the
UseDefaultCredential parameter may be used to pass authentication tokens without
explicitly passing a username and password. A service that is integrated into an Active
Directory domain, expecting to use Kerberos authentication, might be an example of such a
service.

REST interfaces written to provide automation access tend to offer reasonably simple
approaches to automation, often including basic authentication.

GitHub offers a number of different authentication methods, including basic and OAuth.
These are shown here when attempting to request the email addresses for a user, which
requires authentication.

Using basic authentication
Basic authentication with a username and password is the simplest method available:

$params = @{
 Uri = 'https://api.github.com/user/emails'
 Credential = Get-Credential
}
Invoke-RestMethod @params

In PowerShell Core, the Authentication parameter should be added:

$params = @{
 Uri = 'https://api.github.com/user/emails'
 Credential = Get-Credential
 Authentication = 'Basic'
}
Invoke-RestMethod @params

Web Requests and Web Services Chapter 13

[328]

If the account is configured to use two-factor authentication, this request may fail with the
following error message:

PS> Invoke-RestMethod @params
Invoke-RestMethod : {"message":"Must specify two-factor authentication OTP
code.","documentation_url":"https://developer.github.com/v3/auth#working-wi
th-two-factor-authentication"}
At line:1 char:1
+ Invoke-RestMethod https://api.github.com/user/emails -Credential $cre ...
+ ~~~
+ CategoryInfo : InvalidOperation: (Method: GET, Re...rShell/6.1.0
}:HttpRequestMessage) [Invoke-RestMethod], HttpResponseException
+ FullyQualifiedErrorId :
WebCmdletWebResponseException,Microsoft.PowerShell.Commands.InvokeRestMetho
dCommand

GitHub provides documentation showing how to add the second authentication factor,
although it is not clear how SMS tokens can be requested: https:/ /developer. github. com/
v3/auth/.

In this case, it may be more appropriate to use a personal access token. Personal access
tokens can be generated by visiting account settings, then developer settings. Once
generated, the personal access token cannot be viewed. The personal access token is used in
place of a password.

OAuth
OAuth is offered by a wide variety of web services. The details of this process will vary
slightly between different APIs. The GitHub documentation describes the process that must
be followed: https:/ /developer. github. com/v3/ oauth/ #web- application- flow.

OAuth needs a web browser

It is difficult to avoid the need for a web browser willing to execute
JavaScript code when working with OAuth.
The example that follows can only be used with Windows PowerShell (not
PowerShell Core) as it requires a Windows Presentation Framework
(WPF)-based browser to extract a code from query string in a redirected
web request.

https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/auth/
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow
https://developer.github.com/v3/oauth/#web-application-flow

Web Requests and Web Services Chapter 13

[329]

Creating an application
Before starting with code, an application has to be registered with GitHub. This is done by
visiting account settings, and then developer settings.

An application must be created to acquire a clientid and clientsecret. Creation of the
application requires a homepage URL and an authorization callback URL. Both should be
set to http://localhost. This does not have to be a valid web service for the purposes of
this example; it is used to acquire the authorization code in a web browser.

The values from the web page will fill the following variables:

$clientId = 'FromGitHub'
$clientSecret = 'FromGitHub'

Getting an authorization code
Once an application is registered, an authorization code is required. Obtaining the
authorization code gives the end user the opportunity to grant the application access to a
GitHub account. If the user is not currently logged in to GitHub, it will also prompt
him/her to log on.

A URL must be created that will prompt for authorization:

$authorize =
'https://github.com/login/oauth/authorize?client_id={0}&scope={1}' -f
 $clientId,
 'user:email'

The 'user:email' scope describes the rights the application would like to have. The web
API guide contains a list of possible scopes: https:/ /developer. github. com/apps/
building-oauth-apps/ understanding- scopes- for- oauth- apps/ .

GitHub does not support Internet Explorer

WPF and Windows Forms both include browser controls that can be used.
However, both are based on Internet Explorer, which is not supported by
GitHub. An alternative is required.

Before creating the web request, an appropriate browser control must be found. The
WebView control uses the Microsoft Edge browser and is available from https:/ /www.
nuget.org/: https:/ / www. nuget. org/ packages/ Microsoft. Toolkit. Win32. UI. Controls/ .

https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-apps/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/
https://www.nuget.org/packages/Microsoft.Toolkit.Win32.UI.Controls/

Web Requests and Web Services Chapter 13

[330]

The following script will download and extract the package to the current directory:

$params = @{
 Uri =
'https://www.nuget.org/api/v2/package/Microsoft.Toolkit.Win32.UI.Controls/4
.0.2'
 OutFile = 'Microsoft.Toolkit.Win32.UI.Controls.zip'
}
Invoke-WebRequest @params
Expand-Archive Microsoft.Toolkit.Win32.UI.Controls.zip

The downloaded assembly may be used to implement a small browser to handle the OAuth
callback process:

using assembly PresentationFramework
using assembly
.\Microsoft.Toolkit.Win32.UI.Controls\lib\net462\Microsoft.Toolkit.Win32.UI
.Controls.dll

$window = [System.Windows.Window]@{
 Height = 650
 Width = 450
}
$browser = [Microsoft.Toolkit.Win32.UI.Controls.WPF.WebView]@{
 Height = 650
 Width = 450
}
Add an event handler to close the window when
interaction with GitHub is complete.
$browser.add_NavigationCompleted({
 param ($sender, $eventargs)

 if ($eventArgs.Uri -notmatch 'GitHub') {
 $Global:authorizationCode = $eventArgs.Uri -replace '^.+code='

 $sender.Parent.Close()
 } else {
 $Global:authorizationCode = $null
 }
})
$browser.Navigate($authorize)
$window.Content = $browser
$null = $window.ShowDialog()

The window will close as soon as it leaves the GitHub pages, when the request is redirected
to the callback URL for the application.

Web Requests and Web Services Chapter 13

[331]

If the application has already been authorized and the user is logged in, the window will
close without prompting for user interaction.

The authroizationCode global variable should contain code that can be used to request
an access token.

Requesting an access token
The next step is to create an access token. The access token is valid for a limited time.

The clientSecret is sent with this request; if this were an application that was given to
others, keeping the secret would be a challenge to overcome:

$params = @{
 Uri = 'https://github.com/login/oauth/access_token'
 Method = 'POST'
 Body = @{
 client_id = $clientId
 client_secret = $clientSecret
 code = $authorizationCode
 }
}
$response = Invoke-RestMethod @params
$token =
[System.Web.HttpUtility]::ParseQueryString($response)['access_token']

The previous request used the HTTP method POST. The HTTP method, which should be
used with a REST method, is documented for an interface in the Developer Guides.

Each of the requests that follow will use the access token from the previous request. The
access token is placed in a HTTP header field named Authorization.

Using a token
We can call methods that require authentication by adding a token to the HTTP header.

The format of the authorization header field is shown here:

Authorization: token OAUTH-TOKEN

OAUTH-TOKEN is replaced and the authorization head is constructed as shown here:

$headers = @{
 Authorization = 'token {0}' -f $token
}

Web Requests and Web Services Chapter 13

[332]

The token can be used in subsequent requests for the extent of its lifetime:

$headers = @{
 Authorization = 'token {0}' -f $token
}
Invoke-RestMethod 'https://api.github.com/user/emails' -Headers $headers

Working with SOAP
Unlike REST, which is an architectural style, SOAP is a protocol. It is perhaps reasonable to
compare working with SOAP to importing a .NET assembly (DLL) to work with the types
inside. As a result, a SOAP client is much more strongly tied to a server than is the case
with a REST interface.

SOAP uses XML to exchange information between the client and server.

Finding a SOAP service
SOAP-based web APIs are quite rare, less popular by far than REST. The examples in this
section are based on a simple SOAP service I wrote for this book.

The service is available on GitHub as a Visual Studio solution: https:/ /github. com/
indented-automation/ SimpleSOAP.

The solution should be downloaded, opened in Visual Studio (2015 or 2017, Community
Edition or better), and debugging should be started by pressing F5. A browser page will be
opened, which will show the port number the service is operating on. A 403 error may be
displayed; this can be ignored.

This service is not a well designed service; it has been contrived to expose similar patterns
in its method calls to those seen in real SOAP services.

A ReadMe file accompanies the project. Common problems running the project will be
noted there.

Alternatives?

Alternative services include older versions of SQL Server Reporting
Services, which are extensively documented: https:/ /docs. microsoft.
com/en- us/ dotnet/ api/ reportservice2010? view= sqlserver- 2016. SQL
Server Reporting Services 2017 and newer use a REST API.

https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://github.com/indented-automation/SimpleSOAP
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016
https://docs.microsoft.com/en-us/dotnet/api/reportservice2010?view=sqlserver-2016

Web Requests and Web Services Chapter 13

[333]

The discovery based approaches explored in this section should be applicable to any SOAP
based service.

New-WebServiceProxy
The New-WebServiceProxy command is used to connect to a SOAP web service. This can
be a service endpoint, such as a .NET service.asmx URL, or a WSDL document.

New-WebServiceProxy and PowerShell Core

The New-WebServiceProxy command has not been implemented in
PowerShell Core. The examples in this section only apply when using
Windows PowerShell.

The web service will include methods, and may also include other object types and
enumerations.

The command accesses a service anonymously by default. If the current user should be
passed on, the UseDefaultCredential parameter should be used. If explicit credentials
are required, the Credential parameter can be used.

Localhost and a port

Throughout this section, localhost and a port are used to connect to the
web service. The port is set by Visual Studio when debugging the simple
SOAP web service and must be updated to use these examples.

By default, New-WebServiceProxy creates as dynamic namespace. This is as follows:

PS> $params = @{
>> Uri = 'http://localhost:62369/Service.asmx'
>> }
>> $service = New-WebServiceProxy @params
>> $service.GetType().Namespace
Microsoft.PowerShell.Commands.NewWebserviceProxy.AutogeneratedTypes.WebServ
iceProxy4__localhost_62369_Service_asmx

The dynamic namespace is useful as it avoids problems when multiple connections are
made to the same service in the same session.

Web Requests and Web Services Chapter 13

[334]

To simplify exploring the web service in, a fixed namespace might be defined:

$params = @{
 Uri = 'http://localhost:62369/Service.asmx'
 Namespace = 'SOAP'
}
$service = New-WebServiceProxy @params

The $ service object returned by New-WebServiceProxy describes the URL used to
connect, the timeout, the HTTP user agent, and so on. The object is also the starting point
for exploring the interface; it is used to expose web services methods.

Methods
The methods available may be viewed in a number of ways. The URL used can be visited in
a browser, or Get-Member may be used. A subset of the output from Get-Member follows:

PS> $service | Get-Member

Name MemberType Definition
---- ---------- ----------
GetElement Method SOAP.Element GetElement(string Name)
GetAtomicMass Method string GetAtomicMass(string Name)
GetAtomicNumber Method int GetAtomicNumber(string Name)
GetElements Method SOAP.Element[] GetElements()
GetElementsByGroup Method SOAP.Element[]
GetElementsByGroup(SOAP.Group group)
GetElementSymbol Method string GetElementSymbol(string Name)
SearchElements Method SOAP.Element[]
SearchElements(SOAP.SearchCondition[] searchConditions)

The preceding GetElements method requires no arguments and may be called
immediately, as shown here:

PS> $service.GetElements() | Select-Object -First 5 | Format-Table

AtomicNumber Symbol Name AtomicMass Group
------------ ------ ---- ---------- -----
 1 H Hydrogen 1.00794(4) Nonmetal
 2 He Helium 4.002602(2) NobleGas
 3 Li Lithium 6.941(2) AlkaliMetal
 4 Be Beryllium 9.012182(3) AlkalineEarthMetal
 5 B Boron 10.811(7) Metalloid

Web Requests and Web Services Chapter 13

[335]

Methods requiring string or numeric arguments may be similarly easy to call, although the
value the method requires is often open to interpretation. In this case, the name argument
may be either an element name or an element symbol. Documentation is difficult to replace
when working with web services:

PS> $service.GetAtomicNumber('oxygen')
8

PS> $service.GetAtomicMass('H')
1.00794(4)

Methods and enumerations
The GetElementsByGroup method shown by Get-Member requires an argument of type
SOAP.Group. This is an enumeration, as indicated by the BaseType shown here:

PS> [SOAP.Group]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Group System.Enum

The values of the enumeration may be shown by running the GetEnumValues method as
shown here:

PS> [SOAP.Group].GetEnumValues()

Actinoid
AlkaliMetal
AlkalineEarthMetal
Halogen
Lanthanoid
Metal
Metalloid
NobleGas
Nonmetal
PostTransitionMetal
TransitionMetal

Web Requests and Web Services Chapter 13

[336]

PowerShell will help cast to enumeration values; a string value is sufficient to satisfy the
method:

PS> $service.GetElementsByGroup('Nonmetal') | Format-Table

AtomicNumber Symbol Name AtomicMass Group
------------ ------ ---- ---------- -----
 1 H Hydrogen 1.00794(4) Nonmetal
 6 C Carbon 12.0107(8) Nonmetal
 7 N Nitrogen 14.0067(2) Nonmetal
 8 O Oxygen 15.9994(3) Nonmetal
 15 P Phosphorus 30.973762(2) Nonmetal
 16 S Sulfur 32.065(5) Nonmetal
 34 Se Selenium 78.96(3) Nonmetal

If the real value of the enumeration must be used, it may be referenced as a static property
of the enumeration:

$service.GetElementsByGroup([SOAP.Group]::Nonmetal)

Methods and SOAP objects
When working with SOAP interfaces, it is common to encounter methods that need
instances of objects presented by the SOAP service. The SearchElements method is an
example of this type.

The SearchElements method requires an array of SOAP.SearchCondition as an
argument. This is shown in the following by accessing the definition of the method:

PS> $service.SearchElements

OverloadDefinitions

SOAP.Element[] SearchElements(SOAP.SearchCondition[] searchConditions)

Web Requests and Web Services Chapter 13

[337]

An instance of SearchCondition may be created as follows:

$searchCondition = [SOAP.SearchCondition]::new()

Exploring the object with Get-Member shows that the operator property is another type
from the SOAP service. This is an enumeration, as shown here:

PS> [SOAP.ComparisonOperator]

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True ComparisonOperator System.Enum

A set of search conditions may be constructed and passed to the method:

$searchConditions = @(
 [SOAP.SearchCondition]@{
 PropertyName = 'AtomicNumber'
 Operator = 'ge'
 Value = 1
 }
 [SOAP.SearchCondition]@{
 PropertyName = 'AtomicNumber'
 Operator = 'lt'
 Value = 6
 }
)
$service.SearchElements($searchConditions)

Overlapping services
When testing a SOAP interface, it is easy to get into a situation where New-
WebServiceProxy has been called several times against the same web service. This can be
problematic if using the Namespace parameter.

Web Requests and Web Services Chapter 13

[338]

Consider the following example, which uses two instances of the web service:

$params = @{
 Uri = 'http://localhost:62369/Service.asmx'
 Namespace = 'SOAP'
}
Original version
$service = New-WebServiceProxy @params
New version
$service = New-WebServiceProxy @params

$searchConditions = @(
 [SOAP.SearchCondition]@{
 PropertyName = 'Symbol'
 Operator = 'eq'
 Value = 'H'
 }
)

In theory, there is nothing wrong with this example. In practice, the
SOAP.SearchCondition object is created based on the original version of the service
created using New-WebServiceProxy. The method is, on the other hand, executing against
the newer version.

As the method being called and the type being used are in different assemblies, an error is
shown; this is repeated in the following:

PS> $service.SearchElements($searchConditions)
Cannot convert argument "searchConditions", with value: "System.Object[]",
for "SearchElements" to type
"SOAP.SearchCondition[]": "Cannot convert the "SOAP.SearchCondition" value
of type "SOAP.SearchCondition" to type
"SOAP.SearchCondition"."
At line:1 char:1
+ $service.SearchElements($searchConditions)
+ ~~
 + CategoryInfo : NotSpecified: (:) [], MethodException
 + FullyQualifiedErrorId : MethodArgumentConversionInvalidCastArgument

Web Requests and Web Services Chapter 13

[339]

It is still possible to access the second version of SearchCondition by searching for the
type, then creating an instance of that:

$searchCondition = ($service.GetType().Module.GetTypes() |
 Where-Object Name -eq 'SearchCondition')::new()

$searchCondition.PropertyName = 'Symbol'
$searchCondition.Operator = 'eq'
$searchCondition.Value = 'H'

$searchConditions = @($searchCondition)

$service.SearchElements($searchConditions)

However, it is generally better to avoid the problem by allowing New-WebServiceProxy
to use a dynamic namespace. At which point, an instance of the SearchCondition may be
created, as shown here:

('{0}.SearchCondition' -f $service.GetType().Namespace -as [Type])::new()

Summary
This chapter explored the use of Invoke-WebRequest and how to work with and debug
SSL negotiation problems.

Working with REST explored simple method calls, authentication, and OAuth negotiation,
before exploring REST methods that require authenticated sessions.

SOAP is hard to find these days; a sample project was used to show how the capabilities of
a SOAP service might be discovered and used.

Chapter 14, Remoting and Remote Management, explores remoting and remote management.

3
Section 3: Automating with

PowerShell
In this section, we will look at using PowerShell to administer and automate.

The following chapters are included in this section:

Chapter 14, Remoting and Remote Management
Chapter 15, Asynchronous Processing

14
Remoting and Remote

Management
Windows remoting came to PowerShell with the release of version 2.0. Windows remoting
is a powerful feature that allows administrators to move away from RPC-based remote
access.

In this chapter, we will cover the following topics:

WS-Management
PSSessions
Remoting on Linux
Remoting over SSH
The double-hop problem
CIM sessions

Technical requirements
This chapter makes use of a remote Windows system named PSTest, which runs Windows
10, Windows PowerShell 5.1, and PowerShell Core 6.1.

Remoting between Windows and Linux is demonstrated using a system that runs CentOS
7, PowerShell 6.1, and the PSRP package.

Remoting and Remote Management Chapter 14

[342]

WS-Management
Windows remoting uses WS-Management as its communication protocol. Support for WS-
Management and remoting were introduced with PowerShell 2.0. WS-Management uses
the Simple Object Access Protocol (SOAP) to pass information between the client and the
server.

Enabling remoting
Before remoting can be used, it must be enabled. In a domain environment, remoting can be
enabled using a group policy:

Policy name: Allow remote server management through WinRM
Path: Computer configuration\Administrative Templates\Windows
Components\Windows Remote Management (WinRM)\WinRM Service

If remoting is enabled using a group policy, a firewall rule should be created to allow access
to the service:

Policy name: Define inbound port exceptions
Path: Computer Configuration\Administrative Templates\Network\
Network Connections\Windows Firewall\Domain Profile

Port exception example: 5985:TCP:*:enabled:WSMan

Windows remoting can be enabled on a per-machine basis using the Enable-
PSRemoting command.

Remoting may be disabled in PowerShell using Disable-PSRemoting. Disabling remoting
will show the following warning:

PS> Disable-PSRemoting

WARNING: Disabling the session configurations does not undo all the changes
made by the Enable-PSRemoting or Enable-PSSessionConfiguration cmdlet. You
might have to manually undo the changes by following these steps:
1. Stop and disable the WinRM service.
2. Delete the listener that accepts requests on any IP address.
3. Disable the firewall exceptions for WS-Management communications.
4.Restore the value of the LocalAccountTokenFilterPolicy to 0, which
restricts remote access to members of the Administrators group on the
computer.

Remoting and Remote Management Chapter 14

[343]

If Enable-PSRemoting is run in the PowerShell 6 console, additional session
configurations will be created that allow a choice of either Windows PowerShell (the
default) or PowerShell Core when creating a remote session. Accessing PowerShell Core
sessions is explored later in this chapter.

Get-WSManInstance
Get-WSManInstance provides access to instances of resources at a lower level than
commands such as Get-CimInstance.

For example, Get-WSManInstance can be used to get the Win32_OperatingSystem WMI
class:

Get-WSManInstance -ResourceUri wmicimv2/win32_operatingsystem

The response is an XmlElement that PowerShell presents as an object with properties for
each child element.

Get-WSManInstance has been superseded by Get-CimInstance, which was introduced
in PowerShell 3.0.

The WSMan drive
The WSMan drive is accessible when PowerShell is running as the administrator. The drive
can be used to view and change the configuration of remoting.

For example, the provider can be used to update settings, such as MaxEnvelopeSize,
which affects the maximum permissible size of SOAP messages sent and received by
WSMan:

Set-Item WSMan:\localhost\MaxEnvelopeSizekb 1024

The WinRM service may need to be restarted after values are changed:

Restart-Service winrm

Remoting and SSL
By default, Windows remoting requests are unencrypted. An HTTPS listener can be created
to support encryption. Before attempting to create an HTTPS listener, a certificate is
required.

Remoting and Remote Management Chapter 14

[344]

Using a self-signed certificate is often the first step when configuring SSL. Windows 10
comes with a PKI module that can be used to create a certificate. The PKI module is only
available in Windows PowerShell. In the following example, a self-signed certificate is
created in the computer's personal store:

PS> New-SelfSignedCertificate -DnsName $env:COMPUTERNAME

PSParentPath: Microsoft.PowerShell.Security\Certificate::LocalMachine\MY

Thumbprint Subject
---------- -------
D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41 CN=SSLTEST

Once the certificate has been created, an HTTPS listener may be created using the WSMan
drive:

$params = @{
 Path = 'WSMan:\localhost\Listener'
 Address = '*'
 Transport = 'HTTPS'
 CertificateThumbprint = 'D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41'
 Force = $true
}
New-Item @params

The Force parameter is used to suppress a confirmation prompt.

If Windows Firewall is running, a new rule must also be created to allow the connection:

$params = @{
 DisplayName = $name = 'Windows Remote Management (HTTPS-In)'
 Name = $name
 Profile = 'Any'
 LocalPort = 5986
 Protocol = 'TCP'
}
New-NetFirewallRule @params

Set-WSManQuickConfig
Certificates used by remoting have the following requirements:

The subject must contain the computer name (without a domain).
The certificate must support the server authentication enhanced key usage.
The certificate must not be expired, revoked, or self-signed.

Remoting and Remote Management Chapter 14

[345]

If a certificate that meets these requirements is present, the Set-
WSManQuickConfig command may be used:

Set-WSManQuickConfig -UseSSL

HTTPS listeners may be viewed as follows:

PS> Get-ChildItem WSMan:\localhost\Listener* |
>> Where-Object { (Get-Item "$($_.PSPath)\Transport").Value -eq 'HTTPS'
}

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Listener

Type Keys Name
---- ---- ----
Container {Transport=HTTPS, Address=*} Listener_1305953032

The preceding example may be extended by exploring the properties for the listener:

Get-ChildItem WSMan:\localhost\Listener | ForEach-Object {
 $listener = $_ | Select-Object Name
 Get-ChildItem $_.PSPath | ForEach-Object {
 $listener | Add-Member $_.Name $_.Value
 }
 $listener
} | Where-Object Transport -eq 'HTTPS'

The self-signed certificate can be assigned in this manner, but, for an SSL connection to
succeed, the client must trust the certificate. Without trust, the following error is shown:

PS> Invoke-Command -ScriptBlock { Get-Process } -ComputerName
$env:COMPUTERNAME -UseSSL

[SSLTEST] Connecting to remote server SSLTEST failed with the following
error message : The server certificate on the destination computer
(SSLTEST:5986) has the following errors:
The SSL certificate is signed by an unknown certificate authority. For more
information, see the about_Remote_Troubleshooting Help topic.
+ CategoryInfo : OpenError: (SSLTEST:String) [],
PSRemotingTransportException
+ FullyQualifiedErrorId : 12175,PSSessionStateBroken

Remoting and Remote Management Chapter 14

[346]

A number of options are available to bypass this option:

Disable certificate verification.
Add the certificate from the remote server to the local root certificate store.

Disabling certificate verification can be achieved by configuring the options of a PSSession:

$options = New-PSSessionOption -SkipCACheck
$session = New-PSSession computerName -SessionOption $options

Either of the preceding options will allow the connection to complete. This can be verified
using Test-WSMan:

Test-WSMan -UseSSL

If a new certificate is obtained, the certificate for the listener may be replaced by using Set-
Item:

$params = @{
 Path =
'WSMan:\localhost\Listener\Listener_1305953032\CertificateThumbprint'
 Value = 'D8D2F174EE1C37F7C2021C9B7EB6FEE3CB1B9A41'
}
Set-Item @params

Remoting and permissions
By default, Windows remoting requires administrative access. A summary of granted
permissions may be viewed using Get-PSSessionConfiguration. The summary does
not include the permission level:

Get-PSSessionConfiguration Microsoft.PowerShell

Remoting permissions GUI
Permissions can be changed using the graphical interface. The interface will be displayed
when the following command is run:

Set-PSSessionConfiguration Microsoft.PowerShell -ShowSecurityDescriptorUI

Remoting and Remote Management Chapter 14

[347]

The following screenshot displays a standard GUI for assigning permissions:

The session configuration defines four different permission levels:

Full

Read

Write

Execute

Remoting permissions by script
Permissions may also be changed using a script. The following commands retrieve the
current security descriptor:

using namespace System.Security.AccessControl

$sddl = Get-PSSessionConfiguration microsoft.powerShell |
 Select-Object -ExpandProperty SecurityDescriptorSddl

Remoting and Remote Management Chapter 14

[348]

$acl = [CommonSecurityDescriptor]::new(
 $false,
 $false,
 $sddl
)
$acl.DiscretionaryAcl

The object created here does not translate access masks into meaningful names. There are a
small number of possible values for the access mask (shown here as 32-bit integers):

Full (All operations): 268435456
Read (Get, Enumerate, Subscribe): -2147483648
Write (Put, Delete, Create): 1073741824
Execute (Invoke): 536870912

Permissions may be combined by using the -bor operator. For example, read and write
may be defined using the following:

$readAndWrite = -2147483648 -bor 1073741824

Granting Read, Write, and Execute individually should be equivalent to Full Control.
However, the result of binary (or the composite of all values) is -536870912, not the
expected value for Full.

Understanding these values allows the current settings to be displayed in more detail
than Get-PSSessionConfiguration displays. The function adds two script properties to
each of the access control entries in the discretionary ACL. The first translates the SID into
an account name; the second translates the access mask into a name (or set of names).

The example uses an enumeration (enum) to describe the possible access rights:

using namespace System.Security.AccessControl; using namespace
System.Security.Principal
[Flags()]
enum SessionAccessRight {
 All = -536870912
 Full = 268435456
 Read = -2147483648
 Write = 1073741824
 Execute = 536870912
}

function Get-PSSessionAcl {
 [CmdletBinding()]
 param (

Remoting and Remote Management Chapter 14

[349]

 [Parameter(Mandatory)]
 [String[]]$Name
)
 Get-PSSessionConfiguration -Name $Name | ForEach-Object {
 [CommonSecurityDescriptor]::new(
 $false,
 $false,
 $_.SecurityDescriptorSddl
)
 }
}

function Get-PSSessionAccess {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String[]]$Name
)

 (Get-PSSessionAcl -Name $Name).DiscretionaryAcl |
 Add-Member Identity -MemberType ScriptProperty -Value {
 $this.SecurityIdentifier.Translate([NTAccount])
 } -PassThru |
 Add-Member AccessRight -MemberType ScriptProperty -Value {
 [SessionAccessRight]$this.AccessMask
 } -PassThru
}

Additional access may be granted by using the AddAccess method
on DiscretionaryAcl. Granting access requires the SID of an account. The SID can be
retrieved using the same Translate method that was used to get an account name from
an SID. For example, the security identifier of the local administrator account may be
retrieved as follows:

using namespace System.Security.Principal

([NTAccount]"Administrator").Translate([SecurityIdentifier])

Adding to the discretionary ACL may be achieved as shown in the following snippet. The
example makes use of the Get-PSSessionAcl function and
the SessionAccessRight enumeration created previously to grant access to the current
user. The current user is identified using environment variables:

using namespace System.Security.AccessControl; using namespace
System.Security.Principal

$identity = "$env:USERDOMAIN\$env:USERNAME"

Remoting and Remote Management Chapter 14

[350]

$acl = Get-PSSessionAcl -Name "Microsoft.PowerShell"
$acl.DiscretionaryAcl.AddAccess(
 'Allow',
 ([NTAccount]$identity).Translate([SecurityIdentifier]),
 [Int][SessionAccessRight]'Full',
 'None', # Inheritance flags
 'None' # Propagation flags
)

The updated ACL must be converted back to an SDDL string to apply the change:

$sddl = $acl.GetSddlForm('All')
Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl
$sddl

User Account Control
User Account Control (UAC) restricts local (not domain) user accounts that log on using a
remote connection. By default, the remote connection will be made as a standard user
account, that is, a user without administrative privileges.

The Enable-PSRemoting command disables UAC remote restrictions. If another method
has been used to enable remoting, and a local account is being used to connect, it is possible
that remote restrictions are still in place.

The current value can be viewed using the following:

$params = @{
 Path =
'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'
 Name = 'LocalAccountTokenFilterPolicy'
}
Get-ItemPropertyValue @params

If the key or value is missing, an error will be thrown. UAC remote restrictions can be
disabled as follows. Using the Force parameter will allow the creation of both the key and
the value:

$params = @{
 Path =
'HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System'
 Name = 'LocalAccountTokenFilterPolicy'
 Value = 1
 Force = $true
}
Set-ItemProperty @params

Remoting and Remote Management Chapter 14

[351]

The change used previously, and UAC remote restrictions, are described in the following
Microsoft's Knowledge Base article
951016: https://support.microsoft.com/en-us/help/951016/description-of-user-acco
unt-control-and-remote-restrictions-in-windows-vista.

Trusted hosts
If a remote system is not part of a domain, or is part of an untrusted domain, an attempt to
connect using remoting may fail. The remote system must either be listed in trusted hosts
or use SSL.

Use of trusted hosts also applies when connecting from a computer on a domain to another
computer that is using a local user account.

Trusted hosts are set on the client, that is, the system making the connection. The following
command gets the current value:

Get-Item WSMan:\localhost\Client\TrustedHosts

The value is a comma-delimited list. Wildcards are supported in the list. The following
function may be used to add a value to the list:

function Add-TrustedHost {
 param (
 [String]$Hostname
)

 $item = Get-Item WSMan:\localhost\Client\TrustedHosts
 $trustedHosts = @($item.Value -split ',')
 $trustedHosts = $trustedHosts + $Hostname |
 Where-Object { $_ } |
 Select-Object -Unique

 $item | Set-Item -Value ($trustedHosts -join ',')
}

PSSessions
PSSessions use Windows remoting to communicate between servers. PSSessions can be
used for anything from remote commands and script execution to providing a remote shell.

https://support.microsoft.com/en-us/help/951016/description-of-user-account-control-and-remote-restrictions-in-windows-vista
https://support.microsoft.com/en-us/help/951016/description-of-user-account-control-and-remote-restrictions-in-windows-vista

Remoting and Remote Management Chapter 14

[352]

By default, PSSessions use the Microsoft.PowerShell configuration, described by the
built-in $PSSessionConfigurationName variable. Administrative rights are required to
view and change session-configuration information.

If you are creating a session to the local system, the -EnableNetworkAccess parameter
should be added to the following commands. This parameter is only applicable to sessions
that are created from and connect to the same system.

New-PSSession
Sessions are created using the New-PSSession command. In the following example, a
session is created on a computer named PSTEST:

PS> New-PSSession -ComputerName PSTEST

Id Name ComputerName State ConfigurationName Availability
-- ---- ------------ ----- ----------------- ------------
1 Session1 PSTEST Opened Microsoft.PowerShell Available

Get-PSSession
Sessions created using New-PSSession persist until the PSSession is removed (by Remove-
PSSession) or the PowerShell session ends. The following example returns sessions
created in the current PowerShell session:

PS> Get-PSSession | Select-Object Id, ComputerName, State

Id ComputerName State
-- ------------ -----
 1 PSTEST Opened

If the ComputerName parameter is supplied, Get-PSSession will show sessions created on
that computer. For example, imagine a session is created in one PowerShell console:

$session = New-PSSession -ComputerName PSTest -Name Example

Remoting and Remote Management Chapter 14

[353]

A second administrator console session will be able to view details of that session:

PS> Get-PSSession -ComputerName PSTest | Select-Object Name, ComputerName,
State

Name ComputerName State
---- ------------ -----
Example PSTest Disconnected

Invoke-Command
Invoke-Command may be used with a PSSession to execute a command or script on a
remote system:

$session = New-PSSession -ComputerName $env:COMPUTERNAME
Invoke-Command { Get-Process -Id $PID } -Session $session

$env:COMPUTERNAME is localhost

Connecting to a session requires administrative access by default. The
preceding command will fail if PowerShell is not running with an
administrative token (run as administrator).

A PowerShell session with the administrator token can be started using
the Start-Process powershell -Verb RunAs command.

Invoke-Command has a wide variety of different uses, as shown in the command help. For
example, a single command can be executed against a list of computers:

Invoke-Command { Get-Process -Id $PID } -ComputerName 'first', 'second',
'third'

This technique can be useful when combined with AsJob. Pushing the requests into the
background allows each server to get on with its work, pushing it back when the work is
complete.

Once the job created by the previous command has completed, any data may be retrieved
using the Receive-Job command.

A number of advanced techniques may be used with Invoke-Command.

Remoting and Remote Management Chapter 14

[354]

Local functions and remote sessions
The following example executes a function created on the local machine in a remote system
using positional arguments:

function Get-FreeSpace {
 param (
 [Parameter(Mandatory = $true)]
 [String]$Name
)

 [Math]::Round((Get-PSDrive $Name).Free / 1GB, 2)
}
Invoke-Command ${function:Get-FreeSpace} -Session $session -ArgumentList C

This technique succeeds because the body of the function is declared as a script
block. ArgumentList is used to pass a positional argument into
the DriveLetter parameter.

If the function depends on other locally-defined functions, the attempt will fail.

Using splatting with ArgumentList
The ArgumentList parameter of Invoke-Command does not offer a means of passing
named arguments to a command.

The following example uses splatting to pass parameters. The function is defined on the
local system, and the definition of the function is passed to the remote system:

A function which exists on the current system
function Get-FreeSpace {
 param (
 [Parameter(Mandatory = $true)]
 [String]$Name
)

 [Math]::Round((Get-PSDrive $Name).Free / 1GB, 2)
}

Define parameters to pass to the function
$params = @{
 Name = 'c'
}

Execute the function with a named set of parameters
Invoke-Command -ScriptBlock {

Remoting and Remote Management Chapter 14

[355]

 param ($definition, $params)

 & ([ScriptBlock]::Create($definition)) @params
} -ArgumentList ${function:Get-FreeSpace}, $params -ComputerName
$computerName

In the preceding example, the definition of the Get-FreeSpace function is passed as an
argument along with the requested parameters. The script block used with Invoke-
Command converts the definition into a ScriptBlock and executes it.

The AsJob parameter
The AsJob parameter can be used with Invoke-Command, for example:

$session = New-PSSession PSTest
Invoke-Command -Session $session -AsJob -ScriptBlock { Start-Sleep -Seconds
120 'Done sleeping' }

The command finishes immediately, and returns the job that has been created.

While the job is running, the session availability is set to Busy:

PS> $session | Select-Object Name, ComputerName, Availability

Name ComputerName Availability
---- ------------ ------------
Session1 PSTest Busy

Attempts to run another command against the same session will result in an error message.

Once the job has completed, the Receive-Job command may be used.

Disconnected sessions
The InDisconnectedSession of Invoke-Command starts the requested script and
immediately disconnects the session. This allows a script to be started and collected from a
different console session or a different computer.

The session parameter cannot be used with InDisconnectedSession; Invoke-
Command creates a new session for a specified computer name. The session is returned by
the following command:

Invoke-Command { Start-Sleep -Seconds 120; 'Done' } -ComputerName PSTest -
InDisconnectedSession

Remoting and Remote Management Chapter 14

[356]

A second PowerShell session or computer is able to connect to the disconnected session to
retrieve the results. The following command assumes that only one session exists with
the PSTest computer:

Get-PSSession -ComputerName PSTest |
 Connect-PSSession |
 Receive-PSSession

Tasks started with AsJob will also continue to run if a session is disconnected. The
following example creates a session, starts a long-running process, and disconnects the
session:

$session = New-PSSession PSTest -Name 'Example'
Invoke-Command { Start-Sleep -Seconds (60 * 60) } -Session $session -AsJob
Disconnect-PSSession $session

Once the session has been created and disconnected, the PowerShell console can be closed.
A second PowerShell console can find and connect to the existing session:

$session = Get-PSSession -ComputerName PSTest -Name 'Example'
Connect-PSSession $session

Reviewing the details of the session will show that it is busy running Start-Sleep:

PS> Get-PSSession | Select-Object Name, ComputerName, State, Availability

Name ComputerName State Availability
---- ------------ ----- ------------
Example PSTest Opened Busy

The using variable scope
When working with Invoke-Command, PowerShell makes the using variable scope
available.

The using variable scope allows access to variables created on a local machine within a
script block used with Invoke-Command.

The following example shows the use of a variable that contains parameters for Get-
Process. The local variable may contain any reasonable value:

$params = @{
 Name = 'powershell'
 IncludeUserName = $true
}
Invoke-Command -ComputerName PSTest -ScriptBlock {

Remoting and Remote Management Chapter 14

[357]

 $params = $using:params
 Get-Process @params
}

The using scope is a handy alternative to the ArgumentList parameter.

The Enter-PSSession command
Enter-PSSession may be employed to use a session as a remote console. By
default, Enter-PSSession accepts a computer name as the first argument:

Enter-PSSession PSTest

In a similar way, an existing session might be used:

$session = New-PSSession -ComputerName PSTest
Enter-PSSession -Session $session

Enter-PSSession uses WS-Management as a means of exchanging information between
the client and the server. Once a command is typed and the return key is pressed, the entire
command is sent to the remote host. The result of the command is sent back using the same
mechanism. This exchange can inject a small amount of latency into the shell.

Import-PSSession
Import-PSSession brings commands from a remote computer into the current session.
Microsoft Exchange uses this technique to provide remote access to the Exchange
Management Shell.

The following example imports the NetAdapter module from a remote server into the
current session:

$computerName = 'PSTest'
$session = New-PSSession -ComputerName $computerName
Import-PSSession -Session $session -Module NetAdapter

Any commands used within this module are executed against the session target, not against
the local computer.

If the session is removed, the imported module and its commands will be removed from
the local session.

Remoting and Remote Management Chapter 14

[358]

Export-PSSession
In the preceding example, Import-PSSession is used to immediately import commands
from a remote system into a local session. Export-PSSession writes a persistent module
that can be used to achieve the same goal.

The following example creates a module in the current user's module path:

$computerName = 'PSTest'
$session = New-PSSession -ComputerName $computerName
Export-PSSession -Session $session -Module NetAdapter -OutputModule
"NetAdapter-$computerName"

Once the module has been created, it can be imported by name:

Import-Module "NetAdapter-$computerName"

This process replaces the need to define and import a session, and is useful for remote
commands that are used on a regular basis.

Copying items between sessions
PowerShell 5 introduced the ability to copy between sessions using the Copy-
Item command.

The FromSession parameter is used to copy a file to the local system:

$session1 = New-PSSession PSTest1
Copy-Item -Path C:\temp\doc.txt -Destination C:\Temp -FromSession $session1

In the preceding example, Path is on PSTest1.

The ToSession parameter is used to copy a file to a remote system:

$session2 = New-PSSession PSTest2
Copy-Item -Path C:\temp\doc.txt -Destination C:\Temp -ToSession $session2

In the previous example, the path used for the destination parameter is on PSTest2.

The FromSession and ToSession parameters cannot be specified together; two separate
commands are required to copy a file between two remote sessions.

Remoting and Remote Management Chapter 14

[359]

Remoting on Linux
Microsoft provides instructions for installing PowerShell on Linux; these should be
followed before attempting to configure remoting: https:/ /docs. microsoft. com/ en- us/
powershell/scripting/ install/ installing- powershell- core- on- linux? view=
powershell-6.

Once installed, it is possible to make PowerShell the default shell. This is optional and does
not affect remoting. First, check that PowerShell is listed in the shells file:

Get-Content /etc/shells # Use cat or less in Bash

The native chsh (change shell) command can be used to change the default shell for the
current user, as shown in the following example:

chsh -s /usr/bin/pwsh

To configure remoting using WSMan, the OMI and PSRP packages must be installed. The
following example uses yum since the operating system in use is CentOS 7:

yum install omi.x86_64 omi-psrp-server.x86_64

By default, CentOS has a firewall configured. The network interface in use, in this case
eth0, must be added to an appropriate zone, and WinRM must be allowed:

firewall-cmd --zone=home --change-interface=eth0
firewall-cmd --zone=home --add-port=5986/tcp

Once configured, it should be possible to connect to the remote host. SSL is required to
form the connection. The certificate is self-signed so certificate validity tests must be
skipped at this stage:

$params = @{
 ComputerName = 'LinuxSystemNameOrIPAddress'
 Credential = Get-Credential
 Authentication = 'Basic'
 UseSsl = $true
 SessionOption = New-PSSessionOption -SkipCACheck -SkipCNCheck
}
Enter-PSSession @params

The state of the certificate leaves the identity of the host in question, but it does ensure that
traffic is encrypted. If SSL is to be used beyond testing, a valid certificate chain should be
established.

https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell-core-on-linux?view=powershell-6

Remoting and Remote Management Chapter 14

[360]

At this point, the remote computer should be accessible using both Windows PowerShell
and PowerShell Core.

Remoting over SSH
PowerShell Core introduces the concept of remoting over SSH. This provides a useful
alternative to remoting over HTTPS, which avoids the burden of managing
certificates: https://github.com/PowerShell/PowerShell/blob/866b558771a20cca3daa47
f300e830b31a24ee95/docs/new-features/remoting-over-ssh/README.md.

The SSH transport for remoting cannot be used from Windows PowerShell, only
PowerShell Core.

Connecting from Windows to Linux
If connecting from Windows, an SSH client must be installed. The following command uses
the Chocolatey package manager (http:/ / chocolatey. org) to install OpenSSH for
Windows:

choco install openssh

Depending on the desired configuration, public key authentication may be enabled in the
SSH daemon configuration file. A subsystem must be added to the file.

To enable public key authentication, set PubkeyAuthentication:

PubkeyAuthentication yes

An existing subsystem entry will likely exist toward the end of the file; this new entry can
be added beneath the existing entry:

Subsystem powershell /opt/microsoft/powershell/6/pwsh -sshs -
NoLogo -NoProfile

The sshd service should be restarted after changing the configuration file:

service sshd restart

The connection in this example uses SSH-key authentication. This requires an SSH key on
Windows. If an existing key is not available, the ssh-keygen command can be used to
create a new key pair. The command will prompt for any information it requires.

https://github.com/PowerShell/PowerShell/blob/866b558771a20cca3daa47f300e830b31a24ee95/docs/new-features/remoting-over-ssh/README.md
https://github.com/PowerShell/PowerShell/blob/866b558771a20cca3daa47f300e830b31a24ee95/docs/new-features/remoting-over-ssh/README.md
http://chocolatey.org/
http://chocolatey.org/
http://chocolatey.org/
http://chocolatey.org/
http://chocolatey.org/
http://chocolatey.org/
http://chocolatey.org/

Remoting and Remote Management Chapter 14

[361]

The private key created by this command will be used when connecting to a remote host.
The public key is used to authorize a user and will be placed on the Linux system.

The public key can be obtained by running the following command on the system on which
it was generated. This command assumes default filenames were used when generating the
key:

Get-Content ~\.ssh\id_rsa.pub | Set-Clipboard

~ is home

The tilde character may be used as shorthand for the path to the home
directory. On Linux it is typically /home/<username>, and on Windows
it is typically similar to C:\users\<username>.

~ may be replaced with the $home variable, or
the $env:USERPROFILE environment variable on Windows, if desired.

The public key should be added to the authorized_keys files on Linux:

$publicKey = 'ssh-rsa AAAABG...'
New-Item ~/.ssh -ItemType Directory
Set-Content -Path ~/.ssh/authorized_keys -Value $publicKey

Once complete, a session can be created and used to interact with the Linux system:

$params = @{
 HostName = 'LinuxSystemNameOrIPAddress'
 UserName = $env:USERNAME
 SSHTransport = $true
 KeyFilePath = '~\.ssh\id_rsa'
}
Enter-PSSession @params

Connecting from Linux to Windows
Connecting from Linux to Windows is a harder path; it is clearly undergoing rapid change
and is much less mature than connections in the other direction.

Before moving on to configuring SSH, verify that WSMan functions. An HTTPS listener must
be set up; HTTP connections are prohibited by newer versions of the PSRP package. If
HTTPS is not already available, a self-signed certificate may be created and used as shown
in the Remoting and SSL section.

Remoting and Remote Management Chapter 14

[362]

If remoting is not yet configured for PowerShell Core, run the Enable-
PSRemoting command in the Core console (as an administrator). Once enabled, find the
name of the configuration entry using the Get-PSSessionConfiguration command.

The configuration name may be used to create a session to PowerShell Core that runs on
the Windows system:

$params = @{
 HostName = 'WindowsSystemNameOrIPAddress'
 Credential = (Get-Credential)
 Authentication = 'Basic'
 UseSSL = $true
 ConfigurationName = 'PowerShell.6.1.1'
}
Enter-PSSession @params

At the time of writing, attempting to connect from Linux to a PowerShell 5.1 session results
in an "access denied" error message.

The OpenSSH package must be installed on Windows to continue, as described when
configuring the connection from Windows to Linux.

The SSHD service must be installed to allow incoming connections using SSH. A service
installation script is included with the OpenSSH package:

& "C:\Program Files\OpenSSH-Win64\install-sshd.ps1"
Start-Service sshd

If used, Windows Firewall must also be opened:

$params = @{
 DisplayName = $name = 'SSH Daemon (SSH-In)'
 Name = $name
 Profile = 'Any'
 LocalPort = 22
 Protocol = 'TCP'
}
New-NetFirewallRule @params

Once this step is complete, it should be possible to create an SSH connection from Linux to
Windows:

ssh user@WindowsSystemNameOrIPAddress

As with configuring Linux, public key authentication may be allowed, and a subsystem
must be configured, this time on the Windows system. The
C:\ProgramData\ssh\sshd_config file must be edited.

Remoting and Remote Management Chapter 14

[363]

To enable public key authentication, set PubkeyAuthentication:

PubkeyAuthentication yes

Add a subsystem to the file. This may be specified in addition to any existing subsystem:

Subsystem powershell C:/progra~1/PowerShell/6/pwsh.exe -sshs -NoLogo
-NoProfile

The sshd service should be restarted after changing the configuration file:

Restart-Service sshd

At this point, it will be possible to create a remoting session using SSH, by entering a
password when prompted:

$params = @{
 HostName = 'WindowsSystemNameOrIPAddress'
 UserName = $env:USERNAME
 SSHTransport = $true
}
Enter-PSSession @params

Public key authentication may be configured in the same way as was done for Linux. A key
can be generated on Linux using the ssh-keygen command.

The public key, by default ~/.ssh/id_rsa.pub, may be added to
an authorized_keys file on Windows. The following command, when run on Linux,
displays the public key:

Get-Content ~/.ssh/id_rsa.pub

This public key may be added to an authorized_keys file for a user on the Windows
system:

$publicKey = 'ssh-rsa AAAABG...'
Set-Content -Path ~/.ssh/authorized_keys -Value $publicKey

At this point, the Linux system will be able to use public key authentication to access the
Windows system:

$params = @{
 HostName = 'WindowsSystemNameOrIPAddress'
 UserName = $env:USERNAME
 SSHTransport = $true
 KeyFilePath = '~\.ssh\id_rsa'
}
Enter-PSSession @params

Remoting and Remote Management Chapter 14

[364]

Extending this further, Windows systems running PowerShell Core and the SSH daemon
may use SSH as a remoting transport to access other Windows systems.

The double-hop problem
The double-hop problem describes a scenario in PowerShell where remoting is used to
connect to a host and the remote host tries to connect to another resource. In this scenario,
the second connection, the second hop, fails because authentication cannot be implicitly
passed.

Over the years, there have been numerous articles that discuss this problem. Ashley
McGlone published a blog post in 2016 that describes the problem and the possible
solutions: https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershel
l-remoting-kerberos-double-hop-solved-securely/.

This section briefly explores using CredSSP, as well as how to pass explicit credentials to a
remote system. Neither of these options is considered secure, but they require the least
amount of work to implement.

These two options are useful in the following situations:

The remote endpoint is trusted and has not been compromised.
Critical authentication tokens can be extracted by any administrator on the
remote system.
They are not used for wide-scale regular or scheduled automation, as the
methods significantly increase exposure.

CredSSP
A session can be created using CredSSP as the authentication provider:

New-PSSession -ComputerName PSTest -Credential (Get-Credential) -
Authentication CredSSP

CredSSP must be enabled on the client to support passing credentials to a remote system.
The DelegateComputer parameter can be used with either a specific name or a wildcard
(*):

Enable-WSManCredSSP -Role Client -DelegateComputer PSTest

https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/
https://blogs.technet.microsoft.com/ashleymcglone/2016/08/30/powershell-remoting-kerberos-double-hop-solved-securely/

Remoting and Remote Management Chapter 14

[365]

CredSSP must also be enabled on the server to receive credentials:

Enable-WSManCredSSP -Role Server

If this approach is used as a temporary measure, the CredSSP roles might be removed
afterward.

On the server making the connection, the Client role can be disabled:

Disable-WSManCredSSP -Role Client

On the remote system, the Server role can be disabled:

Disable-WSManCredSSP -Role Server

Passing credentials
Passing credentials into a remote session means the second hop can authenticate without
being dependent on authentication tokens from the original system.

In this example, the using variable scope is used to access a credential variable. The
credential is used to run a query against Active Directory from a remote system:

$Credential = Get-Credential
Invoke-Command -ComputerName PSTest -ScriptBlock {
 Get-ADUser -Filter * -Credential $using:Credential
}

CIM sessions
CIM sessions are used to work with CIM services, predominantly WMI or commands that
base their functionality on WMI. Such commands include those in
the NetAdapter and Storage modules available on Windows 2012 and Windows 8. A list
of commands that support CIM sessions may be viewed by entering the following:

Get-Command -ParameterName CimSession

The list will only include commands from modules that have been imported.

Remoting and Remote Management Chapter 14

[366]

New-CimSession
CIM sessions are created using the New-CimSession command. The following example
creates a CIM session using the current system as the computer name using WSMan as the
protocol:

PS> New-CimSession -ComputerName $env:COMPUTERNAME

Id : 1
Name : CimSession1
InstanceId : bc03b547-1051-4af1-a41d-4d16b0ec0402
ComputerName : PSTEST
Protocol : WSMAN

If the computer name parameter is omitted, the protocol will be set to DCOM:

PS> New-CimSession

Id : 2
Name : CimSession2
InstanceId : 804595f4-0144-4590-990a-92b2f22f894f
ComputerName : localhost
Protocol : DCOM

New-CimSession can be used to configure operation timeout settings and whether or not
an initial network test should be performed.

The protocol used by New-CimSession can be changed using New-CimSessionOption.
Changing the protocol can be useful if there is a need to interact with systems where
WinRM is not running or configured:

PS> New-CimSession -ComputerName $env:COMPUTERNAME -SessionOption (New-
CimSessionOption -Protocol Dcom)

Id : 3
Name : CimSession3
InstanceId : 29bba117-c899-4389-b874-5afe43962a1e
ComputerName : PSTEST
Protocol : DCOM

Remoting and Remote Management Chapter 14

[367]

Get-CimSession
Sessions created using New-CimSession persist until the CIM session is removed
(by Remove-CimSession) or the PowerShell session ends:

PS> Get-CimSession | Select-Object Id, ComputerName, Protocol

Id ComputerName Protocol
-- ------------ --------
 1 PSTEST WSMAN
 2 localhost DCOM
 3 PSTEST DCOM

Using CIM sessions
Once a CIM session has been created, it can be used for one or more requests. In the
following example, a CIM session is created and then used to gather disk and partition
information:

$ErrorActionPreference = 'Stop'
try {
 $session = New-CimSession -ComputerName $env:COMPUTERNAME
 Get-Disk -CimSession $session
 Get-Partition -CimSession $session
} catch {
 throw
}

In the preceding script, if the attempt to create the session succeeds, the session will be used
to get disk and partition information.

Error handling with try and catch is discussed in Chapter 21, Error Handling. The block is
treated as a transaction; if a single command fails, the block will stop running. If the
attempt to create a new session fails, Get-Disk and Get-Partition will not run.

Remoting and Remote Management Chapter 14

[368]

Summary
In this chapter, we explored remoting in PowerShell, starting with WS-Management, and
took a look at the new SSH-transport features introduced with PowerShell Core. We
discussed the double-hop problem, along with a number of possible ways to work around
the issue. Finally, we covered CIM sessions briefly.

In the next chapter, we'll explore systems management using a number of the more
common Microsoft systems.

15
Asynchronous Processing

PowerShell prefers to run things synchronously, that is, sequentially, or one after another.
However, it is frequently necessary to run many things simultaneously, without waiting for
another command to complete. This is known as an asynchronous operation.

Operations of this nature may be local to the current machine, or might be used to run
queries or code against remote systems.

PowerShell includes a number of different commands and classes that can be used to do
more than one thing at a time. The most obvious of these are the job commands.

In addition to the job commands, PowerShell can react to .NET events, and can use
Runspaces and Runspace pools.

This chapter explores the following topics:

Working with jobs
Reacting to events
Using Runspaces and Runspace pools

Working with jobs
The job commands in PowerShell provide a means of executing code asynchronously by
creating a new PowerShell process for each job.

As each job executes within a new process, data cannot be shared between jobs. Any
required modules, functions, or variables all need to be imported into each job.

In addition, jobs might be considered resource heavy as each job must start both a
PowerShell process and a console window's host process.

Asynchronous Processing Chapter 15

[370]

PowerShell provides a number of commands to create and interact with jobs. In addition to
the following commands, Invoke-Command with the AsJob parameter might be used when
acting against remote systems.

The Start-Job, Get-Job, and Remove-Job
commands
The Start-Job command is most commonly used to execute a script block in a very
similar manner to Invoke-Command. Start-Job may also be used to execute a script using
the FilePath parameter.

When Start-Job is executed, a job object,
System.Management.Automation.PSRemotingJob is created. The job object continues
to be available using the Get-Job command regardless of whether the output from Start-
Job is assigned. This is shown as follows:

PS> Start-Job -ScriptBlock { Start-Sleep -Seconds 10 }

Id Name PSJobTypeName State HasMoreData Location
Command
-- ---- ------------- ----- ----------- -------- -----
--
 1 Job1 BackgroundJob Running True localhost
Start-Sleep -Seconds 10

PS> Get-Job

Id Name PSJobTypeName State HasMoreData Location
Command
-- ---- ------------- ----- ----------- -------- -----
--
 1 Job1 BackgroundJob Running True localhost
Start-Sleep -Seconds 10

When a script is using jobs, the common practice is to capture the jobs created instead of
relying entirely on Get-Job. This avoids problems if module used in a script also creates
jobs. The state of the job is reflected on the job object; Get-Job is not required to update the
status.

Job objects and any data the job has returned remain available until they are removed using
the Remove-Job command.

Asynchronous Processing Chapter 15

[371]

Start-Job includes a RunAs32 parameter to run code under the 32-bit version of
PowerShell if required.

The InitializationScript parameter of Start-Job may be used to isolate setup steps,
such as importing modules, creating functions, and setting up variables. Each job executes
in a separate thread, which means that values cannot be automatically shared.

Start-Job does not offer a throttling capability. PowerShell will simultaneously execute
every job. Each job will compete for system resources. A while or do loop may be
implemented to maintain a pool of running jobs:

$listOfJobs = 1..50
foreach ($job in $listOfJobs) {
 while (@(Get-Job -State Running).Count -gt 10) {
 Start-Sleep -Seconds 10
 }
 Start-Job { Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121) }
}

The jobs created here do not return any data and can therefore be removed as soon as they
have completed. Data must be retrieved from a job before is it removed.

The Receive-Job command
Receive-Job is used to retrieve data from a job. Receive-Job may be both as a script
runs and when the script is finished. If Receive-Job is run before a job is finished, any
existing values will be returned. Running Receive-Job again will get any new values that
have been added, not previously filesystem, which retrieved values. This is shown in the
following example:

PS> $job = Start-Job { 1..10 | ForEach-Object { $_; Start-Sleep -Seconds 2
} }
>> Write-Host 'Sleeping 2'
>> Start-Sleep -Seconds 2
>> $job | Receive-Job
>> Write-Host 'Sleeping 5'
>> Start-Sleep -Seconds 5
>> $job | Receive-Job

Sleeping 2
1
Sleeping 5
2
3

Asynchronous Processing Chapter 15

[372]

4

The remaining results will be available to Receive-Job as they are returned, or when the
job has completed.

The Wait parameter of Receive-Job will receive data from the job as it becomes available
and send it to the output pipeline. Receive-Job, along with the Wait parameter, may be
useful when Start-Job is running a 32-bit process.

The Wait-Job command
The Wait-Job command waits for all of the jobs in the input pipeline to complete. Wait-
Job supports a degree of filtering and offers a timeout to define jobs to wait for.

In some cases, it is desirable to pull off output from jobs as they complete. This can be
solved by creating a while or do loop in PowerShell, reacting to jobs as the state changes:

while (Get-Job -State Running) {
 $jobs = Get-Job -State Completed
 $jobs | Receive-Job
 $jobs | Remove-Job
 Start-Sleep -Seconds 1
}

A while loop does not have an output pipeline, if output is to be piped to another
command it would need to be piped within the loop. For example, if the job output were
filling a CSV file, Export-Csv would be added inside the loop and the Append parameter
would be used:

while (Get-Job -State Running) {
 $jobs = Get-Job -State Completed
 $jobs | Receive-Job | Export-Csv output.csv -Append
 $jobs | Remove-Job
 Start-Sleep -Seconds 1
}

This technique is useful if the job is returning a large amount of data. Streaming output to a
file as jobs complete will potentially help manage memory usage across a larger number of
jobs.

This approach can be combined with the snippet, which limits the number of concurrent
jobs. The tweak is shown as follows:

$listOfJobs = 1..50

Asynchronous Processing Chapter 15

[373]

$jobs = foreach ($job in $listOfJobs) {
 while (@(Get-Job -State Running).Count -gt 10) {
 Start-Sleep -Seconds 10
 }

 Start-Job { Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121)
}
 Get-Job -State Completed | Receive-Job | Export-Csv output.csv -Append
}

$jobs | Wait-Job | Receive-Job | Export-Csv output.csv -Append

The final line is required to wait for and then receive the jobs that were still running when
the last job was started.

Reacting to events
Events in .NET occur when something of interest happens to an object. For instance,
System.IO.FileSystemWatcher can be used to monitor a filesystem for changes; when
something changes, an event will be raised.

Many different types of objects raise events when changes occur. Get-Member can be used
to explore an instance of an object for Event members. For example, a Process object
returned by the Get-Process command includes a number of events, shown as follows:

PS> Get-Process | Get-Member -MemberType Event

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Disposed Event System.EventHandler
Disposed(System.Object, System.EventArgs)
ErrorDataReceived Event
System.Diagnostics.DataReceivedEventHandler ErrorDataReceived(S...
Exited Event System.EventHandler
Exited(System.Object, System.EventArgs)
OutputDataReceived Event
System.Diagnostics.DataReceivedEventHandler OutputDataReceived(...

PowerShell can react to these events, executing code when an event occurs.

Asynchronous Processing Chapter 15

[374]

This section uses the events raised by FileSystemWatcher to demonstrate working with
events. FileSystemWatcher is able to react to a number of different events, shown as
follows:

PS> [System.IO.FileSystemWatcher]::new() | Get-Member -MemberType Event |
Select-Object Name

Name

Changed
Created
Deleted
Disposed
Error
Renamed

The Changed and Created events will be used in the following examples.

The Register-ObjectEvent and *-Event commands
Register-ObjectEvent is used to register interest in an event raised by a .NET object.
The command creates a PSEventSubscriber object.

The Register-ObjectEvent command expects at least the name of the object that will be
raising the event and the name of the event.

The following FileSystemWatcher instance watches the C:\Data folder. By default, the
watcher will only watch for changes at that level, the IncludeSubDirectories property
might be changed if this must change. Subscribers are created for the Changed and
Created events in the following example:

$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')
Register-ObjectEvent -InputObject $watcher -EventName Changed
Register-ObjectEvent -InputObject $watcher -EventName Created

If a file is created in the folder specified, an event will be raised. The Get-Event command
can be used to view the event data:

PS> New-Item C:\Data\new.txt | Out-Null
PS> Get-Event

ComputerName :
RunspaceId : 46d2a562-2d07-4c58-9416-f82a3e9da5b8
EventIdentifier : 3
Sender : System.IO.FileSystemWatcher

Asynchronous Processing Chapter 15

[375]

SourceEventArgs : System.IO.FileSystemEventArgs
SourceArgs : {System.IO.FileSystemWatcher, new.txt}
SourceIdentifier : ff0784dc-1f0f-4214-b5e7-5d5516eaa13e
TimeGenerated : 19/02/2019 17:29:53
MessageData :

The SourceEventArgs property contains a FileSystemEventArgs object. This object
includes the type of change, the path, and the filename.

The event remains until it is removed using Remove-Event. If another event is raised, it
will be returned by Get-Event in addition to the existing event.

Depending on the operation performed, FileSystemWatcher may return more than one
event. When using Add-Content, a single event will be raised as follows:

PS> Get-Event | Remove-Event
PS> Add-Content C:\Data\new.txt -Value value
PS> Get-Event | Select-Object -ExpandProperty SourceEventArgs

ChangeType FullPath Name
---------- -------- ----
 Changed C:\Data\new.txt new.txt

Set-Content is used when two events are raised. Set-Content makes two changes to the
file, directly or indirectly. This will often be the case, depending on how an application
interacts with the filesystem which is shown as follows:

PS> Get-Event | Remove-Event
PS> Set-Content C:\Data\new.txt -Value value
PS> Get-Event | Select-Object -ExpandProperty SourceEventArgs

ChangeType FullPath Name
---------- -------- ----
 Changed C:\Data\new.txt new.txt
 Changed C:\Data\new.txt new.txt

Whether an event will trigger once or twice depends on the type in use, the event raised,
and the subsystem that caused the event to be raised in the first place.

If events are being handled in the foreground using Get-Event, Wait-Event might be
used to wait until an event is raised.

Wait-Event does not return any output

Wait-Event stops as soon as an event is raised. Wait-Event does not
return the event; any raised events must be retrieved using Get-Event.

Asynchronous Processing Chapter 15

[376]

The Get-EventSubscriber and Unregister-Event
commands
The Get-EventSubscriber command may be used to view any existing event handlers
created using Register-ObjectEvent. For example, Get-EventSubscriber will display
the subscribers created for FileSystemWatcher:

PS> Get-EventSubscriber

SubscriptionId : 4
SourceObject : System.IO.FileSystemWatcher
EventName : Changed
SourceIdentifier : 6516aebc-d191-44b5-a38f-60314f606102
Action :
HandlerDelegate :
SupportEvent : False
ForwardEvent : False

SubscriptionId : 5
SourceObject : System.IO.FileSystemWatcher
EventName : Created
SourceIdentifier : ff0784dc-1f0f-4214-b5e7-5d5516eaa13e
Action :
HandlerDelegate :
SupportEvent : False
ForwardEvent : False

If the subscribers are no longer required, they can be removed using the Unregister-
Event command. The following command removes all registered event subscribers:

Get-EventSubscriber | Unregister-Event

The Action, Event, EventArgs, and MessageData
parameters
The Action parameter of Register-ObjectEvent allows a script block to be
automatically triggered when an event is raised.

Asynchronous Processing Chapter 15

[377]

The script block can use a reserved variable, $event, which is equivalent to the output
from Get-Event. In the following example, the event subscriber includes an action, which
creates a log message. The log messages are written to file in a different folder; if they were
written to the same folder, a loop would be created:

New-Item C:\Audit -ItemType Directory
$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')
$params = @{
 InputObject = $watcher
 EventName = 'Changed'
 Action = {
 $event.SourceEventArgs | Export-Csv C:\Audit\DataActivity.log -
Append
 }
}
Register-ObjectEvent @params

If a file is created in the C:\Data folder, an event will be raised and an entry will be created
in C:\Audit\DataActivity.log:

PS> Set-Content C:\Data\new.txt -Value new
PS> Import-Csv C:\Audit\DataActivity.log

ChangeType FullPath Name
---------- -------- ----
Changed C:\Data\new.txt new.txt
Changed C:\Data\new.txt new.txt

Additional information can be passed to the Action script block using the MessageData
parameter. MessageData is an arbitrary object that contains user-defined information.
Before continuing to the example, the event subscriber we just created should be removed.
The log file is also deleted as the format of the file will be changed:

Get-EventSubscriber | Unregister-Event
Remove-Item C:\Audit\DataActivity.log

The following example adds a date stamp to the log entry, and a custom message which is
supplied via MessageData. The values passed in using the MessageData parameter are
made available as a MessageData property on the $event variable:

$watcher = [System.IO.FileSystemWatcher]::new('C:\Data')
$params = @{
 InputObject = $watcher
 EventName = 'Changed'
 Action = {
 $user = $event.MessageData |
 Where-Object { $event.SourceEventArgs.Name -match $_.Expression

Asynchronous Processing Chapter 15

[378]

} |
 Select-Object -ExpandProperty User -First 1

 $event.SourceEventArgs |
 Select-Object @(
 @{Name = 'Date'; Expression = { Get-Date -Format u }}
 'ChangeType'
 'FullPath'
 @{Name = 'Responsible Person'; Expression = { $user }}
) |
 Export-Csv C:\Audit\DataActivity.log -Append
 }
 MessageData = @(
 [PSCustomObject]@{ Expression = '\.txt$'; User = 'Sarah' }
 [PSCustomObject]@{ Expression = '\.mdb'; User = 'Phil' }
)
}
Register-ObjectEvent @params

Setting the content of a file in the C:\Data folder will trigger the event subscriber. An entry
will be written to the log file using the entry from MessageData:

PS> Set-Content C:\Data\test.mdb 1
PS> Import-Csv C:\Audit\DataActivity.log

Date ChangeType FullPath Responsible
Person
---- ---------- -------- -----------------
-
2019-02-19 18:30:04Z Changed C:\Data\test.mdb Phil

The event subscribers should be removed if they are no longer required. Closing the
PowerShell session will remove all event subscribers.

Using Runspaces and Runspace pools
Runspaces and Runspace pools are an efficient way of asynchronously executing
PowerShell code. Runspaces are far more efficient than jobs as they execute in the same
process. The main disadvantage is complexity: PowerShell does not include native
commands to simplify working with these classes.

Asynchronous Processing Chapter 15

[379]

Fortunately, PowerShell is highly extensible. Two third-party modules have been created to
work with Runspaces:

PoshRSJob: https:/ / www. powershellgallery. com/ packages/ PoshRSJob

ThreadJob: https:/ / www. powershellgallery. com/ packages/ ThreadJob

Both modules work with Windows PowerShell and PowerShell Core.

The PoshRSJob module is very mature and has a rich set of features. It is the most
frequently recommended module, providing an alternative to the Start-Job command.

ThreadJob has promise; it interacts with the existing job commands, such as Get-Job,
Wait-Job, and Receive-Job. However, the module is far less mature than PoshRSJob
and does not include documentation.

When you need a bit more flexibility or efficiency, it's helpful to understand how
PowerShell uses these component modules.

Creating a PowerShell instance
PowerShell instances are created using the Create static method of the
System.Management.Automation.PowerShell type. A type accelerator exists for this
type and the name can be shortened:

$psInstance = [PowerShell]::Create()

System.Management.Automation.PowerShell or PowerShell

The usage is slightly confusing as both the console host and the type used
here are normally referred to as PowerShell.

References to instances of
System.Management.Automation.PowerShell as PowerShell are
highlighted in this section.

The object created by the Create method has a fluent interface. Methods can be chained
one after another without assigning a value. The following example adds a single command
and a parameter, and then runs the command:

[PowerShell]::Create().AddCommand('Get-Process').AddParameter('Name',
'powershell').Invoke()

https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/PoshRSJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob
https://www.powershellgallery.com/packages/ThreadJob

Asynchronous Processing Chapter 15

[380]

A complex script can be built in this manner. If two commands are chained together, they
are assumed to be part of the same statement, implementing a pipeline. The AddStatement
method is used to start a new statement, ending the current command pipeline:

[PowerShell]::Create().AddCommand('Get-Process').AddParameter('Name',
'powershell').
 AddStatement().
 AddCommand('Get-Service').
 AddCommand('Select-Object').AddParameter('First',
1).
 Invoke()

The result of the preceding example is equivalent to the following script:

Get-Process -Name powershell
Get-Service | Select-Object -First 1

The AddCommand, AddParameter, and AddStatement methods demonstrated so far are
particularly useful when assembling a script programmatically. If the script content is
already known, the script can be added using the AddScript method:

$script = @'
 Get-Process -Name powershell
 Get-Service | Select-Object -First 1
'@
[PowerShell]::Create().AddScript($script).Invoke()

The script is added as a string, not as a script block. When creating the script, be mindful of
variable interpolation. Interpolation is avoided in the following example by enclosing the
script content in single quotes.

The AddScript method can be used in conjunction with any of the other methods used
here to build a complex set of commands.

The Invoke and BeginInvoke methods
The Invoke method used with each of the following examples executes the code
immediately and synchronously. The BeginInvoke method is used to execute
asynchronously, that is, without waiting for the last operation to complete.

Asynchronous Processing Chapter 15

[381]

Both the PowerShell instance object and the IASyncResult returned by BeginInvoke
must be captured. Assigning the values allows continued access to the instances and is
required to retrieve output from the commands:

$psInstance = [PowerShell]::Create().AddCommand('Start-
Sleep').AddParameter('Seconds', 300)
$asyncResult = $psInstance.BeginInvoke()

While the job is running, the InvocationStateInfo property of the PowerShell object
will show as Running:

PS> $psInstance.InvocationStateInfo

State Reason
----- ------
Running

This state is reflected on the IASyncResult object held in the $asyncResult variable:

PS> $asyncResult

CompletedSynchronously IsCompleted AsyncState AsyncWaitHandle
---------------------- ----------- ---------- ---------------
 False False
System.Threading.ManualResetEvent

When the command completes, both objects will reflect that state:

PS> $psInstance.InvocationStateInfo.State
Completed

PS> $asyncResult.IsCompleted
True

Setting either (or both) of these variables to null does not stop the script executing in the
PowerShell instance. Doing so only removes the variables assigned, making it impossible
to interact with the Runspace:

$psInstance = [PowerShell]::Create().AddScript('
 1..60 | ForEach-Object {
 Add-Content -Path c:\temp\output.txt -Value $_
 Start-Sleep -Seconds 1
 }
')
$asyncResult = $psInstance.BeginInvoke()
$psInstance = $null
$asyncResult = $null

Asynchronous Processing Chapter 15

[382]

The script continues to execute, filling the output file. The following file may be using Get-
Content:

Get-Content c:\temp\output.txt -Wait

If the work of the script is no longer required, the Stop method should be called instead of
setting variables to null:

$psInstance = [PowerShell]::Create()
$psInstance.AddCommand('Start-Sleep').AddParameter('Seconds', 120)
$psInstance.Stop()

A terminating error is raised when the Stop method is called. If the output from the
instance is retrieved using the EndInvoke method, a The pipeline has been
stopped error message will be displayed.

The EndInvoke method and the PSDataCollection
object
EndInvoke is one of two possible ways to get output from a PowerShell instance. The
EndInvoke method may be called as follows:

$psInstance = [PowerShell]::Create()
$asyncResult = $psInstance.AddScript('1..10').BeginInvoke()
$psInstance.EndInvoke($asyncResult)

If the invocation has not finished, EndInvoke will block execution until it has completed.

The second possible method involves passing a PSDataCollection object to the
BeginInvoke method:

$instanceInput =
[System.Management.Automation.PSDataCollection[PSObject]]::new()
$instanceOutput =
[System.Management.Automation.PSDataCollection[PSObject]]::new()

$psInstance = [PowerShell]::Create()
$asyncResult = $psInstance.AddScript('
 1..10 | ForEach-Object {
 Start-Sleep -Seconds 1
 $_
 }
').BeginInvoke(
 $instanceInput,

Asynchronous Processing Chapter 15

[383]

 $instanceOutput
)

The $psInstance and $asyncResult variables are still used to determine whether the
script has completed. Results are available in $instanceOutput as they become available.
Attempting to access $instanceOutput in the console will block execution until the script
completes. New values added to the collection will be displayed as they are added.

The unused $instanceInput variable in the preceding example may be populated with
values for an input pipeline if required, for example:

$instanceInput =
[System.Management.Automation.PSDataCollection[PSObject]](1..10)
$instanceOutput =
[System.Management.Automation.PSDataCollection[PSObject]]::new()

$psInstance = [PowerShell]::Create()
$asyncResult = $psInstance.AddCommand('ForEach-
Object').AddParameter('Process', { $_ }).BeginInvoke(
 $instanceInput,
 $instanceOutput
)

The AddCommand method was used in the preceding example as ForEach-Object will act
on an input pipeline. A script can accept pipeline input within a process block; pipeline
input is not implicitly passed to the commands within the script. The following example
implements an input pipeline and uses the built-in $_ variable to repeat the numbers from
the input pipeline:

$instanceInput =
[System.Management.Automation.PSDataCollection[PSObject]](1..10)
$instanceOutput =
[System.Management.Automation.PSDataCollection[PSObject]]::new()

$asyncResult = $psInstance.AddScript('
 process {
 $_
)
').BeginInvoke(
 $instanceInput,
 $instanceOutput
)

Each of the examples so far has concerned itself with running a single script or a set of
commands.

Asynchronous Processing Chapter 15

[384]

Running multiple instances
As an individual instance is executing asynchronously with BeginInvoke, several may be
started. In each case, both the PowerShell object and the IASyncResult object should be
preserved:

$jobs = 1..5 | ForEach-Object {
 $instance = [PowerShell]::Create().AddScript('
 Start-Sleep -Seconds (Get-Random -Minimum 10 -Maximum 121)
 ')
 [PSCustomObject]@{
 Id = $instance.InstanceId
 Instance = $instance
 AsyncResult = $instance.BeginInvoke()
 } | Add-Member State -MemberType ScriptProperty -PassThru -Value {
 $this.Instance.InvocationStateInfo.State
 }
}

Each job will continue for a random number of seconds and then complete. As each job
completes, the State property created by Add-Member will change to reflect that:

PS> $jobs | Select-Object Id, State

Id State
-- -----
de79dcc3-8092-4592-a89e-271fc2b8b65e Completed
85de5d4d-f754-461d-88da-ac5c7948c546 Running
eb8e0b84-2a47-4379-bd89-e7e523201033 Running
6357a4c3-b6d1-4a9f-8f88-ee3ac0891eb1 Running
3dc050fe-8ff9-4f93-afa9-86768bd3b407 Completed

The following snippet might be used to wait for all of the jobs to complete:

while ($jobs.State -eq 'Running') {
 Start-Sleep -Milliseconds 100
}

If the number of jobs is significantly larger, the system running the jobs might well become
overwhelmed.

Asynchronous Processing Chapter 15

[385]

Using the RunspacePool object
RunspacePool can be used to overcome the problem of overwhelming a system. The pool
can be configured with a minimum and maximum number of threads to execute at any
point in time.

The RunspacePool object is created using the RunspaceFactory type, as follows:

[RunspaceFactory]::CreateRunspacePool(1, 5)

RunspacePool must be opened before it can be used. The same pool is set for each of the
PowerShell instances that expects to use the pool:

$runspacePool = [RunspaceFactory]::CreateRunspacePool(1, 2)
$runspacePool.Open()
$jobs = 1..10 | ForEach-Object {
 $instance = [PowerShell]::Create().AddScript('Start-Sleep -Seconds 10')
 $instance.RunspacePool = $runspacePool
 [PSCustomObject]@{
 Id = $instance.InstanceId
 Instance = $instance
 AsyncResult = $instance.BeginInvoke()
 } | Add-Member State -MemberType ScriptProperty -PassThru -Value {
 $this.Instance.InvocationStateInfo.State
 }
}

Each of the jobs will show as running, but only two will complete at a time, based on the
maximum set for the pool in the following example. After 10 seconds, the state of the jobs
will be similar to the following:

PS> $jobs | Select-Object Id, State

Id State
-- -----
63e2ab2d-613a-4c9c-8f21-d93c8a126008 Completed
781e4a08-04d6-4927-986a-e116fb16a852 Completed
1d80c45d-326b-423b-93d9-21703e747a93 Running
6840dfb1-f47d-4977-868f-697fcbb8af7e Running
6f3aa668-f680-40b6-8a94-c9d04693b1ad Running
868f324c-7ba5-4913-83a9-345d8f356aec Running
318a44ec-b390-45a5-a2cc-0272c1e2ad20 Running
ced0f017-1a1c-42d0-9c53-9e09f9c8ace9 Running
9d003c91-6a2b-4d6f-820e-975fffeb57d8 Running
71818997-b55e-41d6-bdf2-e62426036863 Running

Asynchronous Processing Chapter 15

[386]

When all processing is finished, all objects should be explicitly disposed of to ensure they
are closed down:

$jobs.Instance | ForEach-Object Dispose
$runspacePool.Dispose()

After Dispose has been run, the variables might be set to null. Objects that are no longer
referenced will be removed by garbage collection. Garbage collection can be run
immediately using the following command if a large amount of memory was committed
when running the jobs:

[GC]::Collect()

Runspace pools are incredibly useful. To improve the utility of the pool, it can be seeded
with modules, functions, and variables before the pool is opened.

About the InitialSessionState object
InitialSessionState is used by Runspace or RunspacePool to describe a starting
point. The InitialSessionState object may have modules, functions, or variables
added.

PowerShell provides several different options for creating InitialSessionState. This is
achieved using a set of static methods. The most commonly used are CreateDefault and
CreateDefault2. For example, CreateDefault2 is used as follows:

$initialSessionState = [InitialSessionState]::CreateDefault2()

The difference between CreateDefault and CreateDefault2 is that CreateDefault
includes engine snap-ins, while CreateDefault2 does not.

PowerShell Core does not use snap-ins

PowerShell Core does not include support for snap-ins. The difference
between the two methods is therefore not apparent on PowerShell Core.

CreateDefault2 is therefore slightly more lightweight and is more appropriate for more
recent versions of PowerShell.

The difference may be shown by creating and comparing the list of snap-ins in each case:

PS>
[PowerShell]::Create([InitialSessionState]::CreateDefault()).AddCommand('Ge
t-PSSnapIn').Invoke().Name

Asynchronous Processing Chapter 15

[387]

Microsoft.PowerShell.Diagnostics
Microsoft.PowerShell.Host
Microsoft.PowerShell.Core
Microsoft.PowerShell.Utility
Microsoft.PowerShell.Management
Microsoft.PowerShell.Security
Microsoft.WSMan.Management

CreateDefault2 only adds the Microsoft.PowerShell.Core snap-in, as follows:

PS>
[PowerShell]::Create([InitialSessionState]::CreateDefault2()).AddCommand('G
et-PSSnapIn').Invoke().Name

Microsoft.PowerShell.Core

Items can be added to InitialSessionState before Runspace (or RunspacePool) is
opened.

Adding modules and snap-ins
Modules are added using the ImportPSModule method of InitialSessionState:

$initialSessionState = [InitialSessionState]::CreateDefault2()
$initialSessionState.ImportPSModule('Pester')

Several modules can be added with the same method. Modules can be specified by name,
in which case the most recent will be used. A module may be specified using a hashtable
that describes a name and version information:

$initialSessionState.ImportPSModule(@(
 'NetAdapter'
 @{ ModuleName = 'Pester'; ModuleVersion = '4.6.0' }
))

MaximumVersion and RequiredVersion may also be used with the hashtable.

A snap-in may be imported in Windows PowerShell using the ImportPSSnapIn method.
The method requires the name of a single snap-in, and a reference to a variable to hold any
warnings raised during import:

$warning =
[System.Management.Automation.Runspaces.PSSnapInException]::new()
$initialSessionState.ImportPSSnapIn('WDeploySnapin3.0', [Ref]$warning)

Asynchronous Processing Chapter 15

[388]

If multiple snap-ins are required, the ImportPSSnapIn method must be called once for
each.

Adding variables
InitialSessionState objects created using CreateDefault2 will include all of the
built-in variables with default values. The value of these variables cannot be changed
before the session is opened.

Additional variables can be added using the Add method of the Variables property.
Variables are defined as a SessionStateVariableEntry object. An example of adding a
variable is shown here:

$variableEntry =
[System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'Variable',
 'Value',
 'Optional description'
)

$initialSessionState = [InitialSessionState]::CreateDefault2()
$initialSessionState.Variables.Add($variableEntry)

Several overloads are available, each allowing the variable to be defined in greater detail.
For example, a variable with the Private scope may be created:

$variableEntry =
[System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'PrivateVariable',
 'Value',
 'Optional description',
 [System.Management.Automation.ScopedItemOptions]::Private
)

$initialSessionState.Variables.Add($variableEntry)

Defining a fixed type for a variable is more difficult, the
ArgumentTypeConverterAttribute needed to do this is private and difficult to create in
PowerShell. To work around this problem, a variable might be created with the required
attributes, then SessionStateVariableEntry can be created from the variable:

[ValidateSet('Value1', 'Value2')][String]$ComplexVariable = 'Value1'

$variable = Get-Variable ComplexVariable
$variableEntry =

Asynchronous Processing Chapter 15

[389]

[System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 $variable.Name,
 $variable.Value,
 $variable.Description,
 $variable.Options,
 $variable.Attributes
)

$initialSessionState.Variables.Add($variableEntry)

Using this approach allows complex variables to be defined within the session.

Adding functions
Functions and other commands can be added to the InitialSessionState object in
much the same way as variables. If a function is within a module, the module should be
imported instead.

Functions, as SessionStateFunctionEntry objects, are added to the Commands property
of the InitialSessionState object.

Simple functions can be added by defining the body of the function inline, as follows:

$functionEntry =
[System.Management.Automation.Runspaces.SessionStateFunctionEntry]::new(
 'Write-Greeting',
 'Write-Host "Hello world"'
)

$initialSessionState.Commands.Add($functionEntry)

Functions may be added with scope options in the same way as is done with variables.
Scoping is rarely used with functions.

If the function already exists in the current session, the output of Get-Command might be
used to fill the SessionStateFunctionEntry object:

function Write-Greeting {
 Write-Host 'Hello world'
}

$function = Get-Command Write-Greeting
$functionEntry =
[System.Management.Automation.Runspaces.SessionStateFunctionEntry]::new(
 $function.Name,
 $function.Definition

Asynchronous Processing Chapter 15

[390]

)

$initialSessionState.Commands.Add($functionEntry)

Once the InitialSessionState object is filled with the required objects, it may be used
to create a PowerShell instance or a RunspacePool.

Using the InitialSessionState and RunspacePool
objects
The RunspacePool object can be created using RunspaceFactory. RunspacePool can be
created with either the minimum and maximum number of concurrent threads, or an
InitialSessionState object. Creating the pool using an InitialSessionState object
is shown here:

$initialSessionState = [InitialSessionState]::CreateDefault2()
$runspacePool = [RunspaceFactory]::CreateRunspacePool($initialSessionState)

Any extra entries required in the InitialSessionState must either be added using the
$intialSessionState variable before RunspacePool is created, or extra entries must be
added using $runspacePool.InitialSessionState after RunspacePool is created.
Changes cannot be made after RunspacePool has been opened.

If RunspacePool is created with InitialSessionState, the SetMinRunspaces and
SetMaxRunspaces methods can be used to adjust the minimum and maximum number of
threads. The default value for both the minimum and maximum is 1. The following
example changes the maximum:

$runspacePool.SetMaxRunspaces(5)

The GetMinRunspaces and GetMaxRunspaces methods may be used to retrieve the
current values.

RunspacePool is then used as shown in the Using the RunspacePool object section.

Using Runspace-synchronized objects
A number of classes in .NET offer Runspace synchronization. This means that an instance
of an object can be made accessible from Runspaces that share a common parent.

Asynchronous Processing Chapter 15

[391]

The most commonly used Runspace-synchronized object is a hashtable. The hashtable is
created using the Synchronized static method of the Hashtable type:

$synchronizedHashtable = [Hashtable]::Synchronized(@{
 Key = 'Value'
})

The synchronized hashtable can be added to an InitialSessionState object and then
used within a script or command that is running in a Runspace. The changes made to the
hashtable within the runspace are visible outside:

$variableEntry =
[System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'synchronizedHashtable',
 $synchronizedHashtable,
 ''
)

$runspace =
[RunspaceFactory]::CreateRunspace([InitialSessionState]::CreateDefault2())
$runspace.InitialSessionState.Variables.Add($variableEntry)

$psInstance = [PowerShell]::Create()
$psInstance.Runspace = $runspace
$runspace.Open()

$psInstance.AddScript('$synchronizedHashtable.Add("NewKey",
"NewValue")').Invoke()

After the script has completed, the key added by the script will be visible in the parent
Runspace, the current PowerShell session.

In addition to the Runspace-synchronized hashtable, an ArrayList might be created in a
similar manner, as follows:

[System.Collections.ArrayList]::Synchronized([System.Collections.ArrayList]
::new())

.NET also offers classes in the System.Collections.Concurrent namespace, which
offers similar cross-Runspace access: https:/ /docs. microsoft. com/ en- us/dotnet/ api/
system.collections. concurrent.

https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent
https://docs.microsoft.com/en-us/dotnet/api/system.collections.concurrent

Asynchronous Processing Chapter 15

[392]

For example, ConcurrentStack might be used as follows:

$stack = [System.Collections.Concurrent.ConcurrentStack[PSObject]]::new()
$stack.Push('Value')

$variableEntry =
[System.Management.Automation.Runspaces.SessionStateVariableEntry]::new(
 'stack',
 $stack,
 ''
)

$runspace =
[RunspaceFactory]::CreateRunspace([InitialSessionState]::CreateDefault2())
$runspace.InitialSessionState.Variables.Add($variableEntry)

$psInstance = [PowerShell]::Create()
$psInstance.Runspace = $runspace
$runspace.Open()

$psInstance.AddScript('
 $value = 0
 if ($stack.TryPop([Ref]$value)) {
 $value
 }
').Invoke()

Each of the collection types in the System.Collections.Concurrent namespace offers
similar Try methods to access elements.

Summary
In this chapter, we briefly explored the job commands built into PowerShell; since they are
built in, they are a solid starting point for running asynchronous operations.

Event subscribers are used to reacting to events, or things of interest, that happen. The
event commands are used to work with events on .NET objects.

Finally, we looked at how Runspaces and Runspace pools can be used in PowerShell as an
efficient method of working asynchronously.

In the next chapter, we will explore the building blocks of larger scripts.

4
Section 4: Extending

PowerShell
In this section, we will look at adding and implementing new functionality in PowerShell.

The following chapters are included in this section:

Chapter 16, Scripts, Functions, and Filters
Chapter 17, Parameters, Validation, and Dynamic Parameters
Chapter 18, Classes and Enumerations
Chapter 19, Building Modules
Chapter 20, Testing
Chapter 21, Error Handling

16
Scripts, Functions, and Filters

Functions can be described as building blocks in PowerShell. Functions are used to break
up code into manageable sections. A function should strive to be good at one job. Functions
are often used to build scripts; the script uses functions as a means of concisely describing
the steps it is taking. Functions are often grouped together in modules. The functions
within a module often share a common purpose or act on a single system. A filter is a
specialized function, and are briefly explored in this chapter as they have been part of
PowerShell since version 1.

This chapter explores the following topics:

Introducing scripts, functions, and filters
Begin, Process, and End
Param, parameters, and CmdletBinding
ShouldProcess and ShouldContinue

Introducing scripts, functions, and filters
Scripts, functions, and filters have equivalent functionality: all are considered to be
commands. The most significant difference is how the command is stored and presented. A
script is saved in a file with a ps1 extension. Functions and filters can be created directly in
the console, dot-sourced from a ps1 file, or imported from a module.

The difference between a function and a filter is small and will be described when we
explore Begin, Process, and End in this chapter. Filters are otherwise exactly like
functions. Using filters is not recommended; they are extremely rare and may confuse
others attempting to maintain a piece of code.

Scripts, Functions, and Filters Chapter 16

[395]

Scripts and Requires
The Requires statement is valid only in scripts and may be used to restrict a script from
running if certain conditions are not met. For example, a script may require administrative
rights, or certain modules.

The Requires statement must be the first line in the script; comments and other code may
not appear before it.

An example of the Requires statement is shown here:

#Requires -RunAsAdministrator -Modules @{ ModuleName = 'TLS'; ModuleVersion
= '2.0.0' }

Notice that there is no space between the comment character, #, and the Requires
keyword.

PowerShell includes help for the Requires statement:

Get-Help about_Requires

In a script, the Requires statement may be used to declare a need for administrative rights,
or certain modules.

Scripts and using statements
A function may benefit from using statements, provided they are declared in the parent
scope. The parent scope includes code run on the console, a script that contains a function,
or a module (psm1 file) that contains a function.

Using statements, introduced with PowerShell 5, appear throughout this book. An example
of a using statement is shown here:

using assembly System.Xml.Linq
using namespace System.Xml.Linq

Scripts, Functions, and Filters Chapter 16

[396]

Nesting functions
In the same way that a script can contain functions, a function can contain other functions.
This is shown in the following example:

function Outer {
 param (
 $Parameter1
)

 function Inner1 {
 }
 function Inner2 {
 }

 Write-Host 'Hello world'
}

This technique can be used to isolate small repeated sections of code with a function.

Nested functions must appear before they are used, but otherwise can appear anywhere in
the body of the function.

The disadvantage of nesting a function in this manner is that it becomes much harder to
test as a unit of code. The function only exists in the context of its parent function; it cannot
be called from the scope above that. This is an important consideration when developing a
function as part of a module.

Comment-based help
Comment-based help was introduced with PowerShell 2 and allows the developer to
provide content for Get-Help without needing to understand and work with the far more
complex MAML help files.

Scripts, Functions, and Filters Chapter 16

[397]

About MAML

MAML stands for Microsoft Assistance Markup Language and is an
XML format.

MAML must be used for binary modules (modules that contain
commands compiled into a dll) that cannot support comment-based
help.

The format offers greater control over help content, is used to deliver
updateable help, and is the only way to support language localization.
Further information on this topic can be found in Microsoft's module
developer help content:

https:/ /docs. microsoft. com/ en-us/ powershell/ developer/ module/
writing- help- for- windows- powershell- modules.

Tools such as the PlatyPS module (https:/ /github. com/ PowerShell/
platyPS) can help. Help content can be written in markdown, which can
be used to generate a MAML-based help file.

PowerShell includes help for authoring comment-based help:

Get-Help about_Comment_Based_Help

Comment-based help uses a series of keywords that match up to the different help sections.
The most commonly used are listed here:

.SYNOPSIS

.DESCRIPTION

.PARAMETER <Name>

.EXAMPLE

.INPUTS

.OUTPUTS

.NOTES

.LINK

.SYNOPSIS and .DESCRIPTION are mandatory when writing help. Each of the other
sections is optional.

https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://docs.microsoft.com/en-us/powershell/developer/module/writing-help-for-windows-powershell-modules
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS
https://github.com/PowerShell/platyPS

Scripts, Functions, and Filters Chapter 16

[398]

.PARAMETER, followed by the name of a parameter, will be included once for each
parameter.

.EXAMPLE may be used more than once, describing as many examples as desired.

The tag names are not case-sensitive; upper-case is shown here as it is one of the most
widely adopted practices. Spelling mistakes in these section names may prevent help
appearing altogether; it is important to be careful when writing comment-based help.

Comment-based help may be used with scripts, functions, and filters and is most often
placed first in the body of a script. In a script, comment-based help is often written as
follows:

<#
.SYNOPSIS
 Briefly describes the main action performed by script.ps1
.DESCRIPTION
 A detailed description of the activities of script.ps1.
#>

In a function, help is most commonly written as follows:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 #>
}

Parameter help
Parameter help is most often written using the .PARAMETER tag, as shown in the following
example:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 .PARAMETER Parameter1
 Describes the purpose of Parameter1.
 .PARAMETER Parameter2
 Describes the purpose of Parameter2.

Scripts, Functions, and Filters Chapter 16

[399]

 #>

 param (
 $Parameter1,
 $Parameter2
)
}

It is also possible to write the help for a parameter above the parameter itself:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 #>

 param (
 # Describes the purpose of Parameter1.
 $Parameter1,

 # Describes the purpose of Parameter2.
 $Parameter2
)
}

One possible advantage of this approach is that it is easy to see which parameters have help
and which do not.

Regardless of where help is written for a parameter, Get-Help will read the value:

PS> Get-Help Get-Something -Parameter Parameter1

-Parameter1 <Object>
 Describes the purpose of Parameter1.

 Required? false
 Position? 1
 Default value
 Accept pipeline input? false
 Accept wildcard characters? false

Scripts, Functions, and Filters Chapter 16

[400]

Examples
Get-Help expects examples to start with one or more lines of code, followed by a
description of the example, for example:

function Get-Something {
 <#
 .SYNOPSIS
 Briefly describes the main action performed by Get-Something
 .DESCRIPTION
 A detailed description of the activities of Get-Something.
 .EXAMPLE
 $something = Get-Something
 $something | Do-Something

 Gets something from somewhere.
 #>

 param (
 # Describes the purpose of Parameter1.
 $Parameter1,

 # Describes the purpose of Parameter2.
 $Parameter2
)
}

The help parser is quite simple when it comes to comment-based help. Only the very first
line of an example is considered to be code. This can be demonstrated by exploring the
object returned by Get-Help based on the preceding example:

PS> (Get-Help Get-Something -Examples).examples[0].example.code
$something = Get-Something

The rest of the code is part of the remark. It is only possible to overcome this parsing
problem by writing help in MAML.

Working with long lines
There are several techniques that can be used when writing scripts to avoid excessively
long lines of code. The goal is to avoid needing to scroll to the right when reviewing code.
A secondary goal is to avoid littering a script with the tick character, `.

Adding extra line breaks is often a balancing act. Both too many and too few can make it
harder to read a script.

Scripts, Functions, and Filters Chapter 16

[401]

Splatting was introduced in the first chapter of this book as a means of dealing with
commands that require more than a couple of parameters. It remains an important
technique for avoiding excessively long lines.

Line break after pipe
The most obvious technique is perhaps to add a line break after a pipe, for example:

Get-Process |
 Where-Object Name -match 'po?w(er)?sh(ell)?'

This is useful for long pipelines, but may be counterproductive for short pipelines. For
example, the following short pipeline ends with ForEach-Object. The statement is not
necessarily long enough to need extra line breaks:

Get-Service | Where-Object Status -eq Running | ForEach-Object {
 # Do work on the service
}

Line break after an operator
It is possible to add a line break after any of the operators. The most useful place for a line
break is often after a logic operator is used to combine several comparisons, for example:

Get-Service | Where-Object {
 $_.Status -eq 'Running' -and
 $_.StartType -eq 'Manual'
}

One of the less obvious operators is the property dereference operator, .. A line break may
be added after calling a method of accessing a property. This is shown in the following
example:

{ A long string in a script block }.ToString().
 SubString(0, 15).
 Trim().
 Length

Using the array operator to break up lines
The array operator, @(), can break up arrays that are used as arguments into operators, or
values for parameters.

Scripts, Functions, and Filters Chapter 16

[402]

For example, the format operator, -f, may be used in place of sub-expressions or variable
interpolation. @() may be used to define an array to hold the arguments for the operator.
The following example shows two different ways of creating the same string:

$item = Get-Item C:\Windows\explorer.exe

Sub-expressions and variable interpolation
"The file, $($item.Name), with path $item was last written on
$($item.LastWriteTime)"

The format operator
'The file, {0}, with path {1} was last written on {2}' -f @(
 $item.Name
 $item
 $item.LastWriteTime
)

The same approach may be used for replace operations that use particularly long regular
expressions. For example, this replace operation attempts to apply a standard format to a
UK telephone number. The regular expression benefits from being on a new line:

$ukPhoneNumbers = '+442012345678', '0044(0)1234345678', '+44 (0) 20
81234567', '01234 456789'
$ukPhoneNumbers -replace @(
 '^(?:(?:\+|00)\d{2})?[-]*(?:\(?0\)?[-]*)?([138]\d{1,3}|20)[-
]*(\d{3,4})[-]*(\d{3,4})$'
 '+44 $1 $2 $3'
)

@() may also be used with arguments for commands, such as Select-Object:

Get-NetAdapter | Select-Object @(
 'Name'
 'Status'
 'MacAddress'
 LinkSpeed'
 @{ Name = 'IPAddress'; Expression = { ($_ | Get-NetIPAddress).IPAddress
}}
)

It is possible to add line breaks into the hashtable that describes the IPAddress property
in the preceding example. Doing so may be beneficial if the Expression script grows to be
complex.

Scripts, Functions, and Filters Chapter 16

[403]

Begin, process, and end
A script or function often begins with comment-based help, followed by a param block, and
then one or more of the named blocks may be used.

In a script or function, if none of the blocks are declared, content is automatically placed in
the end block.

In a filter, if none of the blocks are declared, content is automatically placed in the process
block. This is the only difference between a function and a filter.

The named blocks refer to the processing of a pipeline and therefore make the most sense if
the command is working on pipeline input.

This difference in default block is shown in the following pipeline example. The function
must explicitly declare a process block to use the $_ variable. The filter can leverage the
default block:

PS> function first { process { $_ } } # end block by default
PS> filter second { $_ } # process block by default
PS> 1..2 | first # Outputs the value of $_ from
explicit process
1
2
PS> 1..2 | second # Outputs the value of $_ from
implicit process
1
2

Misuse of begin, process, and end

It is not uncommon to see begin, process, and end blocks used as
regions, grouping the code required to set up, run, and tear down a
function or script.

Care must be taken if converting such a function to accept pipeline input.
It is often the case that all of the content must be moved to the process
block to make sense of a function in a pipeline.

It is wise to plan to support an input pipeline for a command. However, using named
blocks is optional. If a command is not expected to work on a pipeline, the content can be
left to fall into the default block.

Scripts, Functions, and Filters Chapter 16

[404]

Begin
The begin block runs before pipeline-processing starts. A pipeline that contains several
commands will run each of the begin blocks for each command in turn first.

The following example shows a short function with a begin block:

function Show-Pipeline {
 begin {
 Write-Host 'Pipeline start'
 }
}

The content of the begin block runs before the pipeline starts, before any pipeline input is
accepted.

If a parameter accepts pipeline input, that input is not available to the begin block.

Begin can be used to create things that are reused by the process block, in essence setting up
the initial conditions for a loop.

Process
The content of the process block runs once for each value received from the pipeline. The
built-in $_ variable may be used to access objects in the pipeline within the process block:

function Show-Pipeline {
 begin {
 $position = $myinvocation.PipelinePosition
 Write-Host "Pipeline position ${position}: Start"
 }

 process {
 Write-Host "Pipeline position ${position}: $_"
 $_
 }
}

When an object is passed to the pipeline, the start message will be shown before the
numeric value:

PS> $result = 1..2 | Show-Pipeline
Pipeline position 1: Start
Pipeline position 1: 1
Pipeline position 1: 2

Scripts, Functions, and Filters Chapter 16

[405]

Adding Show-Pipeline to the end of the pipeline will show that begin executes twice
before process runs:

PS> $result = 1..2 | Show-Pipeline | Show-Pipeline
Pipeline position 1: Start
Pipeline position 2: Start
Pipeline position 1: 1
Pipeline position 2: 1
Pipeline position 1: 2
Pipeline position 2: 2

The $result variable will contain the output of the last Show-Pipeline command.

End
The end block executes after process has acted on all objects in the input pipeline.

The end block cannot use the $_ automatic variable. Parameters that accept pipeline input
will be filled with the last value from the process block:

function Show-Pipeline {
 begin {
 $position = $myinvocation.PipelinePosition
 Write-Host "Pipeline position ${position}: Start"
 }

 process {
 Write-Host "Pipeline position ${position}: $_"
 $_
 }

 end {
 Write-Host "Pipeline position ${position}: End"
 }
}

Running this command in a pipeline shows the end executing after all items in the input
pipeline have been processed:

PS> $result = 1..2 | Show-Pipeline
Pipeline position 1: Start
Pipeline position 1: 1
Pipeline position 1: 2
Pipeline position 1: End

Scripts, Functions, and Filters Chapter 16

[406]

Commands that make extensive use of the end block include Measure-Object,
ConvertTo-Html, and ConvertTo-Json. Such commands cannot return output until the
end because the output is only valid when complete. The same is true of any other
command that must gather input during a process, and output something on completion.

A simple command to count the number of elements in an input pipeline is shown here.
The process block is unable to determine this; it must run again and again until the input
pipeline is exhausted:

function Measure-Item {
 begin {
 $count = 0
 }

 process {
 $count++
 }

 end {
 $count
 }
}

Named blocks and return
The return keyword may be used to gracefully end the execution of a piece of code.

The return keyword is often confused with return in C#, where it explicitly returns a thing
from a method. In PowerShell, return has a slightly different purpose.

When a named block is executing, the return keyword may be used to end the processing of
a block early without stopping the rest of the pipeline.

For example, a return statement in the process block ends early in certain cases. The end
block will continue to execute as normal:

function Invoke-Return {
 process {
 if ($_ -gt 2) {
 return
 }
 $_
 }

 end {

Scripts, Functions, and Filters Chapter 16

[407]

 'All done'
 }
}

When run, the process block will end early when the condition is met:

PS> 1..10 | Invoke-Return
1
2
All done

Leaky functions
PowerShell does not have a means of strictly enforcing the output from a script or function.

Any statement—composed of any number of commands, variables, properties, and method
calls—may generate output. This output will be automatically sent to the output pipeline
by PowerShell as it is generated. Unanticipated output can cause bugs in code.

The following function makes use of the StringBuilder type. Many of the methods on
StringBuilder return the StringBuilder instance. This is shown here:

PS> using namespace System.Text
PS> $stringBuilder = [StringBuilder]::new()
PS> $stringBuilder.AppendLine('First')

Capacity MaxCapacity Length
-------- ----------- ------
 16 2147483647 7

This is useful in that it allows chaining to build up a more complex string in a single
statement. The following function makes use of that chaining to build up a string:

using namespace System.Text

function Get-FirstService {
 $service = Get-Service | Select-Object -First 1
 $stringBuilder = [StringBuilder]::new()
 $stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}',
$service.Status).AppendLine().
 AppendLine()
 $stringBuilder.ToString()
}

Scripts, Functions, and Filters Chapter 16

[408]

When the function is run, both the StingBuilder object and the assembled string will be
written to the output pipeline:

PS> Get-FirstService

Capacity MaxCapacity Length
-------- ----------- ------
 64 2147483647 37
Name: aciseagent
Status: Running

This example is contrived and writing the function slightly differently would resolve the
problem. However, this problem is not unique to the type used here.

When writing a function or script, it is important to be aware of the output of the
statements used. If a statement generates output, and that output is not needed, it must be
discarded. PowerShell will not automatically discard output from commands in functions
and scripts.

There are a number of techniques available for dropping unwanted output.

The Out-Null command
The Out-Null command can be used at the end of a pipeline to discard the output from a
statement.

The Out-Null command is relatively unpopular in Windows PowerShell as it is slow. In
PowerShell Core, the speed issue is resolved, since Out-Null is one of the fastest—if not
the fastest—of the available options.

Sticking with the StringBuilder example, the unwanted value might have dropped by
appending Out-Null, as shown here:

using namespace System.Text

$stringBuilder = [StringBuilder]::new()
$stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine() | Out-Null
$stringBuilder.ToString()

One criticism that might be leveled against Out-Null is that it appears at the end of the
pipeline and is therefore more difficult to see.

Scripts, Functions, and Filters Chapter 16

[409]

Assigning to null
Assigning a statement to the null variable is a popular way of dropping unwanted output.
It has the advantage of being obvious, in that it appears at the beginning of the statement.
This method is fast in all versions of PowerShell:

using namespace System.Text

$stringBuilder = [StringBuilder]::new()
$null = $stringBuilder.AppendFormat('Name: {0}',
$service.Name).AppendLine().
 AppendFormat('Status: {0}',
$service.Status).AppendLine().
 AppendLine()
$stringBuilder.ToString()

Redirecting to null
Redirection to null, such as Out-Null, can be added at the end of a statement to discard
output. This is shown here:

using namespace System.Text
$service = Get-Service | Select-Object -First 1
$stringBuilder = [StringBuilder]::new()
$stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}', $service.Status).AppendLine().
 AppendLine() > $null
$stringBuilder.ToString()

Casting to Void
It is possible to cast to System.Void to discard output. When using the StringBuilder
example, this is a clean approach:

using namespace System.Text

$stringBuilder = [StringBuilder]::new()
[Void]$stringBuilder.AppendFormat('Name: {0}', $service.Name).AppendLine().
 AppendFormat('Status: {0}',
$service.Status).AppendLine().
 AppendLine()
$stringBuilder.ToString()

Scripts, Functions, and Filters Chapter 16

[410]

However, when used with a command, it requires the use of extra parentheses, which can
make it less appealing to use. This example uses Void to suppress the output from the Get-
Command command:

[Void](Get-Command Get-Command)

Param, parameters, and CmdletBinding
The param block must appear before all other code with the exception of attributes. In a
script, using statements, if present, must also be written before param.

The param block is used to define the parameters a Script or Function is willing to accept.
The keyword is not case-sensitive, so the opening bracket may be placed immediately after
(with no space), on the next line, or as shown in this simple example:

param (
 $Parameter1,
 $Parameter2
)

By default, parameters have the System.Object type. This means that you can pass just
about anything into a parameter. It may be desirable to restrict values to those of a specific
type.

Parameter types
The type assigned to a parameter is written before the parameter name.

For example, if the function expects a string, the parameter type might be set to [String]:

param (
 [String]$Parameter1
)

Any value passed to the parameter will be converted into a string. Within the function, it is
therefore possible to know that the value is of that particular type.

When assigning a type to a parameter, it is important to remember that the type persists
until a new type is assigned, or the variable is destroyed. Therefore, values assigned to the
parameter within a function will be cast to a string.

Scripts, Functions, and Filters Chapter 16

[411]

Nullable types
In some rare cases, it may be desirable for a parameter to accept either null or a specific
value type. For example, a parameter may need to accept either a date, or null.

A nullable type can be defined for the parameter:

function Test-Nullable {
 param (
 [Nullable[DateTime]]$Date
)
}

The function can be called with a null value for Date:

Test-Nullable -Date $null

Without the nullable type, a type-conversion error message would be thrown.

Not everything is nullable

System.String is not a nullable type. The documentation for Nullable
explains why:

https:/ /docs. microsoft. com/ en-us/ dotnet/ api/ system. nullable- 1?
view= netframework- 4. 7. 2.

In PowerShell, this is difficult to see. Assigning null to a variable with a
String type will result in an empty string (not null). The result of the
following statements is false:

[String]$String = $null
$null -eq $String

Default values
Parameters may be given default values by using assignment statements in the param
block, such as the following, for example:

param (
 [String]$Parameter1 = 'DefaultValue'
)

https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.nullable-1?view=netframework-4.7.2

Scripts, Functions, and Filters Chapter 16

[412]

If the assignment is the result of a command, the command must be placed in parentheses:

param (
 [String]$ProcessName = (Get-Process -Id $PID | Select-Object -
ExpandProperty Name)
)

Value types, such as Boolean, or Int32 and other numeric types, are initialized with a
default value for that type. For instance, a parameter of the Boolean type can never be null;
it will default to false. Numeric values will default to 0. Setting a default false value for a
Boolean parameter is therefore unnecessary.

Assigning a default value was the basis for making parameters mandatory in PowerShell 1.
The parameter would be assigned a throw statement by default, for example:

param (
 [String]$Parameter1 = (throw 'This parameter is mandatory')
)

This method of making parameters mandatory was replaced in PowerShell 2 by the
Mandatory property of the Parameter attribute. The parameter attribute is explored in
detail in the next chapter.

Cross-referencing parameters
When executing a param block, it is possible to cross-reference parameters. That is, the
default value of a parameter can be based on the value of another parameter. This is shown
here:

function Get-Substring {
 param (
 [String]$String,

 [Int]$Start,

 [Int]$Length = ($String.Length - $Start)
)

 $String.Substring($Start, $Length)
}

Scripts, Functions, and Filters Chapter 16

[413]

The value of the Length parameter will use the default, derived from the first two
parameters, unless the user of the function supplies their own value. The order of the
parameters is important here: the Start parameter must be created before it can be used in
the default value for Length.

The CmdletBinding attribute
The CmdletBinding attribute is used to turn a function into an advanced function.
Advanced functions were introduced with PowerShell 2.

CmdletBinding may be used to do the following:

Access common parameters, such as ErrorAction, Verbose, and Debug
Gain access to the built-in pscmdlet variable
Declare support for WhatIf and Confirm and define the impact level of the
command

If a script or function has no parameters, and wishes to make use of the capabilities of
CmdletBinding, an empty param block must be declared:

function Test-EmptyParam {
 [CmdletBinding()]
 param ()
}

Common parameters
With CmdletBinding in place, a script or function may use common parameters. The
common parameters are listed in PowerShell's help file:

Get-Help about_commonparameters

For example, the Verbose parameter is made available. Any verbose output written by the
command will be displayed without the need to explicitly declare the Verbose parameter
within the function:

function Show-Verbose {
 [CmdletBinding()]
 param ()

 Write-Verbose 'Verbose message'
}

Scripts, Functions, and Filters Chapter 16

[414]

The verbose message will be displayed when the command is run with the -Verbose
parameter.

In a similar way, parameters such as ErrorAction will effect Write-Error if it is used
within the function.

CmdletBinding properties
The full set of possible values that may be assigned can be viewed by creating an instance
of the CmdletBinding object:

PS> [CmdletBinding]::new()

PositionalBinding : True
DefaultParameterSetName :
SupportsShouldProcess : False
SupportsPaging : False
SupportsTransactions : False
ConfirmImpact : Medium
HelpUri :
RemotingCapability : PowerShell
TypeId :
System.Management.Automation.CmdletBindingAttribute

For example, the output from the preceding command shows the existence of a
PositionalBinding property. Setting this to false disables automatic position binding:

function Test-Binding {
 [CmdletBinding(PositionalBinding = $false)]
 param (
 $Parameter1
)
}

When the preceding function is called, and a value for Parameter1 is given by position, an
error will be thrown:

PS> Test-Binding 'value'
Test-Binding : A positional parameter cannot be found that accepts argument
'value'.
At line:1 char:1
+ test-binding 'value'
+ ~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Test-Binding],
ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,Test-Binding

Scripts, Functions, and Filters Chapter 16

[415]

The most commonly used properties of CmdletBinding are SupportsShouldProcess
and DefaultParameterSetName. DefaultParameterSetName will be explored in the
next chapter.

ShouldProcess and ShouldContinue
ShouldProcess and ShouldContinue become available when a script or function has the
CmdletBinding attribute, and the SupportsShouldProcess property is set.

Setting SupportsShouldProcess enables the ShouldProcess parameters, Confirm and
WhatIf. These two parameters are used in conjunction with the ShouldProcess method
that's exposed on the pscmdlet variable.

ShouldProcess
ShouldProcess is used to support WhatIf and is responsible for showing confirmation
preferences based on the impact level of a command.

ShouldProcess is also used to prompt for confirmation when a command is performing a
higher-risk action.

The following example will display a message instead of running the Write-Host
statement when the WhatIf parameter is supplied:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 if ($pscmdlet.ShouldProcess('SomeObject')) {
 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

When run using the WhatIf parameter, the command will show the following message:

PS> Test-ShouldProcess -WhatIf
What if: Performing the operation "Test-ShouldProcess" on target
"SomeObject".

Scripts, Functions, and Filters Chapter 16

[416]

The name of the operation, which defaults to the command name, can be changed using a
second overload for ShouldProcess:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 if ($pscmdlet.ShouldProcess('SomeObject', 'delete')) {
 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

This would change the message to the following:

PS> Test-ShouldProcess -WhatIf
What if: Performing the operation "delete" on target "SomeObject".

The next overload grants full control over the messages that display:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 if ($pscmdlet.ShouldProcess(
 'Message displayed using WhatIf',
 'Warning: Deleting SomeObject',
 'Question: Are you sure you want to do continue?')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

Using the Confirm parameter instead of WhatIf forces the appearance of the second two
messages and adds a prompt:

PS> Test-ShouldProcess -Confirm

Question: Are you sure you want to do continue?
Warning: Deleting SomeObject
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default
is "Y"):

Scripts, Functions, and Filters Chapter 16

[417]

The different responses are automatically available without further code. If the request is
within a loop, Yes to All may be used to bypass additional prompts. Replying Yes to
All applies to all instances of ShouldProcess in the script or function:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 foreach ($value in 1..2) {
 if ($pscmdlet.ShouldProcess(
 "Would delete SomeObject $value",
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?')) {

 Write-Host "Deleting SomeObject $value" -ForegroundColor Cyan
 }
 }
}

Whether or not the confirmation prompt is displayed depends on the comparison between
ConfirmImpact (medium by default), and the value in the $ConfirmPreference
variable, which is High by default.

If the impact of the function is raised to High, the prompt will display by default instead of
on demand. This is achieved by modifying the ConfirmImpact property of the
CmdletBinding attribute:

function Test-ShouldProcess {
 [CmdletBinding(SupportsShouldProcess, ConfirmImpact = 'High')]
 param ()

 if ($pscmdlet.ShouldProcess('SomeObject')) {
 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

When the function is executed, the confirmation prompt will show unless the user either
uses -Confirm:$false or sets $ConfirmPreference to None.

ShouldContinue
The ShouldContinue method is also made available when the SupportsShouldProcess
property is set in CmdletBinding.

Scripts, Functions, and Filters Chapter 16

[418]

ShouldContinue differs from ShouldProcess in that it always prompts. This technique is
used by commands such as Remove-Item to force a prompt when the Recurse parameter
is not present and a directory name is passed.

ShouldContinue is rarely necessary, since ShouldProcess is the better option. It is
available for the cases where a function must have a confirmation prompt that cannot be
bypassed. Using ShouldContinue may make it impossible to run a function without user
interaction unless also providing a means to bypass the prompt.

The use of ShouldContinue is similar to ShouldProcess. The most significant difference
is that the Yes to All and No to All options are not automatically implemented:

function Test-ShouldContinue {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 $yesToAll = $noToAll = $false
 if ($pscmdlet.ShouldContinue(
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?')) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

Running this function will show the confirmation prompt:

PS> Test-ShouldContinue

Question: Are you sure you want to do continue?
Warning: Deleting SomeObject
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): y

Adding support for Yes to All and No to All means using three extra arguments. The
first of these new arguments, hasSecurityImpact, affects whether the default option
presented is Yes (when hasSecurityImpact is false) or No (when hasSecurityImpact is
true):

function Test-ShouldContinue {
 [CmdletBinding(SupportsShouldProcess)]
 param ()

 $yesToAll = $noToAll = $false
 if ($pscmdlet.ShouldContinue(
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?',

Scripts, Functions, and Filters Chapter 16

[419]

 $false,
 [Ref]$yesToAll,
 [Ref]$noToAll)) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

The confirmation prompt will now include the Yes to All and No to All options:

PS> Test-ShouldContinue

Question: Are you sure you want to do continue?
Warning: Deleting SomeObject
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default
is "Y"):

If necessary, it is possible to provide a means of bypassing the prompt by implementing
another switch parameter. For example, a Force parameter might be added:

function Test-ShouldContinue {
 [CmdletBinding(SupportsShouldProcess)]
 param (
 [Switch]$Force
)

 $yesToAll = $noToAll = $false
 if ($Force -or $pscmdlet.ShouldContinue(
 "Warning: Deleting SomeObject $value",
 'Question: Are you sure you want to do continue?',
 $false,
 [Ref]$yesToAll,
 [Ref]$noToAll)) {

 Write-Host 'Deleting SomeObject' -ForegroundColor Cyan
 }
}

As the value of Force is evaluated before ShouldContinue, the ShouldContinue method
will not run if the Force parameter is supplied.

Scripts, Functions, and Filters Chapter 16

[420]

Summary
In this chapter, we explored the basic differences between functions, filters, and scripts. We
also looked at the structure of comment-based help, and a few strategies to use when
working with long lines.

The use of Begin, Process, and End was explored as the starting point of developing a
pipeline-capable function.

Parameters were briefly explored and a number of techniques for defining parameter
values were introduced.

The CmdletBinding attribute was explored before we dived into the functionality of
SupportsShouldProcess.

In the next chapter, we will explore parameters in detail, including pipeline binding,
validation, and argument completers.

17
Parameters, Validation, and

Dynamic Parameters
PowerShell has an extensive parameter handling and validation system that can be used in
scripts and functions. The system allows a developer to make parameters mandatory; to
define what, if any, positional binding is allowed; to fill parameters from the pipeline; to
describe different parameter sets; and to validate the values passed to a parameter. The
wealth of options available makes parameter handling a very involved subject.

This chapter explores the following topics:

The Parameter attribute
Validating input
Pipeline input
Defining parameter sets
Argument-completers
Dynamic parameters

The Parameter attribute
The Parameter attribute is an optional attribute that is used to define the behavior of a
parameter within a script or function. Creating an instance of the Parameter object shows
the different properties that might be set:

PS> [Parameter]::new()

Position : -2147483648
ParameterSetName : __AllParameterSets
Mandatory : False
ValueFromPipeline : False
ValueFromPipelineByPropertyName : False

Parameters, Validation, and Dynamic Parameters Chapter 17

[422]

ValueFromRemainingArguments : False
HelpMessage :
HelpMessageBaseName :
HelpMessageResourceId :
DontShow : False
TypeId :
System.Management.Automation.ParameterAttribute

A few of these properties should be ignored as they are not intended to be set directly, such
as HelpMessageBaseName, HelpMessageResourceId, and TypeId.

A number of the more complex properties are explored in other sections in this chapter,
such as ParameterSetName, ValueFromPipeline,
and ValueFromPipelineByPropertyName.

The Parameter attribute is placed before the parameter itself. The following example
shows the simplest use of the Parameter attribute:

[CmdletBinding()]
param (
 [Parameter()]
 $Paramter1
)

Using the Parameter attribute has the side-effect of turning a basic function into an
advanced function, even when the CmdletBinding attribute itself is missing. Get-
Command may be used to explore whether CmdletBinding is present:

PS> function Test-CmdletBinding {
>> param (
>> [Parameter()]
>> $Parameter1
>>)
>> }
PS> Get-Command Test-CmdletBinding | Select-Object CmdletBinding

CmdletBinding

 True

This means that the common parameters, including Verbose and ErrorAction, are
available to any function that uses the Parameter attribute (for any parameter).

Parameters, Validation, and Dynamic Parameters Chapter 17

[423]

Starting with PowerShell 3, Boolean properties, such as Mandatory and
ValueFromPipeline, may be written without providing an explicit argument. For
example, Parameter1 is made mandatory in the following code:

function Test-Mandatory {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 $Parameter1
)
}

Use of Mandatory = $false

The default value for Mandatory is false; setting an explicit value of a
default provides no benefit and may be counterproductive.

Mandatory is significant and stands out, but the value assigned is less
significant and, when reading rapidly, it might be assumed to be true
simply because the property is present.

Position and positional binding
Position defaults to -2147483648, the smallest possible value for Int32 (see
[Int32]::MinValue). Unless an explicit permission is set, parameters may be bound in
the order they are written in the parameter block. Setting the PositionalBinding
property of CmdletBinding to false can be used to disable this behavior.

Automatic positional binding is shown in the following example:

function Test-Position {
 [CmdletBinding()]
 param (
 [Parameter()]
 $Parameter1,

 [Parameter()]
 $Parameter2
)

 '{0}-{1}' -f $Parameter1, $Parameter2
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[424]

When called, the command shows that Parameter1 and Parameter2 have been filled with
the values supplied using position only:

PS> Test-Position 1 2
1-2

Automatic positional binding is available by default; the Parameter attribute is not
required. An explicit definition of position allows greater control and effectively disables
automatic positional binding:

function Test-Position {
 param (
 [Parameter(Position = 1)]
 $Parameter1,

 $Parameter2
)
}

Exploring command metadata shows the positional binding is still enabled, but as this is an
ordered operation, the default position no longer has meaning. The command metadata is
shown as follows, showing that positional binding is still enabled:

PS> [System.Management.Automation.CommandMetadata](Get-Command Test-
Position)

Name : Test-Position
CommandType :
DefaultParameterSetName :
SupportsShouldProcess : False
SupportsPaging : False
PositionalBinding : True
SupportsTransactions : False
HelpUri :
RemotingCapability : PowerShell
ConfirmImpact : Medium
Parameters : {[Parameter1,
System.Management.Automation.ParameterMetadata], [Parameter2,
System.Management.Automation.ParameterMetadata]}

Attempting to pass a value for Parameter2 by position will raise an error:

PS> Test-Position 1 2
Test-Position : A positional parameter cannot be found that accepts
argument '2'.
 At line:1 char:1
 + test-position 1 2
 + ~~~~~~~~~~~~~~~~~

Parameters, Validation, and Dynamic Parameters Chapter 17

[425]

 + CategoryInfo : InvalidArgument: (:) [Test-Position],
ParameterBindingException
 + FullyQualifiedErrorId : PositionalParameterNotFound,Test-Position

PowerShell orders parameters based on the position value. The value must be greater
than -2147483648. It is possible, but not advisable, to set Position to a negative value.
The accepted practice has numbering starting at either 0 or 1.

The DontShow property
DontShow may be used to hide a parameter from tab completion and IntelliSense. This
property is rarely used, but may be occasionally useful for short recursive functions. The
following function recursively calls itself, comparing MaxDepth and CurrentDepth. The
CurrentDepth parameter is owned by the function and a user is never expected to supply
a value:

function Show-Property {
 [CmdletBinding()]
 param (
 # Show the properties of the specified object.
 [Parameter(Mandatory)]
 [PSObject]$InputObject,

 # The maximum depth when expanding properties of child objects.
 [Int32]$MaxDepth = 5,

 # Used to track the current depth during recursion.
 [Parameter(DontShow)]
 [Int32]$CurrentDepth = 0
)

 $width = $InputObject.PSObject.Properties.Name |
 Sort-Object { $_.Length } -Descending |
 Select-Object -First 1 -ExpandProperty Length

 foreach ($property in $InputObject.PSObject.Properties) {
 '{0}{1}: {2}' -f
 (' ' * $CurrentDepth),
 $property.Name.PadRight($width, ' '),
 $property.TypeNameOfValue

 if ($CurrentDepth -lt $MaxDepth -and $property.Value -and
 -not $property.TypeNameOfValue.IsPrimitive) {

 Show-Property -InputObject $property.Value -CurrentDepth

Parameters, Validation, and Dynamic Parameters Chapter 17

[426]

($CurrentDepth + 1)
 }
 }
}

Marking a parameter as DontShow hides the parameter to a degree, but it does nothing to
prevent a user from providing a value for the parameter. In this preceding case, a better
approach might be to move the body of the function into a nested function. Alternatively, if
the function is part of a module, the recursive code might be moved to a function that is not
exported from a module and exposed by a second, tidier, function.

The ValueFromRemainingArguments property
Setting the ValueFromRemainingArguments property allows a parameter to consume all
of the other arguments supplied for a command. This can be used to make an advanced
function act in a similar manner to a basic function.

For example, this basic function will fill the Parameter1 parameter with the first argument,
and will ignore all others. The extra values are added to the $args automatic variable and
are listed in the UnboundArguments property of the $MyInvocation automatic variable:

function Test-BasicBinding {
 param (
 $Parameter1
)

 $MyInvocation.UnboundArguments
}

Calling the function with non-existent parameters will not raise an error. The additional
values will be added to the UnboundArguments array (and the $args variable):

PS> Test-BasicBinding -Parameter1 value1 -Parameter2 value2
-Parameter2
Value2

Without a declared parameter in the param block, Parameter2 is just another value, it is
not parsed as the name of a
parameter. The ValueFromRemainingArguments property can be used to make an
advanced function behave in much the same way as the preceding basic function:

function Test-AdvancedBinding {
 [CmdletBinding()]
 param (

Parameters, Validation, and Dynamic Parameters Chapter 17

[427]

 $Parameter1,

 [Parameter(ValueFromRemainingArguments)]
 $OtherArguments
)

 $OtherArguments
}

If the $OtherArguments parameter is not for the normal use of the function, the DontShow
property might be added to make it less obvious and intrusive.

The HelpMessage property
HelpMessage is only applied to Mandatory parameters and is not particularly useful. If a
parameter is mandatory and is not passed when a command is called, a prompt for the
parameter value will appear. Typing !? in the prompt, instead of a value, will display the
help message text:

PS> function Test-HelpMessage {
>> param (
>> [Parameter(Mandatory, HelpMessage = 'Help text for Parameter1')]
>> $Parameter1
>>)
>> }
PS> Test-HelpMessage

cmdlet Test-HelpMessage at command pipeline position 1
Supply values for the following parameters:
(Type !? for Help.)
Parameter1: !?
Help text for Parameter1
Parameter1:

Given that HelpMessage is only visible when explicitly requested in this manner, it is most
often ignored entirely. It is better to spend time writing help content for a parameter than
writing values for HelpMessage.

Parameters, Validation, and Dynamic Parameters Chapter 17

[428]

Validating input
PowerShell provides a variety of different ways to tightly define the content for a
parameter. Assigning a .NET type to a parameter is the first of these. If a parameter is set as
[String], it will only ever hold a value of that type. PowerShell will attempt to coerce any
values passed to the parameter into that type.

The PSTypeName attribute
It is not uncommon in PowerShell to want to pass an object created in one command, as a
PSObject (or PSCustomObject), to another. The PSTypeName attribute is able to test the
type name assigned to a custom object. Type names are assigned by setting (or adding) a
value to the hidden PSTypeName property. There are a number of ways to tag
PSCustomObject with a type name. The simplest is to set a value for a PSTypeName
property, shown as follows:

$object = [PSCustomObject]@{
 Property = 'Value'
 PSTypeName = 'SomeTypeName'
}

The PSTypeName property remains hidden, but Get-Member will now show the new type
name:

PS> $object | Get-Member

TypeName: SomeTypeName

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
Property NoteProperty string Property=Value

It is also possible to tweak the PSTypeNames array directory, shown as follows:

$object = [PSCustomObject]@{ Property = 'Value' }

Add to the end of the existing list
$object.PSTypeNames.Add('SomeTypeName')

Parameters, Validation, and Dynamic Parameters Chapter 17

[429]

Or add to the beginning of the list
$object.PSTypeNames.Insert(0, 'SomeTypeName')

Finally, Add-Member can add to PSTypeNames. If used, it adds the new type name at the
top of the existing list:

$object = [PSCustomObject]@{ Property = 'Value' }
$object | Add-Member -TypeName 'SomeTypeName'

These tagged types may be tested using the PSTypeName attribute of a parameter, for
example:

function Test-PSTypeName {
 [CmdletBinding()]
 param (
 [PSTypeName('SomeTypeName')]
 $InputObject
)
}

This technique is used by many of the WMI-based commands implemented by Microsoft.
For example, the Set-NetAdapter command uses a PSTypeName attribute for its
InputObject parameter:

(Get-Command Set-NetAdapter).Parameters['InputObject'].Attributes |
 Where-Object TypeId -eq ([PSTypeNameAttribute])

In the case of the WMI-based commands, this is used in addition to a .NET type name, an
array of CimInstance. This type of parameter is similar to the following example:

function Test-PSTypeName {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline, ParameterSetName =
'InputObject (cdxml)')]
[PSTypeName('Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapte
r')]
 [CimInstance[]]$InputObject
)
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[430]

This technique is incredibly useful when the .NET object type is not sufficiently detailed to
restrict input. This is true of PSObject input as much as the CimInstance array type used
before.

Validation attributes
PowerShell offers a number of validation attributes to test the content of arguments passed
to parameters. There are two general classes of validation attribute; the first validates the
argument as a single object, which tests the value as a whole:

ValidateNotNull

ValidateNotNullOrEmpty

ValidateCount

ValidateDrive

The second validates enumerated arguments. These validation attributes can be applied to
parameters that accept arrays. The validation step applies to each element in the array. The
enumerated argument validation attributes are:

ValidateLength

ValidatePattern

ValidateRange

ValidateScript

ValidateSet

The validation attributes are documented in about_Functions_Advanced_Parameters
with the exception of the newer ValidateDrive attribute, which was introduced with
PowerShell 5. The constructor for a validation attribute can be explored to determine the
arguments it supports. This may be discovered using the ::new static method in
PowerShell 5 and newer, for example, ValidateDrive:

PS> [ValidateDrive]::new

OverloadDefinitions

ValidateDrive new(Params string[] validRootDrives)

Parameters, Validation, and Dynamic Parameters Chapter 17

[431]

The ValidateNotNull attribute
ValidateNotNull may be used with parameters that are not flagged as mandatory. It is
applicable where an object type is capable of accepting null input. Such types include
object, CimInstance, and array types. The following is the simplest example of
ValidateNotNull:

function Test-ValidateNotNull {
 [CmdletBinding()]
 param (
 [ValidateNotNull()]
 $Parameter1
)
}

As Parameter1 is, by default, set to the Object type, it would ordinarily accept a null
value. When applied to an array, it disallows null values but retains the ability to pass an
empty array into a function, for example:

function Test-ValidateNotNull {
 [CmdletBinding()]
 param (
 [ValidateNotNull()]
 [String[]]$Parameter1
)
}

If a null value is explicitly passed, an error will be raised:

PS> Test-ValidateNotNull -Parameter1 $null

Test-ValidateNotNull : Cannot validate argument on parameter 'Parameter1'.
The argument is null. Provide a valid value for the argument, and then try
running the command again.
 At line:1 char:34
 + Test-ValidateNotNull -Parameter1 $null
 + ~~~~~
 + CategoryInfo : InvalidData: (:) [Test-ValidateNotNull],
ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Test-
ValidateNotNull

The ValidateNotNull attribute has no effect on String or numeric types (such as Byte,
Int, or Int64).

Parameters, Validation, and Dynamic Parameters Chapter 17

[432]

The ValidateNotNullOrEmpty attribute
ValidateNotNullOrEmpty extends ValidateNotNull to disallow empty arrays and
empty strings:

function Test-ValidateNotNullOrEmpty {
 [CmdletBinding()]
 param (
 [ValidateNotNullOrEmpty()]
 [String]$Parameter1,

 [ValidateNotNullOrEmpty()]
 [Object[]]$Parameter2
)
}

An error will be thrown if either an empty string is supplied for Parameter1, or an empty
array is supplied for Parameter2. Like ValidateNotNull, ValidateNotNullOrEmpty
has no effect on numeric types.

The ValidateCount attribute
ValidateCount is used to test the size of an array supplied to a parameter. The attribute
expects a minimum and maximum length for the array.

ValidateCount only has meaning when applied to an array-type parameter, for example:

function Test-ValidateCount {
 [CmdletBinding()]
 param (
 [ValidateCount(1, 1)]
 [String[]]$Parameter1
)
}

ValidateCount may also be applied to parameters that accept more advanced array types,
such as [System.Collections.ArrayList] or
[System.Collections.Generic.List[String]].

Parameters, Validation, and Dynamic Parameters Chapter 17

[433]

The ValidateDrive attribute
ValidateDrive may be used to test the drive letter provided for a parameter that accepts a
path. ValidateDrive handles both relative and absolute paths. A relative path is resolved
to a full path before it is tested against the supplied drive letters. When using the
ValidateDrive attribute, the parameter type must be String. The parameter cannot be
omitted:

function Test-ValidateDrive {
 [CmdletBinding()]
 param (
 [ValidateDrive('C')]
 [String]$Parameter1
)
}

ValidateDrive cannot act on an array of paths; if the parameter type is an array, an error
will be thrown stating the path argument is invalid.

The ValidateLength attribute
ValidateLength can be applied to a String parameter or a parameter that contains an
array of strings. Each string will be tested against the minimum and maximum length:

function Test-ValidateLength {
 [CmdletBinding()]
 param (
 [ValidateLength(2, 6)]
 [String[]]$Parameter1
)
}

Any string with a length below the minimum, or above the maximum, will trigger an error.

The ValidatePattern attribute
ValidatePattern is used to test that a string, or the elements in an array of strings,
matches the supplied pattern:

function Test-ValidatePattern {
 [CmdletBinding()]
 param (
 [ValidatePattern('^Hello')]
 [String]$Parameter1

Parameters, Validation, and Dynamic Parameters Chapter 17

[434]

)
}

In addition to the pattern argument, ValidatePattern accepts RegexOptions using the
Options named parameter, for example:

function Test-ValidatePattern {
 [CmdletBinding()]
 param (
 [ValidatePattern('^Hello', Options = 'Multiline')]
 [String]$Parameter1
)
}

The possible values for Options are described by the
System.Text.RegularExpressions.RegexOptions enumeration, which is documented
in the .NET reference (https:/ /docs. microsoft. com/ en-us/ dotnet/ api/ system. text.
regularexpressions. regexoptions? view= netframework- 4. 7.2).

Multiple options may be included as a comma-separated list, for example:

[ValidatePattern('^Hello', Options = 'IgnoreCase, Multiline')]

By default, the IgnoreCase option is set. If you want to make a pattern case-sensitive, the
options can be set to None:

[ValidatePattern('^Hello', Options = 'None')]

A criticism that might be leveled against ValidatePattern is that there is no way to
customize or define the error message in Windows PowerShell.

PowerShell Core adds an optional ErrorMessage parameter to tackle this problem. The
default error message written by ValidatePattern is shown as follows:

PS> function Test-ValidatePattern {
>> [CmdletBinding()]
>> param (
>> [ValidatePattern('^[A-Z]\S+ [A-Z]\S+\.', Options = 'None')]
>> [String]$Greeting
>>)
>> }
PS> Test-ValidatePattern -Greeting 'hello Jim.'

Test-ValidatePattern : Cannot validate argument on parameter 'Greeting'.
The argument "hello Jim." does not match the "^[A-Z]\S+ [A-Z]\S+\."
pattern. Supply an argument that matches "^[A-Z]\S+ [A-Z]\S+\." and try the
command again.

https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regexoptions?view=netframework-4.7.2

Parameters, Validation, and Dynamic Parameters Chapter 17

[435]

At line:1 char:34
+ Test-ValidatePattern -Greeting 'hello Jim.'
+ ~~~~~~~~~~~~
 + CategoryInfo : InvalidData: (:) [Test-ValidatePattern],
ParameterBindingValidationException
 + FullyQualifiedErrorId : ParameterArgumentValidationError,Test-
ValidatePattern

In PowerShell Core, an alternative message may be supplied:

function Test-ValidatePattern {
 [CmdletBinding()]
 param (
 [ValidatePattern(
 '^[A-Z]\S+ [A-Z]\S+\.',
 Options = 'None',
 ErrorMessage = 'The greeting and name must begin with a capital
letter.'
)]
 [String]$Greeting
)
}

The ValidateRange attribute
ValidateRange tests whether a value, or an array of values, fall within a specified
range. ValidateRange is most commonly used to test numeric ranges. However, it is also
able to test strings. For example, the z string can be said to be within the A to Z range. This
approach is slightly harder to apply when testing strings as the Zz string is greater than
Z. The following example uses ValidateRange to test an integer value:

function Test-ValidateRange {
 [CmdletBinding()]
 param (
 [ValidateRange(1, 20)]
 [Int]$Parameter1
)
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[436]

The ValidateScript attribute
ValidateScript executes an arbitrary block of code against each of the arguments for a
parameter. If the argument is an array, each element is tested. One common use for
ValidateScript is to test whether a path exists, for example:

function Test-ValidateScript {
 [CmdletBinding()]
 param (
 [ValidateScript({ Test-Path $_ -PathType Leaf })]
 [String]$Path
)
}

ValidateScript can contain just about anything a developer desires, although it is
generally recommended to keep validation scripts short. In PowerShell Core,
ValidateScript gains an optional ErrorMessage parameter that replaces the default
message, which repeats the failed script to the end user:

function Test-ValidateScript {
 [CmdletBinding()]
 param (
 [ValidateScript(
 { Test-Path $_ -PathType Leaf },
 ErrorMessage = 'The path supplied must exist and must be a
file'
)]
 [String]$Path
)
}

In Windows PowerShell, throw may be used within the script to write a more friendly
error message at the cost of a more complex script:

function Test-ValidateScript {
 [CmdletBinding()]
 param (
 [ValidateScript({
 if (Test-Path $_ -PathType Leaf) {
 $true
 } else {
 throw 'The path supplied must exist and must be a file'
 }
 })]
 [String]$Path
)
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[437]

The ValidateSet attribute
ValidateSet tests whether the specified argument, or each of an array of arguments,
exists in a set of possible values:

function Test-ValidateSet {
 [CmdletBinding()]
 param (
 [ValidateSet('One', 'Two', 'Three')]
 [String]$Value
)
}

The set of values must be hardcoded in the attribute, it cannot be derived from a variable or
another command. By default, the set is not case-sensitive. If it is desirable, the set can be
made case-sensitive by using the IgnoreCase named parameter:

function Test-ValidateSet {
 [CmdletBInding()]
 param (
 [ValidateSet('One', 'Two', 'Three', IgnoreCase = $false)]
 [String]$Value
)
}

Like ValidatePattern and ValidateSet, ValidateSet gains an optional
ErrorMessage parameter in PowerShell Core.

The Allow attributes
The Allow attributes are most commonly used when a parameter is mandatory. If a
parameter is mandatory, PowerShell will automatically disallow assignment of empty
values, that is, empty strings and empty arrays. The Allow attributes can be used to modify
that behavior. The attributes make it possible to require a parameter, but still allow empty
values.

The AllowNull attribute
AllowNull is used to permit explicit use of $null as a value for a Mandatory parameter:

function Test-AllowNull {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]

Parameters, Validation, and Dynamic Parameters Chapter 17

[438]

 [AllowNull()]
 [Object]$Parameter1
)
}

AllowNull is effective for array parameters, and for parameters that use Object as a
type. AllowNull is not effective for string parameters as the null value is cast to an empty
string, and an empty string is still not permitted.

The AllowEmptyString attribute
AllowEmptyString fills the gap, allowing both null and empty values to be supplied for a
mandatory string parameter. In both cases, the resulting assignment will be an empty
string. It is not possible to distinguish between a value passed as null and a value passed as
an empty string:

function Test-AllowEmptyString {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [AllowEmptyString()]
 [String]$Parameter1
)
}

The AllowEmptyCollection attribute
AllowEmptyCollection, as the name suggests, allows an empty array to be assigned to a
mandatory parameter:

function Test-AllowEmptyCollection {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [AllowEmptyCollection()]
 [Object[]]$Parameter1
)
}

This will allow the command to be called with an explicitly empty array:

Test-AllowEmptyCollection -Parameter1 @()

Parameters, Validation, and Dynamic Parameters Chapter 17

[439]

PSReference parameters
Many of the object types used in PowerShell are reference types. When an object is passed
to a function, any changes made to that object will be visible outside the function,
irrespective of the output generated by the command. For example, the following function
accepts an object as input, then changes the value of a property on that object:

function Set-Value {
 [CmdletBinding()]
 param (
 [PSObject]$Object
)

 $Object.Value = 2
}

When the function is passed an object, the change can be seen on any other variables that
reference that object:

PS> $myObject = [PSCustomObject]@{ Value = 1 }
PS> Set-Value $myObject
PS> $myObject.Value
2

Strings, numeric values, and dates, on the other hand, are all examples of value types.
Changes made to a value type inside a function will not be reflected in variables that
reference that value elsewhere; a new value is created. Occasionally, it is desirable to make
a function affect the content of a value type without either returning the value as output or
changing the value of a property of an object. The PSReference type, [Ref], can be used
to achieve this. The following function normally returns true or false depending on
whether Get-Date successfully parsed the date string into a DateTime object:

function Test-Date {
 [CmdletBinding()]
 param (
 [String]$Date,

 [Ref]$DateTime
)

 if ($value = Get-Date $Date -ErrorAction SilentlyContinue) {
 if ($DateTime) {
 $DateTime.Value = $value
 }
 $true
 } else {

Parameters, Validation, and Dynamic Parameters Chapter 17

[440]

 $false
 }
}

When the function is run, a variable that holds an existing DateTime object might be
passed as an optional reference. PowerShell can update the date via the reference, changing
the value outside of the function:

PS> $dateTime = Get-Date
PS> Test-Date 01/01/2019 -DateTime ([Ref]$dateTime)
true
PS> $dateTime
01 January 2019 00:00:00

The same behavior can be seem with Boolean, string, and numeric types.

Pipeline input
Using the Parameter attribute to set either ValueFromPipeline or
ValueFromPipelineByPropertyName sets a parameter up to fill from the input pipeline.

About ValueFromPipeline
ValueFromPipeline allows the entire object to be passed into a parameter from an input
pipeline. The following function implements an InputObject parameter, which accepts
pipeline input by using the ValueFromPipeline property of the Parameter attribute:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 $InputObject
)

 process {
 'Input object was of type {0}' -f $InputObject.GetType().FullName
 }
}

Remember that values read from an input pipeline are only available in the process block
of a script or function. As the default type assigned to a parameter is Object, this will
accept any kind of input that might be passed. This behaves in a similar manner to the
InputObject parameter for Get-Member, for example.

Parameters, Validation, and Dynamic Parameters Chapter 17

[441]

Accepting null input
Commands such as Where-Object allow an explicit null value in the input pipeline. To
allow null in an input pipeline, the [AllowNull()] attribute would be added to the
InputObject parameter. There is a difference between supporting $null | Get-
InputObject and implementing pipeline support originating from a command that
returns nothing: AllowNull is only needed when an explicit null is in the input pipeline.

In the following example, the Get-EmptyOutput function has no body and will not return
anything. This simulates a command that returns nothing because all of the output is
filtered out. The Get-InputObject function can take part in a pipeline with Get-
EmptyOutput without using AllowNull:

function Get-EmptyOutput { }
function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 $InputObject
)
}
No output, no error
First | Second

If Get-EmptyOutput were to explicitly return null, which is not a good practice, Get-
InputObject would raise a parameter binding error:

PS> function First { return $null }
PS> First | Second
Second : Cannot bind argument to parameter 'InputObject' because it is
null.
 At line:1 char:9
 + First | Second
 + ~~~~~~
 + CategoryInfo : InvalidData: (:) [Second],
ParameterBindingValidationException
 + FullyQualifiedErrorId :
ParameterArgumentValidationErrorNullNotAllowed,Second

Adding AllowNull would sidestep this error, but Get-InputObject would have to
handle a null value internally:

function Get-EmptyOutput { return $null }
function Get-InputObject {
 [CmdletBinding()]
 param (

Parameters, Validation, and Dynamic Parameters Chapter 17

[442]

 [Parameter(Mandatory, ValueFromPipeline)]
 [AllowNull()]
 $InputObject
)
 if ($InputObject) {
 # Do work
 }
}
No output, no error
First | Second

If this were real output from a function, it may be better to consider the output from Get-
EmptyOutput to be a bug and pass it through Where-Object to sanitize the input, which
avoids the need to add AllowNull, for example:

Get-EmptyOutput | Where-Object { $_ } | Get-InputObject

Input object types
If a type is defined for the InputObject variable, the command will only work if the input
pipeline contains that object type. An error will be thrown when a different object type is
passed. The following example modifies the command to accept pipeline input from Get-
Process; it expects objects of the System.Diagnostics.Process type only:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 [System.Diagnostics.Process]$InputObject
)

 process {
 'Process name {0}' -f $InputObject.Name
 }
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[443]

Using ValueFromPipeline for multiple parameters
If more than one parameter uses ValueFromPipeline, PowerShell will attempt to provide
values to each. The parameter binder can be said to be greedy in this respect. The following
function can be used to show that both parameters are filled with the same value if the
parameters accept the same type, or if the value can be coerced into that type:

function Test-ValueFromPipeline {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipeline)]
 [Int]$Parameter1,

 [Parameter(ValueFromPipeline)]
 [Int]$Parameter2
)

 process {
 'Parameter1: {0}:: Parameter2: {1}' -f $Parameter1, $Parameter2
 }
}

Providing an input pipeline for the command shows the values assigned to each parameter:

PS> 1..2 | Test-ValueFromPipeline
Parameter1: 1 :: Parameter2: 1
Parameter1: 2 :: Parameter2: 2

Filling variables is the job of the parameter binder in PowerShell. Using Trace-Command
will show the parameter binder in action:

Trace-Command -Expression { 1 | Test-ValueFromPipeline } -PSHost -Name
ParameterBinding

The bind-pipeline section will display messages that show that the value was successfully
bound to each parameter. If the two parameters expected different types, the parameter
binding will attempt to coerce the value into the requested type. If that is not possible, it
will give up on the attempt to fill the parameter. The next example declares two different
parameters; both accept values from the pipeline and neither is mandatory:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipeline)]
 [System.Diagnostics.Process]$ProcessObject,

 [Parameter(ValueFromPipeline)]

Parameters, Validation, and Dynamic Parameters Chapter 17

[444]

 [System.ServiceProcess.ServiceController]$ServiceObject
)

 process {
 if ($ProcessObject) { 'Process: {0}' -f $ProcessObject.Name }
 if ($ServiceObject) { 'Service: {0}' -f $ServiceObject.Name }
 }
}

The command will, at this point, accept pipeline input from both Get-Process and Get-
Service. Each command will fill the matching parameter, Get-Process fills
ProcessObject, and Get-Service fills ServiceObject. This design is unusual and
perhaps confusing; here, it is only demonstrated because it is possible. A parameter set can
be used to make sense of the pattern, which we will explore in the Defining parameter
sets section.

Using PSTypeName
The PSTypeName attribute may also be used to tightly define the objects acceptable for a
parameter that uses ValueFromPipeline:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipeline)]
 [PSTypeName('CustomTypeName')]
 $InputObject
)

 process {
 $InputObject.Name
 }
}

This function would accept input from an object that declares the matching type name:

[PSCustomObject]@{
 Name = 'Value'
 PSTypeName = 'CustomTypeName'
} | Get-InputObject

A .NET type may also be assigned to the InputObject parameter in addition
to PSTypeName. However, in this case, the type would have to be either Object or
PSObject. This is effectively pointless as absolutely any object type in PowerShell will
satisfy either of those parameter types.

Parameters, Validation, and Dynamic Parameters Chapter 17

[445]

About ValueFromPipelineByPropertyName
ValueFromPipelineByPropertyName attempts to fill a parameter from the property of an
object in the input pipeline. When filling a value by property name, the name and type of
the property is important, but not the object that implements the property.

For example, a function might be created to accept a string value from a Name property:

function Get-Name {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [String]$Name
)

 process {
 $Name
 }
}

Any command that returns an object which contains a Name property in a string is
acceptable input for this function. Additional parameters might be defined, which would
further restrict the input object type, assuming the new properties are mandatory:

function Get-Status {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [String]$Name,

 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [String]$Status
)

 process {
 '{0}: {1}' -f $Name, $Status
 }
}

This new function would accept pipeline input from Get-Service, as the output from
Get-Service has both Name and Status properties. Using Get-Member against Get-
Service would show that the Status property is an enumeration value described by
System.ServiceProcess.ServiceControllerStatus. This value is acceptable to the
Get-Status function as it can be coerced into a string, which satisfies the Status
parameter.

Parameters, Validation, and Dynamic Parameters Chapter 17

[446]

The previous function is not limited to a specific input object type. A PSCustomObject can
be created with properties to satisfy the parameters for the Get-Status function:

[PSCustomObject]@{ Name = 'Name'; Status = 'Running' } | Get-Status

As with the ValueFromPipeline input, the parameter binder will attempt to fill as many
of the parameters as possible from the input pipeline. Trace-Command, as used when
exploring ValueFromPipeline, can be used to show the behavior of the parameter binder.

ValueFromPipelineByPropertyName and parameter
aliases
We have not looked at parameter aliases yet. Any parameter may be given one or more
aliases using the Alias attribute, as shown in the following example:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ValueFromPipelineByPropertyName)]
 [Alias('First', 'Second', 'Third')]
 $InputObject
)
}

The alias name is considered when determining whether a property on an input object is
suitable to fill a parameter when filling a parameter by property name.

One of the more common uses of this is to provide support for a Path parameter via a
pipeline from Get-Item or Get-ChildItem. For example, the following pattern might be
used to expose a Path parameter. This is used in the short helper function that imports
JSON content from a file:

function Import-Json {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipelineByPropertyName)]
 [Alias('PSPath')]
 [String]$Path
)

 process {
 Get-Content $Path | ConvertFrom-Json
 }
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[447]

The PSPath property of the object returned by Get-Item or Get-ChildItem is used to fill
the Path parameter from a pipeline. FullName is a possible alternative to PSPath,
depending on how the path is to be used.

Converting relative paths to full paths

When using a path parameter, such as the one in the previous example,
the following method on the PSCmdlet object can be used to ensure a
path is fully qualified whether it exists or not:

$Path =
$PSCmdlet.GetUnresolvedProviderPathFromPSPath($Path)

This technique is useful if working with .NET types, which require a path
as these are not able to resolve PowerShell paths (either relative or via a
PS drive).

The New-TimeSpan command is an example of an existing command that uses the alias to
fill a parameter from the pipeline. The Start parameter has an alias of LastWriteTime.
When Get-Item is piped into New-TimeSpan, the time since the file or directory was last
written will be returned as a TimeSpan via the aliased parameter.

Defining parameter sets
A parameter set in PowerShell groups different parameters together. In some cases, this is
used to change the output of a command; in others, it provides a different way of supplying
a piece of information. For example, the output from the Get-Process command changes
if the Module parameter or, to a lesser extent, the IncludeUserName parameter are
supplied. The Get-ChildItem command also has two parameter sets: one that accepts a
Path with wildcard support, and another that accepts a LiteralPath that does not
support wildcards. That is, it has two different ways of supplying essentially the same
information. Parameter sets are declared using the ParameterSetName property of the
Parameter attribute.
The following example has two parameter sets; each parameter set contains a single
parameter:

function Get-InputObject {
 [CmdletBinding()]
 param (
 [Parameter(ParameterSetName = 'FirstSetName')]
 $Parameter1,

Parameters, Validation, and Dynamic Parameters Chapter 17

[448]

 [Parameter(ParameterSetName = 'SecondSetName')]
 $Parameter2
)
}

As neither parameter set is the default, attempting to run the command using a positional
parameter only will result in an error:

PS> Get-InputObject value
Get-InputObject : Parameter set cannot be resolved using the specified
named parameters.
At line:1 char:1
+ Get-InputObject value
+ ~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : InvalidArgument: (:) [Get-InputObject],
ParameterBindingException
 + FullyQualifiedErrorId : AmbiguousParameterSet,Get-InputObject

This can be resolved by setting a value for the DefaultParameterSetName property in the
CmdletBinding attribute:

[CmdletBinding(DefaultParameterSetName = 'FirstSetName')]

Alternatively, an explicit position might be defined for one of the parameters; the set will be
selected on the basis of explicit position:

[Parameter(Position = 1, ParameterSetName = 'FirstSetName')]
$Parameter1

The name of the parameter set in use within a function is visible using the
ParameterSetName property of the pscmdlet automatic variable, that
is $pscmdlet.ParameterSetName. The value may be used to choose actions within the
body of a function. The following example shows a possible implementation that tests the
value of ParameterSetName. The function accepts the name of a service as a string, a
service object from Get-Service, or a service returned from the Win32_Service class.
The function finds the process associated with that service:

function Get-ServiceProcess {
 [CmdletBinding(DefaultParameterSetName = 'ByName')]
 param (
 [Parameter(Mandatory, Position = 1, ParameterSetName = 'ByName')]
 [String]$Name,

 [Parameter(Mandatory, ValueFromPipeline, ParameterSetName =
'FromService')]
 [System.ServiceProcess.ServiceController]$Service,

Parameters, Validation, and Dynamic Parameters Chapter 17

[449]

 [Parameter(Mandatory, ValueFromPipeline, ParameterSetName =
'FromCimService')]
[PSTypeName('Microsoft.Management.Infrastructure.CimInstance#root/cimv2/Win
32_Service')]
 [CimInstance]$CimService
)

 process {
 if ($pscmdlet.ParameterSetName -eq 'FromService') {
 $Name = $Service.Name
 }
 if ($Name) {
 $params = @{
 ClassName = 'Win32_Service'
 Filter = 'Name="{0}"' -f $Name
 Property = 'Name', 'ProcessId', 'State'
 }
 $CimService = Get-CimInstance @params
 }
 if ($CimService.State -eq 'Running') {
 Get-Process -Id $CimService.ProcessId
 } else {
 Write-Error ('The service {0} is not running' -f
$CimService.Name)
 }
 }
}

The previous function accepts several different parameters. Each parameter is ultimately
used to get to a value for the $CimService variable (or parameter), which has a
ProcessID property associated with the service. Each of the examples so far has shown a
parameter that is a member of a single, explicitly declared set. A parameter that does not
describe a ParameterSetName is automatically part of every set.
In the following example, Parameter1 is part of every parameter set, Parameter2 is in a
named set only:

function Test-ParameterSet {
 [CmdletBinding(DefaultParameterSetName = 'Default')]
 param (
 [Parameter(Mandatory, Position = 1)]
 $Parameter1,

 [Parameter(ParameterSetName = 'NamedSet')]
 $Parameter2
)
}

Parameters, Validation, and Dynamic Parameters Chapter 17

[450]

Get-Command may be used to show the syntax for the command; this shows there are two
different parameter sets, both of which require Parameter1:

PS> Get-Command Test-ParameterSet -Syntax

Test-ParameterSet [-Parameter1] <Object> [<CommonParameters>]

Test-ParameterSet [-Parameter1] <Object> [-Parameter2 <Object>]
[<CommonParameters>]

Parameters that do not use the Parameter attribute are also automatically part of all
parameter sets. A parameter may also be added to more than one parameter set. This is
achieved by using more than one Parameter attribute on a parameter:

function Test-ParameterSet {
 [CmdletBinding(DefaultParameterSetName = 'NamedSet1')]
 param (
 [Parameter(Mandatory)]
 $Parameter1,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet2')]
 $Parameter2,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet3')]
 $Parameter3,

 [Parameter(Mandatory, ParameterSetName = 'NamedSet2')]
 [Parameter(ParameterSetName = 'NamedSet3')]
 $Parameter4
)
}

In the preceding example, Parameter1 is in all parameter sets. Parameter2 is in
NamedSet2 only. Parameter3 is in NamedSet3 only. Parameter4 is mandatory in
NamedSet2, and optional in NamedSet3.

This interplay of parameter sets is complex and difficult to describe without a complex
command to use the parameters. Many existing commands use complex parameter sets and
their parameter sets may be explored. For example, the parameter block for the Get-
Process command may be shown by running the following command:

[System.Management.Automation.ProxyCommand]::GetParamBlock((Get-Command
Get-Process))

Parameters, Validation, and Dynamic Parameters Chapter 17

[451]

Argument-completers
Argument-completers have been around in a number of different forms since PowerShell 2.
This section focuses on the implementation of argument-completers available in Windows
PowerShell 5 and PowerShell Core.

An argument-completer is used by the tab completion system to provide a value for a
parameter when Tab is pressed. For example, the Get-Module command cycles though
module names when Tab is pressed after the command name. The argument-completer
does not restrict the values that may be supplied; it is only used to offer values, to make the
use of a command easier for an end user.

An argument-completer is a script block; the script block should accept the following
parameters:

commandName

parameterName

wordToComplete

commandAst

fakeBoundParameter

Any of these parameters may be used, but the most important and the most frequently
used is wordToComplete.

The following example would suggest words from a fixed list:

param ($commandName, $parameterName, $wordToComplete, $commandAst,
$fakeBoundParameter)

$possibleValues = 'Start', 'Stop', 'Create', 'Delete'
$possibleValues | Where-Object { $_ -like "$wordToComplete*" }

Notice that a wildcard, *, has been added on the end of wordToComplete.
Arguably, ValidateSet might be a better option in this case as it also feeds tab
completion. However, where ValidateSet enforces, ArgumentCompleter suggests. The
argument-completer only suggests when the user is using tab to complete a parameter
value so it cannot replace ValidateSet or any other parameter validation steps. Unlike
ValidateSet, and perhaps more like ValidateScript, the list of possible values used in
an argument-completer can be dynamic. That is, the list of possible values can be the result
of running another command. PowerShell provides two different ways to assign an
argument completer: the ArgumentCompleter attribute or the Register-
ArgumentCompleter command.

Parameters, Validation, and Dynamic Parameters Chapter 17

[452]

The argument-completer attribute
The argument-completer attribute is used much like ValidateScript. The script block
used previously is used as an argument for the attribute, shown as follows:

function Test-ArgumentCompleter {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [ArgumentCompleter({
 param ($commandName, $parameterName, $wordToComplete,
$commandAst, $fakeBoundParameter)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'
 $possibleValues | Where-Object { $_ -like "$wordToComplete*" }
 })]
 $Action
)
}

When the user types Test-ArgumentCompleter and then presses Tab, the completer
offers up each of the possible values with no filtering. If the user were to type Test-
ArgumentCompleters, only start and stop would be offered when pressing Tab.

Using Register-ArgumentCompleter
The Register-ArgumentCompleter command has two advantages over the
ArgumentCompleter attribute. First, it can be used to set an argument-completer for a
number of parameters across a number of commands at once. And second, it can create
argument-completers for native commands; for example, when used as an alternative to the
ArgumentCompleter attribute, the command is used as follows:

function Test-ArgumentCompleter {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 $Action
)
}

$params = @{
 CommandName = 'Test-ArgumentCompleter'
 ParameterName = 'Action'
 ScriptBlock = {
 param ($commandName, $parameterName, $wordToComplete, $commandAst,

Parameters, Validation, and Dynamic Parameters Chapter 17

[453]

$fakeBoundParameter)

 $possibleValues = 'Start', 'Stop', 'Create', 'Delete'
 $possibleValues | Where-Object { $_ -like "$wordToComplete*" }
 }
}
Register-ArgumentCompleter @params

The CommandName parameter used for Register-ArgumentCompleter accepts an array of
command names. In one step, the completer can be added to several different commands
that share a parameter. Register-ArgumentCompleter can also be used to add
argument-completion to native commands. The following example offers a steadfast user of
the wmic command automatic alias-completion:

Register-ArgumentCompleter -CommandName wmic -Native -ScriptBlock {
 param ($wordToComplete, $commandAst, $cursorPosition)

 wmic /?:BRIEF |
 Where-Object { $_ -cmatch '^([A-Z]{2}\S+)+' } |
 ForEach-Object { $matches[1] } |
 Where-Object {
 $_ -notin 'CLASS', 'PATH', 'CONTEXT', 'QUIT/EXIT' -and
 $_ -like "$wordToComplete*"
 }
}

When using the -Native parameter, the arguments passed to the completer differ; the first
argument becomes the word to complete.

Listing registered argument-completers
While it is possible to register argument-completers, PowerShell does not provide a way of
listing them. This is somewhat frustrating as it makes exploration and finding examples
more difficult.

The following script makes extensive use of reflection in .NET to explore classes that are not
made publicly available, eventually getting to a property that holds the argument-
completers:

$localPipeline =
[PowerShell].Assembly.GetType('System.Management.Automation.Runspaces.Local
Pipeline')
$getExecutionContextFromTLS = $localPipeline.GetMethod(
 'GetExecutionContextFromTLS',
 [System.Reflection.BindingFlags]'Static, NonPublic'

Parameters, Validation, and Dynamic Parameters Chapter 17

[454]

)
$internalExecutionContext = $getExecutionContextFromTLS.Invoke(
 $null,
 [System.Reflection.BindingFlags]'Static, NonPublic',
 $null,
 $null,
 $psculture
)
$customArgumentCompletersProperty =
$internalExecutionContext.GetType().GetProperty(
 'CustomArgumentCompleters',
 [System.Reflection.BindingFlags]'NonPublic, Instance'
)
$customArgumentCompletersProperty.GetGetMethod($true).Invoke(
 $internalExecutionContext,
 [System.Reflection.BindingFlags]'Instance, NonPublic, GetProperty',
 $null,
 @(),
 $psculture
)

Native argument-completers are held in a different property and will not be shown by the
preceding snippet.

A more refined version of the previous snippet, which also supports the
retrieval of native argument-completers, is available as a function
at https:/ / gist. github. com/indented- automation/
26c637fb530c4b168e62c72582534f5b.

Dynamic parameters
Dynamic parameters allow a developer to define the behavior of parameters when a
function is run, rather than hardcoding that behavior in advance in a param
block. Dynamic parameters can be used to overcome some of the limitations inherent in a
param block. For example, it is possible to change the parameters presented by a command
based on the value of another parameter. It is also possible to dynamically write validation,
such as dynamically assigning a value for the ValidateSet attribute.

https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b
https://gist.github.com/indented-automation/26c637fb530c4b168e62c72582534f5b

Parameters, Validation, and Dynamic Parameters Chapter 17

[455]

Dynamic parameters remain unpopular in the PowerShell community. They are relatively
complex; that is, they are hard to define, and difficult to troubleshoot as they tend to
silently fail rather than raising an error. Dynamic parameters have a named
block: dynamicparam. If dynamicparam is used, the default blocks for a script or function
cannot be used; all code must be contained within explicitly declared named blocks. The
CmdletBinding attribute must be explicitly declared when using dynamicparam,
parameters will not be created without CmdletBinding, nor will an error message be
shown to explain that.

The following example includes an empty dynamicparam block as well as an end block,
which would have been implicit if dynamicparam were not present:

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam { }
 end {
 Write-Host 'Function body'
 }
}

If the end block declaration is missing, a syntax error will be displayed. This is shown as
follows, it does not state that the problem is the dynamicparam block, or because of a
missing named block:

PS> function Test-DynamicParam {
>> [CmdletBinding()]
>> param ()
>> dynamicparam { }
>> Write-Host 'Function body'
>> }
At line:1 char:28
+ function Test-DynamicParam {
+ ~
Missing closing '}' in statement block or type definition.
At line:4 char:1
+ }
+ ~
Unexpected token '}' in expression or statement.
 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : MissingEndCurlyBrace

Parameters, Validation, and Dynamic Parameters Chapter 17

[456]

The dynamicparam block must output a RuntimeDefinedParameterDictionary object.
The dictionary should contain one or more RuntimeDefinedParameter objects.

Creating a RuntimeDefinedParameter object
A RuntimeDefinedParameter object describes a single parameter. The definition includes
the name of the parameter, the parameter type, and any attributes that should be set for
that parameter. PowerShell does not include type accelerators for
creating RuntimeDefinedParameter; the full name,
System.Management.Automation.RuntimeDefinedParameter, must be used. The
constructor for RuntimeDefinedParameter expects three arguments: a string, which will
be the parameter name, a .NET type for the parameter, and a collection or array of
attributes that should be assigned. The attribute collection must contain at least one
Parameter attribute.

The following example, which creates a parameter named Action, makes use of a using
namespace statement to shorten the .NET type names:

using namespace System.Management.Automation
$parameter = [RuntimeDefinedParameter]::new('Action', [String],
[Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1 }
 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')
)
)

The previous parameter is the equivalent of using the following in the param block:

param (
 [Parameter(Mandatory, Position = 1)]
 [ValidateSet('Start', 'Stop', 'Create', 'Delete')]
 [String]$Action
)

As the attributes are not being placed directly above a variable, each must be created as an
independent object instance:

The shorthand used for the Parameter attribute in the param block cannot be
used; Boolean values must be written in full
The ValidateSet attribute, and other validation attributes, must also be created
as a new object rather than using the attribute syntax

Parameters, Validation, and Dynamic Parameters Chapter 17

[457]

The Parameter attribute declaration takes advantage of PowerShell's ability to assign
property values to an object using a hashtable. This is feasible because a Parameter
attribute can be created without supplying any arguments, that
is, [Parameter]::new() can be used to create a Parameter attribute with default values.
This technique cannot be used for the validation attributes, as each requires one or more
arguments, therefore ::new or New-Object must be used.

As with a normal parameter, RuntimeDefinedParameter can declare more than one
parameter attribute. Each Parameter attribute is added to the attribute collection:

using namespace System.Management.Automation
$parameter = [RuntimeDefinedParameter]::new('Action', [String],
[Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1; ParameterSetName =
'First' }
 [Parameter]@{ ParameterSetName = 'Second' }
)
)

Any number of parameters might be created in this manner. Each parameter must have a
unique name. Each parameter must be added to a
RuntimeDefinedParameterDictionary.

Using the RuntimeDefinedParameterDictionary
RuntimeDefinedParameterDictionary is the expected output from the dynamicparam
block. The dictionary must contain all of the dynamic parameters a function is expected to
present.

The following example creates a dictionary and adds a single parameter:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new('Action', [String],
[Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1 }
 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')

Parameters, Validation, and Dynamic Parameters Chapter 17

[458]

)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }
}

Using dynamic parameters
Dynamic parameters must be accessed using the PSBoundParameters variable within a
function or script; dynamic parameters do not initialize variables of their own.

The value of the Action parameter used in the previous examples must be retrieved by
using Action as a key, shown as follows:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new('Action', [String],
[Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 1 }
 [ValidateSet]::new('Start', 'Stop', 'Create', 'Delete')
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }

 end {
 Write-Host $psboundparameters['Action']
 }
}

As with parameters from the param block, the $psboundparameters.ContainsKey
method may be used to find out whether a user has specified a value for the parameter.
Dynamic parameters cannot have a default value; any default values must be created in
begin, process, or end.

Parameters, Validation, and Dynamic Parameters Chapter 17

[459]

A dynamic parameter that accepts pipeline input, like a normal parameter that accepts
pipeline input, will only have a value within the process and end blocks. The end block
will only see the last value in the pipeline. The following example demonstrates this:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param ()

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 $parameter = [RuntimeDefinedParameter]::new('InputObject',
[String], [Attribute[]]@(
 [Parameter]@{ Mandatory = $true; ValueFromPipeline = $true
}
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary
 }

 begin {
 'BEGIN: Input object is present: {0}' -f @(
 $psboundparameters.ContainsKey('InputObject')
)
 }

 process {
 'PROCESS: Input object is present: {0}; Value: {1}' -f @(
 $psboundparameters.ContainsKey('InputObject')
 $psboundparameters['InputObject']
)
 }

 end {
 'END: Input object is present: {0}; Value: {1}' -f @(
 $psboundparameters.ContainsKey('InputObject')
 $psboundparameters['InputObject']
)
 }
}

The function can be used with arbitrary input values, for example:

PS> 1..2 | Test-DynamicParam

Parameters, Validation, and Dynamic Parameters Chapter 17

[460]

BEGIN: Input object is present: False
PROCESS: Input object is present: True; Value: 1
PROCESS: Input object is present: True; Value: 2
END: Input object is present: True; Value: 2

The PSBoundParameters variable, and any other parameters, may be referenced inside the
dynamicparam block.

Conditional parameters
One possible use of dynamic parameters is to change validation based on the value
supplied for another parameter. Another use is to change which parameters are available,
again based on the value of another parameter.

The following example changes validValues into ValidateSet depending on the value
supplied for the Type parameter:

using namespace System.Management.Automation

function Test-DynamicParam {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, Position = 1)]
 [ValidateSet('Service', 'Process')]
 [String]$Type,

 [Parameter(Mandatory, Position = 3)]
 [String]$Name
)

 dynamicparam {
 $paramDictionary = [RuntimeDefinedParameterDictionary]::new()

 [String[]]$validValues = switch ($Type) {
 'Service' { 'Get', 'Start', 'Stop', 'Restart' }
 'Process' { 'Get', 'Kill' }
 }
 $parameter = [RuntimeDefinedParameter]::new('Action', [String],
[Attribute[]]@(
 [Parameter]@{ Mandatory = $true; Position = 2 }
 [ValidateSet]::new($validValues)
)
)
 $paramDictionary.Add($parameter.Name, $parameter)

 $paramDictionary

Parameters, Validation, and Dynamic Parameters Chapter 17

[461]

 }
}

Changing validation in this manner is entirely reliant on the user having typed a value for
the Type parameter prior to attempting to use Action. Other comparisons can be made in
dynamic parameter blocks, for example a parameter might only appear when a certain
condition is met. RuntimeDefinedParameterDictionary is valid even if it is empty and
no extra parameters need to be added.

Summary
In this chapter, we looked at working with parameters. We stared with an exploration of
the Parameter attribute before moving on to validation techniques. We
discussed ValueFromPipeline and ValueFromPipelineByPropertyName when
working with pipeline parameters. We briefly looked at parameter sets before moving on to
explore argument-completers. Finally, we explored the use of dynamic parameters.

In the next chapter, we will explore the classes and enumerations that were introduced in
PowerShell 5.

18
Classes and Enumerations

PowerShell 5 introduced support for creating classes and enumerations within PowerShell
directly. Prior to this, classes had to be imported from an assembly written in a language
such as C#, or dynamically created using the dynamic module builders.

Classes and enumerations are undergoing a great deal of change in PowerShell Core. There
are numerous enhancement issues open in the PowerShell project on GitHub that are
slowly making their way into PowerShell Core. Examples include the addition of interfaces,
support for using validation attributes on properties, and the ability to override getters and
setters for properties.

This chapter will explore the following topics:

Defining an enumeration
Creating a class
Argument transformation attribute classes
Validation attribute classes
Classes and DSC

Defining an enumeration
An enumeration is a set of named constants. The .NET framework is full of examples of
enumerations. For example, the System.Security.AccessControl.FileSystemRights
enumeration describes all of the numeric values that are used to define access rights for
files or directories.

Enumerations are also used in PowerShell itself, for example,
System.Management.Automation.ActionPreference contains the values for the
preference variables, such as ErrorActionPreference and DebugPreference.

Classes and Enumerations Chapter 18

[463]

Enumerations are created using the enum keyword, and this is followed by a list of values:

enum MyEnum {
 First = 1
 Second = 2
 Third = 3
}

Each name must be unique within the enumeration, and must start with a letter or an
underscore. The name may contain numbers after the first character. The name cannot be
quoted and cannot contain the hyphen character.

The value does not have to be unique. One or more names in an enumeration can share a
single value:

enum MyEnum {
 One = 1
 First = 1
 Two = 2
 Second = 2
}

The style of the preceding enumeration is odd: it defines two sets of names in a single
enumeration, which is not a good practice to adopt.

Enum and underlying types
In languages such as C#, enumerations can be given an underlying type, such as Byte or
Int64. In PowerShell 5 and PowerShell Core 6.1 and older, the enumeration type is fixed to
Int32. This type is shown using the following command:

PS> enum MyEnum {
>> First = 1
>> }
PS> [MyEnum].GetEnumUnderlyingType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Int32 System.ValueType

Any enumeration value may therefore be cast to its underlying type, or any numeric type
capable of supporting the value:

[Int][MyEnum]::First

Classes and Enumerations Chapter 18

[464]

A new feature has been added to PowerShell Core that will grant you the ability to set the
underlying type. This feature is likely to appear in PowerShell Core 6.2 but is not available
in the preview versions at the time of writing. The notation that will be allowed is shown as
follows:

enum MyEnum : UInt64 {
 First = 0
 Last = 18446744073709551615
}

Automatic value assignment
An enumeration may be created without defining a value for a name. PowerShell will
automatically allocate a sequence of values starting from 0. In the following example, the
names Zero and One are automatically created with the values 0 and 1, respectively:

enum MyEnum {
 Zero
 One
}

If a value is assigned to a name, the sequence will continue from that point. The following
example starts with the value 5; Six will automatically be given the value 6:

enum MyEnum {
 Five = 5
 Six
}

Automatic value assignment supports non-contiguous sets. The sequence may be restarted
at any point, or values may be skipped. The following example demonstrates both
restarting a sequence and skipping values in a sequence:

enum MyEnum {
 One = 1
 Two
 Five = 5
 Six
 First = 1
 Second
}

This example mixes two potentially different name sets in a single enumeration to
demonstrate restarting the numeric sequence. This should be avoided outside of
demonstrations as it makes the use of the enumeration ambiguous.

Classes and Enumerations Chapter 18

[465]

Enum or ValidateSet
In some cases, only the name of the value is important; enumerations are occasionally used
in place of ValidateSet.

Class-based Desired State Configuration (DSC) resources provide one of the more obvious
cases for this style. The Ensure parameter has two possible values: Absent and Present.
Ensure can be expressed using an enumeration:

enum Ensure {
 Absent
 Present
}

Absent is placed first as this has the value of 0, which might also be interpreted as false
when casting to a Boolean:

[Boolean][Ensure]::Absent

The advantage of using an enumeration is that it can be shared across a script or module
and would only need to be updated once in the event of a change.

The flags attribute
By default, an enumeration matches a single value. If the enumeration contains more than
one name for a value, the first name will be chosen.

The flags attribute allows a value to describe more than one name. The flags attribute is
placed before the enum keyword.

Typically, each value in the enumeration is given a value with a unique bit combination.
This is shown in the following enumeration; the bit combination is shown in the comment
after the value:

[Flags()]
enum MyEnum {
 First = 1 # 001
 Second = 2 # 010
 Third = 4 # 100
}

Automatic value assignment cannot be reasonably used to assign values for a flags
enumeration at the time of writing.

Classes and Enumerations Chapter 18

[466]

When the flags attribute is present, PowerShell will cast a string that contains two or more
names in a comma-separated list to the value that represents that combination:

[Int][MyEnum]'First,Second'

PowerShell will also cast a numeric value into a set of names. A value of 6 can be used to
represent the Second and Third flags:

PS> [MyEnum]6
Second, Third

Several enumerations that use the Flags attribute also provide named composite values.
For example, the following enumeration contains a name that is used to represent the
combination of the first and third flags:

[Flags()]
enum MyEnum {
 First = 1 # 001
 Second = 2 # 010
 Third = 4 # 100
 FirstAndThird = 5 # 101
}

As FirstAndThird explicitly matches the value 5, any value the enumeration converts will
use the FirstAndThird name instead of the individual values:

PS> [MyEnum]7
Second, FirstAndThird

PS> [MyEnum]'First, Second, Third'
Second, FirstAndThird

The System.Security.AccessControl.FileSystemRights enumeration makes use of
this technique to summarise groups of rights. The Modify name can be represented as the
110000000110111111 binary string. The enumeration names that make up the value
of Modify may be displayed by comparing individual bits in the value with other possible
values of the enumeration. The following snippet isolates each bit in turn and attempts to
convert that single bit into a FileSystemRight name:

$value = [Int64][System.Security.AccessControl.FileSystemRights]::Modify
$i = 0
do {
 if ($bit = $value -band 1 -shl $i++) {
 [System.Security.AccessControl.FileSystemRights]$bit
 }
} until (1 -shl $i -ge $value)

Classes and Enumerations Chapter 18

[467]

Using enumerations to convert values
Considering that enumerations are lists of names, each assigned a numeric value. A pair of
enumerations to convert between two lists of names, linked only by a common value.

The following example defines two enumerations. The first is a list of values the end user
will see, the second holds the internal name required by the code. This simulates, in part,
the type of aliasing performed by the wmic command:

enum AliasName {
 OS
 Process
}

enum ClassName {
 Win32_OperatingSystem
 Win32_Process
}

A function might use the AliasName enumeration, as shown here:

function Get-CimAliasInstance {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, Position = 1)]
 [AliasName]$AliasName
)

 Get-CimInstance -ClassName ([ClassName]$AliasName)
}

The command may now be used with the OS argument for the AliasName parameter. This
will be converted to Win32_OperatingSystem by way of the enumeration. Get-
CimInstance handles converting that value into a string.

A hashtable is a possible alternative way of providing the same lookup mechanism.
Using an enumeration would potentially have an advantage if the enumerations used the
Flags attribute, or if one of the enumerations was already present.

Creating a class
A class is used to describe an object. This may be any object, which means that a class in
PowerShell might be used for any purpose you could dream up.

Classes and Enumerations Chapter 18

[468]

Classes in PowerShell are created using the class keyword. The following class contains a
single property:

class MyClass {
 [String]$Property = 'Value'
}

The class may be created using either new-object or the ::new() method:

PS> [MyClass]::new()

Property

Value

This snippet creates an instance of the class using the default constructor, displaying the
property that was defined for the class.

Properties
The properties defined in a class may define a .NET type and may have a default value if
required. The following class has a single property with the String type:

class MyClass {
 [String]$Property = 'Value'
}

PowerShell automatically adds hidden get and set methods used to access the property,
these cannot be overridden or changed at this time (within the class itself).

The get and set methods may be viewed using Get-Member with the Force parameter:

[MyClass]::new() | Get-Member get_*, set_* -Force

 TypeName: MyClass

Name MemberType Definition
---- ---------- ----------
get_Property Method string get_Property()
set_Property Method void set_Property(string)

The property itself may be accessed on an instance of the class:

$instance = [MyClass]::new()
$instance.Property

Classes and Enumerations Chapter 18

[469]

Constructors
A constructor is executed when either New-Object or ::new() is used to create an
instance of a class. If an explicit constructor is not declared, an implicit constructor is
created for the class. The implicit or default constructor does not require arguments:

PS> [MyClass]::new

OverloadDefinitions

MyClass new()

An explicit constructor may be created to handle more complex instantiation scenarios. The
constructor must use the same name as the class. The following constructor makes use of
the $this reserved variable to access other members of the class:

class MyClass {
 [String]$Property
 MyClass() {
 $this.Property = 'Hello world'
 }
}

Constructors may be overloaded, that is, more than one constructor might be declared.
Each constructor must accept a unique set of arguments:

class MyClass {
 [String]$Property

 MyClass() {
 $this.Property = 'Hello world'
 }

 MyClass([String]$greeting) {
 $this.Property = $greeting
 }
}

When the first constructor is used, Property will be set to the default greeting. The second
constructor allows the user to define a custom value for Property.

Classes and Enumerations Chapter 18

[470]

Methods
A method enacts a change to the object. This may be an internal change, such as opening a
connection or stream, or it may take the object and change it into a different form as is the
case with the ToString method.

The following class defines a simple ToString method that returns the value of the
property:

class MyClass {
 [String]$Property

 MyClass() {
 $this.Property = 'Hello world'
 }

 [String] ToString() {
 return $this.Property
 }
}

When working with methods, and unlike functions in PowerShell, the return keyword is
mandatory. Methods do not return output by default. An error will be raised if a method
has an output type declared and it does not return output from each code path.

Methods can accept arguments in the same way as constructors. Methods can also be
overloaded. For example, the ToString method might be overloaded, providing support
for output formatting. An example of this is shown here:

class MyClass {
 [String]$Property = 'Hello world'

 [String] ToString() {
 return '{0} on {1}' -f $this.Property, (Get-
Date).ToShortDateString()
 }
 [String] ToString($format) {
 return '{0} on {1}' -f $this.Property, (Get-Date).ToString($format)
 }
}

The arguments supplied will dictate which method implementation is used.

Classes and Enumerations Chapter 18

[471]

Inheritance
Classes in PowerShell can inherit from other classes (both classes in PowerShell and classes
from the .NET Framework). The properties, constructors, and methods in a base class are
available to an inheriting class.

The following example defines two classes – the second inherits from the first:

class MyBaseClass {
 [String]$BaseProperty = 'baseValue'
}
class MyClass : MyBaseClass {
 [String]$Property = 'Value'
}

The BaseProperty property is made available on instances of the child class:

PS> [MyClass]::new()

Property BaseProperty
-------- ------------
Value baseValue

Members may be overridden by re-declaring the member on the inheriting class. The
ToString method implementation from the base class is overridden in the following
example:

class MyBaseClass {
 [String] ToString() { return 'default' }
}
class MyClass : MyBaseClass {
 [String] ToString() { return 'new' }
}

Unlike C#, PowerShell does not require the use of an override modifier.

Constructor inheritance
Constructor inheritance allows a child class to tweak a constructor declared on a base class
without re-implementing the constructor. The base keyword is used to reference the
constructor on the inherited class. The constructor on the base class is executed before the
constructor in the inheriting class:

class MyBaseClass {
 [String]$BaseProperty

Classes and Enumerations Chapter 18

[472]

 MyBaseClass() {
 Write-Host 'Executing base constructor'
 $this.BaseProperty = 'baseValue'
 }
}
class MyClass : MyBaseClass {
 [String]$Property

 MyClass() : base() {
 Write-Host 'Executing child constructor'
 $this.Property = 'value'
 }
}

It is possible to invoke a constructor in the base class with a different overload by passing
arguments to the base keyword:

class MyBaseClass {
 [String]$BaseProperty
 MyBaseClass($value) {
 $this.BaseProperty = $value
 }
}
class MyClass : MyBaseClass {
 MyClass() : base('SomeValue') { }
}

The arguments passed to the base keyword may be either variable values, such as the
parameters for the constructor on MyClass, fixed values, or expressions that invoke other
functions and commands.

This form of inheritance only applies to constructors – the same technique cannot be used
for methods.

Chaining constructors
Constructor chaining avoids the need to repeat the work a single constructor
performs. Overloaded methods can be used to simulate constructor-chaining within a
class.

In C#, constructor-chaining allows one constructor to call another using the this keyword.
This would be similar to the use of the base keyword when invoking an inherited
constructor. This form of chaining is not possible in PowerShell; a workaround is required.

Classes and Enumerations Chapter 18

[473]

Each constructor is given an associated method; the methods call each other depending on
the arguments supplied:

class MyClass {
 [String]$FirstProperty
 [String]$SecondProperty

 MyClass() { $this.Initialize() }
 MyClass([String]$First) { $this.Initialize($First) }
 MyClass([String]$First, [String]$Second) { $this.Initialize($First,
$Second) }

 [Void] Initialize() { $this.Initialize('DefaultFirst',
'DefaultSecond') }
 [Void] Initialize([String]$First) { $this.Initialize($First,
'DefaultSecond') }

 [Void] Initialize([String]$First, [String]$Second) {
 $this.FirstProperty = $First
 $this.SecondProperty = $Second
 }
}

These methods can be invoked directly on an instance of a class. The Initialize methods
are visible to the end user using Get-Member or to IntelliSense and tab completion which
may not be desirable.

The Hidden modifier
The Hidden modifier may be used to hide a property or a method from casual discovery.
Members marked as Hidden are still visible when using Get-Member, and may still be
invoked. In many respects, this is similar to the DontShow property of the Parameter
attribute: it hides the member from IntelliSense and tab completion, but does not prevent
use.

Classes and Enumerations Chapter 18

[474]

In the following example, the Initialize method is hidden:

class MyClass {
 [String]$Property

 MyClass() { $this.Initialize() }

 Hidden [Void] Initialize() {
 $this.Property = 'defaultValue'
 }
}

By default, the Initialize method will be hidden from view. Using Get-Member with the
Force parameter will show the method:

PS> [MyClass]::new() | Get-Member Initialize -Force

 TypeName: MyClass

Name MemberType Definition
---- ---------- ----------
Initialize Method void Initialize()

It is not possible to make members private in PowerShell at this time.

The Static modifier
All of the members demonstrated so far have required creation of an instance of a type
using either New-Object or ::new().

Static members may be executed without creating an instance of a type (based on a class).

Classes may implement static properties and static methods using the Static modifier
keyword:

class MyClass {
 static [String] $Property = 'Property value'
 static [String] Method() {
 return 'Method return'
 }
}

Classes and Enumerations Chapter 18

[475]

The static members are invoked as follows:

[MyClass]::Property
[MyClass]::Method()

The Hidden modifier may be used in conjunction with the Static modifier. The modifiers
may be used in either order.

Argument-transformation attribute classes
Argument-transformation attributes may be added to parameters used in scripts and
functions. An argument-transformation attribute is used to convert the value of an
argument for a parameter. The transformation operation is carried out before PowerShell
completes the assignment to the variable, side-stepping type mismatch errors.

A class must be created that inherits from
System.Management.Automation.ArgumentTransformationAttribute. The class
must implement a Transform method.

The Transform method must accept two arguments with the System.Object and
System.Management.Automation.EngineIntrinsics types. The argument names are
arbitrary, the names used in the following example follow the naming used in the .NET
reference: https:/ /docs. microsoft. com/ en-us/ dotnet/ api/ system. management.
automation.argumenttransformationattribute. transform? view= powershellsdk- 1.1.0.

Abstract methods must be implemented in inheriting classes. That the
Transform method must be implemented in this class is indicated by the
abstract modifier shown in the .NET documentation. The abstract
modifier is discussed in the C# reference: https:/ / docs. microsoft. com/
en-us/ dotnet/ csharp/ language- reference/ keywords/ abstract.

The following example implements an argument-transformation attribute that converts a
date string in the yyyyMMddHHmmss format back to DateTime before the assignment to the
parameter is completed:

using namespace System.Management.Automation

class DateTimeStringTransformationAttribute :
ArgumentTransformationAttribute {
 [Object] Transform(
 [EngineIntrinsics]$engineIntrinsics,
 [Object]$inputData
) {

https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.argumenttransformationattribute.transform?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/abstract

Classes and Enumerations Chapter 18

[476]

 $date = Get-Date
 if ($InputData -is [String] -and
 [DateTime]::TryParseExact($inputData, 'yyyyMMddHHmmss', $null,
'None', [Ref]$date)) {

 return $date
 } elseif ($inputData -is [DateTime]) {
 return $inputData
 } else {
 throw 'Unexpected date format'
 }
 }
}

The class does not need to contain anything other than the Transform method
implementation. If the transformation is more complex, it may implement other helper
methods. The following example moves DateTime.TryParseExact into a new method:

using namespace System.Management.Automation

class DateTimeStringTransformationAttribute :
ArgumentTransformationAttribute {
 Hidden [DateTime] $date

 Hidden [Boolean] tryParseExact([String]$value) {
 $parsedDate = Get-Date
 $parseResult = [DateTime]::TryParseExact(
 $value,
 'yyyyMMddHHmmss',
 $null,
 'None',
 [Ref]$parsedDate
)
 $this.date = $parsedDate

 return $parseResult
 }

 [Object] Transform(
 [EngineIntrinsics]$engineIntrinsics,
 [Object]$inputData
) {
 if ($inputData -is [String] -and $this.TryParseExact($inputData)) {
 return $this.date
 } elseif ($inputData -is [DateTime]) {
 return $inputData
 } else {
 throw 'Unexpected date format'

Classes and Enumerations Chapter 18

[477]

 }
 }
}

The new class may be used with a parameter, as shown here. Note that the Attribute
string at the end of the class name may be omitted when it is used:

function Test-Transform {
 param (
 [DateTimeStringTransformation()]
 [DateTime]$Date
)

 Write-Host $Date
}

With this attribute in place, the function can be passed a date and time in a format that
would not normally convert:

PS> Test-Transform -Date '20190210090000'
10/02/2019 09:00:00

As implementing a transformation attribute requires either restricting a command to
PowerShell 5 or newer, or an implementation using C#, they rarely appear in code.

Validation attribute classes
PowerShell classes may be used to build custom validation attributes. This might act as an
alternative to ValidateScript in some respects.

Validation attributes must inherit from either ValidateArgumentsAttribute
or ValidateEnumeratedArgumentsAttribute.

Validators are most often used with parameters in scripts and functions, but they may be
used with any variable.

ValidateArgumentsAttribute
Validators that inherit from ValidateArgumentsAttribute are somewhat difficult to
define. The existing validators, such as ValidateNotNullOrEmpty and ValidateCount,
catch most of the possible uses. Validation is more often interested in testing whether the
value of parameter is an array.

Classes and Enumerations Chapter 18

[478]

Classes that inherit from ValidateArgumentsAttribute act on an argument as a single
entity. If an argument is an array, the validation step applies to the array object rather than
the individual elements of the array.

Classes that implement ValidateArgumentsAttribute must inherit from
System.Management.Automation.ValidateArgumentsAttribute. The class must
implement a Validate method that is marked as abstract in
the ValidateArgumentsAttribute class.

The Validate method accepts two arguments with the System.Object and
System.Management.Automation.EngineIntrinsics types. This is shown in the .NET
reference: https:/ /docs. microsoft. com/ en-us/ dotnet/ api/ system. management.
automation.validateargumentsattribute. validate? view= powershellsdk- 1. 1.0.

The following example tests that the argument is not null or whitespace:

using namespace System.Management.Automation

class ValidateNotNullOrWhitespaceAttribute : ValidateArgumentsAttribute {
 [Void] Validate(
 [System.Object]$arguments,
 [EngineIntrinsics]$engineIntrinsics
) {
 if ([String]::IsNullOrWhitespace($arguments)) {
 throw 'The value cannot be null or white space'
 }
 }
}

The use of this validator is demonstrated in the following function:

function Test-Validate {
 [CmdletBinding()]
 param (
 [ValidateNotNullOrWhitespace()]
 [String]$Value
)

 Write-Host $Value
}

This validator example will be more effective when defined as a validator that inherits from
ValidateEnumeratedArguments and is implemented in the ValidateElement method.

https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateargumentsattribute.validate?view=powershellsdk-1.1.0

Classes and Enumerations Chapter 18

[479]

ValidateEnumeratedArgumentsAttribute
Classes that inherit from ValidateEnumeratedArgumentsAttribute may be used to test
each of the elements in an array (when associated with an array-based parameter), or a
single item (when associated with a scalar parameter).

Classes that implement ValidateEnumeratedArgumentsAttribute must inherit from
 System.Management.Automation.ValidateEnumeratedArgumentsAttribute. The
class must implement a Validate method that is marked as abstract in the
ValidateEnumeratedArgumentsAttribute class.

The ValidateElement method accepts one argument with the System.Object type. This
is shown in the .NET reference: https:/ /docs.microsoft. com/ en- us/dotnet/ api/ system.
management.automation. validateenumeratedargumentsattribute. validateelement?
view=powershellsdk- 1. 1. 0.

The ValidateElement method does not return any output; it either runs successfully or
throws an error. The error will be displayed to the end user.

The following validates that an IP address used as an argument falls in a private address
range. If the address is not part of a private range, or not a valid IP address, the command
will throw an error:

using namespace System.Management.Automation

class ValidatePrivateIPAddressAttribute :
ValidateEnumeratedArgumentsAttribute {
 Hidden $ipAddress = [IPAddress]::Empty

 Hidden [Boolean] IsValidIPAddress([String]$value) {
 return [IPAddress]::TryParse($value, [Ref]$this.ipAddress)
 }

 Hidden [Boolean] IsPrivateIPAddress([IPAddress]$address) {
 $bytes = $address.GetAddressBytes()
 $isPrivateIPAddress = switch ($null) {
 { $bytes[0] -eq 192 -and
 $bytes[1] -eq 168 } { $true; break }
 { $bytes[0] -eq 172 -and
 $bytes[1] -ge 16 -and
 $bytes[2] -le 31 } { $true; break }
 { $bytes[0] -eq 10 } { $true; break }
 default { $false }
 }
 return $isPrivateIPAddress
 }

https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0
https://docs.microsoft.com/en-us/dotnet/api/system.management.automation.validateenumeratedargumentsattribute.validateelement?view=powershellsdk-1.1.0

Classes and Enumerations Chapter 18

[480]

 [Void] ValidateElement([Object]$element) {
 if (-not $element -is [IPAddress]) {
 if ($this.IsValidIPAddress($element)) {
 $element = $this.ipAddress
 } else {
 throw '{0} is an invalid IP address format' -f $element
 }
 }
 if (-not $this.IsPrivateIPAddress($element)) {
 throw '{0} is not a private IP address' -f $element
 }
 }
}

The attribute defined in the preceding code may be used with any parameter to validate IP
addressing, as shown in the following short function:

function Test-Validate {
 [CmdletBinding()]
 param (
 [ValidatePrivateIPAddress()]
 [IPAddress]$IPAddress
)

 Write-Host $IPAddress
}

Validation like this can be implemented with ValidateScript, which also inherits from
ValidateEnumeratedArgumentsAttribute. ValidateScript can call functions,
centralizing the validation code.

Classes and DSC
Classes in PowerShell exist because of Desired State Configuration (DSC). DSC resources
written as PowerShell classes are very succinct; they avoid the repetition inherent in script-
based resources. Script-based resources must at least duplicate the param block. Class-
based resources also avoid the need for a separately generated schema document and have
a simpler module layout.

Class-based DSC resources in a module must be explicitly exported using the
DscResourcesToExport key in a module manifest document.

Classes and Enumerations Chapter 18

[481]

The class must include a DscResource attribute. Each property a user is expected to set
must have a DscProperty attribute. At least one property must be the Key property of the
DscProperty attribute set. The class must implement the Get, Set, and Test methods.

Class-based resources may use inheritance to simplify an implementation as required; this
is especially useful if a group of resources uses the same code to act out changes.

A basic DSC resource is defined as follows:

enum Ensure {
 Absent
 Present
}

[DscResource()]
class MyResource {
 [DscProperty(Key)]
 [Ensure]$Ensure

 [MyResource] Get() { return $this }

 [Void] Set() { }

 [Boolean] Test() { return $true }
}

This resource implements all of the required methods, but it performs no actions.

Like a good function, a good DSC resource should strive to be really good at one thing and
one thing only. If a particular item has a variety of configuration options, it is often better to
have a set of similar resources than a single resource that attempts to do it all.

The sections that follow will focus on the creation of a short resource that sets the computer
description.

This resource will need to make a change to a single registry value. The computer
description is set under the
HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters key using
the svrcomment string value.

The starting point for the resource is shown here:

enum Ensure {
 Absent
 Present
}

Classes and Enumerations Chapter 18

[482]

[DscResource()]
class ComputerDescription {
 [DscProperty(Key)]
 [Ensure]$Ensure

 [DscProperty()]
 [String]$Description

 Hidden [String] $path =
'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'
 Hidden [String] $valueName = 'svrcomment'

 [ComputerDescription] Get() { return $this }

 [Void] Set() { }

 [Boolean] Test() { return $true }
}

Each of the methods in the class must be implemented for the resource to function.

Implementing Get
The Get method should evaluate the current state of the resource. The registry key will
exist, but the registry value may be incorrect, or may not exist.

The Get method will act as follows:

If a the value is present, it will set the Ensure property to Present and update
the value of the Description property.
If the value is not present, it will set the Ensure property to Absent only.

The following snippet implements these actions:

[ComputerDescription] Get() {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 $this.Ensure = 'Present'
 $this.Description = $key.GetValue($this.valueName)
 } else {
 $this.Ensure = 'Absent'
 }
 return $this
}

Classes and Enumerations Chapter 18

[483]

The Get method must return an instance of the class. It can either return the existing
instance, return $this, or generate a new instance, for instance by returning a hashtable:

[ComputerDescription] Get() {
 $computerDescription = @{}

 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 $computerDescription.Ensure = 'Present'
 $computerDescription.Description = $key.GetValue($this.valueName)
 } else {
 $computerDescription.Ensure = 'Absent'
 }
 return $computerDescription
}

The hashtable returned by the preceding function is automatically cast to the class,
creating a new instance.

The Get method is only used when explicitly invoked. It is not used by either Set or Test.

Implementing Set
The Set method deals with making a change, if a change is required. Set can ordinarily
assume that Test has been run, and therefore that a change is required.

As the resource allows a user to ensure a value is either present or absent, it must handle
the creation and deletion of the value:

[Void] Set() {
 $params = @{
 Path = $this.path
 Name = $this.valueName
 }
 if ($this.Ensure -eq 'Present') {
 New-ItemProperty -Value $this.Description -Type String -Force
@params
 } else {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 Remove-ItemProperty @params
 }
 }
}

Classes and Enumerations Chapter 18

[484]

This version of Set uses the Force parameter of New-ItemProperty to overwrite any
existing values of the same name. Using Force also handles cases where the value exists
but the value type is incorrect.

Implementing Test
The Test method is used to determine whether Set should be run. DSC invokes Test
before Set. The Test method returns a Boolean value.

The Test method must perform the following tests to ascertain the state of this
configuration item:

When Ensure is present, fail if the value does not exist.
When Ensure is present, fail if the value exists, but the description does not
match the requested value.
When Ensure is absent, fail if the value name exists.
Otherwise, pass.

The following snippet implements these tests:

[Boolean] Test() {
 $key = Get-Item $this.Path
 if ($this.Ensure -eq 'Present') {
 if ($key.GetValueNames() -notcontains $this.valueName) {
 return $false
 }
 return $key.GetValue($this.valueName) -eq $this.Description
 } else {
 return $key.GetValueNames() -notcontains $this.valueName
 }
 return $true
}

Each of these methods must be copied back into the resource class.

Classes and Enumerations Chapter 18

[485]

Using the resource
The complete class, ComputerDescription, incorporating each of the preceding methods, is
shown here:

enum Ensure {
 Absent
 Present
}

[DscResource()]
class ComputerDescription {
 [DscProperty(Key)]
 [Ensure]$Ensure

 [DscProperty()]
 [String]$Description

 Hidden [String] $path =
'HKLM:\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters'
 Hidden [String] $valueName = 'svrcomment'

 [ComputerDescription] Get() {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 $this.Ensure = 'Present'
 $this.Description = $key.GetValue($this.valueName)
 } else {
 $this.Ensure = 'Absent'
 }
 return $this
 }

 [Void] Set() {
 $params = @{
 Path = $this.path
 Name = $this.valueName
 }
 if ($this.Ensure -eq 'Present') {
 New-ItemProperty -Value $this.Description -Type String -Force
@params
 } else {
 $key = Get-Item $this.Path
 if ($key.GetValueNames() -contains $this.valueName) {
 Remove-ItemProperty @params
 }
 }
 }

Classes and Enumerations Chapter 18

[486]

 [Boolean] Test() {
 $key = Get-Item $this.Path
 if ($this.Ensure -eq 'Present') {
 if ($key.GetValueNames() -notcontains $this.valueName) {
 return $false
 }
 return $key.GetValue($this.valueName) -eq $this.Description
 } else {
 return $key.GetValueNames() -notcontains $this.valueName
 }
 return $true
 }
}

DSC will only find the class using Get-DscResource if the following are true:

The class is saved in a module.
The module exports the DSC resource.
The module is in one of the paths in $env:PSMODULEPATH.
The module path is system-wide, accessible by the Local Configuration Manager
(LCM).

The following script creates the files and folders required to achieve under Program Files.
The script will require administrative rights:

$modulePath = 'C:\Program Files\WindowsPowerShell\Modules'

$params = @{
 Path = Join-Path $modulePath 'LocalMachine\1.0.0\LocalMachine.psm1'
 ItemType = 'File'
 Force = $true
}
New-Item @params

$params = @{
 Path = Join-Path $modulePath
'LocalMachine\1.0.0\LocalMachine.psd1'
 RootModule = 'LocalMachine.psm1'
 DscResourcesToExport = 'ComputerDescription'
}
New-ModuleManifest @params

The LocalMachine.psm1 file should be edited, adding the Ensure enumeration and the
ComputerDescription class.

Classes and Enumerations Chapter 18

[487]

Once the class is in a module, it can be used with the using module command:

using module LocalMachine

$class = [ComputerDescription]@{
 Ensure = 'Present'
 Description = 'Computer description'
}

Individual methods may be invoked, for example, Get may be run:

PS> $class.Get()

Ensure Description
------ -----------
Absent Computer description

As the module is under a known module path, Get-DscResource should be able to find it
immediately:

PS> Get-DscResource ComputerDescription

ImplementedAs Name ModuleName Version
Properties
------------- ---- ---------- ------- --------
--
PowerShell ComputerDescription LocalMachine 1.0 {Ensure,
DependsOn, Description,...

The Invoke-DscResource command may be used to run individual methods without
creating a DSC configuration document:

$params = @{
 Name = 'ComputerDescription'
 ModuleName = 'LocalMachine'
 Method = 'Test'
 Property = @{
 Ensure = 'Present'
 Description = 'Some description'
 }
 Verbose = $true
}
Invoke-DscResource @params

Running Invoke-DscResource will require administrative rights. Invoke-DscResource
interacts with the LCM to execute the resource and will report back whether or not the
configuration item is in the desired state.

Classes and Enumerations Chapter 18

[488]

Summary
In this chapter, we explored enumerations and classes in PowerShell. Classes were
introduced with PowerShell 5.0 and continue to expand with PowerShell Core.

We covered how to create a class, including defining properties, constructors, and methods.

We looked at a few different uses of classes, starting with argument-transformation
attributes and validation attributes, and finishing with class-based DSC resources.

In the next chapter, we will explore building modules, including how modules might be
structured during development and assembled into a single file for use.

19
Building Modules

Modules were introduced with PowerShell 2. A module groups a set of commands
together, most often around a common system, service, or purpose.

PowerShell uses several different types of module, such as manifest, binary, and script. A
manifest module is typically made up of a set of nested modules. A binary module uses a
compiled library (.dll file) to implement commands. This chapter focuses on script
modules.

In this chapter we will cover the following topics:

Module layout
Multi-file module layout
Module scope
Module initialization and removal

Technical requirements
The final module content used in this chapter is available on GitHub at https:/ /github.
com/indented-automation/ LocalMachine.

The content of the repository may be used to experiment with the different layouts
explored in this chapter. The content may be used to ensure that any imported module
content is functional.

https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine
https://github.com/indented-automation/LocalMachine

Building Modules Chapter 19

[490]

Module layout
A module consists of a single file with a psm1 extension, known as the root module, which
contains all the functions of that module.

A module may include a manifest file with a psd1 extension that contains extended
information (metadata) about the module.

The previous chapter ended with the creation of a DSC resource to set a
description for a computer. This was made part of a LocalMachine
module. The LocalMachine module will be rewritten in this chapter.

If the LocalMachine module still exists under C:\Program
Files\WindowsPowerShell\Modules, it can be deleted at this time.

Several modules exist to help with creating the initial layout of a module. The Plaster and
PSModuleDevelopment modules are both reasonable examples:

Plaster: https:/ / github. com/ PowerShell/ Plaster

PSModuleDevelopment: https:/ /www. powershellgallery. com/ packages/
PSModuleDevelopment

The root module
The root module, a file with a psm1 extension, is given the same name as the module itself
and will be nested directly under a folder that bears the module name.

When a module is installed into one of the folders in $env:PSModulePath, it may have the
following structure:

Modules
| -- LocalMachine
 | -- LocalMachine.psm1

The module can be imported immediately by passing the path to the LocalMachine folder
to Import-Module. If the module content changes, the module should either be removed
using Remove-Module, or the Force parameter should be used with Import-Module.

https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/Plaster
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment
https://www.powershellgallery.com/packages/PSModuleDevelopment

Building Modules Chapter 19

[491]

Adding temporary module paths

Environment variables modified using $env are not persistent; the change
will disappear when PowerShell is closed. A temporary module path
might be added to simplify testing while writing a module:

$env:PSMODULEPATH = 'C:\Workspace;{0}' -f
$env:PSMODULEPATH

Modules placed in C:\Workspace may be discovered using Get-
Module and Get-Command.

The LocalMachine.psm1 file includes all of the functions that make up the module. The
content of LocalMachine.psm1 is shown in the following example; the body of the
functions has been omitted in this snippet:

function Get-ComputerDescription { }
function Set-ComputerDescription { }

All of the functions in a module are made available to a user by default. The names of the
functions will be shown when Get-Module is run, shown as follows:

PS> Get-Module LocalMachine -ListAvailable

 Directory: C:\Workspace

ModuleType Version Name PSEdition ExportedCommands
---------- ------- ---- --------- ----------------
Script 0.0 LocalMachine Desk {Get-
ComputerDescription, Set-ComputerDescription}

The example shows that both of the functions are exported. If either function is run, the
module will be automatically imported.

The Export-ModuleMember command
All of the functions in a module are exported by default. The Export-ModuleMember
command may be used to limit this to a named set of commands.

Building Modules Chapter 19

[492]

If the Export-ModuleMember command is used, certain functions can be hidden from
view:

function Get-ComputerDescription { }
function Set-ComputerDescription { }
function GetRegistryValueInfo { }

Export-ModuleMember -Function Get-ComputerDescription, Set-
ComputerDescription

The result of this is a module that has a hidden, or private,
GetRegistryValueInfo function.

Naming private functions

As private functions are not exported, they are not subject to the same
discovery rules as exported commands.

My convention is to use verb-noun pairing with approved verbs, but to
omit the hyphen.

Module information displayed using Get-Module is cached; if the module content does not
display correctly, run Get-Module LocalMachine -ListAvailable -Refresh or
restart the PowerShell session.

Wildcards may be used with Export-ModuleMember. Wildcards will affect the autoloader,
and explicit names are preferred. For example:

Export-ModuleMember -Function *-ComputerDescription

Export-ModuleMember can be used to export functions, cmdlets, variables, and aliases. It
cannot be used to export DSC resources, it cannot be used to version a module, and it
cannot provide other information about the module. The module manifest greatly expands
on the capabilities of Export-ModuleMember.

Module manifest
The module manifest is a PowerShell data file that contains metadata for the module. The
manifest includes critical information, such as the version number, the files to import, and
the commands, aliases, and classes that it contains. The manifest may include the software
license and a project URL if they are applicable.

Building Modules Chapter 19

[493]

The use of a manifest is mandatory if a module will be published on the PowerShell Gallery
or any other repository.

The New-ModuleManifest command may be used to create the manifest from scratch. The
following example assumes the module is a C:\workspace path:

$params = @{
 Path = 'C:\workspace\LocalMachine\LocalMachine.psd1'
 RootModule = 'LocalMachine.psm1'
 ModuleVersion = '1.0.0'
 FunctionsToExport = 'Get-ComputerDescription', 'Set-
ComputerDescription'
}
New-ModuleManifest @params

This manifest replaces much of the functionality of the Export-ModuleMember command.
The manifest can be used to define functions to export; Export-ModuleMember is still
required if variables are to be exported.

As with Export-ModuleMember, a wildcard pattern may be used for
FunctionsToExport, however, this will make it impossible for the autoloader to do its job
consistently.

The New-ModuleManifest command is complemented by Test-ModuleManifest. The
Test-ModuleManifest command will import the data file and raise errors if problems are
detected with the manifest. The Import-PowerShellDataFile command can also be used
to import the content of the manifest.

In theory, in addition to creating a manifest for the first time, New-ModuleManifest can be
used to update the content of an existing file. Import-PowerShellDataFile can be used
to import the existing content and those values can be passed to New-ModuleManifest:

$path = 'C:\workspace\LocalMachine\LocalMachine.psd1'
$manifest = Import-PowerShellDataFile -Path
'C:\workspace\LocalMachine\LocalMachine.psd1'
$manifest.FunctionsToExport = '*'
New-ModuleManifest -Path 'C:\workspace\LocalMachine\LocalMachine-new.psd1'
@manifest

In practice, New-ModuleManifest will not correctly handle the nested PrivateData
section. A similar problem applies to the Update-ModuleManifest command that comes
with the PowerShellGet module.

Building Modules Chapter 19

[494]

The Configuration module on the PowerShell Gallery (https:/ /www.
powershellgallery. com/ packages/ Configuration) provides an alternative. Once installed,
the command may be used to tweak content in an existing manifest, as follows:

Install-Module Configuration -Scope CurrentUser

$params = @{
 Path = 'C:\workspace\LocalMachine\LocalMachine.psd1'
 Property = 'RootModule'
 Value = 'LocalMachine.psm1'
}
Update-Metadata @params

The Update-Metadata command cannot write to commented keys in the manifest, and
removing comment characters is beyond the scope of Update-Metadata.

Export-ModuleMember or FunctionsToExport
When using a manifest, the Export-ModuleMember command can be removed. Instead,
the FunctionsToExport and the other export fields in manifest can be filled in.

It is possible to use wildcards in the FunctionsToExport field. However, this is a bad
practice in production as it defeats the module's autoloader.

Side-by-side versioning
Multiple versions of the same module can exist on a system. As the version is only defined
in the manifest, having a manifest is required to support side-by-side versioning.

When a versioned module is installed, a new folder is added to the hierarchy, as follows:

Modules
| -- LocalMachine
 | -- 1.0.0
 | -- LocalMachine.psd1
 | -- LocalMachine.psm1

Each new version of the module creates a new folder.

The preceding structure is used when a module is installed. The structure is not particularly
useful when developing a module, especially if changes are being tracked using a source-
control system. Every new release or update to the module would mean renaming the
version folder, effectively changing everything.

https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration
https://www.powershellgallery.com/packages/Configuration

Building Modules Chapter 19

[495]

Dependencies
A PowerShell module may have one or more dependencies. The dependencies should be
included in the module manifest under the RequiredModules key.

Dependencies may be defined using a module name only, or alternatively as a module
specification. For example:

RequiredModules = @(
 'Configuration'
 @{ ModuleName = 'Pester'; ModuleVersion = '4.6.0' }
)

The hashtable used in the preceding example may also use the MaximumVersion or
RequiredVersion keys. If a module is loaded by name, the latest version will be used.

When publishing a module, the Publish-Module command will attempt to validate stated
dependencies. The dependencies should be locally available or publishing may fail.

Multi-file module layout
PowerShell does not enforce a particular layout for a module in most cases, and there is a
great deal of variety in the layout of modules on the internet.

An exception to this is script-based DSC resources. Script-based resources must be placed
in a DscResources folder, and each resource is implemented as a separate module under
that folder. For example:

LocalMachine
| -- DscResources
| | -- LocalMachine
| | -- ComputerDescription.psd1 (Optional)
| | -- ComputerDescription.psm1
| | -- ComputerDescription.schema.mof
| -- LocalMachine.psd1
| -- LocalMachine.psm1

Building Modules Chapter 19

[496]

In some cases, a module will only have a root module file and perhaps a manifest. At the
other extreme, a module may split every function in the module into a separate file. Other
modules fall anywhere in between these two examples. There are advantages to using
either of these approaches which:

A run-time consideration: A module that has only a single root module file will
import much more quickly than a module split into many files.
A development consideration: It is easier to find content within a module that is
split into many files. And it is easier to work on a multi-user project where
content is broken down.

One of the most popular multi-file layouts is shown as follows:

LocalMachine (Project folder)
| -- LocalMachine (Module content folder)
 | -- classes
 | | -- ComputerDescription.ps1
 | -- enum
 | | -- Ensure.ps1
 | -- private
 | | -- GetRegistryValueInfo.ps1
 | -- public
 | | -- Get-ComputerDescription.ps1
 | | -- Remove-ComputerDescription.ps1
 | | -- Set-ComputerDescription.ps1
 | -- LocalMachine.psd1
 | -- LocalMachine.psm1

The project folder is most often named after the module. It exists to host content that is not
part of the published module, such as source-control specific files (such as .gitignore),
readme files, or scripts used to build and test the module.

A popular variation in the preceding structure names the module content folder Source, or
Src, instead of using the name of the module. Complex modules will often add sub-folders
to each of those used in the preceding example to group common elements together.

Dot-sourcing module content
When a module is divided in this manner, the root module must contain everything
required to load the module content. This is most often achieved by dot-sourcing each of
the files in the sub-folders adjacent to the root module. One possible way to do this is to use
Get-ChildItem to find all of the ps1 files beneath a certain point and dot-source those.

Building Modules Chapter 19

[497]

The following snippet uses this approach:

Get-ChildItem (Join-Path $psscriptroot 'private') {
 . $_.FullName
}
$functionsToExport = Get-ChildItem (Join-Path $psscriptroot 'public') {
 . $_.FullName
 $_.BaseName
}
Export-ModuleMember -Function $functionsToExport

The snippet assumes Export-ModuleMember is to be used, and that the manifest has
FunctionsToExport set to *. As the files are named after the functions, the BaseName
property of each item is used to build an array of functions to pass to Export-
ModuleMember.

The disadvantage of this approach is that it loads all ps1 files without further
consideration. Any additional files dropped into the module will load as well. While a
module is undergoing development, this behavior may be desirable, but it represents a
small risk for anyone installing the module.

An alternative, but higher-maintenance, approach, is to name the files to import instead of
allowing any file at all to load. For example:

$private = 'GetRegistryValueInfo'
$public = @(
 'Get-ComputerDescription'
 'Remove-ComputerDescription'
 'Set-ComputerDescription'
)

foreach ($item in $private) {
 . '{0}\private\{1}.ps1' -f $psscriptroot, $item
}
foreach ($item in $public) {
 . '{0}\public\{1}.ps1' -f $psscriptroot, $item
}
Export-ModuleMember -Function $public

With this version, module content is loaded with an explicit name. Additional files that are
erroneously placed in the module folder will not be processed.

Building Modules Chapter 19

[498]

Merging module content
Dot-sourcing module content is useful when a module is being developed, it allows a
developer to realize the benefits of having module content split into separate files. It is
possible to leave the module as it is, it can be published; many popular modules are. To
realize the benefit of a single root module file, the content might be merged. This operation
can be performed when testing a module, or when preparing a module for release.

There are a number of modules available that can be used to perform this step. For
example, the ModuleBuilder module is capable of merging module content. The
ModuleBuilder module requires a build.psd1 file in the root of the module (adjacent to
LocalMachine.psd1). The build.psd1 file does not need to contain more than an empty
hashtable; it can be used to customize the merge process.

With the file present, the following command may be used to merge the module content:

Install-Module ModuleBuilder -Scope CurrentUser

Build-Module -SourcePath
C:\Workspace\LocalMachine\LocalMachine\LocalMachine.psd1

If the command is run from the same directory as build.psd1, the SourcePath argument
can be omitted. For example:

Set-Location C:\Workspace\LocalMachine\LocalMachine
Build-Module

The resulting module file is placed in the output folder under the project folder. The output
path is configurable. The merge process itself is not very complicated. The following script
can be used to achieve a similar result when running from the project root folder
(C:\Workspace\LocalMachine):

$configuration = @{
 ModuleName = Split-Path $psscriptroot -Leaf
 FoldersToMerge = @(
 'enum*'
 'class*'
 'private*'
 'public*'
)
 FilesToCopy = '*.ps1xml', '*.psd1'
 FilesToExclude = 'build.psd1'
}

try {
 $ErrorActionPreference = 'SilentlyContinue'

Building Modules Chapter 19

[499]

 if (Test-Path 'output') {
 Remove-Item 'output' -Recurse -Force
 }
 $outputPath = New-Item 'output' -ItemType Directory

 Push-Location (Join-Path $psscriptroot $configuration.ModuleName) -
StackName build

 Get-ChildItem $configuration.FilesToCopy -Exclude
$configuration.FilesToExclude |
 Copy-Item -Destination $outputPath -Verbose

 Get-ChildItem $configuration.FoldersToMerge -Directory |
 Get-ChildItem -Filter *.ps1 -File -Recurse |
 Get-Content -Raw |
 ForEach-Object {
 $_.Trim()
 ''
 } |
 Add-Content ('{0}\{1}.psm1' -f $outputPath,
$configuration.ModuleName)
} finally {
 Pop-Location -StackName build
}

As a module grows in complexity, it may be desirable to perform additional tasks during
the build step. For example, tests might be run, help files might be regenerated, the module
might be published. A more extensive build script might perform these actions.

Module scope
The content of the root module file executes when a module is imported. Functions are
imported into the module scope and exported into global scope if they are included in the
list of functions to export.

Variables may be created in the module scope, functions within the module may consume
those variables. Such variables might be created in the root module, or they may be created
when a command is run.

The $Script: scope prefix may be used to explicitly access the scope and it clearly
identifies such variables where they are used. Helper functions might be created to provide
obvious access to the variable content.

Building Modules Chapter 19

[500]

This approach is illustrated in the following example. This pattern is common for modules
that interact with services that require an authentication token, such as a REST web service:

function Connect-Service {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String]$Server
)

 $Script:connection = [PSCustomObject]@{
 Server = $Server
 PSTypeName = 'ServiceConnectionInfo'
 }
}

function Get-ServiceConnection {
 [CmdletBinding()]
 param ()

 if ($Script:connection) {
 $Script:connection
 } else {
 throw [InvalidOperationException]::new('Not connected to the
service')
 }
}

function Get-ServiceObject {
 [CmdletBinding()]
 param (
 [PSTypeName('ServiceConnectionInfo')]
 $Connection = (Get-ServiceConnection)
)
}

Considering the preceding snippet:

Connect-Service stores the connection object in the module scope.
Get-ServiceConnection retrieves that cached connection or throws an error if
the connection does not exist.
The Get-ServiceObject and any other function use that cached value as the
default value for a Connection parameter. The end user may override that value
by providing their own service connection.

Module-scoped variables can also be created by creating a variable in the root module file.

Building Modules Chapter 19

[501]

Accessing module scope
It is possible to access module scope from the global scope by passing a module
information object to the call operator.

The following snippet is used to demonstrate accessing module scope. The module consists
of one public function, one private function, and a module-scoped variable:

function GetModuleServiceConnection {
 [CmdletBinding()]
 param ()

 $Script:connection
 }

function Connect-ModuleService {
 [CmdletBinding()]
 param (
 [String]$Name
)

 $Script:connection = $Name
}

$Script:connection = 'DefaultConnection'

Export-ModuleMember -Function Connect-ModuleService

The following snippet should be saved to a file named ModuleService.psm1, then the
module should be imported using Import-Module .\ModuleService.psm1.

By default, only the Connect-ModuleService function is available. The value of the
script/module-scoped connection variable may be retrieved as follows:

PS> & (Get-Module ModuleService) { $connection }
DefaultConnection

If the Connect-ModuleService command is used, the value returned by the preceding
command will change. The same approach may be used to interact with functions that are
not normally exported by the module. For example, the GetModuleServiceConnection
function can be called:

& (Get-Module ModuleService) { GetModuleServiceConnection }

Building Modules Chapter 19

[502]

Finally, as the command is executing in the scope of the module, this technique may be
applied to list the commands within the module, as follows:

& (Get-Module ModuleService) { Get-Command -Module ModuleService }

This technique is useful when debugging modules that heavily utilize module scope.

Initializing and removing modules
The content of the root module executes every time a module is imported. A root module
file may be used to perform initialization steps, perhaps filling cache files, importing static
data, or setting a default configuration. These steps are extra code that must be added to the
root module, perhaps at the beginning or end of the file.

If a module is being built, and the root module is automatically generated, the additional
content would need to be drawn in by the merge script. The ModuleBuilder module,
introduced when exploring merging content in this chapter, achieves this by using
the Prefix and Suffix parameters. Values for this parameter may be supplied when
running Build-Module or added to the build.psd1 file. These parameters allow the
developer to inject the content of a named script at the beginning (prefix), or end (suffix), of
the root module file.

The ScriptsToProcess key
The RequiredAssemblies and RequiredModules keys of the module manifest both
execute before the root module is imported, accounting for normal prerequisites.

In rare cases, it is desirable to run commands in the users scope before importing the
module. The ScriptsToProcess key in the module manifest is present for this purpose.
Scripts placed here are executed in the users scope and cannot access commands and
variables internal to the module.

The OnRemove event
The ModuleInfo object provides access to an OnRemove event handler. This event is
triggered if the module is removed from the user's session using the Remove-Module
command. The event is not triggered if the session is closed. This event handler may be
used to trigger a cleanup of the artifacts created by the module, if any are required.

Building Modules Chapter 19

[503]

The following module creates a global variable in the user's scope. Exporting the variable
from the module using VariablesToExport and Export-ModuleMember may have been
a better approach, the variable would have been automatically removed. An OnRemove
handler is added to the module to forcefully remove the global variable with the module
and the handler is created in the root module file:

$Global:VariableName = 'Value'
$executionContext.SessionState.Module.OnRemove = {
 if (Test-Path variable:VariableName) {
 Remove-Variable VariableName -Scope Global
 }
}

If the preceding module content is placed in TestOnRemove.psm1, and the module file is
imported, the VariableName variable will be present:

PS> Get-Variable VariableName

Name Value
---- -----
VariableName Value

When the module is removed, using Remove-Module, the variable is removed as well:

PS> Remove-Module TestOnRemove
PS> Test-Path variable:VariableName
False

Remove-Module and the OnRemove event handler cannot overcome limitations such as the
inability to unload assemblies. If the module contains an assembly, .dll file, and that is
loaded by the module; the assembly will remain loaded until the PowerShell session is
closed.

Summary
This chapter explored the creation of modules, starting with a basic module that contained
only a root module, extending upward into modules that contained a number of functions.
We explored using modules with many files while developing as well as merging a module
for publication. Finally, working inside module scope, we looked at initialization and
removal.

In the next chapter, we will explore static analysis and unit testing with Pester to validate
and verify the behavior of a module before it is publicly released.

20
Testing

The goal of testing in PowerShell is to ensure that the code works as intended. Automatic
testing ensures that this continues to be the case as code is changed over time.

Testing often begins before code is ready to execute. PSScriptAnalyzer can look at code
and provide advice on best practices. This is known as static analysis.

Unit tests pick up when the code is ready to execute. Tests may exist before the code when
you are following practices such as Test-Driven Development (TDD). A unit test focuses
on the smallest parts of a script, function, module, or class. A unit test strives to validate the
inner workings of a unit of code, ensuring that conditions evaluate correctly, that it
terminates or returns where it should, and so on.

Testing might extend into systems and acceptance testing, although this often requires a
test environment to act against. Acceptance testing may include black-box testing, used to
verify that a command accepts known parameters and generates an expected set of results.
Black-box testing, as the name suggests, does not concern itself with understanding how a
block of code arrives at a result.

The following topics will be covered in this chapter:

Static analysis
Testing with Pester

Technical requirement
Pester version 4.6.0 is required by this chapter.

Testing Chapter 20

[505]

Static analysis
Static analysis is the process of evaluating code without executing it. In PowerShell, static
analysis makes use of an Abstract Syntax Tree (AST): a tree-like representation of a block
of code. AST was introduced with PowerShell 3.

AST
The AST in PowerShell is available for any script block; an example is as follows:

{ Write-Host 'content' }.Ast

The script block that defines a function can be retrieved via Get-Command:

function Write-Content { Write-Host 'content' }
(Get-Command Write-Content).ScriptBlock

Or, the script block defining a function can be retrieved using Get-Item:

function Write-Content { Write-Host 'content' }
(Get-Item function:\Write-Content).ScriptBlock

It is possible to work down through the content of the script block using AST. For example,
the first argument for the Write-Host command might be accessed, as follows:

{ Write-Host 'content' }.Ast.
 Endblock.
 Statements.
 PipelineElements.
 CommandElements[1]

The preceding approach is rough, and simply extracts the second command element from
the first statement in the end block.

A visual approach
The ShowPSAst module, available in the PowerShell Gallery, may be used
to visualize the AST tree. Install the module with: Install-Module
ShowPSAst -Scope CurrentUser.

It can be run against a function, a module, a script block, and so on: Show-
Ast { Write-Host 'content' }.

Testing Chapter 20

[506]

Rather than following the tree so literally, it is possible to execute searches against the tree.
For example, the Write-Host command is not necessarily a sensible inclusion; a search for
occurrences of the command can be constructed as follows:

{ Write-Host 'content' }.Ast.FindAll(
 {
 param ($ast)

 $ast -is [Management.Automation.Language.CommandAst] -and
 $ast.GetCommandName() -eq 'Write-Host'
 },
 $true
)

In the preceding example, the FindAll method expects two arguments.

The first argument is a script block; a predicate. The predicate accepts a single argument: a
node from the tree. A parameter may be declared to give the argument a name;
alternatively, the node can be referenced using $args[0]. The argument is tested by a
comparison that will return true or false.

The second argument is used to decide whether the search should extend to include nested
script blocks.

Tokenizer
In addition to the AST, PowerShell can also convert a script into a series of tokens, each
representing an element of a script.

In PowerShell 2, the Tokenize static method
of System.Management.Automation.PSParser may be used; an example is as follows:

$script = @'
A short script
if ($true) {
 Write-Host 'Hello world'
}
'@
$errors = @()
$tokens = [System.Management.Automation.PSParser]::Tokenize($script,
[Ref]$errors)

Testing Chapter 20

[507]

The tokens array contains objects describing each part of the script. The first of these is
shown as follows; it describes the comment at the start of the script:

Content : # A short script
Type : Comment
Start : 0
Length : 16
StartLine : 1
StartColumn : 1
EndLine : 1
EndColumn : 17

With PowerShell 3, two static methods on
the System.Management.Automation.Language.Parser Parser type may be used:
ParseInput and ParseFile. The two methods return an AST; tokens are returned via a
reference to an array. An example is as follows:

$script = @'
A short script
if ($true) {
 Write-Host 'Hello world'
}
'@
$tokens = $errors = @()
$ast = [System.Management.Automation.Language.Parser]::ParseInput(
 $script,
 [Ref]$tokens,
 [Ref]$errors
)

The token that's returned is structured differently from the token returned by the Tokenize
method in PowerShell 2. The comment token is shown as follows:

Text : # A short script
TokenFlags : ParseModeInvariant
Kind : Comment
HasError : False
Extent : # A short script

Both AST nodes and the PowerShell 3 token objects are used by PSScriptAnalyzer.

Testing Chapter 20

[508]

PSScriptAnalyzer
The evaluation of elements in the AST is the method used by the PSScriptAnalyzer tool.
The tool can be installed using the following code:

Install-Module PSScriptAnalyzer -Scope CurrentUser

PSScriptAnalyzer can be used to inspect a script with the Invoke-
ScriptAnalzyer command. For example, the tool will flag warnings and errors about use
of the Password parameter and variable, as it is not considered to be a good practice:

[CmdletBinding()]
param (
 [Parameter(Mandatory)]
 [String]$Password
)

$credential = [PSCredential]::new(
 '.\user',
 ($Password | ConvertTo-SecureString -AsPlainText -Force)
)
$credential.GetNetworkCredential().Password

The script is saved to a file named Show-Password.ps1, and the analyzer is run against
the file , as shown here:

PS> Invoke-ScriptAnalyzer .\Show-Password.ps1 | Format-List

RuleName : PSAvoidUsingConvertToSecureStringWithPlainText
Severity : Error
Line : 9
Column : 18
Message : File 'Show-Password.ps1' uses ConvertTo-SecureString with
plaintext. This will expose
 secure information. Encrypted standard strings should be used
instead.

RuleName : PSAvoidUsingPlainTextForPassword
Severity : Warning
Line : 3
Column : 5
Message : Parameter '$Password' should use SecureString, otherwise this
will expose
 sensitive information. See ConvertTo-SecureString for more
information.

Testing Chapter 20

[509]

The script analyzer raises one error and one warning. The error notes that ConvertTo-
SecureString is used, exposing information that is supposed to be secure.

The warning suggests that password parameters should accept SecureString values
rather than a plain text string.

Suppressing rules
It is rarely realistic to expect any significant piece of code to pass all of the tests
that PSScriptAnalyzer will throw at it.

Individual tests can be suppressed at the function, script, or class level. The following
demonstrative function creates a PSCustomObject:

function New-Message {
 [CmdletBinding()]
 param (
 $Message
)

 [PSCustomObject]@{
 Name = 1
 Value = $Message
 }
}

Running PSScriptAnalyzer against a file containing the function will show the following
warning:

PS> Invoke-ScriptAnalyzer -Path .\New-Message.ps1 | Format-List

RuleName : PSUseShouldProcessForStateChangingFunctions
Severity : Warning
Line : 1
Column : 10
Message : Function 'New-Message' has verb that could change system state.
Therefore, the function
 has to support 'ShouldProcess'.

Given that this function creates a new object in the memory, and does not change the
system state, the message might be suppressed. This is achieved by adding a
SuppressMessage attribute before a param block:

function New-Message {
 [Diagnostics.CodeAnalysis.SuppressMessage(

Testing Chapter 20

[510]

 'PSUseShouldProcessForStateChangingFunctions',
 ''
)]
 [CmdletBinding()]
 param (
 $Message
)

 [PSCustomObject]@{
 Name = 1
 Value = $Message
 }
}

VS Code snippets

VS Code will offer to automatically complete the suppress message
attribute when starting to type the word suppress.

Rules are often suppressed as it becomes evident one will be triggered. The list of rules may
be viewed using the Get-ScriptAnalyzerRule command.

Custom script analyzer rules
The script analyzer utility allows custom rules to be defined and used. Custom rules might
be used to test for personal or organization-specific conventions when striving for a
consistent style; such conventions may not necessarily be widely adopted best practices.

Script analyzer rules must be defined in a module psm1 file. The path to the module file
may be passed in by using the CustomRulePath parameter, or may be defined in a script
analyzer configuration file.

Creating a custom rule
A script analyzer rule is a function within a module. A script analyzer allows rules to be
written to evaluate AST nodes or tokens.

The name of the function is arbitrary. The community examples use the verb measure;
however, use of this verb is not mandatory and does not affect discovery. The script
analyzer engine examines each function in the custom rule module, looking for parameters
following a particular style. If the such a parameter is found, the function is deemed to be a
rule.

Testing Chapter 20

[511]

If a rule is expected to act based on an AST node, the first parameter name must end with
ast. The parameter must use an AST type, such
as System.Management.Automation.Language.ScriptBlockAst.

If a rule is expected to act based on a token, the first parameter name must end with token
and must accept an array of tokens.

AST-based rules
Script analyzer rules are often very simple; it is not always necessary for a rule to perform
complex AST searches.

The following example evaluates the named blocks dynamicparam, begin, process, and
end. If such a block is declared in a function, script, or script block, and it is empty, the rule
will respond. The rule only accepts NamedBlockAst nodes; the script analyzer only passes
matching nodes to the rule, and therefore, the rule itself does not have to worry about
handling other node types:

using namespace Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic
using namespace System.Management.Automation.Language

function PSAvoidEmptyNamedBlocks {
 [CmdletBinding()]
[OutputType([Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic.Diagnostic
Record])]
 param (
 [NamedBlockAst]$ast
)

 if ($ast.Statements.Count -eq 0) {
 [DiagnosticRecord]@{
 Message = 'Empty {0} block.' -f $ast.BlockKind
 Extent = $ast.Extent
 RuleName = $myinvocation.MyCommand.Name
 Severity = 'Warning'
 }
 }
}

The rule returns DiagnosticRecord when it is triggered. The record is returned by the
script analyzer as long as the rule is not suppressed.

Testing Chapter 20

[512]

Token-based rules
Rules based on tokens evaluate an array of tokens to make a decision. The following
example looks for empty single-line comments in a block of code. Comments are not a part
of the syntax tree, so using tokens is the only option:

using namespace Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic
using namespace System.Management.Automation.Language

function PSAvoidEmptyComments {
 [CmdletBinding()]
[OutputType([Microsoft.Windows.PowerShell.ScriptAnalyzer.Generic.Diagnostic
Record])]
 param (
 [Token[]]$token
)

 $ruleName = $myinvocation.MyCommand.Name
 $token.Where{ $_.Kind -eq 'Comment' -and $_.Text.Trim() -eq '#'
}.ForEach{
 [DiagnosticRecord]@{
 Message = 'Empty comment.'
 Extent = $_.Extent
 RuleName = $ruleName
 Severity = 'Information'
 }
 }
}

As the name suggests, the rule will trigger when it encounters an empty comment.

Using custom rules
Custom rules may be used with the CustomRulePath parameter. If the two rules were
saved in a Rules.psm1 file, they can be used as follows:

$script = @'
function Get-CurrentProcess {
 [CmdletBinding()]
 param ()

 begin { }
 process { }
 end {
 #
 # Get the current process

Testing Chapter 20

[513]

 #
 Get-Process -Id $PID
 }
}
'@

Invoke-ScriptAnalyzer -ScriptDefinition $script -CustomRulePath
.\Rules.psm1

The script analyzer will show each triggered rule, as follows:

RuleName Severity ScriptName Line Message
-------- -------- ---------- ---- -------
PSAvoidEmptyComments Information 9 Empty comment.
PSAvoidEmptyComments Information 11 Empty comment.
PSAvoidEmptyNamedBlocks Warning 5 Empty Begin
block.
PSAvoidEmptyNamedBlocks Warning 6 Empty Process
block.

The script analyzer also allows custom rules to be defined by using a configuration file. The
configuration file may be either explicitly or implicitly referenced, as described in the script
analyzer's documentation (https:/ /github. com/ PowerShell/ PSScriptAnalyzer).

VS Code allows a settings path to be globally defined (across any PowerShell project) by
defining a value for powershell.scriptAnalysis.settingsPath.

Testing with Pester
The PowerShell Pester module can be used to build unit tests for scripts and functions.
Unit tests target the smallest possible unit of code, which, in PowerShell, is likely to be a
function or a method in a PowerShell class.

Pester tests are saved in a file name ending with .tests.ps1 and executed using
the Invoke-Pester command. Invoke-Pester finds files named *.tests.ps1 under a
given path and executes all of the tests in each.

Describe and Should statements may also be entered in the console when exploring
syntax, but this is not the normal method of defining and running tests.

https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer
https://github.com/PowerShell/PSScriptAnalyzer

Testing Chapter 20

[514]

While Pester is included with Windows 10, it is not the latest version. The latest version
may be installed from PSGallery, as follows:

Install-Module Pester -Force

Why write tests?
A set of tests can prevent a bug making it out of the development environment, whether as
the result of a change, or as a part of a new feature. This is especially important if several
people are working on the same project.

Refactoring, or restructuring, existing code has a high chance of introducing bugs. If a script
or function already has tests, the risk is reduced. Tests that verify the overall functionality
(not necessarily unit tests) should continue to pass after refactoring.

To a degree, tests may also show how a piece of code is expected to work to someone
reviewing or looking to contribute to the code.

What to test
How extensive tests should be is debatable. Striving for 100% code coverage does not
necessarily mean that a block of code has been effectively tested.

Consider testing the following:

Parameters
Any complex conditions
Acceptance of different input or expected values, including complex parameter
validation
Exit conditions (especially raised errors or exceptions)

When writing a unit test, resist the temptation to test other functions or commands. A unit
test is not responsible for making sure that every command that it calls works. That comes
later.

Testing Chapter 20

[515]

Describe and It
Groups of tests are written within a Describe block. The Describe block must be given a
name. A Describe block is often named after the subject of the tests.

Tests are declared using It, followed by a description. The It statement contains assertions
that are declared using Should.

Pester 4

Pester 3 expected assertion keywords (Be, BeLike, and so on) to be
written as a bare word; for example: $value | Should -Be 0.

Pester 4 supports the syntax used by Pester 3 as legacy syntax. The
assertion names are now also presented as dynamic parameters; for
example: $value | Should -Be 0.

This allows tools such as ISE and Visual Studio Code to provide auto
completion when Should is typed. The tests that are used as examples in
this section use the syntax native to Pester 4.

The following function calculates the square root of a value. This particular function does
not draw in information, except from the single parameter; testing is limited to validating
output:

function Get-SquareRoot {
 param (
 [Decimal]$Value
)

 if ($Value -lt 0) { throw 'Invalid value' }

 $result = $Value
 $previous = 0
 while ([Math]::Abs($result - $previous) -gt 1e-300) {
 $previous = $result
 $result = ($result + $Value / $previous) / 2
 }
 $result
}

Tests may be written to verify that the function does what it is expected to do, as follows:

Describe Get-SquareRoot {
 It 'Returns a square root of 0 for a value of 0' {

Testing Chapter 20

[516]

 Get-SquareRoot 0 | Should -Be 0
 }

 It 'Returns simple square root values' {
 Get-Squareroot 1 | Should -Be 1
 Get-SquareRoot 4 | Should -Be 2
 Get-SquareRoot 9 | Should -Be 3
 Get-SquareRoot 16 | Should -Be 4
 }
}

Pester displays the output showing the state of each of the tests:

Describing Get-SquareRoot
 [+] Returns a square root of 0 for a value of 0 43ms
 [+] Returns simple square root values 12ms

Each test, defined using It, returns a single line expressing the result of the test. A test may
fail for two reasons, as follows:

The subject of the test has an error.
The test has an error.

For example, if an error is injected into the first test, the result will change, showing what
about the test failed:

PS> Describe Get-SquareRoot {
>> It 'When the value is 9, returns 3' {
>> Get-SquareRoot 9 | Should -Be 1
>> }
>> }

Describing Get-SquareRoot
 [-] Returns a square root of 0 for a value of 0 42ms
 Expected 1, but got 3.0000000000000000000000000000.
 3: Get-SquareRoot 9 | Should -Be 1

If a single test contains multiple Should assertions, the conditions are evaluated in order
until the first fails, or all of them pass.

For example, if two errors are injected into the last test, Pester is expected to indicate the
test fails when it reaches the assertion that the square root of 9 is 33:

Describe Get-SquareRoot {
 It 'Returns simple square root values' {
 Get-Squareroot 1 | Should -Be 1
 Get-SquareRoot 4 | Should -Be 2

Testing Chapter 20

[517]

 Get-SquareRoot 9 | Should -Be 33
 Get-SquareRoot 16 | Should -Be 44
 }
}

Executing the tests shows an error once Pester reaches the third assertion, that the square
root of 9 should be 33:

Describing Get-SquareRoot
 [-] Returns simple square root values 30ms
 Expected 33, but got 3.0000000000000000000000000000.
 5: Get-SquareRoot 9 | Should -Be 33

In this context, Pester will never execute the last assertion; the test has already failed.

Test cases
When the input and output of a function are being repetitively tested, the TestCases
parameter of It can be used. Test cases are defined in a hashtable, which is splatted into It
as a set of parameters.

The four test cases used in the preceding example might be rewritten as follows:

Describe Get-SquareRoot {
 It 'When the value is <Value>, the square root is <ExpectedResult>' -
TestCases @(
 @{ Value = 1; ExpectedResult = 1 }
 @{ Value = 4; ExpectedResult = 2 }
 @{ Value = 9; ExpectedResult = 33 }
 @{ Value = 16; ExpectedResult = 44 }
) {
 param (
 $Value,
 $ExpectedResult
)

 Get-SquareRoot $Value | Should -Be $ExpectedResult
 }
}

The preceding tests still contain errors; the advantage of this approach is that Pester will
report a success or failure for each of the test cases individually:

Describing Get-SquareRoot
 [+] Calculates the square root of 1 to be 1 52ms
 [+] Calculates the square root of 4 to be 2 7ms

Testing Chapter 20

[518]

 [-] Calculates the square root of 9 to be 33 10ms
 Expected 33, but got 3.0000000000000000000000000000.
 10: Get-SquareRoot $Value | Should -Be $ExpectedResult
 [-] Calculates the square root of 16 to be 44 13ms
 Expected 44, but got 4.000000000000000000000000000.
 10: Get-SquareRoot $Value | Should -Be $ExpectedResult

Pester automatically replaces values enclosed in angular braces (< and >) with names
from the hashtable describing each test case.

Using test cases can save time spent debugging code and tests, as fewer runs are needed to
highlight problems.

Independent verification
It is common to find that there is more than one way to achieve a result in PowerShell. In
the case of the Get-SquareRoot function, .NET has a Math.Sqrt static method that can be
used to produce a similar result.

The availability of an alternative approach (which is known to work) allows a result to be
dynamically validated, either in place of, or in addition to, statically defined values.

The set of test cases might be adjusted to use Math.Sqrt to verify that the function is
working as intended:

Describe Get-SquareRoot {
 It 'When the value is <Value>, the square root is <ExpectedResult>' -
TestCases @(
 @{ Value = 81; ExpectedResult = [Math]::Sqrt(81) }
 @{ Value = 9801; ExpectedResult = [Math]::Sqrt(9801) }
 @{ Value = 3686400; ExpectedResult = [Math]::Sqrt(3686400)
}
 @{ Value = 212255761; ExpectedResult =
[Math]::Sqrt(212255761) }
 @{ Value = 475316482624; ExpectedResult =
[Math]::Sqrt(475316482624) }
) {
 param (
 $Value,
 $ExpectedResult
)

 Get-SquareRoot $Value | Should -Be $ExpectedResult
 }
}

Testing Chapter 20

[519]

Independent verification has limitations if two approaches return different data types. For
example, the following assertion will fail, despite using the same input values:

PS> Get-SquareRoot 200 | Should -Be ([Math]::Sqrt(200))
Expected 14.142135623731, but got 14.142135623730950488016887242.
At ...

It may be possible to overcome the limitation of the verification by converting both to the
same data type. Whether this action is appropriate depends on the nature of, and reason
for, the test.

Assertions
Pester comes with support for a variety of assertion types. These assertion types are
exposed as parameters for Should. Several of these assertion types grant access to
additional parameters. These assertions are, for the most part, similar to PowerShell's
comparison operators.

Details of the available assertions are available on the Pester wiki, under
the description for Should, at https:/ /github. com/pester/ Pester/ wiki/
Should.

Assertions are most frequently used to test the actions and output of the subject of a test.
The simplest of these, -Be, was used in the examples for Get-SquareRoot. The -Be
assertion is the equivalent of the -eq comparison operator, with one difference: -Be can
compare arrays for equality.

Testing for the errors raised by a command is one of the more advanced testing cases.

Testing for errors
The -Throw assertion is used to test whether a block of code throws a terminating error.
Throw has a number of different usage scenarios. The simplest is detecting whether a
terminating error (of any kind) is thrown at all:

function Invoke-Something {
 throw
}

Describe Invoke-Something {
 It 'Throws a terminating error' {
 { Invoke-Something } | Should Throw

https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should
https://github.com/pester/Pester/wiki/Should

Testing Chapter 20

[520]

 }
}

When testing for terminating errors, the subject of the test is placed in a script block (curly
braces).

The next step might be to get Pester to test the error message, to ensure that the right error
is thrown:

function Invoke-Something {
 throw 'an error'
}

Describe Invoke-Something {
 It 'Throws a terminating error' {
 { Invoke-Something } | Should Throw 'an error'
 }
}

If a module is written with localization in mind, the error message might not be particularly
reliable. A trivial change to the message, such as a punctuation change, may break the test.
Two alternative approaches are available: testing the exception type and testing the error
ID.

Testing the exception type may be useful if the command raises different exception types
for each operation. For example, this command raises one of two different exceptions,
depending on the value of a parameter:

function Invoke-Something {
 param (
 $value
)

 if ($value -isnot [Int32]) {
 throw [ArgumentException]::new('The value must be an integer')
 }
 if ($value -ge 100) {
 throw [ArgumentOutOfRangeException]::new('The value must be less
than 100')
 }
}

Describe Invoke-Something {
 It 'When the value is not an integer, throws an ArgumentException' {
 { Invoke-Something -Value none } | Should -Throw -ExceptionType
ArgumentException
 }

Testing Chapter 20

[521]

 It 'When the value is greater or equal to 100, throws an
ArgumentOutOfRange exception' {
 { Invoke-Something -Value 100 } | Should -Throw -ExceptionType
ArgumentOutOfRangeException
 }
}

This is bad parameter validation

The preceding example is contrived. It demonstrates testing errors raised
by a common in Pester. This example should not be considered a
reasonable way to constrain and validate a parameter value.

Pester also allows for the testing of the fully qualified error ID. For this approach to be
beneficial, the subject of the test must define a reasonable set of fully qualified error IDs:

function Invoke-Something {
 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [InvalidOperationException]::new('an error'),
 'AUniqueErrorID',
 'OperationStopped',
 $null
)
 throw $errorRecord
}
Describe Invoke-Something {
 It 'Throws a terminating error' {
 { Invoke-Something } | Should -Throw -ErrorId 'AUniqueErrorId'
 }
}

If a function is written such that it writes a non-terminating error (using Write-Error),
and the generation of that error must be tested, two possible approaches are available.

The ErrorVariable parameter might be used to capture, and then test, as follows:

function Invoke-Something {
 [CmdletBinding()]
 param ()
 Write-Error 'Error' -ErrorId 'NonTerminating'
}

Describe Invoke-Something {
 It 'Throws a non-terminating error' {
 Invoke-Something -ErrorAction SilentlyContinue -ErrorVariable
testError
 $testError.Count | Should -Be 1

Testing Chapter 20

[522]

 $testError.FullyQualifiedErrorId | Should -Match 'NonTerminating'
 }
}

Or, ErrorAction may be used, influencing whether the error is raised:

function Invoke-Something {
 [CmdletBinding()]
 param ()
 Write-Error 'Error' -ErrorId 'NonTerminating'
}
Describe Invoke-Something {
 It 'Throws a non-terminating error' {
 { Invoke-Something -ErrorAction SilentlyContinue } | Should -Not -
Throw -ErrorId 'NonTerminating'
 { Invoke-Something -ErrorAction Stop } | Should -Throw -ErrorId
'NonTerminating'
 }
}

Context
Context blocks are nested under Describe. Context blocks allowing tests to be grouped
together.

Context blocks are useful when there is a fundamental difference in how groups of tests
should be handled; for example, where the setup method for each test is more extensive
than the parent Describe block.

Before and after
Pester includes keywords that hold code that will execute before or after either each test or
all of the tests. The following keywords are available:

BeforeAll: Executed once, before all other content
AfterAll: Executed once, after all other content
BeforeEach: Executed immediately, before each individual test
AfterEach: Executed immediately, after each individual test

Each of the keywords should be followed by a script block.

Testing Chapter 20

[523]

When using Before or After, it is important to be aware of the order in which a section is
executed. In the following list, Loose code refers to anything that is not part of a Before,
After, or It:

Describe\BeforeAll

Describe\Loose code

Context\BeforeAll

Context\Loose code

Describe\BeforeEach

Context\BeforeEach

Context\Loose code

It

Context\AfterEach

Describe\AfterEach

Context\AfterAll

Describe\AfterAll

It is important to note that if Mocks are created under a Describe block, they are
categorized as Loose code in the context of this list. A command called in
Describe\BeforeAll will not have access to mocks that are only created further down
the list.

Loose code

When using Before or After, consider enclosing Mocks in BeforeAll or
It (if Mocks are specific to a single test), to ensure that Mocks are always
available where they might be used.

The following function is used to demonstrate how Before and After might be used. The
function deletes files in a specified path where the last access time was defined at least a
certain number of days ago:

function Remove-StaleFile {
 param (
 [Parameter(Mandatory = $true)]
 [String]$Path,
 [String]$Filter = '*.*',
 [Int32]$MaximumAge = 90
)

 Get-ChildItem $Path -Filter $Filter |

Testing Chapter 20

[524]

 Where-Object LastWriteTime -lt (Get-Date).AddDays(-$MaximumAge) |
 Remove-Item
}

To test the function, a number of test cases might be constructed. BeforeAll, BeforeEach,
and AfterAll might be used to ensure that everything is ready for an individual test. Each
of the following elements is contained within a single Describe block.

BeforeAll is used to create a temporary working path:

BeforeAll {
 $extensions = '.txt', '.log', '.doc'
 $Path = 'C:\Temp\StaleFiles'
 $null = New-Item $Path -ItemType Directory
 Push-Location $Path
}

AfterAll is used to clean up:

AfterAll {
 Pop-Location
 Remove-Item C:\Temp\StaleFiles -Recurse -Force
}

BeforeEach is used to create a known set of files before each test executes:

BeforeEach {
 foreach ($extension in $extensions) {
 $item = New-Item "stale$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-92)
 }
 foreach ($extension in $extensions) {
 $item = New-Item "new$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-88)
 }
}

The tests themselves only contain the code required to execute and test the impact of the
function:

It 'Removes all files older than 90 days' {
 Remove-StaleFile $Path
 "stale.*" | Should -Not -Exist
 "new.*" | Should -Exist
}

It 'Removes all <Extension> files older than 90 days' -TestCases (
 $extensions | ForEach-Object { @{ Extension = $_ } }

Testing Chapter 20

[525]

) {
 param ($Extension)

 Remove-StaleFile $Path -Filter "*$Extension"
 "stale$Extension" | Should -Not -Exist
 "stale.*" | Should -Exist
 "new.*" | Should -Exist
}

All of these sections are combined to produce a set of tests describing the behavior of
Remove-StaleFile:

Describe Remove-StaleFile {
 BeforeAll {
 $extensions = '.txt', '.log', '.doc'
 $Path = 'C:\Temp\StaleFiles'
 $null = New-Item $Path -ItemType Directory
 Push-Location $Path
 }

 AfterAll {
 Pop-Location
 Remove-Item C:\Temp\StaleFiles -Recurse -Force
 }

 BeforeEach {
 foreach ($extension in $extensions) {
 $item = New-Item "stale$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-92)
 }
 foreach ($extension in $extensions) {
 $item = New-Item "new$extension" -ItemType File -Force
 $item.LastWriteTime = (Get-Date).AddDays(-88)
 }
 }

 It 'Removes all files older than 90 days' {
 Remove-StaleFile $Path

 "stale.*" | Should -Not -Exist
 "new.*" | Should -Exist
 }

 It 'Removes all <Extension> files older than 90 days' -TestCases (
 $extensions | ForEach-Object { @{ Extension = $_ } }
) {
 param ($Extension)

Testing Chapter 20

[526]

 Remove-StaleFile $Path -Filter "*$Extension"

 "stale$Extension" | Should -Not -Exist
 "stale.*" | Should -Exist
 "new.*" | Should -Exist
 }
}

Pester will run four tests against the Remove-StaleFile function; each should pass.

TestDrive
When testing commands that work with the filesystem, Pester provides TestDrive.
TestDrive is a temporary folder created in the current user's temporary directory.

The folder is created when Describe runs, and is destroyed afterwards.

Using TestDrive simplifies the setup process for the Remove-StaleFile function; for
example, BeforeAll might become the following:

BeforeAll {
 $extensions = '.txt', '.log', '.doc'
 Push-Location 'TestDrive:\'
}

AfterAll becomes the following:

AfterAll {
 Pop-Location
}

In the event that a command cannot work with the TestDrive label, as is the case with
.NET types and methods, as well as non-PowerShell commands, the full path can be
discovered by using Get-Item. This can be executed anywhere inside of a Describe block:

(Get-Item 'TestDrive:\').FullName

Mock
The ability to mock commands is a prominent feature of Pester. Mocking is used to reduce
the scope of a set of tests.

Testing Chapter 20

[527]

Creating a Mock overrides a command by taking a partial copy. The copy includes the
param and dynamicparam blocks, but excludes any command implementations.

Mocks can be created under the Describe or Context keywords.

Commands are mocked by using the Mock keyword:

Describe Subject {
 Mock Get-Date
}

If a command returns a value, a body can be defined for the Mock to simulate the normal
operation of the command. In the following example, the string 01/01/2017 is returned in
place of a normal response from Get-Date:

Describe Subject {
 Mock Get-Date {
 [DateTime]::new(2017, 1, 1)
 }
}

In the preceding example, the script block is a positional argument for the MockWith
parameter. The mock might also be written as follows:

Describe Subject {
 Mock Get-Date -MockWith {
 [DateTime]::new(2017, 1, 1)
 }
}

Assert-MockCalled
Pester tracks calls made to mocked commands. The number of times a Mock has been called
by a command can be tested by using the Assert-MockCalled command. The following
function makes a single call to Get-CimInstance:

function Get-OperatingSystemName {
 (Get-CimInstance Win32_OperatingSystem).Caption
}

If a Mock of Get-CimInstance is created, the number of times that the command is called
can be tested. In this example, the test asserts that Get-CimInstance is called at least once:

Describe Get-OperatingSystemName {
 BeforeAll {

Testing Chapter 20

[528]

 Mock Get-CimInstance {
 [PSCustomObject]@{
 Caption = 'OSName'
 }
 }
 }

 It 'Gets the name of the operating system' {
 Get-OperatingSystemName | Should -Be 'OSName'
 Assert-MockCalled Get-CimInstance
 }
}

If a test is to verify that a mocked command is never called, the Times parameter of
Assert-MockCalled can be set to 0:

Assert-MockCalled Get-CimInstance -Times 0

If a command is used in several different ways, it might be important to ensure that the
command is called a specific number of times. In this instance, the Exactly parameter can
be added to ensure that the Mock is called that number of times only:

Assert-MockCalled Get-CimInstance -Times 1 -Exactly

Parameter filtering
Parameter filters can be applied to mocks to limit the scope of the Mock.

A parameter filter is a script block that tests the parameters passed when the Mock is called.
For example, a mock for Test-Path might only apply to a specific path:

Mock Test-Path { $true } -ParameterFilter { $Path -eq 'C:\Somewhere' }

If Pester cannot find a Mock with a matching parameter filter, it will default to a mock
without a parameter filter. If there are no mocks available, the real command will be called.

In the following example, when the value of the Path parameter is C:\, the value will be
returned from the Mock. Otherwise, the value returned by the real command will be used:

Describe TestPathMocking {
 BeforeAll {
 Mock Test-Path { $false } -ParameterFilter { $Path -eq 'C:\' }
 }

 It 'Uses the mock' {
 Test-Path 'C:\' | Should -Be $false

Testing Chapter 20

[529]

 }

 It 'Uses the real command' {
 Test-Path 'C:\Windows' | Should -Be $true
 }
}

Mocking non-local commands
In some cases, it is desirable to mock commands that are not available on the test system.
One possible approach in these circumstances is to create a function that reflects the
command first, then mock the function.

For example, consider a function that creates and configures a DNS zone with a predefined
set of parameter values:

function New-DnsZone {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String]$Name
)

 $params = @{
 Name = $Name
 DynamicUpdate = 'Secure'
 ReplicationScope = 'Domain'
 }
 if (-not (Get-DnsServerZone $Name -ErrorAction SilentlyContinue)) {
 Add-DnsServerPrimaryZone @params
 }
}

It may not be desirable to install the DNS module on a development system when testing
the script. To mock and verify that Add-DnsServerPrimaryZone is called, a function must
be created first:

Describe CreateDnsZone {
 BeforeAll {
 function Get-DnsServerZone { }
 function Add-DnsServerPrimaryZone { }

 Mock Get-DnsServerZone
 Mock Add-DnsServerPrimaryZone
 }

Testing Chapter 20

[530]

 It 'When the zone does not exist, calls Add-DnsServerPrimaryZone' {
 New-DnsZone -Name name

 Assert-MockCalled Add-DnsServerPrimaryZone
 }
}

Creating the function first is enough to satisfy the tests, but the approach is basic. The test
will not fail if the parameter names that are used are incorrect.

A more advanced function to mock may be created by visiting a system with the command
installed and retrieving the following param block:

$command = Get-Command Add-DnsServerPrimaryZone
[System.Management.Automation.ProxyCommand]::GetParamBlock($command)

The first of the parameters from the block is shown as follows:

 [Parameter(ParameterSetName='ADForwardLookupZone',
ValueFromPipelineByPropertyName=$true)]
 [Parameter(ParameterSetName='ADReverseLookupZone',
ValueFromPipelineByPropertyName=$true)]
 [Parameter(ParameterSetName='FileForwardLookupZone',
ValueFromPipelineByPropertyName=$true)]
 [Parameter(ParameterSetName='FileReverseLookupZone',
ValueFromPipelineByPropertyName=$true)]
 [ValidateNotNull()]
 [ValidateNotNullOrEmpty()]
 [string]
 ${ResponsiblePerson},

Adding a reasonable parameter block will improve the overall quality of the tests. The tests
will fail if a non-existent parameter is used, or if an invalid parameter combination is used.

Stub commands

I refer to the functions used like this as stub commands, and have written
a module that will interrogate other modules and generate a psm1 file,
which can be imported by a stub module. This approach is based on, but
is more detailed than, the method described previously.

The module is available in the PowerShell Gallery and can be installed as
follows: Install-Module Indented.StubCommand -Scope
CurrentUser.

Testing Chapter 20

[531]

Mocking objects
It is not uncommon for a function to expect to work with the properties and methods of
another object returned by a command. Mocked commands must often return rich objects,
simulating the value that would normally be returned.

Fabricating objects
Objects with specific properties can be simulated by creating a PS custom object (or
PSObject):

[PSCustomObject]@{
 Property = "Value"
}

Methods can be added to an object using Add-Member:

[PSCustomObject]@{} | Add-Member MethodName -MemberType ScriptMethod -Value
{ }

This approach can be extended to include objects instantiated by New-Object. The
following function creates and uses instances of two different .NET types:

function Write-File {
 $fileStream = New-Object System.IO.FileStream(
 "C:\Temp\test.txt",
 'OpenOrCreate'
)
 $streamWriter = New-Object System.IO.StreamWriter($fileStream)
 $streamWriter.WriteLine("Hello world")
 $streamWriter.Close()
}

The following mocks replace the first call made to New-Object in the preceding script with
null. The second call is replaced with an object that supports the methods used by the
script:

Mock New-Object -ParameterFilter { $TypeName -eq 'System.IO.FileStream' }
Mock New-Object -ParameterFilter { $TypeName -eq 'System.IO.StreamWriter' }
-MockWith {
 [PSCustomObject]@{} |
 Add-Member WriteLine -MemberType ScriptMethod -Value { } -PassThru
|
 Add-Member Close -MemberType ScriptMethod -Value { } -PassThru
}

Testing Chapter 20

[532]

At this point, it is possible to assert that the function creates each of the objects, but the test
is blind to how the methods are used. If it is not desirable to let the methods act on a real
object, it may be worth considering what could be done inside of a method implementation
to signal activity to Pester.The following example changes the methods to make a change to
a script-scoped variable. The variable can be accessed within the other tests. The content of
the script-scoped variables is cleared before each test:

Describe Write-File {
 BeforeAll {
 Mock New-Object -ParameterFilter { $TypeName -eq
'System.IO.FileStream' }
 Mock New-Object -ParameterFilter { $TypeName -eq
'System.IO.StreamWriter' } -MockWith {
 [PSCustomObject]@{} |
 Add-Member WriteLine -MemberType ScriptMethod -PassThru -
Value {
 $Script:WriteLine = $args[0]
 } |
 Add-Member Close -MemberType ScriptMethod -PassThru -Value
{
 $Script:Close = $true
 }
 }
 }

 BeforeEach {
 $Script:WriteLine = ''
 $Script:Close = $false
 }

 It 'Creates a file stream' {
 Write-File

 Assert-MockCalled New-Object -ParameterFilter { $TypeName -eq
'System.IO.FileStream' }
 Assert-MockCalled New-Object -ParameterFilter { $TypeName -eq
'System.IO.StreamWriter' }
 }

 It 'Writes a line and closes the file stream' {
 Write-File

 $Script:WriteLine | Should -Be 'Hello world'
 $Script:Close | Should -Be $true
 }
}

Testing Chapter 20

[533]

Mocking existing members
If an object is completely replaced with a made-up PSCustomObject, the object type is lost;
this is important when another command requires an object of a specific type as input.
Attempting to override properties and methods on a real instance of the object may be used
to work around this problem.

The following snippet creates an instance of an SQL connection object, then overrides the
Open method and State properties:

$sqlConnection = [System.Data.SqlClient.SqlConnection]::new()
$sqlConnection | Add-Member State -MemberType NoteProperty -Force -Value
'Closed'
$sqlConnection | Add-Member Open -MemberType ScriptMethod -Force -Value {
 $this.State = 'Open'
}

The State property cannot be set by default, so overriding both is required to simulate use.
The normal methods may be seen by looking beneath the PowerShell object; an example is
as follows:

PS> $sqlConnection = [System.Data.SqlClient.SqlConnection]::new()
PS> $sqlConnection | Add-Member State -MemberType NoteProperty -Force -
Value 'Open'
PS> $sqlConnection.State
Open

PS> $sqlConnection.PSBase.State
Closed

This technique can be used to create a disarmed object of the correct type.

The following function expects an SQL connection object as input:

function Invoke-SqlQuery {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory)]
 [String]$Query,

 [Parameter(Mandatory)]
 [System.Data.SqlClient.SqlConnection]$Connection
)
 try {
 $Connection.Open()

 $sqlCommand = $Connection.CreateCommand()

Testing Chapter 20

[534]

 $sqlCommand.CommandText = $Query

 $dataTable = New-Object System.Data.DataTable
 $sqlDataAdapter = New-Object
System.Data.SqlClient.SqlDataAdapter($sqlCommand)
 $sqlDataAdapter.Fill($dataTable) | Write-Verbose

 $dataTable
 } catch {
 $pscmdlet.ThrowTerminatingError($_)
 } finally {
 if ($Connection.State -eq 'Open') {
 $Connection.Close()
 }
 }
}

To create unit tests for the Invoke-SqlQuery function, an SQL connection object must be
created and supplied. In addition, SqlDataAdapter must be mocked.

The tests shown as follows provide a modified SQL connection object, and a version of the
data adapter with the Fill method replaced:

Describe Invoke-SqlQuery {
 BeforeAll {
 Mock New-Object -ParameterFilter { $TypeName -like
'*SqlDataAdapter' } -MockWith {
 [System.Data.SqlClient.SqlDataAdapter]::new() |
 Add-Member Fill -MemberType ScriptMethod -Force -PassThru -
Value {
 $null = $args[0].Columns.Add('ColumnName')
 $row = $args[0].NewRow()
 $row.ColumnName = 'value'
 $args[0].Rows.Add($row)

 $args[0].Rows.Count
 }
 }

 $defaultParams = @{
 Query = 'SELECT * FROM Table1'
 Connection = [System.Data.SqlClient.SqlConnection]::new() |
 Add-Member State -MemberType NoteProperty -Force -PassThru
-Value { 'Closed' } |
 Add-Member Open -MemberType ScriptMethod -Force -PassThru
-Value {
 $this.State = 'Open'
 } |

Testing Chapter 20

[535]

 Add-Member Close -MemberType ScriptMethod -Force -PassThru
-Value {
 $this.State = 'Closed'
 }
 }
 }

 It 'Executes a query and returns the results' {
 $output = Invoke-SqlQUery @defaultParams

 $output.Rows.Count | Should -Be 1
 $output[0].ColumnName | Should -Be 'value'
 }

 Context 'Error handling' {
 BeforeAll {
 $contextParams = $defaultParams.Clone()
 $contextParams.Connection = $contextParams.Connection |
 Add-Member Open -MemberType ScriptMethod -Force -PassThru -
Value {
 throw 'Connection failed'
 }
 }

 It 'When the connection fails, throws an error' {
 { Invoke-SqlQUery @contextParams } | Should -Throw 'Connection
failed'
 }
 }
}

Using New-MockObject
The New-MockObject command provides a way to create an uninitialized version of a
type. An instance of an uninitialized type has all of the properties and methods of the
initialized instance, but without any of the code behind and potentially without some
default values.

It is possible to use New-MockObject to generate an instance of the sqlConnection object
used in the previous example. As the object is uninitialized, errors are likely when
attempting to use the methods that the type provides:

PS> $sqlConnection = New-MockObject System.Data.SqlClient.SqlConnection
PS> $sqlConnection.Open()
Exception calling "Open" with "0" argument(s): "Object reference not set to
an instance of an object."

Testing Chapter 20

[536]

At line:1 char:1
+ $sqlConnection.Open()
+ ~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : NullReferenceException

In this case, the Open and Close methods, and the State property, must still be
overridden by using Add-Member before the object can be used. New-MockObject comes
into its own when working with objects that you cannot easily create: objects that either
have no constructor at all, or are very complex to create otherwise.

For example, the following function expects a CimSession object. New-MockObject
provides a convenient way to create a CimSession to satisfy the parameter during testing:

function Get-CurrentUser {
 [CmdletBinding(DefaultParameterSetName = 'UsingComputerName')]
 param (
 [Parameter(ParameterSetName = 'UsingComputerName')]
 [String]$ComputerName,

 [Parameter(Mandatory, ParameterSetName = 'UsingCimSession')]
 [CimSession]$CimSession
)

 (Get-CimInstance Win32_ComputerSystem -Property UserName
@psboundparameters).UserName
}

A test may be created that ensures that a CimSession provided to the function is passed on
to Get-CimInstance:

Describe Get-CurrentUser {
 Context 'Using a CIM session' {
 BeforeAll {
 Mock Get-CimInstance -ParameterFilter { $CimSession } -MockWith
{
 [PSCustomObject]@{ UserName = 'UserFromCimSession' }
 }
 }

 It 'When a CimSession is supplied, passes the CimSession to Get-
CimInstance' {
 Get-CurrentUser -CimSession (New-MockObject CimSession) |
 Should -Be 'UserFromCimSession'
 }
 }
}

Testing Chapter 20

[537]

Mocking CIM objects
CIM-based commands that accept pipeline input, such as Set-NetAdapter, require a CIM
instance with a specific PSTypeName. The PSTypeName is a string property normally
hidden from Get-Member.

Exploring the InputObject parameter of Set-NetAdapter shows that it accepts a CIM
instance type. Expanding the PSTypeName attribute shows that it also requires an object
that includes the type
name Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter:

PS> (Get-Command Set-
NetAdapter).Parameters['InputObject'].ParameterType.Name
CimInstance[]

PS> (Get-Command Set-NetAdapter).Parameters['InputObject'].Attributes.
>> Where{ $_.TypeId -match 'PSType' }.PSTypeName
Microsoft.Management.Infrastructure.CimInstance#MSFT_NetAdapter

There are two ways to create an object that will satisfy the InputObject parameter of Set-
NetAdapter.

The first is to create a ClientOnly instance of the type. This requires the namespace of the
class; the namespace is exposed as a property of the object returned by Get-NetAdapter:

PS> Get-NetAdapter | Select-Object CimClass -First 1

CimClass

ROOT/StandardCimv2:MSFT_NetAdapter

The namespace may be used to create the client-only instance with all the properties of a
normal net adapter object:

New-CimInstance MSFT_NetAdapter -Namespace ROOT/StandardCimv2 -ClientOnly

The second method omits the namespace. If the namespace is omitted, an object that is
visually the same is created:

New-CimInstance MSFT_NetAdapter -ClientOnly

Testing Chapter 20

[538]

The output of the command is described by a format applied because of the type name. The
created object lacks most of the members. Passing the output from each command to Get-
Member will show the difference.

If the members are not important, or the real CIM class is not available where the tests are
executing, the version without a namespace may be used. The properties needed to satisfy
testing may be added by using Add-Member.

Pester in practice
The following function sets a computer description by modifying values in the registry:

function Set-ComputerDescription {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [AllowEmptyString()]
 [String]$Description
)

 $erroractionpreference = 'Stop'

 try {
 $path =
'HKLM:\System\CurrentControlSet\Services\LanmanServer\Parameters'

 if ((Get-Item $path).GetValue('srvcomment') -ne $Description) {
 if ($Description) {
 Set-ItemProperty $path -Name 'srvcomment' -Value
$Description
 } else {
 Remove-ItemProperty $path -Name 'srvcomment'
 }
 }
 } catch {
 throw
 }
}

Testing Chapter 20

[539]

When the function interacts with the registry, it does so using the following commands:

Get-Item

Set-ItemProperty

Remove-ItemProperty

Testing the actions undertaken by each of the previous commands is not the responsibility
of a unit test for Set-ComputerDescription. Unit tests are limited to ensuring that each
of the commands has the right parameters, and at the right time. Each of the commands
used by the function will be mocked.

The function reacts to a combination of the value of the Description parameter and the
current state of the value.

A set of context blocks is appropriate for this division of the test. The difference between
the blocks is the response from Get-Item, and is therefore the implementation of the Mock:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }
}

The first context is used to describe what happens when the current description is blank. A
Mock for Get-Item is created, which returns a blank result. Tests are added, describing the
behavior of the command:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Description is not set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType
ScriptMethod -Value { '' }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'

Testing Chapter 20

[540]

 Assert-MockCalled Set-ItemProperty -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description ''

 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }
 }
}

The previous tests may be enhanced to ensure that Remove-ItemProperty is not called
when updating with a new value. Given that the code paths are mutually exclusive, it
should not be possible to call both. Extending the test ensures that future logic changes do
not inadvertently trigger both commands.

The following context tests the actions that should be taken if a description is set. The Mock
for Get-Item is replaced with one that returns a value:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Description is set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType
ScriptMethod -Value {
 return 'Current description'
 }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'

 Assert-MockCalled Set-ItemProperty -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description 'Current description'

 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It

Testing Chapter 20

[541]

 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }

 It 'When the description is empty, removes the value' {
 Set-ComputerDescription -Description ''

 Assert-MockCalled Remove-ItemProperty -Times 1 -Scope It
 }
 }
}

The preceding tests might be enhanced to verify that an error will trigger the catch
statement. For example, if Set-ItemProperty were to throw a non-terminating error with
ErrorActionPreference set to Stop, a non-terminating error would be raised as a
terminating error. The terminating error can be tested, as follows:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Error handling' {
 BeforeAll {
 Mock Set-ItemProperty {
 Write-Error -Message 'Non-terminating error'
 }
 }

 It 'When Set-ItemProperty throws, raises a terminating error' {
 { Set-ComputerDescription -Description 'New description' } |
Should Throw
 }
 }
}

The following snippet combines each of the sections described previously:

Describe Set-ComputerDescription {
 BeforeAll {
 Mock Set-ItemProperty
 Mock Clear-ItemProperty
 Mock Remove-ItemProperty
 }

 Context 'Description is not set' {
 BeforeAll {

Testing Chapter 20

[542]

 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType
ScriptMethod -Value { '' }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'
 Assert-MockCalled Set-ItemProperty -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description ''
 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }
 }

 Context 'Description is set' {
 BeforeAll {
 Mock Get-Item {
 [PSCustomObject]@{} | Add-Member GetValue -MemberType
ScriptMethod -Value {
 return 'Current description'
 }
 }
 }

 It 'When the description differs, sets a new value' {
 Set-ComputerDescription -Description 'New description'
 Assert-MockCalled Set-ItemProperty -Scope It
 }

 It 'When the description matches, does nothing' {
 Set-ComputerDescription -Description 'Current description'
 Assert-MockCalled Set-ItemProperty -Times 0 -Scope It
 Assert-MockCalled Remove-ItemProperty -Times 0 -Scope It
 }

 It 'When the description is empty, removes the value' {
 Set-ComputerDescription -Description ''
 Assert-MockCalled Remove-ItemProperty -Times 1 -Scope It
 }
 }

 Context 'Error handling' {
 BeforeAll {

Testing Chapter 20

[543]

 Mock Set-ItemProperty { Write-Error -Message 'Non-terminating
error' }
 }

 It 'When Set-ItemProperty throws, raises a terminating error' {
 { Set-ComputerDescription -Description 'New description' } |
Should Throw
 }
 }
}

Summary
This chapter explored static analysis with PSScriptAnalyzer. PSScriptAnalyzer makes
use of the AST to examine a script or function. The creation of custom rules for the script
analyzer was briefly demonstrated.

Testing with Pester was explored in detail, including the use of the different named blocks.
This included a demonstration of building tests for a function.

The next chapter will explore error handling in PowerShell, including terminating and non-
terminating errors and the use of try, catch, and finally, the trap statement.

21
Error Handling

Errors are used to communicate unexpected conditions or exceptional circumstances. Errors
often contain useful information that can be used to diagnose a condition.

PowerShell has two different types of errors, terminating and non-terminating, and several
different ways to raise and handle them.

During the course of this chapter, self-contained blocks of code are described as scripts. The
terms function, ScriptBlock, and script can be considered interchangeable in the context
of error handling.

The following topics are covered in this chapter:

Error types
Error actions
Raising errors
Catching errors

Error types
PowerShell defines two different types of errors: terminating and non-terminating errors.

Each command in PowerShell may choose to raise either of these, depending on the
operation.

Error Handling Chapter 21

[545]

Terminating errors
A terminating error stops a pipeline processing; once an error is thrown, everything stops.
A terminating error might appear as the result of using throw. In the following function,
the second Write-Host statement will never execute:

PS> function ThrowError {
>> Write-Host 'First'
>> throw 'Error'
>> Write-Host 'Second'
>> }
PS> ThrowError
First
Error
At line:3 char:5
+ throw 'Error'
+ ~~~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (Error:String) [], RuntimeException
+ FullyQualifiedErrorId : Error

Terminating errors are typically used to convey that something unexpected and terminal
has occurred, such as a catastrophic failure that prevents a script continuing.

Non-terminating errors
A non-terminating error, a type of informational output, is written without stopping a
script. Non-terminating errors are often the result of using the Write-Error command.
The following function shows that processing continues after the error:

PS> function WriteError {
>> Write-Host 'First'
>> Write-Error 'Error'
>> Write-Host 'Second'
>> }
PS> WriteError
First
WriteError : Error
At line:1 char:1
+ WriteError
+ ~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId :
Microsoft.PowerShell.Commands.WriteErrorException,WriteError
Second

Error Handling Chapter 21

[546]

Non-terminating errors are used to notify the user that something went wrong, but that it
didn't necessarily warrant shutting down a script. A user may choose to stop processing
when a non-terminating error is raised.

Error actions
The ErrorAction parameter and the ErrorActionPreference variable are used to
control what happens when a non-terminating error is written.

ErrorAction parameter requires CmdletBinding.

The ErrorAction parameter is only available if a function declares the
CmdletBinding attribute. CmdletBinding automatically added is if the
Parameter attribute is used.

By default, ErrorAction is set to continue. Any non-terminating errors will be displayed,
but a script or function will continue to run.

If ErrorAction is set to SilentlyContinue, errors will be added to
the $error automatic variable, but the error won't be displayed.

The following function writes a non-terminating error using Write-Error:

function SilentError {
 [CmdletBinding()]
 param ()

 Write-Error 'Something went wrong'
}
 SilentError -ErrorAction SilentlyContinue

The error is written, but hidden from view. The error may be viewed as the latest entry in
the $error variable:

PS> $Error[0]
SilentError : Something went wrong
At line:1 char:1
+ SilentError -ErrorAction SilentlyContinue
+ ~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId :
Microsoft.PowerShell.Commands.WriteErrorException,SilentError

Error Handling Chapter 21

[547]

If the error action is set to Stop, a non-terminating error becomes a terminating error, as in
the following example:

PS> function StopError {
>> [CmdletBinding()]
>> param ()
>>
>> Write-Error 'Something went wrong'
>> }
PS> StopError -ErrorAction Stop
StopError : Something went wrong
At line:1 char:1
+ StopError -ErrorAction Stop
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId :
Microsoft.PowerShell.Commands.WriteErrorException,StopError

Raising errors
When writing a script, it may be desirable to use errors to notify the person running the
script of a problem. The severity of the problem will dictate whether an error is non-
terminating or terminating.

If a script makes a single change to a large number of diverse, unrelated objects, a
terminating error might be frustrating for anyone using the script.

On the other hand, if a script fails to read a critical configuration file, a terminating error is
likely the right choice.

Error records
When an error is raised in PowerShell, an ErrorRecord object is created (explicitly or
implicitly).

An ErrorRecord object contains a number of fields that are useful for diagnosing an error.
ErrorRecord can be explored using Get-Member. For example, an ErrorRecord will be
generated when attempting to divide by 0:

100 / 0
$record = $Error[0]

Error Handling Chapter 21

[548]

The ErrorRecord object that was generated includes ScriptStackTrace.
ScriptTrackTrace is extremely useful when debugging problems in larger scripts:

PS> $record.ScriptStackTrace
at <ScriptBlock>, <No file>: line 1

The Exception in the error record also includes a .NET stack trace:

PS> $record.Exception.StackTrace
at System.Management.Automation.IntOps.Divide(Int32 lhs, Int32 rhs)
at System.Dynamic.UpdateDelegates.UpdateAndExecute2[T0,T1,TRet](CallSite
site, T0 arg0, T1 arg1)
at
System.Management.Automation.Interpreter.DynamicInstruction`3.Run(Interpret
edFrame frame)
at
System.Management.Automation.Interpreter.EnterTryCatchFinallyInstruction.Ru
n(InterpretedFrame frame)

In some cases, the TargetObject property of ErrorRecord might contain the object being
worked on.

For example, if the values for a division operation were dynamically set, ErrorRecord
might be created to return those values to assist with debugging:

$numerator = 10
$denominator = 0
try {
 $numerator / $denominator
} catch {
 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [Exception]::new($_.Exception.Message),
 'InvalidDivision', # ErrorId
 'InvalidOperation', # ErrorCategory
 [PSCustomObject]@{ # TargetObject
 Numerator = $numerator
 Denominator = $denominator
 }
)
 Write-Error -ErrorRecord $errorRecord
}

Error Handling Chapter 21

[549]

The values pushed into ErrorRecord may be viewed by exploring the TargetObject
property:

PS> $Error[0].TargetObject

Numerator Denominator
--------- -----------
 10 0

The try-catch statement used previously is covered in detail while exploring try, catch,
and finally later in this chapter.

Write-Error
The Write-Error command can be used to write non-terminating error messages.

The Write-Error command can be used with nothing more than a message:

Write-Error 'Message'

Or it might include additional information, such as a category and error ID to aid diagnosis
by the person using the script:

Write-Error -Message 'Message' -Category 'InvalidOperation' -ErrorId
'UniqueID'

The following example shows a non-terminating error that was raised while running a
loop:

function Test-Error {
 for ($i = 0; $i -lt 5; $i++) {
 Write-Error -Message "Iteration: $i"
 }
}
Test-Error

The error will be displayed five times without stopping execution.

Setting the value of ErrorAction to Stop will cause Write-Error to throw a terminating
error, ending the function within the first iteration of the loop:

PS> function Test-Error {
>> [CmdletBinding()]
>> param ()
>>
>> for ($i = 0; $i -lt 5; $i++) {

Error Handling Chapter 21

[550]

>> Write-Error -Message "Iteration: $i"
>> }
>> }
>>
PS> Test-Error -ErrorAction Stop
Test-Error : Iteration: 0
At line:1 char:1
+ Test-Error -ErrorAction Stop
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId :
Microsoft.PowerShell.Commands.WriteErrorException,Test-Error

Alternatively, the error might be silent (SilentlyContinue) or ignored (Ignore),
depending on the context in which the error appears.

Setting the ErrorActionPreference variable (either globally or within the function
scope) will have the same effect on the Write-Error command.

throw and ThrowTerminatingError
The throw keyword raises a terminating error, as in the following example:

throw 'Error message'

Existing exception types are documented in the .NET framework; each is ultimately derived
from the System.Exception type found in the .NET reference:

https://docs.microsoft. com/ en- us/ dotnet/ api/ system. exception? view= netframework-
4.7.2

throw may be used with a string or a message, as shown previously. throw may also be
used with an exception object:

throw [ArgumentException]::new('Unsupported value')

Or it may be used with ErrorRecord:

throw [System.Management.Automation.ErrorRecord]::new(
 [InvalidOperationException]::new('Invalid operation'),
 'AnErrorID',
 [System.Management.Automation.ErrorCategory]::InvalidOperation,
 $null
)

https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.exception?view=netframework-4.7.2

Error Handling Chapter 21

[551]

Commands in binary modules (cmdlets) cannot use throw; it has a different meaning in the
languages that might be used to author a cmdlet. Cmdlets use
the PSCmdlet.ThrowTerminatingError .NET method.

The ThrowTerminatingError method can be used in PowerShell in conjunction with an
ErrorRecord object, provided the CmdletBinding attribute is declared, as in the example:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 $errorRecord = [System.Management.Automation.ErrorRecord]::new(
 [InvalidOperationException]::new('Failed'),
 'AnErrorID',
 [System.Management.Automation.ErrorCategory]::OperationStopped,
 $null
)
 $pscmdlet.ThrowTerminatingError($errorRecord)
}

Error and ErrorVariable
The Error variable is a collection (ArrayList) of handled and unhandled errors raised in
the PowerShell session.

Testing the content of error variables

Testing the content of an error variable is not a robust way to test for error
conditions.
As the variable fills with both handled and unhandled errors, it's
indeterminate at best. Error variables continue to have value when
debugging less obvious problems with code.

The error collection can be cleared using the Clear method:

$Error.Clear()

The most recent error is first in the list:

$Error[0]

Errors will be added to the collection except when ErrorAction is set to Ignore.

Error Handling Chapter 21

[552]

The ErrorVariable parameter can be used to name a variable that should be used, as well
as Error for a specific command. The Error variable, the value in the variable name, is an
ArrayList.

The following function writes an Error variable. When ErrorVariable is used, the errors
are added to the named variable:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 Write-Error 'Failed'
}
Invoke-Something -ErrorVariable InvokeError -ErrorAction SilentlyContinue

The errors stored in the variable can be inspected:

PS> $InvokeError
Invoke-Something : Failed
At line:1 char:1
+ Invoke-Something -ErrorVariable InvokeError -ErrorAction SilentlyCont ...
+ ~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId :
Microsoft.PowerShell.Commands.WriteErrorException,Invoke-Something

ErrorVariable is never null

If no errors occur, the variable will still be created as an ArrayList, but
the list will contain no elements. That the list exists means using the
variable as an implicit Boolean is flawed, that is, the $null -eq
$InvokeError statement will return false.
The Count property might be inspected instead, using
$InvokeError.Count -eq 0.

Error messages written to an ErrorVariable are duplicated in Error:

PS> $error[0]
Invoke-Something : Failed
At line:1 char:1
+ Invoke-Something -ErrorVariable InvokeError -ErrorAction SilentlyCont ...
+ ~~~
+ CategoryInfo : NotSpecified: (:) [Write-Error], WriteErrorException
+ FullyQualifiedErrorId :
Microsoft.PowerShell.Commands.WriteErrorException,Invoke-Something

Error Handling Chapter 21

[553]

Catching errors
PowerShell provides two different ways to handle terminating errors: using try-catch-
finally, or using trap.

try, catch, and finally
PowerShell 2.0 introduced try-catch-finally as a means of handling terminating
errors.

try
A try block must be followed by either one or more catch blocks, a finally block, or
both. Each of the following patterns is valid:

try { <script> } catch { <script> }
try { <script> } finally { <script> }
try { <script> } catch { <script> } finally { <script }

An error occurring within try will trigger the execution of catch.

catch
catch is used to respond to terminating errors raised within try. catch can be used to
respond to any exception, or a specific set of exception types. Each of the following is valid,
if incomplete:

try { } catch { 'Catches any exception' }
try { } catch [ExceptionType] { 'Catch an exception type' }
try { } catch [ExceptionType1], [ExceptionType2] {
 'Catch exception type 1 and 2'
}

In the following example, calling the ToString method on the null variable will throw an
exception that triggers catch:

try {
 $null.ToString()
} catch {
 Write-Host 'This exception has been handled'
}

Error Handling Chapter 21

[554]

When working with catch, the error record that was thrown is made available by using
either the $_ variable or $PSItem:

try {
 $null.ToString()
} catch {
 Write-Host $_.Exception.Message # This is the same as...
 Write-Host $PSItem.Exception.Message # ... this.
}

ForEach-Object and catch

If ForEach-Object is used, the current object in the pipeline is stored in
the $_ variable. For the object from the input pipeline to be available
inside catch, it must be assigned to another variable first.

catch statements can be limited to handle specific exception types:

$ErrorActionPreference = 'Stop'
try {
 # If the file does not exist, this will raise an exception of type
ItemNotFoundException
 $content = Get-Content C:\doesnotexist.txt
} catch [System.Management.Automation.ItemNotFoundException] {
 Write-Host 'The item was not found'
}

If more than one type of error might be thrown by a block of code, multiple catch
statements are supported. In the following example, an unauthorized access exception is
thrown in response to an attempt to read a directory like a file:

$ErrorActionPreference = 'Stop' try { Get-ChildItem
C:\Windows\System32\Configuration -Filter *.mof | ForEach-Object { $content
= $_ | Get-Content } } catch [System.IO.FileNotFoundException] { Write-Host
'The item was not found' } catch
[System.Management.Automation.ItemNotFoundException] { Write-Host 'Access
denied' }

In a similar manner, catch statements can be layered, starting with the most specific error
type, working down to a broader condition. The first matching catch block will be used:

using namespace System.Management.Automation

try {
 throw [ItemNotFoundException]::new('Item not found')
} catch [ItemNotFoundException] {
 Write-Host 'Item not found exception thrown'

Error Handling Chapter 21

[555]

} catch {
 Write-Host 'Error thrown'
}

finally
The finally block will invoke whether an error is thrown or not. This makes it ideal for
handling situations where things must always be cleanly closed down.

The following function ignores errors, but will always close down an open SQL connection,
whether the ExecuteReader method succeeds or not:

using namespace System.Data.SqlClient

$connectionString = 'Data Source=dbServer;Initial Catalog=dbName'
try {
 $sqlConnection = [SqlConnection]::new($connectionString)
 $sqlConnection.Open()
 $sqlCommand = $sqlConnection.CreateCommand()
 $sqlCommand.CommandText = 'SELECT * FROM Employee'
 $reader = $sqlCommand.ExecuteReader()
} finally {
 if ($sqlConnection.State -eq 'Open') {
 $sqlConnection.Close()
 }
}

When catch is used with finally, the content of finally is executed before errors are
returned, but after the body of catch has executed. This is demonstrated by the following
example:

try {
 Write-Host "Try"
 throw 'Error'
} catch {
 Write-Host "Catch, after Try"
 throw
} finally {
 Write-Host "Finally, after Catch, before the exception"
}

Error Handling Chapter 21

[556]

Re-throwing errors
An error might be re-thrown within a catch block. This technique can be useful if a try
block performs a number of dependent steps in a sequence where one or more might fail.

Re-throwing an error raised by a script can be as simple as using throw in a catch block:

try {
 'Statement1'
 throw 'Statement2'
 'Statement3'
} catch {
 throw
}

ThrowTerminatingError might be used instead, depending on the desired behavior:

function Invoke-Something {
 [CmdletBinding()]
 param ()
 try {
 'Statement1'
 throw 'Statement2'
 'Statement3'
 } catch {
 $pscmdlet.ThrowTerminatingError($_)
 }
}

When an error is re-thrown in this manner, the second instance of the error (within the
catch block) is not written to either Error or an error variable. In cases where the error is
re-thrown without modification, this doesn't present a problem.

If the re-thrown error attempts to add information, such as an error ID, the modified error
record won't be available to error variables, as in the example:

try {
 throw 'Error'
} catch {
 Write-Error -Exception $_.Exception -ErrorId 'GeneratedErrorId' -
Category 'InvalidOperation'
}

The error raised in the try block is added to the error variables but isn't displayed in a
console (since it's been handled). The second error is displayed on the console but isn't
added to error variables.

Error Handling Chapter 21

[557]

To resolve this problem, the new error record may return the original exception as an inner
exception:

try {
 throw 'Error'
} catch {
 $exception = [InvalidOperationException]::new(
 $_.Exception.Message,
 $_.Exception
)
 Write-Error -Exception $exception -ErrorId 'GeneratedErrorId' -Category
'InvalidOperation'
}

In the case of exception and most, if not all, exception types, the first argument of the
constructor is a message, and the second (optional) argument is an inner exception.

Using an inner exception has a number of advantages:

try-catch statements that test the outcome of the preceding snippet will trigger
based on either the exception type or inner exception type
The other properties of the exception remain available (via the inner exception),
such as the stack trace

When using an inner exception, it's important to note that PowerShell can't catch based on
the inner exception type in most cases. The following example has three nested exceptions.
PowerShell can't react to either the inner or intermediate exceptions:

try {
 throw [InvalidOperationException]::new(
 'OuterException',
 [ArgumentException]::new(
 'IntermediateException',
 [UnauthorizedAccessException]::new('InnerException')
)
)
} catch [UnauthorizedAccessException] {
 'Inner'
} catch [ArgumentException] {
 'Intermediate'
} catch [InvalidOperationException] {
 'Outer'
}

Error Handling Chapter 21

[558]

An exception to this rule is MethodInvocationException. PowerShell
raises MethodInvocationException when a method call fails. For example, the
DaysInMonth method of the DateTime type will fail if the month number isn't between 1
and 12. The exception raised by PowerShell is MethodInvocationException:

PS> [DateTime]::DaysInMonth(2019, 13)
Exception calling "DaysInMonth" with "2" argument(s): "Month must be
between one and twelve.
Parameter name: month"
At line:1 char:2
+ [DateTime]::DaysInMonth(2019, 13)
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [], MethodInvocationException
 + FullyQualifiedErrorId : ArgumentOutOfRangeException

However, it's possible to catch the inner exception, ArgumentOutOfRangeException, in
this and similar cases:

try {
 [DateTime]::DaysInMonth(2019, 13)
} catch [ArgumentOutOfRangeException] {
 Write-Host 'Out of range'
}

When a command raises an error, and only the inner most exception is interesting, the
InnerException property becomes useful. It allows access to each inner exception in turn.
In the following example, the property is used to access the intermediate exception:

try {
 throw [InvalidOperationException]::new(
 'OuterException',
 [ArgumentException]::new(
 'IntermediateException',
 [UnauthorizedAccessException]::new('InnerException')
)
)
} catch {
 Write-Host $_.Exception.InnerException.Message
}

The Exception class (and all derived classes) include a GetBaseException method. This
method provides simple access to the innermost exception and is useful when the number
of nested exceptions is unknown or variable:

try {
 throw [InvalidOperationException]::new(
 'OuterException',

Error Handling Chapter 21

[559]

 [ArgumentException]::new(
 'IntermediateException',
 [UnauthorizedAccessException]::new('InnerException')
)
)
} catch {
 Write-Host $_.Exception.GetBaseException().Message
}

If and Switch statements may be used inside the catch block to further refine the handling
of a specific error.

Inconsistent error behavior
The different methods PowerShell exposes to terminate a script aren't entirely consistent
and may lead to confused behavior.

When throw is used to raise a terminating error, it'll stop the current script and anything
that called it. In the following example, child2 will never execute:

$ErrorActionPreference = 'Continue'
function caller {
 child1
 child2
}
function child1 {
 throw 'Failed'
 'child1'
}
function child2 {
 'child2'
}
caller

When the ThrowTerminatingError method is used, processing within child1 stops, but
the caller function continues. This is demonstrated as follows:

function caller {
 child1
 child2
}
function child1 {
 [CmdletBinding()]
 param ()

 $errorRecord = [System.Management.Automation.ErrorRecord]::new(

Error Handling Chapter 21

[560]

 [Exception]::new('Failed'),
 'ID',
 'OperationStopped',
 $null
)
 $pscmdlet.ThrowTerminatingError($errorRecord)
 'child1'
}
function child2 {
 'child2'
}

Executing the caller function shows that child2 is executed:

child1 : Failed
At line:2 char:5
+ child1
+ ~~~~~~
+ CategoryInfo : OperationStopped: (:) [child1], Exception
+ FullyQualifiedErrorId : ID,child1
child2

The behavior of the preceding example is equivalent to the behavior seen when calling
cmdlets. For example, the ConvertFrom-Json command raises a terminating error when
the content it's asked to convert is invalid.

When a cmdlet throws a terminating error within another function, the caller script
continues to execute unless ErrorAction is set to Stop. In the following example,
ConvertFrom-Json will raise a terminating error, but won't stop the caller function:

function caller {
 ConvertFrom-Json -InputObject '{{'
 child1
}
function child1 {
 'Called'
}
caller

The same behavior is seen when calling .NET methods, shown as follows. The static
method, IPAddress.Parse, will raise an exception because the use of the method isn't
valid. The function continues on from this error and calls child1:

function caller {
 [IPAddress]::Parse('this is not an IP')
 child1
}

Error Handling Chapter 21

[561]

function child1 {
 'Called'
}
caller

The interaction between Throw and ErrorAction is explored in greater detail in the
following section, which describes patterns for raising and handling errors.

throw and ErrorAction
The throw keyword raises a terminating error; terminating errors aren't supposed to be
affected by ErrorAction or ErrorActionPreference.

Unfortunately, errors raised by throw are affected by ErrorAction when ErrorAction is
set to SilentlyContinue. This behavior is an important consideration when designing
commands for others to use.

The following function throws an error first; the second command should never run:

function Invoke-Something {
 [CmdletBinding()]
 param ()

 throw 'Error'
 Write-Host 'No error'
}

Running the function normally shows that the error is thrown, and the second command
doesn't execute:

PS> Invoke-Something
Error
At line:5 char:5
+ throw 'Error'
+ ~~~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (Error:String) [], RuntimeException
+ FullyQualifiedErrorId : Error

If ErrorAction is set to SilentlyContinue, throw will be ignored:

PS> Invoke-Something -ErrorAction SilentlyContinue
No error

Error Handling Chapter 21

[562]

Enclosing throw in a try-catch block will trigger catch, ending the script as it should
regardless of the ErrorAction setting:

PS> function Invoke-Something {
>> [CmdletBinding()]
>> param ()
>>
>> try {
> throw 'Error'
>> Write-Host 'No error'
>> } catch {
>> Write-Host 'An error occurred'
>> }
>> }
PS> Invoke-Something -ErrorAction SilentlyContinue
An error occurred

The problem described here also applies when throw is used within the catch block,
although, in this case, the script is still terminated. The script below should result in an
error being displayed as the error is terminating, however no error is displayed. The error
raised in try does still prevent the script for progressing to the Write-Host command:

PS> function Invoke-Something {
>> [CmdletBinding()]
>> param ()
>>
>> try {
>> throw 'Error'
>> Write-Host 'No error'
>> } catch {
>> throw 'An error occurred'
>> }
>> }
PS> Invoke-Something -ErrorAction SilentlyContinue

For scripts that declare the CmdletBinding attribute, ThrowTerminatingError can be
used. The ThrowTerminatingError method doesn't suffer from the same problem; it isn't
affected by ErrorAction:

PS> function Invoke-Something {
>> [CmdletBinding()]
>> param ()
>>
>> try {
>> throw 'Error'
>> Write-Host 'No error'
>> } catch {

Error Handling Chapter 21

[563]

>> $pscmdlet.ThrowTerminatingError($_)
>> }
>> }
PS> Invoke-Something -ErrorAction SilentlyContinue
Invoke-Something : Error
At line:12 char:1
+ Invoke-Something -ErrorAction SilentlyContinue
+ ~~
+ CategoryInfo : OperationStopped: (Error:String) [Invoke-Something],
RuntimeException
+ FullyQualifiedErrorId : Error,Invoke-Something

In the preceding example, throw is used to raise the original error condition (which will
create an error record). ThrowTerminatingError is used to re-throw the terminating error
correctly.

If a function doesn't use the CmdletBinding attribute, care should be taken when writing
error handling. For example, the following function cannot use ThrowTerminatingError
or the ErrorAction parameter, but it's still subject to ErrorActionPreference:

PS> function Invoke-Something {
>> throw 'Error'
>> Write-Host 'No error'
>> }
PS> $ErrorActionPreference = 'SilentlyContinue'
PS> Invoke-Something
No error

Workarounds for this problem for standard functions include using Write-Error with
ErrorAction set to Stop, however it's often best to simply add the CmdletBinding
attribute and make the function advanced.

The following statements encompass a possible best practice:

When using throw, ensure throw is within a try block
Use PSCmdlet.ThrowTerminatingError to raise a terminating error from a
script
Use advanced functions to get most predictable behavior from ErrorAction

Nesting try-catch-finally
One try-catch-finally statement can be nested beneath another. This is most
appropriate when a different approach is required by a smaller section of code.

Error Handling Chapter 21

[564]

A script which performs setup actions, then works on a number of objects in a loop, is a
good example a script that might benefit from more than one try-catch statement. The
script should terminate cleanly if something goes wrong during setup, but it might only
notify you if an error occurs within the loop.

The following functions can be used as a working example of such a script. The setup
actions might include connecting to a management server of some kind:

function Connect-Server {}

Once the connection is established, a set of objects might be retrieved:

function Get-ManagementObject {
 1..10 | ForEach-Object {
 [PSCustomObject]@{
 Name = $_
 Property = "Value$_"
 }
 }
}

The Set filter accepts an input pipeline and changes a value on the object:

function Set-ManagementObject {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory, ValueFromPipeline)]
 $InputObject,

 $Property
)

 process {
 $InputObject.Property = $Property
 }
}

The following script uses the preceding functions. If a terminating error is raised during
either the Connect or Get commands, the script will stop. If a terminating error is raised
during Set, the script writes about the error and moves onto the next object:

try {
 Connect-Server
 Get-ManagementObject | ForEach-Object {
 try {
 $_ | Set-ManagementObject -Property 'NewValue'
 } catch {

Error Handling Chapter 21

[565]

 Write-Error -ErrorRecord $_
 } finally {
 $_
 }
 }
} catch {
 throw
}

Changing individual functions to throw errors will show how each block triggers.

Terminating or non-terminating
One of the challenges of writing error handling is determining whether the error is
terminating or non-terminating.

A possible solution is to force all errors to be terminating by setting
ErrorActionPreference to Stop.

Setting ErrorActionPreference to Stop is equivalent to adding -ErrorAction Stop to
every command that supports it.

When exploring nesting try-catch-finally, the following example was used:

try {
 Connect-Server
 Get-ManagementObject | ForEach-Object {
 try {
 $_ | Set-ManagementObject -Property 'NewValue'
 } catch {
 Write-Error -ErrorRecord $_
 } finally {
 $_
 }
 }
} catch {
 throw
}

Setting ErrorActionPreference to Stop would remove the need to set an ErrorAction
parameter on each of the commands (if those commands wrote non-terminating errors).
However, doing so would also cause any informational errors written by Write-Error to
completely stop the script.

Error Handling Chapter 21

[566]

For a script that implements a process, where the error handling can be strictly defined, the
following workaround might be used. ErrorAction for Write-Error is forcefully set to
Continue, overriding the value held in the preference variable:

$ErrorActionPreference = 'Stop'
try {
 Connect-Server
 Get-ManagementObject | ForEach-Object {
 try {
 $_ | Set-ManagementObject -Property 'NewValue'
 } catch {
 Write-Error -ErrorRecord $_ -ErrorAction Continue
 } finally {
 $_
 }
 }
} catch {
 throw
}

Setting ErrorActionPreference to Stop is harder to apply when writing tools, such as
when writing the commands used by this script; doing so would remove the choice from
the end user.

A need for complex error handling is often a sign that a script should be broken down into
smaller units.

trap
PowerShell 1.0 came with trap. trap is used to catch errors raised anywhere within the
scope of the trap declaration. that is, the current scope and any child scopes.

trap is a useful tool for capturing errors that aren't accounted for by try-catch blocks.
Much of its use has been superseded by try-catch-finally.

Using trap
trap is declared in a similar manner to the catch block:

trap { <script> }
trap [ExceptionType] { <script> }
trap [ExceptionType1], [ExceptionType2] { <script> }

Error Handling Chapter 21

[567]

A script may contain more than one trap statement, for example:

trap [InvalidOperationException] {
 Write-Host 'An invalid operation'
}
trap {
 Write-Host 'Catch all other exceptions'
}

The ordering of the preceding trap statements doesn't matter; the statement with the
most specific error type is used to handle a given error.

PowerShell, as a script-based language normally executes statements in the order written.
However, when using a script, function, or script block, the trap statement can appear
anywhere; trap doesn't have to appear before the code it acts against. For example,
the trap implemented at the bottom of the script block will used when the preceding code
raises an error:

& {
 Write-Host 'Statement1'
 throw 'Statement2'
 Write-Host 'Statement3'

 trap { Write-Host 'An error occurred' }
}

The error raised by throw causes the trap statement to execute, and then execution stops;
Statement3 is never written.

trap, scope, and continue
By default, if an error is handled by trap, script execution stops. The continue keyword
can be used to resume a script at the next statement.

The following example handles the error raised by throw and continues onto the next
statement:

& {
 Write-Host 'Statement1'
 throw 'Statement2'
 Write-Host 'Statement3'

 trap {
 Write-Host 'An error occurred'
 continue

Error Handling Chapter 21

[568]

 }
}

The behavior of continue is dependent on the scope the trap statement is written in. In
the preceding example, continue moves onto writing Statement3 as the trap statement,
and the statements being executed are in the same scope.

The following script declares a function that throws an error. trap is declared in the parent
scope of the function:

& {
 function Invoke-Something {
 Write-Host 'Statement1'
 throw 'Statement2'
 Write-Host 'Statement3'
 }

 Invoke-Something
 Write-Host 'Done'

 trap {
 Write-Host 'An error occurred'
 continue
 }
}

The continue keyword is used, but Statement3 isn't displayed. Execution can only
continue in the same scope as the trap statement.

Summary
This chapter explored the different ways to raise and handle errors in PowerShell. Then, we
looked at the difference between terminating and non-terminating errors.

We discussed using try-catch-finally, introduced with PowerShell 2, as the preferred
means of handling terminating errors.

Then we demonstrated the use of trap, the type of error handling available with
PowerShell 1, which we can add to our error-handling toolset.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn PowerShell Core 6.0
David das Neves, Jan-Hendrik Peters

ISBN: 978-1-78883-898-6

Get to grips with Powershell Core 6.0
Explore basic and advanced PowerShell scripting techniques
Get to grips with Windows PowerShell Security
Work with centralization and DevOps with PowerShell
Implement PowerShell in your organization through real-life examples
Learn to create GUIs and use DSC in production

https://www.packtpub.com/networking-and-servers/learn-powershell-core-60

Other Books You May Enjoy

[570]

PowerShell Core for Linux Administrators Cookbook
Prashanth Jayaram, Ram Iyer

ISBN: 978-1-78913-723-1

Leverage the object model of the shell, which is based on .NET Core
Administer computers locally as well as remotely using PowerShell over
OpenSSH
Get to grips with advanced concepts of PowerShell functions
Use PowerShell for administration on the cloud
Know the best practices pertaining to PowerShell scripts and functions
Exploit the cross-platform capabilities of PowerShell to manage scheduled jobs,
Docker containers and SQL Databases

https://www.packtpub.com/networking-and-servers/powershell-core-linux-administrators-cookbook

Other Books You May Enjoy

[571]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

*
*-Event commands 374

.

.NET Framework Class Library
 reference link 170

A
abstract modifier
 reference link 475
Abstract Syntax Tree (AST)
 about 505
 in Powershell 505, 506
access control entry (ACE)
 about 252
 filesystem rights 252
 numeric values, in access control list 255
 registry rights 254
Access Control List (ACL) 245
access modifiers 61, 62, 63
Action parameter 377
Adapted Type System (ATS) 58
Add-Member command 63, 64
addition operators 86, 87
allow attributes
 about 437
 AllowEmptyCollection attribute 438
 AllowEmptyString attribute 438
 AllowNull attribute 437
alternation character 223
anchors 217
Application Programming Interface (API) 315
argument transformation attribute classes 475
argument-completers
 about 451
 attribute 452

 Register-ArgumentCompleter, using 452
 registered argument-completers, listing 453
arithmetic operators
 about 86
 addition operators 87
 division operator 89
 multiplication operator 89
 operator precedence 86
 remainder operator 90
 shift left 90
 shift right operators 90
 subtraction operators 87
arrays
 about 132
 clearing 138
 creating 133
 element values, modifying in 136
 elements, adding to 134
 elements, removing by index 137
 elements, removing by value 138
 elements, removing from 136
 elements, selecting from 135
 jagged arrays 140
 multi-dimensional arrays 139
 variables, filling from 138
 with type 133
assemblies 168
assertions
 about 519
 errors, testing 519, 521
assignment operators
 about 93
 add and assign 93
 assign 93
 divide and assign 95
 modulus and assign 95
 multiply and assign 95

[573]

 subtract and assign 93
ASSOCIATORS OF query 267
authentication
 access token, requesting 331
 application, creating 329
 authorization code, obtaining 329
 OAuth 328
 token, using 331
 using 327
 working with 327

B
Base64
 working with 197
begin block 403, 404
BeginInvoke method 381
binary operators
 about 104
 binary and 104
 binary exclusive or 105
 binary not 106
 binary or 105
branching operation 165

C
Cascading Style Sheet (CSS) 290
Certificate validation
 reference link 317
character classes 220, 222, 223
CIM cmdlets
 about 261, 268
 CIM sessions, working with 274
 Get-CimAssociatedClass command 275
 Get-CimClass command 269
 Get-CimInstance command 269
 Invoke-CimMethod command 270, 271
 New-CimInstance command 273
CIM sessions
 about 365
 Get-CimSession 367
 New-CimSession 366
 using 367
 working with 274
class
 constructor 469

 creating 467
 hidden modifier 473
 inheritance 471
 method 470
 properties 468
 static modifier 474
classes
 about 170, 480
 Get method, implementing 482
 resource, using 485, 487
 Set, implementing 483
 Test, implementing 484
Clear variable 122
CmdletBinding
 about 410
 attribute 413
 common parameters 413
 properties 414
collections
 about 145
 dictionary 148
 lists 146
 queue 151
 reference link 146
 stack 153
Comma-Separated Value (CSV) 81
comma-separated value (CSV) string
 working with 199
command
 aliases 21
 finding 20
 naming 19
 nouns 19
 verbs 19
comment-based help
 about 397
 examples 400
 parameter help 398
Common Information Model (CIM) 268
Compare-Object command 77, 78
comparing 77
comparison operators
 about 96, 97
 arrays 97
 case sensitivity 96

[574]

 contains and in 100
 equal to and not equal to 98
 greater than and less than 99
 like and not like 99
conditional parameters 461
conditional statements
 about 156
 else statement 157
 elseif statement 157
 if statement 157
Confirm parameter 27
ConfirmPreference parameter 28
constructor inheritance 471
constructor
 about 469
 chaining 472
constructors
 about 170
 arguments, using as array 173
 calling 171
 calling, with lists of arguments 172
 objects, creating from hashtables 176
context blocks 522
continue statement 568
Convert-String command
 using 200
ConvertFrom-Json command 312, 314
ConvertFrom-String command 201
ConvertTo-Html command
 about 289
 multiple tables 290
ConvertTo-Json command 311
credentials
 passing 365
CredSSP 364
cross-referencing parameters 412

D
date manipulation
 dates, changing 207
 dates, comparing 209
 dates, parsing 206
 DateTime parameters 205
dependencies 495
Desired State Configuration (DSC) 42, 465, 480

dictionary
 about 148
 creating 149
 elements, adding 149
 elements, modifying 149
 elements, removing from 151
 elements, selecting from 150
 enumerating 150
discovery 19
discretionary access control list (DACL) 246
Distributed Component Object Model (DCOM) 261
Distributed Management Task Force (DMTF) 261
Document Type Definition (DTD) 292
dot-sourcing module content 496
double-hop problem
 about 364
 reference link 364
dynamic parameters
 conditional parameters 460
 RuntimeDefinedParameter object, creating 456
 RuntimeDefinedParameterDictionary, using 457
 using 458, 459

E
element values
 modifying, in arrays 136
 modifying, in list 148
elements
 adding, in dictionary 149
 adding, to arrays 134
 adding, to hashtable 141
 adding, to list 146
 adding, to queue 152
 adding, to stack 154
 modifying, in dictionary 149
 modifying, in hashtable 142
 removing, from arrays 136
 removing, from dictionary 151
 removing, from hashtable 144
 removing, from list 148
 removing, from queue 152
 removing, from stack 154
 selecting, from arrays 135
 selecting, from dictionary 150
 selecting, from hashtable 143

[575]

 selecting, from list 147
end block 403, 405
EndInvoke method 382
enumeration
 about 65
 automatic value assignment 464
 defining 462
 flags attribute 465
 underlying type 463
 used, to convert values 467
 ValidateSet 465
error actions 546, 547
error catching
 about 553
 catch block 553, 554
 ErrorAction 561, 562
 finally block 553, 555
 inconsistent error behavior 559
 non-terminating error 565, 566
 re-throwing errors 556, 557, 558
 terminating error 565, 566
 throw keyword 561, 562
 trap 566
 try block 553
 try-catch-finally, nesting 563, 564
error raising
 about 547
 error records 547, 548, 549
 Error variable 551, 552
 ErrorVariable parameter 551, 552
 throw keyword 550, 551
 ThrowTerminatingError 550, 551
 Write-Error command 549
error types
 about 544
 non-terminating error 545
 terminating error 545
escape character (\) 215
EventArgs parameter 377
events
 *-Event commands 374
 Action parameter 377
 EventArgs parameter 377
 Get-EventSubscriber command 376
 MessageData parameters 376

 parameters 377
 reacting to 373
 Register-ObjectEvent command 374
 Unregister-Event command 376
Export-Clixml command 83
Export-Csv command 79
Export-ModuleMember command 492, 494
Extended Type System (ETS) 58
Extensible Markup Language (XML)
 about 292
 attributes 293
 elements 292
 namespaces 293
 schemas 293

F
file attributes
 adding 242
 removing 242
file catalog
 about 257
 New-FileCatalog command 257
 Test-FileCatalog command 258
File Integrity Monitoring (FIM) 257
filesystem properties 241
filter 65, 394
Find-Module command
 using 48
Force parameter 27, 31
ForEach-Object command 65, 66
format operator
 reference link 115
format strings
 reference link 206
functions 394

G
Get method
 implementing 482
Get variable 122
Get-CimAssociatedClass command 275
Get-CimClass command 269
Get-CimInstance command 269
Get-EventSubscriber command 376
Get-Help command

[576]

 about 12
 Detailed parameter 15
 examples 14
 Full switch 15
 syntax 13
 using, with specific parameter 15
Get-Job command 370
Get-Member command 58
Get-Module command
 PSModulePath, in Windows PowerShell 43
 using 43
Get-WmiObject command 277, 278
Get-WSManInstance 343
Global Assembly Cache (GAC) 184
group, regular expressions (regex)
 about 224
 alternation, restricting 225
 named capture groups 227
 non-capturing groups 228
 repeating groups 224
 values, capturing 226
Group-Object command 73, 74

H
hashtable
 about 140
 creating 141
 elements, adding 141
 elements, modifying 142
 elements, removing from 144
 elements, selecting from 143
 enumerating 144
 objects, creating 176
hidden modifier 473
HTML
 about 289
 special characters 291, 292
 style, adding 290, 291
HTTP methods 316
HTTPS 317
Hyper-Text Transfer Protocol (HTTP) 315

I
if statement
 used, for assignment 158

implicit remoting 50
Import-Clixml command 83
Import-Csv command 81, 82
Import-Module command
 using 45
inheritance
 about 471
 constructor inheritance 471
 constructor, chaining 472
InitialSessionState object
 about 386
 functions, adding 389
 modules, adding 387
 snap-ins, adding 387
 using 390
 variables, adding 388
input
 allow attributes 437
 PSReference parameters 439
 PSTypeName attribute 428
 validating 428
 validation attribute 430
 ValueFromPipelineByPropertyName 445
Install-Module command
 using 48
Invoke method 381
Invoke-CimMethod command 270, 271
Invoke-Command
 about 353
 AsJob parameter 355
 disconnected sessions 355
 local functions 354
 remote sessions 354
 splatting, used with ArgumentList 354
 variable scope, used 356
Invoke-RestMethod command 321
It statement
 used, for declaring tests 515
item properties
 about 241
 file attributes, adding 241
 file attributes, removing 241
 filesystem properties 241
 registry values 244
item

[577]

 about 238
 creating 239
 deleting 239
 existence, testing 238
 invoking 240

J
jagged arrays 140
job command
 Get-Job command 370
 Receive-Job command 371
 Remove-Job command 370
 Start-Job command 370
 Wait-Job command 372
 working with 369
JSON
 about 311
 ConvertFrom-Json command 312
 ConvertTo-Json command 311

L
Language Integrated Query (LINQ) 304
Last In First Out (LIFO) 153
leaky functions
 about 407
 null, assigning 409
 null, redirecting 409
 Out-Null command 408
 void, casting 410
Linux
 remoting 359
list
 about 146
 creating 146
 element values, modifying 148
 elements, adding to 146
 elements, removing from 148
 elements, selecting from 147
literal characters 213
logical operators
 about 106
 and operator 106
 exclusive or operator 107
 not operator 107
 or operator 107

long lines
 array operator, used to break up 401
 line break after operator 401
 line break after pipe 401
 working with 400
loops
 about 161
 break 163
 continue 163
 do until 162
 do while 162
 for 162
 foreach 161
 while 163

M
Measure-Object command 73, 76
Media Access Control (MAC) 229
members
 about 57
 Add-Member command 63, 64
 Get-Member command 58
MessageData parameters 376
method
 about 470
 using 60, 61, 176
Microsoft Assistance Markup Language (MAML)

396

Microsoft Installer (MSI) 53
Microsoft VS Code
 URL, for downloading 10
mock, Pester
 about 526
 Assert-MockCalled 527
 non-local commands, mocking 529, 530
 parameter filtering 528
module content
 merging 498
module layout
 about 490
 dependencies 495
 Export-ModuleMember command 491, 494
 FunctionsToExport 494
 module manifest 492
 root module 490

[578]

 side-by-side versioning 494
module manifest 493, 494
module scope
 about 499
 accessing 501
modules
 about 40
 binary 40
 dynamic module 41
 Find-Module command, using 47
 Get-Module command, using 43
 Import-Module command, using 45
 initializing 502
 Install-Module command, using 48
 manifest file serves 41
 OnRemove event 502
 PowerShell Gallery 42
 Remove-Module command, using 47
 removing 502
 Save-Module command 49
 script module 40
 ScriptsToProcess key 502
 Update-Module command 49
multi-dimensional arrays 139
multi-file module layout
 about 495
 development consideration 496
 dot-sourcing module content 496
 module content, merging 498
 run-time consideration 496
multiple instances
 executing 384
multiplication operator 89

N
named block 406
namespaces 169
New variable 122
New-CimInstance command 273
non-printable characters 217
non-public classes 182
non-standard output 56
non-terminating error 545
number manipulation
 about 202

 hexadecimal formats, accessing 203
 large byte values 202
 Power of 10 203
 System.Math, using 203
numbers
 manipulating 202
numeric values
 manipulating 205
 strings, converting to 204

O
object pipeline 57
objects mocking
 about 531
 CIM objects, mocking 537
 existing members, mocking 533, 534
 fabricating objects 531, 532
 New-MockObject, using 535
objects
 assigning, to variables 131
OnRemove event 503
operator precedence 87
optional characters 216
other operators
 about 114
 call operator 114
 comma operator 114
 decrement operator 116
 format operator 115
 increment operator 116
 join operator 117

P
param block 410
parameter aliases 446
parameter attribute
 about 421
 DontShow property 425
 HelpMessage property 427
 position binding 423
 positional binding 423
 ValueFromRemainingArguments property 426
parameter sets
 about 22, 26
 defining 447, 450

[579]

parameter types
 about 410
 nullable types 411
parameters
 about 22, 410
 common parameters 24
 cross-referencing parameters 412
 default values 411
 mandatory parameters 23
 mandatory positional 23
 optional parameters 22, 23
 switch parameters 24
 values 25
permissions
 about 281
 access control entry, adding 284
 security descriptor, obtaining 282, 283
 security descriptor, setting 285
 shared directory, creating 281
 sharing 281
Pester
 assertions 519
 code, testing 514
 context blocks 522
 Describe block 515, 516
 independent verification 518, 519
 It statement 515, 516
 keywords 522, 524, 526
 Mock 526
 objects mocking 531
 practice 538, 540, 541
 test cases 517, 518
 TestDrive 526
 tests, writing 514
 used, for testing 513
pipeline input
 about 440
 ValueFromPipeline 440
pipelines
 about 56
 non-standard output 56
 object pipeline 57
 standard output 56
PowerShell Core
 about 49

 Add-WindowsPSModulePath command 51
 Copy-WinModule command 52
 Get-WinModule command 52
 Import-WinModule command 52
 Invoke-WinCommand 53
PowerShell Gallery
 Get-Module command, using 43
PowerShell instance
 creating 379
PowerShell ISE
 reference link 10
PowerShell, on Linux
 URL, for installing 359
PowerShell
 about 9
 commands, for converting strings 197
 editors 10
 Get-Help command 12
 help content 10
 help files 18
 Save-Help command 16
 updatable help 11
 Update-Help command 16
process block 403, 404
properties
 about 468
 accessing 59
 using 176
providers
 about 31
 drives 32, 237
 items, obtaining 236
 navigating 236
 using 34
 working with 235
PSDataCollection object 382
PSModulePath
 Get-Module 45
 in PowerShell Core 44
 in Windows PowerShell 43
 PSCompatibility 45
 PSEdition 45
PSReference parameters 439
PSScriptAnalyzer 508, 509
PSSession

[580]

 about 351
 command, entering 357
 command, exporting 358
 command, importing 357
 Get-PSSession 352
 Invoke-Command 353
 items, copying between sessions 358
 New-PSSession 352
PSTypeName attribute 428

Q
quantifiers
 about 215, 218
 exploring 219
queue
 about 151
 creating 151
 elements, adding to 152
 elements, removing from 152
 enumerating 152

R
Receive-Job command 371
redirection operators
 about 109
 file, redirecting to 110
 null, redirecting to 113
 streams, redirecting to standard output 112
Register-ArgumentCompleter
 using 452
Register-ObjectEvent command 374
regular expression-based operators
 about 101
 match and not match 101
 replace 102
 split 103
regular expressions (regex)
 +, used for repetition 215
 about 212
 any character (.) 214
 certificates, formatting 233
 debugging 212
 escape character (\) 215
 examples 229
 IP addresses, validating 231

 literal characters 213
 Media Access Control (MAC) addresses 229
 netstat command, using 231
 non-printable characters 217
 optional characters 216
 reference 213
remainder operator 90
remoting
 about 344
 enabling 342
Remove variable 123
Remove-Job command 370
Remove-Module command
 using 47
repetition 218
Representational State Transfer (REST) 315
resource
 using 485, 487
REST
 authentication, working with 327
 Invoke-RestMethod command 321
 paging, working with 325
 requests 322
 requests, with arguments 323
 working with 321
return keyword 406
RFC 5988
 reference link 325
root module 490
Runspace-synchronized object
 using 390
RunspacePool
 InitialSessionState object 386
 object, using 385
 objects, using 390
Runspaces pools
 using 378
Runspaces
 BeginInvoke method 380
 EndInvoke method 382
 Invoke method 380
 multiple instances, executing 384
 PowerShell instance, creating 379
 PSDataCollection object 382
 using 378

[581]

RuntimeDefinedParameter object
 creating 456
RuntimeDefinedParameterDictionary
 using 457

S
Save-Module command
 using 49
scope statement 567
script analyzer
 AST-based rules 511
 custom rules, creating 510
 custom rules, using 510, 512, 513
 token-based rules 512
scripts
 about 394
 comment-based help 396
 nesting functions 396
 Requires statement 395
 using statements 395
ScriptsToProcess key 502
Secure Sockets Layer (SSL) 317, 344
Security descriptor definition language (SDDL)

286, 287
Select-Object command 67, 68, 69
selecting 67
Set variable 123
Set-WSManQuickConfig 344
Set
 implementing 483
shift operators 90
shift right operators 90
ShouldContinue 415, 417
ShouldProcess 415
side-by-side versioning 494
Simple Object Access Protocol (SOAP) 315, 342
snap-ins
 about 53
 using 54
SOAP
 enumerations 335
 methods 334
 New-WebServiceProxy 333
 objects 336
 service, finding 332

 services, overlapping 337
 working with 332
Sort-Object command 70, 71, 72
sorting 67
splatting
 about 35
 and positional parameters 39
 used, for avoiding escaped end-of-line 36
 used, for avoiding repetition 38
SSH
 connecting, from Linux to Windows 361
 connecting, from Windows to Linux 360
 remoting 360
SSL errors
 bypassing, in Windows PowerShell 318
 capturing 319
SSL scenarios
 reference link 317
stack
 about 153
 creating 153
 elements, adding to 154
 elements, removing from 154
 enumerating 153
standard output 56
Start-Job command 370
static analysis
 about 505
 AST 505, 506
 custom rules, used for script analyzer 510
 PSScriptAnalyzer 508, 509
 suppressing rules 509, 510
 Tokenizer 506, 507
static methods 180, 182
static modifier 474
static properties 178, 179
strings
 arrays 189
 chaining method 197
 Contains method 196
 converting 197
 converting, to numeric values 204
 EndsWith method 196
 indexing into 188
 IndexOf method 194

[582]

 Insert method 193
 LastIndexOf method 194
 manipulating 188
 method 189
 PadLeft option 195
 PadRight option 195
 Remove method 193
 replace 192
 split method 190
 StartsWith method 196
 substrings 190
 ToLower method 196
 ToTitleCase method 196
 ToUpper method 196
 Trim 192
 TrimEnd 192
 TrimStart 192
structure (struct) 169
Structured Query Language (SQL) 262
subtraction operator 87, 88
suppressing rules 509, 510
switch statement
 about 159, 160
 expressions 161
 regrex 160
 wildcard 160
system access control list (SACL) 246
System.Xml.Linq
 about 304
 attribute value, modifying 308
 documents, creating 306
 documents, opening 304
 element value, modifying 308
 namespaces 307
 nodes, adding 309
 nodes, removing 309
 nodes, selecting 305
 schema validation 310
System.Xml
 about 294
 attribute values, modifying 300
 attributes, removing 302
 ConvertTo-XML command 294
 element value, modifying 300
 elements, adding 301

 elements, removing 302
 namespaces, working with 297
 nodes, copying between documents 301
 schema validation 303
 Select-Xml 295, 296
 XML documents, creating 299
 XML type accelerator 295
 XPath 295, 296

T
terminating error 545
Test-Driven Development (TDD) 504
Test
 implementing 484
TestDrive 526
times
 manipulating 205
Tokenizer 506, 507
transaction 256
trap statement 567
trap
 about 566
 using 566, 567
trusted hosts 351
type 129, 169
type accelerators 183
type conversion
 about 129, 130
 reference link 130
type operators
 about 108
 as operator 108
 is and isnot operator 109

U
Uniform Resource Identifier (URI) 321
Unregister-Event command 376
Update-Module command
 using 49
User Account Control (UAC) 350
using assembly statement 185
using keyword
 about 184
 using assembly statement 184
 using namespace statement 185

[583]

V
ValidateArgumentsAttribute 478
ValidateCount attribute 432
ValidateDrive attribute 433
ValidateEnumeratedArgumentsAttribute 479
ValidateLength attribute 433
ValidateNotNull attribute 431, 432
ValidatePattern attribute 433
ValidateRange attribute 435
ValidateScript attribute 436
validation attribute classes
 about 477
 ValidateArgumentsAttribute 478
 ValidateEnumeratedArgumentsAttribute 479
validation attribute
 about 430
 ValidateCount attribute 432
 ValidateDrive attribute 433
 ValidateLength attribute 433
 ValidateNotNull attribute 431, 432
 ValidatePattern attribute 433
 ValidateRange attribute 435
 ValidateScript attribute 436
 ValidateSet attribute 437
value
 assigment 165
ValueFromPipeline
 about 440
 input object types 442
 null input, accepting 441
 PSTypeName, used 444
 used, for multiple parameters 443
ValueFromPipelineByPropertyName 445, 446
variable commands
 about 121
 Clear variable 122
 Get variable 122
 New variable 122
 Remove variable 123
 Set variable 123
variable provider 124, 125
variable scope
 about 125
 global 126

 local 126
 private 127
 script 128
variables
 about 119, 120
 creating 121
 filling, from arrays 138
 naming 120, 121
 objects, assigning to 131
Visual Studio Code (VS Code) 10

W
Wait-Job command 372
web requests
 about 315
 HTTP methods 316
 HTTPS 317
 SSL errors, bypassing in Windows PowerShell

318

 SSL errors, capturing 319
WhatIf parameter 27, 30
WhatIfPreference variable 30
Where-Object command 66
Windows Management Framework (WMF) 49
Windows Management Instrumentation (WMI)
 about 260, 262
 associated classes 265
 ASSOCIATORS OF query 267
 classes 261
 commands 261, 262
 working with 260
Windows permissions
 about 245
 access 246
 access control entries, removing 250
 access control entry (ACE), adding 252
 audit 246
 entries, copying 251
 inheritance 249
 lists, copying 251
 ownership 245
 propagation flags 249
 rule protection 247
Windows Presentation Framework (WPF) 328
WindowsCompatibility module 49, 50

WMI cmdlets
 about 276
 associated classes 280
 CreateInstance method 280
 date-time properties 277
 Get-WmiObject command 277, 278
WMI object path 266, 267
WMI permissions
 about 285
 access mask 285
 security descriptor, obtaining 285
WMI Query Language (WQL)
 about 262
 comparison operators 264
 escape sequences 263
 FROM keyword 262
 logical operators 264

 quoting values 264
 SELECT keyword 262
 WHERE keyword 262
 wildcard characters 263
WS-Management
 about 342
 Get-WSManInstance 343
 remoting and permissions 346
 remoting and SSL 343
 remoting permissions GUI 346
 remoting permissions, by script 347
 remoting, enabling 342
 Set-WSManQuickConfig 344
 trusted hosts 351
 User Account Control (UAC) 350
 WSMan drive 343
WSMan drive 343

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Exploring PowerShell Fundamentals
	Chapter 1: Introduction to PowerShell
	Technical requirements
	What is PowerShell?
	PowerShell editors
	Getting help
	Updatable help
	The Get-Help command
	Syntax
	Examples
	Parameter
	Detailed and full switches

	Save-Help
	Update-Help
	About help files

	Command naming and discovery
	Verbs
	Nouns
	Finding commands
	Aliases

	Parameters and parameter sets
	Parameters
	Optional parameters
	Optional positional parameters
	Mandatory parameters
	Mandatory positional parameters
	Switch parameters
	Common parameters

	Parameter values
	Parameter sets
	Confirm, WhatIf, and Force
	Confirm parameter
	ConfirmPreference
	WhatIf parameter
	WhatIfPreference
	Force parameter

	Introduction to providers
	Drives using providers
	Using providers

	Introduction to splatting
	Splatting to avoid escaped end-of-line
	Splatting to avoid repetition
	Splatting and positional parameters

	Summary

	Chapter 2: Modules and Snap-ins
	Introducing modules
	What is the PowerShell Gallery?
	The Get-Module command
	PSModulePath in Windows PowerShell
	PSModulePath in PowerShell Core
	Get-Module, PSCompatibility, and PSEdition

	The Import-Module command
	The Remove-Module command
	The Find-Module command
	The Install-Module command
	The Update-Module command
	The Save-Module command

	PowerShell Core and the WindowsCompatibility module
	The compatibility session
	Add-WindowsPSModulePath
	Get-WinModule and Import-WinModule
	Copy-WinModule
	Invoke-WinCommand

	Introducing snap-ins
	Using snap-ins

	Summary

	Chapter 3: Working with Objects in PowerShell
	Pipelines
	Standard output
	Non-standard output
	The object pipeline

	Members
	The Get-Member command
	Accessing properties
	Using methods
	Access modifiers
	The Add-Member command

	Enumerating and filtering
	The ForEach-Object command
	Where-Object command

	Selecting and sorting
	The Select-Object command
	The Sort-Object command

	Grouping and measuring
	The Group-Object command
	The Measure-Object command

	Comparing
	Importing, exporting, and converting
	The Export-Csv command
	The Import-Csv command
	Export-Clixml and Import-Clixml

	Summary

	Chapter 4: Operators
	Arithmetic operators
	Operator precedence
	Addition and subtraction operators
	Addition operators
	Subtraction operator

	Multiplication, division, and remainder operators
	Multiplication operator
	Division operator
	Remainder operator

	Shift left and shift right operators

	Assignment operators
	Assign, add and assign, and subtract and assign
	Multiply and assign, divide and assign, and modulus and assign

	Comparison operators
	Case-sensitivity
	Comparison operators and arrays
	Equal to and not equal to
	Like and not like
	Greater than and less than
	Contains and in

	Regular expression-based operators
	Match and not match
	Replace
	Split

	Binary operators
	Binary and
	Binary or
	Binary exclusive or
	Binary not

	Logical operators
	And
	Or
	Exclusive or
	Not

	Type operators
	As
	is and isnot

	Redirection operators
	Redirection to a file
	Redirecting streams to standard output
	Redirection to null

	Other operators
	Call
	Comma
	Format
	Increment and decrement
	Join

	Summary

	Section 2: Working with Data
	Chapter 5: Variables, Arrays, and Hashtables
	Naming and creating variables
	Variable commands
	Clear
	Get
	New
	Remove
	Set

	Variable provider
	Variable scope
	Local and global scope
	Private scope
	Script scope

	Type and type conversion
	Objects assigned to variables
	Arrays
	Creating an array
	Arrays with a type
	Adding elements to an array
	Selecting elements from an array
	Changing element values in an array
	Removing elements from an array
	Removing elements by index
	Removing elements by value
	Clearing an array

	Filling variables from arrays
	Multi-dimensional and jagged arrays

	Hashtables
	Creating a hashtable
	Adding and changing elements to a hashtable
	Selecting elements from a hashtable
	Enumerating a hashtable
	Removing elements from a hashtable

	Lists, dictionaries, queues, and stacks
	Lists
	Creating a list
	Adding elements to the list
	Selecting elements from the list
	Removing elements from the list
	Changing element values in a list

	Dictionaries
	Creating a dictionary
	Adding and changing elements in a dictionary
	Selecting elements from a dictionary
	Enumerating a dictionary
	Removing elements from a dictionary

	Queues
	Creating a queue
	Enumerating the queue
	Adding elements to the queue
	Removing elements from the queue

	Stacks
	Creating a stack
	Enumerating the stack
	Adding elements to the stack
	Removing elements from the stack

	Summary

	Chapter 6: Branching and Looping
	Conditional statements
	if, else, and elseif
	Assignment within if statements

	switch
	wildcard and regex
	Expressions

	Loops
	foreach
	for
	do until and do while
	while
	break and continue

	Branching and assignment
	Summary

	Chapter 7: Working with .NET
	Assemblies
	Namespaces
	Types
	Classes
	Constructors
	Calling constructors
	Calling constructors with lists of arguments
	Arguments as an array
	Creating objects from hashtables

	Properties and methods
	Static properties
	Static methods
	Non-public classes
	Type accelerators
	The using keyword
	Using assemblies
	Using namespaces

	Summary

	Chapter 8: Strings, Numbers, and Dates
	Manipulating strings
	Indexing into strings
	String methods and arrays
	Substring
	Split
	Replace
	Trim, TrimStart, and TrimEnd
	Insert and remove
	IndexOf and LastIndexOf
	PadLeft and PadRight
	ToUpper, ToLower, and ToTitleCase
	Contains, StartsWith, and EndsWith
	Chaining methods

	Converting strings
	Working with Base64
	Working with comma-separated value strings
	Convert-String
	ConvertFrom-String

	Manipulating numbers
	Large byte values
	Power of 10
	Hexadecimal
	Using System.Math

	Converting strings into numeric values
	Manipulating dates and times
	DateTime parameters
	Parsing dates
	Changing dates
	Comparing dates

	Summary

	Chapter 9: Regular Expressions
	Regex basics
	Debugging regular expressions
	Literal characters
	Any character (.)
	Repetition with * and +
	The escape character (\)
	Optional characters
	Non-printable characters

	Anchors
	Repetition
	Exploring the quantifiers

	Character classes
	Ranges
	Negated character class
	Character class subtraction
	Shorthand character classes

	Alternation
	Grouping
	Repeating groups
	Restricting alternation
	Capturing values
	Named capture groups
	Non-capturing groups

	Examples of regular expressions
	MAC addresses
	IP addresses
	The netstat command
	Formatting certificates

	Summary

	Chapter 10: Files, Folders, and the Registry
	Working with providers
	Navigating
	Getting items
	Drives

	Items
	Testing for existing items
	Creating and deleting items
	Invoking items

	Item properties
	Filesystem properties
	Adding and removing file attributes
	Registry values

	Windows permissions
	Ownership
	Access and audit
	Rule protection
	Inheritance and propagation flags
	Removing access control entries
	Copying lists and entries
	Adding access control entries
	Filesystem rights
	Registry rights
	Numeric values in the access control list

	Transactions
	File catalogs
	New-FileCatalog
	Test-FileCatalog

	Summary

	Chapter 11: Windows Management Instrumentation
	Working with WMI
	WMI classes
	WMI commands
	The WMI Query Language
	Understanding SELECT, WHERE, and FROM
	Escape sequences and wildcard characters
	Logic operators
	Comparison operators
	Quoting values

	Associated classes
	WMI object paths
	Using ASSOCIATORS OF

	CIM cmdlets
	Getting instances
	Getting classes
	Calling methods
	Creating instances
	Working with CIM sessions
	Associated classes

	The WMI cmdlets
	Getting instances
	Working with dates
	Getting classes
	Calling methods
	Creating instances
	Associated classes

	Permissions
	Sharing permissions
	Creating a shared directory
	Getting a security descriptor
	Adding an access control entry
	Setting the security descriptor

	WMI permissions
	Getting a security descriptor
	The access mask

	WMI and SDDL

	Summary

	Chapter 12: HTML, XML, and JSON
	HTML
	ConvertTo-Html
	Multiple tables
	Adding style
	HTML and special characters

	XML
	Elements and attributes
	Namespaces
	Schemas

	System.Xml
	ConvertTo-Xml
	XML type accelerator
	XPath and Select-Xml
	Working with namespaces
	Creating documents
	Modifying element and attribute values
	Adding elements
	Copying nodes between documents
	Removing elements and attributes
	Schema validation

	System.Xml.Linq
	Opening documents
	Selecting nodes
	Creating documents
	Working with namespaces
	Modifying element and attribute values
	Adding nodes
	Removing nodes
	Schema validation

	JSON
	ConvertTo-Json
	ConvertFrom-Json

	Summary

	Chapter 13: Web Requests and Web Services
	Technical requirements
	Web requests
	HTTP methods
	HTTPS
	Bypassing SSL errors in Windows PowerShell
	Capturing SSL errors

	Working with REST
	Invoke-RestMethod
	Simple requests
	Requests with arguments
	Working with paging
	Working with authentication
	Using basic authentication
	OAuth
	Creating an application
	Getting an authorization code
	Requesting an access token
	Using a token

	Working with SOAP
	Finding a SOAP service
	New-WebServiceProxy
	Methods
	Methods and enumerations
	Methods and SOAP objects
	Overlapping services

	Summary

	Section 3: Automating with PowerShell
	Chapter 14: Remoting and Remote Management
	Technical requirements
	WS-Management
	Enabling remoting
	Get-WSManInstance
	The WSMan drive
	Remoting and SSL
	Set-WSManQuickConfig

	Remoting and permissions
	Remoting permissions GUI
	Remoting permissions by script

	User Account Control
	Trusted hosts

	PSSessions
	New-PSSession
	Get-PSSession
	Invoke-Command
	Local functions and remote sessions
	Using splatting with ArgumentList
	The AsJob parameter
	Disconnected sessions
	The using variable scope

	The Enter-PSSession command
	Import-PSSession
	Export-PSSession
	Copying items between sessions

	Remoting on Linux
	Remoting over SSH
	Connecting from Windows to Linux
	Connecting from Linux to Windows

	The double-hop problem
	CredSSP
	Passing credentials

	CIM sessions
	New-CimSession
	Get-CimSession
	Using CIM sessions

	Summary

	Chapter 15: Asynchronous Processing
	Working with jobs
	The Start-Job, Get-Job, and Remove-Job commands
	The Receive-Job command
	The Wait-Job command

	Reacting to events
	The Register-ObjectEvent and *-Event commands
	The Get-EventSubscriber and Unregister-Event commands
	The Action, Event, EventArgs, and MessageData parameters

	Using Runspaces and Runspace pools
	Creating a PowerShell instance
	The Invoke and BeginInvoke methods
	The EndInvoke method and the PSDataCollection object
	Running multiple instances
	Using the RunspacePool object
	About the InitialSessionState object
	Adding modules and snap-ins
	Adding variables
	Adding functions

	Using the InitialSessionState and RunspacePool objects
	Using Runspace-synchronized objects

	Summary

	Section 4: Extending PowerShell
	Chapter 16: Scripts, Functions, and Filters
	Introducing scripts, functions, and filters
	Scripts and Requires
	Scripts and using statements
	Nesting functions
	Comment-based help
	Parameter help
	Examples

	Working with long lines
	Line break after pipe
	Line break after an operator
	Using the array operator to break up lines

	Begin, process, and end
	Begin
	Process
	End
	Named blocks and return
	Leaky functions
	The Out-Null command
	Assigning to null
	Redirecting to null
	Casting to Void

	Param, parameters, and CmdletBinding
	Parameter types
	Nullable types

	Default values
	Cross-referencing parameters
	The CmdletBinding attribute
	Common parameters
	CmdletBinding properties

	ShouldProcess and ShouldContinue
	ShouldProcess
	ShouldContinue

	Summary

	Chapter 17: Parameters, Validation, and Dynamic Parameters
	The Parameter attribute
	Position and positional binding
	The DontShow property
	The ValueFromRemainingArguments property
	The HelpMessage property

	Validating input
	The PSTypeName attribute
	Validation attributes
	The ValidateNotNull attribute
	The ValidateNotNullOrEmpty attribute
	The ValidateCount attribute
	The ValidateDrive attribute
	The ValidateLength attribute
	The ValidatePattern attribute
	The ValidateRange attribute
	The ValidateScript attribute
	The ValidateSet attribute

	The Allow attributes
	The AllowNull attribute
	The AllowEmptyString attribute
	The AllowEmptyCollection attribute

	PSReference parameters

	Pipeline input
	About ValueFromPipeline
	Accepting null input
	Input object types
	Using ValueFromPipeline for multiple parameters
	Using PSTypeName

	About ValueFromPipelineByPropertyName
	ValueFromPipelineByPropertyName and parameter aliases

	Defining parameter sets
	Argument-completers
	The argument-completer attribute
	Using Register-ArgumentCompleter
	Listing registered argument-completers

	Dynamic parameters
	Creating a RuntimeDefinedParameter object
	Using the RuntimeDefinedParameterDictionary
	Using dynamic parameters
	Conditional parameters

	Summary

	Chapter 18: Classes and Enumerations
	Defining an enumeration
	Enum and underlying types
	Automatic value assignment
	Enum or ValidateSet
	The flags attribute
	Using enumerations to convert values

	Creating a class
	Properties
	Constructors
	Methods
	Inheritance
	Constructor inheritance
	Chaining constructors

	The Hidden modifier
	The Static modifier

	Argument-transformation attribute classes
	Validation attribute classes
	ValidateArgumentsAttribute
	ValidateEnumeratedArgumentsAttribute

	Classes and DSC
	Implementing Get
	Implementing Set
	Implementing Test
	Using the resource

	Summary

	Chapter 19: Building Modules
	Technical requirements
	Module layout
	The root module
	The Export-ModuleMember command
	Module manifest
	Export-ModuleMember or FunctionsToExport
	Side-by-side versioning
	Dependencies

	Multi-file module layout
	Dot-sourcing module content
	Merging module content

	Module scope
	Accessing module scope

	Initializing and removing modules
	The ScriptsToProcess key
	The OnRemove event

	Summary

	Chapter 20: Testing
	Technical requirement
	Static analysis
	AST
	Tokenizer
	PSScriptAnalyzer
	Suppressing rules
	Custom script analyzer rules
	Creating a custom rule
	AST-based rules
	Token-based rules
	Using custom rules

	Testing with Pester
	Why write tests?
	What to test
	Describe and It
	Test cases
	Independent verification
	Assertions
	Testing for errors

	Context
	Before and after
	TestDrive
	Mock
	Assert-MockCalled
	Parameter filtering
	Mocking non-local commands

	Mocking objects
	Fabricating objects
	Mocking existing members
	Using New-MockObject
	Mocking CIM objects

	Pester in practice

	Summary

	Chapter 21: Error Handling
	Error types
	Terminating errors
	Non-terminating errors

	Error actions
	Raising errors
	Error records
	Write-Error
	throw and ThrowTerminatingError
	Error and ErrorVariable

	Catching errors
	try, catch, and finally
	try
	catch
	finally

	Re-throwing errors
	Inconsistent error behavior
	throw and ErrorAction
	Nesting try-catch-finally
	Terminating or non-terminating
	trap
	Using trap
	trap, scope, and continue

	Summary

	Other Books You May Enjoy
	Index

