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Foreword
C++ stepped onto the stage in 1983 and hasn’t stopped reinventing itself for a single year
since. It has gone from a single frontend language on top of C to a first-class citizen of the
compiler world. Each new C++ standard has added substantial functionality, sometimes to
excess. In the words of Stroustrup, “Within C++, there is a much smaller and cleaner
language struggling to get out.”

The problem, of course, is that the “smaller and cleaner language” to be found within C++
changes with situation. Mastering C++ is akin to mastering a multitude of domain-specific
languages, each tailored to a specific use. The dialect that makes sense for embedded
system is nonsensical for large enterprise applications, and the phrasing that powers a game
engine is unbearable when applied to a word processor.

C++ High Performance teaches you a C++ dialect for rapidly developing high-performance
code. From C++11 onward, there have been a vast array of features in both the C++ language
and the C++ STL that let you spend more time writing your application and less time
handling implementation details. This is the focus of the book and where it shines.

Each topic is framed in the larger context of application development and computer science.
For the reader who needs to get up to speed with the latest C++ techniques on a short notice,
this information provides the necessary landmarks to stay oriented. Specific examples,
recipes, and logical progressions take you from a basic use of auto and <algorithm> all the
way up to using Boost to transparently run your algorithms on the GPU via OpenCL.
Fundamental issues around modern C++ (memory management and ownership,
considerations of time and space, advance template usage, and others) are explained step by
step so that, by the later chapters, the readers proceed into advanced territory with
confidence.

I have worked on a wide variety of projects—large and small, low level and managed, and
some even in custom languages I designed and built—but C++ holds a special place in my
heart. My first full-time job was writing C++ code for a game technology company in the
early 2000s. I loved it, not least of all because a big part of the technology revolved around
the reflection of the C++ code base into the editor and scripting language. Someone once
described C++ as an octopus made by nailing extra legs onto a dog, and I spent a lot of time
with a hammer making our code base do things that C++ was never intended to do. Yet, the
octopus we ended up with was, in its own way, beautiful and very effective.



C++ has evolved tremendously since those days, and it is my privilege to open the door for
you as you walk into an exciting new world of possibilities. Viktor and Björn are brilliant
and experienced developers with a remarkable pedigree, and they have a lot of great things
in store for you.

Ben Garney
CEO, The Engine Company
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Preface
C++ of today provides programmers the ability to write expressive and robust code while
still having the ability to target almost any hardware platform or real-time
requirements. This makes C++ a unique language. Over the last few years, C++ has turned
into a modern language that is more fun to use and with better defaults.

This book aims to give the reader a solid foundation to write efficient applications as well as
an insight into strategies for implementing libraries in modern C++. We have tried to take a
practical approach to explain how C++ works today, where C++14/C++17 features are a
natural part of the language, rather than looking at C++ historically.

This book has been written by us, Viktor and Björn, collaboratively. However, the drafts of
each chapter were written individually, and after that, we have worked together to improve
the chapters and assemble them into a complete book. Viktor is the main author of chapter
1, 2, 5, 8, 9, and 11. Björn is the main author of chapter 3, 4, 7, and 10. We have worked hard
to attain a consistent style throughout the book, and we think that it has been a big
advantage to write this book together. Many subjects have been debated and processed for
the better.

Who this book is for
This book expects you to have a basic knowledge of C++ and computer architecture and a
genuine interest in evolving your skills. Hopefully, by the time you finish this book, you
will have gained a few insights into how you can improve your C++ applications, both
performance-wise and syntactically. On top of that, we also hope that you will have a few
aha moments.

What this book covers
Chapter 1, A Brief Introduction to C++, introduces some important properties of C++ such as
zero-cost abstractions, value semantics, const correctness, explicit ownership, and error
handling. It also discusses the drawbacks of C++.
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Chapter 2, Modern C++ Concepts, outlines automatic type deduction using auto, lambda
functions, move semantics, std::optional, and std::any.

Chapter 3, Measuring Performance, discusses asymptotic complexity and big O notation,
practical performance testing, and how to profile your code to find hotspots.

Chapter 4, Data Structures, takes you through the importance of structuring the data so that
it can be accessed quickly. STL containers such as std::vector, std::list,
std::unordered_map, and std::priority_queue are introduced. Finally, we describe
how to iterate over parallel arrays.

Chapter 5, A Deeper Look at Iterators, dives into the concept of iterators, and shows how
iterators can go beyond just referring to objects in containers.

Chapter 6, STL Algorithms and Beyond, shows the obvious, and the not so obvious,
advantages of STL algorithms over hand rolled for loops. It also takes a look at the
limitations of STL algorithms and how the new Ranges library overcomes these limits.

Chapter 7, Memory Management, focuses on safe and efficient memory management. This
includes memory ownership, RAII, smart pointers, stack memory, dynamic memory, and
custom memory allocators.

Chapter 8, Metaprogramming and Compile-Time Evaluation, explains metaprogramming
concepts such as constexpr, heterogeneous containers, type_traits, std::enable_if,
and std::is_detected. It also gives practical examples of metaprogramming use cases,
such as reflection.

Chapter 9, Proxy Objects and Lazy Evaluation, explores how proxy objects can be used to
perform under-the-hood optimizations while preserving clean syntax. Additionally, some
creative uses of operator-overloading are demonstrated.

Chapter 10, Concurrency, covers the fundamentals of concurrent programming, including
parallel execution, shared memory, data races, and deadlocks. It also includes an
introduction to the C++ thread support library, the atomic library, and the C++ memory
model.

Chapter 11, Parallel STL, starts by showing the complexity of writing parallel algorithms. It
then demonstrates how to utilize STL algorithms in a parallel context using the parallel
extensions for STL and Boost Compute.
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To get the most out of this book
To get the most out of this book, you need to have a basic knowledge of C++. It's preferable
if you have already been facing problems related to performance and are now looking for
new tools and practices to have ready the next time you need to work with performance
and C++.

There are a lot of code examples in this book. Some are taken from the real world, but most
of them are artificial or vastly simplified examples to prove a concept rather than providing
you with production-ready code. We have put all the code examples in source files divided
by chapter so that it is fairly easy to find the examples you want to experiment with. If you
open up the source code files, you will note that we have replaced most of the
main() functions from the examples with test cases written with Google Test framework.
We hope that this will help you rather than confuse you. It allowed us to write helpful
descriptions for each example, and it also makes it easier to run all the examples from one
chapter at once.

In order to compile and run the examples, you will need the following:

A computer
An operation system (we have verified the examples on Windows and macOS)
A compiler (we have been using Clang, GCC, and Microsoft Visual C++)
CMake

The CMake script provided with the example code will download and install further
dependencies such as Boost, OpenCL, and Google Test.

During the writing of this book, it has been of great help for us to use Compiler Explorer,
which is available at https:/ / godbolt. org/ . Compiler Explorer is an online compiler
service that lets you try various compilers and versions. Try it out if you haven't already!

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
http://www.packtpub.com
http://www.packtpub.com/support
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You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Cpp- High- Performance. We also have other code bundles from our rich
catalog of books and videos available at https:/ /github. com/ PacktPublishing/ . Check
them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, folder names, filenames, file extensions, dummy
URLs, and user input. Here is an example: "The keyword constexpr was introduced in
C++11."

A block of code is set as follows:

#include <iostream>

auto main() -> int {
  std::cout << "High Performance C++\n";
}

http://www.packtpub.com/support
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#include <iostream>

auto main() -> int {
  std::cout << "High Performance C++\n";
}

Any command-line input or output is written as follows:

$ clang++ -std=c++17 high_performance.cpp
$ ./a.out
$ High Performance C++

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.
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Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/


1
A Brief Introduction to C++

This chapter will introduce some of the features of C++ that we think are important for
writing robust and high performance applications. We will also discuss advantages and
disadvantages of C++ over languages based upon a garbage collector. Last, we will look at
some examples of how to handle exceptions and resources.

Why C++?
We begin this book by exploring some of the reasons for using C++ today. In short, C++ is a
highly portable language which offers zero-cost abstractions. Furthermore, we believe that
C++ provides programmers with the ability to write and manage large, expressive, and
robust code bases. Let's explore the meaning of each of these properties.

Zero-cost abstractions
Active code bases grow. The more developers working on a code base, the larger the code
base becomes. We need abstractions such as functions, classes, data structures, layers and so
on in order to manage the complexity of a large-scale code base. But constantly adding
abstractions and new levels of indirection comes at a price — efficiency. This is where zero-
cost abstractions plays its role. A lot of the abstractions offered by C++ comes at a very low
price. At a minimum, C++ offers efficient alternatives at hot spots where performance really
is a concern.
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With C++ you are free to talk about memory addresses and other computer related low-
level terms when needed. However, in a large-scale software project it is desirable to
express code in terms that deals with whatever the application is doing, and let the libraries
handle the computer related terminology. The source code of a graphics application may
deal with pencils, colors, and filters, whereas a game may deal with mascots, castles, and
mushrooms. Low-level computer-related terms such as memory addresses can stay hidden
in C++ library code where performance is critical.

By library code, we refer to code whose concepts are not strictly related to the application.
The line between library code and application code can be blurry though, and libraries are
often built upon other libraries. An example could be the container algorithms provided in
the Standard Template Library (STL) of C++ or a general-purpose math library.

Programming languages and machine code
abstractions
In order to relieve programmers from dealing with computer-related terms, modern
programming languages use abstractions so that a list of strings, for example, can be
handled and thought of as a list of strings rather than a list of addresses that we may easily
lose track of if we make the slightest typo. Not only do the abstractions relieve the
programmers from bugs, they also make the code more expressive by using concepts from
the domain of the application. In other words, the code is expressed in terms that are closer
to a spoken language than if expressed with abstract programming keywords.

C++ and C are nowadays two completely different languages. Still, C++ is highly compatible
with C and has inherited a lot of its syntax and idioms from C. To give you some examples
of C++ abstractions we will here show how a problem can be solved in both C and C++.

Take a look at the following C/C++ code snippets, which correspond to the question: "How
many copies of Hamlet is in the list of books?". We begin with the C version:

// C version
struct string_elem_t { const char* str_; string_elem_t* next_; };
int num_hamlet(string_elem_t* books) {
  const char* hamlet = "Hamlet";
  int n = 0;
  string_elem_t* b;
  for (b = books; b != 0; b = b->next_)
    if (strcmp(b->str_, hamlet) == 0)
      ++n;
  return n;
}
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The equivalent version using C++ would look something like this:

// C++ version
int num_hamlet(const std::list<std::string>& books) {
  return std::count(books.begin(), books.end(), "Hamlet");
}

Although the C++ version is still more of a robot language than a human language, a lot of
programming lingo is gone. Here are some of the noticeable differences between the
preceding two code snippets:

The pointers to raw memory addresses are not visible at all
The std::list<std::string>  container is an abstraction of string_elem_t
The std::count() method is an abstraction of both the for loop and
the if condition
The std::string class is (among other things) an abstraction
of char* and strcmp

Basically, both versions of num_hamlet() translate to roughly the same machine code, but
the language features of C++ makes it possible to let the libraries hide computer related
terminology such as pointers. Many of the modern C++ language features can be seen as
abstractions of basic C functionality and, on top of that, basic C++ functionality:

C++ classes are abstractions of C-structs and regular functions
C++ polymorphism is the abstraction of function pointers

On top of that, some recent C++ features are abstractions of former C++ features:

C++ lambda functions are abstractions of C++ classes
Templates are abstractions of generating C++ code
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Abstractions in other languages
Most programming languages are based on abstractions, which are transformed into
machine code to be executed by the CPU. C++ has evolved into a highly expressive
language just like many of the other popular programming languages of today. What
distinguishes C++ from most other languages is that, while the other languages have
implemented these abstractions at the cost of runtime performance, C++ has always strived
to implement its abstractions at zero cost at runtime. This doesn't mean that an application
written in C++ is by default faster than the equivalent in, say, C#. Rather, it means that by
using C++, you'll have explicit control of the emitted machine code instructions and
memory footprint if needed.

To be fair, optimal performance is very rarely required today and compromising
performance for lower compilation times, garbage collection, or safety, like other languages
do, is in many cases more reasonable.

Portability
C++ has been a popular and comprehensive language for a long time. It's highly compatible
with C and very little has been deprecated in the language, for better or worse. The history
and design of C++ has made it to a highly portable language, and the evolution of modern
C++ has ensured that it will stay that way for a long time to come. C++ is a living language
and compiler vendors are currently doing a remarkable job to implement new language
features rapidly.

Robustness
In addition to performance, expressiveness, and portability, C++ offers a set of language
features that gives the programmer the ability to write robust code.

In our experience, robustness does not refer to strength in the programming language itself
– it's possible to write robust code in any language. However, strict ownership of resources,
const correctness, value semantics, type safety, and deterministic destruction of objects are
some of the features offered by C++ that makes it easier to write robust code. That is, the
ability to write functions, classes, and libraries that are easy to use and hard to misuse.
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C++ of today
To sum it up, C++ of today provides programmers the ability to write an expressive and
robust code base while still having the ability to target almost any hardware platform or
real-time requirements. Of the most commonly used languages today, C++ is the only one
that gives all of these properties.

The aim of this book
This book aims to give the reader a solid foundation to write efficient applications as well as
an insight into strategies for implementing the libraries in modern C++. We have tried to
take a practical approach to explain how C++ works today where C++14/C++17 features are
a natural part of the language, rather than looking at C++ historically.

Expected knowledge of the reader
This book expects you to have a basic knowledge of C++ and computer architecture, and a
genuine interest in evolving your skills. Hopefully, by the time you finish this book, you
will have gained a few insights into how you can improve your C++ applications, both
performance-wise and syntactically. On top of that, we also hope that you will have a few
aha moments.

C++ compared with other languages
A multitude of application types, platforms, and programming languages have emerged
since C++ was first released. Still, C++ is a widely used language, and its compilers are
available for most platforms. The major exception, as of today, is the web platform, where
JavaScript and its related technologies are the foundation. However, the web platform is
evolving into being able to execute what was previously only possible in desktop
applications, and in that context C++ has found its way into web applications using
technologies such as Emscripten/asm.js and web assembly.
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Competing languages and performance
In order to understand how C++ achieves its performance compared to other programming
languages, we'd like to discuss some fundamental differences between C++ and most other
modern programming languages.

For simplicity, this section will focus on comparing C++ to Java, although the comparisons
for most parts also apply to other programming language based upon a garbage collector,
such as C# and JavaScript.

Firstly, Java compile to bytecode, which is then compiled to machine code while the
application is executing, whereas C++ directly compiles the source code to machine code.
Although bytecode and just-in-time compilers may theoretically be able to achieve the same
(or theoretically, even better) performance than precompiled machine code, as of today,
they simply do not. To be fair though, they perform well enough for most cases.

Secondly, Java handle dynamic memory in a completely different manner from C++. In
Java, memory is automatically deallocated by a garbage collector, whereas a C++ program
handles memory deallocations by itself. The garbage collector does prevent memory leaks,
but at the cost of performance and predictability.

Thirdly, Java places all its objects in separate heap allocations, whereas C++ allows the
programmer to place objects both on the stack and on the heap. In C++ it's also possible to
create multiple objects in one single heap allocation. This can be a huge performance gain
for two reasons: objects can be created without always allocating dynamic memory, and
multiple related objects can be placed adjacent to one another in memory.
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Take a look at how memory is allocated in the following example. The C++ function uses the
stack for both objects and integers; Java places the objects on the heap:

C++ Java
class Car {
public:
  Car(int doors)
  : doors_(doors) {}
private:
  int doors_{};
};

auto func() {
  auto num_doors = 2;
  auto car1 = Car{num_doors};
  auto car2 = Car{num_doors};
}

class Car {
  public Car(int doors) {
    doors_ = doors;
  }
  private int doors_;

  static void func() {
    int numDoors = 2;
    Car car1 = new Car(numDoors);
    Car car2 = new Car(numDoors);
  }
}

C++ places everything on the stack:

             

Java places the Car objects on the heap:
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Now take a look at the next example and see how an array of Car objects are placed in
memory when using C++ and Java respectively:

C++ Java
auto car_list() {
  auto n = 7;
  auto cars =
    std::vector<Car>{};
  cars.reserve(n);
  for(auto i=0; i<n; ++i){
    cars.push_back(Car{});
  }
}

void carList() {
  int n = 7;
  ArrayList<Car> cars =
    new ArrayList<Car>();
  for(int i=0; i<n; i++) {
    cars.addElement(new Car());
  }
}

The following image shows how
the car objects are laid out in
memory in C++:

           

The following image shows how the car objects are laid
out in memory in Java:

        

The C++ vector contains the actual Car objects placed in one contiguous memory block,
whereas the equivalent in Java is a contiguous memory block of references to Car
objects. In Java, the objects has been allocated separately, which means that they can be
located anywhere in the heap.
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This affects the performance as Java has to execute seven allocations instead of one. It also
means that whenever the application iterates the list, there is a performance win for C++,
since accessing nearby memory locations is faster than accessing several random spots in
memory.

Non-performance-related C++ language features
In some discussions about C++ versus other languages, it's concluded that C++ should only
be used if performance is a major concern. Otherwise, it's said to just increase the
complexity of the code base due to manual memory handling, which may result in memory
leaks and hard-to-track bugs.

This may have been true several C++ versions ago, but a modern C++ programmer relies on
the provided containers and smart pointer types, which are part of the STL.

We would here like to highlight two  powerful features of C++ related to robustness rather
than performance, that we think are easily overlooked: value semantics and const
correctness.

Value semantics
C++ supports both value semantics and reference semantics. Value semantics lets us pass
objects by value instead of just passing references to objects. In C++, value semantics is the
default, which means that when you pass an instance of a class or struct, it behaves in the
same way as passing an int, float, or any other fundamental type. To use reference
semantics, we need to explicitly use references or pointers.

The C++ type system gives us the ability to explicitly state the ownership of an object.
Compare the following implementations of a simple class in C++ and Java. We start with the
C++ version:

// C++
class Bagel {
public:
  Bagel(const std::set<std::string>& ts) : toppings_(ts) {}
private:
  std::set<std::string> toppings_;
};



A Brief Introduction to C++ Chapter 1

[ 16 ]

The corresponding implementation in Java could look like this:

// Java
class Bagel {
  public Bagel(ArrayList<String> ts) { toppings_ = ts; }
  private ArrayList<String> toppings_;
}

In the C++ version, the programmer states that the toppings are completely encapsulated
by the Bagel class. Had the programmer intended the topping list to be shared among
several bagels, it would have been declared as a pointer of some kind: std::shared_ptr,
if the ownership is shared among several bagels, or a std::weak_ptr, if someone else
owns the topping list and is supposed to modify it as the program executes.

In Java, objects references each other with shared ownership. Therefore, it's not possible to
distinguish whether the topping list is intended to be shared among several bagels or not,
or whether it is handled somewhere else or if it is, as in most cases, completely owned by
the Bagel class.

Compare the following functions; as every object is shared by default in Java (and most
other languages), programmers have to take precautions for subtle bugs such as this:

C++ Java

Note how the bagels do not share
toppings:

auto t = std::set<std::string>{};
t.insert("salt");
auto a = Bagel{t};

// 'a' is not affected
// when adding pepper
t.insert("pepper");

// 'a' will have salt
// 'b' will have salt & pepper
auto b = Bagel{t};

// No bagel is affected
t.insert("oregano");

Note how both the bagels subtly share
toppings:

TreeSet<String> t = new
  TreeSet<String>();
t.add("salt");
Bagel a = new Bagel(t);

// Now 'a' will subtly
// also have pepper
t.add("pepper");

// 'a' and 'b' share the
// toppings in 't'
Bagel b = new Bagel(t);

// Both bagels subtly
// also have "oregano"
toppings.add("oregano");
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Const correctness
Another powerful feature of C++, that Java and many other languages lack, is the ability to
write const correct code. Const correctness means that each member function signature of a
class explicitly tells the caller whether the object will be modified or not; and it will not
compile if the caller tries to modify an object declared const.

Here follows an example of how we can use const member functions to prevent
unintentional modifications of objects. In the following Person class, the member
function age() is declared const and is therefore not allowed to mutate the Person
object; whereas set_age() mutates the object and cannot be declared const:

class Person {
public:
  auto age() const { return age_; }
  auto set_age(int age) { age_ = age; }
private:
  int age_{};
};

It's also possible to distinguish between returning mutable and immutable references to
members. In the following Team class, the member function leader() const returns an
immutable Person; whereas leader() returns a Person object that may be mutated:

class Team {
public:
  auto& leader() const { return leader_; }
  auto& leader() { return leader_; }
private:
  Person leader_{};
};

Now let's see how the compiler can help us find errors when we try to mutate immutable
objects. In the following example, the function argument teams is declared const,
explicitly showing that this function is not allowed to modify them:

auto nonmutating_func(const std::vector<Team>& teams) {
  auto tot_age = int{0};
  // Compiles, both leader() and age() are declared const
  for (const auto& team: teams)
    tot_age += team.leader().age();

  // Will not compile, set_age() requires a mutable object
  for (auto& team: teams)
    team.leader().set_age(20);
}
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If we want to write a function which can mutate the teams object we simply remove const.
This signals to the caller that this function may mutate the teams:

auto mutating_func(std::vector<Team>& teams) {
  auto tot_age = int{0};
  // Compiles, const functions can be called on mutable objects
  for (const auto& team: teams)
    tot_age += team.leader().age();

  // Compiles, teams is a mutable variable
  for (auto& team: teams)
    team.leader().set_age(20);
}

Object ownership and garbage collection in C++
Except in very rare situations, a C++ programmer should leave the memory handling to
containers and smart pointers and never have to rely on manual memory handling.

To put it clearly, the garbage collection model in Java could almost be emulated in C++ by
using std::shared_ptr for every object. Note that garbage-collecting languages don't use
the same algorithm for allocation tracking as std::shared_ptr. The std::shared_ptr is
a smart pointer based on a reference-counting algorithm that will leak memory if objects
have cyclic dependencies. Garbage-collecting languages have more sophisticated methods
that can handle and free cyclic dependent objects.

However, rather than relying on a garbage collector, forcing a strict ownership delicately
avoids subtle bugs that may result from sharing objects by default, as in the case of Java.

If a programmer minimize shared ownership in C++, the resulting code is easier to use and
harder to abuse, as it can force the user of the class to use it as it is intended.

Avoiding null objects using C++ references
In addition to strict ownership, C++ also has the concept of references, which is different
from references in Java. Internally, a reference is a pointer which is not allowed to be null or
repointed; therefore no copying is involved when passing it to a function.

As a result, a function signature in C++ can explicitly restrict the programmer from passing
a null object as a parameter. In Java the programmer must use documentation or
annotations to indicate non-null parameters.
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Take a look at these two Java functions for computing the volume of a sphere. The first one
throws a runtime exception if a null object is passed to it; whereas the second one silently
ignores null objects. 

This first implementation in Java throws a runtime exception if passed a null object:

// Java
float getVolume1(Sphere s) {
  float cube = Math.pow(s.radius(), 3);
  return (Math.PI * 4 / 3) * cube;
}

This second implementation in Java silently handles null objects:

// Java
float getVolume2(Sphere s) {
  float rad = a == null ? 0.0f : s.radius();
  float cube = Math.pow(rad, 3);
  return (Math.PI * 4 / 3) * cube;
}

In both function implemented in Java, the caller of the function has to inspect the
implementation of the function in order to determine whether null objects are allowed or
not.

In C++, the first function signature explicitly accepts only initialized objects by using
references which cannot be null. The second version using pointers as arguments, explicitly
shows that null objects are handled.

C++ arguments passed as references indicates that null values are not allowed:

auto get_volume1(const Sphere& s) {
  auto cube = std::pow(s.radius(), 3);
  auto pi = 3.14f;
  return (pi * 4 / 3) * cube;
}

C++ arguments passed as pointers indicates that null values are being handled:

auto get_volume2(const Sphere* s) {
  auto rad = s ? s->radius() : 0.0f;
  auto cube = std::pow(rad, 3);
  auto pi = 3.14f;
  return (pi * 4 / 3) * cube;
}
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Being able to use references or values as arguments in C++ instantly informs the C++
programmer how the function is intended to be used. Conversely, in Java, the user must
inspect the implementation of the function, as objects are always passed as pointers, and
there's a possibility that they could be null.

Drawbacks of C++
Comparing C++ with other programming languages wouldn't be fair without mentioning
some of its drawbacks. As mentioned earlier, C++ has more concepts to learn, and is
therefore harder to use correctly and to its full potential. However, if a programmer can
master C++, the higher complexity turns into an advantage and the code base becomes more
robust and performs better.

There are, nonetheless, some shortcomings of C++, which are simply just shortcomings. The
most severe of those shortcomings are long compilation times, the reliance on the manual
handling of forward declarations, header/source files, and the complexity of importing
libraries.

This is mainly a result of C++ relying on an outdated import system where imported
headers are simply pasted into whatever includes them. At the time of writing this book, a
modern module-based import system is up for standardization, but until the standardized
C++ version becomes available, project management remains very tedious.

Another apparent drawback of C++ is the lack of provided libraries. While other languages
usually come with all the libraries needed for most applications, such as graphics, user
interfaces, networking, threading, resource handling, and so on, C++ provides, more or less,
nothing more than the bare minimum of algorithms, threads, and, as of C++17, file system
handling. For everything else, programmers have to rely on external libraries.

To summarize, although C++ has a steeper learning curve than most other languages, if
used correctly, the robustness of C++ is an advantage compared to many other languages.
So, despite the outdated import/library system of C++,  we believe that C++ is a well suited
language for large-scale projects, even for projects where performance is not the highest
priority.
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Class interfaces and exceptions
Before diving deeper into the concepts of C++ high performance, we would like to
emphasize some concepts that you should not compromise on when writing C++ code.

Strict class interfaces
A fundamental guideline when writing classes, is to relieve the user of the class from
dealing with the internal state by exposing a strict interface. In C++, the copy-semantics of a
class is part of the interface, and shall therefore also be as strict as necessary.

Classes should either behave as deep-copied or should fail to compile when copied.
Copying a class should not have side effects where the resulting copied class can modify the
original class. This may sound obvious, but there are many circumstances when, for
example, a class requires a heap-allocated object accessed by a pointer member variable of
some sort, for example std::shared_ptr, as follows:

class Engine {
public:
  auto set_oil_amount(float v) { oil_ = v; }
  auto get_oil_amount() const { return oil_; }
private:
  float oil_{};
};
class YamahaEngine : public Engine {
  //...
};

The programmer of the Boat class has left a rather loose interface without any precautions
regarding copy semantics:

class Boat {
public:
  Boat(std::shared_ptr<Engine> e, float l)
  : engine_{e}
  , length_{l}
  {}
  auto set_length(float l) { length_ = l; }
  auto& get_engine() { return engine_; }
private:
  // Being a derivable class, engine_ has to be heap allocated
  std::shared_ptr<Engine> engine_;
  float length_{};
};
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Later, another programmer uses the Boat class and expects correct copy behavior:

auto boat0 = Boat{std::make_shared<YamahaEngine>(), 6.7f};
auto boat1 = boat0;
// ... and does not realize that the oil amount applies to both boats
boat1.set_length(8.56f);
boat1.get_engine()->set_oil_amount(3.4f);

This could have been prevented if the Boat class interface were made stricter by preventing
copying. Now, the second programmer will have to rethink the design of the algorithm
handling boats, but she won't accidentally introduce any subtle bugs:

class Boat {
private:
  Boat(const Boat& b) = delete; // Noncopyable
  auto operator=(const Boat& b) -> Boat& = delete; // Noncopyable
public:
  Boat(std::shared_ptr<Engine> e, float l) : engine_{e}, length_{l} {}
  auto set_length(float l) { length_ = l; }
  auto& get_engine() { return engine_; }
private:
  float length_{};
  std::shared_ptr<Engine> engine_;
};

// When the other programmer tries to copy a Boat object...
auto boat0 = Boat{std::make_shared<YamahaEngine>(), 6.7f};
// ...won't compile, the second programmer will have to find
// another solution compliant with the limitations of the Boat
auto boat1 = boat0;

Error handling and resource acquisition
In our experience, exceptions are being used in many different ways in different C++ code
bases. (To be fair, this also applies to other languages which supports exceptions.) One
reason is that distinct applications can have vastly different requirements when dealing
with runtime errors. With some applications, such as a pacemaker or a power plant control
system, which may have a severe impact if they crash, we may have to deal with every
possible exceptional circumstance, such as running out of memory, and keep the
application in a running state. Some applications even completely stay away from using the
heap memory as the heap introduces an uncontrollable uncertainty as mechanics of
allocating new memory is out of the applications control.
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In most applications, though, these circumstances could be considered so exceptional that
it's perfectly okay to save the current state and quit gracefully. By exceptional, we mean that
they are thrown due to environmental circumstances, such as running out of memory or
disk space. Exceptions should not be used as an escape route for buggy code or as some sort
of signal system.

Preserving the valid state
Take a look at the following example. If the branches_ = ot.branches_ operation
throws an exception due to being out of memory (branches_ might be a very big member
variable), the tree0 method will be left in an invalid state containing a copy of leafs_
from tree1 and branches_ that it had before:

struct Leaf { /* ... */ };
struct Branch { /* ... */ };

class OakTree {
public:
  auto& operator=(const OakTree& other) {
    leafs_ = other.leafs_;
    // If copying the branches throws, only the leafs has been
    // copied and the OakTree is left in an invalid state
    branches_ = other.branches_;
    *this;
  }
  std::vector<Leaf> leafs_;
  std::vector<Branch> branches_;
};
auto save_to_disk(const std::vector<OakTree>& trees) {
  // Persist all trees ...
}

auto oaktree_func() {
  auto tree0 = OakTree{std::vector<Leaf>{1000}, std::vector<Branch>{100}};
  auto tree1 = OakTree{std::vector<Leaf>{50}, std::vector<Branch>{5}}
  try {
    tree0 = tree1;
  }
  catch(const std::exception& e) {
    // tree0 might be broken
    save_to_disk({tree0, tree1});
  }
}
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We want the operation to preserve the valid state of tree0 that it had before the assignment
operation so that we can save all our oak trees (pretend we are creating an oak tree
generator application) and quit.

This can be fixed by using an idiom called copy-and-swap, which means that we perform
the operations that might throw exceptions before we let the application's state be modified
by non-throwing swap functions:

class OakTree {
public:
  auto& operator=(const OakTree& other) {
    // First create local copies without modifying the OakTree objects.
    // Copying may throw, but this OakTree will still be in a valid state
    auto leafs = other.leafs_;
    auto branches = other.branches_;

    // No exceptions thrown, we can now safely modify
    // the state of this object by non-throwing swap
    std::swap(leads_, leafs);
    std::swap(branches_, branches);
    return *this;
  }
  std::vector<Leaf> leafs_;
  std::vector<Branch> branches_;
};

Resource acquisition
Note that the destructors of all the local variables are still executed, meaning that any
resources (in this case, memory) allocated by leafs and branches will be released. The
destruction of C++ objects is predictable, meaning that we have full control over when, and
in what order,  resources that we have acquired are being released. This is further
illustrated in the following example, where the mutex variable m is always unlocked when 
exiting the function as the lock guard releases it when we exit the scope, regardless of how
and where we exit: 

auto func(std::mutex& m, int val, bool b) {
  auto guard = std::lock_guard<std::mutex>{m}; // The mutex is locked
  if (b) {
    // The guard automatically releases the mutex at early exit
    return;
  }
  if (val == 313) {
    // The guard automatically releases if an exception is thrown
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    throw std::exception{};
  }
  // The guard automatically releases the mutex at function exit
}

Ownership, lifetime of objects, and resource acquisition are fundamental concepts in C++
which we will cover later on in this book. 

Exceptions versus error codes
In the mid 2000s, using exceptions in C++ affected performance negatively, even if they
weren't thrown. Performance-critical code was often written using error code return values
to indicate exceptions. Bloating the code base with returning error codes and error code
handling was simply the only way of writing performance-critical and exception-safe code.

In modern C++ compilers, exceptions only affect the performance when thrown.
Considering all the thrown exceptions are rare enough to quit the current process, we can
safely use exceptions even in performance-critical systems and benefit from all the
advantages of using exceptions instead of error codes.

Libraries used in this book
As mentioned earlier, C++ does not provide more than the bare necessities in terms of
libraries. In this book, we will, therefore, have to rely on external libraries where necessary.
The most commonly used library in the world of C++ is probably the Boost library (http:/ /
www.boost.org). In order to keep the number of used libraries low, we will use the Boost
library for hardware-dependent optimizations such as SIMD and GPU.

Throughout this book, we will use the Boost library where the standard C++ library is not
enough. Many upcoming parts of the C++ standard are available today in Boost
(filesystem, any, optional, and variant), and we will not avoid any libraries planned
for inclusion in the C++ standard. We will only use the header-only parts of the Boost
library, which means that using them yourself does not require any specific build setup;
rather, you just have to include the specified header file.

http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
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Summary
In this chapter we have highlighted some features and drawbacks of C++ and how it
evolved to the state it is in today. 

Further, we discussed the advantages and disadvantages of C++ compared with other
languages, both from the perspective of performance and robustness. Hopefully, some
myths about C++ and exceptions were dispelled.

You also learned the importance of strict interfaces, resource acquisition, and correct
exception handling.



2
Modern C++ Concepts

In this chapter, we will take an in-depth look at some modern C++ concepts such as move-
semantics, forwarding references, std::optional, std::any, and lambda functions. Some
of these concepts still confuse even experienced C++ programmers and therefore we will
look into both their use cases and how they work under the hood.

Automatic type deduction with the auto
keyword 
Since the introduction of the auto keyword in C++11, there has been a lot of confusion in
the C++ community about how to use the different flavors of auto, such as const auto&,
auto&, and auto&&.

Using auto in function signatures
Although discouraged by some C++ programmers, in our experience the use of auto in
function signatures vastly increases readability when browsing and viewing header files.
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Here is how the new  auto syntax looks compared to the old syntax with explicit types:

Old syntax with explicit type: New syntax with auto:
struct Foo {
  int val() const {
    return m_;
  }
  const int& cref() const {
    return m_;
  }
  int& mref() {
    return m_;
  }
  int m_{};
};

struct Foo {
  auto val() const {
    return m_;
  }
  auto& cref() const {
    return m_;
  }
  auto& mref() {
    return m_;
  }
  int m_{};
};

The auto syntax can be used both with and without trailing return type. The trailing return
is necessary if you put the function definition in the .cpp file instead of in the header
declaration.

Note that the auto syntax can also be used with free functions:

Return type Syntactic variants (all of a, b, and c corresponds to the same result):

Value
auto val() const                // a) auto, deduced type
auto val() const -> int         // b) auto with type
int val() const                 // c) explicite type

Const reference
auto& cref() const              // a) auto, deduced type
auto cref() const -> const int& // b) auto, trailing type
const int& cref() const         // c) explicite type

Mutable reference
auto& mref()                    // a) auto, deduced type
auto mref() -> int&             // b) auto, trailing type
int& mref()                     // c) explicite type

Using auto for variables
The introduction of the auto keyword in C++11 has initiated quite a debate among C++
programmers. Many people think it reduces readability, or even that it makes C++ similar to
a dynamically typed language. Even if we tend to not participate in those debates, our
personal opinion is that you should (almost) always use auto as, in our experience, it
makes the code safer and less littered with clutter.
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We prefer to use auto for local variables using the left-to-right initialization style. This
means that we keep the variable on the left, followed by an equal sign, and then the type on
the right side, like this:

auto i = 0;
auto x = Foo{};
auto y = create_object();
auto z = std::mutex{};

With copy elision guarantees introduced in C++17, the statement auto x = Foo{} is
identical to Foo x{}. That is, the language guarantees that there is no temporary object that
needs to be moved or copied in this case. This means that we can now use the left-to-right
initialization style without worrying about performance and we can also use it for non-
moveable/non-copyable types.

Using auto help us using the correct type for our variables.  What we still need to do
though, is to express how we intent to use a variable by specifying if we need a reference or
a copy, and if we want to modify the variable or just read from it. 

Const reference
A const reference, denoted const auto&, has the ability to bind to anything. The created
variable is always immutable. We believe that the const reference should be the default
choice for variables you don't want to modify.

If the const reference is bound to a temporary object, the lifetime of the temporary will be
extended to the lifetime of the reference. This is demonstrated in the following example:

auto func(const std::string& a, const std::string& b) {
   const auto& str = a + b;  // a + b returns a temporary
   ...
} // str goes out of scope, temporary will be destroyed

It's also possible to end up with a const reference by using auto&. This can be seen in the
following example:

auto func() {
   auto foo = Foo{};
   auto& cref = foo.cref(); // cref is a const reference
   auto& mref = foo.mref(); // mref is a mutable reference
}
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Even though this is perfectly valid, we prefer to always explicitly express that we are
dealing with a const references by using const auto& , and more important, we leave
auto& to only denote mutable references.

Mutable reference
In contrast to a const reference, a mutable reference cannot bind to a temporary. We use
auto& to denote mutable references. Use mutable references only when you intent to
change the object it references.

Forwarding reference
auto&& is called a forwarding reference (also referred to as a universal reference). It can bind
to anything which makes it useful for certain cases. Forwarding references will, just like
const references, extend the lifetime of a temporary. But in contrast to the const reference,
auto&& allows you to mutate objects it references, temporaries included.

Use auto&& for variables that you only forward to some other code. In those forwarding
cases you rarely care about whether the variable is a const or a mutable, you just want to
pass it to some code that actually going to  use the variable.

It's important to note that only auto&& and T&& in a template method are
forwarding references. Using the && syntax with an explicit type, for
example std::string&& is an r-value and does not have the properties of
a forwarding reference (r-values and move-semantics will be discussed
later in this chapter).

Conclusion
Although this is our own personal opinion, we strongly recommend to always use const
auto& when possible, this communicates that you simply just want to fetch a value and that
nothing fishy is going on. This should be the case to the majority of the variable declaration
in a C++ code base.

auto& and auto should only be used when you require the behavior of a mutable reference
or an explicit copy; this communicates to the reader of the code that those variables are
important as they either mutate another variable, or they might mutate another variable if
not copied. Finally, use auto&& for forwarding code only.
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Following these rules makes your code base easier to read, debug, and reason about.

It might seem odd that while we recommend using const auto& for most
variable declarations, we tend to use a simple auto throughout the book.
The only reason we use plain auto is the limited space the format of a
book provides. 

The lambda function
The lambda function, introduced in C++11 and further enhanced with polymorphic
capabilities in C++14, is one of the most useful features in modern C++. Its versatility comes
not only from easily passing functions to algorithms but  it can also be used in a lot of
circumstances where you need to pass the code around, especially as you can store a
lambda function in std::function.

Although the lambda function made these programming techniques vastly simpler to work
with, everything here is possible to perform without them by making classes with
operator() overloaded.

We will explore the lambda function's similarities to these kind of classes later, but first let's
introduce the lambda function in a simple use case.

Basic syntax of a C++ lambda function
In a nutshell, the lambda function capability enables programmers to pass functions to
regular functions, just as easily as a variable is passed.

Let's compare passing a lambda function to an algorithm with passing a variable:

// Prerequisite
auto vals = std::vector<int>{1, 3, 2, 5, 4};

// Look for number three
auto three = 3;
auto num_threes = std::count(vals.begin(), vals.end(), three);
// num_threes is 1

// Look for a numbers which is larger than three
auto is_above_3 = [](int v){ return v > 3; };
auto num_above_3 = std::count_if(vals.begin(), vals.end(), is_above_3);
// num_above_3 is 2
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Notice how we pass a variable to search for with std::count() in the first case, and a
function to search for with std::count_if() in the latter case. This is a typical use case for
lambda functions: we pass a function to be evaluated many times to another function (in
this case, std::count_if).

Also, the lambda does not need to be tied to a variable; just as we can put a variable right
into an expression, we can do the same with a lambda function:

auto num_3 = std::count(vals.begin(), vals.end(), 3);
auto num_above_3 = std::count_if(vals.begin(), vals.end(), [](int v){
  return v > 3;
});

The capture block
Let's make this a little more advanced. In the previous example, we hard coded the value
we wanted to count numbers above. What if we want to use an external variable inside the 
lambda instead? What we do is capture the external variables by putting them in the
capture block, that is, the [] part of the lambda:

auto count_value_above(const std::vector<int>& vals, int th) {
  auto is_above = [th](int v) { return v > th; };
  return std::count_if(vals.begin(), vals.end(), is_above);
}

In this example, we captured the th variable by copying it into the lambda function, if we
want to declare the th as a reference, we put a & at the beginning like this:

auto is_above = [&th](int v) { return v > th; };

The variable is now merely a reference to the outer th variable, just like a regular reference
variable in C++.
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Capture by reference versus capture by value
Using the capture block for referencing and copying variables works just like regular
variables. To see the difference, take a look at these two examples and see if you can spot
the difference:

Capture by value Capture by reference
auto func() {
  auto vals = {1,2,3,4,5,6};
  auto th = 3;
  auto is_above=[th](int v){
    return v > th;
  };
  th = 4;
  auto count_b=std::count_if(
    vals.begin(),
    vals.end(),
    is_above
  );
  // count_b equals 3
}

auto func() {
  auto vals = {1,2,3,4,5,6};
  auto th = 3;
  auto is_above=[&th](int v){
    return v > th;
  };
  th = 4;
  auto count_b=std::count_if(
    vals.begin(),
    vals.end(),
    is_above
  );
  // count_b equals 2
}

In the first example, the threshold was copied into the lambda functions and is therefore not
affected when th was  mutated, therefore std::count_if() counts the number of values
above 3.

In the second example, th is captured by reference, and therefore std::count_if()
counts the number of values above 4 instead.
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Similarities between a Lambda and a class
To understand what the lambda function consists of, one can view it as a regular class with
restrictions:

The class only consists of one member function.
The capture block is a combination of the class's member variables and its
constructor.
Each lambda function has its own unique type. Even if two lambda functions are
plain clones of each other, they still have their own unique type.

The following table shows a simple lambda function, is_above, and a class which
corresponds to the lambda function. The left column uses capture by value and the right
column shows capture by reference. 

Lambda with capture by value... Lambda with capture by reference...
auto th = 3;
auto is_above = [th](int v) {
 return v > th;
};
auto test = is_above(5);
// test equals true

auto th = 3;
auto is_above = [&th](int v) {
 return v > th;
};
auto test = is_above(5);
// test equals true

...corresponds to this class: ...corresponds to this class:
auto th = 3;
class IsAbove {
public:
 IsAbove(int th) : th{th} {}
 // The only member function
 auto operator()(int v)const{
   return v > th;
 }
private:
 int th{}; // Members
};
auto is_above = IsAbove{th};
auto test = is_above(5);
// test equals true

auto th = 3;
class IsAbove{
public:
 IsAbove(int& th) : th{th} {}
 // The only member function
 auto operator()(int v)const{
   return v > th;
 }
private:
 int& th; // Members
};
auto is_above = IsAbove{th};
auto test = is_above(5);
// test equals true
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Initializing variables in capture
As seen in the previous example, the capture scope initializes member variables in the
corresponding class. This means that we can also initialize member variables inside a
lambda, which are only visible from inside the lambda:

Lambda function... ...corresponding class:
auto func = [c=std::list<int>{4,2}](){
  for(auto v : c)
    std::cout << v;
};
func();
// Output: 42

class Func {
public:
 Func() : c{4, 2} {}
 auto operator()()const->void{
  for(auto v : c)
    std::cout << v;
 }
private:
 std::list<int> c;
};
auto func = Func{};
func();
// Output: 42

Mutating lambda member variables
As the lambda function works just like a class with member variables, it can also mutate
them. In the following example, the lambda mutates the threshold variable every time it is
invoked.
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In order to allow the lambda to mutate its members, we need to specify mutable when
declaring the lambda. The mutable modifier on a lambda function works like the inverse
for a const modifier for a regular class member function; in contrast to a class member
function, a lambda function is const by default, and therefore a mutating lambda must be
explicitly specified:

Capture by value Capture by reference
auto func() {
  auto v = 7;
  auto lambda = [v]() mutable {
    std::cout << v << " ";
    ++v;
  };
  assert(v == 7);
  lambda();
  lambda();
  assert(v == 7);
  std::cout << v;
}

auto func() {
  auto v = 7;
  auto lambda = [&v]() {
    std::cout << v << " ";
    ++v;
  };
  assert(v == 7);
  lambda();
  lambda();
  assert(v == 9);
  std::cout << v;
}

Output: 7 8 7 Output: 7 8 9 

If we want to capture the v by reference instead, we do not have to specify the mutable
keyword as the lambda itself doesn't mutate. Instead, the original v in func will mutate,
meaning that we have a different output.
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Mutating member variables from the compiler's perspective
To understand what's going in the above example, take a look at how the compiler sees the
previous lambda objects:

Capture by value case Capture by reference case
class MutatingLambda {
public:
 MutatingLambda(int m)
 : v{m} {}
 auto operator()() {
   std::cout<< v <<" ";
   ++v;
 }
private:
  int v{};
};

class MutatingLambda {
public:
 MutatingLambda(int& m)
 : v{m} {}
 auto operator()()const{
   std::cout<< v <<" ";
   ++v;
 }
private:
 int& v;
};

As you can see, the first case corresponds to a class with a regular member, whereas the
capture by reference case simply corresponds to a class where the member variable is a
reference.

You might have noticed that we add the modifier const on the
operator() member function of the capture by reference class, and we
also do not specify mutable on the corresponding lambda. The reason this
class is still considered const is that we do not mutate anything inside the
actual class/lambda; the actual mutation applies to the referenced value,
and therefore the function is still considered const.

Capture all
In addition to capturing variables one by one, all variables in the scope can be captured by
simply writing [=] or [&].

Using [=] means that every variable will be captured by value, whereas [&] captures all 
variables by reference.

If inside a class, it is also possible to capture the class member variables by reference using
[this] and by copy by writing [*this]:

class Foo {
public:
 auto member_function() {
   auto a = 0;
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   auto b = 1.0f;
   // Capture all variables by copy
   auto lambda_0 = [=]() { std::cout << a << b << m_; };
   // Capture all variables by reference
   auto lambda_1 = [&]() { std::cout << a << b << m_; };
   // Capture member variables by reference
   auto lambda_2 = [this]() { std::cout << m_; };
   // Capture member variables by copy
   auto lambda_3 = [*this]() { std::cout << m_; };
 }
private:
 int m_{};
};

Note that using [=] does not mean that all variables in the scope are copied into the
lambda, only the variables actually utilized are copied.

Although it is convenient to capture all variables with [&] or [=], we
recommend capturing variables one by one, as it improves the readability
of the code by clarifying exactly which variables are used inside the
lambda scope. 

When capturing all variables by value, you can specify variables to be captured by reference
(and vice versa). The following table shows the result of different combination in the
capture block:

Capture block Resulting capture types
int a, b, c;
auto func = [=](){}; Capture a, b, c by value.

int a, b, c;
auto func = [&](){}; Capture a, b, c by reference.

int a, b, c;
auto func = [=, &c](){};

Capture a, b by value.
Capture c by reference.

int a, b, c;
auto func = [&, c](){};

Capture a, b by reference.
Capture c by value.
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Assigning C function pointers to lambdas
Let's say you are using a C library, or an older C++ library, which uses a callback function as
a parameter. For convenience, you would like to use a lambda function like this:

external void download_webpage(
  const char* url, void (*callback)(int, const char*));

The callback here is a return code and the web page HTML. If you want to invoke this with
a lambda, you have to use a plus in front of the lambda in order to convert it into a regular
function pointer:

auto func() {
  auto lambda = +[](int result, const char* str) {};
  download_webpage("http://www.packt.com", lambda);
}

This way, the lambda is converted into a regular function pointer. Note that the lambda
cannot have any captures at all in order to use this functionality.

Lambdas and std::function
As mentioned before, every lambda function has its own type, even if they have the same
signature (and even if they are identical).

The signature of a std::function is defined as follows:

std::function< return_type ( parameter0, parameter1...) >

So, a std::function returning nothing and having no parameters is defined like this...

auto func = std::function<void(void)>{};

A std::function returning a bool and having an int and a std::string as parameters
is defined like this:

auto func = std::function<bool(int, std::string)>{};
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Assigning lambdas to std::functions
As mentioned earlier, every lambda function has its own type, and therefore cannot be
assigned to other lambda functions, even if they look exactly the same. However, a
std::function can hold any lambda function which has the same signature, that is, it has
the same parameters and the same return value. A std::function can also be reassigned
at run time. This makes std::function the type to use if you want a variable to hold a
lambda function.

What is important here is that what is captured by the lambda does not affect its signature,
and therefore both lambdas with and without captures can be assigned to the same
std::function.

The following code block shows how different lambdas are assigned the same
std::function object:

// Create an unassigned std::function object
auto func = std::function<void(int)>{};
// Assign a lambda without capture to the std::function object
func = [](int v) { std::cout << v; };
func(12); // Prints 12

// Assign a lambda with capture to the same std::function object
auto forty_two = 42;
func = [forty_two](int v) { std::cout << (v + forty_two); };
func(12); // Prints 54

Implementing a simple Button class with std::function
Let's put the std::function to use in something that resembles a real-world example. If
we create a Button class, we can use the std::function to store the action corresponding
to clicking the buttons, so that when we call the on_click() member function, the
corresponding code is executed.
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We can declare the Button class like this:

class Button {
public:
  Button(std::function<void(void)> click) : on_click_{click} {}
  auto on_click() const { on_click_(); }
private:
  std::function<void(void)> on_click_{};
};

We can then use it to create a multitude of buttons with different actions. As each button
still has the same type, they can also be stored in a container:

auto make_buttons() {
  auto beep_button = Button([beep_count = 0]() mutable {
    std::cout << "Beep:" << beep_count << "! ";
    ++beep_count;
  });
  auto bop_button = Button([]{ std::cout << "Bop. "; });
  auto silent_button = Button([]{});
  auto buttons = std::vector<Button>{
    beep_button,
    bop_button,
    silent_button
  };
  return buttons;
}

Iterating the list by executing the on_click() on each button will execute the
corresponding function:

auto buttons = make_buttons();
for(const auto& b: buttons) {
  b.on_click();
}
buttons.front().on_click();
// Output: "Beep: 0! Bop. Beep: 1!"



Modern C++ Concepts Chapter 2

[ 42 ]

As you can see, the on_click() member function is a const function, yet it is mutating the
member variable on_click_ by increasing the beep_count_. This might seem like it
breaks const correctness rules, as a const member function of Button is allowed to call a
mutating function on one of its class members. The reason it is allowed is the same reason
that member pointers are allowed to mutate their pointed-to value in a const context. Later
on in this chapter we will discuss how to propagate constness for pointer data members.

Performance consideration of std::function
A std::function has a few performance losses compared to a lambda function, which
we'll discuss in the subsequent sections.

An std::function cannot be inlined
When it comes to lambda functions, the compiler has the ability to inline the function call,
that is, the overhead of the function call is eliminated. The flexible design of
 std::function make it nearly impossible for the compiler to inline a function wrapped in
a std::function. This overhead can have an impact on the performance if small functions
wrapped in std::function are being called very frequently.

An std::function heap allocates and captures variables
If a lambda function with captured variables/references is assigned to a std::function,
the std::function will, in most cases, allocate space on the heap to store the captured
variables (note that some implementations of std::function do not heap-allocate if the
size of the captured variable is less than a specific threshold).

This means that not only is there a slight performance penalty due to heap allocation and
the execution of std::function but also that it is slower, as heap allocation implies cache
misses (more about cache misses in Chapter 4, Data Structures).

Invoking an std::function requires a few more operations than a lambda
Calling a std::function is generally a bit slower than executing a lambda as a little more
code is involved, for example, executing 1 million function calls for a std::vector of the
explicit lambda type versus a std::vector of a corresponding std::function as follows.
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Benchmark invocation without capture of lambda vs std::function:

Lambda std::function
auto test_direct_lambda() {
  auto lbd = [](int v) {
    return v * 3;
  };
  using L = decltype(lbd);
  auto fs = std::vector<L>{};
  fs.resize(1’000’000, lbd);
  auto res = int{0};
  for (const auto& f: fs) {
    res = f(res);
  }
  return res;
}

auto test_std_function() {
  auto lbd = [](int v) {
    return v * 3;
  };
  using F = std::function<int(int)>;
  auto fs = std::vector<F>{};
  fs.resize(1’000’000, lbd);
  auto res = int{0};
  for (const auto& f: fs) {
    res = f(res);
  }
  return res;
}

The first version, using the lambda directly, executes at roughly one-fourth of the time
compared to the second version, where we instead use a vector of std::function.

The polymorphic lambda
Although having a complex-sounding name, a polymorphic lambda is simply a lambda
accepting auto as a parameter, making it possible to invoke it with any type. It works just
like a regular lambda, but the operator() has been defined as a member function
template.

Only the parameters are template variables, not the captured values. In other words, the
captured value v in the following example will stay as an integer.

So, if you define a polymorphic lambda like this:

auto v = 3;
auto lambda = [v](auto v0, auto v1){ return v + v0*v1; };

If we translate the above lambda to a class, it would correspond to something like this:

class Lambda {
public:
  Lambda(int v) : v_{v} {}
  template <typename T0, typename T1>
  auto operator()(T0 v0, T1 v1) const { return v_ + v0*v1; }
private:
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  int v_{};
};
auto v = 3;
auto lambda = Lambda{v};

This means that, just like the templated version, the compiler won't generate the actual
function until the lambda is invoked.

So, we can invoke the previous lambda like this:

auto res_int = lambda(1, 2);
auto res_float = lambda(1.0f, 2.0f);

The compiler will generate something similar to the following lambdas:

auto lambda_int = [v](int v0, const int v1) { return v + v0*v1; };
auto lambda_float = [v](float v0, float v1) { return v + v0*v1; };
auto res_int = lambda_int(1, 2);
auto res_float = lambda_float(1.0f, 2.0f);

As you might have figured, these versions are further handled just like regular lambdas.

Creating reusable polymorphic lambdas
Here are two vectors, one resembling a farm with the number of animals, and the other one
mapping countries to their corresponding continent:

auto farm = std::vector<std::pair<std::string, int>>{
  {"Bear", 5},
  {"Deer", 0},
  {"Pig", 4}
};

enum class Continent { Europe, Asia, America };
auto countries = std::vector<std::pair<std::string, Continent>>{
  {"Sweden", Continent::Europe},
  {"India", Continent::Asia},
  {"Belarus", Continent::Europe},
  {"Mexico", Continent::America}
};
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Let's say we want to sort the animals in order of how many the farm contains, and the
countries in order of the continent they belong to. Speaking in code, we want to sort the
vectors according to the std::pair::second member. As the vectors contain different
value types, we use a polymorphic lambda. In order to avoid code duplication, we tie the
lambda to a variable, and the lambda can be used for sorting both vectors:

auto less_by_second = [](const auto& a, const auto& b) {
  return a.second < b.second;
};
// Both vectors can be sorted with the same lambda
std::sort(farm.begin(), farm.end(), less_by_second);
std::sort(countries.begin(), countries.end(), less_by_second);

Creating a reusable lambda for sorting like this is straightforward as we don't require any
captures. However, what do we do if we want to make a reusable lambda which requires a
capture?

For example, let's say we want to count the number of animals we have five of, or the
number of countries in Europe. What we have to do is to wrap the capture into a function
like this:

template <typename T>
auto is_second_equal(const T& x) {
  // A lambda capturing x is returned
  return [&x](const auto& p) { return p.second == x; };
}

auto missing_animals = std::count_if(farm.begin(), farm.end(),
is_second_equal(0));
// missing_animals equals 1 as there are no deers in the farm

auto num_european_countries = std::count_if(
  countries.begin(),
  countries.end(),
  is_second_equal(Continent::Europe)
);
// num_european_countries is two as Sweden and Belarus are in Europe

As you see, the template function is_second_equal is utilized as a proxy to make the
capture type a template. Then, the returned polymorphic lambda does not need to know
about the full type of the pair. The actual lambda function isn't generated until the
std::count_if is invoked.
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So, the compiler stumbles upon the following line:

auto lambda = is_second_equal(5);

It then starts by generating a function which returns a polymorphic lambda where x is an
int like this:

auto is_second_equal_int(const int& x) {
  return [&x](const auto& p) { return p.second == x; };
}

When that function is generated, the compiler goes on and generates a class similar to this:

class Lambda {
public:
  Lambda(const int& x) : x_{x} {}
  template <typename T>
  auto operator()(const T& p) const { return p.second == x_; }
  int x_{};
};

Then, an object of this Lambda class is constructed and passed to the algorithm like this:

auto missing_animals = std::count_if(farm.begin(), farm.end(), Lambda{0});

The template operator() member function of the Lambda class is further converted to the
following function:

auto operator()(const std::pair<std::string, int>& p) const {
  return p.second == x_;
}

Const propagation for pointers
A common mistake when writing const-correct code in C++ is that a const initialized object
can still manipulate the values that member pointers points at. The following example
illustrates the problem:

class Foo {
public:
  Foo(int* ptr) : ptr_{ptr} {}
  auto set_ptr_val(int v) const {
    *ptr_ = v; // Compiles despite function being declared const!
  }
private:
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  int* ptr_{};
};

auto main() -> int {
  const auto foo = Foo{};
  foo.set_ptr_val(42);
}

Although the function set_ptr_val() is mutating the int value, it's valid to  declared
it const  since the pointer ptr_ itself is not mutated, only the int object that the pointer is
pointing at.

In order to prevent this in a readable way, a wrapper
called std::experimental::propagate_const has been added to the std library
extensions (included in, as of the time of writing this, the latest versions of Clang and GCC).
Using propagate_const, the function set_ptr_val() will not compile. Note
that propagate_const only applies to pointers, and pointer-like classes such
as std::shared_ptr and std::unique_ptr, not std::function.

Here is a usage example:

namespace exp = std::experimental;
class Foo {
public:
  auto set_ptr(int* p) const {
    ptr_ = p;  // Will not compile, as expected
  }
  auto set_val(int v) const {
    val_ = v;  // Will not compile, as expected
  }
  auto set_ptr_val(int v) const {
    *ptr_ = v; // Will not compile, const is propagated
  }
private:
  exp::propagate_const<int*> ptr_ = nullptr;
  int val_{};
};
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Move semantics explained
Move semantics is a concept introduced in C++11 which, in our experience, is quite hard to
grasp even by experienced programmers. Therefore, we will try to give you an in-depth
explanation of how it works, when the compiler utilizes it, and, most importantly, why it is
needed.

Essentially, the reason C++ even has the concept of move semantics, whereas most other
languages don't, is a result of being a value-based language as discussed in Chapter 1, A
Brief Introduction to C++. If C++ did not have move semantics built in, the advantages of
value-based semantics would get lost in many cases and programmers would have to
perform one of the following trade-offs:

Performing redundant deep-cloning operations with high performance costs
Using pointers for objects like Java do, losing the robustness of value semantics
Performing error-prone swapping operations at the cost of readability

We do not want either of these, so let's have a look at how move semantics helps us.

Copy-construction, swap, and move
Before we go into the details of move, we first explain and illustrate the differences between
copy-constructing and object, swapping two objects, and move-constructing an object.

Copy-constructing an object
When copying an object handling a resource, a new resource needs to be allocated, and the
resource from the source object needs to be copied so that the two objects are completely
separated. The resource allocations of copy construction in the following code block is
illustrated as follows:

auto a = Object{};
auto b = a; // Copy-construction
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The following image illustrates the process:

Copying an object with resources

The allocation and copying is slow and, in many cases, the source object isn't needed
anymore. With move semantics, the compiler detects cases like these where the old object is
not tied to a variable, and instead performs a move operation. This will be explained in the
following detail.

Swapping two objects
Before move semantics were added in C++11, swapping the content of two objects was a
common way to transfer data without allocating and copying. The objects simply swaps the
content with each other:

auto a = Object{};
auto b = Object{};
std::swap(a, b);

The following image illustrates the process:

Swapping resources between two objects
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Move-constructing an object
When moving an object, the destination object steals the resource straight from the source
object, and the source object is reset, as illustrated in the following image. As you can see, it
is very similar to swapping, except that the moved-from object does not have to receive the
resources from the moved-to object:

auto a = Object{};
auto b = std::move(a); // Tell the compiler to move the resource into b

The following image illustrates the process:

Moving resources from one object to another

Moving objects only makes sense if the object type owns a resource of
some sort (the most common case being heap-allocated memory). If all
data is contained within the object, the most efficient way to move an
object is to just copy.

Resource acquisition and the rule of three
Now that you have a handle on what is going on, let's go into detail.

To fully understand move semantics, we need to go back to the basics of classes and
resource acquisition in C++. One of the basic concepts of classes and resource acquisition in
C++ is that a class should completely handle its resources.

This means that when a class is copied, assigned, or destructed, the class should make sure
its resources are also copied, assigned and destructed. The necessity of implementing these
three functions is commonly referred to as the rule of three.



Modern C++ Concepts Chapter 2

[ 51 ]

The rule of three is such an obvious part of C++ and STL that there is a chance that you are
using it without thinking about it. But if we take a look at a simple function which copies a
std::vector<int>, there are quite a few things that actually go on under the hood:

0. auto func() {
1.   // Prerequisite
2.   const auto a0 = std::vector<int>{1,2,3,4,5,6};
3.   const auto a1 = std::vector<int>{7,8,9};
4.   // Copy-construct
5.   auto b = a0;
6.   // Copy-assign
7.   b = a1;
8. }

The allocated data in a0 is copy-constructed into b to a new allocation in vector b at line 5
and the data of a1 is copy-assigned into b1 at line 7. When the function exits, the allocations
held by a0, a1, and b are automatically freed up by their destructors.

Implementing the rule of three
Prior to C++11, automatic resource acquisition in C++ was implemented using a guideline
called the rule of three, where the three refers to the special member functions: copy-
constructor, copy-assignment and destructor. The rule says that if you are handling resources
in any of these three functions, you most likely need to do it in all three of them.

Let's have a look at how the rule of three can be implemented in a class handling an
allocated resource. In the Buffer class defined in the following code snippet, the allocated
resource is an array of floats pointed at by the raw pointer ptr_ . Note how the rule of three
handles the resource by allocating and deallocating the float array:

class Buffer {
public:
  // Constructor
  Buffer(const std::initializer_list<float>& values)
  : size_{values.size()} {
    ptr_ = new float[values.size()];
    std::copy(values.begin(), values.end(), ptr_);
  }
  // 1. Copy constructor
  Buffer(const Buffer& other) : size_{other.size_} {
    ptr_ = new float[size_];
    std::copy(other.ptr_, other.ptr_ + size_, ptr_);
  }
  // 2. Copy assignment
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  auto& operator=(const Buffer& other) {
    delete [] ptr_;
    ptr_ = new float[other.size_];
    size_ = other.size_;
    std::copy(other.ptr_, other.ptr_ + size_, ptr_);
    return *this;
  }
  // 3. Destructor
  ~Buffer() {
    delete [] ptr_; // Note, it is valid to delete a nullptr
    ptr_ = nullptr;
  }
  // Iterators for accessing the data
  auto begin() const { return ptr_; }
  auto end() const { return ptr_ + size_; }
private:
  size_t size_{0};
  float* ptr_{nullptr};
};

In this case, the handled resource is a block of allocated memory. Allocated memory is
probably the most common resource for classes to handle, but remember that a resource can
be so much more: a mutex, a handle for a texture on the graphics card, a thread handle, and
so on. 

Constructor
We can construct a Buffer object like this:

auto float_array = Buffer({0.0f, 0.5f, 1.0f, 1.5f});

The actual object will then look like this in computer memory:
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The copy-constructor, copy-assignment, and destructor are invoked in the following cases:

auto func() {
  // Construct
  auto b0 = Buffer({0.0f, 0.5f, 1.0f, 1.5f});
  // 1. Copy-construct
  auto b1 = b0;
  // 2. Copy-assignment as b0 is already initialized
  b0 = b1;
  // 3. When the function exits, the destructors are automatically invoked
}

Limitations of the rule of three
Although a correct implementation of the rule of three is all that is required for a class to
handle its internal resources, two problems arise:

Resources which cannot be copied: In the Buffer class example, our resource
can be copied, but there are other types of resources where a copy wouldn't make
sense. For example, the resource contained in a class might be a std::thread, a
network connection, or something else which it is not possible to copy. In these
cases, it is simply not possible to pass around the object.
Unnecessary copies: If we return our Buffer class from a function, the entire
array needs to be copied.

The following example shows how a Buffer object created inside make_buffer() is fully
copied from local_buffer to buffer when returned from a function:

auto make_buffer() {
  auto local_buffer = Buffer({2.0f, 4.0f, 6.0f, 8.0f});
  return local_buffer;
}

auto buffer = make_buffer();

If we would add move-semantics to our Buffer class, this copy will be omitted as the
compiler sees that local_buffer is not used any more. 
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Avoiding copies without move semantics
Without move semantics, these problems were usually avoided by allocating via a pointer,
and passing around the pointer instead of the actual class. In this case, we utilize an old-
fashioned raw pointer for clarity, although some sort of smart pointer is probably the most
used case (such as shared_ptr, unique_ptr, or the old, deprecated auto_ptr):

auto make_buffer() -> Buffer* {
  auto buffer = new Buffer({2.0, 4.0, 6.0, 8.0});
  return buffer;
}

// The actual Buffer object isn't copied, just the pointer
auto buffer = make_buffer(); // buffer is Buffer*

This has several disadvantages:

The advantage of value semantics in C++ is lost: the programmer is not relieved
from handling pointers manually
The code gets bloated with pointers which are simply only used for the sake of
optimization
More heap allocations are required, leading to potentially slower code due to
cache misses and an increase in allocations

Introducing move semantics
In order to get rid of these problems, the rule of three was expanded to the rule of five.

To be specific, in addition to the copy-constructor and copy-assignment, we now also have
move-constructor and move-assignment.

Instead of taking a const reference as a parameter, the move versions accept a Buffer&&
object.

The && modifier indicates that the parameter is an object which we intend to move from
instead of copying it. Speaking in C++ terms, this is called an r-value and we will talk a little
bit more about those later.

Whereas the copy functions copy an object, the move equivalents are intended to move
resources from one object to another, freeing the moved-from object from the resource.
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It's important to notice that the moved-from object still has to remain in a
valid state; the moved-from object must still be able to execute it's
destructor or reassigned a new value.

This is how we would extend our Buffer class with move-constructor and move-
assignment. As you can see, these functions will not throw an exception and can therefore
be marked as noexcept. This is because, as opposed to the copy-constructor/copy-
assignment, they do not allocate or do something which might throw exceptions:

class Buffer {
  ...
  Buffer(Buffer&& other) noexcept
  : ptr_{other.ptr_}
  , size_{other.size_} {
    other.ptr_ = nullptr;
    other.size_ = 0;
  }
  auto& operator=(Buffer&& other) noexcept {
    ptr_ = other.ptr_;
    size_ = other.size_;
    other.ptr_ = nullptr;
    other.size_ = 0;
    return *this;
  }
  ...
};

Now, when the compiler detects that we perform what seems to be a copy, such as
returning a Buffer from a function, but the copied-from value isn't used anymore, it will
utilize the no-throw move-constructor/move-assignment instead of copying.

This is pretty sweet: the interface remains as clear as when copying but, under the hood, the
compiler has performed a simple move. Thus, the programmer does not need to use any
esoteric pointers or out-parameters in order to avoid a copy; as the class has move-
semantics implemented, the compiler handles this automatically.

Do not forget to mark your move-constructors and move-assignment
operators as noexcept (unless they might throw an exception, of course).
Not marking them noexcept prevents STL containers and algorithms
from utilizing them and resorts to a regular copy/assignment under
certain conditions.
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Named variables and r-values
So, when is the compiler allowed to move objects instead of copying? As a short answer, the
compiler moves an object when the object can be categorized as an r-value. The term r-
value might sound complicated, but in essence it is just an object which is not tied to a
named variable, for either of the following reasons:

It's coming straight out of a function
We make a variable an r-value by using std::move(...)

The following example demonstrates both of these scenarios:

// Below, the object coming out of make_buffer is not tied to a variable
// Therefore moved to x
auto x = make_buffer();

// Below, "x" is passed into std::move(...)
// Therefore move-assigned to y
auto y = std::move(x);

Let's make this a little bit more advanced by setting a member variable of type
std::string in a class. 

Let's look at a few cases of copying in detail, given the following prerequisite:

class Bird {
public:
  Bird() {}
  auto set_song(const std::string& s) { song_ = s; }
  auto set_song(std::string&& s) { song_ = std::move(s); }
  std::string song_;
};
auto bird = Bird{};

Case 1: Bird::song_ is copy-assigned as the song is tied to the variable cuckoo_a.
auto cuckoo_a = std::string{"I'm a Cuckoo"};
bird.set_song(cuckoo_a);

Case 2: Bird::song_ is move-assigned as the cuckoo_b variable is passed
through std::move().
auto cuckoo_b = std::string{"I'm a Cuckoo"};
bird.set_song(std::move(cuckoo_b));
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Case 3: Bird::song_ is move-assigned  as the song string is coming straight out of a
function.
auto make_roast_song() { return std::string{"I'm a Roast"}; }
bird.set_song(make_roast_song());

Case 4: Bird::song_ is copy-assigned  as the song string is held by
theroast_song_a variable.
auto roast_song_a = make_roast_song();
bird.set_song(roast_song_a);

Case 5: Bird::song_ is copy-assigned as  roast_song_b is declared const, and thus not
allowed to mutate. 
const auto roast_song_b = make_roast_song();
bird.set_song(std::move(roast_song_b));

As you can see, determining whether an object is moved or copied is quite simple. If it has a
variable name, it is copied; otherwise, it is moved.

Accept arguments by move when applicable
Consider a function which converts a std::string to lower case. In order to use the move-
constructor where applicable, and the copy-constructor otherwise, it may seem like two
functions are required:

// Argument, s, is a const reference
auto str_to_lower(const std::string& s) -> std::string {
  auto clone = s;
  for(auto& c: clone) c = std::tolower(c);
  return clone;
}
// Argument, s, is an r-value
auto str_to_lower(std::string&& s) -> std::string {
  for(auto& c: s) c = std::tolower(c);
  return s;
}
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However, by taking the std::string by value instead, we can write one function which
covers both cases:

auto str_to_lower(std::string s) -> std::string {
  for(auto& c: s)
    c = std::tolower(c);
  return s;
}

Let's see why this implementation of str_to_lower() avoids unnecessary copying where
possible.

When passed a regular variable, shown as follows, the content of str is copy-
constructed into s prior to the function call, and then move-assigned back to str when the
functions returns. 

auto str = std::string{"ABC"};
str = str_to_lower(str);

When passed an r-value, shown as follows, the content of str is move-
constructed into s prior to the function call, and then move-assigned back to str when the
function returns. Therefore, no copy was made through the function call.

auto str = std::string{"ABC"};
str = str_to_lower(std::move(str));

Default move semantics and the rule of zero
This section discusses automatically generated copy-assignment operators,
it's important to know that the generated function does not have strong
exception guarantees. Therefore, if an exception is thrown during the
copy-assignment, the object might end up in a state where it is only
partially copied. 

As with the copy-constructor and copy-assignment, the move-constructor and move-
assignment can be generated by the compiler. Although some compilers allow themselves
to automatically generate these functions under certain conditions (more about this later),
we can simply force the compiler to generate them by using the default keyword.
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In the case of the Bird class, we simply extend it like this:

class Bird {
...
  // Copy-constructor/copy-assignment
  Bird(const Bird&) = default;
  auto operator=(const Bird&) -> Bird& = default;
  // Move-constructor/move-assignment
  Bird(Bird&&) noexcept = default;
  auto operator=(Bird&&) noexcept -> Bird& = default;
  // Destructor
  ~Bird() = default;
  ...
};

To make it even simpler, if you do not declare any custom copy-constructor/copy-assignment
or destructor, the move-constructors/move-assignments are implicitly declared, meaning that
the first Bird class actually handles everything:

class Bird {
...
// Nothing here, the compiler generates everything automatically!
...
};

In other words, adding just a custom destructor, shown as follows:

class Bird {
public:
  Bird() {}
  ~Bird() { std::cout << "Bird is dead." << '\n'; }
  auto set_song(const std::string& song) { song_ = song; }
  auto set_song(std::string&& song) { song_ = std::move(song); }
private:
  std::string song_;
};

If we do this, the move operators are not generated, and the class will always be copied.

Rule of zero in a real code base
In practice, the cases where you have to write your own copy/move-constructors and
copy/move-assignments should be very few. If you create a class in your application code base
which requires these to be custom written, these parts should probably be moved to some
library in your code base.
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Writing your classes so that they do not require any explicitly written copy-constructor, copy-
assignment, move-constructor, move-assignment, or destructor is often referred to as the rule of
zero. This means that if a class in the application code base is required to have any of these
function written explicitly, that piece of code would probably be better off in the library part
of your code base.

Later on in this chapter we will discuss std::optional  , which is a
handy utility class for dealing with optional members when applying the
rule of zero. 

A note on empty destructors
Note that writing an empty destructor prevents the compiler from implementing certain
optimizations. As you can see in the following table, copying an array of a trivial class with
an empty destructor yields the same, non-optimized, assembler code as copying with a
handcrafted for loop:

Empty destructor and std::copy Copy by handwritten for-loop
struct Point {
 int x, y;
 ~Point(){}
};
auto copy(Point* src, Point* dst) {
 std::copy(src, src+64, dst);
}

struct Point {
  int x, y;
};
auto copy(Point* src, Point* dst) {
  const auto end = src + 64;
  for(; src != end; ++src, ++dst) {
    *dst = *src;
  }
}

This generates the following x86 assembler:

 xor eax, eax
.L2:
 mov rdx, QWORD PTR [rdi+rax]
 mov QWORD PTR [rsi+rax], rdx
 add rax, 8
 cmp rax, 512
 jne .L2
 rep ret
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However, if we remove or declare the destructor default, the compiler optimize std::copy
to utilize memmove instead of a loop. The assembler is generated using GCC 7.1 in Compiler
Explorer available at https:/ / godbolt. org/.

No destructor and std::copy Explicit default destructor and std::copy
struct Point {
  int x, y;
};
auto copy(Point* src, Point* dst) {
  std::copy(src, src+64, dst);
}

struct Point {
  int x, y;
  ~Point() = default;
};
auto copy(Point* src, Point* dst) {
  std::copy(src, src+64, dst);
}

This generated the following x86 assembler, with memmove optimization!

 mov rax, rdi
 mov edx, 512
 mov rdi, rsi
 mov rsi, rax
 jmp memmove

To summarize, use default destructors in favor of empty destructors to squeeze a little bit
more performance of your application.

A common pitfall - moving non-resources
There is one common pitfall when using default created move-assignments: classes which
mix simple types with more advanced types. As opposed to more advanced types, simple
types such as integers, Booleans, and such are simply copied when moved as they don't
handle any resources.

https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
https://godbolt.org/
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When a simple type is mixed with a resource-owning type, the move-assignment becomes a
mixture of move and copy.

Here is an example of a class which will fail:

class TowerList {
public:
  TowerList() : max_height_idx_{1}, tower_heights_{25.0f, 44.0f, 12.0f} {}
  auto get_max_tower_height() const {
    return max_height_idx_ >= 0 ?
      tower_heights_[max_height_idx_] : 0.0f;
  }
  std::vector<float> tower_heights_{};
  int max_height_idx_{-1};
};

The TowerList class will have undefined behavior if it is handled like this:

auto a = TowerList{};
auto b = std::move(a);
auto max_height = a.get_max_tower_height();

The undefined behavior happens as the tower_heights_ vector is moved and is therefore
empty. The max_height_idx_, on the other hand, is copied, and therefore still has the
value 2 in the moved-from object a. When the get_max_tower_height() is called, the
function will try to access tower_heights_ at index 2 and the program will crash.

In these cases, the move-constructor/assignment is better implemented by simply swapping
the members like this:

TowerList(TowerList&& tl) noexcept {
  std::swap(tower_heights_, tl.tower_heights_);
  std::swap(max_height_idx_, tl.max_height_idx_);
}
auto& operator=(TowerList&& tl) noexcept {
  std::swap(tower_heights_, tl.tower_heights_);
  std::swap(max_height_idx_, tl.max_height_idx_);
  return *this;
}
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This way, the TowerList class can be safely moved while still preserving the no exception
guaranteed. Later in this book, in Chapter 8, Metaprogramming and Compile-Time Evaluation,
you will learn how to take advantage of reflection techniques in C++ in order  to automate
the process of creating move-constructor/assignment functions which swap the elements.

Applying the && modifier to class member functions
In addition to being applied to objects, you can also add the && modifier to a member
function of a class, just as you can apply a const modifier to a member function. As in the
case with the const modifier, a member function which has the && modifier is only
permitted to be executed on an r-value.

struct Foo {
  auto func() && {}
};
auto a = Foo{};
a.func(); // Does not compile, 'a' is not an r-value
std::move(a).func(); // Compiles
Foo{}.func(); // Compiles

It might seem odd that one would ever want this behavior, but there are cases. We will
investigate one of those cases in Chapter 9, Proxy Objects and Lazy Evaluation.

Representing optional values with
std::optional
Although quite a minor feature in C++17, std::optional is a neat addition to the STL
library which simplifies a common case which couldn't be expressed in a clean 
straightforward syntax prior to std::optional. In a nutshell, it is a small wrapper for any
type where the wrapped type can be both initialized and uninitialized.

To put it in C++ lingo, std::optional is a stack-allocated container with a max size of one.

Note that the Boost Libraries has had an equivalent
of std::optional,named boost::optional for many years.
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Optional return values
Before the introduction of std::optional, there was no clear way to define functions
which may not return a defined value, such as the intersection point of two line
segments. With the introduction of std::optional, such optional return values can be
clearly expressed. Following is an implementation of a function which returns an optional
intersection between two lines:

// Prerequisite
class Point {...}; class Line {...};
external auto is_intersecting(Line a, Line b) -> bool {...}
external auto get_intersection(Line a, Line b) -> Point {...}

auto get_intersection_point(const Line& a, const Line& b)
-> std::optional<Point> {
  return is_intersection(a, b) ?
    std::make_optional(get_intersection(a, b)):
    std::optional<Point>{};
}

The syntax of std::optional resembles that of a pointer, the value is accessed by
operator* or operator->. If trying to access the value of an empty optional, the
std::optional throws an exception. Following is a simple usage example of a returned
std::optional:

// Prerequisite
auto line0 = Line{...};
auto line1 = Line{...};
external auto set_magic_point(Point p);

// Get optional intersection
auto intersection = get_intersection_point(line0, line1);
if(intersection.has_value()) {
  // std::optional throws an exception if intersection is empty
  set_magic_point(*intersection);
}

The object held by a  std::optional is always stack allocated, and the
memory overhead of a std::optional<T> compared to T is  the size of
one bool (usually one byte), plus possible padding.
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Optional member variables
Let's say we have a class which represents a human head. The head can have a hat of some
sort, or no hat at all. By using std::optional to represent the hat member variable the
implementation is as expressive as can be. 

struct Hat {...}
class Head {
public:
  Head() { assert(!hat_); } // hat_ is empty by default
  auto set_hat(const Hat& h){ hat_ = h; }
  auto has_hat() const { return hat_.has_value(); }
  auto& get_hat() const { assert(hat_.has_value()); return *hat_; }
  auto remove_hat() { hat_ = {}; } // Hat is cleared by assigning to {}
private:
  std::optional<Hat> hat_;
};

Without std::optional, representing an optional member variable would rely on, for
example, a pointer or an extra bool member variable. Both having disadvantages such as
allocating on the heap, or accidentally accessing an optional considered empty without a
warning.

Sorting and comparing std::optional
The std::optional is both equally comparable and sortable, using the following rules as
shown in the following table:

Two empty optional's are considered
equal.
auto a = std::optional<int>{};
auto b = std::optional<int>{};
auto c = std::optional<int>{4};
assert(a == b);
assert(b != c);

An empty optional is considered less than a
non-empty.
auto a = std::optional<int>{};
auto b = std::optional<int>{4};
auto c = std::optional<int>{5};
assert(a < b);
assert(b < c);

Therefore, if you sort a container of std::optional<T>, the empty optional's would end
up at the beginning of the container, whereas the non-empty optional's are sorted as usual,
shown as follows:

auto c = std::vector<std::optional<int>>{{3}, {}, {1}, {}, {2}};
std::sort(c.begin(), c.end());
// c is {}, {}, {1}, {2}, {3}
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Representing dynamic values with std::any
Just like std::optional, std::any can store an optional single value, but with the
difference that it can store any type at runtime, just like a dynamically typed}language. As
the std::any can withhold any type, you need to explicitly specify the type using the
global function std::any_cast when reading the held object.

If the std::any is empty or withholds another type than the specified type, an exception is
thrown.

Here is an example of how it works:

// Initialize an empty std::any
auto a = std::any{};
// Put a string in it
a = std::string{"something"};
// Return a reference to the withheld string
auto& str_ref = std::any_cast<std::string&>(a);
// Copy the withheld string
auto str_copy = std::any_cast<std::string>(a);
// Put a float in the 'any' and read it back
a = 135.246f;
auto flt = std::any_cast<float>(a);
// Copy the any object
auto b = a;
auto is_same =
  (a.type() == b.type()) &&
  (std::any_cast<float>(a) == std::any_cast<float>(b));
// a equals b as they contain the same type and value

Asking the std::any instance if it contains a type via the typeid is quite verbose, but you
can easily create a convenience function which checks if the std::any contains a specified
type like this:

template <typename T>
auto is_withheld_type(const std::any& a) -> bool {
  return typeid(T) == a.type();
}

auto a = std::any{32.0};
auto is_int = is_withheld_type<int>(a);
// is_int is false, 'a' contains a double
auto is_double = is_withheld_type<double>(a);
// is_double is true, 'a' contains a double
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Performance of std::any
In contrast to std::optional and std::variant (std::variant is discussed in Chapter
8, Meta programming and Compile-Time evaluation), std::any heap-allocates its withheld
value (although implementers are encouraged to store small objects inside of the any). Also,
invoking a std::any_cast to retrieve the value is quite slow compared to std::variant.

The Boost equivalent of std::any, boost::any, provides a fast version
of std::any_cast called boost::any_cast_unsafe which can be
utilized if you know which type is contained. In contrast to
std::any_cast, using a boost::any_cast_unsafe with the wrong
type will result in undefined behavior instead of a thrown exception.

Summary
In this chapter you have learned how to use modern C++ features such as forwarding
references, move-semantics, lambda functions, std::any, and std::optional. In the next
chapter we will look into strategies for how to measure performance in C++.



3
Measuring Performance

Since this is a book about writing C++ code that runs efficiently, we need to cover some
basics regarding how to measure software performance and estimate algorithmic efficiency.
Most of the topics in this chapter are not specific to C++, and can be used whenever you are
facing a problem where performance is an issue.

We are going to learn how to estimate algorithmic efficiency using big O notation. This is
essential knowledge when choosing algorithms and data structures from STL. If you are
new to big O notation, this part might take some time to grasp. But don't give up! This is a
very important topic to grasp in order to understand the rest of the book,  and, more
importantly to become a performance-aware programmer. If you want a more formal or
more practical introduction to these concepts, there are plenty of books and online
resources dedicated to this topic. On the other hand, if you have already mastered big O
notation and know what amortized time complexity is, you could probably skim the next
section and go to the later parts of this chapter.

Altogether, this chapter includes:

Estimating algorithmic efficiency using  big O notation
A suggested workflow when optimizing code so that we don't spend time fine-
tuning code without good reasons
CPU profilers—what they are and why you should use them
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Asymptotic complexity and big O notation
There is usually more than one way to solve a problem and if efficiency is a concern, you 
should first and foremost focus on the high-level optimizations by choosing the right
algorithms and data structures. A useful way of evaluating and comparing algorithms is by
analyzing their asymptotic computational complexity—that is, analyzing how the running
time or memory consumption grows when the size of the input increases. In addition, the
C++ Standard Template Library (STL) specifies the asymptotic complexity for all
containers and algorithms, which means that a basic understanding of this topic is a must if
you are using STL. If you already have a good understanding of algorithm complexity and
the big O notation, you can safely skip this section.

Let's start off with an example. Suppose we want to write an algorithm that returns true if
it finds a specific key in an array, or false otherwise. In order to find out how our
algorithm behaves when passed different sizes of the array, we would like to analyze the
running time of this algorithm as a function of its input size:

auto linear_search(const std::vector<int>& vals, int key) {
  for (const auto& v : vals) {
    if (v == key) {
      return true;
    }
  }
  return false;
}

The algorithm is straightforward: It iterates over the elements in the array and compares
each element with the key. If we are lucky, we find the key in the beginning of the array and
it returns immediately, but we might loop through the entire array without finding the key
at all. This would be the worst case for the algorithm, and in general, that is the case we
want to analyze. But what happens with the running time when we increase the input size?
Say we double the size of the array. Well, in the worst case, we need to compare all
elements in the array that would double the running time. There seems to be a linear
relationship between the input size and the running time. We call this a linear growth rate:
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Linear growth rate

How about the following algorithm:

struct Point {
  int x{};
  int y{};
};

auto linear_search(const std::vector<Point>& a, const Point& key) {
  for (size_t i = 0; i < a.size(); ++i) {
    if (a[i].x == key.x && a[i].y == key.y) {
      return true;
    }
  }
  return false;
}

We are comparing points instead of integers and we are using an index with the subscript
operator to access each element. How is the running time affected by these changes? The
absolute running time is probably higher compared to the first algorithm since we are doing
more work—for example, the comparison of points involves two integers instead of just one
for each element in the array. However, at this stage we are interested in the growth rate the
algorithm exhibits, and if we plot the running time against the input size, we would still
end up with a straight line, as shown in the preceding image.
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As the last example of searching for integers, let's see whether we can find a better
algorithm if we assume that the elements in the array are sorted. Our first algorithm would
work regardless of the order of the elements, but if we know that they are sorted, we can
use a binary search. It works by looking at the element in the middle and determines
whether it should continue searching in the first or second half of the array:

auto binary_search(const std::vector<int>& a, int key) {
  if (a.empty()) {
    return false;
  }
  auto low = size_t{0};
  auto high = a.size() - 1;
  while (low <= high) {
    const auto mid = low + ((high - low) / 2);
    if (a[mid] < key) {
      low = mid + 1;
    }
    else if (a[mid] > key) {
      high = mid - 1;
    }
    else {
      return true;
    }
  }
  return false;
}

As you can see, this algorithm is harder to get correct than the simple linear scan. It looks
for the specified key by guessing that it's in the middle of the array. If it's not, it compares
the key with the element in the middle to decide which half of the array should keep
looking for the key. So in each iteration it cuts the array in half. Assume we called
binary_search() with an array containing 64 elements. In the first iteration we reject 32
elements, in the next iteration we reject 16 elements, the next iteration 8 elements, and so on,
until there are no more elements to compare or until we find the key. For an input size of
64, there will be at most 7 loop iterations. What if we double the input size to 128? Since we
halve the size in each iteration, it means that we only need one more loop iteration. Clearly,
the growth rate is no longer linear—it's actually logarithmic. If we measure the running
time of binary_search(), we will see that the growth rate would look something like the
one in the following image:
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Logarithmic growth rate

On my machine, a quick timing of the three algorithms repeatedly called 10,000 times with
various input sizes (n) produced the results shown in the following table:

Algorithm n = 10 n = 1,000 n = 1,00,000

• Linear search with int 0.04 ms     4.7 ms        458 ms

• Linear search with Point 0.07 ms     6.7 ms        725 ms

• Binary search with int 0.03 ms   0.08 ms        0.16 ms

Comparing algorithms 1 and 2, we can see that comparing points instead of integers takes
more time, but they are still in the same order of magnitude even when the input size
increases. However, if we compare all three algorithms when the input size increases, what
really matters is the growth rate the algorithm exhibits. By exploiting the fact that the array
was sorted, we could implement the search function with very few loop iterations. For large
arrays, binary search is practically free compared to linearly scanning the array.

Never spend time tuning your code before you are certain that you have
chosen the correct algorithms and data structures for your problem.
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Wouldn't it be nice if we could express the growth rate of algorithms in a way that would
help us decide which algorithm to use? Here is where the big O notation comes in handy.
Here follows an informal definition: If f(n) is a function that specifies the running time of an
algorithm with input size n, we say that f(n) is O(g(n)) if there is a constant k such that f(n) ≤
k * g(n). This means that we could say that the time complexity of linear_search() is
O(n), for both versions with integers and points, whereas the time complexity of
binary_search() is O(log n) or big O of log n.

In practice, when we want to find the big O of a function, we can do that by eliminating all
terms except the one with the largest growth rate and then remove any constant factors. For
example, if we have an algorithm with a time complexity described by f(n) = 4n2 + 30n + 100,
we would pick out the term with the highest growth rate, 4n2. Next, we remove the constant
factor of 4 and end up with n2, which means that we can say that our algorithm runs in
O(n2). Finding the time complexity of an algorithm can be hard, but the more you start
thinking of it while writing code, the easier it will get. For the most part, it's enough to keep
track of loops and recursive functions.

Here is another example:

auto insertion_sort(std::vector<int>& a) {
  for (size_t i = 1; i < a.size(); ++i) {
    auto j = i;
    while (j > 0 && a[j-1] > a[j]) {
      std::swap(a[j], a[j-1]);
      --j;
    }
  }
}

The input size is the size of the array. The running time could be estimated approximately
by looking at the loops that iterate over all elements. First, there is an outer loop iterating
over n - 1 elements. The inner loop is different: the first time we reach the while-loop, j is 1
and the loop only run one iteration. On the next iteration, j starts at 2 and decreases to
0. For each iteration in the outer for loop, the inner loop needs to do more and more work.
Finally, j starts at n - 1, which means that we have, in the worst case, executed swap 1 + 2 +
3 + ... + (n - 1) times. We can express this in terms of n by noting that this is an arithmetic
series. The sum of the series is 1 + 2 + ... + k = (1/2)(k * (k+1)). So if we set k = (n - 1), we have
the complexity as (1/2)((n-1) * (n-1 + 1)) = (1/2)((n-1) * n) = (1/2)(n2-n) = (1/2) n2 - (1/2)n. We can
now find the big O of this function by first eliminating all terms except the one with the
largest growth rate, which gives us (1/2)n2 left. After that, we remove the constant 1/2 and
conclude that the running time of the sorting algorithm is O(n2).
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Growth rates
As stated previously, the first step in finding the big O of a complexity function is to remove
all terms except the one with the highest growth rate. To be able to do that, we must know
the growth rate of some common functions. In the following figure, we have plotted some
of the most common functions:

Comparison of growth rate functions

The growth rates are independent of machine or coding style and so on, when the growth
rates differ between two algorithms, the one with the slowest growth rate will always win
when the input size gets sufficiently large. Let's see what happens with the running time for
different growth rates if we assume that it takes 1 ms to perform 1 unit of work. The
following table lists the growth function, its common name, and different input sizes, n:

f(n) Name n = 10 n = 50 n = 1000

O(1) Constant 0.001 sec 0.001 sec 0.001 sec

O(log n) Logarithmic 0.003 sec 0.006 sec 0.01 sec

O(n) Linear 0.01 sec 0.05 sec 1 sec

O(n log n) Linearithmic or n log n 0.03 sec 0.3 sec 10 sec

O(n2) Quadratic 0.1 sec 2.5 sec 16.7 minutes

O(2n) Exponential 1 sec 357 centuries
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Amortized time complexity
Usually, an algorithm behaves differently with different inputs. Going back to our
algorithm that linearly searched an element in an array, we were analyzing the case where
the key was not in the array at all. For that algorithm, that was the worst case—that is, it
used the most resources the algorithm will need. The best case refers to the least amount of
resources the algorithm will need, whereas the average case states how many resources the
algorithm will use on average with different input.

The STL usually refers to the amortized running time of functions that operate on
containers. If an algorithm runs in constant amortized time, it means that it will run in O(1)
in almost all cases, except a very few where it will perform worse. At first sight, amortized
running time can be confused with average time, but as we will see, they are not the same.

To understand amortized time complexity, we will spend some time thinking about
std::vector::push_back(). Let's assume that the vector internally has a fixed size array
to store all its elements in. If there is room for more elements in the fixed-size array when
calling push_back(), the operation will run in constant time, O(1)—that is, it's not
dependent on how many elements are already in the vector as long as the internal array has
room for one more:

if (internal_array.size() > size) {
  internal_array[size] = new_element;
  ++size;
}

But what happens when the internal array is full? One way to handle the growing of the
vector is to create a new empty internal array with a bigger size, and then move all the
elements from the old array to the new one. This is obviously not constant time anymore
since we need one move per element in the array—that is, O(n). If we considered this the
worst case, it would mean that push_back() is O(n). However, if we call
push_back() many times, we know that the expensive push_back() can't happen very
often, and so it would be pessimistic, and not very useful, to say that push_back() is O(n)
if we know that push_back() is called many times in a row. Amortized running time is
used for analyzing a sequence of operations rather than a single one. We are still analyzing
the worst case, but for a sequence of operations. The amortized running time can be
computed by first analyzing the running time of the entire sequence and then dividing that
by the length of the sequence. Suppose we are performing a sequence of m operations
with the total running time T(m):
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Where t0 = 1, t1 = n, t2 = 1, t3 = n, and so on. In other words, half of the operations run in
constant time and the other half run in linear time:

The amortized complexity for each operation is the total time divided by the number of
operations, which turns out to be O(n):

However, if we can guarantee that the expensive operations due to occur orders of
magnitude less frequently, we will achieve lower amortized running costs. For example, if
we can guarantee that an expensive operation only occurs once in a sequence T(n) + T(1) +
T(1) + ..., then the amortized running time is O(1). So depending on the frequency of the
expensive operations, the amortized running time changes.

Now, back to std::vector. The standard states that push_back() needs to run in
amortized constant time, O(1). How do the STL vendors achieve this? If the capacity is
increased by a fixed number of elements each time the vector becomes full, we will have a
case similar to the preceding one where we had a running time of O(n). Even if we use a
large constant, the capacity changes would still occur at fixed intervals. The key insight is
that the vector needs to grow exponentially in order to get the expensive operations to
occur rarely enough. Internally, the vector uses a growth factor such that the capacity of the
new array is the current size times the growth factor.

A big growth factor would potentially waste more memory but would make the expensive
operation occur less frequently. To simplify the math, let's assume we double the capacity
each time the vector needs to grow. We can now estimate how often the expensive calls
occur. For a vector of size n, we would need to grow the internal array log2(n) times since we
are doubling the size all the time. Each time we grow the array, we need to move all the
elements that are currently in the array. The i:th time we grow the array there will be 2i

elements to move. So if we perform m number of push_back() operations, the running
time of the entire sequence will be:
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This is a geometric series and can also be expressed as:

Dividing this by the length of the sequence, i.e. m, we end up with the amortized running
time O(1). 

As we have already said, amortized time complexity is used a lot in the STL, so it's good to
have an understanding of it. Thinking about how push_back() could be implemented in
amortized constant time has helped me remember the simplified version of amortized
constant time: It will run in O(1) in almost all cases, except a very few where it will perform
worse.

That is all we are going to cover regarding asymptotic complexity. Now we will move on to
how you can go ahead and tackle a performance problem and work effectively with
optimizing your code.

What to measure?
Optimizations almost always add complexity to your code. High-level optimizations, such
as choice of algorithm and data structures, can make the intention of the code clearer, but
for the most part, optimizations will make the code harder to read and maintain. We
therefore want to be absolutely sure that the optimizations we add have an actual impact on
what we are trying to achieve in terms of performance. Do we really need to make the code
faster? In what way? Does the code really use too much memory? To understand what
optimizations are possible, we need to have a good understanding of the requirements,
such as latency, throughput, and memory usage. Optimizing code is fun, but it's also very
easy to get lost without any measurable winnings. We start this section by suggesting a
workflow to follow when tuning your code:

Define a goal: It's easier to know how to optimize and when to stop optimizing if1.
you have a well-defined, quantitative goal. For some applications, it's clear from
the start what the requirements are, but in many cases it tends to be fuzzier. Even
though it might be obvious that the code is running too slow, it's important to
know what would be good enough. Each domain has its own limits, so make sure
you understand the ones that are relevant to your application. Here are some
examples to make it more concrete:
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Response time for user interactive applications 100 ms; refer to https:/
/ www. nngroup. com/ articles/ response- times- 3- important- limits

Graphics with 60 FPS (Frames Per Second) gives you 16 ms per frame
Real-time audio with a 128 sample buffer at 44.1 kHz sample rate
means slightly less than 3 ms

Measure: Once we know what to measure and what the limits are, we proceed by2.
measuring how the application is performing right now. From step 1, it should be
obvious if we are interested in average times, peaks, load, and so on. In this step,
we are only concerned with measuring the goal we have set up. Depending on
the application, measuring can be anything from using a stopwatch to using
highly sophisticated performance analysis tools.
Find the bottlenecks: Next, we need to find the application's bottlenecks, the3.
parts that are too slow and make the application useless. Don't trust your gut
feeling at this point! Maybe you gained some insights by measuring the code at
various points in step 2—that's fine, but you usually need to profile your code
further in order to find the hot spots that matters most.
Make an educated guess: Come up with a hypothesis for how to improve the4.
performance. Can a lookup table be used? Can we cache data to gain the overall
throughput? Can we change the code so that the compiler can vectorize it? Can
we decrease the number of allocations in the critical sections by reusing memory?
Coming up with ideas is usually not that hard if you know that they are just
educated guesses. It's okay to be wrong; we will find out later whether they had
an impact or not.
Optimize: Let's implement the hypothesis we sketched in step 4. Don't spend too5.
much time on this step making it perfect before you know that it actually has an
effect. Be prepared to reject this optimization. It might not have the desired effect.
Evaluate: Measure again. Do the exact same test as in step 2 and compare the6.
results. What did we gain? If we didn't gain anything, reject the code and go back
to step 4. If the optimization actually had a positive effect, you need to ask
yourself whether it's good enough to spend more time on. How complicated is
the optimization? Is it worth the effort? Is this a general performance gain or is it
highly specific to a certain case/platform? Is it maintainable? Can we encapsulate
it or does it spread out all over the code base? If you can't motivate the
optimization, go back to step 4, otherwise continue to the final step.
Refactor: If you followed the instructions in step 5 and didn't spend too much7.
time writing perfect code in the first place, it's time to refactor the optimization to
make it cleaner. Optimizations almost always need some comments to explain
why we are doing things in an unusual way.
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Performance properties
Before you start measuring, you must know what performance properties are important for
the application you are writing. In this section, we will explain some of the frequently-used
terms when measuring performance. Depending on the application you are writing, some
of the properties are more relevant than others. For example, throughput might be a more
important property than latency if you are writing an online image converter service,
whereas latency is key when writing interactive applications with real-time requirements:

Latency/response time: Depending on the domain, latency and response time
might have very precise and different meanings. However, in this book, we mean
the time between the request and the response of an operation—for example, the
time it takes for an image conversion service to process one image.
Throughput: This refers to the number of transactions (operations, requests, and
so on) processed per time unit—for example, the number of images that an image
conversion service can process per second.
I/O bound or CPU bound: A task usually spends the majority of its time 
computing things on the CPU or waiting for I/O (hard drives, networks, and so
on). A task is said to be CPU bound if it would run faster if the CPU were faster.
it's said to be I/O bound if it would run faster by making the I/O faster.
Sometimes you can hear about memory-bound tasks too, which means that the
amount or speed of the main memory is the current bottleneck.
Power consumption: This is a very important consideration for code that 
executes on mobile devices with batteries. In order to decrease the power usage,
the application needs to use the hardware more efficiently, just as if we are
optimizing for CPU usage, network efficiency, and so on. Other than that, high
frequency polling should be avoided since it prevents the CPU from going to
sleep.
Aggregating data: This is usually necessary when collecting a lot of samples
while measuring performance. Sometimes mean values are a good enough
indicator of how the program performs, but more often the median tells you more
about the actual performance since it's more robust against outliers. If you are
interested in outliers, you can always measure min and max values (or the 10th
percentile, for example).



Measuring Performance Chapter 3

[ 80 ]

Performance testing – best practices
For some reason, it's more common to see regression tests to cover functional requirements
than it's to see  performance requirements or other nonfunctional requirements.
Performance testing is usually more sporadic and, more often than not, way too late in the
development process. Our recommendation is to measure early and detect regression as
soon as possible by adding performance tests to your nightly builds, and so on.

Choose the algorithms and data structures wisely if they are to handle large inputs, but
don't fine-tune code without good reason. It's also important to test your application with
realistic test data early on. Ask questions about data sizes early in the project. How many
table rows is the application supposed to handle and still be able to scroll smoothly? Don't
just try it with 100 elements and hope that your code will scale, test it!

Plotting your data is a very effective way of understanding the data you have collected.
There are so many good and easy-to-use plotting tools available today, so there is really no
excuse for not plotting. The plot does not have to look pretty in order to be useful. Once you
plot your data, you are going to see the outliers and patterns that are usually hard to find in
a table full of numbers.

Knowing your code and hot spots
The Pareto principle, or the 80/20 rule, has been applied in various fields since it was first 
observed by the Italian economist Vilfredo Pareto more than 100 years ago. He was able to
show that 20% of the Italian population owned 80% of the land. In computer science, it has
been widely used (and maybe even overused). In software optimization, it suggests that
20% of the code is responsible for 80% of the resources that a program uses. This is, of
course, only a rule of thumb and shouldn't be taken too literally. Nevertheless, for code that
has not been optimized, it's common to find some relatively small hot spots that spend the
vast majority of the total resources. As a programmer, this is actually good news because it
means that we can write most of our code without tweaking it for performance reasons and
instead focus on keeping the code clean. It also means that when doing optimizations, we
have a better idea of where to do them; otherwise, there is a good chance we will optimize
code that will not have an impact on the overall performance. In this section, we will look at
methods and tools for finding the 20% of your code that might be worth optimizing.
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Profilers
Using a profiler is usually the most efficient way of finding hot spots in a program. Profilers
analyze the execution of a program and output a statistical summary, a profile, of how often
the functions or instructions in the program are being called. In addition, profilers usually
also output a call graph that shows the relationship between function calls, that is, the
callers and callees for each function that was called during the profiling. In the following
figure, we can see that the sort() function was called from main() (the caller) and that
sort() did call the function swap() (the callee):

Example of a call graph

There are two main categories of profilers: sampling profilers and instrumentation profilers.
There is also a third category mixing both approaches, that is, a hybrid of sampling and
instrumentation.  gprof, the UNIX performance analysis tool, is an example of this third
approach.
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Instrumentation profilers
By instrumentation, we mean inserting code into the program to be analyzed in order to
gather information about how frequently each function is being executed. Typically, the
inserted instrumentation code records each entry and exit point. You can write your own
primitive instrumentation profiler by inserting the code manually yourself, or you can use a
tool that automatically inserts the necessary code as a step in the build process. A naive
implementation might be good enough for your purposes, but be aware of the impact that
the added code can have on the performance, which can make the profile misleading.
Another problem with naive implementations is that they might prevent compiler
optimizations or run the risk of being optimized away.

Just to give you an example of an instrumentation profiler, here is a simplified version of a
timer class we have used in previous projects:

class ScopedTimer {
public:
  using ClockType = std::chrono::steady_clock;

  ScopedTimer(const char* func) :
    function_{func},
    start_{ClockType::now()} { }

  ScopedTimer(const ScopedTimer&) = delete;
  ScopedTimer(ScopedTimer&&) = delete;
  auto& operator=(const ScopedTimer&) -> ScopedTimer& = delete;
  auto& operator=(ScopedTimer&&) -> ScopedTimer& = delete;

  ~ScopedTimer() {
    using namespace std::chrono;
    auto stop = ClockType::now();
    auto duration = (stop - start_);
    auto ms = duration_cast<milliseconds>(duration).count();
    std::cout << ms << " ms " << function_ <<  '\n';
  }

private:
  const char* function_{};
  const ClockType::time_point start_{};
};
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The ScopedTimer class will measure the time from when it was created to the time it went
out of scope, that is, destructed. We are using the only std::chrono::steady_clock
available since C++11, which was designed for measuring time intervals. The
steady_clock is monotonic, which means that it will never decrease between two
consecutive calls to clock_type::now(). This is not the case for the system clock, for
example, which can be adjusted at any time.

We can now use our time class by measuring each function in a program by creating a
ScopedTimer instance at the beginning of each function:

auto some_function() {
  ScopedTimer timer{"some_function"};
  ...
}

Even though we don't recommend the use of preprocessor macros in general, this might be
a case for using one:

#if USE_TIMER
  #define MEASURE_FUNCTION() ScopedTimer timer{__func__}
#else
  #define MEASURE_FUNCTION()
#endif

We are using the only predefined function-local __func__ variable available since C++11 to
get the name of the function. There are other nonstandard predefined macros that are
supported by most compilers and can be really useful for debugging purposes, for example,
__FUNCTION__, __FILE__, and __LINE__.

Now, our ScopedTimer class can be used like this:

auto some_function() {
  MEASURE_FUNCTION();
  ...
}

Assuming that we have defined USE_TIMER when compiling our timer, it will produce the
following output each time some_function() returns:

2.3 ms some_function



Measuring Performance Chapter 3

[ 84 ]

Sampling profilers
Sampling profilers create a profile by looking at the running program's state at even
intervals—typically, every 10 ms. Sampling profilers usually have a minimum impact on
the program's actual performance, and it's also possible to build the program in release
mode with all optimizations turned on. A drawback of sampling profilers is their
inaccuracy and statistical approach, which is usually not a problem as long as you are
aware of it. The following figure shows a sampling session of a running program with five
functions: main(), f1(), f2(), f3(), and f4(). The t1-t10 labels indicate when each sample
was taken. The boxes indicate the entry and exit point of each executing function:

Example of a sampling profiler session

The profile is summarized in the following table:

Function Total Self

main() 100% 10%

f1() 80% 10%

f2() 70% 30%

f3() 50% 50%
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The Total column in the preceding table shows the amount of call stacks that contained a
certain function. In our example, the main function was present in all 10 out of 10 call stacks
(100%), whereas the f2() function was only detected in 7 call stacks, which corresponds to
70% of all call stacks.

The Self column shows, for each function, how many times it occurred on top of the call
stack. The main() function was detected once on top of the call stack at the fifth sample, t5,
whereas the f2() function was on top of the call stack at samples t6, t8, and t9, which
corresponds to 3/10 = 30%. The f3() function had the highest self value (5/10) and was on
top of the call stack whenever it was detected.

Conceptually, a sampling profiler stores samples of call stacks at even time intervals. It
detects what is currently running on the CPU. Pure sampling profilers usually only detect
functions that are currently being executed in a thread that is in a running state, since
sleeping threads do not get scheduled on the CPU. This means that if a function is waiting
for a lock that causes the thread to sleep, that time will not show up in the time profile. This
is important, because your bottlenecks might be caused by thread synchronization that
might be invisible for the sampling profiler.

What happened to the f4() function? According to the graph, it was called by
the f2() function between samples two and three, but it never showed up in our statistical
profile since it was never registered in any of the call stacks. This is also an important
property of sampling profilers to be aware of: If the time between each sample is too big or
the total sampling session is too short, short and infrequently-called functions will not show
up in the profile. This is usually not a problem since these functions are rarely the functions
you need to tune anyway. One can note that the f3() function was also missed between t5

and t6, but since f3() was called very frequently, it had a big impact on the profile anyway.

Make sure you understand what your time profiler actually registers. Be
aware of its limitations and strengths in order to use it as effectively as
possible.
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Summary
In this chapter, you learned how to compare the efficiency of algorithms by using big O
notation. We now know that the C++ STL has complexity guarantees. All STL algorithms
specify their worst-case or average-case performance guarantees, whereas containers and
iterators specify amortized complexity.

You also learned how to quantify software performance by measuring latency and
throughput.

Lastly, you learned how to detect hotspots in your code by using CPU profilers.



4
Data Structures

In the last chapter, we discussed how to analyze time and memory complexity, and how to
measure performance. In this chapter, we are going to talk about how to choose and use
data structures from the Standard Template Library. To understand why certain data
structures work very well on the computers of today, we first need to cover some basics
about computer memory. In this chapter, you will learn about:

The properties of computer memory
The STL containers: sequence containers, associative containers, and container
adapters
Parallel arrays

Properties of computer memory
Before we start walking through the STL containers and some other useful data structures,
we will briefly discuss some properties of computer memory.

C++ treats memory as a sequence of cells. The size of each cell is one byte, and each cell has
an address. Accessing a byte in memory by its address is a constant time operation, O(1),
that is independent of the total number of memory cells. On a 32-bit machine, one can
theoretically address 232 bytes, that is, around 4 GB, which restricts the amount of memory a
process is allowed to use at once. On a 64-bit machine, one can theoretically address 264

bytes, which is so big that there is hardly any risk of running out of addresses.
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The following image shows a sequence of memory cells laid out in memory. Each cell
contains eight bits. The hexadecimal numbers are the addresses of the memory cells:

 A sequence of memory cells laid out in memory. 

Since accessing a byte by its address is an O(1) operation, from a programmer's perspective,
it's tempting to believe that each memory cell is equally quick to access. This is a good and
useful approach in many cases, but when choosing data structures for efficient use, one
needs to take into account the memory hierarchy that exists in modern computers. The
importance of the memory hierarchy has increased, since the time it takes to read and write
from the main memory has become more expensive compared to the speed of today's
processors. The following figure shows the architecture of a machine with one CPU with
four cores:

An example of a processor with 4 cores. The boxes labeled L1i, L1d, L2, and L3 are memory caches.
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I'm currently writing this chapter on a MacBook Pro from 2013, which is equipped with an
Intel Quad-Core i7 CPU. On this processor, each core has its own L1 and L2 caches, whereas
the L3 cache is shared among all four cores. Running the sysctl -a hw command from a
terminal gives me, among other things, the following information:

hw.memsize: 17179869184
hw.cachelinesize: 64
hw.l1icachesize: 32768
hw.l1dcachesize: 32768
hw.l2cachesize: 262144
hw.l3cachesize: 6291456

The reported hw.memsize is the total amount of main memory, which is 16 GB in this case.

The hw.cachelinesize, which is reported to be 64 bytes, is the size of the cache lines, also
known as blocks. When accessing a byte in memory, the machine is not only fetching the
byte we asked for; instead, the machine always fetches a cache line, which in this case is 64
bytes. The various caches between the CPU and main memory keep track of 64 byte blocks
instead of individual bytes.

The hw.l1icachesize is the size of the L1 instruction cache. This is a 32 KB cache
dedicated to store instructions that have been recently used by the CPU. The
hw.l1dcachesize is also 32 KB and is dedicated for data as opposed to instructions.

Lastly, we can read the size of the L2 cache and the L3 cache, which is 2 MB and 6 MB
respectively. An important observation is that the caches are tiny compared to the amount
of main memory available.

Without presenting any detailed facts about the actual number of cycles required to access
data from each layer in the cache hierarchy, a very rough guideline is that there are order of
magnitude differences of latency between two adjacent layers (for example, L1 and L2). The
following table shows an extract from the latency numbers presented in an article by Peter
Norvig, Teach yourself programming in ten years, 2001 (http:/ /norvig. com/ 21- days. html).
The full table is usually referred to as Latency numbers every programmer should know and is
credited to Jeff Dean: 

L1 cache reference        0.5 ns
L2 cache reference        7   ns
Main memory reference   100   ns

Structuring the data in such a way that the caches can be fully utilized can have a dramatic
effect on the performance. Accessing data that has recently been used and, therefore,
potentially already resides in the cache will make your program faster. This is known as
temporal locality.

http://norvig.com/21-days.html
http://norvig.com/21-days.html
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http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html
http://norvig.com/21-days.html


Data Structures Chapter 4

[ 90 ]

Also, accessing data that is located near some other data you are using will increase the
likelihood that the data you need is already in a cache line fetched from main memory
earlier. This is known as spatial locality.

Constantly wiping out the cache lines in inner loops might result in very bad performance.
This is sometimes called cache thrashing. Let's look at an example:

constexpr auto kL1CacheCapacity = 32768; // The L1 Data cache size
constexpr auto kSize = kL1CacheCapacity / sizeof(int);
using MatrixType = std::array<std::array<int, kSize>, kSize>;

auto cache_thrashing(MatrixType& matrix) {
  auto counter = 0;
  for (auto i = 0; i < kSize; ++i) {
    for (auto j = 0; j < kSize; ++j) {
      matrix[i][j] = counter++;
    }
  }
}

This version takes about 40 ms to run on my computer. However, by only changing the line
in the inner loop to the following, the time it takes to complete the function increases from
40 ms to over 800 ms:

matrix[j][i] = counter++;

In the first example when using matrix[i][j], we will most of the time access memory
that is already in the L1 cache, whereas in the modified version using matrix[j][i], every
access will generate an L1 cache miss. So, even if memory accesses are constant time
operations, caching can have dramatic effects on the actual time it takes to access the
memory. 

STL containers
STL offers a set of extremely useful container types. A container is a data structure that
contains a collection of elements. The container manages the memory of the elements it
holds. This means that we don't have to explicitly create and delete our objects that we put
in a container. We can pass objects created on the stack to a container and the container will
copy and store them on the free store.



Data Structures Chapter 4

[ 91 ]

Iterators are used for accessing elements in containers, and are therefore a fundamental
concept for understanding STL. The iterator concept is covered in Chapter 5, A Deeper Look
at Iterators. For this chapter, it's enough to know that an iterator can be thought of as a
pointer to an element and that the iterators have different operators defined depending on
the container they belong to. For example, array-like data structures provide random access
iterators to their elements. These iterators support arithmetic expressions using + and -,
whereas an iterator to a linked list, for example, only supports ++ and -- operators.

The containers are divided into three categories: sequence containers, associative containers,
and container adaptors. This section will contain a brief introduction to the containers in
each of the three categories and also address the most important things to consider when
performance is an issue.

Sequence containers
The sequence containers keep the elements in the order you specify when adding the
elements to the container. The sequence containers are std::array, std::vector,
std::deque, std::basic_string, std::list, and std::forward_list. Things you
need to know before choosing a sequence container are as follows:

Number of elements (order of magnitude).1.
Usage patterns: How often are you going to add data? Read/traverse data? Delete2.
data? Rearrange data?
Do you need to sort the elements?3.

When adding elements to a sequence container, you always specify where in the sequence
the should be located. For example, when adding an element to a vector you can call
push_back, which will add the new element last in the container.

Vector and array
std::vector is probably the most commonly used container type, and for good reason. A
vector is an array that grows dynamically when needed. The elements added to a vector are
guaranteed to be laid out contiguously in memory, which means that you can access any
element in the array by its index in constant time. It also means that it provides excellent
performance when traversing the elements in the order they are laid out, thanks to the
spatial locality mentioned earlier.
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The vector has a size and a capacity. The size is the number of elements that are currently
held in the container, and the capacity is the number of elements that the vector can hold
until it needs to allocate more space:

Adding elements to the end of the vector using the push_back function is fast, as long as
the size is less than the capacity. When adding an element when there is no room for more,
the vector will allocate a new internal buffer and then move all the elements to the new
space. The capacity grows in a way that resizing the buffer happens seldom enough to
make push_back an amortized constant time operation, as we discussed in Chapter
3, Measuring Performance.

A vector template instance of type std::vector<Person> will store Person objects by
value. When the vector needs to rearrange the Person objects (for example, as a result of an
insert), the values are copy constructed or moved. Objects are moved if they have a
nothrow move constructor. Otherwise, the objects will be copy constructed in order to
guarantee strong exception safety:

Person(Person&& other) { // Will be copied
   ...
}
Person(Person&& other) noexcept { // Will be moved
   ...
}

Internally, std::vector uses std::move_if_noexcept in order to determine whether
the object should be copied or moved. The type support library can help you verify at
compile time that your classes are guaranteed to not throw when being moved:

static_assert(std::is_nothrow_move_constructible<Person>::value, "")

If you are adding newly created objects to the vector, you can take advantage of the
emplace_back function, which will create the object in place for you, instead of creating an
object and then copy/moving it to the vector using the push_back function:

persons.emplace_back("John", 65);
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The capacity of the vector can change in the following ways:

By adding an element to the vector when the capacity == size
By calling reserve()
By calling shrink_to_fit()

Other than that, the vector will not change the capacity, and hence not allocate any new
memory on the free store, which makes the vector usable even in real-time contexts.

As an alternative to the dynamically sized vector, STL also provides a fixed size version
named std::array that manages its elements by using the stack as opposed to the free
store. The size of the array is a template argument specified at compile time, which means
that the size and type elements become a part of the concrete type:

auto a = std::array<int, 16>{};
auto b = std::array<int, 1024>{};

In this example, a and b are not the same type, which means that you have to specify the
size when using the type as a function parameter:

auto f(const std::array<int, 1024>& input) {
  ...
}

f(a);  // Does not compile, f requires an int array of size 1024

This might seem a bit tedious at first, but this is in fact the big advantage over the built-in
array type (c arrays) that lose the size information when passed to a function since it
automatically converts to a pointer to the first element of the array:

// input looks like an array, but is in fact a pointer
auto f(const int input[]) {
  ...
}

int a[16];
int b[1024];
f(a); // Compiles, but unsafe
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Deque
Sometimes you need to add elements to the end and the beginning of a sequence. If you are
using a vector and need to speed up the inserts at the front, you can instead use
std::deque, short for double-ended queue. std::deque is usually implemented as a
collection of fixed-size arrays, which makes it possible to access elements by their index in
constant time. However, as can be seen in the following image, all elements are not stored
contiguously in memory, which is the case with vector and array:

List and forward_list
The std::list is a doubly linked list, meaning that each element has one link to the next
element and one link to its previous element. This makes it possible to iterate over the list
both backwards and forwards. There is also a singly linked list
named std::forward_list . The reason why you wouldn't always choose the doubly
linked list over std::forward_list is because of the excessive memory occupied by the
back pointers in the double linked list. So, if you don't need to traverse the list backwards,
use std::forward_list. Another interesting feature of the forward list is that it's
optimized for very short lists. When the list is empty, it only occupies one word, which
makes it a good data structure for sparse data.

Note that even if the elements are ordered in a sequence, they are not laid out contiguously
in memory as the vector and array are, which means that iterating a linked list will most
likely generate a lot more cache misses compared to the vector.

The std::list is a doubly linked list with pointers to the next and previous elements:
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The std::forward_list is a single linked list with pointers to the next element:

The std::forward_list is more memory efficient since it only has one pointer to the next
element.

The basic_string
The last sequence container that we will cover is the std::basic_string. The
std::string is a typedef for std::basic_string<char>. Historically,
std::basic_string was not guaranteed to be laid out contiguously in memory. This has
now changed since C++17, which makes it possible to pass the string to APIs that require an
array of characters. For example, the following code reads an entire file into a string:

auto in = std::ifstream{"file.txt", std::ios::binary | std::ios::ate};
if (in.is_open()) {
  auto size = in.tellg();
  auto content = std::string(size, '\0');
  in.seekg(0);
  in.read(&content[0], size);
  // "content" now contains the entire file
}

Most implementations of std::basic_string utilize something called small-size
optimization, which means that they do not allocate any dynamic memory if the size of the
string is small. We will talk more about small-size optimization later in the book.

Associative containers
The associative containers place their elements based on the element itself. For example, it's
not possible to add an element at the back or front in an associative container. Instead, the
elements are added in a way that makes it possible to find the element without the need to
scan the entire container. Therefore, the associative containers have some requirements for
the objects we want to store in a container. We will look at these requirements later.
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There are two main categories of associative containers:

Ordered associative containers: These containers are based on trees. These
containers use a tree for storing their elements. They require that the elements are
ordered by the less than operator (<). The functions for adding, deleting, and
finding elements are all O(log n) in the tree-based containers. The containers are
named std::set, std::map, std::multiset, and std::multimap.
Unordered associative containers: These containers are based on hash tables.
These containers uses a hash table for storing their elements. They require that
the elements are compared with the equality operator ( ==) and that there is a
way to compute a hash value based on the element. More on that later. The
functions for adding, deleting, and finding elements are all O(1) in the hash table-
based containers. The containers are named std::unordered_set,
std::unordered_map, std::unordered_multiset, and
std::unordered_multimap.

Ordered sets and maps
The ordered associative containers guarantee that insert, delete, and search can be done in
logarithmic time, O(log n). How that is achieved is up to the implementation of the Standard
Library. However, the implementations we know about use some kind of self-balancing
binary search tree. The fact that the tree stays approximately balanced is necessary for
controlling the height of the tree, and hence also the worst case running time of accessing
the elements. There is no need for the tree to pre-allocate memory, so typically a tree will
allocate memory on the free store each time an element is inserted and also free up memory
whenever elements are erased. Check out the following diagram, which shows that the
height of a balanced tree is O(log n):

The height of the tree is O(log n) if it's balanced.
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Unordered sets and maps
The unordered versions of sets and maps offer a hash-based alternative to the tree-based
versions. This data structure is in general referred to as hash tables. In theory, hash tables
offer constant-time insert, add, and delete operations, which are, of course, better than the
tree-based versions that operate in O(log n). However, in practice the difference might not
be so obvious, especially if you are not storing a very large amount of elements in your
container.

Let's see how a hash table can offer O(1) operations. A hash table keeps its elements in some
sort of array. When adding an element to the hash table, an integer is computed for the
element using a hash function. The integer is usually called the hash of the element. The
hash value is then limited to the size of the array (by using the modulo operation, for
example) so that the new limited value can be used as an index in the array. Once the index
is computed, the hash table can store the element in the array at that index. The lookup of
an element works in a similar manner by first computing a hash value for the element we
are looking for and then accessing the array.

Apart from computing the hash value, this technique seems easy and straightforward. This
is just half of the story, though. What if two different elements generate the same index,
either because they produced the same hash value, or because two different hash values are
being limited to the same index? When two non-equal elements end up at the same index,
we call that a hash collision. This is not just an edge case, this will happen a lot even if we
are using a good hash function, especially if the array is small compared to the number of
elements we are adding. There are various ways of dealing with hash collisions. Here, we
will focus on the one this is being used in the Standard Library, which is called separate
chaining.

Separate chaining solves the problem of two unequal elements ending up at the same index.
Instead of just storing the elements directly in the array, the array is a sequence of buckets.
Each bucket can contain multiple elements, that is, all elements that are hashed to the same
index. So, each bucket is also some sort of container. The exact data structure used for the
buckets is not defined, but can vary for different implementations. However, we can think
of it as a linked list and assume that finding an element in a specific bucket is slow since it
needs to scan the elements in the buckets linearly.
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The following image shows a hash table with eight buckets. The elements have landed in
three separate buckets. The bucket with index 2 contains four elements, the bucket with
index 4 contains two elements, and the bucket with index 5 contains only one element. The
other buckets are empty:

Each bucket contains 0 or more elements.

Hash and equals
The hash value, which can be computed in constant time with respect to the size of the
container, determines in which bucket an element will be placed. Since it's possible that
more than one object will generate the same hash value and therefore end up in the same
bucket, each key also needs to provide an equals function, which is used to compare the key
we are looking for with all the keys in the bucket.

If two keys are equal, they are required to generate the same hash value. However, it's
perfectly legal for two objects to return the same hash value while not being equal to each
other.

A good hash function is quick to compute and will also distribute the keys evenly among
the buckets in order to minimize the number of elements in each bucket.

The following is an example of a very bad but perfectly valid hash function:

auto my_hash = [](const Person& person) {
  return 47; // Bad, don't do this!
};
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It is valid because it will return the same hash value for two objects that are equal. The hash
function is also very quick. However, since all elements will produce the same hash value,
all keys will end up in the same bucket, which means finding an element is O(n) instead of
O(1), which we aimed at.

A good hash function, on the other hand, ensures that the elements are distributed evenly
among the buckets to minimize hash collisions. STL already provides us with good hash
functions for basic types. In many cases, we can reuse these functions when writing our
own hash functions for user-defined types.

Suppose we want to use a Person class as a key in an unorordered_set. The Person class
has two data members: age, which is an int, and name, which is a std::string. We start
by writing the equal predicate:

auto person_eq = [](const Person& lhs, const Person& rhs) {
  return lhs.name() == rhs.name() && lhs.age() == rhs.age();
};

For two Person objects to be equal, they need to have the same name and the same age. We
can now define the hash predicate by combining the hash values of all the data members
that are included in the equals predicate. Unfortunately, there is no function in the C++
standard yet to combine hash values, but there is a good one available in Boost, which we
use here:

auto person_hash = [](const Person& person) {
  auto seed = size_t{0};
  boost::hash_combine(seed, person.name());
  boost::hash_combine(seed, person.age());
  return seed;
};

If for some reason you cannot use Boost, the boost::hash_combine is
really just a one-liner that can be copied from the documentation found at
http:/ / www. boost. org/ doc/libs/ 1_ 55_0/ doc/ html/ hash/ reference.
html#boost. hash_ combine.

With the equality and hash predicates defined, we can finally create our unordered_set:

using Set = std::unordered_set<Person, decltype(person_hash),
decltype(person_eq)>;
auto persons = Set{100, person_hash, person_eq};
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A good rule of thumb is to always use all data members that are being used in the equal
function when producing the hash value. In that way, we adhere to the contract between
equals and hash, and at the same time, this enables us to provide an effective hash value.
For example, it would be correct but inefficient to only use the name when computing the
hash value, since that would mean that all Person objects with the same name would end
up in the same bucket. Even worse, though, would be to include data members in the hash
function that are not being used in the equals function. This would most likely result in a
disaster where you cannot find objects in your unordered_set that in fact compare equal.

Hash policy
Apart from creating hash values that distribute the keys evenly among the buckets, one can
reduce the number of collisions by having many buckets. The average number of elements
per bucket is called the load_factor. In the preceding example, we created an
unordered_set with 100 buckets. If we add 50 persons to the set, the load_factor would
be 0.5. The max_load_factor is an upper limit of the load factor, and when that value is
reached, the set will need to increase the number of buckets, and as a consequence also
rehash all the elements that are currently in the set. It's also possible to trigger a rehash
manually with the rehash and reserve member functions.

Container adaptors
The last category of STL containers is container adaptors. There are three container adaptors
in STL: stack, queue, and priority_queue. Container adaptors are quite different from
the sequence containers and the associative containers since they represent abstract data
structures that can be implemented by the underlying sequence container.  For example, the
stack, which is a last in, first out (LIFO) data structure supporting push and pop on the top
of the stack, can be implemented by using a vector, list, deque, or any other custom
sequence container that supports back(), push_back(), and pop_back(). The same goes
for queue, which is a first in, first out (FIFO) data structure, and priortiy_queue.

In this section, we will focus on the priority_queue, which is a pretty useful data
structure that is easy to forget.
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Priority queues
A priority queue offers constant time lookup of the element with the highest priority. The
priority is defined using the less than operator of the elements. Insert and delete both run in
logarithmic time. A priority queue is a partially ordered data structure, and it might not be
obvious when to use it instead of a completely sorted data structure, for example, a tree or a
sorted vector. But in some cases, a priority queue can offer you the functionality you need,
and for a lower cost than a completely sorted container.

The Standard Library already provides a partial sort algorithm, so we don't need to write
our own. But let's see how we can implement a partial sort algorithm using a priority
queue. Suppose we are writing a program for searching documents given a query. The
matching document (search hits) should be ordered by a rank, and we are only interested in
finding the first 10 search hits with the highest rank.

Each document is represented by a class:

class Document {
public:
  Document(const std::string& title)
  : title_{title}
  {}
private:
  std::string title_;
  ...
};

When searching, an algorithm is selecting the documents that match the query and
computes a rank of the search hits. Each matching document is represented by a Hit:

struct Hit {
  float rank_{};
  std::shared_ptr<Document> document_;
};

Finally, we need to sort the hits and return the top m documents. What are the options for
sorting the hits? If the hits are contained in a container that provides random access
iterators, we could use std::sort and only return the m first elements. Or, if the total
number of hits is much larger than the m documents we are to return, we could use
std::partial_sort, which would be more efficient than std::sort.
std::partial_sort, and also requires random access iterators.
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But what if we don't have random access iterators? Maybe the matching algorithm only
provides forward iterators to the hits. We could then use a priority queue and still come up
with an efficient solution. Our sort interface would look like this:

template<typename It>
auto sort_hits(It begin, It end, size_t m) -> std::vector<Hit> {

We could call this function with any iterator that has the increment operator defined. Next,
we create a std::priority_queue backed by a std::vector using  a custom compare
function for keeping the lowest ranking hits at the top of the queue:

  auto cmp = [](const Hit& a, const Hit& b) {
    return a.rank_ > b.rank_; // Note, we are using greater than
  };
  auto queue = std::priority_queue<
    Hit, std::vector<Hit>, decltype(cmp)>{cmp};

We will only insert at most m elements in the priority queue. The priority queue will
contain the highest ranking hits seen so far. Among the elements that are currently in the
priority queue, the hit with the lowest rank will be the topmost element:

  for (auto it = begin; it != end; ++it) {
    if (queue.size() < m) {
      queue.push(*it);
    }
    else if (it->rank_ > queue.top().rank_) {
      queue.pop();
      queue.push(*it);
    }
  }

Now, we have collected the highest ranking hits in the priority queue, so the only thing left
is to put them in a vector in reverse order and return the m sorted hits:

  auto result = std::vector<Hit>{};
  while (!queue.empty()) {
    result.push_back(queue.top());
    queue.pop();
  }
  std::reverse(result.begin(), result.end());
  return result;
} // end of sort_hits
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What is the complexity of this algorithm? If we denote the number of hits with n and the
number of returned hits with m, we can see that the memory consumption is O(m), whereas
the time complexity is O(n * log m) since we are iterating over n elements, and in each
iteration we might have to do a push and/or pop, which both run in O(log m) time.

Parallel arrays
We are finishing this chapter by talking about iterating over elements and looking at some
ways to improve the performance when iterating over array-like data structures. We
already mentioned two important factors for performance when accessing data: spatial
locality and temporal locality. When iterating over elements stored in contiguous memory,
we will see that by keeping our objects small, we will increase the probability that the data
we need is already cached thanks to spatial locality. Obviously, this will have a great impact
on the performance.

Recall the cache thrashing example shown in the beginning of this chapter where we
iterated over a matrix. It demonstrated that we sometimes need to think about in what way
we access data, even if we have a fairly compact representation of the data. Next, we will
compare how long it takes to iterate over objects of different sizes. We start out by defining
two structs, SmallObject and BigObject:

struct SmallObject {
  SmallObject() : score_{std::rand()} {}
  std::array<char, 4> data_{};
  int score_{};
};

struct BigObject {
 BigObject() : score_{std::rand()} {}
 std::array<char, 256> data_{};
 int score_{};
};

SmallObject and BigObject are identical except, for the size of the initial data array. Both
structs contain an int named score, which we initialize to some random value just for
testing purposes. We can let the compiler tell us the size of the objects by using the sizeof
operator:

std::cout << sizeof(SmallObject); // Possible output is 8
std::cout << sizeof(BigObject);   // Possible output is 260
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We need plenty of objects in order to evaluate the performance. Create one million objects
of each kind:

auto small_objects = std::vector<SmallObject>(1'000'000);
auto big_objects = std::vector<BigObject>(1'000'000);

Now for the iteration. Let's say we want to sum the scores of all the objects. We could
preferably use std::accumulate(), which we will cover later in the book, but for now a
simple for-loop will do. We write this function as a template so that we don't have to
manually write one version for each type of object. The function iterates over the objects
and sums all the scores:

template <class T>
auto sum_scores(const std::vector<T>& objects) {
  ScopedTimer t{"sum_scores"};

  auto sum = 0;
  for (const auto& obj : objects) {
    sum += obj.score_;
  }
  return sum;
}

Now, we are ready to see how long it takes to sum the scores in the small objects compared
to the big objects:

auto sum = 0;
sum += sum_scores(small_objects);
sum += sum_scores(big_objects);

To achieve reliable results, we need to repeat the test a couple of times. On my computer, it
takes about 1 ms to compute the sum of the small objects and 10 ms to compute the sum of
the big objects. This example is similar to the cache thrashing example we looked at the
beginning of the chapter, and one reason for the big difference is again because of the way
the computer uses the cache hierarchy to fetch data from the main memory.

How can we utilize the fact that it's faster to iterate over collections of smaller objects than
bigger objects when working with more realistic scenarios than the preceding example?
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Obviously, we can do our best to keep the size of our classes small, but it's often easier said
than done. Also, if you are working with an old code base that has been growing for some
time, the chances are high that you will stumble across some really large classes with too
many data members and too many responsibilities. We will now look at a class that
represents a user in an online game system and see how we can split it into smaller parts.
The class has the following data members:

struct User {
  std::string name_;
  std::string username_;
  std::string password_;
  std::string security_question_;
  std::string security_answer_;
  short level_{};
  bool is_playing_{};
};

A user has a name that is frequently used, and a password and some username information
for authentication that are rarely used. The class also keeps track of which level the player is
currently playing at. Finally, the User struct also knows whether the user is currently
playing by storing the is_playing boolean.

The sizeof operator reports that the user class is 128 bytes when compiling for a 64-bit
architecture. An approximate layout of the data members can be seen in the following
figure:
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All users are kept in a std::vector, and there are two global functions that are being
called very often and need to run fast: num_users_at_level() and
num_playing_users(). Both functions iterate over all users, and therefore we need to
make iterations over the user vector fast. The first function returns the number of users that
have reached a certain level:

auto num_users_at_level(short level, const std::vector<User>& users) {
  ScopedTimer t{"num_users_at_level (using 128 bytes User)"};

  auto num_users = 0;
  for (const auto& user : users)
    if (user.level_ == level)
      ++num_users;

  return num_users;
}

The second function computes how many users are currently playing:

auto num_playing_users(const std::vector<User>& users) {
  ScopedTimer t{"num_playing_users (using 128 bytes User)"};
  return std::count_if(
    users.begin(),
    users.end(),
    [](const auto& user) {
      return user.is_playing_;
    });
}

Here, we use the STL algorithm std::count_if() instead of a handwritten loop, as we
did in num_users_at_level(). std::count_if() will call the predicate we provide for
each user in the users vector and return the number of times the predicate returns true. This
is basically what we are doing in the first function as well, so we could also have used
std::count_if() in the first case. Both functions run in linear time.

Calling the two functions with a vector of one million users results in the following output:

11 ms num_users_at_level (using 128 bytes User)
10 ms num_playing_users (using 128 bytes User)

Our hypothesis is that by making the user class smaller, it would be faster to iterate over the
vector. As mentioned before, the password and security data fields are rarely used and
could be grouped in a separate struct. That would give us the following classes:

struct AuthInfo {
  std::string username_;
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  std::string password_;
  std::string security_question_;
  std::string security_answer_;
};

struct User {
  std::string name_;
  std::unique_ptr<AuthInfo> auth_info_;
  short level_{};
  bool is_playing_{};
};

This change decreases the size of the User class from 128 bytes to 40 bytes. Instead of
storing four strings in the user class, we use a pointer to refer to the new AuthInfo object.
The following figure shows how we have split up the User class into two smaller classes:

This change makes sense from a design perspective too. Keeping the authentication data in
a separate class increases the cohesion of the user class. The User class contains a pointer to
the authentication information. The total amount of memory that the user data occupies has
not decreased, of course, but the important thing right now is to shrink the User class in
order to speed up the functions that iterate over all users.

From an optimization point of view, we have to measure again to verify that our hypothesis
regarding smaller data is valid. It turns out that both functions run more than twice as fast
with the smaller User class. The output when running the modified version is:

4 ms num_users_at_level with User
3 ms num_playing_users with User

Next, we are going to try a more aggressive way of shrinking the amount of data we need to
iterate through by using parallel arrays. First, a warning: This is an optimization that, in
many cases, has too many drawbacks to be a viable alternative. So don't take this as a
general technique and apply it without thinking twice. We will come back to the pros and
cons of parallel arrays after we have seen a few examples.
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By using parallel arrays, we simply split the large structures into smaller types, similar to
what we did with the authentication information for our user class. But instead of using
pointers to relate objects, we store the smaller structures in separate arrays of equal size.
The smaller objects in the different arrays that share the same index form the complete
original object.

An example will clarify the technique. The user class we have worked with consists of 40
bytes. It now only contains a username string, a pointer to the authentication information,
an integer for the current level, and the is_playing boolean. By making the user objects
smaller, we saw the performance was improved when iterating over the objects. The
memory layout of an array of user objects would look something like the one shown in the
following figure. We will ignore memory alignment and padding for now, but will get back
to that later:

User objects stored contiguously in a vector

Instead of having one vector with user objects, we can store all the integer levels and
is_playing flags in separate vectors. The current level for the user at index 0 in the user
array is also stored at index 0 in the level array. In that way, we can avoid having pointers
to the levels, and instead just use the index for connecting the data fields. We could do the
same thing with the boolean is_playing field and end up with three parallel arrays
instead of just one. The memory layout of the three vectors would look something like this:

We are using three parallel arrays to make iteration over one particular field fast.
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The num_users_at_level() function can now compute the number of users at a specific
level by only using the level array. The implementation is now simply a wrapper around
std::count():

auto num_users_at_level(int level, const std::vector<int>& users) {
  ScopedTimer t{"num_users_at_level using int vector"};
  return std::count(users.begin(), users.end(), level);
}

Likewise, the num_playing_users() function only needs to iterate over the vector of
booleans to determine the number of playing users. Again, we use std::count():

auto num_playing_users(const std::vector<bool>& users) {
  ScopedTimer t{"num_playing_users using vector<bool>"};
  return std::count(users.begin(), users.end(), true);
}

With the parallel arrays, we don't have to use the user array at all. The amount of memory
that is occupied by the extracted arrays is substantially smaller than the user array, so let's
see if we have gained any performance when running the functions on one million users
again:

auto users = std::vector<User>{1000000};
auto levels = std::vector<int>{1000000};
auto playing_users = std::vector<bool>{1000000};

// Initialize data
...

auto num_users_at_level_5 = num_users_at_level(levels, 5);
auto num_playing_users = num_playing_users(playing_users);

Counting the number of users at a certain level only takes about 0.7 ms when using the
array of integers. To recap, the initial version using the User class with a size of 128 bytes
took around 11 ms. The smaller User class executed in 4 ms, and now, by only using the
user_level array, we are down to 0.7 ms. Quite a dramatic change.



Data Structures Chapter 4

[ 110 ]

For the second function, num_playing_users(), the change is even bigger - it only takes
around 0.03 ms to count how many users are currently playing. The reason why it can be so
fast is thanks to a data structure called bit arrays. It turns out that std::vector<bool> is
not at all a standard vector of C++ bool objects. Instead, internally, it's a bit array.
Operations such as count and find can be optimized very efficiently in a bit array since it
can process 64 bits at a time (on a 64-bit machine). The future of std::vector<bool> is
unclear, and it might be deprecated soon in favor of the fixed size std::bitset and a new
dynamically sized bitset. There is already a version in Boost named
boost::dynamic_bitset.

This is all fantastic, but we warned you about some drawbacks. First of all, extracting the
fields from the classes where they actually belong will have a big impact on the structure of
the code. In some cases, it makes perfect sense to split large classes into smaller parts, but in
other cases it totally breaks encapsulation and exposes data that could have been hidden
behind interfaces with higher abstraction.

It's also cumbersome to ensure that the arrays are in sync, such that we always need to
ensure that fields that comprise one object are stored at the same index in all arrays. Implicit
relationships like this can be hard to maintain and are error prone.

The last drawback is actually related to performance. In the preceding example, we saw that
for algorithms that iterate over one field at a time, there was a big performance gain.
However, if we have an algorithm that would need to access multiple fields that have been
extracted to different arrays, it would be substantially slower than iterating over one array
with bigger objects.

So, as is always the case when working with performance, there is nothing that comes
without a cost, and the cost for exposing data and split one simple array into multiple
arrays may or may not be too high. It all depends on the scenario you are facing and what
performance gain you encounter after measuring. Don't consider parallel arrays before you
actually face a real performance issue. Always opt for sound design principles at first and
prefer explicit ways of expressing relationships between objects rather than implicit ones.
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Summary
In this chapter, we have introduced the container types from STL. We have seen that the
way we structure data has a big impact on how efficiently we can perform certain
operations on a collection of objects. The asymptotic complexity specifications of STL
containers are key factors to consider when choosing among the different data structures.

In addition, we have seen how the cache hierarchy in modern processors impacts the way
we need to organize data for efficient access to memory. The importance of utilizing the
cache levels efficiently cannot be stressed enough. This is one of the reasons why the
containers that keep their elements contiguously in memory have become the most used
containers, such as std::vector and std::string.



5
A Deeper Look at Iterators

In this chapter, you will learn about the C++ iterator concept and how versatile it can be,
even though its syntax mimics a plain old C-pointer. By looking at some examples, you will
also learn how to create a custom iterator that iterates a linear range. 

The iterator concept
Before going further into STL algorithms, we are going to take a deeper look at iterators in
C++, as they form the basis of STL algorithms. Note that the iterator concept is not at all a
C++ exclusive concept, rather it exists in most programming languages. What differentiates
the C++ implementation of the iterator concept from other programming languages is that
C++ mimics the syntax of raw memory pointers.

A simplified basic iterator is an object which represent a position in a sequence and
therefore basically incorporate the following functionality:

Are we out of the sequence? (denoted as is_end() -> bool)
Retrieve the value at the current position (denoted read() -> T)
Step to the next position (denoted step_fwd() -> void)

Note that the named functions is_end(), read() and so on, does not
exist in C++, they are only here for readability. In practice they are
implemented in terms of C-pointer semantics, which will be discussed
further below. 
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The functions listed above are sufficient for reading all elements in any standard C++
container, but many algorithms requires iterators to be able to step backwards, as well as
write a value to a specific position. In other words, the following three functions are also
sometimes needed:

Write to the current position (denoted write(T val) -> void)
Step to the previous position(denoted step_bwd() -> void)
Step an auxiliary number of elements (denoted step(int n) -> void)

In addition to algorithmic requirements, iterators might operate data sources where a write
or read implies a step forward. Examples of such data sources could be user input, a
network connection or a file. These data sources requires the following functions:

Write and step forward (denoted write_step_fwd(T val) -> void)
Read and step forward (denoted read_step_fwd(T val) -> void)

The function step(int n) might seems superfluous as it can be
implemented as a number of step_fwd() or step_bwd(). However,
algorithms such as binary search, requires iterators which can step several
positions in constant time to perform effectively. Therefore STL
differentiates between iterators which can be stepped several position in
constant time. Binary search algorithms are explained in Chapter 3,
Measuring Performance.

Iterator categories
If we think about a few basic algorithms, it becomes obvious that the requirements on the
iterators vary between different algorithms:

If an algorithm count the number of occurrences of a value, it requires is_end(),
read() and step_fwd()
If an algorithm fill a container with a value, it requires is_end(), write(),
step_fwd()

A binary search algorithm on a sorted range requires step() and read()
An algorithm which rearrange the elements requires read(), write(),
step_fwd() and step_bwd() 
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These requirements  are categorized into four basic iterator categories in STL:

forward_iterator: The iterator can step forward
bidirectional_iterator: The iterator can step forward and backward
random_access_iterator: The iterator can be stepped any number of steps in
constant time
contiguous_iterator: Special case where the underlying data is a contiguous
block of memory, such as std::string, std::vector, std::array , and the
(rarely used)  std::valarray.

Additionally, iterators compliant with the functions we denoted read_step_fwd()and
write_step_fwd()also have named categories:

input_iterator: The iterator supports read_step_fwd() -> T
output_iterator: The iterator supports write_step_fwd(T) -> void

Pointer-mimicking syntax
Now that we covered the basics of iterators, let's see how C++ implements it syntactically.
As mentioned above, the syntax of C++ iterators are implemented in terms of standard C
pointer notation. This means that any algorithm built upon iterators will also work with
regular C pointers.

The step functions are implemented using pointer arithmetic. The following table shows
which operator is overloaded for each step function, and how to invoke the function on an
imagined iterator object called it:

Denoted function Overloaded operator Usage example

step_fwd() -> void; operator++() ++it;

step_bwd() -> void; operator--() --it;

step(int n) -> void; operator+=(int n) it += 5;
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The read() and write() functions are implemented by operator*, just like
dereferencing a pointer. The following table shows how they are used:

Denoted function Usage example

read() -> T; auto value = *it;

write(T val) -> void; *it = T{};

The is_end() -> bool function is implemented by comparing with a value which
indicates the iterator is pointing out of the range bounds. The following table shows how
we would implement is_end() in regular C-array pointer arithmetic iterating a standard
C-array and a linked list:

C-style array C-style linked list
// Construct an array
int array[3] = {22, 44, 66};
// Iterate
int* begin = &array[0];
int* end = &array[3];
for(
  int* ptr = begin;
  ptr != end;
  ++ptr
) {
}

// Construct a simple Linked List
struct Element { Element* next_;};
Element a, b, c;
a.next_ = &b;
b.next_ = &c;
c.next_ = nullptr;
// Iterate
Element* begin = &a;
Element* end = nullptr;
for(
  auto ptr = begin;
  ptr != nullptr;
  ptr = ptr->next_
) {
}

When implementing an iterator in C++, whatever the iterator iterates, the same
methodology has to be used. The equivalent of implementing the function denoted
is_end() is to compare the iterator to a value which indicates the end of the sequence.

The functions utilized by input/output iterators, read_step_fwd() and
write_step_fwd() are only possible to express with two succeeding expressions. The first
expression has the post-condition that the second expression must be valid.

Denoted function: Usage example:

read_step_fwd() -> T; auto val = *it; ++it;

write_step_fwd(T val) -> void; *it = val; ++it;
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When implementing an advanced iterator, it's advantageous to use the
Boost library iterator facade, in which you can implement the functionality
in named functions, similar to the example functions above. The iterator
facade then handles the conversion to operators. More information is
available at http:/ / www. boost. org.

Iterators as generators
Looking deeper into the iterator concept, one can see that it does not actually need to point
to actual data; we could simply generate values on the fly. Here is a simple implementation
of a forward iterator that generates integers on the fly. It only fulfills two iterator
categories; forward_iterator and input_iterator:

class IntIterator {
public:
  IntIterator(int v) : v_{v} {}
  auto operator==(const IntIterator& it)const{ return v_ == it.v_; }
  auto operator!=(const IntIterator& it)const{ return !(*this==it); }
  auto& operator*() const { return v_; }
  auto& operator++() { ++v_; return *this; }
private:
  int v_{};
};

The IntIterator can then be used to iterate an increasing range of integers just like if it
was a container of values:

auto first = IntIterator{12}; // Start at 12
auto last = IntIterator{16};  // Stop when equal to 16
for(auto it = first; it != last; ++it) {
  std::cout << (*it) << " ";
}
// Prints 12 13 14 15

http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
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Iterator traits
As mentioned, STL differentiates iterators by which categories they fulfill. This is achieved
by defining the following five specific types in the iterator class:

iterator_category, the category the iterator fulfills
difference_type, the type used to store the distance between two iterators
value_type, the value the iterator returns when dereferenced
reference, the type used for referencing the value_type
pointer, the type of pointer used for pointing to the value_type

For the IntIterator, the following types would be defined:

class IntIterator {
public:
  ...
  using difference_type = int;
  using value_type = int;
  using reference = int&;
  using pointer = int*;
  using iterator_category = std::forward_iterator_tag;
  ...
}

It might seem superfluous to define both reference and pointer, but for many iterators these
types are either not applicable (they are then defined as void) , or they use other
mechanism to point to, or reference, the value_type. Examples of such iterators will be
discussed later in this chapter.

Now we can use IntIterators to create a vector of numbers from 5 to 12 by copying
from IntIterator to std::vector. Note how we use the copy function even though the
copied values are generated on the fly:

auto numbers = std::vector<int>{};
std::copy(IntIterator(5), IntIterator(12), std::back_inserter(numbers));
// numbers is {5, 6, 7, 8, 9, 10, 11}

Note that this example uses the C++17 way of defining iterator traits for a
custom iterator. Prior to C++17, defining iterator traits was more complex,
as it required overloading the std::iterator_traits class or
inheriting std::iterator (which is now deprecated).
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Implementing a function using iterator categories
In order to read properties of an iterator, the STL class
std::iterator_traits shall be utilized, not the raw iterator type.
Correct: using Category =
std::iterator_traits<Iterator>::iterator_category

Incorrect: using Category = Iterator::iterator_category;

Let's say we want to implement a template function called iterator_distance(),
equivalent of std::distance(), which returns the number of steps between two iterators:

If the iterator category is random access we simply subtract the difference
between the iterator a and b.
Otherwise, we have to calculate the number of steps from iterator a to iterator b.

Using iterator_category tag and difference_type, the distance function is
implemented as follows:

template <typename Iterator>
auto iterator_distance(Iterator a, Iterator b) {
  using Traits = typename std::iterator_traits<Iterator>;
  using Category = typename Traits::iterator_category;
  using Difference = typename Traits::difference_type;
  constexpr auto is_random_access =
    std::is_same_v<Category, std::random_access_iterator_tag>;
  if constexpr(is_random_access) {
    return b - a;
  }
  else {
    auto steps = Difference{};
    while(a != b) { ++steps; ++a; }
    return steps;
  }
}

The iterator_distance() function can now be used with any compliant iterator, as well
as regular C-pointers and chooses a correct implementation depending on the iterator
category.
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Extending the IntIterator to bidirectional
In order to make it possible to iterate a range of numbers in reverse, we add the 
 operator--() method to IntIterator and upgradeiterator_category to
std::bidirectional_iterator_tag:

class IntIterator {
  ...
  using iterator_category = std::bidirectional_iterator_tag;
  ...
  auto& operator--() { --value_; return *this; }
  ...
};

This is an example of iterating in reverse order:

for(auto it = IntIterator{12}; it != IntIterator{-1}; --it) {
  std::cout << *it << " ";
}
// Prints: 12 11 10 9 8 7 6 5 4 3 2 1 0

Practical example – iterating floating point values
within a range
Let's address a fundamental problem with floating point values; they are very often not
exact representations of the values assigned to them, rather they often represent something
very near the assigned value. 

For example, often when I would like to iterate from 0.0 to 1.0 with a step length of 0.1, I
conveniently start with something like this:

for(float t = 0.0f; t <= 1.0f; t += 0.1f) {
  std::cout << t << ", ";
}
// Prints 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

The subtle problem here is that 0.1 cannot be represented by a floating point value; instead,
it is represented by something slightly larger than 0.1, and therefore the loop will not reach
1.0f.
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To solve this, we can represent this range of floating points as a start value, a stop value,
and a number of steps instead. Basically, we are required to do something like this:

for(size_t i = 0; i <= 10; ++i) {
  float t = float(i) / 10.0f;
  std::cout << t << ", ";
}
// Prints 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

As this code is quite obscure for such a simple case, we'd like to wrap it in a range so that
we can simply type this:

for(auto t: make_linear_range(0.0f, 1.0f, 11)) {
  std::cout << t << ", ";
}
// Prints 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

We use the number of values when iterating, not the number of steps, so
the last parameter is 11.

Illustrated usage examples
Iterating from 0.0 to 1.0 at a step length of 0.1 will result in ten steps, and eleven values
evaluated:

Values when iterating from 0.0 to 1.0 with eleven values

Iterating from 0.0 to 1.0 at a step length of 0.33 will result in three steps and four values:

Values when iterating from 0.0 to 1.0 with four values
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Utility functions
The iterators we are about to create will be built upon two utility functions: one for
calculating the step size, and one for retrieving the value of a specific step index using the
start value and the step index. For simplicity, we prevented a range from having fewer than
two values.

To calculate the step size, we will need the start, stop value, and the number of values
parameters:

template <typename T>
auto get_step_size(T start, T stop, size_t n) {
  assert(n >= 2);
  return (stop-start) / (n-1);
}

To calculate a linear value at a specific index, we will need the start, step size, and value
index parameters:

template <typename T>
auto get_linear_value(T start, T step_size, size_t idx) {
  return start + step_size * idx;
}

Using these utility functions, we can iterate a range of floating point numbers by referring
to their index in a range, rather than the actual number, as shown below:

auto start = 0.0f;
auto stop = 1.0f;
auto num_values = size_t{11};
auto step_size = get_step_size(start, stop, num_values);
for(size_t i = 0; i < num_values; ++i) {
  auto t = get_linear_value(start, step_size, i);
  std::cout << t << ", ";
}
// Prints 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

Using the index is advantageous as it relieves us from making mistakes related to floating
point inaccuracy.
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How to construct a linear range iterator
Now, let's generalize this functionality into something usable with for-loops by wrapping
it into iterators and a range. This way, we can utilize it as a first class citizen of C++ in both
STL algorithms and range-based for-loop. The following table demonstrate this property:

Linear Range and an STL algorithm Linear Range and a range based for-loop
auto r =LinearRange<float>{0,1,4};
auto vec =std::vector<float>{};
std::copy(
  r.begin(),
  r.end(),
  std::back_inserter(vec)
);
// vec is {0.0, 0.33, 0.66, 1.0}

auto r =LinearRange<float>{0,1,4};
auto vec =std::vector<float>{};
for(auto t: r) {
  vec.push_back(t);
}
// vec is {0.0, 0.33, 0.66, 1.0}

First, we need an iterator that is aware of the start value, the step length, and the current
step it is currently at. As the iterator merely represents a position in the linear range, we do 
not need to store the stop value. Note how similar the LinearRangeIterator is to
the IntIterator. The main difference is that it returns a calculated value instead of just a
value when operator* is invoked:

template <typename T>
class LinearRangeIterator {
public:
  using difference_type = size_t;
  using value_type = T;
  using reference = T;
  using pointer = void;
  using iterator_category = std::bidirectional_iterator_tag;

  LinearRangeIterator(T start, T step_size, size_t idx)
  : start_{start}
  , step_size_{step_size}
  , idx_{idx}
  {}
  auto operator==(const LinearRangeIterator& lri) const{
    return idx_==lri.idx_;
  }
  auto operator!=(const LinearRangeIterator& lri) const{
    return !(*this==lri);
  }
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  auto& operator++() { ++idx_; return *this; }
  auto& operator--() { --idx_; return *this; }
  auto operator*() const { return start_ + (idx_*step_size_); }
private:
  size_t idx_{};
  T start_{};
  T step_size_{};
};

Note that, in contrast to the simple IntIterator, value_type is generated on the fly, and
therefore neither pointer nor reference can be defined like a regular reference or pointer. As
we are required to define all five types, we define the reference as being a regular
value_type and pointer is simply set to void. 

Iterator usage example
Now this linear range iterator can be used without having it wrapped into a range. In the
following code two standalone iterators representing a range are created:

auto start = 0.0f;
auto stop = 1.0f;
auto num_values = size_t{6};
auto step_size = get_step_size(start, stop, num_values);
auto first = LinearRangeIterator<float>{start, step_size, 0};
auto last = LinearRangeIterator<float>{start, step_size, num_values};

These two iterators can now be utilized in a regular for-loop, or an STL algorithm as
shown in the following table:

Copy into std::set using a for-loop Copy into std::set using std::copy
auto s = std::set<float>{};
for(auto it=first; it!=last; ++it){
  s.insert(*it);
}

auto s = std::set<float>{};
auto dst = std::inserter(s, s.end());
std::copy(first, last, dst);

As you see, in practice our linear range iterator looks- and behaves just like any iterator
which would iterate a container of numbers.
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Generalizing the iterator pair to a range
Even though the previous example works, it is quite bloated as we need to duplicate the
start and step length values. A more generalized solution is to let the range mimic a
container, where begin() and end() correspond to the start and stop iterators:

template <typename T>
class LinearRange {
  using iterator = LinearRangeIterator<T>;
public:
  LinearRange(T start, T stop, size_t num_values)
  : start_{start}
  , step_size_{get_step_size(start, stop, num_values)}
  , num_values_{num_values}
  {}
  auto begin()const{ return iterator{start_, step_size_, 0}; }
  auto end()const{ return iterator{start_, step_size_, num_values_}; }
private:
  T start_{};
  T step_size_{};
  size_t num_values_{};
};

The make_linear_range convenience function
In order to avoid explicitly specifying the floating point type when using the LinearRange
template, we do as the STL does with make_pair(): we create a convenience function
called make_linear_range() which returns a LinearRange object where its type has
been deduced from the arguments.

Here is how we implement the make_linear_range() function:

template <typename T>
auto make_linear_range(T start, T stop, size_t n) {
  return LinearRange<T>{ start, stop, n };
}

Without the make_linear_range() function, we need to explicitly specify the contained
value type to create a range:

auto r = LinearRange<double>{0.0, 1.0, 4};
// r evaluates to {0.0, 0.33, 0.66, 1.0}
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Using the make_range_function we the <double> is deduced automatically:

auto r = make_linear_range(0.0, 1.0, 4);
// r evaluates to {0.0, 0.33, 0.66, 1.0}

As you see, the double does not have to be specified as types are automatically deduced in
template functions.

In C++17, even template class types get deduced from constructor
parameters, and therefore the make_linear_range function is
superfluous. In other words, the following code is also valid in
C++17: auto r = LinearRange{0.0f, 1.0f, 4};

Linear range usage examples
Now that we have the foundation functions, the iterator and its
corresponding type_traits, the range class, and the
make_linear_range convenience function, we can use them to iterate a range of numbers
as simple as this:

for(auto t: make_linear_range(0.0, 1.0, 4)) { std::cout << t << ", "; }
// Output: 0, 0.33, 0.66, 1.0,

What happens here is that the make_linear_range function returns a LinearRange class.
When a range-based for-loop is invoked, the compiler internally generates code that looks
similar to this:

auto r = make_linear_range(0.0, 1.0, 4); // r is a LinearRange<double>
auto first = r.begin(); // first is a LinearRangeIterator<double>
auto last = r.end(); // last is a LinearRangeIterator<double>
for(auto it = first; it != last; ++it) {
  std::cout << (*it) << ", ";
}

Therefore, the values of LinearRange get iterated just as if it was a container explicitly
holding the values, like this:

for(auto t: {0.0, 0.33, 0.66, 1.0}) { std::cout << t << ", "; }

The linear range can also be used for iterating numbers in reverse order:

for(auto t: make_linear_range(1.0, 0.0, 4)) { std::cout << t << ", "; }
// Output: 1.0, 0.66, 0.33, 0.0,
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Summary
In this chapter, you learned how to create a custom iterator and how to use
iterator_traits to inform the STL library of how your custom iterator can be used. 

In the next chapter, we will look into the algorithm library of STL, and also learn how to use
the new ranges library for a more expressive C++ syntax.



6
STL Algorithms and Beyond

In this chapter, we will take a look at how we can write efficient algorithms in C++. You will
learn the benefits of using the STL algorithms as building blocks in your application, both
performance-wise and readability-wise. In the end, we will take a look at the limitations of
the STL algorithms and take a look at how the ranges library can compose algorithms for a
more expressive code base.

Using STL algorithms as building blocks
The Standard Template Library (STL) is a set of data types, containers, and algorithms
included in the C++ standard. Even though we use containers on a daily basis, we tend to 
underuse the STL algorithms.

It's easy to forget that complex algorithms can be implemented by combining algorithms
from the STL, so consider STL as the first choice before writing algorithms manually.

STL algorithm concepts
To get a better understanding of the STL algorithms, it's good to know a bit about the
concepts and common patterns used by all STL algorithms. 
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Algorithms operate on iterators
The algorithms in the STL library operate only on iterators, not containers (that
is, std::vector, std::map, and so on). Basically, an iterator could be considered an object
with the same properties as a regular C-pointer; it can be stepped to the next element and
dereferenced (if pointing to a valid address). The algorithms only use a few of the
operations that a pointer allows, although the iterator may internally be a heavy object
traversing a tree-like std::map.

Implementing a generic algorithm that can be used with
any container
Implementing a generic algorithm allows programmers to easily implement their own
algorithms, compatible with any container. In the following example, the
contains() function can be used with any container:

template <typename Iterator, typename T>
auto contains(Iterator begin, Iterator end, const T& v) {
  for (auto it = begin; it != end; ++it) {
    if (*it == v) {
      return true;
    }
  }
  return false;
}
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Vice versa, a new container can also use all the algorithms if it exposes the iterators. As a
simple example, if we implement a two-dimensional Grid structure as shown below, where
rows are exposed as pair of iterators:

Implementation of Grid structure: Illustration of corresponding Grid:
struct Grid {
 Grid(size_t w, size_t h)
 : w_{w}, h_{h}
 { data_.resize(w*h); }
 auto get_row(size_t y) {
  auto l=data_.begin() + w_*y;
  auto r=l + w_;
  return std::make_pair(l, r);
 }
 std::vector<int> data_{};
 size_t w_{};
 size_t h_{};
};

                       Two dimensional grid built upon a one dimensional vector

The iterator-pair representing a row can then be utilized by any STL algorithm:

auto grid = Grid{10, 10};
auto y = 3;
auto r = grid.get_row(y);
std::generate(r.first, r.second, std::rand);
auto num_fives = std::count(r.first, r.second, 5);
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Iterators for a range point to the first element and the
element after the last
All algorithms take a pair of iterators, where the first one points to the first element in the
range and the second one points to one element beyond the last element in the range. Take a
look at the following code snippet:

auto vec=std::vector<std::string>{
  "a","b","c","d","e","f"};
auto first = vec.begin();
auto last = vec.end();

As seen in the image, the last iterator now points to an imagined element after "f":

Algorithms do not change the size of the container
The STL algorithms can only modify the elements in a specified range; the elements are
never added or removed from the container.

For example, std::remove() or std::unique() does not actually remove elements from
a container. Rather, it rearranges the elements so that the removed elements are placed at
the back. It then returns an iterator to the first element of the removed elements.

Code example Resulting vector
// Example with std::remove
auto vec = std::vector<int>{1,1,2,2,3,3};
auto new_end = std::remove(
  vec.begin(), vec.end(), 2
);
vec.erase(new_end, vec.end());
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// Example with std::unique
auto vec = std::vector<int>{1,1,2,2,3,3};
auto new_end = std::unique(
  vec.begin(), vec.end());
vec.erase(new_end, vec.end();

         

Algorithms with output require allocated data
Algorithms that write data to an output iterator, such as std::copy() or
std::transform(), requires already allocated data reserved for the output. As the
algorithms only use iterators as arguments, they cannot allocate data by themselves. To
enlarge the container the algorithms operate on, they rely on the iterator to be capable of
enlarging the container it iterates.

If an iterator to an empty container is passed to the algorithms for output, the program will
crash. The following example, where squared is empty, illustrates the problem:

auto vals=std::vector<int>{
  1, 2, 3, 4};
auto squared=std::vector<int>{};
std::transform(
  vals.begin(),
  vals.end(),
  squared.begin(),
  [](int v) { return v * v; }
);

Instead, you have to do either of the following:

Preallocate the required size for the resulting container
Use an insert-iterator, which inserts elements into a container while iterating
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The following snippet shows how to use preallocated space:

auto square_func = [](int v) { return v * v; };
auto vals = std::vector<int>{1,2,3};
auto squared = std::vector<int>{};
squared.resize(vals.size());
auto dst = squared.begin();
std::transform(vals.begin(), vals.end(), dst, square_func);

The following snippet shows how to use std::back_inserter and std::inserter to
insert values into a container which is not preallocated:

auto square_func = [](int v) { return v * v; };
auto c = std::vector<int>{1,2,3};
// Insert into back of vector using std::back_inserter
auto squared_vec = std::vector<int>{};
auto dst_vec = std::back_inserter(squared_vec);
std::transform(c.begin(), c.end(), dst_vec, square_func);
// Insert into a std::set using std::inserter
auto squared_set = std::set<int>{};
auto dst_set = std::inserter(squared_set, squared_set.end());
std::transform(c.begin(), c.end(), dst_set, square_func);

If you are operating on std::vector and know the expected size of the
resulting container, you can use the reserve() member function before
executing the algorithm in order to avoid unnecessary allocations.
Otherwise, the vector will reallocate a new chunk of memory several times
during the algorithm.

Algorithms use operator== and operator< by default
For comparison, an algorithm relies on the fundamental == and < operators, as in the case of
an integer. To be able to use your own classes with algorithms, operator==  and
operator< must either be provided by the class or as an argument to the algorithm.

The following example shows these operators implemented in a simple Flower class,
where operator== is utilized by std::find, and operator< is utilized by
std::max_element.

struct Flower {
  // Is equal operation, used when finding
  auto operator==(const Flower& f) const {
    return height_ == f.height_; }
  // Is less than operation, used when sorting
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  auto operator<(const Flower& f) const {
    return height_ < f.height_; }
  int height_{};
};
auto garden = std::vector<Flower>{Flower{12}, Flower{13}, Flower{4}};
// std::max_element uses operator<
auto tallest_flower = std::max_element(garden.begin(), garden.end());
// std::find uses operator==
auto magic_flower = *std::find(garden.begin(), garden.end(), Flower{13});

Custom comparator function
If, however, you would like to use another comparison function, for example, sorting or
finding a string by length, a custom function can be provided as an additional argument.
While the original algorithm uses a value (for example, std::find()), the version with a
specific operator has the same name with _if attached at the end (std::find_if(...),
std::count_if(...), and so on):

auto names = std::vector<std::string> {
  "Ralph", "Lisa", "Homer", "Maggie", "Apu", "Bart"
};
std::sort(names.begin(), names.end(),
  [](const std::string& a,const std::string& b){
    return a.size() < b.size();
  });
// names is now "Apu", "Lisa", "Bart", "Ralph", "Homer", "Maggie"

auto target_sz = size_t{3};
auto x = std::find_if(names.begin(), names.end(),
  [target_sz](const auto& v){ return v.size() == target_sz;}
);
// x points to "Apu"

General-purpose predicates
When you are building a code base, we'd suggest building a namespace (named preds or
something similar) of general-purpose predicates to make the code more readable. For
example, in the previous example, the predicates could be generalized to this:

auto less_by_size = [](const auto& a, const auto& b){
  return a.size() < b.size();
};
auto equal_by_size = [](auto size){
  return [size](const auto& v){ return size == v.size(); };
};
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With these named predicates, the user code becomes more readable:

std::sort(names.begin(), names.end(), preds::less_by_size);
auto x = std::find_if(names.begin(), names.end(), equal_by_size(3));
// x points to "Apu"

Candidates for this namespace could be equal_case_insensitive, which compares
std::string case insensitively:

auto equal_case_insensitive=[](const std::string& needle){
  // Note that a lambda is returned
  return [&needle](const std::string& s){
    if(needle.size() != s.size())
      return false;
    auto eq_lower = [](char a, char b){
      return std::tolower(a)==std::to_lower(b);
    };
    return std::equal(s.begin(), s.end(), needle.begin(), eq_lower);
  };
};

Now, we can find a string using a case insensitive target:

auto num_maggies = std::count_if(names.begin(), names.end(),
  equal_case_insensitive(std::string{"maggie"}));
assert(num_maggies == 1);

Algorithms require move operators not to throw
All algorithms use std::swap and std::move when moving elements around, but only if
the move-constructor and move-assignment are marked noexcept. Therefore, it is
important to have these implemented for heavy objects when using algorithms. If they are
not available and exception free, the elements will be copied instead.

Note that if you implement the move construction and move assignment in
your class, std::swap will utilize them and, therefore, a specified
std::swap overload is not needed.
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Algorithms have complexity guarantees
The complexity of each STL algorithm is specified using big O notation. STL algorithms are
created with performance in mind.  Therefore, they do not allocate memory nor have a time
complexity higher than O(n log n). Algorithms that do not fit these criteria are not included
even if they are fairly common operations.

Note the exception of std::stable_sort() , std::inplace_merge(),
and std::stable_partition() . Many STL implementations tend to
temporarily allocate memory during these operation.

For example, an algorithm which tests whether a non-sorted range contains duplicates. One
option is to implement it by iterating through the range and search the rest of the range for
a duplicate. This will result in an algorithm with O(n2) complexity:

template <typename Iterator>
auto contains_duplicates(Iterator first, Iterator last) {
  for(auto it = first; it != last; ++it)
    if(std::find(std::next(it), last, *it) != last)
      return true;
  return false;
}

Another option is to make a copy of the full range, sort it, and look for adjacent equal
elements. This will result in a time complexity of O(n log n), the average complexity of
std::sort(), which satisfies the performance requirement. However, since it needs to
make a copy of the full range, it still doesn't qualify as a building block algorithm.
Allocating means that we cannot trust it not to throw:

template <typename Iterator>
auto contains_duplicates(Iterator first, Iterator last) {
  // As (*first) returns a reference, we have to get
  // the base type using std::decay_t
  using ValueType = std::decay_t<decltype(*first)>;
  auto c = std::vector<ValueType>(first, last);
  std::sort(c.begin(), c.end());
  return std::adjacent_find(c.begin(),c.end()) != c.end();
}
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Algorithms perform just as well as C library function
equivalents
The standard C library comes with a couple of low-level algorithms such as memcpy(),
memmove(), memcmp(), and memset(). In our experience, sometimes people tend to use
these functions instead of their equivalents in the STL algorithm library. The reason is that
people tend to believe that the C library functions are faster and, therefore, accept the trade
off in type safety.

This is not true for modern STL implementation; the equivalent STL
algorithms, std::copy(), std::equal() , and std::fill(), resort to these low-level C
functions where plausible; hence, they provide both performance and type safety.

Note that there might be exceptions where the C++ compiler is not able to detect that it is
safe to resort to the low-level C-functions. These cases should be rare though.

STL algorithms versus handcrafted for-loops
We promote the use of algorithms over hand-written for-loops for a number of reasons.
First, they are more readable, less error-prone, and future-proof in the sense that it is easier
to revisit the code and modify or optimize it. We will try to illustrate this with a few
examples.

Let's look at the advantages of STL algorithms over handcrafted for-loops:

STL algorithms deliver performance. Even though some of the algorithms in STL
may sometimes seem trivial, they are often optimally designed in ways that are
not obvious at first glance.
STL algorithms provide safety; even simpler algorithms may have corner cases
which is easy to overlook.
STL algorithms are future-proof; algorithms can be replaced by a more suitable
algorithm if one wants to take advantage of SIMD extensions, parallelism, or
even the GPU at a later stage (Chapter 11, Parallel STL, will cover the basics of
parallel algorithms).
STL algorithms are very well documented.
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Readability and future-proofing
By using algorithms instead of for-loops, the intention of each operation is clearly
indicated by the name and, more importantly, algorithms are very well-documented. The
reader of a function does not need to inspect every for-loop in order to determine exactly
what it does. It might not be obvious looking at a single algorithm, but when several
algorithms are followed upon, as in the next example, the advantages are obvious. Note
that when reading for-loops, you have to inspect every detail, whereas STL algorithms
immediately show how the data is being used.

Also, from an optimization point of view, the algorithms in the example can be easily
replaced by parallelized equivalents (this will be further explained in Chapter 11, Parallel
STL).

Once you get into the habit of thinking in terms of algorithms rather than for-loops, you'll
realize that most for-loops are most often a variation of a few simple algorithms such as
std::transform(), std::remove_if(), std::copy_if(), and std::find().

Due to the importance of utilizing the STL algorithms instead of for-loops in high-
performance C++, we'd like to show a few examples. Resorting to handwritten for-
loops might be convenient, as one might have developed a habit of thinking in terms of
for-loops;  however, using algorithms has many advantages, which we will try to
demonstrate with examples.

Part of the syntax verbosity was solved in C++11, when lambda functions were introduced
in the language. As explained in Chapter 2, Modern C++ Concepts, prior to the introduction
of lambda functions in C++11, programmers had to use complicated functor objects when
incorporating algorithms.

Real-world code base example
This example is from a real-world code base, although variable names has been disguised.
As it is only a cut-out, you don't have to understand the logic of the code. The example is
here just to show you how the complexity is lowered when using algorithms compared
with nested for-loops.
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Using algorithms will also make the code cleaner. You can often write functions without
nesting. In the for-loop version, it's hard to grasp when conflicting textures are set to true,
whereas in the algorithm version, you can instinctively see that it happens if info fulfills a
predicate.

Note that kvp is short for key-value-pair.

The for-loop version The STL algorithm version
auto varies() -> bool {...}
auto conflicting = false;
for (auto&& kvp : infos) {
 auto usage = kvp.second;
 auto par = usage.params();
 if (par==output.params()){
  if(varies(usage.flags())){
   conflicting = true;
   break;
  }
 }
 else {
  conflicting = true;
  break;
 }
}

auto varies() -> bool {...}
auto conflicting=std::any_of(
 infos.begin(),
 infos.end(),
 [&](const auto& kvp) {
  auto usage = kvp.second;
  auto par = usage.params();
  return
   par!=output.params() ||
   varies(usage.flags());
 }
);

Although it may overstate the point, imagine if one were to track a bug or parallelizing it,
the right version would be far easier to understand and reason about.

Usage examples of STL algorithms versus handcrafted
for-loops
To state the importance of using algorithms rather than for-loops, we'd like to show a few
examples of not-so-obvious problems that one may bump into when using handcrafted
for-loops rather than STL algorithms.



STL Algorithms and Beyond Chapter 6

[ 139 ]

Example 1 – Unfortunate exceptions and performance problems
Let's say we need a function that moves the first n elements from the front of a container to
the back, like this:

Moving the first three elements to back of a range

Approach 1 – Use a traditional for-loop:

A very naive approach would be to copy the first n elements to the back while iterating over
them and then erasing the first n elements:

Allocating and deallocating in order to move elements to back of range

Here's the corresponding implementation:

template <typename Container>
auto move_n_elements_to_back(Container& c, size_t n) {
  // Copy the first n elements to the end of the container
  for(auto it = c.begin(); it != std::next(c.begin(), n); ++it) {
    c.emplace_back(std::move(*it));
  }
  // Erase the copied elements from front of container
  c.erase(c.begin(), std::next(c.begin(), n));
}
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At first glance, it might look plausible, but inspecting it reveals a severe problem—if the
container reallocates during the iteration due to push_back(), the iterator it will no
longer be valid. As the algorithm tries to access an invalid iterator, the algorithm will throw
an exception.

Approach 2 – Safe for-loop safe at the expense of performance:

As a thrown exception is quite an obvious problem, we'll have to rewrite the algorithm. We
are still using a handcrafted for-loop, but we'll utilize the index instead of the iterator:

template <typename Container>
auto move_n_elements_to_back(Container& c, size_t n) {
  for(size_t i = 0; i < n; ++i) {
    auto value = *std::next(c.begin(), i);
    c.emplace_back(std::move(value));
  }
  c.erase(c.begin(), std::next(c.begin(), n));
}

The solution works; it doesn't crash anymore. But now, it has a subtle performance
problem. The algorithm is significantly slower on std::list than on std::vector . The
reason is that  std::next(it, n) used with std::list::iterator is O(n), and O(1) on
a std::vector::iterator. As std::next(it, n) is invoked in every step of the  for-
loop, this algorithm will have a time complexity of O(n2) on containers such as
std::list. Apart from this performance limitation, the preceding code also has the
following limitations:

It doesn't work with containers of a static size, such as std::array, due to
emplate_back()

It might throw an exception, since emplace_back() may allocate memory and
fail (okay, probably rare)

Approach  3 – Find, and use, a suitable STL algorithm:

When we have reached this stage, we should browse through STL and see if they contain a
suitable algorithm to be used as a building block. Conveniently, STL provides an algorithm
called std::rotate(), which does exactly what we are looking for while avoiding all the
disadvantages mentioned before. Let's use the std::rotate() algorithm:

template <typename Container>
auto move_n_elements_to_back(Container& c, size_t n) {
  auto new_begin = std::next(c.begin(), n);
  std::rotate(c.begin(), new_begin, c.end());
}
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Let's have a look at the advantages of using std::rotate():

The algorithm does not throw exceptions, as it does not allocate memory (the
contained object might throw exceptions though)
It works with containers whose size cannot be changed, such as std::array
Performance is O(n) regardless of the container it operates on
STL implementations are often optimized with specific hardware in mind

Maybe you find this comparison between for-loops and STL algorithms unfair because
there are other solutions to this problem that are both elegant and efficient without using
STL. Still, in the real world, it's not uncommon to see implementations like the ones we just
saw, when there are algorithms in STL just waiting to solve your problems.

Example 2 – STL has subtle optimizations even in simple algorithms
Even algorithms that may seem very simple might contain optimizations you wouldn't
consider. Let's have a look at std::find(), for example. At a glance, it seems that the
obvious implementation couldn't be optimized further. Here is a possible implementation
of the std::find() algorithm:

template <typename It, typename Value>
auto find_slow(It first, It last, const Value& value) {
  for(auto it = first; it != last; ++it)
    if(*it == value)
      return it;
  return last;
}

However, looking through the libstdc++ implementation, when being used
with RandomAccessIterator (in other words, std::vector, std::string,
std::deque, and std::array), the libc++ implementers have unrolled the for-loop in
parts of four, resulting in the comparison (it != last) being executed one-fourth as many
times.

Here is the optimized version of std::find() taken from the libstdc++ library:

template <typename It, typename Value>
auto find_fast(It first, It last, const Value& value) {
  // Main loop unrolled into chunks of four
  auto num_trips = (last - first) / 4;
  for (auto trip_count = num_trips; trip_count > 0; --trip_count) {
    if (*first == value) {return first;} ++first;
    if (*first == value) {return first;} ++first;



STL Algorithms and Beyond Chapter 6

[ 142 ]

    if (*first == value) {return first;} ++first;
    if (*first == value) {return first;} ++first;
  }
  // Handle the remaining elements
  switch (last - first) {
    case 3: if (*first == value) {return first;} ++first;
    case 2: if (*first == value) {return first;} ++first;
    case 1: if (*first == value) {return first;} ++first;
    case 0:
    default: return last;
  }
}

Note that it is actually the std::find_if(), not std::find() which utilizes this loop
unrolling optimization. But the std::find() is implemented using std::find_if().
In addition to std::find(), a multitude of algorithms in libstdc++ is implemented using
std::find_if(), for example std::any_of(), std::all_of(), std::none_of(),
std::find_if_not(), std::search(), std::is_partitioned(), std::remove_if(),
std::is_permutation(), which means that all of these are slightly faster than a
handcrafted for-loop.

And by slightly, I really mean slightly; the performance benefit is roughly half a percent, as
shown in the following table:

Find an integer in a std::vector of 10'000'000 elements

Algorithm Microseconds Speed up

find_slow                         3420             1.000 x

find_fast                         3402             1.005 x

However, even though the benefit is almost negligible, using STL algorithms, you get it for
free.
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"Compare with zero" optimization

In addition to the loop unrolling, a very subtle optimization is that trip_count is iterated
backwards in order to compare with zero instead of a value. On some CPUs comparing
with zero is slightly faster than any other value, as it uses another assembler instruction (on
the x86 platform it uses test instead of cmp). However, do not rearrange your handmade
loops in order to benefit from this optimization, unless it's a (very) hot spot. Doing so will
heavily reduce the readability of your code; let the algorithms handle these kinds of
optimizations instead.

The following table show the difference in assembly output

Action C++ Assembler x86

Compare with zero
auto is_above_zero(size_t v) {
  return v > 0;
}

test edi, edi
setne al
ret

Compare with other value
auto is_above_123(size_t v) {
  return v > 123;
}

cmp edi, 123
seta al
ret

Sorting only for the data you need to retrieve
STL contains three basic sorting algorithms: std::sort(), std::partial_sort(), and
std::nth_element(). In addition, it also contains a few abbreviations of those, but we
will focus on these three as, in our experience, it is easy to forget that, in many cases, a
complete sort can be avoided by using nth_element() or partial_sort() instead.

While std::sort() sorts the whole range, std::partial_sort() and
std::nth_element() could be thought of as algorithms for inspecting parts of that sorted
range. In many cases, you are only interested in a certain part of the sorted range.

For example;

If you want to calculate the median of a range, you require the value in the
middle of the sorted range.
If you want to create a body scanner which can be used by the mean 80% by
length of a population, you require two values in the sorted range; the value
located 10% from the tallest person, and 10% from the shortest person.
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The following image illustrates how std::nth_element and std::partial_sort
processes a range, compared to a fully sorted range:

Sorted and non-sorted elements of a range using different algorithms

The following table shows their algorithmic complexity; note that m denotes the sub range,
which is being fully sorted:

Algorithm Complexity Example at n = 10000, m = 3333

std::sort() O(n log n)                                                 40'000

std::partial_sort() O(n log m)                                                 35'229

std::nth_element() O(n)                                                 10'000

Use cases
Now that we have insights into std:nth_element() and std::partial_sort(), let's see
how we can combine them to inspect parts of a range as if the entire range were sorted:
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Combining algorithms and corresponding partially ordered result

Performance evaluation
Let's see how  std::nth_element() and std::partial_sort()measure up against
std::sort(). We've measured with 10,000,000 elements in total and a partial range of
1,000,000 elements:

Operation Code, where r is the range operated on Speed up:

Sort sort(r.begin(), r.end());         1.00x

Find median
auto middle = r.begin() + r.size() / 2;
nth_element(r.begin(), middle, r.end());

       12.41x

Find the values as if fully ordered
From left_idx to right_idx
List unordered

auto left_it = r.begin() + left_idx;
auto right_it = r.begin() + right_idx;
nth_element(r.begin(), left_it,r.end());
nth_element(left_it, right_it, r.end());

         8.70x

Find the values as if fully ordered
From left_idx to right_idx 
List ordered

auto left_it = r.begin() + left_idx;
auto right_it = r.begin() + right_idx;
nth_element(r.begin(), left_it, r.end());
partial_sort(left_it, right_it, r.end());

         4.58x
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The future of STL and the ranges library
This section deals with a library that is proposed for the upcoming C++ standard, C++20. As
of now, it is available at https:/ /github. com/ ericniebler/ range- v3. Compiling these
examples will require an updated compiler.

Limitations of the iterators in STL
Although the iterator and algorithm concepts in STL have quite a few good properties, they
lack composability.

Let's say, we have some sort of a Warrior class with an ability and a level of ability, as
implemented below:

enum class EAbility { Fencing, Archery };
class Warrior {
public:
  EAbility ability_{};
  int level_{};
  std::string name_{};
};

Now, let's say we want to find the Warrior with the highest level of Archery in the list of
warriors.

If we were to use STL, the algorithm we'd use is std::max_element(), operating on
level_, but as we only want to take the warriors with the ability of Archery into
account, it gets tricky. Essentially, we want to compose a new algorithm out of a
combination of std::copy_if() and std::max_element(), but composing algorithms is
not possible with STL.

https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
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Instead, we would have to make a copy of all the warriors with Archery to a new
container and then iterate the new container to the maximum level, leaving us with code
that is both verbose and quite ineffective due to the copy.

The code would look something like this; as you can see, it is quite verbose for a simple
task:

auto is_archer = [](Warrior w){return w.ability_==EAbility::Archery;};
auto compare_level = [](Warrior a,Warrior b){return a.level_<b.level_;};

auto get_max_archor_level(const std::vector<Warrior>& warriors) {
  auto archery = std::vector<Warrior>{};
  // The warrior list needs to be copied in order
  // to filter to archery only
  std::copy_if(
    warriors.begin(),
    warriors.end(),
    std::back_inserter(archery),
    is_archer
  );
  auto max_level_it = std::max_element(
    archery.begin(),
    archery.end(),
    compare_level
  );
  return *max_level_it;
}

Here's a usage example:

auto warriors = std::vector<Warrior> {
  Warrior{EAbility::Fencing, 12, "Zorro"},
  Warrior{EAbility::Archery, 10, "Legolas"},
  Warrior{EAbility::Archery, 7, "Link"}
};
auto max_archor_level = get_max_archor_level(warriors);
// max_archor_level equals 10
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Of course, you may now be thinking that get_max_archor_level() could be written as a
simple for-loop, which relieves us of the extra allocation due to copy_if():

auto get_max_archor_level(const std::vector<Warrior>& warriors){
  auto max_level = int{0};
  for(const auto& w: warriors) {
    if(w.ability_ == EAbility::Archer) {
      max_level = std::max(max_level, w.level_);
    }
  }
  return max_level;
}

Although easily achievable, we would then miss the readability of an algorithm; as
mentioned earlier, a code base full of  for-loops simply isn't readable, as every algorithm
looks the same, more or less.

What we would like is a syntax as readable as using algorithms, but with the ability to
avoid constructing new containers for every step in the algorithm. This is where the future
ranges library takes off . Although the ranges library is huge, the essential difference from
the STL library is its ability to compose what is essentially a different kind of iterators into a
lazily evaluated range.

This is what the previous example would look like if it were written using the ranges
library:

namespace rv = ranges::view;
auto get_max_archor_level(const std::vector<Warrior>&warriors){
  auto archer_levels = warriors
    | rv::filter(is_archer)
    | rv::transform([](const auto& w) { return w.level_; });
  auto max_level_it = ranges::max_element(archer_levels);
  return *max_level_it;
}

All we do is simply compose a range view which, when iterated by
ranges::max_element(), simply exposes the level of all archers. The
range, archer_levels, is simply all warriors, filtered by is_archer and transformed
into exposing the level.

Although not part of the standard yet, the ranges library is available at https:/ /github.
com/ericniebler/range- v3. We think it's a far too important enhancement of C++ to ignore
in this book, so let's give you a brief introduction to the ranges library.

https://github.com/ericniebler/range-v3
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Introduction to the ranges library
As mentioned earlier, the STL algorithm library has quite a verbose syntax, where every
algorithm requires a pair of iterators as parameters. The ranges library has overloaded these
functions but by taking a range as a parameter instead of a pair of iterators:

STL algorithms operates on iterators Ranges library operates on containers

std::sort(a.begin(), a.end());
std::count(a.begin(), a.end(), 12);

ranges::sort(a);
ranges::count(a, 12);

This makes the syntax of algorithms neater, but the main feature with the ranges library is
the introduction of  views. 

Views in the range library are lazily evaluated iterations over a range. Technically they are
only iterators with built in logic, but syntactically, they provide a very pleasant syntax for
many common operations. Following is an example of how a view is used to iterate a vector
of numbers like if it contained the squares of the original numbers:

namespace rv = ranges::view;
auto numbers = std::vector<int>{1,2,3,4,5,6,7};
auto squared_view = rv::transform(numbers, [](auto v){
  return v * v;
});
for(auto s: squared_view) {
  std::cout << s << " ";
}
// Output: 1 4 9 16 25 36 49

The variable, squared_view, is not a copy of the numbers vector with the values squared;
it is a proxy object for numbers with one slight difference—every time you access an
element, the transform function is invoked.

From the outside, you can still iterate over squared_view as any regular container and,
therefore, perform regular algorithms such as find or count, but internally, you haven't
created another container.

If you want to store the range, the view can be simply assigned to the container of your
choice. Once copied back to a container, there is no longer any dependency between the
original, and the transformed container.

std::vector<int> v = squared_view;
std::list<int> l = squared_view;
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With ranges, it is also possible to create a filtered view where only a part of the range is
visible. In this case, only the elements that satisfy the condition are visible when iterating
the view:

View odd values View fives
namespace rv = ranges::view;
auto vals = std::vector<int>{
  4,5,6,7,6,5,4
};
auto odd_view = rv::filter(
  vals,
  [](auto v){return(v%2)==1;}
);
for(auto v: odd_view) {
  std::cout << v << " ";
}
// Output: 5 7 5

namespace rv =ranges::view;
auto vals=std::vector<int>{
  4,5,6,7,6,5,4
};
auto five_view=rv::filter(
  vals,
  [](auto v){return v==5;}
);
for(auto v: five_view) {
  std::cout << v << " ";
}
// Output: 5 5

Another example of the versatility of the ranges library is the possibility it offers of creating
a view that can iterate over several containers as if they were a single list:

auto list_of_lists = std::vector<std::vector<int>> {
  {1, 2},
  {3, 4, 5},
  {5},
  {4, 3, 2, 1}
};
auto flattened_view = rv::join(list_of_lists);
for(auto v: flattened_view)
  std::cout << v << ", ";
// Output: 1, 2, 3, 4, 5, 5, 4, 3, 2, 1,

auto max_value = *ranges::max_element(flattened_view);
// max_value is 5
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Composability and pipeability
The full power of views comes from the ability to combine them. As they don't copy the
actual data, you can express multiple operations on a dataset while, internally, only
iterating over it once.

namespace rv = ranges::view;
auto numbers = std::vector<int>{1,2,3,4,5,6,7};

// Create a squared view
auto squared_view = rv::transform(numbers, [](auto v){
  return v * v;
});
// squared_view evaluates to "1, 4, 9, 16, 25, 36, 49"

// Add a filter onto the squared view
auto odd_squared_view = rv::filter(squared_view, [](auto v){
  return (v % 2) == 1;
});
// odd_squared_view evaluates to "1, 9, 25, 49"

Now this might not look syntactically elegant, but the ranges library also allows us to
compose the views using a the pipe operator for a much more elegant syntax (you will learn
more about using the pipe operator in your own code in Chapter 9, Proxy Objects and Lazy
Evaluation):

namespace rv = ranges::view;
auto numbers = std::vector<int>{1,2,3,4,5,6,7};
auto odd_squares_view = numbers
  | rv::transform([](auto v){ return v * v; })
  | rv::filter([](auto v){ return (v % 2) == 1; });

// odd_squared_view evaluates to "1, 9, 25, 49"

The ability to read a statement from left to the right, rather than inside-out as is the case
with a regular syntax using parenthesis, makes the code much easier to read. 
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Actions, views, and algorithms
The ranges library consists of three types of operations: algorithms, actions, and views. It's
important to know the difference between views and actions, the following code snippet
shows what a simple procedure corresponds to when using actions versus using views.
Note how the actions mutate the vector, whereas the view simply iterates it:

// Prerequisite
auto is_odd = [](int v){ return (v % 2) == 1; }
auto square = [](int v){ return v*v; }
auto get() { return std::vector<int>{1,2,3,4}; }
using ra = ranges::action;
using rv = ranges::view;

// Print odd squares using actions...
for(auto v: get() | ra::remove_if(is_odd) | ra::transform(square)) {
 std::cout << v << " ";
}
// ... corresponds to the following code where c is mutated:
auto c = get();
auto new_end = std::remove_if(c.begin(), c.end(), is_odd);
c.erase(new_end, c.end());
std::transform(c.begin(), c.end(), c.begin(), square);
for(auto v: c) { std::cout << v << " "; }

// Print odd squares using a view...
for(auto v: get() | rv::remove_if(is_odd) | rv::transform(square)) {
  std::cout << v << " ";
}
// ... corresponds to the following code where get() is only iterated
for(auto v: get()) {
  if(is_odd(v)) {
    auto s = square(v)
    std::cout << s << " ";
  }
}
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Actions
Actions work like standard STL algorithms, but instead of using iterators as input/output,
they take containers and return new modified containers.

Unlike STL algorithms, the actions of ranges modify the size of the container, that
is, ranges::action::remove_if() returns a container where the elements have been
erased from the container, whereas std::remove_if(...) simply returns an iterator to
the last unique element and leaves it to the programmer to actually erase the elements.
Same goes with std::unique; a new range containing only the unique values are returned:

Erasing duplicates using STL algorithms Erasing duplicates using the ranges library
auto a = std::vector<int>{
  1, 2, 1, 3, 2, 4
};
std::sort(a.begin(),a.end());
// ints is "1, 1, 2, 2, 3, 4"
auto it = std::unique(
  a.begin(),
  a.end()
);
// a is "1, 2, 3, 4, 3, 4"
// it points to the fifth element
a.erase(it, a.end());
// a is "1, 2, 3, 4"

namespace ra = ranges::action;
auto a =
  std::vector<int>{1,2,1,3,2,4}
  | ra::sort
  | ra::unique;
// a is 1, 2, 3, 4

As actions mutate data, they cannot operate on views. Hence, the following example does
not compile:

auto numbers = std::vector<int>{ 1, 2, 1, 3, 2, 4 };
numbers = std::move(numbers)
  | ranges::view::unique
  | ranges::action::sort; // Does not compile, cannot sort a view

In order to mutate a container using actions you must choose one of the following:

Provide the container as an r-value, that is, the range is returned from a function
or via std::move()
Initiate the action with |= instead of |, which mutates the container in place.
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The following are examples of how the approaches look syntactically:

Initialization code
namespace ra = ranges::action;
auto get(){return std::vector<int>{1,3,5,7};}
auto above_5 = [](auto v){ return v >= 5; };

Useget() straight away auto vals = get() | ra::remove_if(above_5);
// vals is "1, 3"

Constructed r-value,
usingstd::move()

auto vals = get();
vals = std::move(vals) | ra::remove_if(above_5);
// vals is "1, 3"

Mutate container,
using |= operator 

auto vals = get();
vals |= ra::remove_if(above_5);
// vals is "1, 3"

Views
Views might seem similar to actions, but on the inside, they are completely different. While
an action operates on the input container and returns a mutated version, views simply
return a proxy view, which, when iterated, looks like a mutated container.

However, the container is not mutated at all; all the processing is performed in the iterators.

Comparing ranges::view::transform() with
ranges::action::transform()clarifies the difference. As actions transforms the
container, they cannot transform the type, whereas views can transform to a view of any
type.
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The following transformation, where an int is transformed to a std::string, can only be
performed using ranges::view. Note that str_view is just a proxy; the actual returned
string is not constructed until the view is accessed.

namespace ra = ranges::action;
namespace rv = ranges::view;
auto get_numbers() { return std::vector<int>{1,3,5,7}; }
// An action cannot transform the type
auto strings = get_numbers() | ra::transform([](auto v){
  return std::to_string(v); // Does not compile
});
// A view can transform the type
auto ints = get_numbers();
auto str_view = ints | rv::transform([](auto v){
  return std::to_string(v);
});

To mimic the behavior of std::transform() which can transform data to a container with
a different value type, the view can be converted to a container. This can be performed
either by using the functions ranges::to_vector, ranges::to_list etc, or by simply
assigning the view to the range of choice.

Assign using explicit container type Assign using auto and to_list

namespace rv = ranges::view;
auto a = std::list<int>{2,4};
std::list<std::string> b = a
 | rv::transform([](auto v){
   return std::to_string(v);
 });

namespace rv = ranges::view;
auto a = std::list<int>{2,4};
auto b = a
  | rv::transform([](auto v){
    return std::to_string(v);
  })
  | ranges::to_list;
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Algorithms
The algorithms in the ranges library that do not return a view or a mutated container are
simply referred to as algorithms. Examples of such algorithms
are ranges::count, ranges::any_of, and so on. They work exactly as non-mutating
algorithms in STL, with the exception that they use a range as input instead of a pair of
iterators.

Unlike actions and views, algorithms cannot be chained with the | operator:

auto cars = std::vector<std::string>{"volvo","saab","trabant"};
// Using the STL library
auto num_volvos_a = std::count(cars.begin(), cars.end(), "volvo");
// Using the ranges library
auto num_volvos_b = ranges::count(cars, "volvo");

Summary
In this chapter, you learned how to use the basic concepts in the STL algorithm library, the
advantages of using them as building blocks instead of handwritten for-loops, and why
using the STL algorithm library is beneficial for optimizing your code at a later stage. We
also discussed the guarantees and trade-offs of the STL algorithms, meaning that you can,
from now on, use them with confidence.

In the end, we had a brief look at the upcoming ranges library, which simplifies range
handling a lot more.

By using the advantages of the algorithms instead of manual for-loops, your code base is
well prepared for the parallelization techniques that will be discussed in the coming
chapters of this book.



7
Memory Management

After reading the previous chapters, it should no longer come as a surprise that the way we
handle memory can have a huge impact on the performance. The CPU spends a lot of time
shuffling data between the CPU registers and the main memory (loading and storing data
to and from the main memory). As shown in Chapter 4, Data Structures, the CPU uses
memory caches to speed up the access of memory, and the programs need to be cache-
friendly in order to run quickly. This chapter will reveal more aspects of how computers
work with memory so that we know which things must be considered when tuning
memory usage. We will discuss automatic memory allocation and dynamic memory
management, and look at the life cycle of a C++ object. Sometimes there are hard memory
limits that force us to keep our data representation compact, and sometimes we have plenty
of memory available but need the program to go faster by making the memory
management more efficient. Allocating and deallocating dynamic memory is relatively
expensive and, at times, we need to avoid unnecessary allocations to make the program run
faster.

We will start this chapter by explaining some concepts that we need to understand before
we dig deeper into C++ memory management. This introduction will explain virtual
memory and virtual address space, stack memory versus heap memory, paging, and swap
space.
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Computer memory
The physical memory of a computer is shared among all the processes running on a system.
If one process uses a lot of memory, the other processes will most likely be affected. But
from a programmer's perspective, we usually don't have to bother about the memory that is
being used by other processes. This isolation of memory is due to the fact that most
operating systems today are virtual memory operating systems, which provide the illusion
that a process has all the memory for itself. Each process has its own virtual address space.

The virtual address space
Addresses in the virtual address space that programmers see are mapped to physical
addresses by the operating system and the memory management unit (MMU), which is a
part of the processor. This mapping or translation happens each time we access a memory
address.

This extra layer of indirection makes it possible for the operating system to use physical
memory for the parts of a process that are currently being used and back up the rest of the
virtual memory on-disk. In this sense, we can see the physical main memory as a cache for
the virtual memory space, which resides on secondary storage. The areas of the secondary
storage that are used for backing up memory pages are usually called swap space, swap
file, or, simply, pagefile depending on the operating system.

Virtual memory makes it possible for processes to have a virtual address space bigger than
the physical address space, since virtual memory that is not in use does not have to occupy
physical memory.

Memory pages
The most common way to implement virtual memory today is to divide the address space
in fixed sized blocks called memory pages. When a process accesses memory at a virtual
address, the operating system checks whether the memory page is backed by physical
memory (a page frame). If the memory page is not mapped in the main memory, a
hardware exception occurs and the page is loaded from disk into memory. This type of
hardware exception is called a page fault. This is not an error but a necessary interrupt in
order to load data from disk to memory. As you may have guessed though, this is very slow
compared to reading data that is already resident in memory.
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When there are no more available page frames in the main memory, a page frame has to be
evicted. If the page to be evicted is dirty, that is, it has been modified since it was last
loaded from disk, it needs to be written to disk before it can be replaced. This mechanism is
called paging. If the memory page has not been modified, the memory page is simply
evicted.

Not all operating systems that support virtual memory support paging. iOS, for example,
does have virtual memory but dirty pages are never stored to disk; only clean pages can be
evicted from memory. If the main memory is full, iOS will start terminating processes until
there is enough free memory again.

The following diagram shows two running processes. They both have their own virtual
memory space. Some of the pages are mapped to the physical memory and some are not. If
process 1 needs to use memory in the memory page that starts at address 0x1000, a page
fault will occur. The memory page will then be mapped to a vacant memory frame. Also,
note that the virtual memory addresses are not the same as the physical addresses. The first
memory page of process 1, which starts at the virtual address 0x0000, is mapped to a
memory frame that starts at the physical address 0x4000:

Virtual memory pages mapped to memory frames in physical memory. Virtual memory pages that are not in use do not have to occupy physical memory.
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Thrashing
Thrashing can happen when a system runs low on physical memory and is, therefore,
constantly paging. Whenever a process gets time scheduled on the CPU, it tries to access
memory that has been paged out. Loading new memory pages means that the other pages
first have to be stored on-disk. Moving data back and forth between disk and memory is
usually very slow, so in some cases, this more or less stalls the computer, since the system
spends all its time paging. Looking at the system's page fault frequency is a good way to
determine whether the program has started thrashing.

Process memory
The stack and the heap are the two most important memory segments in a C++ program.
There is also static storage and thread local storage, but more on that later. Actually, to be
formally correct, C++ doesn't talk about stack and heap; instead, it talks about storage
classes and the storage duration of objects. However, since the concepts of stack and heap
are widely used in the C++ community, and all the implementations of C++ that we are
aware of use a stack to implement function calls and manage automatic storage of local
variables, we think it is important to understand what stack and heap are. In this book, we
are also using the terms stack and heap rather than the storage duration of objects.

Both the stack and the heap reside in the process' virtual memory space. The stack is a place
where all the local variables reside; this also includes arguments to functions. The stack
grows each time a function is being called and contracts when a function returns. Each
thread has its own stack and, hence, stack memory can be considered thread-safe. The heap
on the other side is a global memory area that is being shared among all the threads in a
running process. The heap grows when we allocate memory with new (or the C-library
function, malloc()) and contracts when we free the memory with delete (or free()).
Usually, the heap starts at a low address and grows in an upward direction, whereas the
stack starts at a high address and grows in the downward direction. The following image
shows how the stack and heap grow in opposite directions in a virtual address space:



Memory Management Chapter 7

[ 161 ]

An address space of a process. The stack and the heap grows in opposite directions.

Stack memory
The stack differs in many ways compared to the heap. Here are some of the unique
properties of the stack:

The stack is a contiguous memory block.
It has a fixed maximum size. If a program exceeds the maximum stack size, the
program will crash.
The stack memory never becomes fragmented.
Allocating memory from the stack is always fast.
Each thread in a program has its own stack. 

The code examples that follow in this section will examine some of these properties. Let's
start with allocations and deallocations to get a feel for how the stack is used in a program.

We can easily find out in which direction the stack grows by inspecting the address of
stack-allocated data. The following example code demonstrates how the stack grows and
contracts when entering and leaving functions:

auto func2() {
  auto i = 0;
  std::cout << "func2(): " << std::addressof(i) << '\n';
}
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auto func1() {
  auto i = 0;
  std::cout << "func1(): " << std::addressof(i) << '\n';
  func2();
}

auto main() -> int {
  auto i = 0;
  std::cout << "main(): " << std::addressof(i) << '\n';
  fun1();
  fun2();
}

A possible output when running the program could look like this:

main(): 0x7ea075ac
func1(): 0x7ea07594
func2(): 0x7ea0757c
func2(): 0x7ea07594

By printing the address of the stack allocated integer, we can determine how much and in
which direction the stack grows on my platform. The stack grows by 24 bytes each time we
enter either func1() or func2(). The integer i, which will be allocated on the stack, is 4
bytes long. The remaining 20 bytes contain data needed when the function ends, such as the
return address. The following diagram illustrates how the stack grows and contracts during
the execution of the program. The first box illustrates how the memory looks when the
program has just entered the main() function. The second box shows how the stack has
increased when we execute func1() and so on:

The stack grows and contracts when functions are entered and returns.
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The total memory allocated for the stack is a fixed size contiguous memory block created at
thread startup. So, how big is the stack and what happens when we reach the limit of the
stack? As mentioned earlier, the stack grows each time the program enters a function and
contracts when the function returns. The most common reason for the stack to overflow is
by deep recursive calls and/or by using large automatic variables on the stack. The
maximum size of the stack differs among platforms and can also be configured for
individual processes.

Let's see if we can write a program to see how big the stack is by default on my system. We
begin by writing a function func(), which will recurse infinitely. At the beginning of each
function, we'll allocate a one-kilobyte variable, which will be placed onto the stack every
time we enter func(). Every time func() is executed, we print the current size of the stack:

auto func(char* stack_bottom_addr) -> void {
  char data[1024];
  std::cout << stack_bottom_addr - data << '\n';
  func(stack_bottom_addr);
}

auto main() -> int {
  char c;
  func(&c);
}

The size of the stack is only an estimate. We compute it by subtracting the address of the
first local variable in main() with the first local variable defined in func().

When I compiled the code with Clang, I got a warning that  func() will never return.
Normally, this is a warning that we should not ignore, but this time, this is just what we
want, so we ignore the warning and run the program anyway. The program crashes after a
short while when the stack has reached its limit. Before the program crashes, it manages to
print out thousands of lines with the current size of the stack. The last lines of the output
look like this:

...
8378667
8379755
8380843
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Since we are subtracting char pointers, the size is in bytes, so it looks like the maximum
size of the stack is around 8 MB on my system. On Unix-like systems, it is possible to set
and get the stack size for processes by using the ulimit command with the option, -s:

  $ ulimit -s
  $ 8192

Ulimit (short for user limit) returns the current setting for the maximum stack size in
kilobytes. The output of ulimit confirms the results from our experiment: the stack is
about 8 MB on my Mac if I don't configure it explicitly.

With this example, we can also conclude that we don't want to run out of stack memory
since the program will crash when that happens. Later in this chapter, we will see how to
implement a rudimentary memory allocator to handle fixed-size allocations. We will then
understand that the stack is just another type of memory allocator that can be implemented
very efficiently because the usage pattern is always sequential. We always request and
release memory at the top of the stack (the end of the contiguous memory). This ensures
that the stack memory will never become fragmented and that we can allocate and
deallocate memory by only moving a stack pointer.

Heap memory
The heap or the free store, which is a more correct term in C++, is where data with dynamic
storage lives. As mentioned earlier, the heap is shared among multiple threads, which
means that memory management for the heap needs to take concurrency into account.

This makes memory allocations in the heap more complicated than stack allocations, which
are local per thread.

The allocation and deallocation pattern for stack memory is sequential in the sense that
memory is always deallocated in the reverse order to that in which it was allocated. On the
other hand, for dynamic memory, the allocations and deallocations can happen arbitrarily.
The dynamic lifetime of objects and the variable sizes of memory allocations increase the
risk for fragmented memory.

An easy way to understand the issue with memory fragmentation is to go through an
example of how fragmented memory can occur. Suppose that we have a small contiguous
memory block of 16 KB that we are allocating memory from. We are allocating objects of
two types: type A, which is 1 KB, and type B, which is 2 KB. We first allocate an object of
type A followed by an object of type B. This repeats until the memory looks like the
following image:
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Next, all objects of type A are no longer needed, so they can be deallocated. The memory
now looks like this:

There is now 10 KB of memory in use and 6 KB is available. Now, suppose we want to
allocate a new object of type B, which is 2 KB. Although there is 6 KB of free memory, there
is nowhere we can find a 2 KB memory block because the memory has become fragmented.

Objects in memory
All the objects we use in a C++ program reside in memory. Here, we will explore how 
objects are created and deleted from memory and also describe how objects are laid out in
memory.

Creating and deleting objects
In this section, we will dig into the details of using new and delete. We are all familiar
with the standard way of using new for creating an object on the free store and then
deleting it using delete:

auto user = new User{"John"};  // allocate and construct
user->print_name();            // use object
delete user;                   // destruct and deallocate

As the comments suggest, new actually does two things:

Allocates memory to hold a new object of the User type1.
Constructs a new User object in the allocated memory space by calling the2.
constructor of the User class
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The same thing goes with delete:

Destructs the User object by calling its destructor1.
Deallocates/frees the memory that the User object was placed in2.

Placement new
C++ allows us to separate memory allocation from object construction. We could, for
example, allocate a byte array with malloc() and construct a new User object in that
region of memory. Have a look at the following code snippet:

auto memory = std::malloc(sizeof(User));
auto user = new (memory) User("john");

The perhaps unfamiliar syntax using new (memory) is called placement new. It is a non-
allocating form of new, which only constructs an object. In the preceding example,
placement new constructs the User object and places it at the specified memory location.
Since we are allocating the memory with std::malloc() for a single object, it is
guaranteed to be correctly aligned. Later on, we will explore cases where we have to take
alignment into account when using placement new.

There is no placement delete, so in order to destruct the object and free the memory, we
need to call the destructor explicitly and then free the memory:

user->~User();
std::free(memory);

Note: this is the only time you should call a destructor explicitly. Never
ever call a destructor like this unless you have created an object with
placement new.

C++17 introduces a set of utility functions in <memory> for constructing and destroying
objects without allocating or deallocating memory. So, instead of calling placement new, it
is now possible to use some of the functions from <memory> whose names begin with
std::uninitialized_ for constructing, copying, and moving objects to an uninitialized
memory area. And instead of calling the destructor explicitly, we can now use
std::destroy_at() to destruct an object at a specific memory address without
deallocating the memory.

The previous example could be rewritten using these new functions. Here is how it would
look:
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auto memory = std::malloc(sizeof(User));
auto user_ptr = reinterpret_cast<User*>(memory);
std::uninitialized_fill_n(user_ptr, 1, User{"john"});
std::destroy_at(user_ptr);
std::free(memory);

The new and delete operators
The function operator new is responsible for allocating memory when a new expression is
invoked. The new operator can either be a globally defined function or a static member
function of a class. It is possible to overload the global operators, new and delete. Later on
in this chapter, we will see that this can be useful when analyzing memory usage. Here is
how to do it:

auto operator new(size_t size) -> void* {
  void* p = std::malloc(size);
  std::cout << "allocated " << size << " byte(s)" << '\n';
  return p;
}

auto operator delete(void* p) noexcept -> void {
  std::cout << "deleted memory\n";
  return std::free(p);
}

We can verify that our overloaded operators are actually being used when creating and
deleting a char object:

auto* p = new char{'a'}; // Outputs "allocated 1 byte(s)"
delete p;                // Outputs "deleted memory"

When creating and deleting an array of objects using the new[] and delete[] expressions,
there is another pair of operators that are being used, namely operator new[] and
operator delete[]. We can overload these operators in the same way:

auto operator new[](size_t size) -> void* {
  void* p = std::malloc(size);
  std::cout << "allocated " << size << " byte(s) with new[]" << '\n';
  return p;
}

auto operator delete[](void* p) noexcept -> void {
  std::cout << "deleted memory with delete[]\n";
  return std::free(p);
}
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Keep in mind that if you overload operator new, you should also overload operator
delete. Functions for allocating and deallocating memory come in pairs. Memory should
be deallocated by the allocator that the memory was allocated by. For example, memory
allocated with std::malloc() should always be freed using std::free(). Memory
allocated with operator new[] should be deallocated using operator delete[].

It is also possible to override a class-specific operator new and operator delete. This is
probably more useful than overloading the global operators, since it is more likely that we
need a custom dynamic memory allocator for a specific class. Here, we are overloading
operator new and operator delete for the Document class:

class Document {
// ...
public:
  auto operator new(size_t size) -> void* {
    return ::operator new(size);
  }
  auto operator delete(void* p) -> void {
    ::operator delete(p);
  }
};

The class-specific version of new will be used when we create new dynamically allocated
Document objects:

auto* p = new Document{}; // Uses class-specific operator new
delete p;

If we instead want to use global new and delete, it is still possible by using the global
scope (::):

auto* p = ::new Document{}; // Uses global operator new
::delete p;

We will discuss memory allocators later in this chapter and we will then see the overloaded
new and delete operators in use. To summarize what we have seen so far, a new
expression involves two things: allocation and construction. operator new allocates
memory and you can overload it globally or per class to customize dynamic memory
management. Placement new can be used to construct an object in an already allocated
memory area.
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Memory alignment
The CPU reads memory into its registers one word at a time. The word size is 64 bits on a
64-bit architecture, 32 bits on a 32-bit architecture, and so forth. For the CPU to work
efficiently when working with different data types, it has restrictions on the addresses
where objects of different types are located. Every type in C++ has an alignment
requirement that defines the addresses at which an object of a certain type should be located
in memory. If the alignment of a type is 1, it means that the objects of that type can be
located at any byte address. If the alignment of a type is 2, it means that the object of that
type can only be located at addresses that are multiples of 2 and so on. We can use alignof
to find out the alignment of a type:

// Possible output is 4
std::cout << alignof(int) << '\n';

When I run this code it outputs 4, which means that the alignment requirement of type int
is 4 bytes on my platform, that is, objects of type int need to be located at an address that is
a multiple of 4.

The following diagram shows two examples of memory from a system with 64-bit words.
The upper row contains three 4-byte integers, which are located on addresses that are 4
bytes aligned. The CPU can load these integers into registers in an efficient way and never
need to read multiple words when accessing one of the int members. Compare this with
the second row, which contains two int members, which are located at unaligned
addresses. The second int even spans over two-word boundaries. In the best case this is
just inefficient, but on some platforms the program will crash:

Two examples of memory which contains ints at aligned and unaligned memory addresses.
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When allocating memory with new or std::malloc(), the memory we get back should be
correctly aligned for the type we specify. The following code shows that the memory
allocated for int is at least 4-bytes aligned:

auto p = new int();
auto address = reinterpret_cast<std::uintptr_t>(p);
std::cout << (address % 4ul) << '\n'; // Outputs 0

In fact, new and malloc() are guaranteed to always return memory suitably aligned for
any scalar type (if it manages to return memory at all). The <cstddef> header provides us
with a type called std::max_align_t, whose alignment requirement is at least as strict as
all the scalar types. Later on, we will see that this type is useful when writing custom
memory allocators. So, even if we only request memory for char on the free store, it will be
aligned suitable for std::max_align_t. The following code shows that the memory
returned from new is correctly aligned for std::max_align_t and also for any scalar type:

auto* p = new char{};
auto address = reinterpret_cast<std::uintptr_t>(p);
auto max_alignment = alignof(std::max_align_t);
std::cout << (address % max_alignment) << '\n'; // Outputs 0

Let's allocate char two times in a row with new:

auto* p1 = new char{'a'};
auto* p2 = new char{'b'};

Then, the memory may look something like this:

The space between p1 and p2 depends on the alignment requirements of
std::max_align_t. On my system, it was 16 bytes and, therefore, there are 15 bytes
between each char instance, even though the alignment of a char is only 1.
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Padding
The compiler sometimes needs to add extra bytes, padding, in our user-defined types. When
we define data members in a class or struct, the compiler is forced to place the members in
the same order as we define them. However, the compiler also has to ensure that data
members inside the class have the correct alignment; hence, it needs to add padding
between data members if necessary. For example, assume we have a class defined as
follows:

class Document {
  bool is_cached_{};
  double rank_{};
  int id_{};
};
std::cout << sizeof(Document) << '\n'; // Possible output is 24

The reason for the possible output being 24 is that the compiler inserts padding after bool
and int to fulfill the alignment requirements of the individual data members and the entire
class. The compiler converts the Document class to something like this:

class Document {
  bool is_cached_{};
  char padding1[7]; // Invisible padding inserted by compiler
  double rank_{};
  int id_{};
  char padding2[4]; // Invisible padding inserted by compiler
};

The first padding between bool and double is 7 bytes, since the rank_ data member of
the  double type has an alignment of 8 bytes. The second padding that is added after int is
4 bytes. This is needed in order to fulfill the alignment requirements of the Document class
itself. The member with the largest alignment requirement also determines the alignment
requirement for the entire data structure. In our example, this means that the total size of
the Document class must be a multiple of 8, since it contains a double value that is 8-byte
aligned.
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We now realize that we can rearrange the order of the data members in the Document class
in a way that minimizes the padding inserted by the compiler, by starting with types with
the biggest alignment requirements. Let's create a new version of the Document class:

// Version 2 of Document class
class Document {
  double rank_{};
  int id_{};
  bool is_cached_{};
};

With the rearrangement of the members, the compiler now only needs to pad after the
is_cached_ data member to adjust for the alignment of Document. This is how the class
will look after padding:

// Version 2 of Document class after padding
class Document {
  double rank_{};
  int id_{};
  bool is_cached_{};
  char padding[3]; // Invisible padding inserted by compiler
};

The size of the new Document class is now only 16 bytes, compared to the first version,
which was 24 bytes. We can verify this by using the sizeof operator again on our updated
version of Document:

std::cout << sizeof(Document) << '\n'; // Possible output is 16

As a general rule, you can place the biggest data members in the beginning and the smallest
members at the end. In this way, you can minimize the memory overhead caused by
padding. Later on, we will see that we need to think about alignment when placing objects
in memory regions that we have allocated, before we know the alignment of the objects that
we are creating.

From a performance perspective, there can also be cases where you want to align objects to
cache lines to minimize the number of cache lines an object spans over. While we are on the
subject of cache friendliness, it should also be mentioned that it can be beneficial to place
multiple data members that are frequently used together next to each other.
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Memory ownership
Ownership of resources is a fundamental aspect to consider when programming. An owner
of a resource is responsible for freeing the resource when it is no longer needed. A resource
is typically a block of memory but could also be a database connection, a file handle, and so
on. Ownership is important regardless of which programming language you are using.
However, it is more apparent in languages such as C and C++, since dynamic memory is not
garbage collected by default. Whenever we allocate dynamic memory in C++, we have to
think about the ownership of that memory. Fortunately, there is now very good support in
the language for expressing various types of ownership by using smart pointers, which we
will cover later in this section.

The smart pointers from the standard library help us specify the ownership of dynamic
variables. Other types of variables already have a defined ownership. For example, local
variables are owned by the current scope. When the scope ends, the objects that have been
created inside the scope will be automatically destroyed:

{
  auto user = User{};
} // user will automatically be destroyed when it goes out of scope

Static and global variables are owned by the program and will be destroyed when the
program terminates:

static auto user = User{};

Data members are owned by the instances of the class that they belong to:

class Game {
  User user; // A Game object owns the User object
  // ...
};

It is only dynamic variables that do not have a default owner, and it is up to the
programmer to make sure that all the dynamically allocated variables have an owner to
control the lifetime of the variables:

auto user = new User{}; // Who owns user now?

With modern C++, we can write most of our code without explicit calls to new and delete,
which is a great thing. Manually keeping track of calls to new and delete spread out over a
large code base can easily become an issue. Raw pointers do not express any ownership,
which makes ownership hard to track if we are only using raw pointers to refer to dynamic
memory.
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We recommend that you make ownership clear and explicit, but do strive to minimize
explicit memory management. By following a few fairly simple rules for dealing with the
ownership of memory, you will increase the likelihood of getting your code clean and
correct without leaking resources. The coming sections will guide you through some best
practices for that purpose.

Handling resources implicitly
First, make your objects implicitly handle the allocation/deallocation of dynamic memory:

auto func() {
  auto v = std::vector<int>{1, 2, 3, 4, 5};
}

In the preceding example, we are using both stack and dynamic memory, but we don't have
to explicitly call new and delete. The std::vector object (of the std::vector class) we
create is an automatic object that will live on the stack. Since it is owned by the scope, it will
be automatically destroyed when the function returns. The std::vector object itself uses
dynamic memory to store the integer elements. When the std::vector object goes out of
scope, its destructor can safely free the dynamic memory. This pattern of letting destructors
free dynamic memory makes it fairly easy to avoid memory leaks.

While we are on the subject of freeing resources, I think it makes sense to mention RAII.
RAII is a well-known C++ technique, short for Resource Acquisition Is Initialization,
where the lifetime of a resource is controlled by the lifetime of an object. The pattern is
simple but extremely useful for handling resources (memory included). But let's say, for a
change, that the resource we need is some sort of connection for sending requests.
Whenever we are done using the connection, we (the owners) must remember to close it.
Here is an example of how it looks when we open and close the connection explicitly to
send a request:

auto send_request(const std::string& request) {
  auto connection = open_connection("http://www.example.com/");
  send_request(connection, request);
  close(connection);
}
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As you can see, we have to remember to close the connection after we have used it or the
connection will stay open (leak). In this example, it seems hard to forget, but once the code
gets more complicated after inserting proper error handling and multiple exit paths, it will
be hard to guarantee that the connection will always be closed. RAII solves this by relying
on the fact that the lifetime of automatic variables is handled for us in a predictable way.
What we need is an object that will have the same lifetime as the connection we get from the
open_connection() call. We create a class for this, called RAIIConnection:

class RAIIConnection {
public:
  RAIIConnection(const std::string& url)
  : connection_{open_connection(url)} {}
  ~RAIIConnection() {
    try {
      close(connection_);
    }
    catch (const std::exception&) {
      // Handle error, but never throw from a destructor
    }
  }
  auto& get() { return connection_; }

private:
  Connection connection_;
};

The Connection object is now wrapped in a class that controls the lifetime of the
connection (the resource). Instead of explicitly closing the connection, we can now let
RAIIConnection handle this for us:

auto send_request(const std::string& request) {
  auto connection = RAIIConnection("http://www.example.com/");
  send_request(connection.get(), request);
  // No need to close the connection, it is implicitly handled
  // by the RAIIConnection destructor
}
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Containers
Use standard containers to handle a collection of objects. The container you use will own
the dynamic memory it needs to store the objects you add to it. This is a very effective way
of minimizing explicit new and delete expressions in your code. We won't talk more about
the containers here since they have already been covered in Chapter 4, Data Structures.

Smart pointers
The smart pointers from the standard library wrap a raw pointer and make the ownership
of the object it points to explicit. When used correctly, there is no doubt about who is
responsible for deleting a dynamic object. The three smart pointer types are
std::unique_ptr, std::shared_ptr, and std::weak_ptr. As their names suggest, they
represent three types of ownership of an object:

Unique ownership expresses that I, and only I, own the object. When I'm done
using it, I will delete it.
Shared ownership expresses that I own the object along with others. When no one
needs the object anymore, it will be deleted.
Weak ownership expresses that I'll use the object if it exists, but don't keep it alive
just for me.

Unique pointer
The safest and least complicated ownership is unique ownership and should be the first
thing that pops into your mind when thinking about smart pointers. Unique pointers
represent unique ownership, that is, a resource is owned by exactly one entity. A unique
ownership can be transferred to someone else, but it cannot be copied, since that would
break the uniqueness. Unique pointers are also very efficient since they do not add any
performance overhead compared to ordinary raw pointers. Here is how to use a
sed::unique_ptr:

auto owner = std::make_unique<User>("John");
auto new_owner = std::move(owner); // Transfer ownership
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Shared pointer
Shared ownership means that an object can have multiple owners. When the last owner
ceases to exist, the object will be deleted. This is a very useful pointer type, but is also more
complicated than unique pointer.

The std::shared_ptr object uses reference counting to keep track of the number of
owners an object has. When the counter reaches 0, the object will be deleted. The counter
needs to be stored somewhere, so it does have some memory overhead compared with the
unique pointer. Also, std::shared_ptr is thread-safe, so the counter needs to be updated
atomically to prevent race conditions.

The recommended way of creating objects owned by shared pointers is to use
std::make_shared(). It is both safer (from an exception-safety point of view) and more
efficient than creating the object manually with new and then passing it to a
std::shared_ptr constructor. By overloading operator new and operator delete
again to track allocations, we can conduct an experiment to find out why
using std::make_shared() is more efficient:

auto operator new(size_t size) -> void* {
  void* p = std::malloc(size);
  std::cout << "allocated " << size << " byte(s)" << '\n';
  return p;
}

auto operator delete(void* p) noexcept -> void {
  std::cout << "deleted memory\n";
  return std::free(p);
}

Now let's try the recommended way first, using std::make_shared():

auto main() -> int {
 auto i = std::make_shared<double>(42.0);
 return 0;
}

The output when running the program is as follows:

allocated 32 bytes
deleted memory
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Now, let's allocate the int value explicitly by using new and then pass it to the
std::shared_ptr constructor:

auto main() -> int {
  auto i = std::shared_ptr<double>(new double{42.0});
  return 0;
}

The program will generate the following output:

allocated 4 bytes
allocated 32 bytes
deleted memory
deleted memory

We can conclude that the second version needs two allocations, one for the double and one
for the std::shared_ptr, whereas the first version only needed one allocation. This also
means that, by using std::make_shared(), our code will be more cache-friendly, thanks
to spatial locality.

Weak pointer
Weak ownership doesn't keep any objects alive; it only allows us to use an object if someone
else owns it. Why would you want such a fuzzy ownership as weak ownership? One
common reason for using a weak pointer is to break a reference cycle. A reference cycle
occurs when two or more objects refer to each other using shared pointers. Even if all
external std::shared_ptr constructors are gone, the objects are kept alive by referring to
themselves.

Why not just use a raw pointer? Isn't the weak pointer exactly what a raw pointer already
is? Not at all. A weak pointer is safe to use since we cannot reference the object unless it
actually exists, which is not the case with a dangling raw pointer. An example will clarify
this:

auto i = std::make_shared<int>(10);
auto weak_i = std::weak_ptr<int>{i};
// Maybe i.reset() happens here so that the int is deleted...
if (auto shared_i = weak_i.lock()) {
  // We managed to convert our weak pointer to a shared pointer
  std::cout << *shared_i << '\n';
}
else {
  std::cout << "weak_i has expired, shared_ptr was nullptr\n";
}
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Whenever we try to use the weak pointer, we need to convert it to a shared pointer first
using the member function lock(). If the object hasn't expired, the shared pointer will be a
valid pointer to that object; otherwise, we will get an empty std::shared_ptr back. This
way, we can avoid dangling pointers when using std::weak_ptr instead of raw pointers.

Small size optimization
One of the great things about containers such as std::vector is that they automatically
allocate dynamic memory when needed. Sometimes, though, the use of dynamic memory
for container objects that only contain a few small elements can hurt the performance. It
would be more efficient to keep the elements in the container itself and only use stack
memory instead of allocating small regions of memory on the heap. Most modern
implementations of std::string will take advantage of the fact that a lot of strings in a
normal program are short and that short strings are more efficient to handle without the use
of heap memory.

One alternative is to keep a small separate buffer in the string class itself, which can be used
when the string content is short. This would increase the size of the string class even when
the short buffer is not used. So, a more memory-efficient solution is to use a union, which
can hold a short buffer when the string is in short mode and, otherwise, hold the data
members it needs to handle a dynamically allocated buffer. The technique for optimizing a
container for handling small data is usually referred to as small string optimization for
strings, or small size optimization and small buffer optimization for other types. We have
many names for the things we love.

A short code example will demonstrate how std::string from libc++ from LLVM behaves
on my 64-bit system:

auto allocated = size_t{0};
// Overload operator new and delete to track allocations
auto operator new(size_t size) -> void* {
  void* p = std::malloc(size);
  allocated += size;
  return p;
}

auto operator delete(void* p) noexcept -> void {
  return std::free(p);
}

auto main() -> int {
  allocated = 0;
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  auto s = std::string{""}; // Elaborate with different string sizes
  std::cout << "stack space = " << sizeof(s)
    << ", heap space = " << allocated
    << ", capacity = " << s.capacity() << '\n';
}

The code starts by overloading global operator new and operator delete for the
purpose of tracking dynamic memory allocations. We can now start testing different sizes
of the string s to see how std::string  behaves. When building and running the
preceding example in the release mode on my system, it generates the following output:

stack space = 24, heap space = 0, capacity = 22

This output tells us that std::string occupies 24 bytes on the stack and that it has a
capacity of 22 chars without using any heap memory. Let's verify that this is actually true
by replacing the empty string with a string of 22 chars:

auto s = std::string{"1234567890123456789012"};

The program still produces the same output and verifies that no dynamic memory has been
allocated. But what happens when we increase the string to hold 23 characters instead?

auto s = std::string{"12345678901234567890123"};

Running the program now produces the following output:

stack space = 24, heap space = 32, capacity = 31

The std::string class has now been forced to use the heap for storing the string. It
allocates 32 bytes and reports that the capacity is 31. This is because libc++ always stores a
null-terminated string internally and, therefore, needs an extra byte at the end for the null
character. It is still quite remarkable that the string class can be only 24 bytes and can hold
strings of 22 characters in length without allocating any memory. How does it do it? As
mentioned earlier, it is common to save memory by using a union with two different
layouts: one for the short mode and one for the long mode. There is a lot of cleverness in the
real libc++ implementation to make the maximum use of the 24 bytes that are available. The
code here is simplified for the purpose of demonstrating the concept. The layout for the
long mode looks like this:

struct Long {
  size_t capacity_{};
  size_t size_{};
  char* data_{};
};
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Each member in the long layout is 8 bytes so the total size is 24 bytes. The char pointer
data_ is a pointer to the dynamically allocated memory that will hold long strings. The
layout of the short mode looks something like this:

struct Short {
  unsigned char size_{};
  char data_[23]{};
};

In the short mode, there is no need to use a variable for the capacity, since it is a compile-
time constant. It is also possible to use a smaller type for the size_ data member in this
layout, since we know that the length of the string can only range from 0 to 22 if it is a short
string.

Both the layouts are combined using a union:

union u_ {
  Short short_layout_;
  Long long_layout_;
};

There is one piece missing, though: how can the string class know whether it is currently
storing a short string or a long string? A flag is needed to indicate this, but where is it
stored? It turns out that libc++ uses the least significant bit on the capactiy_ data member
in the long mode and the least significant bit on the size_ data member in the short mode.
For the long mode, this bit is redundant anyway since the string always allocates memory
sizes that are multiples of 2. In the short mode, it is possible to use only 7 bits for storing the
size so that one bit can be used for the flag. It becomes even more complicated when writing
this code to handle big endian byte order, since the bit needs to be placed in memory at the
same location regardless of whether we are using the short struct or the long struct of the
union. You can look up the details in the libc++ implementation at https:/ /github. com/
llvm-mirror/libcxx.

Clever tricks like this are the reason that you should strive to use the efficient and well-
tested classes provided by the standard library before you try to roll out your own.
Nevertheless, knowing about those optimizations and how they work is important and
useful, even if you never need to write one yourself.

https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx
https://github.com/llvm-mirror/libcxx


Memory Management Chapter 7

[ 182 ]

The following diagram summarizes our simplified (but still, rather, complicated) memory
layout of the union used by an efficient implementation of the small string optimization:

The union of the two different layouts used for handling short strings and long strings, respectively.

Custom memory management
We have come a long way in this chapter now. We have covered the basics of virtual
memory, the stack and the heap, the new and delete expressions, memory ownership, and
alignment and padding. But before we close this chapter, we are going to show how to
customize the memory management in C++. We will see how the parts that we went
through earlier in this chapter will come in handy when writing a custom memory
allocator.

But first, what is a custom memory manager and why do we need one?

When using new or malloc() to allocate memory, we use the built-in memory
management system in C++. Most implementations of operator new use malloc(), which
is a general-purpose memory allocator. In other words, designing and building a general-
purpose memory manager is a complicated task and there are many people who have
already spent a lot of time researching this topic. Still, there are several reasons why you
might want to write a custom memory manager. Here are some examples:

Debugging and diagnostics: We have already done this a couple of times in this
chapter by overloading operator new and operator delete just to print out
some debugging information.
Sandboxing: A custom memory manager can provide a sandbox for code that
isn't allowed to allocate unrestricted memory. The sandbox can also track
memory allocations and release memory when the sandboxed code finishes
executing.
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Performance: If we need dynamic memory and can't avoid allocations, we may
have to write a custom memory manager that performs better for our specific
needs. Later on, we will cover some of the circumstances that we could utilize to
outperform malloc().

With that said, many experienced C++ programmers have never faced a problem that
actually required them to customize the standard memory manager that comes with the
system. This is a good indication of how well the general-purpose memory managers
actually are today, despite all the requirements they have to fulfill without any knowledge
about our specific use cases. The more we know about the memory usage patterns in our
application, the better the chances are that we can actually write something more efficient
than malloc(). Remember the stack, for example? Allocating and deallocating memory
from the stack is very fast compared to the heap, thanks to the fact that it doesn't need to
handle multiple threads and that allocations and deallocations are guaranteed to always
happen in the reverse order.

Building a custom memory manager usually starts with analyzing the exact memory usage
patterns and then implementing an arena.

Building an arena
Two frequently used terms when working with memory allocators are arena and memory
pool. We will not distinguish between these terms in this book. By arena, we mean a block of
contiguous memory including a strategy for handing out parts of that memory and
reclaiming it later on. This could technically also be called an allocator, but we will use that
term to refer to allocators used by the standard library. The custom allocator we will
develop later will be implemented using the arena we create here.

There are some general strategies that can be used when designing an arena that will make
allocations and deallocations likely to perform better than malloc() and free():

Single-threaded: If we know that an arena will only be used from one thread,
there is no need to protect data with synchronization primitives, such as locks or
atomics. There is no risk that the client using the arena may be blocked by some
other thread, which is important in real-time contexts.
Fixed-size allocations: If the arena only hands out memory blocks of fixed size, it
is relatively easy to reclaim memory efficiently without memory fragmentation
by using a free list.
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Limited lifetime: If you know that objects allocated from an arena only need to
live during a limited and well-defined lifetime, the arena can postpone the
reclamation and free the memory all at once. An example could be objects created
while handling a request in a server application. When the request has finished,
all the memory that was handed out during the request can be reclaimed in one
step. Of course, the arena needs to be big enough to handle all the allocations
during the request without reclaiming memory continually; otherwise, this
strategy will not work.

We will not go into further details about these strategies, but it is good to be aware of the
possibilities when looking for ways to improve memory management in your program. As
is often the case with optimizing software, the key is to understand the circumstances under
which your program will run and to analyze the specific memory usage patterns in order to
find ways to improve a custom memory manager compared to a general-purpose one.

Next, we will have a look at a simple arena class template, which can be used for small or
few objects that need dynamic storage duration, but where the memory it needs usually is
so small that it can be placed on the stack. This code is based on Howard Hinnant's
short_alloc published in the page, https:/ / howardhinnant. github. io/stack_ alloc.
html. This is a great place to start if you want to dig deeper into custom memory
management. We think it is a good example for demonstration purposes because it can
handle multiple sized objects, which require proper handling of alignment. But again, keep
in mind that this is a simplified version for demonstrating the concept rather than
providing you with production-ready code:

template <size_t N>
class Arena {
  static constexpr size_t alignment = alignof(std::max_align_t);
public:
  Arena() noexcept : ptr_(buffer_) {}
  Arena(const Arena&) = delete;
  Arena& operator=(const Arena&) = delete;

  auto reset() noexcept { ptr_ = buffer_; }
  static constexpr auto size() noexcept { return N; }
  auto used() const noexcept {
    return static_cast<size_t>(ptr_ - buffer_);
  }
  auto allocate(size_t n) -> char*;
  auto deallocate(char* p, size_t n) noexcept -> void;
private:
  static auto align_up(size_t n) noexcept -> size_t {
    return (n + (alignment-1)) & ~(alignment-1);
  }
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  auto pointer_in_buffer(const char* p) const noexcept -> bool {
    return buffer_ <= p && p <= buffer_ + N;
  }
  alignas(alignment) char buffer_[N];
  char* ptr_{};
};

The arena contains a char buffer, whose size is determined at compile time. This makes it
possible to create an arena object on the stack or as a variable with static or thread local
storage duration. The alignment of the memory that this version will hand out will be the
same as when using malloc()—it's suitable for any type. This is a bit wasteful if we use the
arena for small types with smaller alignment requirements, but we ignore this here. The
buffer is a char array that might be allocated on the stack; hence, there is no guarantee that
it will be aligned for  types other than char unless we apply the alignas specifier to the
array. The helper align_up() function may look complicated if you are not used to bitwise
operations. However, it basically just rounds up to the alignment requirement that we use.

When reclaiming memory, we need to know whether the pointer we are asked to reclaim
actually belongs to our arena. The pointer_in_buffer() function checks this by
comparing a pointer address with the arena's address range.

Next, we need the implementation of allocate and deallocate:

template<size_t N>
auto Arena<N>::allocate(size_t n) -> char* {
  const auto aligned_n = align_up(n);
  const auto available_bytes =
  static_cast<decltype(aligned_n)>(buffer_ + N - ptr_);
  if (available_bytes >= aligned_n) {
    char* r = ptr_;
    ptr_ += aligned_n;
    return r;
  }
  return static_cast<char*>(::operator new(n));
}

Allocate returns a pointer to a correctly aligned memory with the specified size, n. If there is
no available space in the buffer for the requested size, it will fall back to using operator
new instead.
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The following deallocate() function first checks whether the pointer to the memory to be
deallocated is from the buffer or whether it has been allocated with operator new. If it is
not from the buffer, we simply delete it with operator delete. Otherwise, we check
whether the memory to be deallocated is the last memory we handed out from the buffer
and, then, reclaim it by moving the current ptr_, just as a stack would do. We simply
ignore other attempts to reclaim the memory:

template<size_t N>
auto Arena<N>::deallocate(char* p, size_t n) noexcept -> void {
  if (pointer_in_buffer(p)) {
    n = align_up(n);
    if (p + n == ptr_) {
      ptr_ = p;
    }
  }
  else {
    ::operator delete(p);
  }
}

That's about it; our arena is now ready to be used. Let's use it when allocating User objects:

auto user_arena = Arena<1024>{};

class User {
public:
  auto operator new(size_t size) -> void* {
    return user_arena.allocate(size);
  }
  auto operator delete(void* p) -> void {
    user_arena.deallocate(static_cast<char*>(p), sizeof(User));
  }
  auto operator new[](size_t size) -> void* {
    return user_arena.allocate(size);
  }
  auto operator delete[](void* p, size_t size) -> void {
    user_arena.deallocate(static_cast<char*>(p), size);
  }
private:
  int id_{};
};

auto main() -> int {
  // No dynamic memory is allocated when we create the users
  auto user1 = new User{};
  delete user1;
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  auto users = new User[10];
  delete [] users;

  auto user2 = std::make_unique<User>();
  return 0;
}

A custom memory allocator
When trying our custom memory manager with a specific type, it worked great! There is a
problem, though. It turns out that the class-specific operator new is not called on all the
occasions that we first might have expected. Consider the following code:

auto user = std::make_shared<User>("John");

What happens when we want to have std::vector of 10 users?

auto users = std::vector<User>{};
users.reserve(10);

In neither of the two cases is our custom memory manager being used. Why? Starting with
the shared pointer, we have to go back to the example earlier where we saw that
std::make_shared() actually allocates memory for both reference counting data and the
object it should point to. There is no way that std::make_shared() can use an expression
such as new User() to create the user object and the counter with only one allocation.
Instead, it allocates memory and constructs the user object using placement new.

The std::vector object is similar. It doesn't construct 10 objects by default in an array
when we call reserve(). This would have required a default constructor for all the classes
to be used with the vector. Instead, it allocates memory that can be used for holding 10 user
objects when they are being added. Again, placement new is the tool for making this
possible.

Fortunately, we can provide a custom memory allocator to both std::vector and
std::shared_ptr in order to have them use our custom memory manager. This is true for
the rest of the containers in the standard library as well. If we don't supply a custom
allocator, the containers will use the default std::allocator<T> class. So, what we need
in order to use our arena is to write an allocator that can be used by the containers.
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Custom allocators have been a hot and well-debated topic for a long time in the C++
community. Many custom containers have been implemented to control how memory is 
managed instead of using the standard containers with custom allocators, probably for
good reasons. However, the support and requirements for writing a custom allocator has
been improved in C++11, and it is now a lot better than it used to be. Here, we will only
focus on allocators from C++11 and beyond.

A minimal allocator in C++11 now looks like this:

template<typename T>
struct Alloc {
  using value_type = T;
  Alloc();
  template<typename U> Alloc(const Alloc<U>&);
  T* allocate(size_t n);
  auto deallocate(T*, size_t) const noexcept -> void;
};
template<typename T>
auto operator==(const Alloc<T>&, const Alloc<T>&) -> bool;
template<typename T>
auto operator!=(const Alloc<T>&, const Alloc<T>&) -> bool;

It's really not that much code anymore, thanks to the improvements in C++11. The container
that uses the allocator actually uses std::allocator_traits, which provides reasonable
defaults if the allocator omits them. I recommend you have a look at the
std::allocator_traits to see what traits can be configured and what the defaults are.

By using malloc() and free(), we could quite easily implement a minimal custom
allocator. Here, we will show the old and famous Mallocator, first published in a blog
post by Stephan T. Lavavej, to demonstrate how to write a minimal custom allocator using
malloc() and free(). Since then, it has been updated for C++11 to make it even slimmer.
Here is how it looks:

template <class T>
struct Mallocator {

  using value_type = T;
  Mallocator() noexcept {} // default ctor not required

  template <class U>
  Mallocator(const Mallocator<U>&) noexcept {}

  template <class U>
  auto operator==(const Mallocator<U>&) const noexcept {
    return true;
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  }

  template <class U>
  auto operator!=(const Mallocator<U>&) const noexcept {
    return false;
  }
  auto allocate(const size_t n) const -> T* {
    if (n == 0) {
      return nullptr;
    }
    if (n > std::numeric_limits<size_t>::max() / sizeof(T)) {
      throw std::bad_array_new_length{};
    }
    void* const pv = malloc(n * sizeof(T));
    if (pv == nullptr) {
      throw std::bad_alloc{};
    }
    return static_cast<T*>(pv);
  }
  auto deallocate(T* const p, size_t) const noexcept -> void {
    free(p);
  }
};

Mallocator is a stateless allocator, which means that the allocator instance itself doesn't
have any mutable state; instead, it uses global functions for allocation and deallocation,
namely malloc() and free(). A stateless allocator should always compare equal to the
allocators of the same type. It indicates that memory allocated with Mallocator should
also be deallocated with Mallocator, regardless of the Mallocator instance. A stateless
allocator is the least complicated allocator to write but it is also limited, since it depends on
the global state.

To use our arena as a stack-allocated object, we will need a stateful allocator that can
reference the arena instance. Here, the arena class that we implemented really starts to
make sense. Say, for example, that we want to use one of the standard containers in a
function to do some processing. We know that, most of the time, we are dealing with very
small amounts of data that will fit on the stack. But once we use the containers from the
standard library, they will allocate memory from the heap, which, in this case, will hurt the
performance. 
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What are the alternatives for using the stack to manage the data and avoid unnecessary
heap allocations? One alternative is to build a custom container that uses a variation of the
small size optimization we looked at for std::string. It is also possible to use a container
from Boost, for example, boost::container::small_vector, which is based on LLVM's
small vector. We advise you to check it out if you haven't already:
http://www.boost. org/ doc/ libs/ 1_ 64_ 0/ doc/html/ container/ non_ standard_
containers.html.

Yet another alternative, though, is to use a custom allocator, which we will explore next.
Since we already have an arena template class ready, we could simply create the instance of
an arena on the stack and have a custom allocator use it for the allocations. What we then
need to do is to implement a stateful allocator, which could hold a reference to the stack-
allocated arena object.

Again, this custom allocator that we will implement is a simplified version of Howard
Hinnant's short_alloc:

template <class T, size_t N>
struct ShortAlloc {

  using value_type = T;
  using arena_type = Arena<N>;

  ShortAlloc(const ShortAlloc&) = default;
  ShortAlloc& operator=(const ShortAlloc&) = delete;

  ShortAlloc(arena_type& arena) noexcept : arena_{arena} { }

  template <class U>
  ShortAlloc(const ShortAlloc<U, N>& other) noexcept
  : arena_{other.arena_} {}

  template <class U> struct rebind {
    using other = ShortAlloc<U, N>;
  };

  auto allocate(size_t n) -> T* {
    return reinterpret_cast<T*>(arena_.allocate(n*sizeof(T)));
  }
  auto deallocate(T* p, size_t n) noexcept -> void {
    arena_.deallocate(reinterpret_cast<char*>(p), n*sizeof(T));
  }

  template <class U, size_t M>
  auto operator==(const ShortAlloc<U, M>& other) const noexcept {
    return
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      N == M &&
      std::addressof(arena_) == std::addressof(other.arena_);
  }
  template <class U, size_t M>
  auto operator!=(const ShortAlloc<U, M>& other) const noexcept {
    return !(*this == other);
  }
  template <class U, size_t M> friend struct ShortAlloc;

private:
  arena_type& arena_;
};

The allocator holds a reference to the arena. This is the only state the allocator has. Allocate
and deallocate simply forward their requests to the arena. The compare operators ensure
that two instances of the ShortAlloc type are using the same arena.

Now, the allocator and arena we implemented can be used with a standard container to
avoid dynamic memory allocations. When we are using small data, we can handle all
allocations using the stack instead. Let's see an example using std::set:

auto main() -> int {

  using SmallSet =
    std::set<int, std::less<int>, ShortAlloc<int, 512>>;

  auto stack_arena = SmallSet::allocator_type::arena_type{};
  auto unique_numbers = SmallSet{stack_arena};
  // Read numbers from stdin
  auto n = int{};
  while (std::cin >> n)
    unique_numbers.insert(n);
  // Print unique numbers
  for (const auto& number : unique_numbers)
    std::cout << number << '\n';
}

The program reads integers from standard input until the end-of-file is reached (Ctrl + D on
Unix-like systems and Ctrl + Z on Windows). It then prints the unique numbers in
an ascending order. Depending on how many numbers are read from stdin, the program
will use stack memory or dynamic memory by using our ShortAlloc allocator.
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Summary
This chapter has covered a lot of ground, starting with the basics of virtual memory and
finally implementing a custom allocator that can be used by containers from the standard
library. A good understanding of how your program uses memory is important. Overuse of
dynamic memory can be a performance bottleneck that you might need to optimize away.
Before you start implementing your own containers or custom memory allocators, bear in
mind that many people before you have probably had very similar memory issues to the
ones you may face. So, there is a good chance that the right tool for you is already out there
in a library. Building custom memory managers that are fast, safe, and robust is a challenge.



8
Metaprogramming and

Compile-Time Evaluation
C++ has the ability to evaluate expressions at compile time, meaning that values are already
calculated when the program executes. Even though metaprogramming has been possible
since C++98; however, it was very complicated due to its complex template-based syntax.
With the introduction of constexpr and, recently, if constexpr, metaprogramming has
become much more similar to writing regular code.

This chapter will give you a brief introduction of compile-time expression evaluations in
C++ and how they can be used for optimization.

Introduction to template metaprogramming
When writing regular C++ code, it is eventually transformed to machine code.
Metaprogramming, on the other hand, is code that transforms itself into regular C++ code.
When using metaprogramming, it is important to remember that its main use case is to
make great libraries and, thereby, hide complex constructs/optimizations from the user
code. So, remember that howsoever complex the interior of the metacode may be, it's
important to hide it behind a good interface so that the user code base is easy to read and
use.

In its simplest and most common form, template metaprogramming in C++ is used to
generate functions, values, and classes that accept different types. 
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Let's take a look at a simple pow() function and a Rectangle class. By using a template
parameter, the rectangle can be used with any integer or floating point type. Without
templates, the programmer would have to create a separate function/class for every base
type.

The compiler then compiles/generates the metacode to regular C++ code, which is further
compiled to machine code. We will hereforth refer to C++ code generated from
metaprogramming as regular C++ code.

Writing metaprogramming code can be very complex; something that can
make it easier, is to imagine how the expected regular C++ code is
intended to be.

Here is an example of a simple templated function:

// pow_n accepts any number type
template <typename T>
auto pow_n(const T& v, int n) {
  auto product = T{1};
  for(int i = 0; i < n; ++i) {
    product *= v;
  }
  return product;
}

Using this function will generate a function whose return type is dependent on the template
parameter type:

auto x = pow_n<float>(2.0f, 3); // x is a float
auto y = pow_n<int>(3, 3);      // y is an int

Correspondingly, a simple template-based class is constructed like this:

// Rectangle can be of any type
template <typename T>
class Rectangle {
public:
  Rectangle(T x, T y, T w, T h) : x_{x}, y_{y}, w_{w}, h_{h} {}
  auto area() const { return w_ * h_; }
  auto width() const { return w_; }
  auto height() const { return h_; }
private:
  T x_{}, y_{}, w_{}, h_{};
};
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When a template class is utilized, the programmer specifies the types for which the
template should generate the code:

// rectf is a rectangle of floats
auto rectf = Rectangle<float>{2.0f, 2.0f, 4.0f, 4.0f};
// recti is a rectangle of integers
auto recti = Rectangle<int>{-2, -2, 4, 4};

A standalone function can then use a template to accept a rectangle with dimensions of any
data type but no other class type than Rectangle, as follows:

template <typename T>
auto is_square(const Rectangle<T>& r) -> bool {
  return r.width() == r.height();
}

Using integers as template parameters
Beyond general types, a template can also be of any integral type, which means that the
compiler generates a new function for every integer passed as the template argument:

template <int N, typename T>
auto const_pow_n(const T& v) {
  auto product = T{1};
  for(int i = 0; i < N; ++i) {
    product *= v;
  }
  return product;
}

// The compiler generates a function which squares the value
auto x2 = const_pow_n<float, 2>(4.0f);
// The compiler generates a function which cubes the value
auto x3 = const_pow_n<float, 3>(4.0f);

Note the difference between the template parameter N and the function parameter v. For
every value of N, the compiler generates a new function. However, v is passed as a regular
parameter and, as such, does not result in a new function.
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How the compiler handles a template function
When the compiler deals with a template function, it constructs a regular function/class
with the template parameters expanded. The following code will make the compiler
generate regular functions, as it utilizes templates:

auto valuei = int{42};
auto valuei_cubed = pow_n(valuei, 3);
auto valuef = float{42.42f};
auto valuef_squared = pow_n(valuef, 2);
auto valuef_const_squared = const_pow_n<2, float>(valuef);
auto valuef_const_cubed = const_pow_n<3, float>(valuef);

Thus, when compiled, as distinguished from regular functions, the compiler will generate
new functions for every template parameter. This means that it is the equivalent of
manually creating four different functions looking something like this:

auto pow_n__float(float v, int n) {...}
auto pow_n__int(int v, int n) {...}
auto const_pow_n__float_2(float v) {...}
auto const_pow_n__float_3(float v) {...}

This is important for understanding how metaprogramming works. The template code
generates non-templated C++ code, which is then executed as regular code. If the generated
C++ code does not compile, the error will be caught at compile time.

Review the templated version of pow_n(), and let's say, we want to prevent it from being
called with negative exponents (the n value).

To prevent this in the runtime version, where n is a regular argument, we add a regular
runtime assertion. Now, if the function is called with a negative value for n, the program
will break:

template <typename T>
auto pow_n(const T& v, int n) {
  assert(n >= 0); // Only works for positive numbers
  auto product = T{1};
  for(int i = 0; i < n; ++i) {
    product *= v;
  }
  return product;
}
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Using static_assert to trigger errors at compile
time
If we do the same to the template version, we can utilize static_assert(). The
static_assert() declaration, unlike a regular assert, will refuse to compile if the
condition isn't fulfilled. So, it's better to break the build than to break at runtime. In the
following example, if the template parameter N is a negative number,
static_assert() will prevent the function from compiling:

template <typename T, int N>
auto const_pow_n(const T& v) {
  static_assert(N >= 0, "N must be positive");
  auto product = T{1};
  for(int i = 0; i < N; ++i) {
    product *= v;
  }
  return product;
}

auto x = const_pow_n<5>(2); // Compiles, N is positive
auto y = const_pow_n<-1>(2); // Does not compile, N is negative

In other words, with regular variables, the compiler is only aware of the type and has no
idea what it contains. With compile-time values, the compiler knows both the type and the
value. This allows the compiler to calculate other compile-time values.

Type traits
When doing template metaprogramming, you may often find yourself in situations where
you need information about the types you are dealing with at compile time. Since the result
of metaprogramming is the generated C++ code, the generated C++ code needs to be correct.
This is, of course, never the case for traditional functions, as they only deal with specified
types.

Type trait categories
There are two categories of type traits:

Type traits that return information about a type as a boolean or an integer value
Type traits that return a new type
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The first category returns true or false depending on the input and ends with _v (short
for value).

The _v postfix has been added in C++17. If your STL implementation does
not provide _v postfixes for type traits, then you can use the older version,
std::is_floating_point<float>::value. In other words, remove
the _v extension and add ::value at the end.

Here are some examples of compile-time type checking using type traits: 

auto same_type = std::is_same_v<uint8_t, unsigned char>;
auto flt = 0.3f;
auto is_float_or_double = std::is_floating_point_v<decltype(flt)>;
class Parent {};
class Child : public Parent {};
class Infant {};
static_assert(std::is_base_of_v<Child, Parent>, "");
static_assert(!std::is_base_of_v<Infant, Parent>, "");

The second category returns a new type and ends with _t (short for type):

// Examples of type traits which transforms types
using value_type = std::remove_pointer_t<int*>; // value_type is an "int"
using ptr_type = std::add_pointer_t<float>; // ptr_type is a"float*"

Using type traits
In order to extract information about template types, the STL provides a type traits library,
available in the <type_traits> header. All type traits are evaluated at compile time. For
example, this function, which returns 1 if the value is zero or above and -1, otherwise, can 
immediately return 1 for unsigned integers as follows:

template <typename T>
auto sign_func(const T& v) -> int {
  if (std::is_unsigned_v<T>) {
    return 1;
  }
  return v < 0 ? -1 : 1;
}
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As they are evaluated at compile time, the compiler will generate codes as shown in the
following table when invoked with an unsigned and signed integer, respectively:

Used with an unsigned integer... ...generated function:
auto unsigned_v = uint32_t{32};
auto sign=sign_func(unsigned_v);

int sign_func(const uint32_t& v){
  if (true) {
    return 1;
  }
  return v < 0 ? -1 : 1;
}

Used with a signed integer... ...generated function:
auto unsigned_v=int32_t{32};
auto sign=sign_func(unsigned_v);

int sign_func(const int32_t& v){
  if (false) {
    return 1;
  }
  return v < 0 ? -1 : 1;
}

Receiving the type of a variable with decltype
The decltype keyword is used to retrieve the type of a variable and is used when an
explicit type name is not available.

Sometimes, an explicit type name is not available, only the variable name is available. For
example, polymorphic lambda functions (lambdas with auto as a parameter) do not name the
type (as opposed to templated functions, where the type name has its own parameter):

Regular template function Lambda function

Here, the type of v is visible as T:
template <typename T>
auto square_func(const T& v){
  return v * v;
}

Here, the type of v is not visible, as it is only
denoted as auto:
auto square_func_lbd=[](auto v){
  return v * v;
};
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Take the previous sign function; if we would like to rewrite it as a lambda function, we
would have to extract the type of the variable via decltype.

Be aware, though, that there is a glitch here. The variable v is actually a reference and,
therefore, we have to get the referenced-to type. This is achieved by using the type
trait, std::remove_reference_t, which returns a type with the reference attribute
removed, as follows:

auto sign_func = [](const auto& v) -> int {
  using ReferenceType = decltype(v);
  using ValueType = std::remove_reference_t<ReferenceType>;
  if (std::is_unsigned_v<ValueType>) {
    return 1;
  }
  return v < 0 ? -1 : 1;
};

The decltype keyword not only retrieves the type of a variable but can also be used on an
expression in order to retrieve the type the expression returns.

This example takes any range or container and converts it to a vector. To determine the type
of the values in the vector, the type returned by the begin() function of the container is
utilized:

template <typename Range>
auto to_vector(const Range& r) {
  using IteratorType = decltype(r.begin());
  using ReferenceType = decltype(*IteratorType());
  using ValueType = std::decay_t<ReferenceType>;
  return std::vector<ValueType>(r.begin(), r.end());
}

Conditionally enable functions based on types
with std::enable_if_t
The std::enable_if_t type trait is used for function overloading when dealing with a
template function. While regular function overloading requires you to overload a function
for every type you intend to use it with, std::enable_if_t uses a compile-time predicate
for overloading.



Metaprogramming and Compile-Time Evaluation Chapter 8

[ 201 ]

Let's say we'd like to create an interpolate function, which mixes two values weighted by a
power parameter from zero to one:

Illustration of interpolation function

As the power must be a decimal number, the function only works with floats and doubles.
Using regular function overloading, we have to create two functions, one for floats and one
for doubles:

auto interpolate(float left, float right, float power) {
  return left * (1 - power) + right * power;
}
auto interpolate(double left, double right, double power) {
  return left * (1 - power) + right * power;
}

If we template this function, we need to disallow its use for integers, as integers cannot hold
decimal numbers. In order to prevent the user from accidentally calling the function with an
integer type, std::enable_if_t is used to make the function visible only when a certain
condition is fulfilled. In this case, the condition is that it is used with a floating point type.

The syntax for std::enable_if_t may seem a bit odd, but its syntax is as follows:

It is used as a return type
The first templated parameter is the condition
The second parameter is the returned value if the condition is fulfilled

As seen in the following code snippet, std::enable_if_t is used as the return value of
the function that it is intended to enable:

template <typename T>
auto interpolate(T left, T right, T power)
-> std::enable_if_t<std::is_floating_point_v<T>, T> {
  return left * (1 - power) + right * power;
}
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If this function is called with a non-floating point type, the code will not compile, as the
function only exists for floating points.

The preceding interpolation code can be implemented with only one
multiplication, thereby achieving a slightly better performance, as follows:
auto interpolated = left +(right-left) * power;

The one used in the examples is just for better readability.

Introspecting class members with
std::is_detected

At the time of writing this book, std::is_detected is currently located
in the standard library extensions, but we think it is far too important to
ignore in this chapter. If you are using GCC or Clang, it's currently located
in <experimental/type_traits> and exists in the
std::experimental namespace. 

The is_detected type trait is used to detect if a class contains a particular member. Let's
take a look at how it is used to detect whether a class has a particular member function by
name. If the member function exists, the value of the returned type is true; otherwise, it's
false.

Here are two completely different classes:

struct Octopus {
  auto mess_with_arms() {}
};
struct Whale {
  auto blow_a_fountain() {}
};

Using std::is_detected, we can ask the compiler what operations are achievable on the
class, as follows:

#include <experimental/type_traits>
template <typename T>
using can_mess_with_arms = decltype(&T::mess_with_arms);
template <typename T>
using can_blow_a_fountain = decltype(&T::blow_a_fountain);

auto fish_tester() {
  namespace exp = std::experimental;
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  // Octopus
  static_assert(exp::is_detected<can_mess_with_arms, Octopus>::value, "");
  static_assert(!exp::is_detected<can_blow_a_fountain, Octopus>::value,"");

  // Whale
  static_assert(!exp::is_detected<can_mess_with_arms, Whale>::value, "");
  static_assert(exp::is_detected<can_blow_a_fountain, Whale>::value, "");
}

As you can see in the example, we have to declare typedef to the member function we are
detecting. The reason for this is that is_detected technically looks for a compile-time
error, but instead of failing when the function being searched for is missing, it simply
returns false. This means that is_detected can not only check for member functions but
can also check for member typedefs or member variables. Here is how we would perform
these checks:

struct Shark { using fin_type = float; };
struct Eel { int electricity_{}; };

template <typename T> using has_fin_type = typename T::fin_type;
template <typename T> using has_electricity = decltype(T::electricity_);

auto shark_and_shrimp_tester() {
  namespace exp = std::experimental;
  // The shark has a fin type but no electricity
  static_assert(exp::is_detected<has_fin_type, Shark>::value, "");
  static_assert(!exp::is_detected<has_electricity , Shark>::value, "");
  // The eel has electricity but no fins
  static_assert(exp::is_detected<has_electricity , Eel>::value, "");
  static_assert(!exp::is_detected<has_fin_type, Eel>::value, "");
}

Usage example of is_detected and enable_if_t
combined
As is_detected::value is a compile-time Boolean, is_detected can be combined with
enable_if_t to enable a certain function for classes that contain a particular member
function.
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For example, we can implement a generic print function that can print both the
to_string() method and the name_ member variable, depending on what the printed
class has implemented:

namespace exp = std::experimental;
template<typename T> using has_to_string = decltype(&T::to_string);
template<typename T> using has_name_member = decltype(T::name_);

// Print the to_string() function if it exists in class
template <
 typename T,
 bool HasToString = exp::is_detected<has_to_string,T>::value,
 bool HasNameMember = exp::is_detected<has_name_member,T>::value
>
auto print(const T& v)
-> std::enable_if_t<HasToString && !HasNameMember> {
  std::cout << v.to_string() << '\n';
}

// Print the name_ member variable if it exists in class
template <
 typename T,
 bool HasToString = exp::is_detected<has_to_string, T>::value,
 bool HasNameMember = exp::is_detected<has_name_member, T>::value
>
auto print(const T& v)
-> std::enable_if_t<HasNameMember && !HasToString> {
  std::cout << v.name_ << '\n';
}

Test the methods with two classes, where one contains a to_string() method and the
other one contains a name_ member variable:

struct Squid {
  auto to_string() const { return std::string{"Steve the Squid"}; }
};
struct Salmon {
  Salmon() : name_{"Jeff the Salmon"} {}
  std::string name_{};
};

auto fish_printer() {
  print(Squid{}); // Prints "Steve the Squid"
  print(Salmon{}); // Prints "Jeff the Salmon"
}
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The constexpr keyword
The constexpr keyword tells the compiler that a certain function is intended to be
evaluated at compile time if all the conditions allowing for compile-time evaluation are
fulfilled. Otherwise, it will execute at runtime, like a regular function.

A constexpr function has a few restrictions; it is not allowed to do the following:

Allocate memory on the heap
Throw exceptions
Handle local static variables
Handle thread_local variables
Call any function, which, in itself, is not a constexpr.

Back in C++11, constexpr functions were only allowed to contain a single
return statement, requiring the programmer to resort to recursion for more
advanced constexpr functions; however, in C++14 this restriction has
been removed. The constexpr functions may now contain several
statements, declare variables, and even mutate variables.

With the constexpr keyword, writing a compile-time evaluated function is as easy as
writing a regular function, as its parameters are regular parameters instead of template
parameters.

Consider the following constexpr function:

constexpr auto sum(int x, int y, int z) { return x + y + z; }

Let's call the function like this:

const auto value = sum(3, 4, 5);

In this case, the compiler will generate the following regular C++ code:

const auto value = 12;

This is then compiled to machine code as usual. In other words, the compiler evaluates a
constexpr function and generates regular C++ code where the result is calculated.
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Constexpr functions in a runtime context
In the previous example, the summed values, (3, 4, 5), were known to the compiler at
compile time, but how do constexpr functions handle variables whose values are not
known until runtime? As mentioned in the previous section, constexpr is an indicator to the
compiler that a function, under certain conditions, can be evaluated at compile time. If
variables with values unknown till runtime are invoked, they will be evaluated just like
regular functions.

In the following example, the values of x, y, and z are provided from the user at runtime,
and therefore, it would be impossible for the compiler to calculate the sum at compile time:

int x, y, z;
std::cin >> x >> y >> z; // Get user input
auto value = sum(x, y, z);

Verify compile-time computation using
std::integral_constant
To verify that constexpr is evaluated at compile time, you can
use std::integral_constant. The integral constant is a template class that takes an
integer type and an integer value as template parameters. From these, it generates a new
class representing a number. If the compiler cannot evaluate the integer value at compile
time, it won't compile. The value of the class is then accessed via the static field value of
std::integral_constant.

Here is an example of compile-time integral values versus runtime integral values:

const auto ksum = std::integral_constant<int, sum(1,2,3)>;

auto func() -> void {
  // This compiles as the value of sum is evaluated at compile time
  const auto sum_compile_time = std::integral_constant<int,sum(1,2,3)>;
  int x, y, z;
  std::cin >> x >> y >> z;
  // Line below will not compile, the compiler cannot determine which value
  // the integral constant has at compile time
  const auto sum_runtime = std::integral_constant<int, sum(x, y, z)>;
}
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The if constexpr statement
The if constexpr statement allows template functions to evaluate different scopes in the
same function at compile time (also called compile-time polymorphism). Take a look at the
following example, where a template function called speak() tries to differentiate member
functions depending on the type:

struct Bear { auto roar() const { std::cout << "roar"; } };
struct Duck { auto quack() const { std::cout << "quack"; } };

template <typename Animal>
auto speak(const Animal& a) {
  if (std::is_same_v<Animal, Bear>) { a.roar(); }
  else if (std::is_same_v<Animal, Duck>) { a.quack(); }
}

Let's say, we compile the following lines:

auto bear = Bear{};
speak(bear);

The compiler will then generate a speak() function similar to this:

auto speak(const Bear& a) {
  if (true) { a.roar(); }
  else if (false) { a.quack(); } // This line will not compile
}

As you can see, the compiler will keep the call to the member function, quack(), which will
then fail to compile, as Bear does not contain a quack() member function. This happens
even though the quack() member function will never be executed due to the else if
(false) statement.

In order to make the speak() function compile regardless of the type, we need to inform it
that we'd like to completely ignore the scope for which the if statement is false.
Conveniently, this is exactly what if constexpr does.

Here is how we can write the speak() function with the ability to handle both Bear and
Duck, even though they do not have share a common interface:

template <typename Animal>
auto speak(const Animal& a) {
  if constexpr (std::is_same_v<Animal, Bear>) { a.roar(); }
  else if constexpr (std::is_same_v<Animal, Duck>) { a.quack(); }
}



Metaprogramming and Compile-Time Evaluation Chapter 8

[ 208 ]

When speak() is invoked with Animal == Bear...

auto bear = Bear{};
speak(bear);

...the compiler generates the following function:

auto speak(const Bear& animal) { animal.roar(); }

When speak() is invoked with Animal == Duck...

auto duck = Duck{};
speak(duck);

...the compiler generates the following function:

auto speak(const Duck& animal) { animal.quack(); }

If speak() is invoked with any other primitive type, such as Animal == int...

speak(42);

...the compiler generates an empty function:

auto speak(const int& animal) {}

Unlike a regular if statement, the compiler will now be able to generate two different
functions when invoked; one where if constexpr is true and another one where it is
false. Actually, it may be able to generate a third function; if the Animal type is neither
Bear nor Duck, it will just be an empty function.

Comparison with runtime polymorphism
As a side note, if we were to implement the previous example with traditional runtime
polymorphism, using inheritance and virtual functions to achieve the same functionality,
the implementation would look like the code example below:

struct AnimalBase {
  virtual ~AnimalBase() {}
  virtual auto speak() const -> void {}
};
struct Bear : public AnimalBase {
  auto roar() const { std::cout << "roar"; }
  auto speak() const override -> void { roar(); }
};
struct Duck : public AnimalBase {
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  auto quack() const { std::cout << "quack"; }
  auto speak() const override -> void { quack(); }
};
auto speak(const AnimalBase* a) {
  a->speak();
}

The objects have to be accessed using pointers or references, and the type is inferred at
runtime, which results in a performance loss compared with the compile-time version,
where everything is available when the application executes.

Example of generic modulus function using if constexpr
This example is similar to the previous example, but this time we will see how to
distinguish between operators and global functions. In C++, the % operator is used to get
the modulus of integers while std::fmod() is used for floating point types. We'd like to
generalize our code base and create a generic modulus function called generic_mod().

If we would implement generic_mod() with a regular if statement...

template <typename T>
auto generic_mod(const T& v, const T& n) -> T {
  assert(n != 0);
  if (std::is_floating_point_v<T>) { return std::fmod(v, n); }
  else { return v % n; }
}

... it would fail if invoked with T == float as the compiler will generate the following
function, which will fail to compile:

auto generic_mod(const float& v, const float& n) -> float {
  assert(n != 0);
  if(true) { return std::fmod(v, n); }
  else { return v % n; } // Will not compile
}

Even though the application cannot reach it, the compiler will generate the line return v
% n; , which isn't compliant with float. The compiler doesn't care that the application
cannot reach it, as it cannot generate an assembly for it, it will fail to compile.
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As in the previous example, we change the if statement to a if constexpr statement:

template <typename T>
auto generic_mod(const T& v, const T& n) -> T {
  assert(n != 0);
  if constexpr (std::is_floating_point_v<T>) return std::fmod(v, n);
  else return v % n; // If T is a floating point, this line is eradicated
}

Now, when the function is invoked with a floating point type, it will generate the following
function where the v % n operation is eradicated:

auto generic_mod(const float& v, const float& n) -> float {
  assert(n != 0);
  return std::fmod(v, n);
}

Heterogeneous containers
Heterogenous containers, as opposed to regular homogenous containers, are containers
containing different types; that is, in homogenous containers, such as std::vector,
std::list, std::set, and so on, every element is of the same type. A heterogeneous
container is a container where elements may have different types.

Static-sized heterogenous containers
C++ comes with two heterogeneous containers, std::pair and std::tuple. As
std::pair is a subset of std::tuple with only two elements, we will only focus
on std::tuple.

The std::tuple container
The std::tuple is a statically sized heterogeneous container that can be declared to be of
any size. In contrast to std::vector, for example, its size cannot change at runtime; you
cannot add or remove elements.

A tuple is constructed with its member types explicitly declared like this:

auto tuple0 = std::tuple<int, std::string, bool>{};
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This will make the compiler generate a class which can roughly be viewed like this:

class Tuple {
public:
  int data0_{};
  std::string data1_{};
  bool data2_{};
};

As with many other classes in C++, std::tuple also has a corresponding
std::make_tuple function, which deduces the types automatically from the parameters:

auto tuple = std::make_tuple(42, std::string{"hi"}, true);

As you can see, using std::make_tuple, we can make the code a bit more readable (as
stated earlier, from C++17 and onward, many of these std::make_ functions are
superfluous, since C++17 classes can deduce these types from the constructor).

Accessing the members of a tuple
The individual elements of std::tuple can be accessed using the global
function, std::get<Index>(tuple). You may wonder why the members can't be
accessed like a regular container with the at(size_t index) member function. The
reason is that a member function such as at() is only allowed to return one type, whereas a
tuple consists of different types at different indices. Instead, the templated global function
std::get is used with the index as a template parameter:

auto number = std::get<0>(tuple);
auto str = std::get<1>(tuple);
auto boolean = std::get<2>(tuple);

We can imagine the std::get() function being implemented roughly like this:

template <size_t Index, typename Tuple>
auto& get(const Tuple& tpl) {
  if constexpr(Index == 0) { return tpl.data0_; }
  else if constexpr(Index == 1) { return tpl.data1_; }
}

This means that when we create and access a tuple like this:

auto tuple = std::make_tuple(42, true);
auto value = std::get<0>(tuple);
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The compiler roughly generates the following code:

// "make_tuple" and the Tuple class is generated first...
class Tuple {
  int data0_{};
  bool data1_{};
};
auto make_tuple(int v0, bool v1) { return Tuple{v0, v1}; }

// get<0>(Tuple) is then generated to something like this...
auto& get(const Tuple& tpl) { return idata_0; }
// The generated function is then utilized
auto tuple = make_tuple(42, true);
auto value = get(tuple);

Note that this example can merely be thought of as a simplistic way to imagine what the
compiler generates when constructing std::tuple; the interior of std::tuple is very
complex. Still, it is important to understand that an std::tuple class is basically a simple
struct whose members can be accessed by a compile-time index.

The std::get function can also use the typename as parameter. It is then
used like this:
auto number = std::get<int>(tuple);
auto str = std::get<std::string>(tuple);

This is only possible if the specified type is contained once in the tuple.

Iterating std::tuple
From a programmer's perspective it may seem that std::tuple can be iterated with a
regular range-based for loop, just like any other container, as follows:

auto tpl = std::make_tuple(1, true, std::string{"Jedi"});
for(const auto& v: tpl) { std::cout << v << " "; }

To be honest, I also think that most C++ programmers (including myself) have tried
something like this at some point only to notice that it isn't possible. The reason it is not
possible is that the type of const auto& v is only evaluated once, and since std::tuple
contains elements of different types, this code simply does not compile.

The same goes for regular algorithms, as iterators don't mutate the type pointed to;
therefore, std::tuple does not provide a begin() or end() member function.
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Unrolling the tuple
As tuples cannot be iterated as usual, what we need to do is to use metaprogramming to
unroll the loop. From the previous example, we want the compiler to generate something
like this:

auto tpl = std::make_tuple(1, true, std::string{"Jedi"});
std::cout << std::get<0>(tpl) << " ";
std::cout << std::get<1>(tpl) << " ";
std::cout << std::get<2>(tpl) << " ";
// Prints "1 true Jedi"

As you can see, we iterate every index of the tuple, and therefore, we need the number of
types/values contained in the tuple. Then, as the tuple contains different types, we need to
write a metafunction that generates a new function for every type in the tuple.

If we start with a function that generates the call for a specific index, it will look like this:

template <size_t Index, typename Tuple, typename Functor>
auto tuple_at(const Tuple& tpl, const Functor& func) -> void {
  const auto& v = std::get<Index>(tpl);
  func( v );
}

We can then combine it with a polymorphic lambda, as you learned in Chapter 2, Modern
C++ Concepts:

auto tpl = std::make_tuple(1, true, std:.string{"Jedi"});
auto func = [](const auto& v){ std::cout << v << " "; };
tuple_at<0>(tpl, func);
tuple_at<1>(tpl, func);
tuple_at<2>(tpl, func);
// Prints "1 true Jedi"

With the function tuple_at() in place, we can then move on to the actual iteration. The
first thing we need is the number of values in the tuple as a compile-time constant.
Fortunately, this value can be obtained by the type trait, std::tuple_size_v<Tuple>.
Using if constexpr, we can then unfold the iteration by creating a similar function, but
which takes different actions depending on the index:

If the index is equal to the tuple size, it generates an empty function1.
Otherwise, it executes the lambda at the passed index and generates a new2.
function with 1 added to the index.
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This is how the code will look:

template <typename Tuple, typename Functor, size_t Index = 0>
auto tuple_for_each(const Tuple& tpl, const Functor& f) -> void {
  constexpr auto tuple_size = std::tuple_size_v<Tuple>;
  if constexpr(Index < tuple_size) {
    tuple_at<Index>(tpl, f);
    tuple_for_each<Tuple, Functor, Index+1>(tpl, f);
  }
}

As you can see, the default index is set to zero so that we don't have to specify it when
iterating. This tuple_for_each() function can then be called like this, with the lambda
directly in place:

auto tpl = std::make_tuple(1, true, std:.string{"Jedi"});
tuple_for_each(tpl, [](const auto& v){ std::cout << v << " "; });
// Prints "1 true Jedi"

Quite nice; syntactically, it looks pretty similar to the std::for_each() algorithm.

Implementing other algorithms for tuples
Expanding upon tuple_for_each(), different algorithms iterating a tuple can be
implemented in a similar manner. Here is an example of how any_of() for tuples is
implemented:

template <typename Tuple, typename Functor, size_t Index = 0>
auto tuple_any_of(const Tuple& tpl, const Functor& f) -> bool {
  constexpr auto tuple_size = std::tuple_size_v<Tuple>;
  if constexpr(Index < tuple_size) {
    bool success = f(std::get<Index>(tpl));
    return success ?
      true:
      tuple_any_of<Tuple, Functor, Index+1>(tpl, f);
  } else {
    return false;
  }
}
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It can then be used like this:

auto tuple = std::make_tuple(42, 43.0f, 44.0);
auto has_44 = tuple_any_of(tuple, [](auto v){ return v == 44; });

The tuple_any_of tuple iterates through every type in the tuple and generates a lambda
function for the element at the current index, which it then compares with 44. In this
case, has_44 will evaluate to true, as the last element, a double value, is 44. If we add an
element of a type that is not comparable with 44, such as std::string, we will get a
compilation error.

Accessing tuple elements
Prior to C++17, there were two standard ways of accessing elements of a std::tuple:

For accessing single elements,  the static function std::get<N>(tuple) was
used.
For accessing multiple elements, the static function std::tie() was used.

Although they both worked, the syntax was for performing such a simple task was very
verbose, as shown in the following example:

// Prerequisite
auto make_bond() { return std::make_tuple(std::string{"James"}, 7, true) }

// Using std::get<N>
auto tpl = make_bond();
auto name = std::get<0>(tpl);
auto id = std::get<1>(tpl);
auto kill_license = std::get<2>(tpl);
std::cout << name << ", " << id << ", " << kill_license << '\n';
// Output: James, 7, true

// Using std::tie
auto name = std::string{};
auto id = int{};
auto kill_license = bool{};
std::tie(name, agent_id, kill_license) = make_bond();
std::cout << name << ", " << id << ", " << kill_license << '\n';
// Output: James, 7, true
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Structured bindings
In order to being able to perform this common task elegantly, structured bindings were
introduced in C++17. Using structured bindings, multiple variables can be initialized at once
using auto and a bracket initializer list. As with the auto keyword in general, you can
apply control over whether the variables should be mutable references, forward references,
const references, or values by using the corresponding modifier. In the following example a
structured binding of const references is constructed:

const auto& [name, id, kill_license] = make_bond();
std::cout << name << ", " << id << ", " << kill_license << '\n';
// Output: James, 7, true

Structured bindings can also be used to extract the individual members of a tuple in a for
loop, as follows:

auto agents = {
  std::make_tuple("James", 7, true),
  std::make_tuple("Nikita", 108, false)
};
for(auto&& [name, id, kill_license]: agents) {
   std::cout << name << ", " << id << ", " << kill_license << '\n';
}

// Output
James, 7, true
Nikita, 108, false

Here's a quick hint. If you want to return multiple arguments with named variables instead
of tuple indices, it is possible to return a struct defined inside a function and use automatic
return type deduction:

auto make_bond() {
  struct Agent{std::string name_; int id_; bool kill_license_;}
  return Agent{"James", 7, true};
}
auto b = make_bond();
std::cout
  << b.name_ << ", "
  << b.id_ << ", "
  << b.kill_license_ << '\n';
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The variadic template parameter pack
The variadic template parameter packs enables programmers to create template functions
that can accept any number of arguments.

An example of a function with variadic number of arguments
If we were to create a function that makes a string out of any number of arguments without 
variadic template parameter packs, we would have to create a separate function for every
number of arguments:

// Makes a string of by one argument
template <typename T0>
auto make_string(const T0& v0) -> std::string {
  auto sstr = std::ostringstream{};
  sstr << v0;
  return sstr.str();
}
// Makes a string of by two arguments
template <typename T0, typename T1>
auto make_string(const T0& v0, const T1& v1) -> std::string {
   return make_string(v0) + " " + make_string(v1);
}
// Makes a string of by three arguments
template <typename T0, typename T1, typename T2>
auto make_string(const T0& v0, const T1& v1, const T2& v2) -> std::string {
  return make_string(v0, v1) + " " + make_string(v2);
}
// ... and so on for as many parameters we might need

This is the intended use of our function:

auto str0 = make_string(42);
auto str1 = make_string(42, "hi");
auto str2 = make_string(42, "hi", true);

If we require a large number of arguments, this becomes tedious, but with a parameter
pack, we can implement this as a function that accepts an arbitrary number of arguments.
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How to construct a variadic parameter pack
The parameter pack is identified by putting three dots in front of the type name, and three
dots after the variadic argument expands the pack, with a comma in between:

Here's the syntactic explanation:

Ts is a list of types
The <typename ...Ts&> function indicates that the function deals with a list
The values... function expands the pack such that a comma is added between
every type

To put it into code, consider this expand_pack function:

template <typename ...Ts>
auto expand_pack(const Ts& ...values) {
   auto tuple = std::tie(values...);
}

Let's call the preceding function like this:

expand_pack(42, std::string{"hi"});

In that case, the compiler will generate a function similar to this:

auto expand_pack(const int& v0, const std::string& v1) {
  auto tuple = std::tie(v0, v1);
}

This is what the individual parameter pack parts expand to:

Expression: Expands to:

template <typename... Ts> template <typename T0, typename T1>

expand_pack(const Ts& ...values)
expand_pack(const T0& v0, const T1&
v1)

std::tie(values...) std::tie(v0, v1)

Now, let's see how we can create a make_string function with a variadic parameter pack.
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Going further with the initial make_string function, in order to create a string out of every
parameter, we need to iterate the pack. There is no way to directly iterate a parameter pack,
but a simple workaround would be to make a tuple out of it and, then, iterate it with the
tuple_for_each function, as follows:

template <typename ...Ts>
auto make_string(const Ts& ...values) {
  auto sstr = std::ostringstream{};
  // Create a tuple of the variadic parameter pack
  auto tuple = std::tie(values...);
  // Iterate the tuple
  tuple_for_each(tuple, [&sstr](const auto& v){ sstr << v; });
  return sstr.str();
}

We converted the parameter pack to a tuple with std::tie() and, then, iterated it with
tuple_for_each.

Dynamic-sized heterogenous containers
As seen in the preceding section, std::tuple is a heterogenous container with a fixed size
and fixed element positions, more or less, like a regular struct but without named member
variables.

How can we expand upon this to create a container with a variable size (such
as std::vector, std::list, and so on) but with the ability to store different types?
As the size of the container changes at runtime, we cannot use compile-time programming
to generate code.

Using std::any as the base for a dynamic-size
heterogenous container

Note that std::any was added in C++17; if your compiler does not
include std::any, you can use boost::any from the Boost Library
instead.
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The simplest solution is to use std::any as the base type. The std::any object can store
any type of value in it:

auto container = std::vector<std::any>{42, "hi", true};

It has some drawbacks, though; every time a value in it is accessed, the type must be tested
for at runtime. In other words, we completely lose the type information of the stored value
at compile time. Rather, we have to rely on runtime type checks for the information.

If we would like to iterate our container, we need to explicitly ask every std::any object if
you are an int, do this, if you are a char pointer, do that. This is not desirable, as it requires
repeated source code, and it is also less efficient than using other alternatives, which we will
describe later in the chapter.

The following example compiles; the type is explicitly tested for and casted upon:

for(const auto& a: container) {
  if(a.type() == typeid(int)) {
    const auto& value = std::any_cast<int>(a);
    std::cout << value;
  }
  else if(a.type() == typeid(const char*)) {
    const auto& value = std::any_cast<const char*>(a);
    std::cout << value;
  }
  else if(a.type() == typeid(bool)) {
    const auto& value = std::any_cast<bool>(a);
    std::cout << value;
  }
}

We simply cannot print it with a regular stream operator, since the std::any object has no
idea of how to access its stored value. Therefore, the following code does not compile; the
compiler does not know what is in std::any:

for(const auto& a: container) {
  std::cout << a; // Will not compile
}
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The std::variant
If we can trade off the ability to store any type in the container and, rather, concentrate on a
fixed set of types declared at the container initialization, then std::variant is a better
choice.

The std::variant has two main advantages over std::any:

It does not store its contained type on the heap (unlike std::any)
It can be invoked with a polymorphic lambda, meaning you don't explicitly have
to know its currently contained type (more about this in the later sections of this
chapter)

The std::variant  works in a somewhat similar manner to a tuple, except that it only
stores one object at a time. The contained type and value is the type and value you assigned
it last. Look at the following image:

Tuple of types versus variant of types

Here's an example of std::variant usage:

using VariantType = std::variant<int, std::string, bool>;
auto v = VariantType{}; // The variant is empty
v = 7; // v holds an int
v = std::string{"Bjarne"}; // v holds a std::string, the integer is
overwritten
v = false; // v holds a bool, the std::string is overwritten
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Visiting variants
When accessing variables in the std::variant, we use the global function std::visit().
As you might have guessed, we have to use our main companion when dealing with
heterogeneous types; the polymorphic lambda:

std::visit(
  [](const auto& v){ std::cout << v; },
  my_variant
);

The compiler then generates a regular C++ of the lambda, for every type contained in the
variant. Thus, when invoking std::visit() with the lambda and variant type in the
example, the compiler would generate code roughly similar to the following snippet where
the polymorphic lambda is converted to a regular class with operator() overloads for
every type in the variant

Note that as very complex code are involved in expanding both a
polymorphic lambda and the std::visit(), this piece of code is heavily
simplified. Still it gives a clear view of what happens when you invoke
std::visit().

struct FunctorImpl {
  auto operator()(const int& v) { std::cout << v; }
  auto operator()(const std::string& v) { std::cout << v; }
  auto operator()(const bool& v) { std::cout << v; }
};

The std::visit function is expanded to an if...else chain corresponding to the types
in the lambda:

auto visit_impl(FunctorImpl f, const VariantType& v) {
  if(std::holds_alternative<int>(v)) {
    return f(std::get<int>(v));
  }
  else if(std::holds_alternative<std::string>(v)) {
    return f(std::get<std::string>(v));
  }
  else if(std::holds_alternative<bool>(v)) {
    return f(std::get<bool>(v));
  }
}
// The actual function call
visit_impl(FunctorImpl(), my_variant);
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The size of the variant is equal to the largest object type declared as its
member, in the preceding example it would be the
sizeof(std::string).

Heterogenous container of variants
Now that we have a variant which can store any type of a provided list, we can expand
upon this to a heterogeneous container. We do this by simply creating a std::vector of
our variant.

using VariantType = std::variant<int, std::string, bool>;
auto container = std::vector<VariantType>{};

We can now push elements of different types to our vector:

container.push_back(false);
container.push_back(std::string{"I am a string"});
container.push_back(std::string{"I am also a string"});
container.push_back(13);

The vector will now look like this in memory, where every element in the vector has the size
of the variant, in this case sizeof(std::string):

Vector of variants

Of course, we can also pop_back(), or modify the container in any other way the container
allows.

container.pop_back();
std::reverse(container.begin(), container.end());
// etc...
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Accessing the values in our variant container
Now that we have the boilerplate for a heterogeneous container of dynamic size, let's see
how we can use it like a regular std::vector:

Construct a heterogeneous container of variants: Here we construct a1.
std::vector with different types, note that the initializer list contains different
types:

    using VariantType = std::variant<int, std::string, bool>;
    auto c = std::vector<VariantType> { 42, std::string{"needle"}, true };

Print the content by iterating with a regular for loop: To iterate the container2.
with a regular for-loop we utilize std::visit() and a polymorphic lambda.
The global function std::visit() takes care of the type conversion. The
example prints each value to std::cout, independent of the type:

    for (const auto& val: c) {
      std::visit([](const auto& v){ std::cout << v << '\n';}, val);
    }

Inspect what types are in the container: Here we inspect each element of the3.
container by type. This is achieved by using the global function
std::holds_alternative<type>, which returns true if the variant currently
holds the type asked for. The example counts the number of booleans currently
contained in the container:

    auto num_bools = std::count_if(c.begin(), c.end(),
      [](const auto& v){
        return std::holds_alternative<bool>(v);
      }
    );

Find content by both contained type and value: In this example we inspect the4.
container both for type and the value by combining std::holds_alternative
and std::get:

The example inspects if the container contains a std::string with the value
"needle".

    auto contains_needle_string = std::any_of(
      c.begin(),
      c.end(),
      [](const auto& v){
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        return
          std::holds_alternative<std::string>(v) &&
          std::get<std::string>(v) == "needle";
      }
    );

Global function std::get
The global function std::get can be used for all of std::tuple, std::pair,
std::variant and std::array.

 std::get<Index>

When std::get is used with an index, as in std::get<1>(v) it returns the value at the
corresponding index in a std::tuple, std::pair, or std::array.

std::get<Type>

When std::get is used with a type, as in std::get<int>(v) , the corresponding value in
a std::tuple, std::pair or std::variant is returned.
In the case of std::variant, an exception is thrown if the variant doesn't currently hold
that type. Note that if v is a std::tuple and Type is contained more than once, you have
to use the index to access the type.

Real world examples of metaprogramming
Advanced metaprogramming can appear to be very academic, so in order to demonstrate
its usefulness we'd like to provide some examples which not only demonstrate the syntax of
metaprogramming, but how it can be used in practice.

Example 1 – Reflection
The term reflection is the ability to inspect a class without knowing anything about its
content. 

In this case we are going to limit the reflection to give classes the ability to iterate their
members just like we can iterate the members of a tuple. By using reflection we can create
generic functions for serialization or logging which automatically works with any class.
This reduces large amounts of boiler plate code traditionally required for classes in C++.
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Making a class reflect its members
In contrast to many other programming languages, C++ does not have built in reflection,
which means we have to write the reflection functionality ourselves. In this case we simply
expose the member variables via a member function called reflect() which simply
returns a tuple of references to the member variables by invoking std::tie.

class Town {
public:
  Town(size_t houses, size_t settlers, const std::string& name)
  : houses_{houses}, settlers_{settlers}, name_{name} {}
  auto reflect() const {return std::tie(houses_, settlers_, name_);}
private:
  size_t houses_{};
  size_t settlers_{};
  std::string name_{};
};

C++ libraries which simplifies reflection
There are quite a few attempts in the C++ library world to simplify the creation of reflection.
One example is the meta-programming library Boost Hana by Louis Dionne which gives
classes reflection capabilities via a simple macro. Recently, Boost has also added the Precise
and Flat reflection by Anthony Polukhin, which automatically reflects public content of classes,
as long as all members are simple types. 

However, for clarity, in this example we will only use our own  reflect() member
function.

Using the reflection
Now that the Town class has the ability to reflect its member variables, we can automate the
creation of bulk functionality which would otherwise require us to retype every member
variable. As you know, C++ automatically generates constructors and assignment operators,
but other common operators, such as equality (operator==) and less than (operator<) are
required to be implemented by the programmer.

class Town {
  ...
  auto operator==(const Town& t) const {return reflect()==t.reflect();}
  auto operator<(const Town& t) const {return reflect()<t.reflect();}
  ...
};
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In addition to member functions, another bulk function in C++ is to print its content to a
stream in order to print its content to a file, or more commonly, log it in an application log.

By overloading operator<< and using the tuple_for_each() function we learned
earlier, we can simplify the creation of std::ostream output for a class like this:

auto& operator<<(std::ostream& ostr, const Town& t) {
  tuple_for_each(t.reflect(), [&ostr](const auto& m){
    ostr << m << " ";
  });
  return ostr;
}

Now the class can be used with any std::ostream type like this:

auto v = Town{34, 68, "Shire"};
std::cout << v;
// Prints "34 68 Shire"

Quite neat; by reflecting our class members via a tuple we only have to update our reflect
function when members are added/removed from our class, instead of updating every
function iterating all member variables.

Evaluating the assembler output of the reflection
To ensure that we do not lose any runtime performance, let's compare the assembler output
of our Town class with an equal class where the operator== operator has been handcrafted
like this:

auto operator==(const Town& t) const {
  return
    houses_ == t.houses_ &&
    settlers_ == t.settlers_ &&
    name_ == t.name_;
}
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Then, we create a simple function which takes two towns as references and returns the
result of the comparison:

auto compare_towns(const Town& t0, const Town& t1) {
  return t0 == t1;
}

Inspecting the generated assembler output (in this case from GCC 6.3 with optimization
level 3), we see that the generated assembler is exactly the same:

Handcrafted operators and reflected operators results in same assembler

With this in our mind, we can rest assured that the reflection approach doesn't cost us any
runtime performance.

Conditionally overloading global functions
Now that we have a mechanism to write bulk functions using reflection rather than
manually typing each variable, we still need to type the simplified bulk functions for every
type. What if we wanted these functions to be generated for every type which is reflectable?
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In other words, every type which has the reflect() member function should also have
operator==, operator< and the global std::stream& operator. First of all, operator==
and operator< need to be moved from being member functions to global functions;
fortunately C++ allows these functions to be member functions or global functions.

Secondly, in order to enable these functions only for classes that have a reflect() member
function, we need to conditionally enable them using a combination of
std::experimental::is_detected and std::enable_if_t.

First, following the procedure learned with is_detected, we create a typedef referring to
the reflect() member function:

#include <experimental/type_traits>
template <typename T>
using has_reflect_member = decltype(&T::reflect);

Then we create a template based bool called is_reflectable_v that is true if the class
contains the member reflect():

namespace exp = std::experimental;
template <typename T>
constexpr bool is_reflectable_v =
  exp::is_detected<has_reflect_member, T>::value;

Of course, this test only checks if a class has a member named reflect(), it does not
assure that it has no parameters, nor that it returns a tuple. Anyhow, we can now overload
the three functions in the global namespace, giving all reflectable classes the ability to be
compared and printed to a std::ostream:

// Global equal operator for reflectable types
template <typename T, bool IsReflectable = is_reflectable_v<T>>
auto operator==(const T& a, const T& b)
-> std::enable_if_t<IsReflectable, bool> {
  return a.reflect() == b.reflect();
}

// Global not-equal operator for reflectable types
template <typename T, bool IsReflectable = is_reflectable_v<T>>
auto operator!=(const T& a, const T& b)
-> std::enable_if_t<IsReflectable, bool> {
  return a.reflect() != b.reflect();
}

// Global less-than operator for reflectable types
template <typename T, bool IsReflectable = is_reflectable_v<T>>
auto operator<(const T& a, const T& b)
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-> std::enable_if_t<IsReflectable , bool> {
  return a.reflect() < b.reflect();
}

// Global std::ostream output for reflectable types
template <typename T, bool IsReflectable = is_reflectable_v<T>>
auto operator<<(std::ostream& ostr, const T& v)
-> std::enable_if_t<IsReflectable, std::ostream&> {
  tuple_for_each(v.reflect(), [&ostr](const auto& m) {
    ostr << m << " ";
  });
  return ostr;
}

As explained in the section about std::enable_if_t , the functions above will only exist
for types which contain the reflect() member function, and will therefore not collide
with any other overload.

Testing reflection capabilities
Now we have everything in place:

The Town class we will test has a reflect member function returning a tuple of
references to its members
The equality and less than comparison functions are enabled for all reflectable
types
The global std::ostream& operator<< is overloaded for reflectable types

Here is a simple test which verifies the functionality:

auto town_tester() {
  auto shire = Town{100, 200, "Shire"};
  auto mordor = Town{1000, 2000, "Mordor"};
  // Prints "100 200 Shire" using reflection
  std::cout << shire;
  // Prints "1000 2000 Mordor" using reflection
  std::cout << mordor;
  // Compares mordor and shire using reflection
  auto is_same = shire == morder;
  assert(!is_same);
}
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Quite nice, isn't it? With these capabilities in place we are relieved from writing them for
every class in our code base. For the sake of it, let's compare the Town class side by side with
a Town class without reflection capabilities:

Handcrafted operators Rely on reflection for operators
class Town {
public:
 Town(
   size_t houses,
   size_t settlers,
   std::string name)
 : houses_{houses}
 , settlers_{settlers}
 , name_{name} {}
 auto operator==(const Town&t)const{
   return houses_ == t.houses_ &&
          settlers_ == t.settlers_&&
          name_ == t.name_;
 }
 auto operator!=(const Town&t)const{
   return !(*this == t);
 }
 auto operator<(const Town& t)const{
   auto a = std::tie(houses_,
     settlers_, name_);
   auto b = std::tie(t.houses_,
     t.settlers_, t.name);
   return a < b;
 }
 size_t houses_{};
 size_t settlers_{};
 std::string name_{};
};
auto operator<<(
  std::ostream& ostr, const Town& t
) -> std::ostream& {
  ostr << t.houses_ << " ";
  ostr << t.settlers_ << " ";
  ostr << t.name_ << " ";
  return ostr;
}

class Town {
public:
 Town(
   size_t houses,
   size_t settlers,
   std::string name)
 : houses_{houses}
 , settlers_{settlers}
 , name_{name} {}
 auto reflect()const{
   return std::tie(
     houses_,
     settlers_,
     name_
   );
 }
 size_t houses_{};
 size_t settlers_{};
 std::string name_{};
};
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As you can see, using reflection reduces a great deal of boiler plate code.

Implementing a less-than operator can be tricky, however, using
std::tie as in the Town example above makes it easy.

Example 2 – Creating a generic safe cast function
When casting between data types in C++ there is a multitude of different ways things can go
wrong:

You might lose a value if casting to a integer type of lower bit length
You lose a value if casting a negative value to an unsigned integer
If casting from a pointer to any other integer than uintptr_t, the correct address
might become wrong as C++ only guarantees that uintptr_t is the only integer
type to withhold an address
If casting from double to float, the result might be int if the double value is
too large for float to withhold
If casting between pointers with a static_cast(), we might get undefined
behavior if the types aren't sharing a common base class

In order to make our code more robust we can create a generic checked cast function which
verifies our casts in debug mode, and performs the cast as fast as possible if in release
mode.

Depending on the types that are being casted, different checks are performed. If we try to
cast between types that are not verified, it won't compile.

These are the cases the safe_cast() are intended to handle:

Same type: Obviously if we're casting the same type, we just return the input
value.
Pointer to pointer: If casting between pointers the safe_cast() performs a
dynamic cast in debug to verify it is castable.
Double to floating point: The safe_cast() accepts precision loss when casting
from double to float with one exception: if casting from a double to floating point
there is a chance the double is too large for the float to handle resulting.
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Arithmetic to arithmetic: if casting between arithmetic types, the value is cast
back to its original type to verify no precision are lost.
Pointer to non-pointer: If casting from a pointer to a non-pointer type,
safe_cast() verifies that the destination type is an uintptr_t or intptr_t,
the only integer type that is guaranteed to hold an address.
In any other case, the safe_cast() function will fail to compile.

Let's see how we can implement this, we start by fetching information about our cast
operation to constexpr booleans. The reason they are constexpr booleans and not const
booleans is that we will utilize them later in if constexpr expressions, which requires
constexpr conditions:

template <typename T> constexpr auto make_false() { return false; }
template <typename Dst, typename Src>
auto safe_cast(const Src& v) -> Dst{
  using namespace std;
  constexpr auto is_same_type = is_same_v<Src, Dst>;
  constexpr auto is_pointer_to_pointer =
    is_pointer_v<Src> && is_pointer_v<Dst>;
  constexpr auto is_float_to_float =
    is_floating_point_v<Src> && is_floating_point_v<Dst>;
  constexpr auto is_number_to_number =
    is_arithmetic_v<Src> && is_arithmetic_v<Dst>;
  constexpr auto is_intptr_to_ptr = (
    (is_same_v<uintptr_t,Src> || is_same_v<intptr_t,Src>)
    && is_pointer_v<To>;
  constexpr auto is_ptr_to_intptr =
    is_pointer_v<Src> &&
    (is_same_v<uintptr_t,Dst> || is_same_v<intptr_t,Dst>);

So now that we have all the information about the cast as constexpr booleans, we assert at
compile time that we can perform the cast. As said before, a static_assert() will fail to
compile if the condition is not satisfied (unlike a regular assert, which verifies conditions at
runtime).

Note the usage of static_assert() and make_false<T> at the end of the if/else chain.
We cannot just type static_assert(false, "") as that would prevent the
safe_cast() from compiling at all; instead we utilize the template function
make_false<T>() to delay the generation until required.
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When that actual static_cast() is performed, we cast back to the original type and verify
that the result is equal to the un-casted argument using a regular runtime assert. This way
we can make sure the static_cast() has not lost any data:

  if constexpr(is_same_type) {
    return v;
  }
  else if constexpr(is_intptr_to_ptr || is_ptr_to_intptr){
    return reinterpret_cast<Dst>(v);
  }
  else if constexpr(is_pointer_to_pointer) {
    assert(dynamic_cast<Dst>(v) != nullptr);
    return static_cast<Dst>(v);
  }
  else if constexpr (is_float_to_float) {
    auto casted = static_cast<Dst>(v);
    auto casted_back = static_cast<Src>(v);
    assert(!isnan(casted_back) && !isinf(casted_back));
    return casted;
  }
  else if constexpr (is_number_to_number) {
    auto casted = static_cast<Dst>(v);
    auto casted_back = static_cast<Src>(casted);
    assert(casted == casted_back);
    return casted;
  }
  else {
    static_assert(make_false<Src>(),"CastError");
    return Dst{}; // This can never happen,
    // the static_assert should have failed
  }
}

Note how we use the if constexpr in order for the function to conditionally compile. If
we used a regular if statement, the function would fail to compile.

This would fail to compile with a regular if statement:

auto x = safe_cast<int>(42.0f);

This is because the compiler would try to compile the following line
and dynamic_cast only accepts pointers:

// type To is an integer
assert(dynamic_cast<int>(v) != nullptr); // Does not compile
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However, thanks to the if constexpr and  safe_cast<int>(42.0f) constructs, the
following function compiles properly:

auto safe_cast(const float& v) -> int {
  constexpr auto is_same_type = false;
  constexpr auto is_pointer_to_pointer = false;
  constexpr auto is_float_to_float = false;
  constexpr auto is_number_to_number = true;
  constexpr auto is_intptr_to_ptr = false;
  constexpr auto is_ptr_to_intptr = false
  if constexpr(is_same_type) { /*Eradicated*/ }
  else if constexpr(is_intptr_to_ptr||is_ptr_to_intptr){/*Eradicated*/}
  else if constexpr(is_pointer_to_pointer) {/*Eradicated*/}
  else if constexpr(is_float_to_float) {/*Eradicated*/}
  else if constexpr(is_number_to_number) {
    auto casted = static_cast<int>(v);
    auto casted_back = static_cast<float>(casted);
    assert(casted == casted_back);
    return casted;
  }
  else { /*Eradicated*/ }
}

As you can see, except for the is_number_to_number clause, everything in between the if
constexpr statements has been completely eradicated, allowing the function to compile.

Example 3 – Hash strings at compile time
Let's say you have a resource system consisting of an unordered map of strings which
identify bitmaps. If the bitmap is already loaded, it returns the loaded bitmap; otherwise it
loads the bitmap and returns it.

// External function which loads a bitmap from the filesystem
auto load_bitmap_from_filesystem(const char* path) -> Bitmap {...}

// Bitmap cache
auto get_bitmap_resource(const std::string& path) -> const Bitmap& {
  // Static storage of all loaded bitmaps
  static auto loaded = std::unordered_map<std::string, Bitmap>{};
  // If the bitmap is already in loaded_bitmaps, return it
  if (loaded.count(path) > 0) {
    return loaded.at(path);
  }
  // The bitmap isn't already loaded, load and return it
  auto bitmap = load_bitmap_from_filesystem(path.c_str());
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  loaded.emplace(path, std::move(bitmap));
  return loaded.at(path);
}

The bitmap cache is then utilized wherever a bitmap resource is needed.

If it's not loaded yet, the get_bitmap_resource() function will load and return
it
If it's already loaded somewhere else, the get_bitmap_resource() will simply
return the loaded function

So independently of which of these draw functions is executed first, the second one will not
have to load the bitmap from disc.

auto draw_something() {
  const auto& bm = get_bitmap_resource("my_bitmap.png");
  draw_bitmap(bm);
}
auto draw_something_again() {
  const auto& bm = get_bitmap_resource("my_bitmap.png");
  draw_bitmap(bm);
}

The advantages of compile-time hash sum calculation
The problem which we will try to solve is that every time the line
get_bitmap_resource("my_bitmap.png") is executed, the application will compute the
hash sum of the string "my_bitmap.png" at runtime. What we would like to do is to
perform this calculation already at compile time, so that when the application executes, the
hash sum is already calculated. In other words, just as we have learned to use
metaprogramming to generate functions and classes at compile time, we will now have it
generate the hash sum at compile time.

One might come to the conclusion already that this is a so called micro-
optimization: calculating the hash sum of a small string won't affect the
application performance at all, as it is such a tiny operation. That is
probably completely true; this is just an example of how to move a
calculation from run time to compile-time, and there might be other
instances where this can make a significant performance impact.
As a side note, when writing software for weak hardware, string hashing
is pure luxury, but hashing strings at compile gives us this luxury on any
platform, as everything is computed at compile time.
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Implement and verify a compile-time hash function
In order to enable the compiler to calculate the hash-sum at compile time, we rewrite the
hash_function() to take a raw null-terminated char string as parameter as an advanced
class like std::string cannot be evaluated at compile time. Now, we can mark the
hash_function() a constexpr:

constexpr auto hash_function(const char* str) -> size_t {
  auto sum = size_t{0};
  for(auto ptr = str; *ptr != '\0'; ++ptr)
    sum += *ptr;
  return sum;
}

Now, let's invoke this with a raw literal string known at compile time:

auto hash = hash_function("abc");

Then, the compiler will generate the following piece of code, which is the sum of the ASCII
values corresponding to a, b, and c (97, 98, and 99):

auto hash = size_t{294};

Just accumulating the individual values is a very bad hash function, do
not do this in a real-world application. It's only here because it's easy to
grasp. A better hash function would be to combine all the individual
characters with a boost::hash_combine() as explained in Chapter 4,
Data Structures.
The hash_function() will only evaluate at compile time if the compiler
knows the string at compile time; if not, the compiler will execute the
constexpr at runtime, just as any other expression.

Constructing a PrehashedString class
Now that we have the hash function we create a class for pre-hashed strings. It consists of
the following:

A constructor which takes raw string as parameter and calculates the hash at
construction.
Comparison operators.
A get_hash() member function which returns the hash.
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An overload of std::hash() which simply returns the hash value. This
overload is used by std::unordered_map, std::unordered_set or any other
STL class which uses hash values. To put it simply, this makes the STL container
aware that it exists a hash function for the PrehashedString.

Here is a basic implementation of a PrehashedString class:

class PrehashedString {
public:
  template <size_t N>
  constexpr PrehashedString(const char(&str)[N])
  : hash_{hash_function(&str[0])}
  , size_{N - 1} // The subtraction is to avoid null at end
  , strptr_{&str[0]}
  {}
  auto operator==(const PrehashedString& s) const {
    return
      size_ == s.size_ &&
      std::equal(c_str(), c_str() + size_, s.c_str());
  }
  auto operator!=(const PrehashedString& s) const {
    return !(*this == s); }
  constexpr auto size()const{ return size_; }
  constexpr auto get_hash()const{ return hash_; }
  constexpr auto c_str()const->const char*{ return strptr_; }
private:
  size_t hash_{};
  size_t size_{};
  const char* strptr_{nullptr};
};

namespace std {
template <>
struct hash<PrehashedString> {
  constexpr auto operator()(const PrehashedString& s) const {
    return s.get_hash();
  }
};
}
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Forcing PrehashedString to only accept compile time
string literals
Note the template trick in the constructor. This forces the PrehashedString to only accept
compile time string literals. The reason for this is that the PrehashedString class does not
own the const char* ptr and therefore we may only use it with string literals created at
compile time:

// This compiles
auto prehashed_string = PrehashedString{"my_string"};

// This does not compile
// The prehashed_string object would be broken if the str is modified
auto str = std::string{"my_string"};
auto prehashed_string = PrehashedString{str.c_str()};

// This does not compile.
// The prehashed_string object would be broken if the strptr is deleted
auto* strptr = new char[5];
auto prehashed_string = PrehashedString{strptr};

Evaluating PrehashedString
So now that we have everything in place, let's see how the compiler handles the
PrehashedString. Here is a simple test function which returns the hash value for the
string "abc":

auto test_prehashed_string() {
  const auto& hash_fn = std::hash<PrehashedString>{};
  const auto& str = PrehashedString("abc");
  return hash_fn(str);
}

For simplicity, we used the string "abc". As our hash function simply sum the values, and
the letters in "abc" have the following ASCII values: a = 97, b = 98, and  c = 99, the assembler
(generated by Clang 4.0) ought to output the sum 97+98+99 = 294 somewhere. Inspecting the
assembler we can see that the test_prehashed_string() function compiles to exactly
one return statement which returns 294:

mov     eax, 294
ret
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This means that the whole test_prehashed_string() function has been executed at
compile time; when the application executes, the hash sum is already calculated!

Evaluating get_bitmap_resource() with PrehashedString
Let's return to our original get_bitmap_resource() function, the std::string
originally used is exchanged to a PrehashedString:

// Bitmap cache
auto get_bitmap_resource(const PrehashedString& path) -> const Bitmap& {
  // Static storage of all loaded bitmaps
  static auto loaded_bitmaps =
    std::unordered_map<PrehashedString, Bitmap>{};
  // If the bitmap is already in loaded_bitmaps, return it
  if (loaded_bitmaps.count(path) > 0) {
    return loaded_bitmaps.at(path).second;
  }
  // The bitmap isn't already loaded, load and return it
  auto bitmap = load_bitmap_from_filesystem(path.c_str());
  loaded_bitmaps.emplace(path, std::move(bitmap));
  return loaded_bitmaps.at(path);
}

We also need a function to test with:

auto test_get_bitmap_resource() { return get_bitmap_resource("abc"); }

What we would like to know is if even this function precalculated the hash sum. As the
get_bitmap_resource() does quite a lot (constructing a static std::unordered_map,
inspecting the map), the resulting assembly is about five hundred lines. Nevertheless, if our
magic hash sum is found in the assembler, it means that we have succeeded.

Inspecting the assembler generated by Clang 4.0 we find a line which corresponds to our
hash sum, 294:

.quad   294                     # 0x126

Just to be even more sure, we change the string from "abc" to "aaa", which ought to
change this line in assembler to 97*3 = 291, but everything else should be exactly the same.
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We do this to make sure this wasn't just some other magic number which popped up,
totally unrelated to the hash sum.

Inspecting the resulting assembler, we find the desired result:

.quad   291                     # 0x123

Everything, except this line, is the same, and we can therefore safely assume that the hash is
calculated at compile time.

Summary
In this chapter you have learned how to use metaprogramming to generate functions and
values at compile time instead of runtime. You also learned how to do this in a modern C++
way by using templates, constexpr, static_assert(), if constexpr and type traits.
Moreover, with the constant string hashing, you also learned how to use compile time
evaluation in a practical context. In the next chapter we will learn how to further expand
our C++ toolbox for creating libraries by learning how to construct hidden proxy objects.



9
Proxy Objects and Lazy

Evaluation
In this chapter, you will learn how to use proxy objects and lazy evaluation in order to
postpone the execution of certain code until required. Using proxy objects enables
optimizations to occur under the hood, thereby leaving the exposed interfaces intact.

An introduction to lazy evaluation and proxy
objects
First and foremost, the techniques used in this chapter are used to hide optimizations in a 
library from the user of that library. This is useful because exposing every single
optimization technique as a separate function requires a lot of attention and education from
the user of the library. 

It also bloats the code base with a multitude of specific functions, making it hard to read
and understand. By using proxy objects, you can achieve optimizations under the hood;
hence, the resultant code is, both, optimized and readable.

Lazy versus eager evaluation
Lazy evaluation is a technique used to postpone an operation until its result is really
required. The opposite, where operations are performed right away, is called eager
evaluation. In some situations eager evaluation is undesired as we might end up
constructing a value which is not utilized.
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Take a look at the following function class corresponding to an audio library. It consists of
two functions for retrieving an audio file by name, get_eager() in which we pass an
audio file if the name cannot be found, and get_lazy() in which we pass a function which
returns an audio file if the name cannot be found:

struct Audio {};
auto load_audio(const std::string& path) -> Audio {...};

class AudioLibrary {
public:
 auto get_eager(std::string id, const Audio& otherwise)const{
   return map_.count(id) ? map.at(id) : otherwise;
 }
 auto get_lazy(std::string id, std::function<Audio> otherwise)const{
   return map_.count(id) ? map.at(id) : otherwise();
 }
private:
 std::map<std::string, Audio> map_{};
};

If we were to utilize the get_eager() function the load_audio("default_fox.wav")
file would be executed even if the returned value is unused:

auto library = AudioLibrary{};
auto red_fox_sound = library.get_eager(
  "red_fox",
  load_audio("default_fox.wav")
);

However using the get_lazy() member function, where a function returning an audio file
when invoked is passed, the load_audio("default_fox.wav") is only executed when
necessary:

auto library = AudioLibrary{};
auto red_fox_sound = library.get_lazy(
  "red_fox",
  [](){ return load_audio("default_fox.wav"); }
);
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This is a very simple example, but the idea is that your code gets expressed almost exactly
in the same way as if it were declared eagerly. You will now learn how to use proxy objects
in order to evaluate more advanced expressions lazily.

Proxy objects
Proxy objects are internal library objects that aren't intended to be visible to the user of the
library. Their task is to postpone operations until required and to collect the data of an
expression until it can be evaluated and optimized. However, proxy objects act in the dark;
the user of the library should be able to handle the expressions as if the proxy objects were
not there.

In other words, using proxy objects, you can encapsulate optimizations in your libraries
while leaving the syntax intact—more or less, a free lunch.

Comparing concatenated strings using a proxy
Take a look at this code snippet, which concatenates two strings and compares the result:

auto func_a() {
  auto a = std::string{"Cole"};
  auto b = std::string{"Porter"};
  auto c = std::string{"ColePorter"};
  auto is_cole_porter = (a + b) == c;
  // is_cole_porter is true
}

Here is a visual representation of the preceding code snippet:

Accumulating two strings into a new string
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The problem, here, is that (a + b) constructs a new temporary string in order to compare
it with c. Instead of constructing a new string, we could just compare the concatenation
right away, like this:

auto is_concat_equal(
 const std::string& a,const std::string& b,const std::string& c
) {
  return
    a.size() + b.size() == c.size() &&
    std::equal(a.begin(), a.end(), c.begin()) &&
    std::equal(b.begin(), b.end(), c.begin() + a.size());
}

We can then use it like this:

auto func_b() {
  auto a = std::string{"Cole"};
  auto b = std::string{"Porter"};
  auto c = std::string{"ColePorter"};
  auto is_cole_porter = is_concat_equal(a, b, c);
}

Performance wise, we've achieved a bit of a win, but syntactically, a code base littered with
special-case convenience functions like this is not realistic. So, let's see how this
optimization can be achieved with the original syntax still intact.

Implementing the proxy
First, we'll create a proxy class representing the concatenation of two strings:

struct ConcatProxy {
  const std::string& a;
  const std::string& b;
};

Then, we'll construct our own  String class, simply consisting of std::string and an
overloaded operator+ method. Note that this is an example of how to make and use proxy
objects; creating your own String class is not something we recommend:

class String {
public:
  String() = default;
  String(std::string istr) : str_{std::move(istr)}{}
  std::string str_{};
};
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auto operator+(const String& a, const String& b) {
   return ConcatProxy{ a.str_, b.str_ };
}

Here's a visual representation of the preceding code snippet:

Proxy object representing an accumulation of two strings

Lastly, we'll create a global operator== method, which will utilize the
is_concat_equal() function. Note that ConcatProxy is an explicit r-value; we will talk
about this later in this chapter:

auto operator==(ConcatProxy&& concat, const String& str) -> bool {
  return is_concat_equal(concat.a, concat.b, str.str_);
}

Now that we have everything in place, we can get the best of both worlds:

auto func_c() {
  auto a = String{"Cole"};
  auto b = String{"Porter"};
  auto c = String{"ColePorter"};
  auto is_cole_porter = (a + b) == c;
  // is_cole_porter is true
}

In other words, we gained the performance of  func_b() while preserving the expressive
syntax of func_a(). 
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Performance evaluation
To evaluate the performance benefits, we'll utilize the following code, which compares
100'000'000 strings:

auto n = size_t{100'000'000};
auto a = std::vector<String>{};
auto b = std::vector<String>{};
auto c = std::vector<String>{};
a.resize(n);
b.resize(n);
c.resize(n);
// {Fill the vectors with random strings...}
auto num_equal = 0;
for(size_t i = 0; i < n; ++i) {
  num_equal += (a[i] + b[i] == c[i]) ? 1 : 0;
}

When executing this on an Intel i7 7700k CPU, we get the following results:

Comparison type Time (milliseconds) Speed up

No proxy object                             675                         1.00 x

With a proxy object                              62                         10.7 x

In other words, the speed up with a proxy object is almost eleven times as fast, when we got
rid of the temporary string and the allocation that comes with it.

The r-value modifier
In the preceding code, the global operator== method only accepts r-values. If we were to
accept an l-value, we could end up accidentally misusing the proxy, like this:

auto fail() {
  auto concat = String("Cole") + String("Porter");
  auto is_cole_porter = concat == String("ColePorter");
}

The problem here is that both the Cole and Porter strings are destructed when the
comparison is executed, leading to a failure. As we force the concat object to be an r-value,
the code will not compile when used like in the preceding code. Of course, you could brute-
force it to compile using std::move(concat) == String("ColePorter"), but that
wouldn't be a realistic case.
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Assigning a concatenated proxy
Now you might be thinking, what if we actually want to store the concatenated string as a
new string rather than just compare it? What we do is simply overload an operator
String() method so that the concatenation of the strings can implicitly convert itself to a
string, like this:

struct ConcatProxy {
  const std::string& a;
  const std::string& b;
  operator String() const && { return String{a + b}; }
};

auto func() {
  String c = String{"Marc"} + String{"Chagall"};
}

There is one little snag though; we cannot initialize the new String object with the auto
keyword, as this would result in ConcatProxy:

auto c = String{"Marc"} + String{"Chagall"};
// c is a ConcatProxy due to the auto

Unfortunately, we have no way to get around this; the result must be explicitly cast to
String.

Postponing an sqrt computation when
comparing distances
In this example, we will show you how to use a proxy object in order to postpone, or even
avoid, using the computationally heavy std::sqrt() method when comparing the
distance between two dimensional points.

A simple two-dimensional point class
Let's start with a simple point class in 2D. It has x and y coordinates and a member function,
which calculates the distance to another point:

class Point{
public:
  Point(float x, float y) : x_{x}, y_{y} {}



Proxy Objects and Lazy Evaluation Chapter 9

[ 249 ]

  auto distance(const Point& p) const {
    auto dist_sqrd = std::pow(x_-p.x_, 2) + std::pow(y_-p.y_, 2)
    return std::sqrt(dist_sqrd);
  }
private:
  float x_{};
  float y_{};
};

A simple usage example would be as follows:

auto target = Point{3, 5};
auto a = Point{6, 9};
auto b = Point{7, 4};
auto nearest_target =
  target.distance(a) < target.distance(b) ?
  a : b;
auto a_to_b_distance = a.distance(b);

                    Distances from two arbitrary points to target point

The underlying mathematics
Looking into the mathematics of the distance calculation, you may notice something
interesting. The formula used for distance is as follows:
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However, if we only need to compare the distance between points, the squared distance is
all we need, as the following formula shows:

As the std::sqrt() operation is not required if we just want to compare distances to each
other, we can omit it. The nice thing is, std::sqrt() is a relatively slow operation,
meaning that if we compare a lot of distances between points, we can gain some
performance.

The question is, how can we do this while preserving a clean syntax? Let's see how we can
use a proxy object to make a simple library perform this optimization under the hood when
comparing distances.

Using the squared distance also has better precision on floating point
values, as std::sqrt() loses precision and, thus, two very similar values
might result in the same square root. That
is, std::sqrt(56.999999999999) might result in the same value as
std::sqrt(57) due to lost precision.

For clarity, we start with the original Point class but we split the distance() function into
two—the distance_squared() and distance() functions:

class Point {
public:
  Point(float x, float y) : x_{x}, y_{y} {}
  auto distance_squared(const Point& p) const {
    return std::pow(x_-p.x_, 2) + std::pow(y_-p.y_, 2);
  }
  auto distance(const Point& p) const {
    return std::sqrt(distance_squared(p));
  }
private:
  float x_{};
  float y_{};
};
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Here's a visual representation of the preceding code snippet:

Distance, and squared distance between two points

Let's say a user of the Point class is implementing a convenient function that determines if
two points are nearer to each other than a specific threshold. She now has two options,
either use the distance() function or the distance_squared() function. Their
corresponding implementations are shown in the following table:

Using the distance() member function Using the distance_squared() member function
auto is_near0(Point a, Point b,
float th) {
  auto dist = a.distance(b);
  return dist < th;
}

auto is_near1(Point a, Point b, float th) {
 auto th_sqrd = std::pow(th, 2);
 auto dist_sqrd = a.distance_squared(b);
 return dist_sqrd < th_sqrd;
}

The is_near0() method has the advantage of being more readable, whereas the
is_near1() method has the advantage of being faster, since std::pow(th, 2) is much
faster than the std::sqrt(th) method invoked inside the a.distance(b) call of
is_near0.

The optimal solution would be to have the syntax of is_near0 and the performance of
is_near1. 

In order to achieve this, instead of returning a float value from the distance() member
function, we return an intermediate object hidden to the user. Depending on how the user
uses the hidden object, it should not perform the std::sqrt() operation until it is really
required. This object will be referred to as DistProxy.
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Implementing the DistProxy object
Now, let's create the proxy object for distances between points: DistProxy. A point
distance simply consists of the squared distance between two points and a comparison to a
distance. The actual squared distance is never exposed in order to prevent the library user
from mixing the squared distance with the regular distance. That is, if we do not take
precaution, the user of the code might accidentally write the following:

auto a = Point{23, 45};
auto b = Point{55, 66};
auto spot = Point{34, 55};
// Subtle bug below as distance is compared to distance_squared
bool a_is_nearest = a.distance(spot) < b.distance_squared(spot);

Thus, he may end up accidentally comparing the squared distance with the real distance,
yielding hard-to-track bugs.

The proxy object, DistProxy, is implemented as follows, taking the coordinates of the two
points as input and a method that compares it with a regular distance:

class DistProxy{
public:
  DistProxy(float x0, float y0, float x1, float y1)
  : dist_sqrd_{ std::pow(x0-x1, 2) + std::pow(y0-y1, 2) } {}
  auto operator<(float dist) const { return dist_sqrd_ < dist*dist; }
private:
  float dist_sqrd_{};
};

Then, we rewrite the Point class to return DistProxy instead of the actual distance as
float:

class Point {
public:
  Point(float x, float y) : x_{x}, y_{y} {}
  auto distance(const Point& p) const {
    return DistProxy{x_, y_, p.x_, p.y_}; }
  float x_{};
  float y_{};
};
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The is_near0() method now performs its comparison much faster, as the std::sqrt()
operation is omitted in favor of std::pow(x, 2), which is a much faster operation,
especially when the second parameter is an integer (2).

Moreover, the nicest thing is that it all happens under the hood; the implementor of the
is_near0() function can compare the result of the distance function with a floating point
value, as if the distance function returned a floating point value right away.

Expanding DistProxy to something more useful
Now that we have the basis, we want to make the DistProxy class more useful. For
example, the user might actually want to utilize the received distance or compare it with
other distances.

Let's expand the DistProxy class accordingly, with a comparator to another
DistProxy class and an implicit cast to float:

class DistProxy{
public:
  DistProxy(float x0, float y0, float x1, float y1)
  : dist_sqrd_{std::pow(x0 - x1, 2) + std::pow(y0 - y1, 2)}
  {}
  auto operator==(const DistProxy& dp) const {
    return dist_sqrd_ == dp.dist_sqrd_; }
  auto operator<(const DistProxy& dp) const {
    return dist_sqrd_ < dp.dist_sqrd_; }
  auto operator<(float dist) const {
    return dist_sqrd_ < dist*dist; }
  // Implicit cast to float
  operator float() const { return std::sqrt(dist_sqrd_); }
private:
  float dist_sqrd_{};
};
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Comparing distances with DistProxy
So let's see how the  PointDistance proxy class looks in action. In this example, we'll
determine which of the points, a or b, that are closest to bingo. Note how the code
syntactically looks exactly the same as had we not utilized a PointDistance proxy class:

auto bingo = Point{31, 11};
auto a = Point{23, 42};
auto b = Point{33, 12};
bool a_is_nearest = a.distance(bingo) < b.distance(bingo);

Under the hood, the final statement is expanded to something similar to this:

// These "DistProxy" proxy objects are never visible from the outside
DistProxy a_to_bingo = a.distance(bingo);
DistProxy b_to_bingo = b.distance(bingo);
// Member operator< on DistProxy is invoked, which compares member
dist_sqrd_
auto a_is_nearest = a_to_bingo < b_to_bingo;

Sweet! The std::sqrt() operation is omitted while the interface of the Point class is still
intact. Let's see how it looks if we need the actual distance.

Calculating distances with DistProxy
When requesting the actual distance, the calling code changes a teeny-weeny bit; we have to
explicitly parse the DistProxy object to float; that is, we can't just use auto as usual:

auto a = Point{23, 42};
auto b = Point{33, 12};
float dist = a.distance(b); // Note that we cannot use auto here

If we were to just write auto, the dist object would be of the DistProxy type rather than
float. We do not want the users of our code base to explicitly handle DistProxy objects;
proxy objects should operate in the dark and only their results should be utilized (in this
case, the comparison result or the actual distance value is float). Even though we cannot
hide proxy objects completely, let's see how we can tighten them to prevent misuse.
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Preventing the misuse of DistProxy
You may have noted that there can be a case where using the  DistProxy class might lead
to worse performance—if the user of the class were to use the Point class like this, that is, if
the std::sqrt() method were invoked multiple times according to the programmer's
requests for the distance value:

auto a = Point{23, 42};
auto b = Point{33, 12};
auto dist = a.distance(b);
float dist_float0 = dist; // Assignment invoked std::sqrt()
float dist_float1 = dist; // std::sqrt() of dist is invoked again

Although a stupid example, there can be real-world cases where this might happen, and we
want to force the user to only invoke operator float() once per DistProxy object. In
order to prevent this we make the operator float() member function invocable only on
r-values; that is, the DistProxy object can only be converted to a floating point if it is not
tied to a variable.

We force this behavior by using && as a modifier on the operator float() member
function. The && modifier works just like a const modifier, but where a const modifier
forces the member function to not modify the class, the && modifier forces the function to
only invoke on temporary classes.

The modification looks like this:

operator float() const && { return std::sqrt(dist_sqrd_); }

If we were to invoke operator float() on a DistProxy object that is tied to a variable,
such as the dist object in the following example, the compiler will refuse to compile:

auto a = Point{23, 42};
auto b = Point{33, 12};
auto dist = a.distance(b); // "dist" is of type DistProxy
float dist_float = dist;

However, we can still invoke operator float() directly on the a.distance(b)
operation, like this:

auto a = Point{23, 42};
auto b = Point{33, 12};
float dist_float = a.distance(b);
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A temporary DistProxy class will still be created in the background, but since it is not tied
to a variable, we are allowed to implicitly convert it to float. This will prevent such misuse
as invoking operator float() several times on a DistProxy object.

Performance evaluation
For the sake of it, let's see how much performance we've actually gained. Here is a function
that finds the distance to a specified point in a vector of randomly generated points:

// Generate 10000 random points
auto points = std::vector<Point>{};
for(size_t i = 0; i < 10000; ++i) {
  auto x = static_cast<float>(std::rand());
  auto y = static_cast<float>(std::rand());
  points.emplace_back(x, y);
}
// Find the distance to the nearest point
auto needle = Point{135.0f, 246.0f};
auto nearest_point = *std::min_element(
  points.begin(),
  points.end(),
  [&needle](const Point& a, const Point& b) {
    return a.distance(needle) < b.distance(needle);
  });
float dist = nearest_point.distance(needle);

Using DistProxy, this piece of code is executed twice as fast (measured using an Intel i7
7700k CPU). And, as you can see, the syntax is exactly the same as if we did not implement
any optimization.

Creative operator overloading and proxy
objects
As you know, C++ has the ability to overload operators that are usually utilized to make
custom math objects that can be used with standard math operators, such as plus, minus,
and so on, in order to make the code more readable. Another example is the stream
operator, which in the standard library is overloaded in order to convert the objects to
streams, as shown below: 

std::cout << "iostream " << "uses " << "overloaded " << "operators.";
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Some libraries, however, use the overloading in other contexts. The Range V3 library, as
discussed earlier, uses overloading to compose views like this:

namespace rv = ranges::view;
auto odd_positive_numbers =
  std::vector<int>{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}
  | rv::filtered([](auto v){ return v > 0; }
  | rv::filtered([](auto v){ return (v % 2) == 1; }
  ;

Other libraries have used it to create an infix operator so that we can emulate the Python
keyword, in, like this:

bool has_three = 3 <in> {1, 2, 3, 4, 5};

Although most people would probably argue against creative operator overloading, it can
be educational to learn how it's implemented.

The pipe operator as an extension method
Compared to other languages, for example, C# and JavaScript, C++ does not support
extension methods, that is, you cannot extend a class locally with a new member function.

For example, you cannot extend std::vector with a contains(T val) function to be
used like this:

auto numbers = std::vector<int>{1,2,3,4};
auto has_two = numbers.contains(2);

However, you can overload the pipe operator to achieve this, almost equivalent, syntax:

 auto has_two = numbers | contains(2);

The pipe operator
Let's see how we can implement a simple pipe operator so that we can write the following:

auto numbers = std::vector<int>{1, 3, 5, 7, 9};
auto seven = 7;
bool has_seven = numbers | contains(seven);

The contains function used with a pipeable syntax has two arguments: numbers and
seven. As the left argument, numbers could be anything; we need the overload to contain
something unique on the right side.
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So, we create a struct named ContainsProxy, which holds onto the right argument; this
way, the overloaded pipe operator can recognize the overload:

template <typename T>
struct ContainsProxy { const T& value_; };

template <typename Range, typename T>
auto operator|(const Range& r, const ContainsProxy<T>& proxy) {
  const auto& v = proxy.value_;
  return std::find(r.begin(), r.end(), v) != r.end();
}

Now we can use it like this; the pipe operator works, although the syntax is still ugly as we
need to specify the type:

auto numbers = std::vector<int>{1,3,5,7,9};
auto seven = 7;
auto proxy = ContainsProxy<decltype(seven)>{seven};
bool has_seven = numbers | proxy;

In order to make the syntax neater, we can simply make a convenience function take the
value and create a proxy containing the type:

template <typename T>
auto contains(const T& v) { return ContainsProxy<T>{v}; }

That's all we need; we can now use it for any type or container:

auto penguins = std::vector<std::string>{"Ping","Roy","Silo"};
bool has_silo = penguins | contains("Silo");

The infix operator
First of all, adding an infix operator is both a hack and, more or less, an abuse of operator
overloading. What you actually do is overload both the less than (operator<) and greater
than (operator>) operators in order to make something that looks like an infix operator.

If nothing less, it can be used to show to your Python-fan friends, who praise the
in keyword in Python, that you can implement something similar in C++.
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Essentially, we want to see whether an object is contained in a list with the following
syntax:

auto asia = std::vector<std::string>{"Korea","Philippines","Macau"};
auto africa = std::vector<std::string>{"Senegal","Botswana","Guinea"};
auto is_botswana_in_asia = "Botswana" <in> asia;
auto is_botswana_in_africa = "Botswana" <in> africa;
// is_botswana_in_asia is false
// is_botswana_in_africa is true

As with the pipe overload, we create a proxy, but in this case, the proxy holds the left value
of the operation:

template <typename T> struct InProxy { const T& val_; };

We then define an empty struct called in_tag and instantiate a static object called in like
this. Note that the in object is only a convenience in order to invoke the infix operator
using <in> rather than <in_tag{}>, that is, to remove the curly braces:

struct InTag{};
constexpr static auto in = InTag{};

The InTag type is then used for operator<, so it can recognize the overload:

template <typename T>
auto operator<(const T& v, const InTag&) { return InProxy<T>{v}; }

Finally, we overload the greater than operator to take in_proxy as the first argument and
the right side as its second argument. It also holds the actual function:

template <typename T, typename Range>
auto operator>(const InProxy<T>& p, const Range& r) {
  return std::find(r.begin(), r.end(), p.val_) != r.end();
}

Now we can use it like this:

auto africa = std::vector<std::string>{ "Kenya", "Ethiopia", "Kongo"};
auto sweden = std::string{"Sweden"};
auto is_sweden_in_africa = sweden <in> africa;
// is_sweden_in_africa is false
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Under the hood, the code expands to the following code:

auto africa = std::vector<std::string>{ "Kenya", "Ethiopia", "Kongo"};
auto sweden = std::string{"Sweden"};
InTag in_tag{};
InProxy<std::string> p = sweden < in_tag;
bool is_sweden_in_africa = p > africa; // is_sweden_in_africa is false

Further reading
The examples covered in this section show a rudimentary approach to implementing the
pipe and infix operators. Libraries such as Range V3 and the Fit library by Paul Fultz,
available at https:/ / github. com/ pfultz2/ Fit, implement adapters that take a regular
function and give them the ability to be invoked using the pipe syntax.

Summary
In this chapter, you learned the difference between lazy evaluation and eager evaluation.
You also learned how to use hidden proxy objects to implement lazy evaluation behind the
scenes, meaning that you understood how to implement lazy evaluation optimizations
while preserving an easy-to-use interface for your classes.

This makes writing optimized code much more readable and less error-prone, as the
complex optimizations can be kept inside your library classes instead of having it exposed
in the application code.

https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit


10
Concurrency

In this chapter, we are going to explore how to write concurrent programs in C++ using
threads with shared memory. We will look at ways to make concurrent programs correct by
writing programs that are free from data races and deadlocks. This chapter will also contain
some pieces of advice on how to make concurrent programs run with low latency and high
throughput.

Before we go any further, it should be said that this chapter is not a complete introduction
to concurrent programming, nor will it cover all the details of concurrency in C++. Instead,
this chapter is an introduction to the core building blocks of writing concurrent programs in
C++, mixed with some performance-related guidelines. If you haven't been writing
concurrent programs before, it is probably wise to go through some introduction texts to
cover the theoretical aspects of concurrent programming first. Concepts such as deadlocks,
critical sections, monitors, condition variables, and mutexes, will be very briefly discussed,
but that serves more as a refresher than a thorough introduction to the concepts.

The chapter includes the following:

The fundamentals of concurrent programming, including parallel execution,
shared memory, data races, and deadlocks
An introduction to the C++ thread support library, the atomic library, and the C++
memory model
A short example of lock-free programming
Performance guidelines
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Understanding the basics of concurrency
A concurrent program can execute multiple tasks at the same time. Concurrent
programming is, in general, a lot harder than sequential programming, but there are several
reasons why a program may benefit from being concurrent:

Efficiency: Smartphones and desktop computers of today have multiple CPU
cores that can execute multiple tasks in parallel if your program allows it to. If
you manage to split a big task into subtasks that can be run in parallel, it is
theoretically possible to divide the running time of the big task by the number of
CPU cores. For programs that run on machines with one single core, there can
still be a gain in performance if a task is I/O bound. While one subtask is waiting
for I/O, other subtasks can still perform useful work on the CPU.
Responsiveness and low latency contexts: For applications with a graphical user
interface, it is important to never block the UI so that the application becomes
unresponsive. To prevent unresponsiveness, it is common to let long-running
tasks execute in separate background threads so that the thread responsible for
the UI is never blocked by long-running tasks. Another example where low
latency matters is real-time audio. The function responsible for producing buffers
of audio data is being executed in a separate high-priority thread, while the rest
of the program can run in lower-priority threads to handle the UI and so on.
Simulation: Concurrency can make it easier to simulate systems that are
concurrent in the real world. After all, most things around us happen
concurrently, and sometimes it is very hard to model concurrent flows with a
sequential programming model. We will not focus on simulation in this book, but
instead focus on performance-related aspects of concurrency.

What makes concurrent programming hard?
There are a couple of reasons why concurrent programming is hard, and, if you have been
writing concurrent programs before, you have most likely already encountered the ones
listed here:

Sharing state between multiple threads in a safe manner is hard. Whenever we1.
have data that can be read and written to at the same time, we need some way of
protecting that data from data races. We will see a lot of examples of this later on.
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Concurrent programs are usually more complicated to reason about because of2.
the multiple parallel execution flows.
Concurrency complicates debugging. Bugs that occur because of data races can3.
be very hard to debug since they are dependent on how threads are being
scheduled. These kinds of bugs can be hard to reproduce and in the worst case,
they cease to exist when running the program using a debugger. Sometimes an
innocent debug trace to the console could change the way a multithreaded
program behaves and make the bug temporarily disappear. You have been
warned!

Concurrency and parallelism
Concurrency and parallelism are two terms that are sometimes used interchangeably.
However, they are not the same and it is important to understand the difference. A program
is said to run concurrently if it has multiple individual control flows running during
overlapping time periods. In C++, each individual control flow is represented by a thread.
The threads may or may not execute at the exact same time, though. If they do, they are said
to execute in parallel. For a concurrent program to run in parallel, it needs to be executed on
a machine that has support for parallel execution of instructions: that is, machines with 
multiple CPU cores.

At first glance, it might seem obvious that we always want concurrent programs to run in
parallel if possible, for efficiency reasons. However, that is not necessarily always true. A lot
of synchronization primitives we will cover in this chapter are required only to support the
parallel execution of threads. Concurrent tasks that are not run in parallel do not require the
same locking mechanisms and can be a lot easier to reason about.
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Time slicing
"How are concurrent threads executed on machines with only a single CPU core?" you
might ask. The answer is time slicing. It is the same mechanism that is being used by the
operating system to support concurrent execution of processes. In order to understand time
slicing, let's assume we have two separate sequences of instructions that should be executed
concurrently, as shown in the following figure:

Two separate sequences of instructions executed in two threads labeled T1 and T2

The numbered boxes represent instructions. Each sequence of instructions is executed in
separate threads labeled T1 and T2. The operating system will schedule each thread to have
some limited time on the CPU and then perform a context switch. The context switch stores
the current state of the running thread and loads the state of the thread that should be
executed. This is done often enough so that it appears as if the threads are running at the
same time. A context switch is time-consuming though, and most likely generates a lot of
cache misses each time a new thread gets to execute on a CPU core. Therefore, you don't
want context switches to happen too often.

The following figure shows a possible execution sequence of the two threads that are being
scheduled on a single CPU:

A possible execution of two threads which are being scheduled on a single core. The red dots indicate context switches
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The first instruction of thread T1 is starting, and is then followed by a context switch to let
the other thread (T2) execute the first two instructions. As programmers, we must make
sure that the program can run as expected, regardless of how the operating system
scheduler is scheduling the tasks. If a sequence, for some reason, should be illegal, there are
ways to control the order in which the instructions get executed by using locks—more on
that in the sections to come.

If a machine has multiple CPU cores, it is possible to execute the two threads in parallel.
However, there is no guarantee (it's even unlikely) that the two threads will execute on one
core each throughout the lifetime of the program. The entire system is sharing time on the
CPU so the scheduler will let other processes execute as well. This is one of the reasons why
the threads are not scheduled on dedicated cores.

The following figure shows the execution of the same two threads, but now they are
running on a machine with two CPU cores. As can be seen, the second and third
instructions of the first thread (white boxes) are being executed at the exact same time as the
other thread is executing—the two threads are executing in parallel:

Two threads are executing on a multicore machine. This makes it possible to execute the two threads in parallel

Shared memory
Threads created in the same process share the same virtual memory. This means that a
thread can access any data that is addressable within the process. The operating system,
which protects memory between processes using virtual memory, does nothing to protect
us from accidentally accessing memory inside a process that was not intended to be shared
among different threads. Virtual memory only protects us from accessing memory allocated
in other processes than our own.

Sharing memory between multiple threads can be a very efficient way to handle
communication between threads. However, sharing memory in a safe way between threads
is one of the major challenges when writing concurrent programs in C++. You should
always strive to minimize the number of shared resources between threads.



Concurrency Chapter 10

[ 266 ]

Fortunately, not all memory is shared by default. Each thread has its own stack for storing
local variables and other data necessary for handling function calls. Unless a thread passes
references or pointers to local variables to other threads, no other thread will be able to
access the stack from that thread. This is one more reason to use the stack as much as
possible (if you are not already convinced that the stack is a good place for your data after
reading Chapter 7, Memory Management).

There is also thread local storage, sometimes abbreviated to TLS, which can be used for
storing variables that are global in the context of a thread but which are not shared between
threads. A thread local variable can be thought of as a global variable where each thread has
its own copy.

Everything else is shared by default: that is, dynamic memory allocated on the heap, global
variables, and static local variables. Whenever you have shared data that is mutated by
some thread, you need to ensure that no other thread is accessing that data at the same time
or you will have a data race.

Remember the figure from the Process memory section of Chapter 7, Memory Management,
which illustrated the virtual address space of a process? Here it is again, but modified to
show how it looks when a process contains multiple threads. As you can see in the
following figure, each thread has its own stack memory, but there is only one heap for all
threads:

A possible layout of the virtual address space for a process
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The process contains three threads in this example, and each thread has its own dedicated
stack memory. The heap memory is by default shared by all threads.

Data races
A data race happens when two threads are accessing the same memory at the same time and
at least one of the threads is mutating the data. If your program has a data race, it means
that your program has undefined behavior. In other words, you can under no circumstances
allow data races in your program. The compiler usually doesn't warn you about data races
since they are hard to detect at compile time.

The following image shows two threads that are going to update an integer called counter.
Imagine that we have two threads that are both incrementing a global counter variable by
the instruction ++counter. It turns out that incrementing an int might involve multiple
CPU instructions. This can be done in different ways on different CPUs, but let's pretend
that ++counter generates the following made-up machine instructions:

 R:  Read counter from memory
+1:  Increment counter
 W:  Write new counter value to memory

Now, if we have two threads that are going to update the counter value that initially is 42,
we would expect it to become 44 after both threads have run. However, as we can see in the
following figure, there is no guarantee that the instructions will be executed sequentially to
guarantee a correct increment of the counter variable:

The two threads are both incrementing the same shared variable

Without a data race, the counter would have reached the value 44, but instead, it only
reaches 43.
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In this example, both threads read the value 42 and incremented that value to 43. Then, they
both write the new value, 43, which means that we never reached the correct answer of 44.
Had the first thread been able to write the value 43 before the next thread started to read,
we would have ended up with 44 instead. Note also that this would have been possible
even if there was only one CPU core. The scheduler could have scheduled the two threads
in a similar way so that both read instructions were executed before any writes.

Again, this is one possible scenario, but the important thing is that the behavior is
undefined. Anything could happen when your program has a data race.

How can we avoid data races? There are two main options:

Use an atomic data type instead of the int. This will tell the compiler to execute
the read, increment, and write atomically. In general, this approach works if the
size of the data type we are modifying is less than or equal to the word size of the
machine. We will spend more time discussing atomic data types later in this
chapter.
Use a mutually exclusive lock (mutex) that guarantees that multiple threads
never execute a critical section at the same time. A critical section is a place in the
code that must not be executed simultaneously since it updates or reads shared
memory that potentially could generate data races.

It is also worth emphasizing that immutable data structures—data structures that are never
being changed—can be accessed by multiple threads without any risk of data races.
Minimizing the use of mutable objects is good for many reasons, but it becomes even more
important when writing concurrent programs. A common pattern is to always create new
immutable objects instead of mutating existing objects. When the new object is fully
constructed and represents the new state, it can be swapped with the old object. In that way,
we can minimize the critical sections of our code. Only the swap is a critical section, and
hence needs to be protected by an atomic operation or a mutex.

Mutex
A mutex, short for mutual exclusion lock, is a synchronization primitive for avoiding data
races. A thread that needs to enter a critical section is first locking the mutex (locking is
sometimes also called acquiring a mutex lock). This means that no other thread can lock the
same mutex until the first thread that holds the lock has unlocked the mutex. In that way,
the mutex guarantees that only one thread at a time is inside a critical section.
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In the following figure, we can see how the example of the race condition can be avoided by
using a mutex. The instruction labeled L is a lock instruction and the instruction labeled U is
an unlock instruction. The first thread executing on Core 0 reaches the critical section first
and locks the mutex before reading the value of the counter. It then adds one to the counter
and writes it back to memory. After that, it releases the lock. 

The second thread, executing on Core 1, reaches the critical section just after the first thread
has acquired the mutex lock. Since the mutex is already locked, the thread is blocked until
the first thread has updated the counter undisturbed and released the mutex:

The mutex lock is protecting the critical section and avoids the data races on the counter variable

The net result is that the two threads can update the mutable shared variable in a safe and
correct way. But, it also means that the two threads can no longer be run in parallel. If most
of the work a thread does cannot be done without serializing the work, there is, from a
performance perspective, no point in using threads.

The state where the second thread is blocked by the first thread to finish its work is called
contention. This is something we strive to minimize, because it hurts the scalability of a
concurrent program. Adding more CPU cores will not improve performance if the degree of
contention is high.
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Deadlock
When using mutex locks to protect shared resources, there is a risk of getting stuck in a state
called deadlock. A deadlock can happen when two threads are waiting for each other to
release their locks. None of the threads can proceed and are stuck in a deadlock state. One
condition that needs to be fulfilled for a deadlock to occur is that one thread that already
holds a lock tries to acquire an additional lock. When a system grows and gets larger, it
becomes more and more difficult to track all locks that might be used by all threads running
in a system. This is one reason for always trying to minimize the use of shared resources,
and this demonstrates the need for exclusive locking.

The following figure shows how two threads are in a waiting state, trying to acquire the
lock held by the other thread:

Example of a deadlock state. Thread 1 and Thread 2 are waiting for each other to release their locks, respectively
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Synchronous and asynchronous tasks
We will refer to synchronous and asynchronous tasks or function calls in this chapter.
Synchronous tasks are like the ordinary functions that we are used to in a C++ program.
When a synchronous task is finished doing whatever it is supposed to do, it will return the
control to the caller of the task. The caller of the task is waiting or blocked until the
synchronous task has finished.

An asynchronous task, on the other hand, will return the control back to the caller
immediately and instead perform its work concurrently. The sequence in the following
diagram shows the difference between calling a synchronous and asynchronous task,
respectively:

Synchronous versus asynchronous calls. The asynchronous task returns immediately but continue to work after the caller has regained control.

If you haven't seen asynchronous tasks before, it might look strange at first, since ordinary
functions in C++ always stop executing when they encounter a return statement or reach the
end of the function body. Asynchronous APIs are getting more and more common though,
and it is likely that you have encountered them before, for example, when working with
asynchronous JavaScript.

Sometimes, we use the term blocking of operations that blocks the caller—that is, it makes
the caller wait until the operation has finished.



Concurrency Chapter 10

[ 272 ]

Concurrent programming in C++
The concurrency support in C++ makes it possible for a program to execute multiple tasks
concurrently. As mentioned earlier, writing a correct concurrent C++ program is, in general,
a lot harder than writing a program that executes all tasks sequentially in one thread. This
section will also demonstrate some common pitfalls to make you aware of all the difficulties
involved in writing concurrent programs.

Concurrency support was first introduced in C++11 and has since then been extended into
both C++14 and C++17. Before concurrency was part of the language, concurrency was
implemented with native concurrency support from the operating system, POSIX Threads
(pthreads), or some other library. With concurrency support directly in the C++ language,
we can now write cross-platform concurrent programs, which is great! However, since the
concurrency support in C++ is rather new, don't be surprised if you have to reach for
platform-specific functionality when dealing with concurrency on your platform. It should
also be said that the thread support library is likely to be extended quite a bit in the next few
releases of C++. The need for good concurrency support is increasing because of the way
hardware is being developed, and there is a lot yet to be discovered when it comes to the
efficiency, scalability, and correctness of highly concurrent programs.

The thread support library
We will here take a tour through the C++ thread support library and cover the most
important components of the library.

Threads
A running program contains at least one thread. When your main function is being called, it
is executed on a thread usually referred to as the main thread. Each thread has an identifier,
which can be useful when debugging a concurrent program. The following program prints
the thread identifier of the main thread:

auto main() -> int {
  std::cout << "Thread ID: " <<  std::this_thread::get_id() << '\n';
}
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Running the preceding program might produce something like this:

 Thread ID: 0x1001553c0

It is possible to make a thread sleep. Sleep is rarely used in production code but can be very
useful during debugging. For example, if you have a data race that only occurs under rare
circumstances, adding sleep to your code might make it appear more often. Here is how
you make the currently running thread sleep for a second:

std::this_thread::sleep_for(std::chrono::seconds{1});

Your program should never expose any data races after inserting random
sleeps in your code. Your program may not work satisfactorily after
adding sleeps: buffers may become full, the UI lags, and so on, but it
should always behave in a predictable and defined way. We don't have
control over the scheduling of the threads, and random sleeps simulate
unlikely but possible scheduling scenarios.

Now, let us create an additional thread using the std::thread class from the <thread>
header. It represents a single thread of execution and is usually a wrapper around an
operating system thread. The print function will be invoked from a thread created by us
explicitly:

auto print() {
  std::this_thread::sleep_for(std::chrono::seconds{1});
  std::cout << "Thread ID: "<<  std::this_thread::get_id() << '\n';
}

auto main() -> int {
  auto t1 = std::thread{print};
  t1.join();
  std::cout << "Thread ID: "<<  std::this_thread::get_id() << '\n';
}

When creating the thread, we pass in a callable object (a function, lambda, or a functor) that
the thread will begin to execute whenever it gets scheduled time on the CPU. We have
added a call to sleep to make it obvious why we need to call join on the thread. When
a std::thread object is destructed, it must have been joined or detached or it will cause the
program to call std::terminate(), which by default will call std::abort() if you
haven't installed a custom std::terminate_handler.
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If we forget to call either join or detach on a std::thread object before it is destructed, the
program will abort, as demonstrated in the following example:

auto main() -> int {
   auto t1 = std::thread{print};
   // Error: forgot to detach or join t1, program will abort
}

Always remember that you have to call either join or detach on a thread
object before it is destructed, or the program will abort.

In the preceding example, the join() function is blocking—it waits until the thread has
finished running. So, in the preceding example, the main function will not return until
thread t1 has finished running. Consider the following line:

t1.join();

Suppose we detach the thread t1 by replacing the preceding line with the following line:

t1.detach();

In such a case, our main function will end before thread t1 wakes up to print the message,
and as a result, the program will (most likely) only output the thread ID of the main thread.
Remember, we have no control of the scheduling of the threads and it is possible but very
unlikely that the main thread will output its message after the print() function has had
time to sleep, wake up, and print its thread ID.

Using detach() instead of join() in this example also introduces another problem. We
are using std::cout from both threads without any synchronization, and since main() is
no longer waiting for thread t1 to finish, they both could theoretically use std::cout in
parallel. Fortunately, std::cout is thread-safe and can be used from multiple threads
without introducing data races, so there is no undefined behavior. However, it is still
possible that the output generated by the threads are interleaved, resulting in something
like:

Thread ID: Thread ID: 0x1003a93400x700004fd4000

If we want to avoid the interleaved output, we need to treat the outputting of characters as
a critical section and synchronize access to std::cout. We will talk more about critical
sections and race conditions in a while, but first, some details about std::thread.
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Thread states
Before we go any further, we should make sure that we have a good understanding of what
a std::thread object really represents and in what states it can be. We haven't yet talked
about what sort of threads there normally are in a system executing a C++ program. In the
following figure, we have captured a snapshot of a hypothetical running system:

Snapshot of a hypothetical running system

Starting from the bottom, the figure shows the CPU and its hardware threads. Those are the
execution units on the CPU. In this example, the CPU provides four hardware threads;
usually that means it has four cores, but it could be some other configuration. Some cores
can execute two hardware threads, for example. The total number of hardware threads can
be printed at runtime with this:

  std::cout << std::thread::hardware_concurrency() << '\n';
  // Possible output: 4

The preceding code might also output 0 if the number of hardware threads cannot be
determined on the running platform.
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The layer above the hardware threads contains the operating system threads. These are the
actual software threads. The OS scheduler determines when and how long an OS thread is
executed by a hardware thread. In the preceding figure, there are currently three out of six
software threads executing.

The topmost layer in the figure contains the std::thread objects. A std::thread object is
nothing more (or nothing less) than an ordinary C++ object that may or may not be
associated with an underlying OS thread. Two instances of std::thread cannot be
associated with the same underlying thread. In the figure, we can see that the program
currently has three instances of std::thread, whereas two are associated with threads and
one is not. It is possible to query a std::thread object in what state it is by using
the std::thread::joinable property. A thread is not joinable if it has been:

Default constructed; that is, if it has nothing to execute
Moved from (its associated running thread has been transferred to another
std::thread object)
Detached by a call to detach()
Already joined by a call to join()

Otherwise, the std::thread object is in the joinable state. Remember, when
a std::thread object is destructed, it must no longer be in the joinable state or the
program will terminate.

Protecting critical sections
As already mentioned, our code must not contain any data races. Unfortunately, writing
code with data races is very easy. Finding the critical sections and protecting them with
locks is something we constantly need to think about when writing concurrent programs in
this style using threads.

C++ provides us with a std::mutex class that can be used for protecting critical sections
and avoiding data races. We will demonstrate how to use a mutex with a classic example
using a shared mutable counter variable updated by multiple threads.
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First, we define a global mutable variable and the function incrementing the counter:

auto counter = 0; // Warning! Global mutable variable

auto increment_counter(int n) {
  for (int i = 0; i < n; ++i)
    ++counter;
}

The main() function below creates two threads that will both execute the
increment_counter() function. Note also in this example how we can pass arguments to
the function invoked by the thread. We can pass an arbitrary number of arguments to the
thread constructor in order to match the parameters in the signature of the function to be
called. Finally, we assert that the counter has the value we expect it to have if the program
was free from race conditions:

auto main() -> int {
  constexpr auto n_times = int{1000000};
  auto t1 = std::thread{increment_counter, n_times};
  auto t2 = std::thread{increment_counter, n_times};
  t1.join();
  t2.join();
  std::cout << counter << '\n';
  // If we don't have a data race, this assert should hold:
  assert(counter == (n_times * 2));
}

This program will most likely fail. The assert() function doesn't hold since the program
currently contains a race condition. When I repeatedly run the program, I end up with
different values of the counter. Instead of reaching the value 2000000, I once ended up with
no more than 1032304. This example is very similar to the data race example that was
illustrated earlier in this chapter.

The line with the expression ++counter is a critical section—it uses a shared mutable
variable and is executed by multiple threads. In order to protect the critical section, we will
now use the std::mutex included in the <mutex> header. Later on, we will see how we
can avoid data races in this example by using atomics, but for now we will use a lock.

First, add the global std::mutex object next to the counter:

auto counter = 0; // Counter will be protected by counter_mutex
auto counter_mutex = std::mutex{};
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Isn't the std::mutex object itself a mutable shared variable that can generate data races if
used by multiple threads? Yes, it is a mutable shared variable, but no, it will not generate
data races. The synchronization primitives from the C++ thread such as std::mutex are
designed for this particular purpose. In that respect, they are very special and use hardware
instructions or whatever is necessary on your platform to guarantee that they don't generate
data races themselves.

Now we need to use the mutex in our critical section that reads and updates the counter
variable. We could use the lock() and unlock() member functions on the
counter_mutex, but the preferred and safer way is to always use RAII for handling the
mutex. Think of the mutex as a resource that always needs to be unlocked when we are
done using it. The thread library provides us with some useful RAII class templates for
handling locking. Here, we will use the std::lock_guard<Mutex> template to ensure that
we release the mutex safely. The following is the updated increment_counter function
now protected with a mutex lock:

auto increment_counter(int n) {
  for (int i = 0; i < n; ++i) {
    auto lock = std::lock_guard<std::mutex>{counter_mutex};
    ++counter;
  }
}

The program now works as expected, free from data races, and if we run it again, the
condition in the assert() function, it will now hold true.

Avoiding deadlocks
As long as a thread never acquires more than one lock at a time, there is no risk of
deadlocks. Sometimes, though, it is necessary to acquire another lock while already holding
on to a previously acquired lock. The risk of deadlocks in those situations can be avoided by
grabbing both locks at the exact same time. C++ has a way to do this by using
the std::lock() function, which takes an arbitrary number of locks, and blocks until all
locks have been acquired.

The following is an example of transferring money between accounts. Both accounts need to
be protected during the transaction, and therefore we need to acquire two locks at the same
time. Here is how it works:

struct Account {
  Account() {}
  int balance_ = 0;
  std::mutex m_{};
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};

void transfer_money(Account& from, Account& to, int amount) {
   auto lock1 = std::unique_lock<std::mutex>{from.m_, std::defer_lock};
   auto lock2 = std::unique_lock<std::mutex>{to.m_, std::defer_lock};
   // Lock both unique_locks at the same time
   std::lock(lock1, lock2);
   from.balance_ -= amount;
   to.balance_ += amount;
}

We are again using a RAII class template to ensure that we release the lock whenever this
function returns. In this case, we are using std::unique_lock, which provides us with the
possibility to defer the locking of the mutex. Then, we explicitly lock both mutexes at the
same time by using the std::lock() function.

Condition variables
A condition variable makes it possible for threads to wait until some specific condition has
been met. Threads can also use the condition variable to signal to other threads that the
condition has changed.

A common pattern in a concurrent program is to have one or many threads that are waiting
for data to be consumed somehow. These threads are usually called consumers. Another
group of threads are then responsible for producing data that is ready to be consumed. The
group of threads that are producing data are called producers, or producer if it is only one
thread.

The producer and consumer pattern can be implemented using a condition variable. We can
use a combination of std::condition_variable and std::unique_lock for this
purpose. Let's have a look at an example of a producer and consumer to make it less
abstract:

auto cv = std::condition_variable{};
auto q = std::queue<int>{};
auto mtx = std::mutex{}; // Protects the shared queue
constexpr int done = -1; // Special value to signal that we are done

void print_ints() {
  auto i = int{0};
  while (i != done) {
    {
      auto lock = std::unique_lock<std::mutex>{mtx};
      while (q.empty())
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        cv.wait(lock); // The lock is released while waiting

      i = q.front();
      q.pop();
    }
    if (i != done) {
      std::cout << "Got: " << i << '\n';
    }
  }
}

auto generate_ints() {
  for (auto i : {1, 2, 3, done}) {
    std::this_thread::sleep_for(std::chrono::seconds(1));
    {
      std::lock_guard<std::mutex> lock(mtx);
      q.push(i);
    }
    cv.notify_one();
  }
}
auto main() -> int {
   auto producer = std::thread{generate_ints};
   auto consumer = std::thread{print_ints};
   producer.join();
   consumer.join();
}

We are creating two threads: one consumer thread and one producer thread. The
producer thread is generating a sequence of integers and pushes them to a global
std::queue<int> once every second. Whenever it adds an element to the queue, it signals
that the condition has changed. The condition in this program is whether there is data in the
queue available for consumption by the consumer thread. Note also that it is not required to
hold the lock while notifying the condition variable.

The consumer thread is responsible for printing the data (that is, the integers) to the
console. It uses the condition variable to wait for the empty queue to change. When the
consumer calls cv.wait(lock), the thread goes to sleep and will leave the CPU for other
threads to execute. It is important to understand why we need to pass the variable lock
when calling wait(). Apart from putting the thread to sleep, wait() also unlocks the
mutex while sleeping and then acquires the mutex before it returns. If wait() didn't release
the mutex, the producer would not be able to add elements to the queue.
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Why is the consumer waiting on the condition variable with a while-loop around it and not
an if statement? This is a common pattern, and sometimes we need to do that since there
might be other consumers that were also woken up and emptied the queue before us. In our
program, we only have one consumer thread though, so that cannot happen. However, it is
possible for the consumer to be awoken from its wait even though the producer thread did
not signal. This phenomenon is called spurious wakeup, and the reasons for why this can
happen are beyond the scope of this book. We now at least know how to handle situations
where spurious wakeups can happen: always check the condition in a while-loop.

Returning data and handling errors
The examples presented so far in this chapter have used shared variables to communicate
state between threads. We have used mutex locks to ensure that we avoid data races. Using
shared data with mutexes, as we have been doing, can be very hard to do correctly when
the size of a program increases. There is also a lot of work in maintaining code that uses
explicit locking spread out over a code base. Keeping track of shared memory and explicit
locking moves us farther away from what we really want to accomplish and spend time on
when writing a program.

In addition, we haven't dealt with error handling at all yet. What if a thread needs to report
an error to some other thread? How do we do that using exceptions, as we are used to do
when a function needs to report a runtime error?

In the standard library <future> header, we can find some class templates that help us
writing concurrent code without global variables and locks, and, in addition, can
communicate exceptions between threads for handling errors. We will here present futures
and promises, which represent two sides of a value. The future is the receiving side of the
value and the promise is the returning side of the value.

The following is an example of using std::promise to return the result to the caller:

auto divide(int a, int b, std::promise<int>& p) {
  if (b == 0) {
    auto e = std::runtime_error{"Divide by zero exception"};
    p.set_exception(std::make_exception_ptr(e));
  }
  else {
    const auto result = a / b;
    p.set_value(result);
  }
}

auto main() -> int {
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   auto p = std::promise<int>{};
   std::thread(divide, 45, 5, std::ref(p)).detach();
   auto f = p.get_future();
   try {
     const auto& result = f.get(); // Blocks until ready
     std::cout << "Result: " << result << '\n';
   }
   catch (const std::exception& e) {
     std::cout << "Caught exception: " << e.what() << '\n';
   }
}

The caller (the main() function) creates the std::promise object and passes it to the
divide() function. We need to use std::ref from <functional> so that a reference can
be correctly forwarded through the std::thread to compute().

When the divide() function has computed the result, it passes the return value through
the promise by calling the set_value() function. If an error occurred in the divide()
function, it would have called the set_exception() function on the promise instead.

The future represents the value of the computation that may or may not be computed yet.
Since the future is an ordinary object, we can, for example, pass it around to other objects
that need the computed value. Finally, when the value is needed by some client, it calls
get() to get hold of the actual value. If it is not computed at that point in time, the call to
get() will block until it is finished.

Note also how we managed to pass data back and forth with proper error handling without
using any shared global data and no explicit locking. The promise takes care of that for us,
and we can focus on implementing the essential logic of the program instead.

Tasks
With futures and promises, we managed to get away from explicit locks and shared global
data. Our code will benefit from using higher level abstractions when possible, especially
when the code base grows. Here, we will go further and explore classes that make us have
the futures and promises automatically set up for us. We will also see how we can get rid of
the manual administration of threads and leave that to the library.

In many cases, we don't have any need for managing threads—instead, what we really need
is to be able to execute a task asynchronously and have that task execute on its own
concurrently with the rest of the program, and then eventually get the result or error
communicated to the parts of the program that need it. The task should be done in isolation
to minimize contention and the risk of data races.
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We begin by rewriting our previous example that divided two numbers. This time, we will
use the std::packaged_task from <future>, which makes all the work of setting up the
promise correct for us:

auto divide(int a, int b) -> int { // No need to pass a promise ref here!
  if (b == 0) {
    throw std::runtime_error{"Divide by zero exception"};
  }
  return a / b;
}

auto main() -> int {
  auto task = std::packaged_task<decltype(divide)>{divide};
  auto f = task.get_future();
  std::thread{std::move(task), 45, 5}.detach();
  // The code below is unchanged from the previous example
  try {
    const auto& result = f.get(); // Blocks until ready
    std::cout << "Result: " << result << '\n';
  }
  catch (const std::exception& e) {
    std::cout << "Caught exception: " << e.what() << '\n';
  }
  return 0;
}

std::packaged_task is itself a callable object that can be moved to the std::thread
object we are creating. As you can see, std::packaged_task now does most of the work
for us: we don't have to create the promise ourselves. But, more importantly, we can write
our divide() function just like a normal function, without the need for explicitly returning
values or exceptions through the promise; the std::packaged_task will do that for us.

As a last step in this section, we would also like to get rid of the manual thread
management. Creating threads is not free, and we will see later on that the number of
threads in a program can affect performance. It seems like the question of whether we
should create a new thread for our divide function is not necessarily up to the caller of
divide(). The library again helps us here by providing another useful function template
called std::async(). The only thing we need to do in our divide() example is replace
the code creating the std::packaged_task and the std::thread object with a simple call
to std::async():

   auto f = std::async(divide, 45, 5);
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We have now switched from a thread-based programming model to a task-based model.
The complete task-based example now looks like this:

auto divide(int a, int b) -> int {
  if (b == 0) {
    throw std::runtime_error{"Divide by zero exception"};
  }
  return a / b;
}

auto main() -> int {
  auto future = std::async(divide, 45, 5);
  try {
    const auto& result = future.get();
    std::cout << "Result: " << result << '\n';
  }
  catch (const std::exception& e) {
    std::cout << "Caught exception: " << e.what() << '\n';
  }
}

There is really a minimal amount of code left here for handling concurrency. The
recommended way to call functions asynchronously is to use std::async(). For a deeper
discussion about why and when std::async() is to be preferred, I highly recommend
the Concurrency chapter in Effective Modern C++ by Scott Meyers.

Atomic support in C++
The standard library contains support for atomic variables, sometimes called atomics. An
atomic variable is a variable that can safely be used and mutated from multiple threads 
without introducing data races. An atomic variable may or may not use a lock to protect the
data, this depends on the type of the variable and the platform. If the atomic does not use a
lock, it is said to be lock-free. You can query the variable in runtime (or compile time since
C++17) to be certain that it is lock-free if, for some reason, you need to ensure that it does
not use locks internally. 
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Do you remember the data race example we looked at earlier where two threads updated a
global counter? We solved it by adding a mutex lock together with the counter. Instead of
using an explicit lock, we could have used a std::atomic<int> instead:

std::atomic<int> counter;

auto increment_counter(int n) {
  for (int i = 0; i < n; ++i)
    ++counter; // Safe, counter is now an atomic<int>
}

The ++counter is a convenient way of saying counter.fetch_add(1). All member
functions that can be invoked on an atomic are safe to call from multiple threads
concurrently.

The atomic types are from the <atomic> header. There are typedefs for all the scalar data
types named on the std::atomic_int form. This is identical to saying
std::atomic<int>. It is possible to wrap a custom type in a std::atomic template, as
long as the custom type is trivially copyable. Basically, this means that an object of a class is
fully described by the bits of its data members. In that way, an object can be copied with, for
example, std::memcpy(), by only copying the raw bytes. So, if a class contains virtual
functions, pointers to dynamic memory, and so on, it's no longer possible to just copy the
raw bits of the object and expect it to work, and hence it is not trivially copyable. This can
be checked at compile time, so you will get a compilation error if you try to create an atomic
of a type that is not trivially copyable:

struct Point {
  int y{};
  int x{};
};

auto p = std::atomic<Point>{};       // OK: Point is trivially copyable
auto s = std::atomic<std::string>{}; // Error: cannot be trivially copied

It's also possible to create atomic pointers. This makes the pointer itself atomic, but not the
object it points at.

Using shared_ptr in a multithreaded environment
What about the std::shared_ptr? Can it be used in a multithreaded environment, and
how is the reference counting handled when multiple threads are accessing an object
referenced by multiple shared pointers?
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To understand shared pointers and thread safety, we need to recall how std::shared_ptr
is typically implemented (see also Chapter 7, Memory Management). Consider the following
code:

// Thread 1
auto p1 = std::make_shared<int>(int{42});

The code creates an int on the heap and a reference-counted smart pointer pointing at the
int object. When creating the shared pointer with std::make_shared(), a control block
will be created next to the int. The control block contains, among other things, a variable
for the reference count, which is incremented whenever a new pointer to the int is created
and decremented whenever a pointer to the int is destroyed. To summarize, when the
preceding code line is executed, three separate entities are being created:

The actual std::shared_ptr object p1 (local variable on the stack)
A control block (heap object)
An int (heap object)

The following figure shows the three objects:

A shared_ptr instance p1 which points to the integer object and a control block which contains the reference counting. In this case, there is only one shared pointer using the int,
and hence the ref count is 1.

Now, consider what would happen if the following code is executed by a second thread:

// Thread 2
auto p2 = p1;
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We are creating a new pointer pointing at the int (and the control block). When creating
the p2 pointer, we read p1, but we also need to mutate the control block when updating the
ref counter. The control block lives on the heap and is shared among the two threads, so it
needs synchronization to avoid data races. Since the control block is an implementation
detail hidden behind the std::shared_ptr interface, there is no way for us to know how
to protect it, and it turns out that it has already been taken care of by the implementation.
Typically, it would use a mutable atomic counter. In other words, the ref counter update is
thread-safe so that we can use multiple shared pointers from different threads without
worrying about synchronizing the ref counter. This is good practice and something to think
of when designing classes: if you are mutating variables in methods that appear to be
semantically read-only (const) from the client's perspective, you should make the mutating
variable thread-safe. On the other hand, everything that can be detected by the client as
mutating functions should be left to the client of the class to synchronize.

The following figure shows two std::shared_ptrs, p1 and p2, that have access to the
same object. The int is the shared object and the control block is an internally shared object
between the std::shared_ptr instances. The control block is thread-safe by default:

Two shared_ptrs accessing the same object

To summarize:

The shared object, the int in this example, is not thread-safe and needs explicit
locking if accessed from multiple threads
The control block is already thread-safe, so the reference counting mechanism
works in multi-threaded environments

Now there is only one part remaining: what about the actual std::shared_ptr objects, p1
and p2, in the previous example? To understand this, let's turn to an example using
only one global std::shared_ptr object called p:

// Global
auto p = std::shared_ptr<int>{};

How can we mutate p from multiple threads without introducing a data race?
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Of course, we could protect p with a mutex lock whenever we use p. Or, we could use
functions from the atomic library. There is no way to say std::atomic<shared_ptr<T>>
at the time of writing, but we can instead use overloads of the atomic functions for mutating
a std::shared_ptr atomically. The following example demonstrates how to load and
store a shared pointer object atomically from multiple threads:

// Thread T1 calls this function
auto f1() {
  auto new_p = std::make_shared<int>(std::rand());
  // ...
  std::atomic_store(&p, new_p);
}

// Thread T2 calls this function
auto f2() {
  auto local_p = std::shared_ptr<int>{std::atomic_load(&p)};
  // Use local_p...
}

In the example above we assume that there are two threads, T1 and T2 , which call
functions f1() and f2(), respectively. New heap-allocated int objects are created from the
thread T1 with the call to std::make_shared<int>(). 

There is one subtle detail to consider in this example: in which thread is the heap-allocated
int deleted? When local_p goes out of scope in the f2() function, it might be the last
reference to the int (the reference count reaches zero). In that case, the deletion of the heap-
allocated int will happen from thread T2. Otherwise, the deletion will happen from thread
T1 when std::atomic_store() is called. So, the answer is that the deletion of the int can
happen from both threads.

C++ memory model
Why are we talking about the memory model of C++ in a chapter about concurrency?

The memory model is closely related to concurrency since it defines how the reads and
writes to the memory should be visible among threads. This is a rather complicated subject
which touches on both compiler optimizations and multicore computer architecture. The
good news, though, is that if your program is free from data races and you use the memory
order that the atomics library provides by default, your concurrent program will behave
according to an intuitive memory model that is easy to understand. Still, it is important to at
least have an understanding of what the memory model is and what the default memory
order guarantees.
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The concepts covered in this section are thoroughly explained by Herb Sutter in his
talks, Atomic Weapons: The C++ Memory Model and Modern Hardware 1 & 2. The talks are
freely available at https:/ /herbsutter. com/2013/ 02/ 11/ atomic- weapons- the-c- memory-
model-and-modern- hardware/  and are highly recommended if you need more depth on this
subject.

Instruction reordering
To understand the importance of the memory model, we first need some background about
how programs we write are actually being executed.

When we write and run a program, it would be reasonable to assume that the instructions
in the source code are being executed in the same order as they appear in the source code.
This is not true though—the code we write will be optimized in multiple stages before it is
finally executed. Both the compiler and the hardware will reorder instructions with the goal
of executing the program more efficiently. This is not new technology: compilers have done
this for a long time, and this is one reason why an optimized build runs faster than a non-
optimized build. The compiler (and hardware) are free to reorder instructions as long as the
reordering is not observable when running the program. The program runs as if everything
happens in program order.

Let's look at an example code snippet to clarify:

int a = 10; // 1
cout << a;  // 2
int b = a;  // 3
cout << b;  // 4
// Observed output: 1010

Here, it is obvious that line number two and line number three could be swapped without
introducing any observable effect:

int a = 10; // 1
int b = a;  // 3 This line moved up
cout << a;  // 2 This line moved down
cout << b;  // 4
// Observed output: 1010

Here is another example, similar, but not identical, to the example from Chapter 4, Data
Structures, where the compiler can optimize a cache-unfriendly version when iterating over
a two-dimensional matrix:

constexpr auto ksize = size_t{100};
using MatrixType = std::array<std::array<int, ksize>, ksize>;
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auto cache_thrashing(MatrixType& matrix, int v) { // 1
  for (size_t i = 0; i < ksize; ++i)              // 2
    for (size_t j = 0; j < ksize; ++j)            // 3
      matrix[j][i] = v;                           // 4
}

We saw in Chapter 4, Data Structures, that code similar to this produces a lot of cache
misses, which hurts performance. A compiler is free to optimize this by reordering the for
statements, like this:

auto cache_thrashing(MatrixType& matrix, int v) { // 1
  for (size_t j = 0; j < ksize; ++j)              // 3 This line moved up
    for (size_t i = 0; i < ksize; ++i)            // 2 This line moved down
      matrix[j][i] = v;                           // 4
}

There is no way to observe the difference between the two versions when executing the
program, but the latter will run faster.

Optimizations performed by the compiler and the hardware (including instruction
pipelining, branch prediction, and cache hierarchies) are very complicated and constantly-
evolving technologies. Fortunately, all these transformations of the original program can be
seen as reorderings of reads and writes in the source code. This also means that it doesn't
matter whether it is the compiler or some part of the hardware that performs the
transformations. The important thing for C++ programmers to know is that the instructions
can be reordered but without any observable effect.

If you have been trying to debug an optimized build of your program, you have probably
noticed that it can be hard to step through it because of the reorderings. So, by using a
debugger, the reorderings are in some sense observable, but they are not observable when
running the program in a normal way.

Atomics and memory orders
When writing single-threaded programs in C++, there is no risk of data races occurring. We
can write our programs happily without being aware of instruction reorderings. However,
when it comes to shared variables in multi-threaded programs, it is a completely different
story. The compiler (and hardware) does all its optimizations based on what is true and
observable for one thread only. The compiler cannot know what other threads are able to
observe by shared variables, so it is our job as programmers to inform the compiler of what
reorderings are allowed. In fact, that is exactly what we are doing when we are using an
atomic variable or a mutex to protect us from data races.
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When protecting a critical section with a mutex, it is guaranteed that only the thread that
currently owns the lock can execute the critical section. But, the mutex is also creating
memory fences around the critical section to inform the system that certain reorderings are
not allowed at the critical section boundaries. When acquiring the lock, an acquire fence is
added, and when releasing the lock, a release fence is added.

We will demonstrate this with an example. Imagine that we have four instructions: i1, i2, i3,
and i4. There is no dependency between each other, so the system could reorder the
instructions arbitrarily without any observable effect. The instructions i2 and i3 are using
shared data and are, therefore, critical sections that needs to be protected by a mutex. After
adding the acquire and release of the mutex lock, there are now some reorderings that are
no longer valid. Obviously, we cannot move the instructions that are part of the critical
section outside of the critical section, or they will no longer be protected by the mutex. The
one-way fences ensure that no instructions can move out from the critical section. The i1
instruction could be moved inside the critical section by passing the acquire fence, but not
beyond the release fence. The i4 instruction could also be moved inside the critical section
by passing the release fence, but not beyond the acquire fence.

The following figure shows how one-way fences limit the reordering of instructions. No
read or write instructions can pass above the acquire fence, and nothing can pass below the
release fence:

The one-way fences limit the reordering of the instructions

When acquiring a mutex, we are creating an acquire memory fence. It tells the system that
no memory accesses (reads or writes) can be moved above the line where the acquire fence
is located. It is possible for the system to move the i4 instruction above the release fence
beyond the i3 and i2 instructions, but no longer than that because of the acquire fence.
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Now, let's have a look at atomic variables instead of mutexes. When we use a shared atomic
variable in our program, it gives us two things:

Protection against torn writes: The atomic variable is always updated atomically
so there is no way a reader can read a partially written value.
Synchronization of memory by adding sufficient memory fences: This prevents
certain instruction reorderings to guarantee a certain memory order specified by
the atomic operations.

The C++ memory model guarantees sequential consistency if your program is free from data
races and you use the default memory order when using atomics. So, what is sequential
consistency? Sequential consistency guarantees that the result of the execution is the same as
if the operations were executed in the order specified by the original program. The
interleaving of instructions among threads is arbitrary; that is, we have no control over the
scheduling of the threads. This may sound complicated at first, but it is probably the way
you already think about how a concurrent program is executed.

The downside with sequential consistency is that it can hurt performance. It is, therefore,
possible to use atomics with a relaxed memory model instead. This means that you only get
the protection against torn writes, but not the strong sequential consistency memory order
guarantees. We strongly advise you against using anything else except the default
sequential consistency memory order, unless you have a very thorough understanding of
the effects a weaker memory model can introduce. We will not discuss relaxed memory
order any further here because it is beyond the scope of this book. But as a side note, it can
be interesting to know that the reference counter in a std::shared_ptr uses a relaxed
model when incrementing the counter (but not when decrementing the counter). This is the
reason why the std::shared_ptr member function use_count() only reports the
approximate number of actual references when being used in a multi-threaded
environment.

Lock-free programming
Lock-free programming is hard. We will not spend a lot of time discussing lock-free
programming in this book, but instead provide you with an example of how a very simple
lock-free data structure could be implemented. There is a great wealth of resources—on the
web and in books—dedicated to lock-free programming that will explain the concepts you
need to understand before writing your own lock-free data structures. Some concepts you
might have heard of, related to lock-free programming, such as Compare-And-Swap (CAS)
and the ABA-problem will not be further discussed in this book.
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Lock-free queue example
Here, we are going to show an example of a lock-free queue, which is a relatively simple
but useful lock-free data structure. Lock-free queues can be used for one-way
communication with threads that cannot use locks to synchronize access to shared data. 

Its implementation is straightforward because of the limited requirements: it only supports
one reader thread and one writer thread. The capacity of the queue is also fixed and cannot
change during runtime.

The writer thread is allowed to call:

push(): adds an element to the queue

The reader thread is allowed to call:

front(): returns the front element of the queue
pop(): removes the front element from the queue

Both threads can call:

size(): returns the current size of the queue

The following is the complete implementation of the queue:

template <class T, size_t N>
class LockFreeQueue {
public:
  LockFreeQueue() : read_pos_{0}, write_pos_{0}, size_{0} {
    assert(size_.is_lock_free());
  }
  auto size() const { return size_.load(); }
  // Writer thread
  auto push(const T& t) {
    if (size_.load() >= N) {
      throw std::overflow_error("Queue is full");
    }
    buffer_[write_pos_] = t;
    write_pos_ = (write_pos_ + 1) % N;
    size_.fetch_add(1);
  }
  // Reader thread
  auto& front() const {
    auto s = size_.load();
    if (s == 0) {
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      throw std::underflow_error("Queue is empty");
    }
    return buffer_[read_pos_];
  }
  // Reader thread
  auto pop() {
    if (size_.load() == 0) {
      throw std::underflow_error("Queue is empty");
    }
    read_pos_ = (read_pos_ + 1) % N;
    size_.fetch_sub(1);
  }
private:
  std::array<T, N> buffer_{};  // Used by both threads
  std::atomic<size_t> size_{}; // Used by both threads
  size_t read_pos_ = 0;        // Used by reader thread
  size_t write_pos_ = 0;       // Used by writer thread
};

The only data member that needs atomic access is the size_ variable. The read_pos_
member is only used by the reader thread, and the write_pos_ is only used by writer
thread. So what about the buffer of type std::array? It is mutable and accessed by both
threads—doesn't that require synchronization? Since the algorithm ensures that the two
threads are never accessing the same element in the array concurrently, C++ guarantees that
individual elements in an array can be accessed without data races. It doesn't matter how
small the elements are, even a char array holds this guarantee.

When can a non-blocking queue like this be useful? One example is in audio programming,
when there is a UI running on the main thread that needs to send or receive data from a
real-time audio thread, which cannot block under any circumstances. The real-time thread
cannot use mutex locks, allocate/free memory, or anything else that may cause the thread to
wait on threads with lower priority. Lock-free data structures are required for scenarios like
these.

Both the reader and the writer are lock-free in LockFreeQueue, so we could have two
instances of the queue to communicate in both directions between the main thread and the
audio thread, as the following figure demonstrates:
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Using two lock-free queues to pass state between the main thread and a real-time audio thread 

Performance guidelines
This chapter will end with some guidelines related to performance. We cannot stress
enough the importance of having a concurrent program running correctly before trying to
improve the performance. Also, before applying any of these guidelines related to
performance, you first need to set up a reliable way of measuring what you are trying to
improve.

Avoid contention
Whenever multiple threads are using shared data, there will be contention. Contention
hurts performance and sometimes the overhead caused by contention can make a parallel
algorithm work slower than a single-threaded alternative.

Using a lock that causes a wait and a context switch is an obvious performance penalty, but
what is not equally obvious is that both locks and atomics disable optimizations in the code
generated by the compiler, and they do so at runtime when the CPU executes the code. This
is necessary in order to guarantee sequential consistency. But remember, the solution to
such problems is never to ignore synchronization and therefore introduce data races. Data
races mean undefined behavior, and having a fast incorrect program makes nobody happy.

Instead, we need to minimize the time spent in critical sections. We can do that by entering
critical sections less often, and by minimizing the critical section itself so that once we are in
a critical section we will leave it as soon as possible.
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Avoid blocking operations
To write a modern responsive UI application that always runs smoothly, it is absolutely
necessary to never block the main thread for more than a few milliseconds. A smooth
running app is updating its interface 60 times a second. This means that if you are doing
something that blocks the UI thread for more than 16 ms, the FPS will drop.

You can design your internal APIs in an application with this in mind. Whenever you write
a function that performs I/O or something else that might take more than a few
milliseconds, it needs to be implemented as an asynchronous function. This pattern has
become very common in iOS and Windows where, for example, all network APIs have
become asynchronous.

Number of threads/CPU cores
The more CPU cores a machine has, the more active running threads you can have. If you
manage to split a sequential CPU-bound task into a parallel version, you can gain
performance by having multiple cores working on the task in parallel.

Going from a single-threaded algorithm to an algorithm that can be run by two threads can,
in the best case, double the performance. But, after adding more and more threads, you will
eventually reach a limit when there is no more performance gain. Adding more threads
beyond that limit will actually degrade performance since the overhead caused by context
switching becomes more significant the more threads you add.

For I/O intensive tasks, for example, a web crawler that will spend a lot of time waiting for
network data, it would require a lot of threads before reaching the limit where the CPU is
oversubscribed. A thread that is waiting for I/O will most likely be switched out from the
CPU to make room for other threads that are ready to execute.

For CPU-bound tasks, there is usually no point in using more threads than there are cores
on the machine.

Controlling the total number of threads in a big program can be hard. A good way of
controlling the number of threads is to use a thread pool that can be sized to match the
current hardware.

In the next chapter, we will see examples of how to parallelize algorithms and how to tweak
the amount of concurrency based on the number of CPU cores.
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Thread priorities
The priority of a thread affects how the thread is being scheduled. A thread with high
priority is likely to be scheduled more often than threads with lower priorities. Thread
priorities are important for lowering the latency of tasks.

Threads provided by the operating system usually have priorities. There is currently no
way of setting the priority on a thread with the current C++ thread APIs. However, by using
std::thread::native_handle, one can get a handle to the underlying operating system
thread and use native APIs for setting priorities.

One phenomenon related to thread priorities that can hurt the performance and should be
avoided is called priority inversion. It happens when a thread with high priority is waiting to
acquire a lock that is currently held by a low priority thread. Such dependencies hurt the
high priority thread, which is blocked until the next time the low priority thread gets
scheduled so that it can release the lock. For real-time applications, this is a big problem. In
practice, it means that you cannot use locks to protect any shared resources that need to be
accessed by real-time threads. A thread that produces real-time audio, for example, runs
with the highest possible priority, and in order to avoid priority inversion, it is not possible
for the audio thread to call any functions (including std::malloc()) that might block and
cause a context switch.

Thread affinity
Thread affinity makes it possible to give the scheduler hints about which threads could
benefit from sharing the same CPU caches. In other words, this is a request to the scheduler
that some threads should be executed on a particular core if possible, to minimize cache
misses.

Why would you want one thread to be executed on a particular core? The answer is (again)
caching. Threads that operate on the same memory could benefit from running on the same
core, and hence take advantage of warm caches. For the scheduler, this is just one of many
parameters to take into account when assigning a thread to a core, so this is hardly any
guarantee, but again the behavior is very different among operating systems. Thread
priorities, and even utilization of all cores (to avoid overheating), are some of the
requirements that need to be taken into account by a modern scheduler.
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It is not possible to set thread affinity in a portable way with the current C++ APIs, but most
platforms support some way of setting an affinity mask on a thread. In order to access
platform-specific functionality, you need to get a handle on the native thread. The example
ahead demonstrates how to set the thread affinity mask on Linux:

#include <pthreads> // Non-portable header

auto set_affinity(const std::thread& t, int cpu) {
  cpu_set_t cpuset;
  CPU_ZERO(&cpuset);
  CPU_SET(cpu, &cpuset);
  pthread_t native_thread = t.native_handle();
  pthread_set_affinity(native_thread, sizeof(cpu_set_t), &cpuset);
}

Note, this is not portable C++, but it is likely that you need to do some
non-portable configuration of threads if you are doing performance-
critical concurrency programming.

False sharing
False sharing, or destructive interference, can degrade performance. It occurs when two
threads use some data (that is not logically shared between the threads) but happen to be
located in the same cache line. Imagine what would happen if the two threads are executing
on different cores and constantly update the variable that resides on the shared cache line.
The threads will invalidate the cache line for each other although there is no true sharing of
data between the threads.

False sharing will most likely occur when using global data or dynamically-allocated data
that is shared between threads. An example where false sharing is likely to occur is when
allocating an array that is shared between threads, but each thread is only using a single
element of the array.
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The solution to this problem is to pad each element in the array so that two adjacent
elements cannot reside on the same cache line. Since C++17, there is a portable way of doing
this using the std::hardware_destructive_interference_size constant defined in
<new> in combination with the alignas specifier. The following example demonstrates
how to create an element that prevents false sharing:

struct alignas(std::hardware_destructive_interference_size) Element {
   int counter_{};
};

auto elements = std::vector<Element>(num_threads);

The elements in the vector are now guaranteed to reside on separate cache lines.

Summary
In this chapter, we have seen how to create programs that can execute multiple threads
concurrently. We have seen how to avoid data races by protecting critical sections with
locks or by using atomics. We have looked into execution order and the C++ memory
model, which becomes important to understand when writing lock-free programs. We have
seen that immutable data structures are thread-safe. The chapter ended with
some guidelines for improving the performance in concurrent applications.



11
Parallel STL

In this chapter, you will learn how to use the computer's graphical processing unit for
computationally heavy tasks. We will use the excellent Boost Compute library, which exposes
the GPU via an interface that resembles the STL, meaning that you will move your standard
C++ code almost seamlessly from the CPU to the GPU.

This chapter is not going to go in depth into theories of parallelizing algorithms or parallel
programming in general, as these subjects are far too complex to cover in a single chapter.
Also, there is a multitude of books on this subject. Instead, this chapter is going to take a
more practical approach and demonstrate how to extend a current C++ code base to utilize
parallelism while preserving the readability of the code base.

In other words, we do not want the parallelism to get in the way of readability; rather, we
want the parallelism to be abstracted away so that parallelizing the code is only a matter of
changing a parameter to an algorithm.

In earlier chapters, we have stressed that we prefer STL algorithms over handcrafted for-
loops; in this chapter, we will see some great advantages of using algorithms.

We will start this chapter off by looking at a few parallel implementations of standard
algorithms, and the added complexity of writing parallel versions of them. We will then go
on to see how we can adapt a code base to use the parallel extensions of STL, and finally we
will take a brief look at how we can use the capabilities of the GPU in a simple way by
using Boost Compute and OpenCL.
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Importance of parallelism
From a programmer's perspective, it would have been very convenient if the computer
hardware of today had been a 100 GHz single core CPU rather than a three gigahertz multi-
core CPU, and we wouldn't need to care about parallelism. But, as the evolution of
computer hardware is going in the direction of multi-core CPUs, programmers have to use
efficient parallel patterns in order to make the most out of the hardware.

Parallel algorithms
As mentioned in Chapter 10, Concurrency, with parallelism we refer to programming that
takes advantage of hardware with multiple cores. It makes no sense to parallelize
algorithms if the hardware does not provide any of the benefits of it.

Therefore, a parallel algorithm equivalent of a sequential algorithm is algorithmically
slower than the sequential. Its benefits come from the ability to spread the algorithms onto
several processing units.

With that in mind, it's also notable that not all algorithms gain the same performance
increase when run in parallel. As a simple measurement of how well an algorithm scales,
we can measure:

A: The time it takes to execute sequentially at one CPU core
B: The time it takes to execute in parallel, multiplied by the number of cores

If A and B are equal, the algorithm parallelizes perfectly, and the larger B is compared to A,
the worse the algorithm parallelizes.

How well an algorithm parallelizes depends on how independently each element can be
processed. For example, std::transform() is trivial to parallelize in the sense that each
element is processed completely independent of every other. This means that theoretically,
for n number of cores, it would execute n times as fast as a sequential execution. In practice,
though, there are a multitude of parameters that limit parallel execution such as creating
threads, context switches, and so on, as mentioned in Chapter 10, Concurrency in C++.
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As parallel algorithms always have a higher computational cost than their
sequential equivalent, there are some cases where you may want a
sequential version even though it's slower. An example of such a case is if
you are optimizing for low energy consumption rather than low
computational time. Even though this is probably a very rare case
(perhaps a solar-powered galaxy-exploring spacecraft), it might be worth
noting.

Implementing parallel std::transform()
Although algorithmically std::transform() is easy to implement, in practice 
implementing even a rudimentary parallel version is more complex than it might appear at
first sight.

A naive parallel implementation of std::transform() would probably look something
like this:

Divide the elements into chunks corresponding to the number of cores in the
computer
Execute each chunk in a separate task in parallel
Wait for all tasks to finish

Naive implementation
Using std::thread::hardware_concurrency() to determine the number of supported
hardware threads, a naive implementation could look like this. Note that
hardware_concurrency() might return 0 if it for some reason is undetermined, and 
therefore it is clamped to be at least one:

template <typename SrcIt, typename DstIt, typename Func>
auto par_transform_naive(SrcIt first, SrcIt last, DstIt dst, Func f) {
  auto n = static_cast<size_t>(std::distance(first, last));
  auto num_tasks = std::max(std::thread::hardware_concurrency(), 1);
  auto chunk_sz = std::max(n / num_tasks, 1);
  auto futures = std::vector<std::future<void>>{};
  futures.reserve(num_tasks); // Invoke each chunk on a separate
                              // task, to be executed in parallel
  for (size_t task_idx = 0; task_idx < num_tasks; ++task_idx) {
    auto start_idx = chunk_sz * task_idx;
    auto stop_idx = std::min(chunk_sz * (task_idx + 1), n);
    auto fut = std::async([first, dst, start_idx, stop_idx, &f](){
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      std::transform(first+start_idx, first+stop_idx, dst+start_idx, f);
    });
    futures.emplace_back(std::move(fut));
  }
  // Wait for each task to finish
  for (auto& fut : futures) { fut.wait();}
}

Performance evaluation
Continuing the naive implementation, let's measure its performance with a naive
performance evaluation compared to std::transform() at a single CPU core.

We measure two scenarios:

Process 32 elements with an expensive function called heavy_f1.
Process 100,000,000 elements with an inexpensive function called light_f2.

The following code processes a low number of elements with the expensive heavy_f
transform function:

// Low number of elements - heavy transform function
auto heavy_f = [](float v) {
  auto sum = v;
  for (size_t i = 0; i < 100'000'000; ++i) { sum += (i*i*i*sum); }
  return sum;
};
auto measure_heavy() {
  auto n = 32;
  auto src = std::vector<float>(n);
  auto dst = std::vector<float>(n);
  std::transform(src.begin(), src.end(), dst.begin(), heavy_f);
  par_transform_naive(src.begin(), src.end(), dst.begin(), heavy_f);
}

The following code processes a high number of elements with the inexpensive light_f
transform function:

// High number of elements - light transform function
auto light_f = [](float v) {
  auto sum = v;
  for (size_t i = 0; i < 10; ++i) { sum += (i*i*i*sum); }
  return sum;
};
auto measure_light() {
  auto n = 100'000'000;
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  auto src = std::vector<float>(n);
  auto dst = std::vector<float>(n);
  std::transform(src.begin(), src.end(), dst.begin(), light_f);
  par_transform_naive(src.begin(), src.end(), dst.begin(), light_f);
}

The following table shows the results for low number of elements with the
expensive heavy_f function:

Algorithm Time (lower is better) Speed up (higher is better)

std::transform() 2913914 microseconds                                        1.00 x

par_transform_naive() 364596 microseconds                                        7.99 x

The parallelization is perfect as it is approximately eight times as fast at an eight-core CPU.
Perfect parallelization like this is very rare, but under certain conditions where memory
access is not a bottle neck, it is possible.

Here are the results for a high number of elements with the inexpensive light_f function:

Algorithm Time (lower is better) Speed up (higher is better)

std::transform() 407859 microseconds                                        1.00 x

par_transform_naive() 88887 microseconds                                        4.60 x

The parallel version is five times as fast, which is roughly what a parallelization of
std::transform() at eight cores usually ends up at, as the parallelization is affected by a
lot of external parameters such as memory bandwidth, as discussed in Chapter 10,
Concurrency.

Shortcomings of the naive implementation
The naive implementation might do a good job if we are the only application utilizing the
hardware, and transforming each chunk has the same computational cost. However, this is
rarely the case; rather, we want a good general purpose parallel implementation.
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The following illustrations show the problems we want to avoid. If the computational cost
is not equivalent for each chunk, the implementation is limited to the chunk that takes the
most time:

Possible scenarios where computation time is not proportional to chunk size

If the application and/or the operating system has other processes to handle, the operation
will not process all chunks in parallel:

Possible scenarios where computation time is proportional to chunk size

As you can see, splitting the operation into smaller chunks makes the parallelization adjust
to the current condition, avoiding single tasks that stall the whole operation.



Parallel STL Chapter 11

[ 306 ]

Divide and conquer
In order to get a good general purpose implementation of the parallel transformation, we
divide the range recursively into smaller ranges, sometimes referred to as "divide and
conquer".

It works as follows:

The input range is divided into two ranges; if the input range is smaller than a1.
specified threshold, the range is processed, or else the range is split into two
parts:

One part is branched to another task recursively processed at that task
One part is recursively processed at the calling thread

The following illustration shows how it would recursively transform a range with the
following properties:

Range size: 16
Chunk size: 4
Transformation function:  [](const auto& v){ return v*v; }

A range is divided recursively for parallel processing
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Implementation
Implementation-wise, it's quite a small bit of code. The incoming range is recursively split
into two chunks; the first chunk is recursively invoked as a new task, and the second chunk
is processed on the same task:

template <typename SrcIt, typename DstIt, typename Func>
auto par_transform(SrcIt first,SrcIt last,DstIt dst,Func f,size_t chunk_sz)
{
  const auto n = static_cast<size_t>(std::distance(first, last));
  if (n <= chunk_sz) {
    std::transform(first, last, dst, f);
    return;
  }
  const auto src_middle = std::next(first, n/2);
  // Branch of first part to another task
  auto future = std::async([=, &func]{
    par_transform(first, src_middle, dst, f, chunk_sz);
  });
  // Recursively handle the second part
  const auto dst_middle = std::next(dst, n/2);
  par_transform(src_middle, last, dst_middle, f, chunk_sz);
  future.wait();
}

Performance evaluation
Now we create another, rather stupid, transform_func that takes more time depending
on the input value, and a range of increasing values using std::iota() like this:

const auto transform_func = [](float v) {
  auto sum = v;
  auto i_max = v / 100'000;  // The larger "v" is, the more to compute
  for (size_t i = 0; i < i_max; ++i) { sum += (i*i*i*sum); }
  return sum;
};
auto n = size_t{ 10'000'000 };
auto src = std::vector<float>(n);
std::iota(src.begin(), src.end(), 0.0f); // "src" goes from 0 to n
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If we evaluate them with different chunk sizes, as well as std::transform() and the old
par_transform_naive(), we get the following computation times:

Function Chunk size Number of tasks Microseconds Speed up

std::transform() 10000000 (= n) 1 844629 1.00x

par_transform_naive() 1250000 (= n / 8) 8 222933 3.79x

par_transform() 1000000 10 210942 4.00x

par_transform() 100000 100 148066 5.70x

par_transform() 10000 1000 144189 5.86x

par_transform() 1000 10000 152123 5.55x

par_transform() 100 100000 208969 4.04x

par_transform() 10 1000000 1536680 0.55x

Computation time using different chunk sizes

As the table illustrates, the best performance in this case lies around chunk sizes of 10000
elements. With larger chunks, the performance is bottlenecked in the time it takes to process
the final chunks, whereas too small chunks results in too much overhead in creating and
invoking tasks compared to the computation. As mentioned earlier, this implementation is
rather rudimentary as it simply allocates all the tasks in one big list, but the outcome is still
worth pointing out.

As noted, a chunk size around 10'000 elements seems most optimal, but how much would
this affect a transformation where each computation takes the same amount of time?

If we change the transform_func to have a fixed computation cost, regardless of its
argument, like this:

auto transform_func = [](float v) {
  auto sum = v;
  auto end = 60
  for (size_t i = 0; i < end; ++i) {
    sum += (i*i*i*sum);
  }
  return sum;
};
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...and execute the code as in the previous example, we get the following table:

Function Chunk size Number of tasks Microseconds Speed up

std::transform() 10000000 (= n) 1 815498 1.00 x

par_transform_naive() 1250000 (= n / 8) 8 129403 6.30 x

par_transform_chunks() 1000000 10 184041 4.43 x

par_transform_chunks() 100000 100 132248 6.17 x

par_transform_chunks() 10000 1000 131812 6.19 x

par_transform_chunks() 1000 10000 141705 5.75 x

par_transform_chunks() 100 100000 179279 4.50 x

par_transform_chunks() 10 1000000 1542512 0.53 x
Computation time using different chunk sizes

The fastest version, although marginally, is the par_transform_naive() function where
the number of chunks corresponds to the number of cores in the computer. This is expected
though, as this code is executed in a clinical environment where the CPU does more or less
nothing more than perform this calculation.

The important takeaway from this example, though, is that the performance penalty of
scheduling 1000 smaller tasks rather than eight big ones is marginal enough to draw the
conclusion that a generic implementation would be wise to use a large number of tasks
rather than trying to figure out the correct number of tasks based on the number of CPU
cores on the machine. In other words, let the scheduler involved in launching an
asynchronous task do the scheduling.

Implementing parallel std::count_if
We can easily use the same divide and conquer concept to implement a parallel version of
std::count_if(), with the difference that we need to accumulate the returned value like
this:

template <typename It, typename Pred>
auto par_count_if(It first, It last, Pred pred, size_t chunk_sz) {
  auto n = static_cast<size_t>(std::distance(first, last));
  if (n <= chunk_sz)
    return std::count_if(first, last, pred);
  auto middle = std::next(first, n/2);
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  auto future = std::async([=, &pred]{
    return par_count_if(first, middle, pred, chunk_sz);
  });
  auto num = par_count_if(middle, last, pred, chunk_sz);
  return num + future.get();
}

Implementing parallel std::copy_if
We've had a look at std::transform() and std::count_if(), which are quite easy to
implement both sequentially and in parallel. If we take another algorithm that is easily 
implemented sequentially, std::copy_if(), things get a lot harder to perform in parallel.

Sequentially, implementing std::copy_if() is as easy as this:

template <typename SrcIt, typename DstIt, typename Pred>
auto copy_if(SrcIt first, SrcIt last, DstIt dst, Pred pred) {
  for(auto it = first; it != last; ++it) {
    if( pred(*it) ) {
      *dst = *it;
      ++dst;
    }
  }
  return dst;
}

... and used like this:

auto vals = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
auto odd_vals = std::vector<int>(vals.size(), -1);
auto is_odd = [](int v){ return (v % 2) == 1;};
auto new_end = copy_if(vals.begin(), vals.end(), odd_vals.begin(), is_odd);
// odd_vals is {1,3,5,7,9,11,13,15,-1,-1,-1,-1,-1,-1,-1,-1}
// new_end points to the first -1
odd_vals.erase(new_end, odd_vals.end());
// odd_vals is {1,3,5,7,9,11,13,15}
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However, if we were to parallelize this, we immediately run into problems as we cannot
write to the destination iterator concurrently:

// This is pure undefined behavior,
// both tasks will write to the same position
template <typename SrcIt, typename DstIt, typename Func>
auto par_copy_if(SrcIt first, SrcIt last, DstIt dst, Func func) {
  auto n = std::distance(first, last);
  auto middle = std::next(first, n / 2);
  auto fut0 = std::async([=](){
    return std::copy_if(first, middle, dst, func); } );
  auto fut1 = std::async([=](){
    return std::copy_if(middle, last, dst, func); } );
  auto dst0 = fut0.get();
  auto dst1 = fut1.get();
  return *std::max(dst0, dst1); // Just to return something...
}

We now have two simple approaches; either we synchronize the index which we write to
(by using an atomic/lock-free variable), or we split the algorithm into two parts.

Approach one – Use a synchronized write position
The first approach one might consider is to synchronize the write position by using an
atomic size_t and the fetch_add() member function, as learned in Chapter 10,
Concurrency. Whenever a thread tries to write a new element, it fetches the current index
and adds one atomically, thus each value is written to a unique index.

In code, we will split the function into two functions: an inner function and an outer
function. The atomic write index is defined in the outer function, and the actual
implementation in the inner function which we call _inner_par_copy_if_sync().

Inner function
The inner function requires an atomic size_t that synchronizes the write positions. As the
algorithm is recursive, it cannot store the atomic size_t itself; it requires an outer function
to invoke the algorithm:

template <typename SrcIt, typename DstIt, typename Pred>
auto _inner_par_copy_if_sync(
  SrcIt first,
  SrcIt last,
  DstIt dst,
  std::atomic_size_t& dst_idx,
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  Pred pred,
  size_t chunk_sz
) -> void {
  auto n = std::distance(first, last);
  if (n <= chunk_sz) {
    std::for_each(first, last, [&](const auto& v) {
      if (pred(v)) {
        auto write_idx = dst_idx.fetch_add(1);
        *std::next(dst, write_idx) = v;
      }
    });
    return;
  }
  auto middle = std::next(first, n / 2);
  auto future = std::async(
    [first, middle, dst, chunk_sz, &pred, &dst_idx] {
      return _inner_par_copy_if_sync(
        first, middle, dst, dst_idx, pred, chunk_sz
      );
    });
  _inner_par_copy_if_sync(middle, last, dst, dst_idx, pred, chunk_sz);
  future.wait();
}

Outer function
The outer function, called from the user code, is simply a placeholder for the atomic
size_t, which is initialized to zero. It then initializes the first inner function, which
parallelizes the code further:

template <typename SrcIt, typename DstIt, typename Pred>
auto par_copy_if_sync(SrcIt first,SrcIt last,DstIt dst,Pred p,size_t
chunk_sz){
  auto dst_write_idx = std::atomic_size_t{ 0 };
  _inner_par_copy_if_sync(first, last, dst, dst_write_idx, p,
    chunk_sz);
  return std::next(dst, dst_write_idx);
}

Approach two – Split algorithm into two parts
The second approach is to split the algorithm into two parts. First, the conditional copying
is performed in parallel chunks, then the resulting sparse range is squeezed to a continuous
range.
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Part one – Copy elements in parallel into the destination range
The first part copies the elements in chunks, resulting in the sparse destination illustrated in
the following figure. Each chunk is conditionally copied in parallel, and the resulting range
iterators are stored in the future for later retrieval:

Sparse destination range after first step of conditional copy

The following code implements the algorithm:
template <typename SrcIt, typename DstIt, typename Pred>
auto par_copy_if_split(SrcIt first,SrcIt last,DstIt dst,Pred pred,size_t
chunk_sz){
  // Part #1: Perform conditional copy in parallel
  auto n = static_cast<size_t>(std::distance(first, last));
  using CopiedRange = std::pair<DstIt, DstIt>;
  using FutureType = std::future< CopiedRange >;
  auto futures = std::vector<FutureType>{};
  futures.reserve(n / chunk_sz);
  for (size_t start_idx = 0; start_idx < n; start_idx += chunk_sz) {
    auto stop_idx = std::min(start_idx + chunk_sz, n);
    auto future = std::async([=, &pred] {
      auto dst_first = dst + start_idx;
      auto dst_last = std::copy_if(first + start_idx, first + stop_idx,
        dst_first, pred);
      return std::make_pair(dst_first, dst_last);
    });
    futures.emplace_back(std::move(future));
  }
  // To be continued...
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Part two – Move the sparse range sequentially into a continuous range
When the sparse range is created, it is merged sequentially using the resulting value from
each std::future, as illustrated in the following figure. This is performed sequentially as
the parts overlap. Note that std::move is used instead of copying to avoid unnecessary
copying:

Merge sparse range into a continuous range

  // ...continued from above...
  // Part #2: Perform merge of resulting sparse range sequentially
  auto new_end = futures.front().get().second;
  for(auto it = std::next(futures.begin()); it != futures.end(); ++it) {
    auto chunk_rng = it->get();
    new_end=std::move(chunk_rng.first, chunk_rng.second, new_end);
  }
  return new_end;
} // end of par_copy_if_split
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Performance evaluation
Now that we have two different implementations, let's see how they measure up. The
performance boost from using this parallelized version of copy_if is heavily dependent on
how expensive the predicate is. Therefore, we measure with two predicates; is_odd, which
is very inexpensive and is_prime, which is expensive. 

The light is_odd predicate: The heavy is_prime predicate:

auto is_odd = [](unsigned v) {
  return (v % 2) == 1;
};

auto is_prime = [](unsigned v) {
  if (v < 2) return false;
  if (v == 2) return true;
  if (v % 2 == 0) return false;
  for (unsigned i=3; (i*i)<=v; i+=2) {
    if ((v % i) == 0) {return false; }
  }
  return true;
};

The following table shows the performance as measured using an Intel i7 7700k CPU. Note
that for the algorithms which is split into chunks, the chunk size is set to 100'000.

Predicate Algorithm Number of elements Milliseconds Speed up

is_odd std::copy_if 100,000,000 64     1.00 x

is_odd par_copy_if_split 100,000,000 58     1.10 x

is_odd par_copy_if_sync 100,000,000 871     0.07 x (disaster)

is_prime std::copy_if 10,000,000 1630     1.00 x

is_prime par_copy_if_split 10,000,000 320     5.09 x

is_prime par_copy_if_sync 10,000,000 321     5.08 x

Conditional copy strategies versus computation time

The most obvious observation when measuring the performance is how ridiculously slow
the synchronized version is with the lightweight is_odd predicate, it's not even one tenth as
fast as the serial version. The disastrous performance is actually not due to the atomic write
index; rather it is because the cache mechanism of the hardware is trashed due to several
threads writing to the same cache line (as learned in Chapter 7, Memory Management).
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So, with that knowledge, let's focus on the par_copy_if_split implementation instead.
On the lightweight predicate it is just slightly faster than the sequential version, but with
the heavyweight is_prime predicate, the performance is vastly increased.

The increased performance is a result of spending most of the computations in the first part,
which executes in parallel.

Parallel STL
As of C++17, the STL library has been extended with parallel versions of most, but not all,
algorithms. Changing your algorithms to execute in parallel is only a matter of adding a
parameter that tells the algorithm which parallel execution policy to use.

As stressed earlier in this book, if your code base is based upon STL algorithms, or at least if
you have the habit of writing C++ by using algorithms, you get an instant performance
boost almost for free by adding an execution policy where suitable.

auto roller_coasters = std::vector<std::string>{
  "woody", "steely", "loopy", "upside_down"
};

Sequential version Parallel version
auto loopy_coaster = *std::find(
  roller_coasters.begin(),
  roller_coasters.end(),
  "loopy"
);

auto loopy_coaster = *std::find(
  std::execution::par,
  roller_coasters.begin(),
  roller_coasters.end(),
  "loopy"
);

Execution policies
The execution policy informs the algorithms of how they are allowed to parallelize the
algorithm; there are three default execution policies included in the STL parallel extensions.
In the future, there will probably be libraries extending these policies for certain hardware 
and conditions. This would make it possible to seamlessly use the parallel power of modern
graphics card from STL algorithms.

The execution policies are defined in the header <execution> and reside in the namespace
std::execution.
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Sequenced policy
The sequenced execution policy, std::execution::seq, makes the algorithm execute
sequentially with no parallelism, just as the algorithm would execute if invoked without
any execution policy at all. It might seem odd that this policy is even provided, but it allows
the programmer to specify an algorithm to execute sequentially if the number of elements is
below a certain threshold where executing an algorithm in parallel is slower:

auto find_largest(const std::vector<int>& v) {
  auto threshold = 2048;
  return v.size() < threshold ?
    *std::max_element(std::execution::seq, v.begin(), v.end()) :
    *std::max_element(std::execution::par, v.begin(), v.end());
}

Parallel policy
The parallel execution policy,  std::execution::par , can be considered the standard
execution policy for parallel algorithms. In contrast with the parallel unsequenced policy
described later,  it handles exceptions, meaning that if an exception is thrown during the
execution of the algorithm, the exception will be thrown out back on the main thread and
the algorithm will break at an unspecified position:

auto inv_numbers(const std::vector<float>& c, std::vector<float>& out) {
  out.resize(c.size(), -1.0f);
  auto inversef = [](float denominator){
    if(denominator != 0.0f) { return 1.0f/denominator; }
    else throw std::runtime_error{"Division by zero};}
  };
  auto p = std::execution::par;
  std::transform(p, c.begin(), c.end(), out.begin(), inversef);
}

auto test_inverse_numbers() {
  auto numbers = std::vector<float>{3.0f, 4.0f, 0.0f, 8.0f, 2.0f};
  auto inversed = std::vector<float>{};
  try {
    inv_numbers(numbers, inversed);
  }
  catch (const std::exception& e) {
    std::cout << "Exception thrown, " << e.what() << '\n';
  }
  for(auto v: inversed) { std::cout << v << ", "; }
}
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Executing the previous code would result in the following output, where it is undetermined
which of the elements has actually been divided:

// Possible output
Exception thrown, division by zero
0.33, -1.0, -1.0, 0.125, -1.0,

Parallel unsequenced policy
The parallel unsequenced policy,  std::execution::par_unseq , executes the algorithm
in parallel like the parallel policy, but with the addition that it may also vectorize the loop
using, for example, SIMD instructions if plausible.

In addition to the vectorization, it has stricter conditions for the predicates than
std::execution::par:

Predicates may not throw, doing so will cause undefined behavior or an instant
crash
Predicates may not use a mutex for synchronization, doing so might cause a
deadlock

The following example might cause a deadlock as the
std::execution::par_unseq might execute concurrently on the same thread:

auto trees = std::vector<std::string>{"Pine", "Birch", "Oak"};
auto m = std::mutex{};
auto p = std::execution::par_unseq;
std::for_each(p, trees.begin(), trees.end(), [&m](const auto& t){
  auto guard = std::lock_guard<std::mutex>{m};
  std::cout << t << '\n';
});

In other words, when using the std::execution::par_unseq policy you must make sure
that the predicate does not throw or acquire a lock.

Parallel modifications of algorithm
Most algorithms in STL are available as parallel versions straight out the box, but there are
some noteworthy changes to std::accumulate and std::for_each, as their original
requirements required in-order execution.
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std::accumulate and std::reduce
The std::accumulate algorithm cannot be parallelized as it requires to be executed in
order of the elements, which is not possible to parallelize. Instead, a new algorithm called
std::reduce has been added, which works just like std::accumulate with the exception
that it is executed un-ordered.

With commutative operations their result is the same, as the order of accumulation doesn't
matter.

In other words, given a range of integers:

auto c = std::vector<int>{1, 2, 3, 4, 5};

Accumulating them by addition or multiplication:

auto sum = std::accumulate(c.begin(), c.end(), 0,
  [](int a, int b) { return a + b; }
);
auto product = std::accumulate(c.begin(), c.end(), 1,
  [](int a, int b) { return a * b; }
);

Would yield the same result if invoked with std::reduce() instead of
std::accumulate, as both addition and multiplication of integers are commutative:

But, if the operation is not commutative, the result is dependent on the order of arguments.
For example, if we were to accumulate a list of strings like this:

auto mice = std::vector<std::string>{"Mickey", "Minnie", "Jerry"};
auto acc = std::accumulate(mice.begin(), mice.end(), {});
std::cout << acc << '\n';
// Prints "MickeyMinnieJerry"
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But, using std::reduce, the resulting string could be any order of names, as:

std::string{"Mickey"} + std::string{"Jerry"} == std::string{"MickeyJerry"};
std::string{"Jerry"} + std::string{"Mickey"} == std::string{"JerryMickey"};

Therefore, the following code might produce different results:

auto red = std::reduce(mice.begin(), mice.end(), {});
std::cout << red << '\n';
// Possible output "MinnieJerryMickey" or "MickeyMinnieJerry" etc

std::transform_reduce
As an addition to the STL algorithms, std::transform_reduce has also been added. It
does exactly what it says; it transforms a range of elements as std::transform and then 
applies a functor. This accumulates them out of order, like std::reduce:

auto mice = std::vector<std::string>{"Mickey","Minnie","Jerry"};
auto num_chars = std::transform_reduce(
  mice.begin(),
  mice.end(),
  size_t{0},
  [](const std::string& m) { return m.size(); }, // Transform
  [](size_t a, size_t b) { return a + b; }       // Reduce
);
// num_chars is 17

std::for_each
Although std::for_each is mainly used for applying a functor to a range of elements, it is
quite similar to std::transform() although it only processes elements, like this:

auto peruvians = std::vector<std::string>{
  "Mario", "Claudio", "Sofia", "Gaston", "Alberto"};
std::for_each(peruvians.begin(), peruvians.end(), [](std::string& s) {
  s.resize(1);
});
// Peruvians is now {"M", "C", "S", "G", "A"}

It actually also returns the functor passed into it, which means it can be used like this:

auto result_func = std::for_each(
  peruvians.begin(),
  peruvians.end(),
  [all_names = std::string{}](const std::string& name) mutable {
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    all_names += name + " ";
    return all_names;
  }
);
auto all_names = result_func("");
// all_names is now "Mario Claudio Sofia Gaston Alberto ";

To be honest, this is quite a weird example, as std::accumulate is better suited for the
job, and I've actually never seen anyone use the returned functor in a real-world code base.
However, as with std::accumulate, executing it out of order would yield different results
every time it is executed as the invocation order is undefined.

Therefore, the parallel version of std::for_each simply just returns void.

Parallelizing an index-based for-loop
Even though we recommend using algorithms, sometimes a raw, index-based for-loop is
required for a specific task. The STL algorithms do provide an equivalent of a range-based
for-loop, but there is no equivalent of a regular index-based for-loop. 

In other words, a range based for-loop is equal to the STL algorithm for_each...

auto mice = std::vector<std::string>{"Mickey", "Minnie", "Jerry"};
// Range based for loop
for(auto m: mice) {
  std::cout << m << '\n';
}
// STL algorithm std::for_each
std::for_each(mice.begin(), mice.end(), [](auto m){
  std::cout << m << '\n';
});

...but, there is no STL algorithm equivalent of an index-based for-loop:

for(size_t i = 0; i < mice.size(); ++i) {
  std::cout << i << " " << mice[i] << '\n';
}

Therefore, we cannot parallelize an index-based for-loop by simply adding a parallel
policy like with other STL-algorithms. Let's see how we can build one.
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As mentioned earlier, we do not recommend to write parallel algorithms yourself due to the
complexity of writing a parallel algorithm. However, in this case we will build the
parallel_for algorithm using std::for_each as building block, thus leaving the
complexity parallelism to std::for_each.

Combining std::for_each with linear range
What we can do instead is to combine std::for_each() with the LinearRange class
described in Chapter 5, A Deeper Look at Iterators. To remind you, the LinearRange class is
constructed via the function make_linear_range() which returns a range of numbers that
can be iterated just like a regular container.

An index-based for-loop based on an STL algorithm can be created like this:

auto first_idx = size_t{0};
auto last_idx = mice.size();
auto indices = make_linear_range(first_idx, last_idx, last_idx);
std::for_each(indices.begin(), indices.end(), [&mice](size_t i){
  std::cout << i << " " << mice[i] << '\n';
});

This can then be further parallelized with an execution policy of choice:

auto p = std::execution::par;
std::for_each(p, indices.begin(), indices.end(), [&mice](size_t i){
  if (i == 0) mice[i] += " is first.";
  else if (i + 1 == mice.size()) mice[i] += " is last.";
});
for(const auto& m: mice) { std::cout << m << ', '; }

// Output: Mickey is first, Minnie, Jerry is last,

Simplifying construction via a wrapper
In order to iterate the indices with a neat syntax the previous code is wrapped into a utility
function named parallel_for() as shown below:

template <typename Policy, typename Index, typename F>
auto parallel_for(Policy p, Index first, Index last, F f) {
  auto r = make_linear_range<Index>(first, last, last);
  std::for_each(std::move(p), r.begin(), r.end(), std::move(f));
}
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The parallel_for() can then be used like this:

parallel_for(std::execution::par, size_t{0}, mice.size(), [&](size_t i){
  if (idx == 0) mice[i] += " is first.";
  else if (i + 1 == mice.size()) mice[i] += " is last.";
});
for(const auto& m: mice)
  std::cout << m << ', ';
// Output: Mickey is first, Minnie, Jerry is last,

As the parallel_for is built upon std::for_each, it accepts any policy
that std::for_each accepts.

Executing STL algorithms on the GPU
Graphics processing units, or GPUs, were originally designed and used for processing
points and pixels for computer graphics rendering. Briefly, what the GPUs did was to
retrieve a buffer of pixel data or vertex data, perform a simple operation on each one of
them individually, and store the result in a new buffer (to eventually be displayed).

GPU APIs and parallel operations
The main API for programming the GPU is OpenGL, although similar functionality is
available in DirectX as well.

Here are some examples of simple, independent operations that could be executed on the
GPU at an early stage:

Transform a point from world coordinates to screen coordinates.
Perform a lighting calculation at a specific point (by lighting calculation I refer to
calculating the color of a specific pixel in an image).

As these operations could be performed in parallel, the GPUs were designed for executing
small operations in parallel. 

Technically, a CPU commonly consists of a few general-purpose cached cores, whereas a
GPU consists of a huge number of highly specialized cores. This means that the better an
algorithm scales when parallelized, the more suitable it is to execute on the GPU.
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Programmable GPUs
Later on, these operations became programmable, although the programs were written in
terms of computer graphics (that is, the memory reads were done in terms of reading colors
from a texture, and the result was always written as a color to a texture). These programs
are called shaders.

Shader programs
At the beginning, there were two types of shader programs, vertex shaders and fragment
shaders.

Vertex shaders were used to transform world coordinates into screen space coordinates,
and fragment shaders performed lighting calculations/texture lookups just before writing a
pixel to the screen.

Over time, more shader-type programs were introduced and shaders gained more and
more low-level options, such as reading/writing raw values from buffers instead of color
values from textures.

STL algorithms and the GPU
In the future, the execution policies mentioned earlier in this chapter will hopefully be
extended to support processing on the GPU, thus making all of the power available on a
standard computer utilizable in C++. Nevertheless, there are already several libraries
available that make GPU programming easily accessible.

As stressed earlier, if you have a code base built on algorithms rather than hand-crafted
for-loops, moving it to take advantage of the GPU is far more accessible.

Boost Compute
In this book, we have chosen Boost Compute (written by Kyle Lutz) as the library for
accessing the GPU. The reasons we picked Boost Compute are that it is very well written,
vendor independent, and contains almost all STL algorithms. On top of that, it is a part of
Boost, one of the most widely used C++ library.
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Throughout this section we will keep a steady focus on the syntactic similarities between
Boost Compute and STL algorithms, therefore many Boost Compute code examples will be
presented side by side with its equivalent STL algorithm implementation.

Basic concepts of Boost Compute
Boost Compute has a few basic concepts, which are good to grasp before going further:

Device, the equivalent of the actual GPU on which the operations will be
executed
Context, the context could be considered the gate to the device
Queue, a command queue on which you push operations, which are then
executed asynchronously via the GPU driver

On top of that, as GPUs in many cases have their own exclusive memory (although it often
uses the standard RAM), all containers handled by Boost Compute must be copied to Boost
Compute's designated containers before processing, and back to standard containers for
further processing by the CPU.

OpenCL
We will not use OpenCL directly in this chapter. However, OpenCL is the underlying
framework used by the Boost Compute library that we will use. OpenCL is maintained by
the Khronos group, which also maintains OpenGL, and is available for a large number of
platforms. Internally, the OpenCL program uses a C99 syntax that it executes on the GPU
(just like the OpenGL shaders). The OpenCL shader is passed from your C++ application as
a string containing its source code and compiled by the OpenCL when the application
executes.

To use OpenCL, you would need to set up custom buffers through a quite complicated state
machine, which we will not cover in this book. Instead, we will use Boost Compute to
access OpenCL.

Initializing Boost Compute
Before you can use Boost Compute, we need to initialize a device, context, and a command
queue. We will be passing the context and the command queue as mutable references to all
our examples with Boost Compute.
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The most simple way to initialize the context and the command queue is to use the system
default device, like this:

#include <boost/compute.hpp>
auto main() -> int {
  // Initialize Boost Compute and OpenCL
  namespace bc = boost::compute;
  auto device = bc::system::default_device();
  auto context = bc::context(device);
  auto command_queue = bc::command_queue(context, device);
}

Transfer a simple transform-reduce algorithm to
Boost Compute
Let's say we have a std::vector of circles, and we want to calculate the sum of all  circle
areas. The algorithm we will use is std::transform() to transform the vector of circles to
a vector of areas, and then std::reduce() to summarize the areas.

The Circle struct is defined as shown below, where x and y denotes the position, and r
denotes the radius.

struct Circle { float x, y, r; };

We will also use this function to generate a std::vector of random circles:

auto make_circles(size_t n) {
  auto cs = std::vector<Circle>{};
  cs.resize(n);
  std::generate(cs.begin(), cs.end(), [](){
    auto x = float(std::rand());
    auto y = float(std::rand());
    auto r = std::abs(float(std::rand()));
    return Circle{x, y, r};
  });
  return cs;
}

Circles of different size and position
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The algorithm in standard C++
The formula for the area of a circle is, as you probably remember from middle-school; 

. In english, it's radius squared times pi. Here it is in code:

auto circle_area_cpu(const Circle& c) {
  const auto pi = 3.14f;
  return c.r * c.r * pi;
}

Using the circle_area_cpu() function, we can calculate the full area using
std::transform() and std::reduce() in C++:

auto sum_circle_areas_cpu() {
  constexpr auto n = 1024;
  auto circles = make_circles(n);
  auto areas = std::vector<float>(n);
  std::transform(circles.begin(), circles.end(), areas.begin(),
    circle_area_cpu);
  auto plus = std::plus<float>{};
  auto area = std::reduce(areas.begin(), areas.end(), 0.0f, plus);
  std::cout << area << '\n';
}

Transforming the algorithm to Boost Compute
Let's see how the equivalent would be implemented using the GPU with Boost Compute. In
order to implement it, we have to perform a few extra steps:

Inform Boost Compute of the content of the Circle struct
Implement an OpenCL equivalent of the circle_area_cpu() function
Copy the data back and forth to the GPU

Note that circle_area_gpu() and boost::compute::plus<float> are compiled by
the OpenCL driver at runtime, although the binary can be stored for future use.  

Adapting the circle struct for use with Boost Compute
The first thing we have to do is to make Boost Compute know what the Circle struct looks
like, in order to be able to use it on the GPU. This is achieved by using a macro where the
first two parameters are the C++ name and the GPU name of the struct, and the third
parameter is the list of members in the struct.
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Only the members of the struct are exposed, member functions of the struct cannot be
accessed from within Boost Compute.

Below is how we adapt the Circle for use with Boost Compute using the
BOOST_COMPUTE_ADAPT_STRUCT_MACRO. The first parameter is the name of the C++ struct,
and the second parameter is the name when accessed from inside Boost Compute.

BOOST_COMPUTE_ADAPT_STRUCT(Circle, Circle, (x, y, r));

This adaption is only necessary if we want to use a custom struct; standard data types such
as floats, integers, and so on can be used directly. 

All members of a struct adapted in Boost Compute must be aligned, that
is, it may not contain any padding between members. For more
information about alignment see Chapter 4, Data Structures.

Converting circle_area_cpu to Boost Compute
We now need to create an OpenCL function equivalent of the
circle_area_cpu() function. The OpenCL programming language uses a standard C
syntax, and is therefore quite similar to the C++ version. For further reference of the
OpenCL language, we refer to its official documentation available at https:/ /www. khronos.
org/opencl/.

The source code of the function is passed as a std::string
to boost::compute::function, where the first parameter is the name of the OpenCL
function intended to be exposed, and the second parameter is the actual source code.

namespace bc = boost::compute;
auto src_code = std::string_view{
  "float circle_area_gpu(Circle c) { "
  "  float pi = 3.14f;               "
  "  return c.r * c.r * pi;          "
  "}                                 "
};

auto circle_area_gpu = bc::make_function_from_source<float(Circle)> (
  "circle_area_gpu", src_code.data()
);

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
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The BOOST_COMPUTE_FUNCTION macro
As mentioned, we are using strings for the OpenCL source code. In order to get a little bit
more readability, Boost Compute comes with a convenience macro
called BOOST_COMPUTE_FUNCTION, which makes strings out of the source code parameter.

The following table shows a syntactical comparison of them:

Using make_function_from_source: Using BOOST_COMPUTE_FUNCTION macro:
namespace bc = boost::compute;
auto circle_area_gpu =
 bc::make_function_from_source
  <float(Circle)> (
   "circle_area_gpu",
"float circle_area_gpu(Circle c){"
"  float pi = 3.14f;             "
"  return c.r * c.r * pi;        "
"}                               "
);

BOOST_COMPUTE_FUNCTION(
  float, // Return type
  circle_area_gpu, // Name
  (Circle c), // Arg
  {
    float pi = 3.14f;
    return c.r * c.r * pi;
  }
);

As you can see, the return value, function name, and parameters have been stripped out of
the string, and the source code does not need to be provided as a string.

Implementing the transform-reduction algorithm on the GPU
When implementing the actual transformation, we need to copy the data back and forth.
The data structures housed at the GPU are prefixed with gpu_, and data structures housed
at the CPU are prefixed with cpu_.

Note that Boost Compute has been nice enough to provide a compute::plus<float>
functor equivalent of std::plus, which we use when the areas are reduced:

namespace bc = boost::compute;
auto circle_areas_gpu(bc::context& context, bc::command_queue& q) {
  // Create a bunch of random circles and copy to the GPU
  const auto n = 1024;
  auto cpu_circles = make_circles(n);
  auto gpu_circles = bc::vector<Circle>(n, context);
  bc::copy(cpu_circles.begin(), cpu_circles.end(), gpu_circles.begin(), q);
  // Transform the circles into their individual areas
  auto gpu_areas = bc::vector<float>(n, context);
  bc::transform(
    gpu_circles.begin(),
    gpu_circles.end(),
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    gpu_areas.begin(),
    circle_area_gpu,
    q
  );
  // Accumulate the circle areas,
  // Note that we are writing to a GPU vector of size 1
  auto gpu_area = bc::vector<float>(1, context);
  bc::reduce(gpu_areas.begin(), gpu_areas.end(), gpu_area.begin(), q);
  // Copy the accumulated area back to the cpu
  auto cpu_area = float{};
  bc::copy(gpu_area.begin(), gpu_area.end(), &cpu_area, q);
  std::cout << cpu_area << '\n';
}

Using predicates with Boost Compute
If we would like to execute other algorithms, for example sort the circles by their radius, we
provide predicates just like in STL.

Here is how you would use a predicate for sorting circles on the CPU and the
corresponding predicate in Boost Compute/OpenCL.

Note that in this example, we use the Boost Computes capability to use a
regular std::vector as input, although it does not operate on it.
Internally, it still copies the std::vector back and forth to the GPU
device before and after the algorithm is executed:

CPU predicate GPU predicate
auto less_r_cpu = [](Circle a,Circle b){
  return a.r < b.r;
};

BOOST_COMPUTE_FUNCTION(
  bool, // Return type
  less_r_gpu, // Function Name
  (Circle a, Circle b), // Args
  { return a.r < b.r; } // Code
);
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Sort the content on the GPU, and verify using the CPU:

namespace bc = boost::compute;
auto sort_by_r(bc::context& context, bc::command_queue& q) {
  auto n = 1024;
  auto circles = make_circles(n);
  // Sort on GPU
  bc::sort(circles.begin(), circles.end(), less_r_gpu, q);
  // Verify on the CPU using less_r_cpu
  assert(std::is_sorted(circles.begin(), circles.end(), less_r_cpu);
}

As you can see, modifying a standard STL function to execute on the GPU using Boost
Compute only requires very few modifications.

Using a custom kernel in Boost Compute
As mentioned earlier, this is not intended as a course in OpenCL, but we will now have a
look at how to move away from the algorithms and abstractions of Boost Compute and
invoke regular for-loops where elements are read at random positions in an array. In other
words, the following example is almost bare OpenCL, rather than Boost Compute.

As OpenCL evolves from a computer graphics background, it does contain a multitude of
operations for handling textures and filtering, but in order to see the resemblance of regular
C++ code, we will use traditional vectors to operate on.

Remember that a GPU is very good at executing many tasks in parallel, and OpenCL
correspondingly needs to be informed of what exactly it can parallelize. When executing the
kernel, we will therefore give it a number of ranges, just like a multidimensional for-loop
of which it will apply the kernel in parallel.
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Box filter
We are going to implement an algorithm, which applies a box filter of size r to a gray scale
image. The box filter simply calculates the mean value of the surrounding floats, illustrated
as follows, and the image itself is represented as a std::vector<float> and an integer 
representing its width. Note that we simplify the algorithm by avoiding the borders, which
relieves us from out-of-bounds checks:

Box filter of an individual grid element
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Implementing the kernel
We implement the per element box filter as a regular lambda function in C++, and the
corresponding OpenCL kernel as a string. In order to see the resemblance, we've put them
side by side:

C++ box filter kernel OpenCL box filter kernel
auto box_filter = [](
  int x,
  int y,
  const auto& src,
  auto& odst,
  int w,
  int r
) {
 float sum = 0.0f;
 for (int yp=y-r; yp<=y+r; ++yp) {
  for (int xp=x-r; xp<=(x+r);++xp){
   sum += src[yp * w + xp];
  }
 }
 float n = ((r*2 + 1) * (r*2 + 1));
 float average = sum / n;
 odst[y*w + x] = average;
};

auto src_code = std::string_view{
"kernel void box_filter(              "
"  global const float* src,           "
"  global float* odst,                "
"  int w,                             "
"  int r                              "
") {                                  "
"  int x = get_global_id(0);          "
"  int y = get_global_id(1);          "
"  float sum = 0.0f;                  "
"  for (int yp=y-r; yp<=y+r; ++yp){   "
"    for (int xp=x-r; xp<=x+r; ++xp){ "
"      sum += src[yp*w+xp];           "
"    }                                "
"  }                                  "
"  float n=(float)((r*2+1)*(r*2+1));  "
"  float average = sum / n;           "
"  odst[y*w+x] = average;             "
"}                                    "
};
namespace bc = boost::compute;
auto p=bc::program::create_with_source(
  src_code.data(), context
);
p.build();
auto kernel = bc::kernel{
  p, "box_filter"
};

Parallelizing for two dimensions
Now, let's use the filters by applying them to the images. The arguments for the Boost
Compute kernel are set using set_arg before execution, and when the execution is 
performed using enqueue_nd_range_kernel(), we apply the number of dimensions and
the ranges of each dimension, which is the equivalent of how a double for-loop is used in
the C++ code. The corresponding x and y variables in the kernel are then fetched using
get_global_id() in OpenCL.
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Take notice of the similarities between STL algorithms and the Boost Compute equivalents as
shown in the table below:

Box filter on CPU Box filter on GPU
auto box_filter_test_cpu(
 int w,
 int h,
 int r
) {
 using array_t =
std::array<size_t,2>;
 // Create std vectors
 auto src = std::vector<float>(w*h);
std::iota(src.begin(),src.end(),0.f);
 auto dst = std::vector<float>(w*h);
std::fill(res.begin(),res.end(),0.f);
 // Make offset and elements
 auto offset = array_t{r,r};
 auto elems = array_t{w-r-r, h-r-r};
 // Invoke filter on CPU
 for (int x=0; x < elems[0]; ++x){
   for (int y=0; y < elems[1]; ++y){
     auto xp = x + offset[0];
     auto yp = y + offset[1];
     box_filter(xp,yp,src,dst,w,r);
   }
 }
 return dst;
}

namespace bc = boost::compute;
auto box_filter_test_gpu(
 int w,
 int h,
 int r,
 bc::context& ctx,
 bc::command_queue& q,
 bc::kernel& kernel
) {
 using array_t = std::array<size_t,
2>;
 // Create vectors for GPU
 auto src=bc::vector<float>(w*h, ctx);
bc::iota(src.begin(),src.end(),0.f,q);
 auto dst=bc::vector<float>(w*h, ctx);
bc::fill(dst.begin(),dst.end(),0.f,q);
 // Make offset and elements
 auto offset = array_t{r,r};
 auto elems = array_t{w-r-r, h-r-r};
 // Invoke filter on GPU
 kernel.set_arg(0, src);
 kernel.set_arg(1, dst);
 kernel.set_arg(2, w);
 kernel.set_arg(3, r);
 q.enqueue_nd_range_kernel(
    kernel,
    2,
    offset.data(),
    elems.data(),
    nullptr
 );
 // Copy back to cpu
 auto dst_cpu=std::vector<float>(w*h);
 bc::copy(
   dst.begin(),
   dst.end(),
   dst_cpu.begin(),
   q
 );
 return dst_cpu;
}
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Note that the enqueue_nd_range_kernel() function accepts any amount of dimensions
to parallelize over, although we use two dimensions in this example.

Verify GPU computation on the CPU
As GPUs are generally harder to debug than a regular C++ program, verifying the results is
utterly important. As we are dealing with floating-point math, the result might not be 100%
accurate, therefore we use a flt_eq() function that accepts minor differences as equal:

auto test_kernel(bc::context& ctx, bc::command_queue& q, bc::kernel& k) {
  auto flt_eq = [](float a, float b) {
     auto epsilon = 0.00001f;
     return std::abs(a - b) <= epsilon;
  };
  auto cpu = box_filter_test_cpu(2000, 1000, 2);
  auto gpu = box_filter_test_gpu(2000, 1000, 2, ctx, q, k);
  auto is_equal = cpu == dst;
  auto is_almost_equal = std::equal(
    cpu.begin(), cpu.end(), gpu.begin(), flt_eq
  );
  std::cout
    << "is_equal: " << is_equal << '\n'
    << "is_almost_equal: " << is_float_equal << '\n'
}

// Possible output
is_equal: 0
is_almost_equal: 1

Note that is_equal might as well be one depending on the hardware. With this piece of
code, we have successfully verified that our algorithm works on the GPU. We've
intentionally not included any performance comparisons between the CPU and GPU in this
book, as the GPU algorithms are often bottlenecked by transferring data back and forth to
the GPU. But with that in mind, a computation time in the range of 30x faster on a standard
GPU compared to a standard CPU is not uncommon.

In other words, a modern, computationally-heavy application will be written with GPU
parallelization in mind in order to be competitive.
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Summary
In this chapter, you have learned the complexity of handcrafting an algorithm to execute in
parallel and how to use the parallel versions of the STL algorithms. On top of that, we've
had a look at how to use Boost Compute in order to take advantage of the heavy processing
power of modern GPU hardware. 



Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering C++ Multithreading
Maya Posch

ISBN: 978-1-78712-170-6

Deep dive into the details of the how various operating systems currently
implement multithreading
Choose the best multithreading APIs when designing a new application
Explore the use of mutexes, spin-locks, and other synchronization concepts and
see how to safely pass data between threads
Understand the level of API support provided by various C++ toolchains
Resolve common issues in multithreaded code and recognize common pitfalls
using tools such as Memcheck, CacheGrind, DRD, Helgrind, and more
Discover the nature of atomic operations and understand how they can be useful
in optimizing code
Implement a multithreaded application in a distributed computing environment
Design a C++-based GPGPU application that employs multithreading

https://www.packtpub.com/application-development/mastering-c-multithreading


Other Books You May Enjoy

[ 338 ]

Mastering C++ Programming
Jeganathan Swaminathan

ISBN: 978-1-78646-162-9

Write modular C++ applications in terms of the existing and newly introduced
features
Identify code-smells, clean up, and refactor legacy C++ applications
Leverage the possibilities provided by Cucumber and Google Test/Mock to
automate test cases
Test frameworks with C++
Get acquainted with the new C++17 features
Develop GUI applications in C++
Build portable cross-platform applications using standard C++ features

https://www.packtpub.com/application-development/mastering-c-programming


Other Books You May Enjoy

[ 339 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

A
algorithm
   elements, copying into destination range  313
   sparse range, moving sequentially into

continuous range  314
amortized time complexity  75
associative containers
   ordered associative containers  95
   ordered set and map  96
   unordered associative containers  96
   unordered set and map  97
asymptotic complexity  69, 73
asynchronous tasks  271
atomics  284
auto keyword
   used, for automatic type deduction  27
   using  30
   using, for variables  28
   using, in function signatures  28
automatic type deduction
   auto keyword, using  27

B
Big O notation
   about  69
   amortized time complexity  75
   growth rates  74
Boost Compute
    simple transform-reduce algorithm, transferring 

326

   algorithm, transforming  327
   BOOST_COMPUTE_FUNCTION macro  329
   concepts  325
   custom kernel, using  331
   initializing  325
   OpenCL  325

   transform-reduction algorithm, implementing on
GPU  329

   triangle struct, adapting  327

C
C++ lambda function  31
C++ memory model
   about  288
   atomics  290
   instruction reordering  289
   memory orders  291
C++
   abstractions, in other languages  10
   atomic support  284
   comparing, with other languages  11
   concurrent programming  272
   const-correctness  17
   drawbacks  20
   features  7
   garbage collection equivalents  18
   lack of included libraries  25
   machine code abstractions  8
   memory model  288
   new version  11
   non-performance-related features  15
   portability  10
   programming languages  8
   robustness  10
   zero-cost abstractions  7
capture block
   about  32
   C function pointers, assigning to lambdas  39
   capture by reference, versus capture by value  33
   class member variables, capturing  37
   lambda function, from compiler 's perspective  34
   variable initialization  35



[ 341 ]

class interfaces
   about  21
   strict class interfaces  21
code
   information, gathering  80
Compare-And-Swap (CAS)  292
compile time hash function
   implementing  237
   PrehashedString class, constructing  237
   sum calculation, advantages  236
computer memory
   about  158
   pages  158, 159
   properties  87
   thrashing  160
   virtual address space  158
concatenated proxy
   assigning  248
concatenated strings
   comparing, proxy objects used  244
concurrency
   about  263
   basics  262
concurrent programming
   limitations  262
   thread support library  272
constexpr keyword
   about  205
   compile-time computation, verifying with

std::integral_constant  206
   if constexpr keyword  207
   in runtime context  206
consumers  279
container adaptors
   priority queues  101
custom comparator function  133
custom kernel
   box filter  332
   GPU computation, verifying  335
   implementing  333
   parallelizing, for two dimensions  333
   using  331
custom memory management
   about  182
   arena, building  183

   custom memory allocator  191
   memory allocator  187
   need for  182

D
data races  267, 268
deadlock  270
DistProxy object
   distance, calculating  254
   distance, comparing  254
   expanding  253
   implementing  252
   misuse, preventing  255
   performance evaluation  256
divide and conquer
   implementation  307
   performance evaluation  307
dynamic values

   representing, with std::any  66
dynamic-sized heterogeneous containers
   about  219

   std::any, using as base  220

E
empty destructor  60
exceptions
   error handling and resource acquisition  22
   resource acquisition  24
   valid state, preserving  23
   versus error codes  25
execution policies
   about  316
   parallel policy  317
   parallel unsequenced policy  318
   sequenced policy  317

F
first in, first out (FIFO)  100
floating point values
   examples  120
   iterating, with range  119
   iterator-pair, generalizing to range  124
   linear range iterator, constructor  122
   linear range, usage examples  125



[ 342 ]

   make_linear_range convenience function  124
   Unity functions  121
FPS (Frames Per Second)  78
function signatures
   auto keyword, using  27

G
general-purpose predicates library  133
generic modulus function
   creating, if constexpr used  209
GPU APIs
   and parallel operations  323
GPU
   programmable GPUs  324
   shader programs  324
   STL algorithms, executing  323
growth rates  74

H
heap memory  164
heterogeneous containers
   about  210
   dynamic-sized  219
   static-sized  210
hot spots  80

I
if constexpr keyword
   used, for creating generic modulus function  209
index-based for-loop
   std::for_each, combining with linear range  322 
infix operator  258
instrumentation profilers  82
is_detected
   and enable_if_t combined combination, usage

examples  203
iterators
   about  112
   categories  113
   functions, implementing with categories  118
   in reverse order  119
   pointer-mimicking syntax  114
   traits  117
   using, as generators  116

L
lambda function
   about  31

   assigning, to std::functions  39, 40
   C++ lambda function  31
   capture block  32
   member variables, mutating  35
   member variables, mutating from compiler 's

perspective  37
   polymorphic lambda  43
last in, first out (LIFO)  100
lazy evaluation  242
libc++ implementation
   reference  181
linear range iterator
   constructing  122
   usage example  123
lock-free programming
   about  292
   queue example  293

M
main thread  272
memory management unit (MMU)  158
memory ownership
   about  173
   containers  176
   resources implicitly, handling  174
   smart pointers  176
memory
   alignment  169, 170
   ownership  173
meta-programming examples
   about  225
   generic safe cast function, creating  232
   hash strings, at compile time  235
   reflection  225
move semantics
   about  48, 54
   default move semantics  58
   named variables  56
   non-resources, moving  61
   r-values  56
   resource acquisition  50



[ 343 ]

   rule of three  50
   rule of zero  58
multithreaded environment
   shared_ptr, using  285
mutex  268
mutex lock
   acquiring  268

N
naive implementation
   about  302
   performance evaluation  303
   shortcomings  304

O
objects
   copy-constructing  48
   delete operators  167
   deleting  165
   in memory  165
   move-constructing  50
   new operators  167
   new placements  166
   swapping  49
operations
   actions  152, 153
   algorithms  156
   views  154
optional values

   representing, with std::optional  63

P
padding  171
parallel algorithms
   about  301
   std::transform()  302 
parallel arrays  103, 107, 109 
parallel std::copy_if
   algorithm, splitting  312
   implementing  310
   performance evaluation  315
   synchronized write position, using  311
parallel std::count_if
   implementing  309

parallel STL
   about  316
   execution policies  316
   index-based for-loop, parallelizing  321
   reference  316
   supported algorithms  318
parallelism  263, 301
performance guidelines
   about  295, 299
   blocking operations, avoiding  296
   contention, avoiding  295
   false sharing  298
   number of threads/CPU cores  296
   thread affinity  297
   thread priorities  297
performance properties
   aggregating data  79
   I/O bound or CPU bound  79
   latency/response time  79
   power consumption  79
   throughput  79
performance
   measuring  77
   properties  79
   testing, best practices  80
pipe operator
   about  257
   using, as extension method  257
polymorphic lambda
   about  43
   reusable polymorphic lambdas, creating  44
POSIX Threads (pthreads)  272
PrehashedString
   evaluating  239
   string literals, accepting  239
   used, for evaluating original

get_bitmap_resource()  240
process memory
   about  160
   heap memory  164
   stack memory  161
producers  279
profilers
   about  81
   instrumentation profilers  82



[ 344 ]

   sampling profilers  84
proxy objects
   about  242, 244
   and creative operator overloading  256
   implementing  245
   performance evaluation  247
   used, for comparing concatenated strings  244

R
R-value modifier  247
ranges library
   about  146, 149
   composability and pipeability  151
reflection
   assembler output , evaluating  227
   capabilities, testing  230
   global functions, conditional overloading  229
   member variables, selecting  226
   type introspection  228
   utilizing  226
Resource Acquisition Is Initialization (RAII)  174
rule of three
   constructor  52
   copies, avoiding without move semantics  54
   implementing  51
   limitations  53
rule of zero  59

S
sampling profilers  84
sequence containers
   about  91
   array  92
   basic_string  95
   deque  94
   forward_list  94
   list  94
   vector  91
shared memory  265
small size optimization  179
smart pointers
   about  176
   shared pointer  177
   unique pointers  176

   weak pointer  178
sorting algorithms  143
spatial locality  90
spurious wakeup  281
sqrt computation
   postponing, in distance comparison  248
   two-dimensional point class  248
   underlying mathematics  249
stack memory  161
Standard Template Library (STL)  8, 69, 127
static-sized heterogeneous containers
   about  210

     std::tuple container  210
   structured bindings  216
   variadic template parameter pack  217
std-any
   performance  67
   used, for representing dynamic values  66 
std::enable_if_t
   used, for conditionally enable function based on

types  200 
std::function
   and lambdas function  39
   invoking  42
   performance consideration  42
   used, for implementing simple Button class  40
   variables, capturing  42
std::is_detected
   used, for introspecting members in classes  202 
std::optional
   optional values, representing  63 
std::propagate_const
   const propagation for pointers  47 
std::transform()
   divide and conquer  306
   naive implementation  302 
std::tuple container
   iterating  212
   other algorithms, implementing  214
   tuple members, accessing  211
   unrolling  213
std::variant
   about  221
   heterogeneous container of variants  223
   values, accessing  224



   variables, accessing  222
STL algorithms, versus handcrafted for loops
   advantages  136
   readability and future-proofing  137
   sorting algorithms  143
   usage examples  138, 141
STL algorithms
   about  127
   and GPU  324
   container content, modifying  130 
   executing, on GPU  323
   future  146
   generic algorithm, implementing  128 
   iterators, limitations  146
   iterators, spanning  130
   objects behavior  132
   operating, on iterators  128 
   performance  136
   real world code base example  137     
   std::move, using  134
   std::swap, using  134
   using, as building blocks  127 
   versus handcrafted for loops  136 
   with output require allocated data  131
STL containers
   about  90
   associative containers  95
   container adaptors  100
   sequence containers  91
supported algorithms
   std-reduce  319
   std::accumulate  319      
   std::for_each  320
   std::transform_reduce  320
synchronized write position
   inner function  311
   outer function  312
   using  311
synchronous tasks  271

T
template metaprogramming

   about  193
   integers, using as template parameters  195
   static_assert to trigger errors, using at compile

time  197
   template function, handling  196
temporal locality  89
thread support library
   about  272
   condition variables  279
   critical sections, protecting  276
   data, executing  281
   deadlocks, avoiding  278
   errors, handling  281
   tasks  282
   thread states  275
   threads  272
time slicing  264
tuple elements
   accessing  215
type trait
   about  197
   categories  197
   decltype keyword, used for receiving variable

type  199
   functions based on types, enabling with

std::enable_if_t  200    
using  198

U
unordered set
   equals  98
   hash policy  100
   hash value  98

V
value semantics  15
variadic template parameter pack
   about  217
   constructing  218
   example, of function with variadic number of

arguments  217


	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: A Brief Introduction to C++
	Why C++?
	Zero-cost abstractions
	Programming languages and machine code abstractions
	Abstractions in other languages

	Portability
	Robustness
	C++ of today

	The aim of this book
	Expected knowledge of the reader

	C++ compared with other languages
	Competing languages and performance
	Non-performance-related C++ language features
	Value semantics
	Const correctness

	Object ownership and garbage collection in C++
	Avoiding null objects using C++ references
	Drawbacks of C++

	Class interfaces and exceptions
	Strict class interfaces
	Error handling and resource acquisition
	Preserving the valid state
	Resource acquisition
	Exceptions versus error codes


	Libraries used in this book
	Summary

	Chapter 2: Modern C++ Concepts
	Automatic type deduction with the auto keyword 
	Using auto in function signatures
	Using auto for variables
	Const reference
	Mutable reference
	Forwarding reference
	Conclusion


	The lambda function
	Basic syntax of a C++ lambda function
	The capture block
	Capture by reference versus capture by value
	Similarities between a Lambda and a class
	Initializing variables in capture

	Mutating lambda member variables
	Mutating member variables from the compiler's perspective

	Capture all
	Assigning C function pointers to lambdas

	Lambdas and std::function
	Assigning lambdas to std::functions
	Implementing a simple Button class with std::function
	Performance consideration of std::function
	An std::function cannot be inlined
	An std::function heap allocates and captures variables
	Invoking an std::function requires a few more operations than a lambda


	The polymorphic lambda
	Creating reusable polymorphic lambdas


	Const propagation for pointers
	Move semantics explained
	Copy-construction, swap, and move
	Copy-constructing an object
	Swapping two objects
	Move-constructing an object


	Resource acquisition and the rule of three
	Implementing the rule of three
	Constructor

	Limitations of the rule of three
	Avoiding copies without move semantics

	Introducing move semantics
	Named variables and r-values
	Accept arguments by move when applicable

	Default move semantics and the rule of zero
	Rule of zero in a real code base
	A note on empty destructors

	A common pitfall - moving non-resources
	Applying the && modifier to class member functions


	Representing optional values with std::optional
	Optional return values
	Optional member variables
	Sorting and comparing std::optional

	Representing dynamic values with std::any
	Performance of std::any

	Summary

	Chapter 3: Measuring Performance
	Asymptotic complexity and big O notation
	Growth rates
	Amortized time complexity

	What to measure?
	Performance properties
	Performance testing – best practices

	Knowing your code and hot spots
	Profilers
	Instrumentation profilers
	Sampling profilers


	Summary

	Chapter 4: Data Structures
	Properties of computer memory
	STL containers
	Sequence containers
	Vector and array
	Deque
	List and forward_list
	The basic_string

	Associative containers
	Ordered sets and maps
	Unordered sets and maps
	Hash and equals
	Hash policy


	Container adaptors
	Priority queues


	Parallel arrays
	Summary

	Chapter 5: A Deeper Look at Iterators
	The iterator concept
	Iterator categories
	Pointer-mimicking syntax
	Iterators as generators
	Iterator traits
	Implementing a function using iterator categories
	Extending the IntIterator to bidirectional

	Practical example – iterating floating point values within a range
	Illustrated usage examples
	Utility functions
	How to construct a linear range iterator
	Iterator usage example

	Generalizing the iterator pair to a range
	The make_linear_range convenience function

	Linear range usage examples


	Summary

	Chapter 6: STL Algorithms and Beyond
	Using STL algorithms as building blocks
	STL algorithm concepts
	Algorithms operate on iterators
	Implementing a generic algorithm that can be used with any container
	Iterators for a range point to the first element and the element after the last
	Algorithms do not change the size of the container
	Algorithms with output require allocated data
	Algorithms use operator== and operator< by default
	Custom comparator function
	General-purpose predicates

	Algorithms require move operators not to throw
	Algorithms have complexity guarantees
	Algorithms perform just as well as C library function equivalents

	STL algorithms versus handcrafted for-loops
	Readability and future-proofing
	Real-world code base example

	Usage examples of STL algorithms versus handcrafted for-loops
	Example 1 – Unfortunate exceptions and performance problems
	Example 2 – STL has subtle optimizations even in simple algorithms

	Sorting only for the data you need to retrieve
	Use cases
	Performance evaluation



	The future of STL and the ranges library
	Limitations of the iterators in STL
	Introduction to the ranges library
	Composability and pipeability

	Actions, views, and algorithms
	Actions
	Views
	Algorithms


	Summary

	Chapter 7: Memory Management
	Computer memory
	The virtual address space
	Memory pages
	Thrashing

	Process memory
	Stack memory
	Heap memory

	Objects in memory
	Creating and deleting objects
	Placement new
	The new and delete operators

	Memory alignment
	Padding

	Memory ownership
	Handling resources implicitly
	Containers
	Smart pointers
	Unique pointer
	Shared pointer
	Weak pointer


	Small size optimization
	Custom memory management
	Building an arena
	A custom memory allocator

	Summary

	Chapter 8: Metaprogramming and Compile-Time Evaluation
	Introduction to template metaprogramming
	Using integers as template parameters
	How the compiler handles a template function
	Using static_assert to trigger errors at compile time

	Type traits
	Type trait categories
	Using type traits
	Receiving the type of a variable with decltype
	Conditionally enable functions based on types with std::enable_if_t
	Introspecting class members with std::is_detected
	Usage example of is_detected and enable_if_t combined


	The constexpr keyword
	Constexpr functions in a runtime context
	Verify compile-time computation using std::integral_constant
	The if constexpr statement
	Comparison with runtime polymorphism
	Example of generic modulus function using if constexpr


	Heterogeneous containers
	Static-sized heterogenous containers
	The std::tuple container
	Accessing the members of a tuple
	Iterating std::tuple
	Unrolling the tuple
	Implementing other algorithms for tuples

	Accessing tuple elements
	Structured bindings

	The variadic template parameter pack
	An example of a function with variadic number of arguments
	How to construct a variadic parameter pack


	Dynamic-sized heterogenous containers
	Using std::any as the base for a dynamic-size heterogenous container


	The std::variant
	Visiting variants
	Heterogenous container of variants
	Accessing the values in our variant container
	Global function std::get

	Real world examples of metaprogramming
	Example 1 – Reflection
	Making a class reflect its members
	C++ libraries which simplifies reflection
	Using the reflection
	Evaluating the assembler output of the reflection


	Conditionally overloading global functions
	Testing reflection capabilities

	Example 2 – Creating a generic safe cast function
	Example 3 – Hash strings at compile time
	The advantages of compile-time hash sum calculation
	Implement and verify a compile-time hash function
	Constructing a PrehashedString class
	Forcing PrehashedString to only accept compile time string literals
	Evaluating PrehashedString
	Evaluating get_bitmap_resource() with PrehashedString


	Summary

	Chapter 9: Proxy Objects and Lazy Evaluation
	An introduction to lazy evaluation and proxy objects
	Lazy versus eager evaluation

	Proxy objects
	Comparing concatenated strings using a proxy
	Implementing the proxy
	Performance evaluation

	The r-value modifier
	Assigning a concatenated proxy

	Postponing an sqrt computation when comparing distances
	A simple two-dimensional point class
	The underlying mathematics
	Implementing the DistProxy object
	Expanding DistProxy to something more useful
	Comparing distances with DistProxy
	Calculating distances with DistProxy
	Preventing the misuse of DistProxy

	Performance evaluation

	Creative operator overloading and proxy objects
	The pipe operator as an extension method
	The pipe operator

	The infix operator
	Further reading

	Summary

	Chapter 10: Concurrency
	Understanding the basics of concurrency
	What makes concurrent programming hard?
	Concurrency and parallelism
	Time slicing
	Shared memory
	Data races
	Mutex
	Deadlock
	Synchronous and asynchronous tasks

	Concurrent programming in C++
	The thread support library
	Threads
	Thread states
	Protecting critical sections
	Avoiding deadlocks
	Condition variables
	Returning data and handling errors
	Tasks

	Atomic support in C++
	Using shared_ptr in a multithreaded environment

	C++ memory model
	Instruction reordering
	Atomics and memory orders


	Lock-free programming
	Lock-free queue example

	Performance guidelines
	Avoid contention
	Avoid blocking operations
	Number of threads/CPU cores
	Thread priorities
	Thread affinity
	False sharing

	Summary

	Chapter 11: Parallel STL
	Importance of parallelism
	Parallel algorithms
	Implementing parallel std::transform()
	Naive implementation
	Performance evaluation

	Shortcomings of the naive implementation
	Divide and conquer
	Implementation
	Performance evaluation


	Implementing parallel std::count_if
	Implementing parallel std::copy_if
	Approach one – Use a synchronized write position
	Inner function
	Outer function

	Approach two – Split algorithm into two parts
	Part one – Copy elements in parallel into the destination range
	Part two – Move the sparse range sequentially into a continuous range

	Performance evaluation


	Parallel STL
	Execution policies
	Sequenced policy
	Parallel policy
	Parallel unsequenced policy

	Parallel modifications of algorithm
	std::accumulate and std::reduce
	std::transform_reduce

	std::for_each

	Parallelizing an index-based for-loop
	Combining std::for_each with linear range
	Simplifying construction via a wrapper


	Executing STL algorithms on the GPU
	GPU APIs and parallel operations
	Programmable GPUs
	Shader programs

	STL algorithms and the GPU

	Boost Compute
	Basic concepts of Boost Compute
	OpenCL
	Initializing Boost Compute
	Transfer a simple transform-reduce algorithm to Boost Compute
	The algorithm in standard C++
	Transforming the algorithm to Boost Compute
	Adapting the circle struct for use with Boost Compute
	Converting circle_area_cpu to Boost Compute
	The BOOST_COMPUTE_FUNCTION macro
	Implementing the transform-reduction algorithm on the GPU


	Using predicates with Boost Compute
	Using a custom kernel in Boost Compute
	Box filter
	Implementing the kernel
	Parallelizing for two dimensions
	Verify GPU computation on the CPU

	Summary


	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index



