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Preface
The C++ language has a long history, dating back to the 1980s. Recently it has undergone a
renaissance, with major new features being introduced in 2011 and 2014. At press time, the
C++17 standard is just around the corner.

C++11 practically doubled the size of the standard library, adding such headers as <tuple>,
<type_traits>, and <regex>. C++17 doubles the library again, with additions such as
<optional>, <any>, and <filesystem>. A programmer who’s been spending time
writing code instead of watching the standardization process might fairly feel that the
standard library has gotten away from him--that there’s so many new things in the library
that he'll never be able to master the whole thing, or even to sort the wheat from the chaff.
After all, who wants to spend a month reading technical documentation on std::locale
and std::ratio, just to find out that they aren't useful in your daily work?

In this book, I'll teach you the most important features of the C++17 standard library. In the
interest of brevity, I omit some parts, such as the aforementioned <type_traits>; but we'll
cover the entire modern STL (every standard container and every standard algorithm), plus
such important topics as smart pointers, random numbers, regular expressions, and the
new-in-C++17 <filesystem> library.

I'll teach by example. You'll learn to build your own iterator type; your own memory
allocator using std::pmr::memory_resource; your own thread pool using std::future.

I'll teach concepts beyond what you'd find in a reference manual. You'll learn the difference
between monomorphic, polymorphic, and generic algorithms (Chapter 1, Classical
Polymorphism and Generic Programming); what it means for std::string or std::any to be
termed a "vocabulary type" (Chapter 5, Vocabulary Types); and what we might expect from
future C++ standards in 2020 and beyond.

I assume that you are already reasonably familiar with the core language of C++11; for
example, that you already understand how to write class and function templates, the
difference between lvalue and rvalue references, and so on.
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What this book covers
Chapter 1, Classical Polymorphism and Generic Programming, covers classical polymorphism
(virtual member functions) and generic programming (templates).

Chapter 2, Iterators and Ranges, explains the concept of iterator as a generalization of pointer,
and the utility of half-open ranges expressed as a pair of iterators.

Chapter 3, The Iterator-Pair Algorithms, explores the vast variety of standard generic
algorithms that operate on ranges expressed as iterator-pairs.

Chapter 4, The Container Zoo, explores the almost equally vast variety of standard container
class templates, and which containers are suitable for which jobs.

Chapter 5, Vocabulary Types, walks you through algebraic types such as std::optional.
and ABI-friendly type-erased types such as std::function.

Chapter 6, Smart Pointers, teaches the purpose and use of smart pointers.

Chapter 7, Concurrency, covers atomics, mutexes, condition variables, threads, futures, and
promises.

Chapter 8, Allocators, explains the new features of C++17's <memory_resource> header.

Chapter 9, Iostreams, explores the evolution of the C++ I/O model, from <unistd.h> to
<stdio.h> to <iostream>.

Chapter 10, Regular Expressions, teaches regular expressions in C++.

Chapter 11, Random Numbers, walks you through C++'s support for pseudo-random
number generation.

Chapter 12, Filesystem, covers the new-in-C++17 <filesystem> library.

What you need for this book
As this book is not a reference manual, it might be useful for you to have a reference
manual, such as cppreference (en.cppreference.com/w/cpp), at your side to clarify any
confusing points. It will definitely help to have a C++17 compiler handy. At press time,
there are several more or less feature-complete C++17 implementations, including GCC,
Clang, and Microsoft Visual Studio. You can run them locally or via many free online
compiler services, such as Wandbox (wandbox.org), Godbolt (gcc.godbolt.org), and
Rextester (rextester.com).

https://en.cppreference.com/w/cpp
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Who this book is for
This book is for developers who would like to master the C++17 STL and make full use of its
components. Prior C++ knowledge is assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
buffer() function accepts arguments of type int."

A block of code is set as follows:

    try {
      none.get();
    } catch (const std::future_error& ex) {
      assert(ex.code() == std::future_errc::broken_promise);
    }

New terms and important words are shown in bold.

Warnings or important notes appear like this.

Tips and notes appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- the- Cpp17- STL. We also have other code bundles from our
rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-the-Cpp17-STL
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


1
Classical Polymorphism and

Generic Programming
The C++ standard library has two distinct, yet equally important, missions. One of these
missions is to provide rock-solid implementations of certain concrete data types or
functions that have tended to be useful in many different programs, yet aren't built into the
core language syntax. This is why the standard library contains std::string,
std::regex, std::filesystem::exists, and so on. The other mission of the standard
library is to provide rock-solid implementations of widely used abstract algorithms such as
sorting, searching, reversing, collating, and so on. In this first chapter, we will nail down
exactly what we mean when we say that a particular piece of code is "abstract," and describe
the two approaches that the standard library uses to provide abstraction: classical
polymorphism and generic programming.

We will look at the following topics in this chapter:

Concrete (monomorphic) functions, whose behavior is not parameterizable
Classical polymorphism by means of base classes, virtual member functions, and
inheritance
Generic programming by means of concepts, requirements, and models
The practical advantages and disadvantages of each approach
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Concrete monomorphic functions
What distinguishes an abstract algorithm from a concrete function? This is best shown by
example. Let's write a function to multiply each of the elements in an array by 2:

    class array_of_ints {
      int data[10] = {};
      public:
        int size() const { return 10; }
        int& at(int i) { return data[i]; }
    };

    void double_each_element(array_of_ints& arr)
    {
      for (int i=0; i < arr.size(); ++i) {
        arr.at(i) *= 2;
      }
    }

Our function double_each_element works only with objects of type array_of_int;
passing in an object of a different type won't work (nor even compile). We refer to functions
like this version of double_each_element as concrete or monomorphic functions. We call
them concrete because they are insufficiently abstract for our purposes. Just imagine how
painful it would be if the C++ standard library provided a concrete sort routine that
worked only on one specific data type!

Classically polymorphic functions
We can increase the abstraction level of our algorithms via the techniques of classical
object-oriented (OO) programming, as seen in languages such as Java and C#. The OO
approach is to decide exactly which behaviors we'd like to be customizable, and then
declare them as the public virtual member functions of an abstract base class:

    class container_of_ints {
      public:
      virtual int size() const = 0;
      virtual int& at(int) = 0;
    };

    class array_of_ints : public container_of_ints {
      int data[10] = {};
      public:
        int size() const override { return 10; }
        int& at(int i) override { return data[i]; }
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    };

    class list_of_ints : public container_of_ints {
      struct node {
        int data;
        node *next;
      };
      node *head_ = nullptr;
      int size_ = 0;
      public:
       int size() const override { return size_; }
       int& at(int i) override {
        if (i >= size_) throw std::out_of_range("at");
        node *p = head_;
        for (int j=0; j < i; ++j) {
          p = p->next;
        }
        return p->data;
      }
      ~list_of_ints();
    };

    void double_each_element(container_of_ints& arr)
    {
      for (int i=0; i < arr.size(); ++i) {
        arr.at(i) *= 2;
      }
    }

    void test()
    {
      array_of_ints arr;
      double_each_element(arr);

      list_of_ints lst;
      double_each_element(lst);
    }
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Inside test, the two different calls to double_each_element compile because in classical
OO terminology, an array_of_ints IS-A container_of_ints (that is, it inherits from
container_of_ints and implements the relevant virtual member functions), and a
list_of_ints IS-A container_of_ints as well. However, the behavior of any given
container_of_ints object is parameterized by its dynamic type; that is, by the table of
function pointers associated with this particular object.

Since we can now parameterize the behavior of the double_each_element function
without editing its source code directly--simply by passing in objects of different dynamic
types--we say that the function has become polymorphic.

But still, this polymorphic function can handle only those types which are descendants of
the base class container_of_ints. For example, you couldn't pass a std::vector<int>
to this function; you'd get a compile error if you tried. Classical polymorphism is useful, but
it does not get us all the way to full genericity.

An advantage of classical (object-oriented) polymorphism is that the source code still bears
a one-to-one correspondence with the machine code that is generated by the compiler. At
the machine-code level, we still have just one double_each_element function, with one
signature and one well-defined entry point. For example, we can take the address of
double_each_element as a function pointer.

Generic programming with templates
In modern C++, the typical way to write a fully generic algorithm is to implement the
algorithm as a template. We're still going to implement the function template in terms of the
public member functions .size() and .at(), but we're no longer going to require that the
argument arr be of any particular type. Because our new function will be a template, we'll
be telling the compiler "I don't care what type arr is. Whatever type it is, just generate a
brand-new function (that is, a template instantiation) with that type as its parameter type."

    template<class ContainerModel>
    void double_each_element(ContainerModel& arr)
    {
      for (int i=0; i < arr.size(); ++i) {
        arr.at(i) *= 2;
      }
    }

    void test()
    {
      array_of_ints arr;
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      double_each_element(arr);

      list_of_ints lst;
      double_each_element(lst);

      std::vector<int> vec = {1, 2, 3};
      double_each_element(vec);
    }

In most cases, it helps us design better programs if we can put down in words exactly what
operations must be supported by our template type parameter ContainerModel. That set
of operations, taken together, constitutes what's known in C++ as a concept; in this example
we might say that the concept Container consists of "having a member function named
size that returns the size of the container as an int (or something comparable to int); and
having a member function named at that takes an int index (or something implicitly
convertible from int) and produces a non-const reference to the index'th element of the
container." Whenever some class array_of_ints correctly supplies the operations
required by the concept Container, such that array_of_ints is usable with
double_each_element, we say that the concrete class array_of_ints is a model of the
Container concept. This is why I gave the name ContainerModel to the template type
parameter in the preceding example.

It would be more traditional to use the name Container for the template
type parameter itself, and I will do that from now on; I just didn't want to
start us off on the wrong foot by muddying the distinction between the
Container concept and the particular template type parameter to this
particular function template that happens to desire as its argument a
concrete class that models the Container concept.

When we implement an abstract algorithm using templates, so that the behavior of the
algorithm can be parameterized at compile time by any types modeling the appropriate
concepts, we say we are doing generic programming.

Notice that our description of the Container concept didn't mention that we expect the
type of the contained elements to be int; and not coincidentally, we find that we can now
use our generic double_each_element function even with containers that don't hold int!

    std::vector<double> vecd = {1.0, 2.0, 3.0};
    double_each_element(vecd);
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This extra level of genericity is one of the big benefits of using C++ templates for generic
programming, as opposed to classical polymorphism. Classical polymorphism hides the
varying behavior of different classes behind a stable interface signature (for example, .at(i)
always returns int&), but once you start messing with varying signatures, classical
polymorphism is no longer a good tool for the job.

Another advantage of generic programming is that it offers blazing speed through
increased opportunities for inlining. The classically polymorphic example must repeatedly
query the container_of_int object's virtual table to find the address of its particular
virtual at method, and generally cannot see through the virtual dispatch at compile time.
The template function double_each_element<array_of_int> can compile in a direct
call to array_of_int::at or even inline the call completely.

Because generic programming with templates can so easily deal with complicated
requirements and is so flexible in dealing with types--even primitive types like int, where
classical polymorphism fails--the standard library uses templates for all its algorithms and
the containers on which they operate. For this reason, the algorithms-and-containers part of
the standard library is often referred to as the Standard Template Library or STL.

That's right--technically, the STL is only a small part of the C++ standard
library! However, in this book, as in real life, we may occasionally slip up
and use the term STL when we mean standard library, or vice versa.

Let's look at a couple more hand-written generic algorithms, before we dive into the
standard generic algorithms provided by the STL. Here is a function template count,
returning the total number of elements in a container:

    template<class Container>
    int count(const Container& container)
    {
      int sum = 0;
      for (auto&& elt : container) {
        sum += 1;
      }
      return sum;
    }
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And here is count_if, which returns the number of elements satisfying a user-supplied
predicate function:

    template<class Container, class Predicate>
    int count_if(const Container& container, Predicate pred)
    {
      int sum = 0;
      for (auto&& elt : container) {
        if (pred(elt)) {
            sum += 1;
        }
      }
      return sum;
    }

These functions would be used like this:

    std::vector<int> v = {3, 1, 4, 1, 5, 9, 2, 6};

    assert(count(v) == 8);

    int number_above =
      count_if(v, [](int e) { return e > 5; });
    int number_below =
      count_if(v, [](int e) { return e < 5; });

    assert(number_above == 2);
    assert(number_below == 5);

There is so much power packed into that little expression pred(elt)! I encourage you to
try re-implementing the count_if function in terms of classical polymorphism, just to get a
sense of where the whole thing breaks down. There are a lot of varying signatures hidden
under the syntactic sugar of modern C++. For example, the ranged for-loop syntax in our
count_if function is converted (or lowered") by the compiler into a for-loop in terms of
container.begin() and container.end(), each of which needs to return an iterator
whose type is dependent on the type of container itself. For another example, in the
generic-programming version, we never specify--we never need to specify--whether pred
takes its parameter elt by value or by reference. Try doing that with a virtual bool
operator()!



Classical Polymorphism and Generic Programming

[ 13 ]

Speaking of iterators: you may have noticed that all of our example functions in this chapter
(no matter whether they were monomorphic, polymorphic, or generic) have been expressed
in terms of containers. When we wrote count, we counted the elements in the entire
container. When we wrote count_if, we counted the matching elements in the entire
container. This turns out to be a very natural way to write, especially in modern C++; so
much so that we can expect to see container-based algorithms (or their close cousin, range-
based algorithms) arriving in C++20 or C++23. However, the STL dates back to the 1990s
and pre-modern C++. So, the STL's authors assumed that dealing primarily in containers
would be very expensive (due to all those expensive copy-constructions--remember that
move semantics and move-construction did not arrive until C++11); and so they designed
the STL to deal primarily in a much lighter-weight concept: the iterator. This will be the
subject of our next chapter.

Summary
Both classical polymorphism and generic programming deal with the essential problem of
parameterizing the behavior of an algorithm: for example, writing a search function that
works with any arbitrary matching operation.

Classical polymorphism tackles that problem by specifying an abstract base class with a
closed set of virtual member functions, and writing polymorphic functions that accept pointers
or references to instances of concrete classes inheriting from that base class.

Generic programming tackles the same problem by specifying a concept with a closed set of
requirements, and instantiating function templates with concrete classes modeling that concept.

Classical polymorphism has trouble with higher-level parameterizations (for example,
manipulating function objects of any signature) and with relationships between types (for
example, manipulating the elements of an arbitrary container). Therefore, the Standard
Template Library uses a great deal of template-based generic programming, and hardly any
classical polymorphism.

When you use generic programming, it will help if you keep in mind the conceptual
requirements of your types, or even write them down explicitly; but as of C++17, the
compiler cannot directly help you check those requirements.
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Iterators and Ranges

In the previous chapter, we implemented several generic algorithms that operated on
containers, but in an inefficient manner. In this chapter, you'll learn:

How and why C++ generalizes the idea of pointers to create the iterator concept
The importance of ranges in C++, and the standard way to express a half-open
range as a pair of iterators
How to write your own rock-solid, const-correct iterator types
How to write generic algorithms that operate on iterator pairs
The standard iterator hierarchy and its algorithmic importance

The problem with integer indices
In the previous chapter, we implemented several generic algorithms that operated on
containers. Consider one of those algorithms again:

    template<typename Container>
    void double_each_element(Container& arr)
    {
      for (int i=0; i < arr.size(); ++i) {
        arr.at(i) *= 2;
      }
    }



Iterators and Ranges

[ 15 ]

This algorithm is defined in terms of the lower-level operations .size() and .at(). This
works reasonably well for a container type such as array_of_ints or std::vector, but it
doesn't work nearly so well for, say, a linked list such as the previous chapter's
list_of_ints:

    class list_of_ints {
      struct node {
        int data;
        node *next;
      };
      node *head_ = nullptr;
      node *tail_ = nullptr;
      int size_ = 0;
    public:
      int size() const { return size_; }
      int& at(int i) {
        if (i >= size_) throw std::out_of_range("at");
        node *p = head_;
        for (int j=0; j < i; ++j) {
          p = p->next;
        }
        return p->data;
      }
      void push_back(int value) {
        node *new_tail = new node{value, nullptr};
        if (tail_) {
          tail_->next = new_tail;
        } else {
          head_ = new_tail;
        }
        tail_ = new_tail;
        size_ += 1;
      }
      ~list_of_ints() {
        for (node *next, *p = head_; p != nullptr; p = next) {
          next = p->next;
          delete p;
        }
      }
    };

The implementation of list_of_ints::at() is O(n) in the length of the list--the longer
our list gets, the slower at() gets. And particularly, when our count_if function loops
over each element of the list, it's calling that at() function n times, which makes the
runtime of our generic algorithm O(n2)--for a simple counting operation that ought to be
O(n)!
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It turns out that integer indexing with .at() isn't a very good foundation on which to build
algorithmic castles. We ought to pick a primitive operation that's closer to how computers
actually manipulate data.

On beyond pointers
In the absence of any abstraction, how does one normally identify an element of an array,
an element of a linked list, or an element of a tree? The most straightforward way would be
to use a pointer to the element's address in memory. Here are some examples of pointers to
elements of various data structures:

To iterate over an array, all we need is that pointer; we can handle all the elements in the
array by starting with a pointer to the first element and simply incrementing that pointer
until it reaches the last element. In C:

    for (node *p = lst.head_; p != nullptr; p = p->next) {
      if (pred(p->data)) {
        sum += 1;
      }
   }
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But in order to efficiently iterate over a linked list, we need more than just a raw pointer;
incrementing a pointer of type node* is highly unlikely to produce a pointer to the next
node in the list! In that case, we need something that acts like a pointer--in particular, we
should be able to dereference it to retrieve or modify the pointed-to element--but has
special, container-specific behavior associated with the abstract concept of incrementing.

In C++, given that we have operator overloading built into the language, when I say
"associate special behavior with the concept of incrementing", you should be thinking "let's
overload the ++ operator." And indeed, that's what we'll do:

    struct list_node {
      int data;
      list_node *next;
    };

    class list_of_ints_iterator {
      list_node *ptr_;

      friend class list_of_ints;
      explicit list_of_ints_iterator(list_node *p) : ptr_(p) {}
    public:
      int& operator*() const { return ptr_->data; }
      list_of_ints_iterator& operator++() { ptr_ = ptr_->next; return
*this; }
      list_of_ints_iterator operator++(int) { auto it = *this; ++*this;
return it; }
      bool operator==(const list_of_ints_iterator& rhs) const
        { return ptr_ == rhs.ptr_; }
      bool operator!=(const list_of_ints_iterator& rhs) const
        { return ptr_ != rhs.ptr_; }
    };

    class list_of_ints {
      list_node *head_ = nullptr;
      list_node *tail_ = nullptr;
      // ...
    public:
      using iterator = list_of_ints_iterator;
      iterator begin() { return iterator{head_}; }
      iterator end() { return iterator{nullptr}; }
    };

    template<class Container, class Predicate>
    int count_if(Container& ctr, Predicate pred)
    {
      int sum = 0;
      for (auto it = ctr.begin(); it != ctr.end(); ++it) {
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        if (pred(*it)) {
            sum += 1;
        }
      }
      return sum;
   }

Notice that we also overload the unary * operator (for dereferencing) and the == and !=
operators; our count_if template requires all of these operations be valid for the loop
control variable it. (Well, okay, technically our count_if doesn't require the == operation;
but if you're going to overload one of the comparison operators, you should overload the
other as well.)

Const iterators
There's just one more complication to consider, before we abandon this list iterator example.
Notice that I quietly changed our count_if function template so that it takes Container&
instead of const Container&! That's because the begin() and end() member functions
we provided are non-const member functions; and that's because they return iterators
whose operator* returns non-const references to the elements of the list. We'd like to
make our list type (and its iterators) completely const-correct--that is, we'd like you to be
able to define and use variables of type const list_of_ints, but prevent you from
modifying the elements of a const list.

The standard library generally deals with this issue by giving each standard container two
different kinds of iterator: bag::iterator and bag::const_iterator. The non-const
member function bag::begin() returns an iterator and the bag::begin() const
member function returns a const_iterator. The underscore is all-important! Notice that
bag::begin() const does not return a mere const iterator; if the returned object
were const, we wouldn't be allowed to ++ it. (Which, in turn, would make it darn difficult
to iterate over a const bag!) No, bag::begin() const returns something more subtle: a
non-const const_iterator object whose operator* simply happens to yield a const
reference to its element.

Maybe an example would help. Let's go ahead and implement const_iterator for our
list_of_ints container.
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Since most of the code for the const_iterator type is going to be exactly the same as the
code for the iterator type, our first instinct might be to cut and paste. But this is C++!
When I say "most of this code is going to be exactly the same as this other code," you should
be thinking "let's make the common parts into a template." And indeed, that's what we'll do:

    struct list_node {
      int data;
      list_node *next;
    };

    template<bool Const>
    class list_of_ints_iterator {
      friend class list_of_ints;
      friend class list_of_ints_iterator<!Const>;

      using node_pointer = std::conditional_t<Const, const list_node*,
list_node*>;
      using reference = std::conditional_t<Const, const int&, int&>;

      node_pointer ptr_;

      explicit list_of_ints_iterator(node_pointer p) : ptr_(p) {}
    public:
      reference operator*() const { return ptr_->data; }
      auto& operator++() { ptr_ = ptr_->next; return *this; }
      auto operator++(int) { auto result = *this; ++*this; return result; }

      // Support comparison between iterator and const_iterator types
      template<bool R>
      bool operator==(const list_of_ints_iterator<R>& rhs) const
        { return ptr_ == rhs.ptr_; }

      template<bool R>
      bool operator!=(const list_of_ints_iterator<R>& rhs) const
        { return ptr_ != rhs.ptr_; }

      // Support implicit conversion of iterator to const_iterator
      // (but not vice versa)
      operator list_of_ints_iterator<true>() const
        { return list_of_ints_iterator<true>{ptr_}; }
    };

    class list_of_ints {
      list_node *head_ = nullptr;
      list_node *tail_ = nullptr;
      // ...
    public:
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      using const_iterator = list_of_ints_iterator<true>;
      using iterator = list_of_ints_iterator<false>;

      iterator begin() { return iterator{head_}; }
      iterator end() { return iterator{nullptr}; }
      const_iterator begin() const { return const_iterator{head_}; }
      const_iterator end() const { return const_iterator{nullptr}; }
    };

The preceding code implements fully const-correct iterator types for our list_of_ints.

A pair of iterators defines a range
Now that we understand the fundamental concept of an iterator, let's put it to some
practical use. We've already seen that if you have a pair of iterators as returned from
begin() and end(), you can use a for-loop to iterate over all the elements of the
underlying container. But more powerfully, you can use some pair of iterators to iterate
over any sub-range of the container's elements! Let's say you only wanted to view the first
half of a vector:

    template<class Iterator>
    void double_each_element(Iterator begin, Iterator end)
    {
      for (auto it = begin; it != end; ++it) {
        *it *= 2;
      }
    }

    int main()
    {
      std::vector<int> v {1, 2, 3, 4, 5, 6};
      double_each_element(v.begin(), v.end());
        // double each element in the entire vector
      double_each_element(v.begin(), v.begin()+3);
        // double each element in the first half of the vector
      double_each_element(&v[0], &v[3]);
        // double each element in the first half of the vector
    }
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Notice that in the first and second test cases in main() we pass in a pair of iterators derived
from v.begin(); that is, two values of type std::vector::iterator. In the third test
case, we pass in two values of type int*. Since int* satisfies all the requirements of an
iterator type in this case--namely: it is incrementable, comparable, and dereferenceable--our
code works fine even with pointers! This example demonstrates the flexibility of the
iterator-pair model. (However, in general you should avoid messing around with raw
pointers, if you're using a container such as std::vector that offers a proper iterator
type. Use iterators derived from begin() and end() instead.)

We can say that a pair of iterators implicitly defines a range of data elements. And for a
surprisingly large family of algorithms, that's good enough! We don't need to have access to
the container in order to perform certain searches or transformations; we only need access to
the particular range of elements being searched or transformed. Going further down this
line of thought will eventually lead us to the concept of a non-owning view (which is to a
data sequence as a C++ reference is to a single variable), but views and ranges are still more
modern concepts, and we ought to finish up with the 1998-vintage STL before we talk about
those things.

In the previous code sample, we saw the first example of a real STL-style generic algorithm.
Admittedly, double_each_element is not a terribly generic algorithm in the sense of
implementing a behavior that we might want to reuse in other programs; but this version of
the function is now perfectly generic in the sense of operating only on pairs of Iterators,
where Iterator can be any type in the world that implements incrementability,
comparability, and dereferenceability. (We'll see a version of this algorithm that is more
generic in that first sense in this book's next chapter, when we talk about
std::transform.)

Iterator categories
Let's revisit the count and count_if functions that we introduced in
Chapter 1, Classical Polymorphism and Generic Programming. Compare the function template
definition in this next example to the similar code from that chapter; you'll see that it's 
identical except for the substitution of a pair of Iterators (that is, an implicitly defined
range) for the Container& parameter--and except that I've changed the name of the first
function from count to distance. That's because you can find this function, almost exactly
as described here, in the Standard Template Library under the name std::distance and
you can find the second function under the name std::count_if:

    template<typename Iterator>
    int distance(Iterator begin, Iterator end)
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    {
      int sum = 0;
      for (auto it = begin; it != end; ++it) {
        sum += 1;
      }
      return sum;
    }

    template<typename Iterator, typename Predicate>
    int count_if(Iterator begin, Iterator end, Predicate pred)
    {
      int sum = 0;
      for (auto it = begin; it != end; ++it) {
        if (pred(*it)) {
            sum += 1;
        }
      }
      return sum;
    }

    void test()
    {
      std::vector<int> v = {3, 1, 4, 1, 5, 9, 2, 6};

      int number_above = count_if(v.begin(), v.end(), [](int e) { return e
> 5; });
      int number_below = count_if(v.begin(), v.end(), [](int e) { return e
< 5; });

      int total = distance(v.begin(), v.end()); // DUBIOUS

      assert(number_above == 2);
      assert(number_below == 5);
      assert(total == 8);
    }

But let's consider the line marked DUBIOUS in that example. Here we're computing the
distance between two Iterators by repeatedly incrementing the one until it reaches the
other. How performant is this approach? For certain kinds of iterators--for example,
list_of_ints::iterator--we're not going to be able to do better than this. But for
vector::iterator or int*, which iterate over contiguous data, it's a little silly of us to be
using a loop and an O(n) algorithm when we could accomplish the same thing in O(1) time
by simple pointer subtraction. That is, we'd like the standard library version of
std::distance to include a template specialization something like this:

    template<typename Iterator>
    int distance(Iterator begin, Iterator end)
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    {
      int sum = 0;
      for (auto it = begin; it != end; ++it) {
        sum += 1;
      }
      return sum;
    }

    template<>
    int distance(int *begin, int *end)
    {
      return end - begin;
    }

But we don't want the specialization to exist only for int* and std::vector::iterator.
We want the standard library's std::distance to be efficient for all the iterator types that
support this particular operation. That is, we're starting to develop an intuition that there
are (at least) two different kinds of iterators: there are those that are incrementable,
comparable, and dereferenceable; and then there are those that are incrementable,
comparable, dereferenceable, and also subtractable! It turns out that for any iterator type
where the operation i = p - q makes sense, its inverse operation q = p + i also makes
sense. Iterators that support subtraction and addition are called random-access iterators.

So, the standard library's std::distance ought to be efficient for both random-access
iterators and other kinds of iterators. To make it easier to supply the partial specializations
for these templates, the standard library introduced the idea of a hierarchy of iterator kinds.
Iterators such as int*, which support addition and subtraction, are known as random-
access iterators. We'll say that they satisfy the concept RandomAccessIterator.

Iterators slightly less powerful than random-access iterators might not support addition or
subtraction of arbitrary distances, but they at least support incrementing and decrementing
with ++p and --p. Iterators of this nature are called BidirectionalIterator. All
RandomAccessIterator are BidirectionalIterator, but not necessarily vice versa. In
some sense, we can imagine RandomAccessIterator to be a sub-class or sub-concept
relative to BidirectionalIterator; and we can say that BidirectionalIterator is a
weaker concept, imposing fewer requirements, than RandomAccessIterator.

An even weaker concept is the kind of iterators that don't even support decrementing. For
example, our list_of_ints::iterator type doesn't support decrementing, because our
linked list has no previous pointers; once you've got an iterator pointing at a given element
of the list, you can only move forward to later elements, never backward to previous ones.
Iterators that support ++p but not --p are called ForwardIterator. ForwardIterator is
a weaker concept than BidirectionalIterator.
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Input and output iterators
We can imagine even weaker concepts than ForwardIterator! For example, one useful
thing you can do with a ForwardIterator is to make a copy of it, save the copy, and use it
to iterate twice over the same data. Manipulating the iterator (or copies of it) doesn't affect
the underlying range of data at all. But we could invent an iterator like the one in the
following snippet, where there is no underlying data at all, and it's not even meaningful to 
make a copy of the iterator:

    class getc_iterator {
      char ch;
    public:
      getc_iterator() : ch(getc(stdin)) {}
      char operator*() const { return ch; }
      auto& operator++() { ch = getc(stdin); return *this; }
      auto operator++(int) { auto result(*this); ++*this; return result; }
      bool operator==(const getc_iterator&) const { return false; }
      bool operator!=(const getc_iterator&) const { return true; }
    };

(In fact, the standard library contains some iterator types very similar to this one; we'll
discuss one such type, std::istream_iterator, in Chapter 9, Iostreams.) Such iterators,
which are not meaningfully copyable, and do not point to data elements in any meaningful
sense, are called InputIterator types.

The mirror-image case is also possible. Consider the following invented iterator type:

    class putc_iterator {
      struct proxy {
        void operator= (char ch) { putc(ch, stdout); }
      };
    public:
      proxy operator*() const { return proxy{}; }
      auto& operator++() { return *this; }
      auto& operator++(int) { return *this; }
      bool operator==(const putc_iterator&) const { return false; }
      bool operator!=(const putc_iterator&) const { return true; }
    };

    void test()
    {
      putc_iterator it;
      for (char ch : {'h', 'e', 'l', 'l', 'o', '\n'}) {
        *it++ = ch;
      }
    }
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(Again, the standard library contains some iterator types very similar to this one; we'll
discuss std::back_insert_iterator in Chapter 3, The Iterator-Pair Algorithms, and
std::ostream_iterator in Chapter 9, Iostreams.) Such iterators, which are not
meaningfully copyable, and are writeable-into but not readable-out-of, are called
OutputIterator types.

Every iterator type in C++ falls into at least one of the following five categories:

InputIterator

OutputIterator

ForwardIterator

BidirectionalIterator, and/or
RandomAccessIterator

Notice that while it's easy to figure out at compile time whether a particular iterator type
conforms to the BidirectionalIterator or RandomAccessIterator requirements, it's
impossible to figure out (purely from the syntactic operations it supports) whether we're
dealing with an InputIterator, an OutputIterator, or a ForwardIterator. In our
examples just a moment ago, consider: getc_iterator, putc_iterator, and
list_of_ints::iterator support exactly the same syntactic operations--dereferencing
with *it, incrementing with ++it, and comparison with it != it. These three classes
differ only at the semantic level. So how can the standard library distinguish between them?

It turns out that the standard library needs a bit of help from the implementor of each new
iterator type. The standard library's algorithms will work only with iterator classes which
define a member typedef named iterator_category. That is:

    class getc_iterator {
      char ch;
    public:
      using iterator_category = std::input_iterator_tag;

      // ...
    };

    class putc_iterator {
      struct proxy {
        void operator= (char ch) { putc(ch, stdout); }
      };
    public:
      using iterator_category = std::output_iterator_tag;

      // ...
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    };

    template<bool Const>
    class list_of_ints_iterator {
      using node_pointer = std::conditional_t<Const, const list_node*,
       list_node*>;
      node_pointer ptr_;

    public:
      using iterator_category = std::forward_iterator_tag;

      // ...
    };

Then any standard (or heck, non-standard) algorithm that wants to customize its behavior
based on the iterator categories of its template type parameters can do that customization
simply by inspecting those types' iterator_category.

The iterator categories described in the preceding paragraph, correspond to the following
five standard tag types defined in the <iterator> header:

    struct input_iterator_tag { };
    struct output_iterator_tag { };
    struct forward_iterator_tag : public input_iterator_tag { };
    struct bidirectional_iterator_tag : public forward_iterator_tag { };
    struct random_access_iterator_tag : public bidirectional_iterator_tag
    { };

Notice that random_access_iterator_tag actually derives (in the classical-OO,
polymorphic-class-hierarchy sense) from bidirectional_iterator_tag, and so on: the
conceptual hierarchy of iterator kinds is reflected in the class hierarchy of
iterator_category tag classes. This turns out to be useful in template metaprogramming
when you're doing tag dispatch; but all you need to know about it for the purposes of using
the standard library is that if you ever want to pass an iterator_category to a function, a
tag of type random_access_iterator_tag will be a match for a function expecting an
argument of type bidirectional_iterator_tag:

    void foo(std::bidirectional_iterator_tag t [[maybe_unused]])
    {
      puts("std::vector's iterators are indeed bidirectional...");
    }

    void bar(std::random_access_iterator_tag)
    {
      puts("...and random-access, too!");
    }
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    void bar(std::forward_iterator_tag)
    {
      puts("forward_iterator_tag is not as good a match");
    }

    void test()
    {
      using It = std::vector<int>::iterator;
      foo(It::iterator_category{});
      bar(It::iterator_category{});
    }

At this point I expect you're wondering: "But what about int*? How can we provide a
member typedef to something that isn't a class type at all, but rather a primitive scalar type?
Scalar types can't have member typedefs." Well, as with most problems in software
engineering, this problem can be solved by adding a layer of indirection. Rather than
referring directly to T::iterator_category, the standard algorithms are careful always
to refer to std::iterator_traits<T>::iterator_category. The class template
std::iterator_traits<T> is appropriately specialized for the case where T is a pointer
type.

Furthermore, std::iterator_traits<T> proved to be a convenient place to hang other
member typedefs. It provides the following five member typedefs, if and only if T itself
provides all five of them (or if T is a pointer type): iterator_category,
difference_type, value_type, pointer, and reference.

Putting it all together
Putting together everything we've learned in this chapter, we can now write code like the
following example. In this example, we're implementing our own list_of_ints with our
own iterator class (including a const-correct const_iterator version); and we're enabling
it to work with the standard library by providing the five all-important member typedefs.

    struct list_node {
      int data;
      list_node *next;
    };

    template<bool Const>
    class list_of_ints_iterator {
      friend class list_of_ints;
      friend class list_of_ints_iterator<!Const>;
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      using node_pointer = std::conditional_t<Const, const list_node*,
        list_node*>;
      node_pointer ptr_;

      explicit list_of_ints_iterator(node_pointer p) : ptr_(p) {}
    public:
      // Member typedefs required by std::iterator_traits
      using difference_type = std::ptrdiff_t;
      using value_type = int;
      using pointer = std::conditional_t<Const, const int*, int*>;
      using reference = std::conditional_t<Const, const int&, int&>;
      using iterator_category = std::forward_iterator_tag;

      reference operator*() const { return ptr_->data; }
      auto& operator++() { ptr_ = ptr_->next; return *this; }
      auto operator++(int) { auto result = *this; ++*this; return result; }

      // Support comparison between iterator and const_iterator types
      template<bool R>
      bool operator==(const list_of_ints_iterator<R>& rhs) const
        { return ptr_ == rhs.ptr_; }

      template<bool R>
      bool operator!=(const list_of_ints_iterator<R>& rhs) const
        { return ptr_ != rhs.ptr_; }

      // Support implicit conversion of iterator to const_iterator
      // (but not vice versa)
      operator list_of_ints_iterator<true>() const { return
        list_of_ints_iterator<true>{ptr_}; }
    };

    class list_of_ints {
      list_node *head_ = nullptr;
      list_node *tail_ = nullptr;
      int size_ = 0;
    public:
      using const_iterator = list_of_ints_iterator<true>;
      using iterator = list_of_ints_iterator<false>;

      // Begin and end member functions
      iterator begin() { return iterator{head_}; }
      iterator end() { return iterator{nullptr}; }
      const_iterator begin() const { return const_iterator{head_}; }
      const_iterator end() const { return const_iterator{nullptr}; }

      // Other member operations
      int size() const { return size_; }
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      void push_back(int value) {
        list_node *new_tail = new list_node{value, nullptr};
        if (tail_) {
          tail_->next = new_tail;
        } else {
          head_ = new_tail;
        }
        tail_ = new_tail;
        size_ += 1;
      }
      ~list_of_ints() {
        for (list_node *next, *p = head_; p != nullptr; p = next) {
          next = p->next;
          delete p;
        }
      }
    };

Then, to show that we understand how the standard library implements generic algorithms,
we'll implement the function templates distance and count_if exactly as the C++17
standard library would implement them.

Notice the use of C++17's new if constexpr syntax in distance. We
won't talk about C++17 core language features very much in this book, but
suffice it to say, you can use if constexpr to eliminate a lot of awkward
boilerplate compared to what you'd have had to write in C++14.

    template<typename Iterator>
    auto distance(Iterator begin, Iterator end)
    {
      using Traits = std::iterator_traits<Iterator>;
      if constexpr (std::is_base_of_v<std::random_access_iterator_tag,
        typename Traits::iterator_category>) {
          return (end - begin);
        } else {
         auto result = typename Traits::difference_type{};
         for (auto it = begin; it != end; ++it) {
           ++result;
         }
         return result;
      }
    }

    template<typename Iterator, typename Predicate>
    auto count_if(Iterator begin, Iterator end, Predicate pred)
    {
      using Traits = std::iterator_traits<Iterator>;
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      auto sum = typename Traits::difference_type{};
      for (auto it = begin; it != end; ++it) {
        if (pred(*it)) {
          ++sum;
        }
      }
      return sum;
    }

    void test()
    {
       list_of_ints lst;
       lst.push_back(1);
       lst.push_back(2);
       lst.push_back(3);
       int s = count_if(lst.begin(), lst.end(), [](int i){
          return i >= 2;
       });
       assert(s == 2);
       int d = distance(lst.begin(), lst.end());
       assert(d == 3);
    }

In the next chapter we'll stop implementing so many of our own function templates from
scratch, and start marching through the function templates provided by the Standard
Template Library. But before we leave this deep discussion of iterators, there's one more
thing I'd like to talk about.

The deprecated std::iterator
You might be wondering: "Every iterator class I implement needs to provide the same five
member typedefs. That's a lot of boilerplate--a lot of typing that I'd like to factor out, if I
could." Is there no way to eliminate all that boilerplate?

Well, in C++98, and up until C++17, the standard library included a helper class template to
do exactly that. Its name was std::iterator, and it took five template type parameters
that corresponded to the five member typedefs required by std::iterator_traits.
Three of these parameters had "sensible defaults," meaning that the simplest use-case was
pretty well covered:

    namespace std {
      template<
        class Category,
        class T,
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        class Distance = std::ptrdiff_t,
        class Pointer = T*,
        class Reference = T&
      > struct iterator {
        using iterator_category = Category;
        using value_type = T;
        using difference_type = Distance;
        using pointer = Pointer;
        using reference = Reference;
      };
    }

    class list_of_ints_iterator :
      public std::iterator<std::forward_iterator_tag, int>
    {
       // ...
    };

Unfortunately for std::iterator, real life wasn't that simple; and std::iterator was
deprecated in C++17 for several reasons that we're about to discuss.

As we saw in the section Const iterators, const-correctness requires us to provide a const
iterator type along with every "non-const iterator" type. So what we really end up with,
following that example, is code like this:

    template<
      bool Const,
      class Base = std::iterator<
        std::forward_iterator_tag,
        int,
        std::ptrdiff_t,
        std::conditional_t<Const, const int*, int*>,
        std::conditional_t<Const, const int&, int&>
      >
    >
    class list_of_ints_iterator : public Base
    {
      using typename Base::reference; // Awkward!

      using node_pointer = std::conditional_t<Const, const list_node*,
        list_node*>;
      node_pointer ptr_;

    public:
      reference operator*() const { return ptr_->data; }
      // ...
    };
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The preceding code isn't any easier to read or write than the version that didn't use
std::iterator; and furthermore, using std::iterator in the intended fashion
complicates our code with public inheritance, which is to say, something that looks an awful
lot like the classical object-oriented class hierarchy. A beginner might well be tempted to
use that class hierarchy in writing functions like this one:

    template<typename... Ts, typename Predicate>
    int count_if(const std::iterator<Ts...>& begin,
                 const std::iterator<Ts...>& end,
                 Predicate pred);

This looks superficially similar to our examples of "polymorphic programming" from
Chapter 1, Classical Polymorphism and Generic Programming, a function that implements
different behaviors by taking parameters of type reference-to-base-class. But in the case of
std::iterator this similarity is purely accidental and misleading; inheriting from
std::iterator does not give us a polymorphic class hierarchy, and referring to that "base
class" from our own functions is never the correct thing to do!

So, the C++17 standard deprecates std::iterator with an eye toward removing it
completely in 2020 or some later standard. You shouldn't use std::iterator in code you
write.

However, if you use Boost in your codebase, you might want to check out the Boost
equivalent of std::iterator, which is spelled boost::iterator_facade. Unlike
std::iterator, the boost::iterator_facade base class provides default functionality
for pesky member functions such as operator++(int) and operator!= that would
otherwise be tedious boilerplate. To use iterator_facade, simply inherit from it and
define a few primitive member functions such as dereference, increment, and equal.
(Since our list iterator is a ForwardIterator, that's all we need. For a
BidirectionalIterator you would also need to provide a decrement member function,
and so on.)

Since these primitive member functions are private, we grant Boost access to them via the
declaration friend class boost::iterator_core_access;:

    #include <boost/iterator/iterator_facade.hpp>

    template<bool Const>
    class list_of_ints_iterator : public boost::iterator_facade<
      list_of_ints_iterator<Const>,
      std::conditional_t<Const, const int, int>,
      std::forward_iterator_tag
    >
    {
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      friend class boost::iterator_core_access;
      friend class list_of_ints;
      friend class list_of_ints_iterator<!Const>;

      using node_pointer = std::conditional_t<Const, const list_node*,
        list_node*>;
      node_pointer ptr_;

      explicit list_of_ints_iterator(node_pointer p) : ptr_(p) {}

      auto& dereference() const { return ptr_->data; }
      void increment() { ptr_ = ptr_->next; }

      // Support comparison between iterator and const_iterator types
      template<bool R>
      bool equal(const list_of_ints_iterator<R>& rhs) const {
        return ptr_ == rhs.ptr_;}

    public:
      // Support implicit conversion of iterator to const_iterator
      // (but not vice versa)
      operator list_of_ints_iterator<true>() const { return
        list_of_ints_iterator<true>{ptr_}; }
    };

Notice that the first template type argument to boost::iterator_facade is always the
class whose definition you're writing: this is the Curiously Recurring Template Pattern,
which we'll see again in Chapter 6, Smart Pointers.

This list-iterator code using boost::iterator_facade is significantly shorter than the
same code in the previous section; the savings comes mainly from not having to repeat the
relational operators. Because our list iterator is a ForwardIterator, we only had two
relational operators; but if it were a RandomAccessIterator, then iterator_facade
would generate default implementations of operators -, <, >, <=, and >= all based on the
single primitive member function distance_to.
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Summary
In this chapter, we've learned that traversal is one of the most fundamental things you can
do with a data structure. However, raw pointers alone are insufficient for traversing
complicated structures: applying ++ to a raw pointer often doesn't "go on to the next item"
in the intended way.

The C++ Standard Template Library provides the concept of iterator as a generalization of
raw pointers. Two iterators define a range of data. That range might be only part of the
contents of a container; or it might be unbacked by any memory at all, as we saw with
getc_iterator and putc_iterator. Some of the properties of an iterator type are
encoded in its iterator category--input, output, forward, bidirectional, or random-access--for
the benefit of function templates that can use faster algorithms on certain categories of
iterators.

If you're defining your own container type, you'll need to define your own iterator types as
well--both const and non-const versions. Templates are a handy way to do that. When
implementing your own iterator types, avoid the deprecated std::iterator, but consider
boost::iterator_facade.



3
The Iterator-Pair Algorithms

Now that you've been introduced to iterator types--both standard-provided and user-
defined--it's time to look at some of the things you can do with iterators.

In this chapter you'll learn:

The notion of a "half-open range," which nails down the exact manner in which
two iterators can be said to define a range
How to classify each standard algorithm as "read-only," "write-only",
"transformative", or "permutative"; and as "one-range", "two-range", or "one-and-
a-half range"
That some standard algorithms, such as merge and make_heap, are merely the
necessary building blocks out of which we make higher-level entities such as
stable_sort and priority_queue
How to sort a range based on a comparator other than operator<
How to manipulate sorted arrays using the erase-remove idiom

A note about headers
Most function templates discussed in this chapter are defined in the standard header
<algorithm>. The special iterator types, on the other hand, are generally defined in
<iterator>. If you're wondering where to find a specific entity, I strongly recommend that
you consult an online reference such as cppreference.com for the authoritative answer;
don't just guess!

https://cppreference.com
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Read-only range algorithms
In the preceding chapters, we built up an algorithm that we called distance and another
called count_if. Both of these algorithms appear in the standard library.

std::count_if(a,b,p) returns the number of elements between a and b that satisfy the
predicate function p--that is, the number of elements e for which p(e) is true.

Notice that, whenever we say "between a and b", we're talking about the range that
includes *a but does not include *b--what mathematicians call a "half-open range" and
represented by the asymmetrical notation [a,b). Why should we not include *b? Well, for
one thing, if b is the end() of some vector, then it doesn't point to an element of that vector
at all! So in general, dereferencing the end point of a range is a dangerous thing to do. For
another thing, using half-open ranges conveniently allows us to represent empty ranges; for
example, the range "from x to x" is an empty range consisting of zero data elements.

Half-open ranges are quite natural in C++ just as they are in C. For decades, we've been
writing for-loops that range from a lower bound (inclusive) to an upper bound (exclusive);
this idiom is so common that deviation from the idiom often indicates a bug:

    constexpr int N = 10;
    int a[N];

    // A correct for-loop.
    for (int i=0; i < N; ++i) {
      // ...
    }

    // One variety of "smelly" for-loop.
    for (int i=0; i <= N; ++i) {
      // ...
    }

    // A correct invocation of a standard algorithm.
    std::count_if(std::begin(a), std::end(a), [](int){ return true; });

    // A "smelly" invocation.
    std::count_if(std::begin(a), std::end(a) - 1, [](int){ return true; });

    // A "trivial" invocation: counting a range of length zero.
    std::count_if(std::begin(a), std::begin(a), [](int){ return true; });
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std::distance(a,b) returns the number of elements between a and b--that is, the
number of times you'd have to apply ++ to a in order to reach b. You could think of this
function as being equivalent in its effects to std::count_if(a,b,[](auto&&){return
true;}).

As we saw in Chapter 2, Iterators and Ranges, if the iterators in question are random-access
iterators, this number can be quickly computed as (b - a), and so the standard
std::distance will do so. Notice that (b - a) might be a negative number, if you gave
the arguments in the "wrong" order!

    int a[] {1, 2, 3, 4, 5};
    std::list<int> lst {1, 2, 3, 4, 5};
    std::forward_list<int> flst {1, 2, 3, 4, 5};

    assert(std::distance(std::begin(a), std::end(a)) == 5);
    assert(std::distance(std::begin(lst), std::end(lst)) == 5);
    assert(std::distance(std::begin(lst), std::end(lst)) == 5);

    assert(std::distance(std::end(a), std::begin(a)) == -5);

When the iterators are random-access iterators, std::distance does nothing more than
subtract them; so passing in "wrongly ordered" arguments is explicitly supported and
blessed by the C++ standard. However, if the iterators in question are merely bidirectional
iterators (such as std::list<int>::iterator--see Chapter 4, The Container Zoo),
"wrongly ordered" iterators are not supported. You might expect that
std::distance(b,a) == -std::distance(a,b) should be true of all iterator types; but
consider, how would the std::distance algorithm itself have any idea whether the
iterators you gave it were "wrongly ordered" or not? The only thing it can do (in the absence
of an operator-) is to keep incrementing a--perhaps past the end of the container and off
into space--in the vain hope that it'll eventually reach b:

    // The following line gives an "incorrect" answer!
    // assert(std::distance(std::end(lst), std::begin(lst)) == 1);
    // And this one just segfaults!
    // std::distance(std::end(flst), std::begin(flst));

Consult the diagrams of std::list and std::forward_list in Chapter
4, The Container Zoo, to understand this code sample's odd behavior.
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std::count(a,b,v) returns the number of elements between a and b that are equal to v--
that is, the number of elements e for which e == v is true. You can think of this function as
being equivalent in its effects to std::count_if(a,b,[&v](auto&& e){return e ==
v;}), and in fact both versions should give the same assembly code. If C++ had had
lambda-expressions in 1998, they probably wouldn't have put the std::count algorithm in
the standard library.

Notice that std::count(a,b,v) necessarily loops over all of the elements in the range
between a and b. It can't take advantage of special information you might have about the
arrangement of the data in the range. For example, suppose I want to count the instances of
42 in a std::set<int>? I could write the code in either of the following ways:

    std::set<int> s { 1, 2, 3, 10, 42, 99 };
    bool present;

    // O(n): compare each element with 42
    present = std::count(s.begin(), s.end(), 42);

    // O(log n): ask the container to look up 42 itself
    present = s.count(42);

The raw algorithm std::count is outperformed by the second approach, which simply
asks the set itself for the answer. This turns a O(n) traversal of the whole set into a O(log n)
tree lookup. Similarly, std::unordered_set provides a count method that is roughly
O(1).

For more about these containers, see Chapter 4, The Container Zoo; the takeaway point here
right now is that, Q sometimes there is important structure in your data that can be
exploited by choosing the proper tool for the job. Even though I'm pointing to cases where
the standard algorithms seem to "magically" do the right thing (as with std::distance
delegating to (b - a)), you should not imagine that this "magic" stretches farther than it
does. The standard algorithms know only as much as they're told, which is to say, only
about the properties of the iterator types you pass them. They'll never change their behavior
based on the relationships of the underlying data elements to each other. Arranging your code
to exploit relationships in the underlying data (for example, "this data is sorted," "this range
spans the entire container") is part of your job as the programmer.

Here are some more algorithms similar to std::count and std::count_if.
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std::find(a,b,v) and std::find_if(a,b,p) work just like std::count(a,b,v) and
std::count_if(a,b,p) respectively, except that, rather than looping over the entire
range and returning the count of matching elements, the find variants loop only until
they've found the first match, and then return an iterator to the data element that matched.
There is also a variant find_if_not that is just like find_if but with the sense of the
predicate negated; this variant also probably wouldn't have needed to exist if we'd gotten
lambdas earlier in the history of C++:

    template<class InputIterator, class UnaryPredicate>
    InputIterator find_if(InputIterator first, InputIterator last,
      UnaryPredicate p)
    {
      for (; first != last; ++first) {
        if (p(*first)) {
          return first;
        }
      }
      return last;
    }

    template<class It, class U>
    It find_if_not(It first, It last, U p) {
      return std::find_if(first, last, [&](auto&& e){ return !p(e); });
    }

    template<class It, class T>
    It find(It first, It last, T value) {
      return std::find_if(first, last, [&](auto&& e)
        { return e == value; });
    }

Notice that because find returns immediately upon finding the first match, it's faster on
average than the count algorithm (which scans the whole range no matter what). This kind
of "return immediately" behavior is often referred to as "short-circuiting".

std::all_of(a,b,p), std::any_of(a,b,p), and std::none_of(a,b,p) return either
true or false, depending on how often the provided predicate function p is true of the
elements in the range. They can all be built on top of the find algorithms, thus picking up
the short-circuiting behavior for free:

    template<class It, class UnaryPredicate>
    bool all_of(It first, It last, UnaryPredicate p)
    {
      return std::find_if_not(first, last, p) == last;
    }
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    template <class It, class U>
    bool any_of(It first, It last, U p)
    {
      return std::find_if(first, last, p) != last;
    }

    template <class It, class U>
    bool none_of(It first, It last, U p)
    {
      return std::find_if(first, last, p) == last;
    }

There is one more find-related algorithm I should mention: find_first_of. It
implements the operation of "looking in a sequence for the first occurrence of any of a fixed
set of target elements"--that is, just like strcspn in the C standard library, but for any type,
not just char. Abstractly speaking, find_first_of takes two conceptual parameters: the
range to search in, and the set of target elements. This being the STL, they're both passed in
as ranges, which is to say, pairs of iterators. So a call to this algorithm looks like
find_first_of(haystack, haystack, needle, needle): two pairs of iterators side
by side. This can get confusing--beware of algorithms taking multiple similar parameters!

    template <class It, class FwdIt>
    It find_first_of(It first, It last, FwdIt targetfirst,
      FwdIt targetlast)
    {
      return std::find_if(first, last, [&](auto&& e) {
        return std::any_of(targetfirst, targetlast, [&](auto&& t) {
          return e == t;
        });
      });
    }

    template <class It, class FwdIt, class BinaryPredicate>
    It find_first_of(It first, It last, FwdIt targetfirst,
      FwdIt targetlast, BinaryPredicate p)
    {
      return std::find_if(first, last, [&](auto&& e) {
        return std::any_of(targetfirst, targetlast, [&](auto&& t) {
          return p(e, t);
        });
      });
    }
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Notice that the "haystack" iterators are expected to be of any old InputIterator type, but
the "needle" iterators are required to be at least ForwardIterator. Recall from Chapter 2,
Iterators and Ranges, that the big thing about ForwardIterator types is that they can be
meaningfully copied, letting the same range be traversed multiple times. This is exactly what
find_first_of needs! It traverses the "needle" range once per character in the "haystack";
so the "needle" must be re-traversable--and incidentally, must be finite in size! Contrariwise,
there's nothing particularly requiring that the "haystack" be finite; it might be pulling its
elements from a potentially unbounded input stream:

    std::istream_iterator<char> ii(std::cin);
    std::istream_iterator<char> iend{};
    std::string s = "hello";

    // Chomp characters from std::cin until finding an 'h', 'e', 'l', or
'o'.
    std::find_first_of(ii, iend, s.begin(), s.end());

Speaking of multiple similar parameters, let's finish our look at simple read-only algorithms
with these two: std::equal and std::mismatch.

std::equal(a,b,c,d) takes two iterator-pairs: the range [a,b) and the range [c,d). It
returns true if the two ranges are element-for-element equal, and false otherwise.

std::mismatch(a,b,c,d) is sort of like find: it'll tell you exactly which pair of elements
was the one that torpedoed the match:

    template<class T> constexpr bool is_random_access_iterator_v =
      std::is_base_of_v<std::random_access_iterator_tag, typename
      std::iterator_traits<T>::iterator_category>;

    template<class It1, class It2, class B>
    auto mismatch(It1 first1, It1 last1, It2 first2, It2 last2, B p)
    {
      while (first1 != last1 && first2 != last2 && p(*first1, *first2)) {
        ++first1;
        ++first2;
      }
      return std::make_pair(first1, first2);
    }

    template<class It1, class It2>
    auto mismatch(It1 first1, It1 last1, It2 first2, It2 last2)
    {
      return std::mismatch(first1, last1, first2, last2,
std::equal_to<>{});
    }
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    template<class It1, class It2, class B>
    bool equal(It1 first1, It1 last1, It2 first2, It2 last2, B p)
    {
      if constexpr (is_random_access_iterator_v<It1> &&
        is_random_access_iterator_v<It2>) {
        // Ranges of different lengths can never be equal.
        if ((last2 - first2) != (last1 - first1)) {
          return false;
        }
      }
      return std::mismatch(first1, last1, first2, last2, p) ==
        std::make_pair(last1, last2);
    }

    template<class It1, class It2>
    bool equal(It1 first1, It1 last1, It2 first2, It2 last2)
    {
      return std::equal(first1, last1, first2, last2, std::equal_to<>{});
    }

Notice the use of std::equal_to<>{} as a predicate object; we won't cover the built-in
predicates in depth in this book, so just take it for granted that std::equal_to<>{} is an
object whose behavior is similar to [](auto a, auto b){ return a == b; } but with
more perfect forwarding involved.

Finally, watch out again! Many of the two-range algorithms in the C++17 standard library
also have variant forms colloquially known as one-and-a-half-range algorithms. For
example, in addition to std::mismatch(a,b,c,d) you'll find std::mismatch(a,b,c)--
the second range's "end" point is simply assumed to be at c + std::distance(a, b). If c
actually points into a container where c + std::distance(a, b) would be "off the end,"
then, tough luck!

Because "tough luck" is never a really great answer to a technical question, the C++17
standard added safe two-range variants for many of the one-and-a-half-range algorithms
that had existed in C++14.

Shunting data with std::copy
We've just seen our first few two-range algorithms. The <algorithm> header is full of two-
range algorithms and their siblings, the one-and-a-half-range algorithms. What's the 
simplest possible such algorithm?
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A reasonable answer would be: "Copy each data element from the first range into the
second range." Indeed, the STL provides that algorithm, under the name std::copy:

    template<class InIt, class OutIt>
    OutIt copy(InIt first1, InIt last1, OutIt destination)
    {
      while (first1 != last1) {
        *destination = *first1;
        ++first1;
        ++destination;
      }
      return destination;
    }

Notice that this is a one-and-a-half-range algorithm. The standard library actually does not
provide a two-range version of std::copy; the assumption is that if you are actually trying
to write into a buffer, then you must have checked its size already, so checking "are we at
the end of the buffer yet" inside the loop would be both redundant and inefficient.

Now I can practically hear you exclaiming: "Horrors! This is the same crude logic that
brought us strcpy, sprintf, and gets! This is an invitation to buffer overflows!" Well, if
you were to exclaim thusly, you'd be right about the bad behavior of gets--in fact, the gets
function has been officially removed from the C++17 standard library. And you'd be right
about sprintf--anyone who needs that functionality is better of using the range-checked
version snprintf, which is analogous to a "two-range algorithm" in this context. But about
strcpy I'd disagree. With gets it is impossible to know the correct size for the output buffer;
with sprintf it is difficult; but with strcpy it is trivial: you just measure the strlen of the
input buffer and that's your answer. Likewise with std::copy, the relationship between
"input elements consumed" and "output elements produced" is exactly one-to-one, so sizing
the output buffer doesn't present a technical challenge.

Notice that the parameter we called destination is an output iterator. This means that we
can use std::copy, not merely to shunt data around in memory, but even to feed data to
an arbitrary "sink" function. For example:

    class putc_iterator : public boost::iterator_facade<
      putc_iterator, // T
      const putc_iterator, // value_type
      std::output_iterator_tag
      >
    {
      friend class boost::iterator_core_access;

       auto& dereference() const { return *this; }
       void increment() {}
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       bool equal(const putc_iterator&) const { return false; }
       public:
       // This iterator is its own proxy object!
       void operator= (char ch) const { putc(ch, stdout); }
    };

    void test()
    {
      std::string s = "hello";
      std::copy(s.begin(), s.end(), putc_iterator{});
    }

You may find it instructive to compare this version of our putc_iterator to the version
from Chapter 2, Iterators and Ranges; this version is using boost::iterator_facade as
introduced at the end of Chapter 2, Iterators and Ranges and also using a common trick to
return *this instead of a new proxy object.

Now we can use the flexibility of destination to solve our concerns about buffer
overflow! Suppose that, instead of writing into a fixed-size array, we were to write into a
resizable std::vector (see Chapter 4, The Container Zoo). Then "writing an element"
corresponds to "pushing an element back" on the vector. So we could write an output
iterator very similar to putc_iterator, that would push_back instead of putc, and then
we'd have an overflow-proof way of filling up a vector. Indeed, the standard library
provides just such an output iterator, in the <iterator> header:

    namespace std {
      template<class Container>
      class back_insert_iterator {
        using CtrValueType = typename Container::value_type;
        Container *c;
      public:
        using iterator_category = output_iterator_tag;
        using difference_type = void;
        using value_type = void;
        using pointer = void;
        using reference = void;

        explicit back_insert_iterator(Container& ctr) : c(&ctr) {}

        auto& operator*() { return *this; }
        auto& operator++() { return *this; }
        auto& operator++(int) { return *this; }

        auto& operator= (const CtrValueType& v) {
            c->push_back(v);
            return *this;
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        }
        auto& operator= (CtrValueType&& v) {
            c->push_back(std::move(v));
            return *this;
        }
      };
      template<class Container>
      auto back_inserter(Container& c)
      {
         return back_insert_iterator<Container>(c);
      }
    }

    void test()
    {
      std::string s = "hello";
      std::vector<char> dest;
      std::copy(s.begin(), s.end(), std::back_inserter(dest));
      assert(dest.size() == 5);
    }

The function call std::back_inserter(dest) simply returns a back_insert_iterator
object. In C++17, we could rely on template type deduction for constructors and write the
body of that function as simply return std::back_insert_iterator(dest); or
dispense with the function entirely and just write std::back_insert_iterator(dest)
directly in our code--where C++14 code would have to "make do" with
std::back_inserter(dest). However, why would we want all that extra typing? The
name back_inserter was deliberately chosen to be easy to remember, since it's the one
that we were expected to use most often. Although C++17 allows us to write std::pair in
place of std::make_pair, and std::tuple in place of std::make_tuple, it would be
silly to write the cumbersome std::back_insert_iterator in place of
std::back_inserter. You should prefer std::back_inserter(dest) even in C++17.

Variations on a theme - std::move and
std::move_iterator
As you might guess from the name, or you might have noticed in the preceding
implementation, the std::copy algorithm works by copying elements from the input
range to the output. As of C++11, you might wonder: What if instead of copying the
elements, we used move semantics to move them from the input to the output?
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The STL provides two different approaches to this problem. The first one is the most
straightforward: there is a std::move algorithm (defined in the <algorithm> header) with
the following definition:

    template<class InIt, class OutIt>
    OutIt move(InIt first1, InIt last1, OutIt destination)
    {
      while (first1 != last1) {
        *destination = std::move(*first1);
        ++first1;
        ++destination;
      }
      return destination;
    }

It's exactly the same as the std::copy algorithm except for the addition of a single
std::move on the input element (be careful--this inner std::move, with one argument,
defined in the <utility> header, is a completely different beast from the outer, three-
argument std::move defined in <algorithm>! The fact that they share a name is
unfortunate. Ironically, one of the few other STL functions to suffer a similar situation is
std::remove; see the Deleting from a sorted array section, and also Chapter 12, Filesystem).

The other approach is a variation of what we saw previously with back_inserter. Rather
than switching out the core algorithm, we can continue using std::copy but parameterize it
differently. Suppose we passed in a new type of iterator, which (like back_inserter)
wrapped around our original object and changed its behavior? In particular, we need an
input iterator whose operator* returns an rvalue. We can do that!

    template<class It>
    class move_iterator {
      using OriginalRefType = typename std::iterator_traits<It>::reference;
      It iter;
      public:
       using iterator_category = typename
         std::iterator_traits<It>::iterator_category;
       using difference_type = typename
         std::iterator_traits<It>::difference_type;
       using value_type = typename std::iterator_traits<It>::value_type;
       using pointer = It;
       using reference = std::conditional_t<
         std::is_reference_v<OriginalRefType>,
         std::remove_reference_t<OriginalRefType>&&,
         OriginalRefType
         >;

       move_iterator() = default;
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       explicit move_iterator(It it) : iter(std::move(it)) {}

       // Allow constructing or assigning from any kind of move-iterator.
       // These templates also serve as our own type's copy constructor
       // and assignment operator, respectively.
       template<class U>
       move_iterator(const move_iterator<U>& m) : iter(m.base()) {}
       template<class U>
       auto& operator=(const move_iterator<U>& m)
         { iter = m.base(); return *this; }

       It base() const { return iter; }

       reference operator*() { return static_cast<reference>(*iter); }
       It operator->() { return iter; }
       decltype(auto) operator[](difference_type n) const
         { return *std::move(iter[n]); }

      auto& operator++() { ++iter; return *this; }
      auto& operator++(int)
        { auto result = *this; ++*this; return result; }
      auto& operator--() { --iter; return *this; }
      auto& operator--(int)
        { auto result = *this; --*this; return result; }

      auto& operator+=(difference_type n) const
        { iter += n; return *this; }
      auto& operator-=(difference_type n) const
        { iter -= n; return *this; }
    };

    // I've omitted the definitions of non-member operators
    // == != < <= > >= + - ; can you fill them in?

    template<class InputIterator>
    auto make_move_iterator(InputIterator& c)
    {
      return move_iterator(c);
    }
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Sorry for the density of that code; trust me that you can safely skip over the details. For
those who like this kind of thing, you might notice that we're providing a templated
constructor from move_iterator<U> that happens to double as our copy constructor
(when U is the same type as It); and that we're providing a lot of member functions (such
as operator[] and operator--) whose bodies will error out for a lot of possible types of
It (for example, when It is a forward iterator--see Chapter 2, Iterators and Ranges), but this
is fine because their bodies won't get instantiated unless the user actually tries to call those
functions at compile time (if the user actually does try to -- a
move_iterator<list_of_ints::iterator>, then of course that'll yield a compile-time
error).

Just as with back_inserter, notice that the STL provides a helper function
make_move_iterator for the benefit of pre-C++17 compilers that don't have constructor
template type deduction. In this case, as with make_pair and make_tuple, the "helper"
name is uglier than the actual class name, and so I tentatively recommend using the C++17
feature in your code; why type an extra five characters and instantiate an extra function
template if you don't have to?

Now we have two different ways of moving data from one container or range to another:
the std::move algorithm and the std::move_iterator adaptor class. Here are examples
of both idioms:

    std::vector<std::string> input = {"hello", "world"};
    std::vector<std::string> output(2);

    // First approach: use the std::move algorithm
    std::move(input.begin(), input.end(), output.begin());

    // Second approach: use move_iterator
    std::copy(
      std::move_iterator(input.begin()),
      std::move_iterator(input.end()),
      output.begin()
    );
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The first approach, using std::move, is obviously much cleaner if moving data is all you're
doing. So why did the standard library bother to provide this "messier" approach with
move_iterator? To answer that question, we'll have to explore yet another algorithm that
is fundamentally related to std::copy.

Complicated copying with std::transform
You might have noticed, way back when we presented the implementation of std::copy,
that the value_type of the two iterator type parameters were not constrained to be the
same. This is a feature, not a bug! It means that we can write code that relies on implicit
conversions and it will just Do The Right Thing:

    std::vector<const char *> input = {"hello", "world"};
    std::vector<std::string> output(2);

    std::copy(input.begin(), input.end(), output.begin());

    assert(output[0] == "hello");
    assert(output[1] == "world");

Looks trivial, right? Look closely! Deep within our instantiation of std::copy is a call to
the implicit constructor that converts const char * (the type of *input.begin()) to
std::string (the type of *output.begin()). So for the umpteenth time, we're seeing an
example of generic code that does surprisingly complicated operations simply by virtue of
being given certain iterator types.

But sometimes you want to apply a complicated transformation function during the
copying operation--something more complicated than implicit conversions can handle. The
standard library has got you covered!

    template<class InIt, class OutIt, class Unary>
    OutIt transform(InIt first1, InIt last1, OutIt destination, Unary op)
    {
      while (first1 != last1) {
        *destination = op(*first1);
        ++first1;
        ++destination;
      }
      return destination;
    }

    void test()
    {
      std::vector<std::string> input = {"hello", "world"};
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      std::vector<std::string> output(2);

      std::transform(
        input.begin(),
        input.end(),
        output.begin(),
        [](std::string s) {
          // It works for transforming in-place, too!
          std::transform(s.begin(), s.end(), s.begin(), ::toupper);
          return s;
        }
      );

      assert(input[0] == "hello");
      assert(output[0] == "HELLO");
    }

Sometimes you even need to do a transformation using a function that takes two arguments.
Again the library has you covered:

    template<class InIt1, class InIt2, class OutIt, class Binary>
    OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2, OutIt
destination,
      Binary op)
    {
      while (first1 != last1) {
        *destination = op(*first1, *first2);
        ++first1;
        ++first2;
        ++destination;
      }
      return destination;
    }

This version of std::transform might be humorously described as a one-and-two-halves-
range algorithm!

(What about functions of three arguments? Four arguments? Unfortunately there's no fully
variadic version of std::transform; variadic templates weren't introduced to C++ until
C++11. You might try implementing a variadic version and see what kinds of problems you
run into--they're surmountable but certainly not trivial.)

The existence of std::transform gives us yet a third way to move data elements from one
place to another:

    std::vector<std::string> input = {"hello", "world"};
    std::vector<std::string> output(2);
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    // Third approach: use std::transform
    std::transform(
      input.begin(),
      input.end(),
      output.begin(),
      std::move<std::string&>
    );

I certainly don't recommend this approach, though! The biggest and reddest of its red flags
is that it contains explicit specialization of the std::move template. Whenever you see an
explicit specialization--those angle brackets after the template's name--that's an almost sure
sign of very subtle and fragile code. Advanced readers might enjoy figuring out how the
compiler deduces which of the two std::moves I meant; remember, there's one in
<utility> and one in <algorithm>.

Write-only range algorithms
We began this chapter looking at algorithms such as std::find that march through a
range reading its elements in order without modification. You might be surprised to learn
that the inverse operation also makes sense: there is a family of standard algorithms that
march through a range modifying each element without reading it!

std::fill(a,b,v) does what its name implies: fill each element of the given range [a,b)
with a copy of the provided value v.

std::iota(a,b,v) is slightly more interesting: it fills the elements of the given range with
copies of ++v. That is, std::iota(a,b,42) will set a[0] equal to 42, a[1] equal to 43,
a[2] equal to 44, and so on all the way up to b. This algorithm's funny name comes from
the APL programming language, where a function named ι (that's the Greek letter iota)
performed this operation. Another funny thing about this algorithm is that, for whatever
reason, its definition is found in the standard <numeric> header instead of in
<algorithm>. It's just an oddball that way.

std::generate(a,b,g) is even more interesting: it fills the elements of the given range
with the successive results of g(), whatever it is:

    template<class FwdIt, class T>
    void fill(FwdIt first, FwdIt last, T value) {
      while (first != last) {
        *first = value;
         ++first;
      }
    }
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    template<class FwdIt, class T>
    void iota(FwdIt first, FwdIt last, T value) {
      while (first != last) {
        *first = value;
        ++value;
        ++first;
      }
    }

    template<class FwdIt, class G>
    void generate(FwdIt first, FwdIt last, G generator) {
      while (first != last) {
        *first = generator();
        ++first;
      }
    }

Here's an example of using each of these standard algorithms to fill a vector of strings with
different contents. Test your understanding: do you understand why each call produces the
output that it does? The example I picked for std::iota is particularly interesting (yet
unlikely to be helpful in real-world code):

    std::vector<std::string> v(4);

    std::fill(v.begin(), v.end(), "hello");
    assert(v[0] == "hello");
    assert(v[1] == "hello");
    assert(v[2] == "hello");
    assert(v[3] == "hello");

    std::iota(v.begin(), v.end(), "hello");
    assert(v[0] == "hello");
    assert(v[1] == "ello");
    assert(v[2] == "llo");
    assert(v[3] == "lo");

    std::generate(v.begin(), v.end(), [i=0]() mutable {
      return ++i % 2 ? "hello" : "world";
    });
    assert(v[0] == "hello");
    assert(v[1] == "world");
    assert(v[2] == "hello");
    assert(v[3] == "world");
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Algorithms that affect object lifetime
The <memory> header provides an obscure family of algorithms with names such as
std::uninitialized_copy, std::uninitialized_default_construct, and
std::destroy (for the full list, consult an online reference such as cppreference.com).
Consider the following algorithm that uses explicit destructor calls to destroy the elements
of a range:

    template<class T>
    void destroy_at(T *p)
    {
      p->~T();
    }

    template<class FwdIt>
    void destroy(FwdIt first, FwdIt last)
    {
      for ( ; first != last; ++first) {
        std::destroy_at(std::addressof(*first));
      }
    }

Notice that std::addressof(x) is a convenient little helper function that returns the
address of its parameter; it's exactly the same thing as &x except in the rare case that x is of
some class type that sadistically overloads its own operator&.

And consider this algorithm that uses explicit placement-new syntax to "copy-construct
into" the elements of a range (notice how it neatly cleans up after itself if an exception is
thrown during the copying). This algorithm clearly shouldn't be used on any range whose
elements already exist; so the following example looks very contrived:

    template<class It, class FwdIt>
    FwdIt uninitialized_copy(It first, It last, FwdIt out)
    {
      using T = typename std::iterator_traits<FwdIt>::value_type;
      FwdIt old_out = out;
      try {
        while (first != last) {
          ::new (static_cast<void*>(std::addressof(*out))) T(*first);
          ++first;
          ++out;
        }
        return out;
      } catch (...) {
        std::destroy(old_out, out);
        throw;

http://cppreference.com
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      }
    }

    void test()
    {
      alignas(std::string) char b[5 * sizeof (std::string)];
      std::string *sb = reinterpret_cast<std::string *>(b);

      std::vector<const char *> vec = {"quick", "brown", "fox"};

      // Construct three std::strings.
      auto end = std::uninitialized_copy(vec.begin(), vec.end(), sb);

      assert(end == sb + 3);

      // Destroy three std::strings.
      std::destroy(sb, end);
    }

We'll see more about how these algorithms are meant to be used in Chapter 4, The Container
Zoo, when we talk about std::vector.

Our first permutative algorithm: std::sort
So far all the algorithms we've covered simply walk through their given ranges in order,
linearly, from one element to the next. Our next family of algorithms doesn't behave that
way. Instead, it takes the values of the elements in the given range and shuffles them
around so that the same values still appear, but in a different order. The mathematical name
for this operation is a permutation.

The simplest permutative algorithm to describe is std::sort(a,b). It does what the name
implies: sort the given range so that the smallest elements appear at the front and the
biggest elements at the back. To figure out which elements are "smallest," std::sort(a,b)
uses operator<.
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If you want a different order, you could try to overload operator< to return true under
different conditions--but probably what you should do is use the three-argument version of
the algorithm, std::sort(a,b,cmp). The third argument should be a comparator; that is, a
function, functor, or lambda that returns true whenever its first argument is "smaller" than
its second argument. For example:

    std::vector<int> v = {3, 1, 4, 1, 5, 9};
    std::sort(v.begin(), v.end(), [](auto&& a, auto&& b) {
      return a % 7 < b % 7;
    });
    assert((v == std::vector{1, 1, 9, 3, 4, 5}));

Notice that I carefully chose my lambda in this example so that it would sort the array in a
deterministic way. If I'd chosen the function (a % 6 < b % 6) instead, then there would
have been two possible outputs: either {1, 1, 3, 9, 4, 5} or {1, 1, 9, 3, 4, 5}.
The standard sort algorithm doesn't guarantee anything about the relative position of
elements that happen to be equal under the given comparison function!

To fix this problem (if it is a problem), you should replace your use of std::sort with
std::stable_sort. The latter might be a little slower, but it will guarantee that in the case
of equal elements the original order is preserved--that is, in this case we'll get {1, 1, 3,
9, 4, 5} because in the original (unsorted) vector, element 3 came in front of element 9.

There's an even worse thing that can happen with sort and stable_sort--what if I had
chosen the comparison function (a % 6 < b)? Then I would have had certain pairs of
elements x, y where x < y and simultaneously y < x! (One such pair of elements in the
original vector is 5 and 9.) In this case, there's nothing that can save us; we've passed in a
"comparison function" that simply isn't a comparison function! This is a violation of the
preconditions of std::sort, just as if we'd passed it a null pointer. When sorting an array,
make sure you're sorting it based on a comparison function that makes sense!

Swapping, reversing, and partitioning
The STL contains a surprisingly large number of permutative algorithms besides
std::sort. Many of these algorithms can be seen as "building blocks" that implement just
a small part of the overall sorting algorithm.
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std::swap(a,b) is the most basic building block; it just takes its two arguments and
"swaps" them--which is to say, it exchanges their values. This is implemented in terms of
the given type's move constructor and move assignment operator. swap is actually a little
special among the standard algorithms because it is such a primitive operation, and because
there is almost always a faster way to swap two arbitrary objects than by performing the
equivalent of temp = a; a = b; b = temp;. The usual idiom for standard library types
(such as std::vector) is for the type itself to implement a swap member function (as in
a.swap(b)), and then to add a function overload of swap in the same namespace as the
type--that is, if we're implementing my::obj, we'd add the overload in namespace my--such
that swap(a,b) for that particular type, will call a.swap(b) instead of doing the three
move operations. Here's an example:

    namespace my {
      class obj {
        int v;
      public:
        obj(int value) : v(value) {}

        void swap(obj& other) {
          using std::swap;
          swap(this->v, other.v);
        }
      };

      void swap(obj& a, obj& b) {
        a.swap(b);
      }
    } // namespace my

    void test()
    {
      int i1 = 1, i2 = 2;
      std::vector<int> v1 = {1}, v2 = {2};
      my::obj m1 = 1, m2 = 2;
      using std::swap;
      swap(i1, i2); // calls std::swap<int>(int&, int&)
      swap(v1, v2); // calls std::swap(vector&, vector&)
      swap(m1, m2); // calls my::swap(obj&, obj&)
    }
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Now that we have swap and bidirectional iterators, we can build std::reverse(a,b), a
permutative algorithm that simply reverses the order of a range of elements by swapping
the first item with the last item, the second item with the penultimate item, and so on. One
common application of std::reverse is to reverse the order of larger chunks of a string--
for example, to reverse the order of the words in a sentence:

    void reverse_words_in_place(std::string& s)
    {
      // First, reverse the whole string.
      std::reverse(s.begin(), s.end());

      // Next, un-reverse each individual word.
      for (auto it = s.begin(); true; ++it) {
        auto next = std::find(it, s.end(), ' ');
        // Reverse the order of letters in this word.
        std::reverse(it, next);
        if (next == s.end()) {
          break;
        }
        it = next;
      }
    }

    void test()
    {
      std::string s = "the quick brown fox jumps over the lazy dog";
      reverse_words_in_place(s);
      assert(s == "dog lazy the over jumps fox brown quick the");
    }

A small tweak to the implementation of std::reverse gives us another building block of
sort, namely std::partition. Whereas std::reverse walks through the range from
both ends swapping each pair of elements unconditionally, std::partition swaps them
only if they are "out of order" with respect to a certain predicate function. In the following
example, we're partitioning all even elements to the front of our range and all odd elements
to the back. If we were using std::partition to build a Quicksort sorting routine, we'd
be partitioning elements less than the pivot element to the front of the range and elements
greater than the pivot element to the back:

    template<class BidirIt>
    void reverse(BidirIt first, BidirIt last)
    {
      while (first != last) {
        --last;
        if (first == last) break;
        using std::swap;
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        swap(*first, *last);
        ++first;
      }
    }

    template<class BidirIt, class Unary>
    auto partition(BidirIt first, BidirIt last, Unary p)
    {
      while (first != last && p(*first)) {
        ++first;
      }

      while (first != last) {
        do {
          --last;
        } while (last != first && !p(*last));
        if (first == last) break;
        using std::swap;
        swap(*first, *last);
        do {
          ++first;
        } while (first != last && p(*first));
      }
      return first;
    }

    void test()
    {
      std::vector<int> v = {3, 1, 4, 1, 5, 9, 2, 6, 5};
      auto it = std::partition(v.begin(), v.end(), [](int x) {
        return x % 2 == 0;
      });
      assert(it == v.begin() + 3);
      assert((v == std::vector{6, 2, 4, 1, 5, 9, 1, 3, 5}));
    }

You might notice something interesting about the preceding code: The code for reverse
and the code for partition are almost identical! The only difference is that partition
contains an awkward do-while loop where reverse has just a simple increment or
decrement.

You might also have noticed that the first do-while loop in partition is equivalent to a
standard algorithm we've already seen; namely, std::find_if_not. And the second do-
while loop is sort of equivalent to std::find_if... except that it needs to run backwards,
not forwards! Unfortunately for us, there is no such algorithm as std::rfind_if. But--as
you might have suspected by now--the standard library isn't going to leave us in the lurch.



The Iterator-Pair Algorithms

[ 59 ]

We need something that behaves just like an iterator for the purposes of std::find_if,
but iterates "backwards." The standard library provides this exact thing in the form of the
std::reverse_iterator adaptor. We won't show the code for it; revisit Chapter 2,
Iterators and Ranges, if you need a refresher on how it might be implemented. Suffice it to
say, a std::reverse_iterator<FwdIt> object wraps and behaves just like a FwdIt
object, except that when you increment the wrapper, it decrements the wrapped object, and
vice versa. So we can write partition in terms of reverse_iterator as follows:

    // Shorthands for "reversing" and "unreversing".
    template<class It>
    auto rev(It it) {
      return std::reverse_iterator(it);
    };

    template<class InnerIt>
    auto unrev(std::reverse_iterator<InnerIt> it) {
      return it.base();
    }

    template<class BidirIt, class Unary>
    auto partition(BidirIt first, BidirIt last, Unary p)
    {
      first = std::find_if_not(first, last, p);

      while (first != last) {
        last = unrev(std::find_if(rev(last), rev(first), p));
        if (first == last) break;
        using std::swap;
        swap(*first++, *--last);
        first = std::find_if_not(first, last, p);
      }
      return first;
    }

Of course, sometimes it's useful to partition a range without changing the relative order of
the elements in either partition. For those times, there's std::stable_partition(a,b,p)
(but see the section Merges and mergesort for a caveat about stable_partition: It may
allocate memory using operator new).

There are a few non-permutative algorithms that also deal with partitions:

std::is_partitioned(a,b,p) returns true if the given range is already partitioned by
the predicate p (so that all the elements satisfying p come at the front and all the ones not
satisfying p come at the back).
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std::partition_point(a,b,p) uses binary search to find the first element in an already
partitioned range that doesn't satisfy p.

std::partition_copy(a,b,ot,of,p) copies each of the elements in the range [a,b) to
one or the other of the output iterators: *ot++ = e for elements where p(e) is true, and
*of++ = e for elements where p(e) is false.

Incidentally, if you only want one output sequence or the other, then you can use
std::copy_if(a,b,ot,p) or std::remove_copy_if(a,b,of,p) respectively.

Rotation and permutation
Remember our code from Swapping, reversing, and partitioning to reverse the order of words
in a sentence? When the "sentence" contains only two words, there is another way to look at
the reversal: you could consider it a cyclic rotation of the elements in the underlying range.
std::rotate(a,mid,b) rotates the elements of the range [a,b) so that the element
formerly addressed by mid is now at a (and returns an iterator pointing to the element
whose value was formerly at a):

    template<class FwdIt>
    FwdIt rotate(FwdIt a, FwdIt mid, FwdIt b)
    {
      auto result = a + (b - mid);

      // First, reverse the whole range.
      std::reverse(a, b);

      // Next, un-reverse each individual segment.
      std::reverse(a, result);
      std::reverse(result, b);

      return result;
    }

    void test()
    {
      std::vector<int> v = {1, 2, 3, 4, 5, 6};
      auto five = std::find(v.begin(), v.end(), 5);
      auto one = std::rotate(v.begin(), five, v.end());
      assert((v == std::vector{5, 6, 1, 2, 3, 4}));
      assert(*one == 1);
    }
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Another miscellaneous but sometimes useful permutative algorithm is
std::next_permutation(a,b). Calling this function in a loop runs through all the
possible permutations of n elements, which might be useful if you're trying to brute-force a
solution to a (small) instance of the Traveling Salesman Problem:

    std::vector<int> p = {10, 20, 30};
    std::vector<std::vector<int>> results;

    // Collect the permutations of these three elements.
    for (int i=0; i < 6; ++i) {
      results.push_back(p);
      std::next_permutation(p.begin(), p.end());
    }

    assert((results == std::vector<std::vector<int>>{
      {10, 20, 30},
      {10, 30, 20},
      {20, 10, 30},
      {20, 30, 10},
      {30, 10, 20},
      {30, 20, 10},
    }));

Notice that next_permutation uses the idea of a "less-than relationship" to determine that
one permutation is lexicographically "less than" another; for example, {20, 10, 30} is
"less than" {20, 30, 10} because 10 is less than 30. Therefore, next_permutation also
has a comparator-based version: std::next_permutation(a,b,cmp). There are also
std::prev_permutation(a,b) and std::prev_permutation(a,b,cmp), which count
lexicographically "downward" instead of "upward."

By the way, to compare two sequences lexicographically in this way, you could use
std::mismatch from section Read-only range algorithms, or you could just use the standard-
provided std::lexicographical_compare(a,b,c,d).

Heaps and heapsort
std::make_heap(a,b) (or its comparator-based version, std::make_heap(a,b,cmp))
takes a range of unsorted elements and rearranges them into an order that satisfies the max-
heap property: in an array with the max-heap property, each element of the range at index i
will be at least as great as either of the elements at indices 2i+1 and 2i+2. This implies that
the greatest element of all will be at index 0.
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std::push_heap(a,b) (or its comparator-based version) assumes that the range [a,b-1)
is already a max-heap. It takes the element currently at b[-1] and "bubbles it up," by
swapping with its parent in the heap, until the max-heap property is restored for the whole
range [a,b). Notice that make_heap can be implemented as a simple loop repeatedly
calling std::push_heap(a,++b).

std::pop_heap(a,b) (or its comparator-based version) assumes that the range [a,b) is
already a max-heap. It swaps a[0] with b[-1], so that the greatest element is now at the
back of the range instead of at the front; and then it swaps a[0] with one of its children in
the heap, and so on, "bubbling it down" until the max-heap property is restored. After a call
to pop_heap(a,b), the greatest element will be at b[-1] and the range [a, b-1) will
have the max-heap property.

std::sort_heap(a,b) (or its comparator-based version) takes a range with the max-heap
property and permutes it into sorted order by repeatedly calling std::pop_heap(a, b--
).

Using these building blocks, we can implement the classic "heapsort" algorithm. The
standard library's std::sort function might reasonably be implemented like this (but in
practice it is typically implemented as a hybrid algorithm, such as "introsort"):

    template<class RandomIt>
    void push_heap(RandomIt a, RandomIt b)
    {
      auto child = ((b-1) - a);
      while (child != 0) {
        auto parent = (child - 1) / 2;
        if (a[child] < a[parent]) {
          return; // max-heap property has been restored
        }
        std::iter_swap(a+child, a+parent);
        child = parent;
      }
    }

    template<class RandomIt>
    void pop_heap(RandomIt a, RandomIt b)
    {
      using DistanceT = decltype(b - a);

      std::iter_swap(a, b-1);

      DistanceT parent = 0;
      DistanceT new_heap_size = ((b-1) - a);
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      while (true) {
        auto leftchild = 2 * parent + 1;
        auto rightchild = 2 * parent + 2;
        if (leftchild >= new_heap_size) {
          return;
        }
        auto biggerchild = leftchild;
        if (rightchild < new_heap_size && a[leftchild] < a[rightchild]) {
          biggerchild = rightchild;
        }
        if (a[biggerchild] < a[parent]) {
          return; // max-heap property has been restored
        }
        std::iter_swap(a+parent, a+biggerchild);
        parent = biggerchild;
      }
    }

    template<class RandomIt>
    void make_heap(RandomIt a, RandomIt b)
    {
      for (auto it = a; it != b; ) {
        push_heap(a, ++it);
      }
    }

    template<class RandomIt>
    void sort_heap(RandomIt a, RandomIt b)
    {
      for (auto it = b; it != a; --it) {
        pop_heap(a, it);
      }
    }

    template<class RandomIt>
    void sort(RandomIt a, RandomIt b)
    {
      make_heap(a, b);
      sort_heap(a, b);
    }

We'll see another application of push_heap and pop_heap in Chapter 4, The Container Zoo,
when we talk about std::priority_queue.
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Merges and mergesort
As long as we're on the topic of sorting algorithms, let's write sort a different way!

std::inplace_merge(a,mid,b) takes a single range [a,b) which has already been
sorted with the equivalent of std::sort(a,mid) and std::sort(mid,b), and merges
the two subranges together into a single sorted range. We can use this building block to
implement the classic mergesort algorithm:

    template<class RandomIt>
    void sort(RandomIt a, RandomIt b)
    {
      auto n = std::distance(a, b);
      if (n >= 2) {
        auto mid = a + n/2;
        std::sort(a, mid);
        std::sort(mid, b);
        std::inplace_merge(a, mid, b);
      }
    }

However, beware! The name inplace_merge seems to imply that the merging is
happening "in-place" without the need for any additional buffer space; but this is not what
happens in fact. In actuality, the inplace_merge function allocates a buffer for its own use,
typically by calling operator new. If you are programming in an environment where heap
allocation is problematic, then you should avoid inplace_merge like the plague.

The other standard algorithms that may allocate temporary buffers on the heap are
std::stable_sort and std::stable_partition.

std::merge(a,b,c,d,o) is the non-allocating merge algorithm; it takes two iterator-pairs
representing the ranges [a,b) and [c,d) and merges them into the output range defined
by o.
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Searching and inserting in a sorted array
with std::lower_bound
Once a range of data has been sorted, it becomes possible to search within that data using
binary search, as opposed to the slower linear search. The standard algorithm that
implements binary search is called std::lower_bound(a,b,v):

    template<class FwdIt, class T, class C>
    FwdIt lower_bound(FwdIt first, FwdIt last, const T& value, C lessthan)
    {
      using DiffT = typename std::iterator_traits<FwdIt>::difference_type;
      FwdIt it;
      DiffT count = std::distance(first, last);

      while (count > 0) {
        DiffT step = count / 2;
        it = first;
        std::advance(it, step);
        if (lessthan(*it, value)) {
          ++it;
          first = it;
          count -= step + 1;
        } else {
          count = step;
        }
      }
      return first;
    }

    template<class FwdIt, class T>
    FwdIt lower_bound(FwdIt first, FwdIt last, const T& value)
    {
      return std::lower_bound(first, last, value, std::less<>{});
    }

This function returns an iterator to the first element in the range that is not less than the
given value v. If there is an instance of the value v already in the range, then the returned
iterator will point at it (in fact, it will point at the first such value in the range). If there's no
instance already in the range, then the returned iterator will point at the place where v
should go.
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We can use the return value of lower_bound as the input to vector::insert in order to
insert v into the proper place in a sorted vector while preserving its sorted order:

    std::vector<int> vec = {3, 7};
    for (int value : {1, 5, 9}) {
      // Find the appropriate insertion point...
      auto it = std::lower_bound(vec.begin(), vec.end(), value);
      // ...and insert our value there.
      vec.insert(it, value);
    }
    // The vector has remained sorted.
    assert((vec == std::vector{1, 3, 5, 7, 9}));

The similar function std::upper_bound(a,b,v) returns an iterator to the first element in
the range that is greater than the given value v. If v is not in the given range, then
std::lower_bound and std::upper_bound will have the same return value. But if v is
present in the range, then lower_bound will return an iterator pointing to the first instance
of v in the range and upper_bound will return an iterator pointing "one past" the last
instance of v in the range. In other words, using the two functions together will give you a
half-open range [lower, upper) containing nothing but instances of the value v:

    std::vector<int> vec = {2, 3, 3, 3, 4};
    auto lower = std::lower_bound(vec.begin(), vec.end(), 3);

    // First approach:
    // upper_bound's interface is identical to lower_bound's.
    auto upper = std::upper_bound(vec.begin(), vec.end(), 3);

    // Second approach:
    // We don't need to binary-search the whole array the second time.
    auto upper2 = std::upper_bound(lower, vec.end(), 3);
    assert(upper2 == upper);

    // Third approach:
    // Linear scan from the lower bound might well be faster
    // than binary search if our total range is really big.
    auto upper3 = std::find_if(lower, vec.end(), [](int v) {
      return v != 3;
    });
    assert(upper3 == upper);

    // No matter which approach we take, this is what we end up with.
    assert(*lower >= 3);
    assert(*upper > 3);
    assert(std::all_of(lower, upper, [](int v) { return v == 3; }));



The Iterator-Pair Algorithms

[ 67 ]

This handles searching and inserting values in a sorted array. But what about deletion?

Deleting from a sorted array with
std::remove_if
In all our discussion of standard generic algorithms up to this point, we haven't covered the
question of how to remove items from a range. This is because the concept of "a range" is
fundamentally read-only: we might change the values of the elements of a given range, but
we can never use a standard algorithm to shorten or lengthen the range itself. When, in the
Shunting data with std::copy section, we used std::copy to "insert into" a vector named
dest, it wasn't the std::copy algorithm that was doing the inserting; it was the
std::back_insert_iterator object itself that held a reference to the underlying
container and was able to insert into the container. std::copy didn't take dest.begin()
and dest.end() as parameters; instead it took the special object
std::back_inserter(dest).

So how do we erase items from a range? Well, we can't. All we can do is erase items from a
container; and the algorithms of the STL do not deal in containers. So what we ought to be
looking for is a way to rearrange the values of a range so that the "removed" items will wind
up somewhere predictable, so that we can quickly erase them all from the underlying
container (using some means other than an STL algorithm).

We've seen one possible approach already:

    std::vector<int> vec = {1, 3, 3, 4, 6, 8};

    // Partition our vector so that all the non-3s are at the front
    // and all the 3s are at the end.
    auto first_3 = std::stable_partition(
      vec.begin(), vec.end(), [](int v){ return v != 3; }
    );

    assert((vec == std::vector{1, 4, 6, 8, 3, 3}));

    // Now erase the "tail" of our vector.
    vec.erase(first_3, vec.end());

    assert((vec == std::vector{1, 4, 6, 8}));
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But this is much more wasteful than it needs to be (notice that stable_partition is one of
those few STL algorithms that allocates a temporary buffer on the heap!). The algorithm we
want is actually much simpler:

    template<class FwdIt, class T>
    FwdIt remove(FwdIt first, FwdIt last, const T& value)
    {
      auto out = std::find(first, last, value);
      if (out != last) {
        auto in = out;
        while (++in != last) {
          if (*in == value) {
             // don't bother with this item
          } else {
             *out++ = std::move(*in);
          }
        }
      }
      return out;
    }

    void test()
    {
      std::vector<int> vec = {1, 3, 3, 4, 6, 8};

      // Partition our vector so that all the non-3s are at the front.
      auto new_end = std::remove(
        vec.begin(), vec.end(), 3
      );

      // std::remove_if doesn't preserve the "removed" elements.
      assert((vec == std::vector{1, 4, 6, 8, 6, 8}));

      // Now erase the "tail" of our vector.
      vec.erase(new_end, vec.end());

      assert((vec == std::vector{1, 4, 6, 8}));

      // Or, do both steps together in a single line.
      // This is the "erase-remove idiom":
      vec.erase(
        std::remove(vec.begin(), vec.end(), 3),
        vec.end()
      );

      // But if the array is very long, and we know it's sorted,
      // then perhaps it would be better to binary-search for
      // the elements to erase.
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      // Here the "shifting-down" is still happening, but it's
      // happening inside vector::erase instead of inside std::remove.
      auto first = std::lower_bound(vec.begin(), vec.end(), 3);
      auto last = std::upper_bound(first, vec.end(), 3);
      vec.erase(first, last);
    }

std::remove(a,b,v) removes all values equal to v from a range [a,b). Notice that the
range does not have to be sorted--but remove will preserve whatever order was there
before, by "shifting down" the non-removed elements to fill in the gaps in the range. If
remove removes k elements from the range, then when the remove function returns, there
will be k elements at the end of the range whose values are in the moved-from state, and
return value of remove will be an iterator pointing to the first such moved-from element.

std::remove_if(a,b,p) removes all elements satisfying the given predicate; that is, it
removes all elements e such that p(e) is true. Just like remove, remove_if shifts elements
down to fill in the range and returns an iterator to the first "moved-from" element.

The common idiom for removing items from a sequence container is what's known as the
erase-remove idiom, because it involves passing that return value straight into the container's
own .erase() member function.

Another standard library algorithm that works with the erase-remove idiom is
std::unique(a,b), which takes a range and, for each set of consecutive equivalent items,
removes all but the first of them. Like std::remove, the input range doesn't need to be
sorted; the algorithm will preserve whatever ordering was there to begin with:

    std::vector<int> vec = {1, 2, 2, 3, 3, 3, 1, 3, 3};

    vec.erase(
      std::unique(vec.begin(), vec.end()),
      vec.end()
    );

    assert((vec == std::vector{1, 2, 3, 1, 3}));
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Finally, notice that we can often do better than std::remove in general, either by using the
erase member function of whatever our underlying container is (for example, we'll see in
the next chapter how std::list::erase can be much faster than the erase-remove idiom
on a std::list)--and even if we're removing from a vector whose order happens not to be
significant, we'll still usually be better off with something like the following generic
algorithm unstable_remove, which has been proposed for future standardization but (at
the time of writing) not yet adopted into the STL:

    namespace my {
      template<class BidirIt, class T>
      BidirIt unstable_remove(BidirIt first, BidirIt last, const T& value)
      {
        while (true) {
          // Find the first instance of "value"...
          first = std::find(first, last, value);
          // ...and the last instance of "not value"...
          do {
            if (first == last) {
              return last;
            }
            --last;
          } while (*last == value);
          // ...and move the latter over top of the former.
          *first = std::move(*last);
          // Rinse and repeat.
          ++first;
        }
      }
    } // namespace my

    void test()
    {
      std::vector<int> vec = {4, 1, 3, 6, 3, 8};

      vec.erase(
        my::unstable_remove(vec.begin(), vec.end(), 3),
        vec.end()
      );

      assert((vec == std::vector{4, 1, 8, 6}));
    }

In the next chapter, we'll look at containers--the STL's answer to the question, "Where are all
these elements being stored, anyway?"
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Summary
The Standard Template Library has a generic algorithm for (almost) every desire. If you're
doing something algorithmic, check the STL first!

STL algorithms deal in the half-open ranges defined by pairs of iterators. Be careful when
dealing with any of the one-and-a-half-range algorithms.

STL algorithms that deal with comparison and sorting will use operator< by default, but
you can always pass a two-argument "comparator" instead. If you want to perform a non-
trivial operation on a whole range of data, remember that the STL might support it directly
(std::move, std::transform) or indirectly via a special iterator type
(std::back_inserter, std::istream_iterator).

You should know what a "permutation" is, and how the standard permutative algorithms
(swap, reverse, rotate, partition, sort) are implemented in terms of one another. Just
three STL algorithms (stable_sort, stable_partition, inplace_merge) may quietly
allocate memory from the heap; if you can't afford heap allocation, avoid these three
algorithms like the plague.

Use the erase-remove idiom to maintain the sort order of a sequence container even as you
delete items from it. Use something like my::unstable_remove if you don't care about the
sort order. Use .erase() for containers that support it.



4
The Container Zoo

In the previous two chapters, we introduced the ideas of iterators and ranges (Chapter 2,
Iterators and Ranges) and the vast library of standard generic algorithms that operate on
ranges of data elements defined by pairs of those iterators (Chapter 3, The Iterator-Pair
Algorithms). In this chapter, we'll look at where those data elements themselves are allocated
and stored. That is, now that we know all about how to iterate, the question gains urgency:
what is it that we are iterating over?

In the Standard Template Library, the answer to that question is generally: We are iterating
over some sub-range of the elements contained in a container. A container is simply a C++
class (or class template) which, by its nature, contains (or owns) a homogeneous range of
data elements, and exposes that range for iteration by generic algorithms.

Topics we will cover in this chapter are:

The notion of one object owning another (this being the essential difference
between a container and a range)
The sequence containers (array, vector, list, and forward_list)
The pitfalls of iterator invalidation and reference invalidation
The container adaptors (stack, queue, and priority_queue)
The associative containers (set, map, and friends)
When it is appropriate to provide a comparator, hash function, equality comparator,
or allocator as additional template type parameters



The Container Zoo

[ 73 ]

The notion of ownership
When we say that object A owns object B, what we mean is that object A manages the lifetime
of object B--that A controls the construction, copying, moving, and destruction of object B.
The user of object A can (and should) "forget about" managing B (for example, via explicit
calls to delete B, fclose(B), and so on).

The simplest way for an object A to "own" an object B is for B to be a member variable of A.
For example:

    struct owning_A {
      B b_;
    };

    struct non_owning_A {
      B& b_;
    };

    void test()
    {
      B b;

      // a1 takes ownership of [a copy of] b.
      owning_A a1 { b };

      // a2 merely holds a reference to b;
      // a2 doesn't own b.
      non_owning_A a2 { b };
    }

Another way is for A to hold a pointer to B, with the appropriate code in ~A() (and, if
necessary, in the copy and move operations of A) to clean up the resources associated with
that pointer:

    struct owning_A {
      B *b_;

      explicit owning_A(B *b) : b_(b) {}

      owning_A(owning_A&& other) : b_(other.b_) {
        other.b_ = nullptr;
      }

      owning_A& operator= (owning_A&& other) {
        delete b_;
        b_ = other.b_;
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        other.b_ = nullptr;
        return *this;
      }

      ~owning_A() {
        delete b_;
      }
    };

    struct non_owning_A {
      B *b_;
    };

    void test()
    {
      B *b = new B;

      // a1 takes ownership of *b.
      owning_A a1 { b };

      // a2 merely holds a pointer to *b;
      // a2 doesn't own *b.
      non_owning_A a2 { b };
    }

The notion of ownership is tightly bound up with the C++-specific catchphrase Resource
Allocation Is Initialization, which you will often see abbreviated as RAII. (That
cumbersome abbreviation should properly have been more like "Resource Freeing Is
Destruction", but that acronym was taken.)

The goal of the standard container classes is to provide access to a particular bunch of data
objects B, while making sure that the ownership of those objects is always clear--namely, a
container always has ownership of its data elements. (Contrariwise, an iterator, or a pair of
iterators defining a range, never owns its data elements; we saw in Chapter 3, The Iterator-
Pair Algorithms, that the standard iterator-based algorithms such as std::remove_if never
actually deallocate any elements, but instead simply permute the values of the elements in
various ways.)

In the remainder of this chapter, we'll explore the various standard container classes.
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The simplest container: std::array<T, N>
The simplest standard container class is std::array<T, N>, which behaves just like a
built-in ("C-style") array. The first template parameter to std::array indicates the type of
the array's elements, and the second template parameter indicates the number of elements
in the array. This is one of the very few places in the standard library where a template
parameter is an integer value instead of the name of a type.

Normal C-style arrays, being part of the core language (and a part that dates back to the
1970s, at that!), do not provide any built-in operations that would take linear time to run. C-
style arrays let you index into them with operator[], and compare their addresses, since
those operations can be done in constant time; but if you want to assign the entire contents
of one C-style array to another, or compare the contents of two arrays, you'll find that you
can't do it straightforwardly. You'll have to use some of the standard algorithms we
discussed in Chapter 3, The Iterator-Pair Algorithms, such as std::copy or std::equal
(the function template std::swap, being an "algorithm" already, does work for C-style
arrays. It would be a shame if it didn't work.):

    std::string c_style[4] = {
      "the", "quick", "brown", "fox"
    };
    assert(c_style[2] == "brown");
    assert(std::size(c_style) == 4);
    assert(std::distance(std::begin(c_style), std::end(c_style)) == 4);

    // Copying via operator= isn't supported.
    std::string other[4];
    std::copy(std::begin(c_style), std::end(c_style), std::begin(other));

    // Swapping IS supported... in linear time, of course.
    using std::swap;
    swap(c_style, other);

    // Comparison isn't supported; you have to use a standard algorithm.
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    // Worse, operator== does the "wrong" thing: address comparison!
    assert(c_style != other);
    assert(std::equal(
      c_style, c_style + 4,
      other, other + 4
    ));
    assert(!std::lexicographical_compare(
      c_style, c_style + 4,
      other, other + 4
   ));

std::array behaves just like a C-style array, but with more syntactic sugar. It offers
.begin() and .end() member functions; and it overloads the operators =, ==, and < to do
the natural things. All of these operations still take time linear in the size of the array,
because they have to walk through the array copying (or swapping or comparing) each
individual element one at a time.

One gripe about std::array, which you'll see recurring for a few of these standard
container classes, is that when you construct a std::array with an initializer list inside a
set of curly braces, you actually need to write two sets of curly braces. That's one set for the
"outer object" of type std::array<T, N>, and another set for the "inner data member" of
type T[N]. This is a bit annoying at first, but the double-brace syntax will quickly become
second nature once you have used it a few times:

    std::array<std::string, 4> arr = {{
      "the", "quick", "brown", "fox"
    }};
    assert(arr[2] == "brown");

    // .begin(), .end(), and .size() are all provided.
    assert(arr.size() == 4);
    assert(std::distance(arr.begin(), arr.end()) == 4);

    // Copying via operator= is supported... in linear time.
    std::array<std::string, 4> other;
    other = arr;

    // Swapping is also supported... in linear time.
    using std::swap;
    swap(arr, other);

    // operator== does the natural thing: value comparison!
    assert(&arr != &other); // The arrays have different addresses...
    assert(arr == other); // ...but still compare lexicographically equal.
    assert(arr >= other); // Relational operators are also supported.
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One other benefit of std::array is that you can return one from a function, which you
can't do with C-style arrays:

    // You can't return a C-style array from a function.
    // auto cross_product(const int (&a)[3], const int (&b)[3]) -> int[3];

    // But you can return a std::array.
    auto cross_product(const std::array<int, 3>& a,
     const std::array<int, 3>& b) -> std::array<int, 3>
    {
      return {{
        a[1] * b[2] - a[2] * b[1],
        a[2] * b[0] - a[0] * b[2],
        a[0] * b[1] - a[1] * b[0],
      }};
    }

Because std::array has a copy constructor and a copy assignment operator, you can also
store them in containers: for example, std::vector<std::array<int, 3>> is fine
whereas std::vector<int[3]> wouldn't work.

However, if you find yourself returning arrays from functions or storing arrays in
containers very often, you should consider whether "array" is really the right abstraction for
your purposes. Would it be more appropriate to wrap that array up into some kind of class
type?

In the case of our cross_product example, it turns out to be an extremely good idea to
encapsulate our "array of three integers" in a class type. Not only does this allow us to name
the members (x, y, and z), but we can also initialize objects of the Vec3 class type more
easily (no second pair of curly braces!) and perhaps most importantly for our future sanity,
we can avoid defining the comparison operators such as operator< which don't actually
make sense for our mathematical domain. Using std::array, we have to deal with the fact
that the array {1, 2, 3} compares "less than" the array {1, 3, -9}--but when we define
our own class Vec3, we can simply omit any mention of operator< and thus ensure that
nobody will ever accidentally misuse it in a mathematical context:

    struct Vec3 {
      int x, y, z;
      Vec3(int x, int y, int z) : x(x), y(y), z(z) {}
    };

    bool operator==(const Vec3& a, const Vec3& b) {
      return std::tie(a.x, a.y, a.z) ==
         std::tie(b.x, b.y, b.z);
    }
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    bool operator!=(const Vec3& a, const Vec3& b) {
      return !(a == b);
    }

    // Operators < <= > >= don't make sense for Vec3

    Vec3 cross_product(const Vec3& a, const Vec3& b) {
      return {
        a.y * b.z - a.z * b.y,
        a.z * b.x - a.x * b.z,
        a.x * b.y - a.y * b.x,
      };
    }

std::array holds its elements inside itself. Therefore, sizeof (std::array<int,
100>) is equal to sizeof (int[100]), which is equal to 100 * sizeof (int). Don't
make the mistake of trying to place a gigantic array on the stack as a local variable!

    void dont_do_this()
    {
      // This variable takes up 4 megabytes of stack space ---
      // enough to blow your stack and cause a segmentation fault!
      int arr[1'000'000];
    }

    void dont_do_this_either()
    {
      // Changing it into a C++ std::array doesn't fix the problem.
      std::array<int, 1'000'000> arr;
    }

Working with "gigantic arrays" is a job for the next container on our list: std::vector.

The workhorse: std::vector<T>
std::vector represents a contiguous array of data elements, but allocated on the heap
instead of on the stack. This improves on std::array in two ways: First, it allows us to
create a really gigantic array without blowing our stack. Second, it allows us to resize the
underlying array dynamically--unlike std::array<int, 3> where the size of the array is
an immutable part of the type, a std::vector<int> has no intrinsic size. A vector's
.size() method actually yields useful information about the current state of the vector.
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A std::vector has one other salient attribute: its capacity. The capacity of a vector is
always at least as large as its size, and represents the number of elements that the vector
currently could hold, before it would need to reallocate its underlying array:

Other than its resizeability, vector behaves similarly to array. Like arrays, vectors are
copyable (copying all their data elements, in linear time) and comparable
(std::vector<T>::operator< will report the lexicographical order of the operands by
delegating to T::operator<).

Generally speaking, std::vector is the most commonly used container in the entire
standard library. Any time you need to store a "lot" of elements (or "I'm not sure how many
elements I have"), your first thought should always be to use a vector. Why? Because
vector gives you all the flexibility of a resizeable container, with all the simplicity and
efficiency of a contiguous array.

Contiguous arrays are the most efficient data structures (on typical hardware) because they
provide good locality, also known as cache-friendliness. When you're traversing a
vector in order from its .begin() to its .end(), you're also traversing memory in order,
which means that the computer's hardware can predict with very high accuracy the next
piece of memory you're going to look at. Compare this to a linked list, in which traversing
from .begin() to .end() might well involve following pointers all over the address space,
and accessing memory locations in no sensible order. With a linked list, pretty much every
address you hit will be unrelated to the previous one, and so none of them will be in the
CPU's cache. With a vector (or array), the opposite is true: every address you hit will be
related to the previous one by a simple linear relationship, and the CPU will be able to have
the values all ready and waiting for you by the time you need them.
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Even if your data is "more structured" than a simple list of values, you can often get away
with using a vector to store it. We'll see near the end of this chapter how you can use
vector to simulate a stack or a priority queue.

Resizing a std::vector
std::vector has a whole family of member functions concerned with adding and deleting
elements. These member functions aren't present in std::array because std::array isn't
resizable; but they are present in most of the other containers we're going to be talking
about in this chapter. So it's a good idea to get familiar with them now.

Let's start with the two primitive operations specific to vector itself: .resize() and
.reserve().

vec.reserve(c) updates the capacity of the vector--it "reserves" space for as many as c
elements (total) in the underlying array. If c <= vec.capacity() then nothing happens;
but if c > vec.capacity() then the vector will have to reallocate its underlying array.
Reallocation follows an algorithm equivalent to the following:

    template<typename T>
    inline void destroy_n_elements(T *p, size_t n)
    {
      for (size_t i = 0; i < n; ++i) {
        p[i].~T();
      }
    }

    template<typename T>
    class vector {
      T *ptr_ = nullptr;
      size_t size_ = 0;
      size_t capacity_ = 0;

      public:
      // ...

      void reserve(size_t c) {
        if (capacity_ >= c) {
          // do nothing
          return;
        }

        // For now, we'll ignore the problem of
        // "What if malloc fails?"
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        T *new_ptr = (T *)malloc(c * sizeof (T));

        for (size_t i=0; i < size_; ++i) {
          if constexpr (std::is_nothrow_move_constructible_v<T>) {
            // If the elements can be moved without risking
            // an exception, then we'll move the elements.
            ::new (&new_ptr[i]) T(std::move(ptr_[i]));
          } else {
            // If moving the elements might throw an exception,
            // then moving isn't safe. Make a copy of the elements
            // until we're sure that we've succeeded; then destroy
            // the old elements.
            try {
              ::new (&new_ptr[i]) T(ptr_[i]);
            } catch (...) {
              destroy_n_elements(new_ptr, i);
              free(new_ptr);
              throw;
            }
          }
        }
        // Having successfully moved or copied the elements,
        // destroy the old array and point ptr_ at the new one.
        destroy_n_elements(ptr_, size_);
        free(ptr_);
        ptr_ = new_ptr;
        capacity_ = c;
      }

      ~vector() {
        destroy_n_elements(ptr_, size_);
        free(ptr_);
      }
    };

If you've been reading this book in order, you might recognize that the crucial for-loop in
this .reserve() function closely resembles the implementation of
std::uninitialized_copy(a,b,c) from Chapter 3, The Iterator-Pair Algorithms. Indeed,
if you were implementing .reserve() on a container that was not allocator-aware (see
Chapter 8, Allocators), you might reuse that standard algorithm:

    // If the elements can be moved without risking
    // an exception, then we'll move the elements.
    std::conditional_t<
      std::is_nothrow_move_constructible_v<T>,
      std::move_iterator<T*>,
      T*
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      > first(ptr_);

    try {
      // Move or copy the elements via a standard algorithm.
      std::uninitialized_copy(first, first + size_, new_ptr);
    } catch (...) {
      free(new_ptr);
      throw;
    }

    // Having successfully moved or copied the elements,
    // destroy the old array and point ptr_ at the new one.
    std::destroy(ptr_, ptr_ + size_);
    free(ptr_);
    ptr_ = new_ptr;
    capacity_ = c;

vec.resize(s) changes the size of the vector--it chops elements off the end of the vector
(calling their destructors in the process), or adds additional elements to the vector (default-
constructing them), until the size of the vector is equal to s. If s > vec.capacity(), then
the vector will have to reallocate its underlying array, just as in the .reserve() case.

You may have noticed that when a vector reallocates its underlying array, the elements
change addresses: the address of vec[0] before the reallocation is different from the
address of vec[0] after the reallocation. Any pointers that pointed to the vector's old
elements become "dangling pointers." And since std::vector::iterator is essentially
just a pointer as well, any iterators that pointed to the vector's old elements become invalid
as well. This phenomenon is called iterator invalidation, and it is a major source of bugs in
C++ code. Watch out when you're dealing with iterators and resizing vectors at the same
time!

Here are some classic cases of iterator invalidation:

    std::vector<int> v = {3, 1, 4};

    auto iter = v.begin();
    v.reserve(6); // iter is invalidated!

    // This might look like a way to produce the result
    // {3, 1, 4, 3, 1, 4}; but if the first insertion
    // triggers reallocation, then the next insertion
    // will be reading garbage from a dangling iterator!
    v = std::vector{3, 1, 4};
    std::copy(
      v.begin(),
      v.end(),
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      std::back_inserter(v)
    );

And here's another case, familiar from many other programming languages as well, in
which erasing elements from a container while iterating over it produces subtle bugs:

    auto end = v.end();
    for (auto it = v.begin(); it != end; ++it) {
      if (*it == 4) {
        v.erase(it); // WRONG!
      }
    }

    // Asking the vector for its .end() each time
    // through the loop does fix the bug...
    for (auto it = v.begin(); it != v.end(); ) {
      if (*it == 4) {
        it = v.erase(it);
      } else {
        ++it;
      }
    }

    // ...But it's much more efficient to use the
    // erase-remove idiom.
    v.erase(
      std::remove_if(v.begin(), v.end(), [](auto&& elt) {
        return elt == 4;
      }),
      v.end()
    );

Inserting and erasing in a std::vector
vec.push_back(t) adds an item to the end of the vector. There is no corresponding
.push_front() member function, because as you can see from the diagram at the start of
this section, there's no efficient way to push anything onto the front of a vector.

vec.emplace_back(args...) is a perfect-forwarding variadic function template that acts
just like .push_back(t), except that, instead of placing a copy of t at the end of the vector,
it places a T object constructed as if by T(args...).
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Both push_back and emplace_back have what is called "amortized constant time"
performance. To see what this means, consider what would happen to a naive vector if you
call v.emplace_back() a hundred times in a row. With each call, the vector needs to get
just a little bit bigger; so it reallocates its underlying array and moves all v.size()
elements from the old array to the new one. Soon you'd be spending more time copying old
data from place to place than you're spending actually "pushing back" new data!
Fortunately, std::vector is smart enough to avoid this trap. Whenever an operation such
as v.emplace_back() causes reallocation, the vector won't make room for just
capacity() + 1 elements in the new array; it will make room for k * capacity()
elements (where k is 2 for libc++ and libstdc++, and approximately 1.5 for Visual Studio). So,
although reallocation gets more and more expensive as the vector grows, you do fewer and
fewer reallocations per push_back--and so the cost of a single push_back is constant, on
average. This trick is known as geometric resizing.

vec.insert(it, t) adds an item into the middle of the vector, at the position indicated
by the iterator it. If it == vec.end(), then this is equivalent to push_back; if it ==
vec.begin(), then this is a poor man's version of push_front. Notice that, if you insert
anywhere but the end of the vector, all the elements after the insertion point in the
underlying array will get shifted over to make room; this can be expensive.

There are several different overloads of .insert(). Generally speaking, none of these will
be useful to you, but you might want to be aware of them in order to interpret the cryptic
error messages (or cryptic runtime bugs) that will show up if you accidentally provide the
wrong arguments to .insert() and overload resolution ends up picking one of these
instead of the one you expected:

    std::vector<int> v = {1, 2};
    std::vector<int> w = {5, 6};

    // Insert a single element.
    v.insert(v.begin() + 1, 3);
    assert((v == std::vector{1, 3, 2}));

    // Insert n copies of a single element.
    v.insert(v.end() - 1, 3, 4);
    assert((v == std::vector{1, 3, 4, 4, 4, 2}));

    // Insert a whole range of elements.
    v.insert(v.begin() + 3, w.begin(), w.end());
    assert((v == std::vector{1, 3, 4, 5, 6, 4, 4, 2}));

    // Insert a braced list of elements.
    v.insert(v.begin(), {7, 8});
    assert((v == std::vector{7, 8, 1, 3, 4, 5, 6, 4, 4, 2}));
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vec.emplace(it, args...) is to insert as emplace_back is to push_back: it's a
perfect-forwarding version of the C++03 function. Prefer emplace and emplace_back over
insert and push_back, when possible.

vec.erase(it) erases a single item from the middle of a vector, at the position indicated
by the iterator it. There's also a two-iterator version, vec.erase(it, it), which erases a
contiguous range of items. Notice that this two-iterator version is the same one we used in
the erase-remove idiom in the previous chapter.

To delete just the last element from the vector, you could use either
vec.erase(vec.end()-1) or vec.erase(vec.end()-1, vec.end()); but since this is
a common operation, the standard library provides a synonym in the form of
vec.pop_back(). You can implement a dynamically growable stack using nothing more
than the push_back() and pop_back() methods of std::vector.

Pitfalls with vector<bool>
The std::vector template has one special case: std::vector<bool>. Since the bool
datatype has only two possible values, the values of eight bools can be packed into a single
byte. std::vector<bool> uses this optimization, which means that it uses eight times less
heap-allocated memory than you might naturally expect.
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The downside of this packing is that the return type of vector<bool>::operator[]
cannot be bool&, because the vector doesn't store actual bool objects anywhere. Therefore,
operator[] returns a customized class type, std::vector<bool>::reference, which is
convertible to bool but which is not, itself, a bool (types like this are often called "proxy
types" or "proxy references").

The result type of operator[] const is "officially" bool, but in practice, some libraries
(notably libc++) return a proxy type for operator[] const. This means that code using
vector<bool> is not only subtle but sometimes non-portable as well; I advise avoiding
vector<bool> if you can:

    std::vector<bool> vb = {true, false, true, false};

    // vector<bool>::reference has one public member function:
    vb[3].flip();
    assert(vb[3] == true);

    // The following line won't compile!
    // bool& oops = vb[0];

    auto ref = vb[0];
    assert((!std::is_same_v<decltype(ref), bool>));
    assert(sizeof vb[0] > sizeof (bool));

    if (sizeof std::as_const(vb)[0] == sizeof (bool)) {
      puts("Your library vendor is libstdc++ or Visual Studio");
    } else {
      puts("Your library vendor is libc++");
    }

Pitfalls with non-noexcept move constructors
Recall the implementation of vector::resize() from section Resizing a std::vector. When
the vector resizes, it reallocates its underlying array and moves its elements into the new
array--unless the element type is not "nothrow move-constructible," in which case it copies
its elements! What this means is that resizing a vector of your own class type will be
unnecessarily "pessimized" unless you go out of your way to specify that your move
constructor is noexcept.

Consider the following class definitions:

    struct Bad {
      int x = 0;
      Bad() = default;
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      Bad(const Bad&) { puts("copy Bad"); }
      Bad(Bad&&) { puts("move Bad"); }
    };

    struct Good {
      int x = 0;
      Good() = default;
      Good(const Good&) { puts("copy Good"); }
      Good(Good&&) noexcept { puts("move Good"); }
    };

    class ImplicitlyGood {
      std::string x;
      Good y;
    };

    class ImplicitlyBad {
      std::string x;
      Bad y;
    };

We can test the behavior of these classes in isolation using a test harness such as the
following. Running test() will print "copy Bad--move Good--copy Bad--move Good."
What an appropriate mantra!

    template<class T>
    void test_resizing()
    {
      std::vector<T> vec(1);
      // Force a reallocation on the vector.
      vec.resize(vec.capacity() + 1);
    }

    void test()
    {
      test_resizing<Good>();
      test_resizing<Bad>();
      test_resizing<ImplicitlyGood>();
      test_resizing<ImplicitlyBad>();
    }

This is a subtle and arcane point, but it can have a major effect on the efficiency of your C++
code in practice. A good rule of thumb is: Whenever you declare your own move
constructor or swap function, make sure you declare it noexcept.
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The speedy hybrid: std::deque<T>
Like std::vector, std::deque presents the interface of a contiguous array--it is random-
access, and its elements are stored in contiguous blocks for cache-friendliness. But unlike
vector, its elements are only "chunkwise" contiguous. A single deque is made up of an 
arbitrary number of "chunks," each containing a fixed number of elements. To insert more
elements on either end of the container is cheap; to insert elements in the middle is still
expensive. In memory it looks something like this:

std::deque<T> exposes all the same member functions as std::vector<T>, including an
overloaded operator[]. In addition to vector's push_back and pop_back methods,
deque exposes an efficient push_front and pop_front.

Notice that, when you repeatedly push_back into a vector, you eventually trigger a
reallocation of the underlying array and invalidate all your iterators and all your pointers
and references to elements within the container. With deque, iterator invalidation still
happens, but individual elements never change their addresses unless you insert or erase
elements in the middle of the deque (in which case one end of the deque or the other will
have to shift outward to make room, or shift inward to fill the gap):

    std::vector<int> vec = {1, 2, 3, 4};
    std::deque<int> deq = {1, 2, 3, 4};
    int *vec_p = &vec[2];
    int *deq_p = &deq[2];
    for (int i=0; i < 1000; ++i) {
      vec.push_back(i);
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      deq.push_back(i);
    }
    assert(vec_p != &vec[2]);
    assert(deq_p == &deq[2]);

Another advantage of std::deque<T> is that there is no specialization for
std::deque<bool>; the container presents a uniform public interface no matter what T is.

The disadvantage of std::deque<T> is that its iterators are significantly more expensive to
increment and dereference, since they have to navigate the array of pointers depicted in the
following diagram. This is a significant enough disadvantage that it makes sense to stick
with vector, unless you happen to need quick insertion and deletion at both ends of the
container.

A particular set of skills: std::list<T>
The container std::list<T> represents a linked list in memory. Schematically, it looks like
this:

Notice that each node in the list contains pointers to its "next" and "previous" nodes, so this
is a doubly linked list. The benefit of a doubly linked list is that its iterators can move both
forwards and backwards through the list--that is, std::list<T>::iterator is a
bidirectional iterator (but it is not random-access; getting to the nth element of the list still
requires O(n) time).
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std::list supports many of the same operations as std::vector, except for those
operations that require random access (such as operator[]). It can afford to add member
functions for pushing and popping from the front of the list, since pushing and popping
from a list doesn't require expensive move operations.

In general, std::list is much less performant than a contiguous data structure such as
std::vector or std::deque, because following pointers to "randomly" allocated
addresses is much harder on the cache than following pointers into a contiguous block of
memory. Therefore, you should treat std::list as a generally undesirable container; you
should only pull it out of your toolbox when you absolutely need one of the things it does
better than vector.

What are the special skills of std::list?
First, there's no iterator invalidation for lists! lst.push_back(v) and lst.push_front(v)
always operate in constant time, and don't ever need to "resize" or "move" any data.

Second, many mutating operations that would be expensive on vector or require out-of-
line storage ("scratch space") become cheap for linked lists. Here are some examples:

lst.splice(it, otherlst) "splices" the entirety of otherlst into lst, as if by repeated
calls to lst.insert(it++, other_elt); except that the "inserted" nodes are actually
stolen from the right-hand otherlst. The entire splicing operation can be done with just a
couple of pointer swaps. After this operation, otherlst.size() == 0.

lst.merge(otherlst) similarly empties out otherlst into lst using only pointer
swaps, but has the effect of "merging sorted lists." For example:

    std::list<int> a = {3, 6};
    std::list<int> b = {1, 2, 3, 5, 6};

    a.merge(b);
    assert(b.empty());
    assert((a == std::list{1, 2, 3, 3, 5, 6, 6}));

As always with STL operations that involve comparison, there is a version taking a
comparator: lst.merge(otherlst, less).
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Another operation that can be done only with pointer swaps is reversing the list in place:
lst.reverse() switches all the "next" and "previous" links so that the head of the list is
now the tail, and vice versa.

Notice that all of these operations mutate the list in place, and generally return void.

Another kind of operation that is cheap on linked lists (but not on contiguous containers) is
removal of elements. Recall from Chapter 3, The Iterator-Pair Algorithms, that the STL
provides algorithms such as std::remove_if and std::unique for use with contiguous
containers; these algorithms shuffle the "removed" elements to the end of the container so
that they can be picked off in a single erase(). With std::list, shuffling elements is
more expensive than simply erasing them in-place. So, std::list provides the following
member functions, with names that are unfortunately similar to the non-erasing STL
algorithms:

lst.remove(v) removes and erases all elements equal to v.
lst.remove_if(p) removes and erases all elements e which satisfy the unary
predicate p(e).
lst.unique() removes and erases all but the first element of each "run" of
consecutive equal elements. As always with STL operations that involve
comparison, there is a version taking a comparator: lst.unique(eq) removes
and erases e2 whenever p(e1, e2).
lst.sort() sorts the list in-place. This is particularly helpful because the
permutative algorithm std::sort(ctr.begin(), ctr.end()) does not work
on the non-random-access std::list::iterator.

It's strange that lst.sort() can only sort the entire container, instead of taking a sub-
range the way std::sort does. But if you want to sort just a sub-range of lst, you can do
it with--say it with me--just a couple of pointer swaps!

    std::list<int> lst = {3, 1, 4, 1, 5, 9, 2, 6, 5};
    auto begin = std::next(lst.begin(), 2);
    auto end = std::next(lst.end(), -2);

    // Sort just the range [begin, end)
    std::list<int> sub;
    sub.splice(sub.begin(), lst, begin, end);
    sub.sort();
    lst.splice(end, sub);
    assert(sub.empty());

    assert((lst == std::list{3, 1, 1, 2, 4, 5, 9, 6, 5}));
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Roughing it with std::forward_list<T>
The standard container std::forward_list<T> is a linked list like std::list, but with
fewer amenities--no way to get its size, no way to iterate backward. In memory it looks
similar to std::list<T>, but with smaller nodes:

Nevertheless, std::forward_list retains almost all of the "special skills" of std::list.
The only operations that it can't do are splice (because that involves inserting "before" the
given iterator) and push_back (because that involves finding the end of the list in constant
time).

forward_list replaces these missing member functions with _after versions:

flst.erase_after(it) to erase the element after the given position
flst.insert_after(it, v) to insert a new element after the given position
flst.splice_after(it, otherflst) to insert the elements of otherflst
after the given position

As with std::list, you should avoid using forward_list at all unless you are in need of
its particular set of skills.
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Abstracting with std::stack<T> and
std::queue<T>
We've now seen three different standard containers with the member functions
push_back() and pop_back() (and, although we didn't mention it, back() to retrieve a
reference to the last element of the container). These are the operations we'd need if we
wanted to implement a stack data structure.

The standard library provides a convenient way to abstract the idea of a stack, with the
container known as (what else?) std::stack. Unlike the containers we've seen so far,
though, std::stack takes an extra template parameter.

std::stack<T, Ctr> represents a stack of elements of type T, where the underlying
storage is managed by an instance of the container type Ctr. For example, stack<T,
vector<T>> uses a vector to manage its elements; stack<T, list<T>> uses a list; and so
on. The default value for the template parameter Ctr is actually std::deque<T>; you may
recall that deque takes up more memory than vector but has the benefit of never needing
to reallocate its underlying array or move elements post-insertion.

To interact with a std::stack<T, Ctr>, you must restrict yourself to only the operations
push (corresponding to push_back on the underlying container), pop (corresponding to
pop_back), top (corresponding to back), and a few other accessors such as size and
empty:

    std::stack<int> stk;
    stk.push(3); stk.push(1); stk.push(4);
    assert(stk.top() == 4);
    stk.pop();
    assert(stk.top() == 1);
    stk.pop();
    assert(stk.top() == 3);

One bizarre feature of std::stack is that it supports the comparison operators ==, !=, <,
<=, >, and >=; and that these operators work by comparing the underlying containers (using
whatever semantics the underlying container type has defined). Since the underlying
container type generally compares via lexicographical order, the result is that comparing
two stacks compares them "lexicographically bottom up."

    std::stack<int> a, b;
    a.push(3); a.push(1); a.push(4);
    b.push(2); b.push(7);
    assert(a != b);
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    assert(a.top() < b.top()); // that is, 4 < 7
    assert(a > b); // because 3 > 2

This is fine if you're using only == and !=, or if you're relying on operator< to produce a
consistent ordering for std::set or std::map; but it's certainly surprising the first time
you see it!

The standard library also provides an abstraction for "queue." std::queue<T, Ctr>
exposes the methods push_back and pop_front (corresponding to push_back and
pop_front on the underlying container), as well as a few other accessors such as front,
back, size, and empty.

Knowing that the container must support these primitive operations as efficiently as
possible, you should be able to guess the default value of Ctr. Yes, it's std::deque<T>, the
low-overhead double-ended queue.

Notice that, if you were implementing a queue from scratch using std::deque<T>, you
could choose whether to push on the front of the deque and pop from the back, or to push
on the back of the deque and pop from the front. The standard std::queue<T,
std::deque<T>> chooses specifically to push on the back and pop from the front, which is
easy to remember if you think about a "queue" in the real world. When you're queueing up
at a ticket counter or a lunch line, you join the queue at the back and are served when you
get to the front--never vice versa! It is a useful art to choose technical terms (such as queue,
front, and back) whose technical meanings are an accurate mirror of their real-world
counterparts.

The useful adaptor: std::priority_queue<T>
In Chapter 3, The Iterator-Pair Algorithms, we introduced the family of "heap" algorithms:
make_heap, push_heap, and pop_heap. You can use these algorithms to give a range of
elements the max-heap property. If you maintain the max-heap property on your data as an
invariant, you get a data structure commonly known as a priority queue. In data-structure
textbooks, a priority queue is often depicted as a kind of binary tree, but as we saw in
Chapter 3, The Iterator-Pair Algorithms, there's nothing about the max-heap property that
requires an explicitly pointer-based tree structure.

The standard container std::priority_queue<T, Ctr, Cmp> represents a priority
queue, represented internally as an instance of Ctr where the elements of the Ctr are
invariably in max-heap order (as determined by an instance of the comparator type Cmp).
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The default value of Ctr in this case is std::vector<T>. Remember that vector is the
most efficient container; the only reason std::stack and std::queue chose deque as
their default is that they didn't want to move elements after they'd been inserted. But with a
priority queue, the elements are moving all the time, moving up and down in the max-heap
as other elements are inserted or erased. So there's no particular benefit to using deque as
the underlying container; therefore, the standard library followed the same rule I've been
repeating like a drumbeat--use std::vector unless you have a specific reason to need
something else!

The default value of Cmp is the standard library type std::less<T>, which represents
operator<. In other words, the std::priority_queue container uses the same
comparator by default as the std::push_heap and std::pop_heap algorithms from
Chapter 3, The Iterator-Pair Algorithms.

The member functions exposed by std::priority_queue<T, Ctr> are push, pop, and
top. Conceptually, the item at the front of the underlying container is at the "top" of the
heap. One thing to remember is that in a max-heap, the item at the "top" of the heap is the
greatest item--think of the items as playing King of the Hill, so that the biggest one wins and
ends up on the top of the heap.

pq.push(v) inserts a new item into the priority queue, as if by
std::push_heap() on the underlying container
pq.top() returns a reference to the element currently on top of the priority
queue, as if by calling ctr.front() on the underlying container
pq.pop() pops off the maximum element and updates the heap, as if by
std::pop_heap() on the underlying container

To get a min-heap instead of a max-heap, simply reverse the sense of the comparator you
provide to the priority_queue template:

    std::priority_queue<int> pq1;
    std::priority_queue<int, std::vector<int>, std::greater<>> pq2;

    for (int v : {3, 1, 4, 1, 5, 9}) {
      pq1.push(v);
      pq2.push(v);
    }

    assert(pq1.top() == 9); // max-heap by default
    assert(pq2.top() == 1); // min-heap by choice
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The trees: std::set<T> and std::map<K, V>
The class template std::set<T> provides the interface of a "unique set" for any T that
implements operator<. As always with STL operations that involve comparison, there is a 
version taking a comparator: std::set<T, Cmp> provides "unique set" functionality using
Cmp(a,b) instead of (a < b) to sort the data elements.

A std::set is conceptually a binary search tree, analogous to Java's TreeSet. In all
popular implementations it's specifically a red-black tree, which is a particular kind of self-
balancing binary search tree: even if you are constantly inserting and removing items from
the tree, it will never get too unbalanced, which means that insert and find will always
run in O(log n) time on average. Notice the number of pointers involved in its memory
layout:

Since, by definition, a binary search tree's elements are stored in their sort order (least to
greatest), it would not be meaningful for std::set to provide member functions
push_front or push_back. Instead, to add an element v to the set, you use s.insert(v);
and to delete an element, you use s.erase(v) or s.erase(it):

    std::set<int> s;
    for (int i : {3, 1, 4, 1, 5}) {
      s.insert(i);
    }
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    // A set's items are stored sorted and deduplicated.
    assert((s == std::set{1, 3, 4, 5}));

    auto it = s.begin();
    assert(*it == 1);
    s.erase(4);
    s.erase(it); // erase *it, which is 1

    assert((s == std::set{3, 5}));

The return value of s.insert(v) is interesting. When we insert into a vector, there are
only two possible outcomes: either the value is successfully added to the vector (and we get
back an iterator to the newly inserted element), or else the insertion fails and an exception is
thrown. When we insert into a set, there is a third possible outcome: maybe the insertion
doesn't happen because there is already a copy of v in the set! That's not a "failure" worthy
of exceptional control flow, but it's still something that the caller might want to know about.
So s.insert(v) always returns a pair of return values: ret.first is the usual iterator to
the copy of v now in the data structure (no matter whether it was just now inserted), and
ret.second is true if the pointed-to v was just inserted and false if the pointed-to v was
already in the set to begin with:

    std::set<int> s;
    auto [it1, b1] = s.insert(1);
    assert(*it1 == 1 && b1 == true);

    auto [it2, b2] = s.insert(2);
    assert(*it2 == 2 && b2 == true);

    auto [it3, b3] = s.insert(1); // again
    assert(*it3 == 1 && b3 == false);

The square-bracketed variable definitions in the preceding snippet are
using C++17 structured bindings.

As the example just prior to this one shows, the elements of a set are stored in order--not
just conceptually but visibly, in that *s.begin() is going to be the least element in the set
and *std::prev(s.end()) is going to be the greatest element. Iterating over the set using
a standard algorithm or a ranged for loop will give you the set's elements in ascending
order (remember, what "ascending" means is dictated by your choice of comparator--the
Cmp parameter to the class template set).
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The tree-based structure of a set implies that some standard algorithms such as
std::find and std::lower_bound (Chapter 3, The Iterator-Pair Algorithms) will still
work, but only inefficiently--the algorithm's iterators will spend a lot of time climbing up
and down in the foothills of the tree, whereas if we had access to the tree structure itself, we
could descend directly from the root of the tree and find a given element's position very
quickly. Therefore, std::set provides member functions that can be used as replacements
for the inefficient algorithms:

For std::find(s.begin(), s.end(), v), use s.find(v)
For std::lower_bound(s.begin(), s.end(), v), use s.lower_bound(v)
For std::upper_bound(s.begin(), s.end(), v), use s.upper_bound(v)
For std::count(s.begin(), s.end(), v), use s.count(v)
For std::equal_range(s.begin(), s.end(), v), use s.equal_range(v)

Notice that s.count(v) will only ever return 0 or 1, because the set's elements are
deduplicated. This makes s.count(v) a handy synonym for the set-membership
operation--what Python would call v in s or what Java would call s.contains(v).

std::map<K, V> is just like std::set<K>, except that each key K is allowed to have a
value V associated with it; this makes a data structure analogous to Java's TreeMap or
Python's dict. As always, there's std::map<K, V, Cmp> if you need a sorting order on
your keys that's different from the natural K::operator<. Although you won't often think
of std::map as "just a thin wrapper around a std::set of pairs," that's exactly how it
looks in memory:
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std::map supports indexing with operator[], but with a surprising twist. When you
index into a size-zero vector with vec[42], you get undefined behavior. When you index
into a size-zero map with m[42], the map helpfully inserts the key-value pair {42, {}} into
itself and returns a reference to the second element of that pair!

This quirky behavior is actually helpful for writing code that's easy on the eyes:

    std::map<std::string, std::string> m;
    m["hello"] = "world";
    m["quick"] = "brown";
    m["hello"] = "dolly";
    assert(m.size() == 2);

But it can lead to confusion if you don't pay attention:

    assert(m["literally"] == "");
    assert(m.size() == 3);

You'll notice that there is no operator[] const for maps, because operator[] always
reserves the potential to insert a new key-value pair into *this. If you have a const map--or
just a map that you really don't want to insert into right now--then the appropriate way to
query it non-mutatively is with m.find(k). Another reason to avoid operator[] is if your
map's value type V is not default-constructible, in which case operator[] simply won't
compile. In that case (real talk: in any case) you should use m.insert(kv) or
m.emplace(k, v) to insert the new key-value pair exactly as you want it, instead of
default-constructing a value just to assign over it again. Here's an example:

    // Confusingly, "value_type" refers to a whole key-value pair.
    // The types K and V are called "key_type" and "mapped_type",
    // respectively.
    using Pair = decltype(m)::value_type;

    if (m.find("hello") == m.end()) {
      m.insert(Pair{"hello", "dolly"});

      // ...or equivalently...
      m.emplace("hello", "dolly");
    }

Received wisdom in the post–C++11 world is that std::map and std::set, being based on
trees of pointers, are so cache-unfriendly that you should avoid them by default and prefer
to use std::unordered_map and std::unordered_set instead.
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A note about transparent comparators
In the last code example, I wrote m.find("hello"). Notice that "hello" is a value of type
const char[6], whereas decltype(m)::key_type is std::string, and (since we
didn't specify anything special) decltype(m)::key_compare is
std::less<std::string>. This means that when we call m.find("hello"), we're
calling a function whose first parameter is of type std::string--and so we're implicitly
constructing std::string("hello") to pass as the argument to find. In general, the
argument to m.find is going to get implicitly converted to decltype(m)::key_type,
which may be an expensive conversion.

If our operator< behaves properly, we can avoid this overhead by changing the
comparator of m to some class with a heterogeneous operator() which also defines the
member typedef is_transparent, like this:

    struct MagicLess {
      using is_transparent = std::true_type;

      template<class T, class U>
      bool operator()(T&& t, U&& u) const {
        return std::forward<T>(t) < std::forward<U>(u);
      }
    };

    void test()
    {
      std::map<std::string, std::string, MagicLess> m;

      // The STL provides std::less<> as a synonym for MagicLess.
      std::map<std::string, std::string, std::less<>> m2;

      // Now 'find' no longer constructs a std::string!
      auto it = m2.find("hello");
    }

The "magic" here is all happening inside the library's implementation of std::map; the
find member function specifically checks for the member is_transparent and changes
its behavior accordingly. The member functions count, lower_bound, upper_bound, and
equal_range all change their behavior as well. But oddly, the member function erase
does not! This is probably because it would be too difficult for overload resolution to
distinguish an intended m.erase(v) from an intended m.erase(it). Anyway, if you
want heterogeneous comparison during deletion as well, you can get it in two steps:

    auto [begin, end] = m.equal_range("hello");
    m.erase(begin, end);
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Oddballs: std::multiset<T> and
std::multimap<K, V>
In STL-speak, a "set" is an ordered, deduplicated collection of elements. So naturally, a
"multiset" is an ordered, non-deduplicated collection of elements! Its memory layout is
exactly the same as the layout of std::set; only its invariants are different. Notice in the 
following diagram that std::multiset allows two elements with value 42:

std::multiset<T, Cmp> behaves just like std::set<T, Cmp>, except that it can store
duplicate elements. The same goes for std::multimap<K, V, Cmp>:

    std::multimap<std::string, std::string> mm;
    mm.emplace("hello", "world");
    mm.emplace("quick", "brown");
    mm.emplace("hello", "dolly");
    assert(mm.size() == 3);

    // Key-value pairs are stored in sorted order.
    // Pairs with identical keys are guaranteed to be
    // stored in the order in which they were inserted.
    auto it = mm.begin();
    using Pair = decltype(mm)::value_type;
    assert(*(it++) == Pair("hello", "world"));
    assert(*(it++) == Pair("hello", "dolly"));
    assert(*(it++) == Pair("quick", "brown"));
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In a multiset or multimap, mm.find(v) returns an iterator to some element (or key-value
pair) matching v--not necessarily the first one in iteration order. mm.erase(v) erases all the
elements (or key-value pairs) with keys equal to v. And mm[v] doesn't exist. For example:

    std::multimap<std::string, std::string> mm = {
      {"hello", "world"},
      {"quick", "brown"},
      {"hello", "dolly"},
    };
    assert(mm.count("hello") == 2);
    mm.erase("hello");
    assert(mm.count("hello") == 0);

Moving elements without moving them
Recall that, with std::list, we were able to splice lists together, move elements from one
list to another, and so on, by using the "particular set of skills" of std::list. As of C++17,
the tree-based containers have acquired similar skills!

The syntax for merging two sets or maps (or multisets or multimaps) is deceptively similar
to the syntax for merging sorted std::list:

    std::map<std::string, std::string> m = {
      {"hello", "world"},
      {"quick", "brown"},
    };
    std::map<std::string, std::string> otherm = {
      {"hello", "dolly"},
      {"sad", "clown"},
    };

    // This should look familiar!
    m.merge(otherm);

    assert((otherm == decltype(m){
      {"hello", "dolly"},
    }));

    assert((m == decltype(m){
      {"hello", "world"},
      {"quick", "brown"},
      {"sad", "clown"},
    }));
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However, notice what happens when there are duplicates! The duplicated elements are not
transferred; they're left behind in the right-hand-side map! This is the exact opposite of
what you'd expect if you're coming from a language such as Python, where
d.update(otherd) inserts all the mappings from the right-hand dict into the left-hand
dict, overwriting anything that was there already.

The C++ equivalent of d.update(otherd) is m.insert(otherm.begin(),
otherm.end(). The only case in which it makes sense to use m.merge(otherm) is if you
know that you don't want to overwrite duplicates, and you're okay with trashing the old
value of otherm (for example, if it's a temporary that's going out of scope soon).

Another way to transfer elements between tree-based containers is to use the member
functions extract and insert to transfer individual elements:

    std::map<std::string, std::string> m = {
      {"hello", "world"},
      {"quick", "brown"},
    };
    std::map<std::string, std::string> otherm = {
      {"hello", "dolly"},
      {"sad", "clown"},
    };

    using Pair = decltype(m)::value_type;

    // Insertion may succeed...
    auto nh1 = otherm.extract("sad");
    assert(nh1.key() == "sad" && nh1.mapped() == "clown");
    auto [it2, inserted2, nh2] = m.insert(std::move(nh1));
    assert(*it2 == Pair("sad", "clown") && inserted2 == true &&
nh2.empty());

    // ...or be blocked by an existing element.
    auto nh3 = otherm.extract("hello");
    assert(nh3.key() == "hello" && nh3.mapped() == "dolly");
    auto [it4, inserted4, nh4] = m.insert(std::move(nh3));
    assert(*it4 == Pair("hello", "world") && inserted4 == false &&
!nh4.empty());

    // Overwriting an existing element is a pain.
    m.insert_or_assign(nh4.key(), nh4.mapped());

    // It is often easiest just to delete the element that's
    // blocking our desired insertion.
    m.erase(it4);
    m.insert(std::move(nh4));



The Container Zoo

[ 104 ]

The type of the object returned by extract is something called a "node handle"--essentially
a pointer into the guts of the data structure. You can use the accessor methods nh.key()
and nh.mapped() to manipulate the pieces of the entry in a std::map (or nh.value() for
the single piece of data in an element of a std::set). Thus you can extract, manipulate,
and reinsert a key without ever copying or moving its actual data! In the following code
sample, the "manipulation" consists of a call to std::transform:

    std::map<std::string, std::string> m = {
      {"hello", "world"},
      {"quick", "brown"},
    };
    assert(m.begin()->first == "hello");
    assert(std::next(m.begin())->first == "quick");

    // Upper-case the {"quick", "brown"} mapping, with
    // absolutely no memory allocations anywhere.
    auto nh = m.extract("quick");
    std::transform(nh.key().begin(), nh.key().end(), nh.key().begin(),
::toupper);
    m.insert(std::move(nh));

    assert(m.begin()->first == "QUICK");
    assert(std::next(m.begin())->first == "hello");

As you can see, the interface to this functionality isn't as tidy as lst.splice(it,
otherlst); the subtlety of the interface is one reason it took until C++17 to get this
functionality into the standard library. There is one clever bit to notice, though: Suppose
you extract a node from a set and then throw an exception before you've managed to
insert it into the destination set. What happens to the orphaned node--does it leak? It
turns out that the designers of the library thought of this possibility; if a node handle's
destructor is called before the node handle has been inserted into its new home, the
destructor will correctly clean up the memory associated with the node. Therefore, extract
by itself (without insert) will behave just like erase!
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The hashes: std::unordered_set<T> and
std::unordered_map<K, V>
The std::unordered_set class template represents a chained hash table--that is, a fixed-
size array of "buckets," each bucket containing a singly linked list of data elements. As new
data elements are added to the container, each element is placed in the linked list associated
with the "hash" of the element's value. This is almost exactly the same as Java's HashSet. In
memory it looks like this:

The literature on hash tables is extensive, and std::unordered_set does not represent
even remotely the state of the art; but because it eliminates a certain amount of pointer-
chasing, it tends to perform better than the tree-based std::set.

To eliminate the rest of the pointers, you'd have to replace the linked lists
with a technique called "open addressing," which is far out of scope for
this book; but it's worth looking up if std::unordered_set proves too
slow for your use-case.
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std::unordered_set was designed to be a drop-in replacement for std::set, so it
provides the same interface that we've already seen: insert and erase, plus iteration with
begin and end. However, unlike std::set, the elements of a std::unordered_set are
not stored in sorted order (it's unordered, you see?) and it provides only forward iterators, as
opposed to the bidirectional iterators provided by std::set. (Check the preceding
illustration--there are "next" pointers but no "previous" pointers, so iterating backwards in a
std::unordered_set is impossible.)

std::unordered_map<K, V> is to std::unordered_set<T> as std::map<K, V> is to
std::set<T>. That is, it looks exactly the same in memory, except that it stores key-value
pairs instead of just keys:

Like set and map, which take an optional comparator parameter, unordered_set and
unordered_map take some optional parameters as well. The two optional parameters are
Hash (which defaults to std::hash<K>) and KeyEqual (which defaults to
std::equal_to<K>, which is to say, operator==). Passing in a different hash function or
a different key-comparison function causes the hash table to use those functions instead of
the defaults. This might be useful if you're interfacing with some old-school C++ class type
that doesn't implement value semantics or operator==:

    class Widget {
    public:
      virtual bool IsEqualTo(Widget const *b) const;
      virtual int GetHashValue() const;
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    };

    struct myhash {
      size_t operator()(const Widget *w) const {
        return w->GetHashValue();
      }
    };

    struct myequal {
      bool operator()(const Widget *a, const Widget *b) const {
        return a->IsEqualTo(b);
      }
    };

    std::unordered_set<Widget *, myhash, myequal> s;

Load factor and bucket lists
Like Java's HashSet, std::unordered_set exposes all kinds of administrative details 
about its buckets. You probably will never need to interact with these administrative
functions!

s.bucket_count() returns the current number of buckets in the array.
s.bucket(v) returns the index i of the bucket in which you'd find the
element v, if it existed in this unordered_set.
s.bucket_size(i) returns the number of elements in the ith bucket. Observe
that invariably s.count(v) <= s.bucket_size(s.bucket(v)).
s.load_factor() returns s.size() / s.bucket_count() as a float value.
s.rehash(n) increases (or decreases) the size of the bucket array to exactly n.

You might have noticed that load_factor seems out of place so far; what's so important
about s.size() / s.bucket_count() that it gets its own member function? Well, this is
the mechanism by which unordered_set scales itself as its number of elements grows.
Each unordered_set object s has a value s.max_load_factor() indicating exactly how
large s.load_factor() is allowed to get. If an insertion would push s.load_factor()
over the top, then s will reallocate its array of buckets and rehash its elements in order to
keep s.load_factor() smaller than s.max_load_factor().
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s.max_load_factor() is 1.0 by default. You can set it to a different value k by using the
one-parameter overload: s.max_load_factor(k). However, that's basically never
necessary or a good idea.

One administrative operation that does make sense is s.reserve(k). Like
vec.reserve(k) for vectors, this reserve member function means "I'm planning to do
insertions that bring the size of this container up into the vicinity of k. Please pre-allocate
enough space for those k elements right now." In the case of vector, that meant allocating
an array of k elements. In the case of unordered_set, it means allocating a bucket array of
k / max_load_factor() pointers, so that even if k elements are inserted (with the
expected number of collisions), the load factor will still only be max_load_factor().

Where does the memory come from?
Throughout this whole chapter, I've actually been lying to you! Each of the containers
described in this chapter--except for std::array--takes one more optional template type
parameter. This parameter is called the allocator, and it indicates where the memory comes
from for operations such as "reallocating the underlying array" or "allocating a new node on
the linked list." std::array doesn't need an allocator because it holds all of its memory
inside itself; but every other container type needs to know where to get its allocations from.

The default value for this template parameter is the standard library type
std::allocator<T>, which is certainly good enough for most users. We'll talk more about
allocators in Chapter 8, Allocators.

Summary
In this chapter we've learned the following: A container manages the ownership of a
collection of elements. STL containers are always class templates parameterized on the
element type, and sometimes on other relevant parameters as well. Every container except
std::array<T, N> can be parameterized by an allocator type to specify the manner in
which it allocates and deallocates memory. Containers that use comparison can be
parameterized by a comparator type. Consider using transparent comparator types such as
std::less<> instead of homogeneous comparators.

When using std::vector, watch out for reallocation and address invalidation. When
using most container types, watch out for iterator invalidation.
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The standard library's philosophy is to support no operation that is naturally inefficient
(such as vector::push_front); and to support any operation that is naturally efficient
(such as list::splice). If you can think of an efficient implementation for a particular
operation, odds are that the STL has already implemented it under some name; you just
have to figure out how it's spelled.

When in doubt, use std::vector. Use other container types only when you need their
particular set of skills. Specifically, avoid the pointer-based containers (set, map, list)
unless you need their special skills (maintaining sorted order; extracting, merging, and
splicing).

Online references such as cppreference.com are your best resource for figuring these things
out.

http://cppreference.com


5
Vocabulary Types

It has been increasingly recognized over the past decade that one of the important roles of a
standard language or standard library is to provide vocabulary types. A "vocabulary" type is
a type that purports to provide a single lingua franca, a common language, for dealing with
its domain.

Notice that even before C++ existed, the C programming language had already made a
decent shot at the vocabulary of some areas, providing standard types or type aliases for
integer math (int), floating-point math (double), timepoints expressed in the Unix epoch
(time_t), and byte counts (size_t).

In this chapter we'll learn:

The history of vocabulary types in C++, from std::string to std::any
The definitions of algebraic data type, product type, and sum type
How to manipulate tuples and visit variants
The role of std::optional<T> as "maybe a T" or "not yet a T"
std::any as the algebraic-data-type equivalent of "infinity"
How to implement type erasure, how it's used in std::any and
std::function, and its intrinsic limitations
Some pitfalls with std::function, and third-party libraries that fix them
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The story of std::string
Consider the domain of character strings; for example, the phrase hello world. In C, the
lingua franca for dealing with strings was char *:

    char *greet(const char *name) {
      char buffer[100];
      snprintf(buffer, 100, "hello %s", name);
      return strdup(buffer);
    }

    void test() {
      const char *who = "world";
      char *hw = greet(who);
      assert(strcmp(hw, "hello world") == 0);
      free(hw);
    }

This was all right for a while, but dealing with raw char *s had some problems for the
users of the language and the creators of third-party libraries and routines. For one thing,
the C language was so old that const had not been invented at the outset, which meant that
certain old routines would expect their strings as char * and certain newer ones expect
const char *. For another thing, char * didn't carry a length with it; so some functions
expected both a pointer and a length, and some functions expected only the pointer and
simply couldn't deal with embedded bytes of value '\0'.

The most vital piece missing from the char * puzzle was lifetime management and ownership
(as discussed at the start of Chapter 4, The Container Zoo). When a C function wants to
receive a string from its caller, it takes char * and generally leaves it up to the caller to
manage the ownership of the characters involved. But what if it wants to return a string?
Then it has to return char * and hope that the caller remembers to free it (strdup,
asprintf), or take in a buffer from the caller and hope it's big enough for the output
(sprintf, snprintf, strcat). The difficulty of managing the ownership of strings in C
(and in pre-standard C++) was so great that there was a proliferation of "string libraries" to
deal with the problem: Qt's QString, glib's GString, and so on.
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Into this chaos stepped C++ in 1998 with a miracle: a standard string class! The new
std::string encapsulated the bytes of a string and its length, in a natural way; it could
deal correctly with embedded null bytes; it supported formerly complicated operations
such as hello + world by quietly allocating exactly as much memory as it needed; and
because of RAII, it would never leak memory or incite confusion about who owned the
underlying bytes. Best of all, it had an implicit conversion from char *:

    std::string greet(const std::string& name) {
      return "hello " + name;
    }

    void test() {
      std::string who = "world";
      assert(greet(who) == "hello world");
    }

Now C++ functions dealing with strings (such as greet()in the preceding code) could take
std::string parameters and return std::string results. Even better, because the string
type was standardized, within a few years you could be reasonably confident that when you
picked up some third-party library to integrate it into your codebase, any of its functions
that took strings (filenames, error messages, what-have-you) would be using std::string.
Everybody could communicate more efficiently and effectively by sharing the lingua franca
of std::string.

Tagging reference types with
reference_wrapper
Another vocabulary type introduced in C++03 was std::reference_wrapper<T>. It has a
simple implementation:

    namespace std {
      template<typename T>
      class reference_wrapper {
        T *m_ptr;
        public:
        reference_wrapper(T& t) noexcept : m_ptr(&t) {}

        operator T& () const noexcept { return *m_ptr; }
        T& get() const noexcept { return *m_ptr; }
      };

      template<typename T>
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      reference_wrapper<T> ref(T& t);
    } // namespace std

std::reference_wrapper has a slightly different purpose from vocabulary types such as
std::string and int; it's meant specifically as a way to the "tag" values that we'd like to
behave as references in contexts where passing native C++ references doesn't work the way
we'd like:

     int result = 0;
     auto task = [](int& r) {
       r = 42;
     };

     // Trying to use a native reference wouldn't compile.
     //std::thread t(task, result);

     // Correctly pass result "by reference" to the new thread.
     std::thread t(task, std::ref(result));

The constructor of std::thread is written with specific special cases to handle
reference_wrapper parameters by "decaying" them into native references. The same
special cases apply to the standard library functions make_pair, make_tuple, bind,
invoke, and everything based on invoke (such as std::apply,
std::function::operator(), and std::async).

C++11 and algebraic types
As C++11 took shape, there was growing recognition that another area ripe for
vocabularization was that of the so-called algebraic data types. Algebraic types arise naturally
in the functional-programming paradigm. The essential idea is to think about the domain of
a type--that is, the set of all possible values of that type. To keep things simple, you might
want to think about C++ enum types, because it's easy to talk about the number of different
values that an object of enum type might assume at one time or another:

    enum class Color {
      RED = 1,
      BLACK = 2,
    };

    enum class Size {
      SMALL = 1,
      MEDIUM = 2,
      LARGE = 3,
    };
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Given the types Color and Size, can you create a data type whose instances might assume
any of 2 × 3 = 6 values? Yes; this type represents "one of each" of Color and Size, and is
called a product type, because its set of possible values is the Cartesian product of its elements'
sets of possible values.

How about a data type whose instances might assume any of 2 + 3 = 5 different values? Also
yes; this type represents "either a Color or a Size but never both at once," and is called a
sum type. (Confusingly, mathematicians do not use the term Cartesian sum for this concept.)

In a functional-programming language such as Haskell, these two exercises would be
spelled like this:

    data SixType = ColorandSizeOf Color Size;
    data FiveType = ColorOf Color | SizeOf Size;

In C++, they're spelled like this:

    using sixtype = std::pair<Color, Size>;
    using fivetype = std::variant<Color, Size>;

The class template std::pair<A, B> represents an ordered pair of elements: one of type
A, followed by one of type B. It's very similar to a plain old struct with two elements,
except that you don't have to write the struct definition yourself:

    template<class A, class B>
    struct pair {
      A first;
      B second;
    };

Notice that there are only cosmetic differences between std::pair<A, A> and
std::array<A, 2>. We might say that pair is a heterogeneous version of array (except
that pair is restricted to holding only two elements).

Working with std::tuple
C++11 introduced a full-fledged heterogeneous array; it's called std::tuple<Ts...>. A
tuple of only two element types--for example, tuple<int, double>--is no different from
pair<int, double>. But tuples can hold more than just a pair of elements; though the
magic of C++11 variadic templates they can hold triples, quadruples, quintuples,... hence the
generic name tuple. For example, tuple<int, int, char, std::string> is analogous
to a struct whose members are an int, another int, a char, and finally a std::string.
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Because the first element of a tuple has a different type from the second element, we can't
use the "normal" operator[](size_t) to access the elements by indices that might vary at
runtime. Instead, we must tell the compiler at compile time which element of the tuple we're
planning to access, so that the compiler can figure out what type to give the expression. The
C++ way to provide information at compile time is to force it into the type system via
template parameters, and so that's what we do. When we want to access the first element of
a tuple t, we call std::get<0>(t). To access the second element, we call
std::get<1>(t), and so on.

This becomes the pattern for dealing with std::tuple--where the homogeneous container
types tend to have member functions for accessing and manipulating them, the
heterogeneous algebraic types tend to have free function templates for accessing and
manipulating them.

However, generally speaking, you won't do a lot of manipulating of tuples. Their primary
use-case, outside of template metaprogramming, is as an economical way to temporarily
bind a number of values together in a context that requires a single value. For example, you
might remember std::tie from the example in section "The simplest container" in
Chapter 4, The Container Zoo. It's a cheap way of binding together an arbitrary number of
values into a single unit that can be compared lexicographically with operator<. The
"sense" of the lexicographical comparison depends on the order in which you bind the
values together:

    using Author = std::pair<std::string, std::string>;
    std::vector<Author> authors = {
      {"Fyodor", "Dostoevsky"},
      {"Sylvia", "Plath"},
      {"Vladimir", "Nabokov"},
      {"Douglas", "Hofstadter"},
    };

    // Sort by first name then last name.
    std::sort(
      authors.begin(), authors.end(),
      [](auto&& a, auto&& b) {
        return std::tie(a.first, a.second) < std::tie(b.first, b.second);
      }
    );
    assert(authors[0] == Author("Douglas", "Hofstadter"));

    // Sort by last name then first name.
    std::sort(
      authors.begin(), authors.end(),
      [](auto&& a, auto&& b) {
        return std::tie(a.second, a.first) < std::tie(b.second, b.first);
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      }
    );
    assert(authors[0] == Author("Fyodor", "Dostoevsky"));

The reason that std::tie is so cheap is that it actually creates a tuple of references to its
arguments' memory locations, rather than copying its arguments' values. This leads to a
second common use for std::tie: simulating the "multiple assignment" found in
languages such as Python:

    std::string s;
    int i;

    // Assign both s and i at once.
    std::tie(s, i) = std::make_tuple("hello", 42);

Notice that the phrase "at once" in the preceding comment doesn't have
any bearing on concurrency (see Chapter 7, Concurrency) or the order in
which the side effects are performed; I just mean that both values can be
assigned in a single assignment statement, instead of taking two or more
lines.

As the preceding example illustrates, std::make_tuple(a, b, c...) can be used to
create a tuple of values; that is, make_tuple does construct copies of its arguments' values,
rather than merely taking their addresses.

Lastly, in C++17 we are allowed to use constructor template parameter deduction to write
simply std::tuple(a, b, c...); but it's probably best to avoid this feature unless you
know specifically that you want its behaviour. The only thing that template parameter
deduction will do differently from std::make_tuple is that it will preserve
std::reference_wrapper arguments rather than decaying them to native C++ references:

    auto [i, j, k] = std::tuple{1, 2, 3};

    // make_tuple decays reference_wrapper...
    auto t1 = std::make_tuple(i, std::ref(j), k);
    static_assert(std::is_same_v< decltype(t1),
      std::tuple<int, int&, int>
    >);

    // ...whereas the deduced constructor does not.
    auto t2 = std::tuple(i, std::ref(j), k);
    static_assert(std::is_same_v< decltype(t2),
      std::tuple<int, std::reference_wrapper<int>, int>
    >);
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Manipulating tuple values
Most of these functions and templates are useful only in the context of template
metaprogramming; you're unlikely to use them on a daily basis:

std::get<I>(t): Retrieves a reference to the Ith element of t.
std::tuple_size_v<decltype(t)>: Tells the size of the given tuple. Because
this is a compile-time constant property of the tuple's type, this is expressed as a
variable template parameterized on that type. If you'd rather use more natural-
looking syntax, you can write a helper function in either of the following ways:

        template<class T>
        constexpr size_t tuple_size(T&&)
        {
          return std::tuple_size_v<std::remove_reference_t<T>>;
        }

        template<class... Ts>
        constexpr size_t simpler_tuple_size(const std::tuple<Ts...>&)
        {
          return sizeof...(Ts);
        }

std::tuple_element_t<I, decltype(t)>: Tells the type of the Ith element of
the given tuple type. Again, the standard library exposes this information in a
more awkward way than the core language does. Generally, to find the type of
the Ith element of a tuple, you'd just write decltype(std::get<I>(t)).
std::tuple_cat(t1, t2, t3...): Concatenates all the given tuples together,
end to end.
std::forward_as_tuple(a, b, c...): Creates a tuple of references, just like
std::tie; but whereas std::tie demands lvalue references,
std::forward_as_tuple will accept any kind of references as input, and
perfectly forward them into the tuple so that they can later be extracted by
std::get<I>(t)...:

        template<typename F>
        void run_zeroarg(const F& f);

        template<typename F, typename... Args>
        void run_multiarg(const F& f, Args&&... args)
        {
          auto fwd_args =
            std::forward_as_tuple(std::forward<Args>(args)...);
          auto lambda = [&f, fwd_args]() {
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            std::apply(f, fwd_args);
          };
          run_zeroarg(f);
        }

A note about named classes
As we saw in Chapter 4, The Container Zoo, when we compared std::array<double, 3>
to struct Vec3, using an STL class template can shorten your development time and 
eliminate sources of error by reusing well-tested STL components; but it can also make your
code less readable or give your types too much functionality. In our example from Chapter
4, The Container Zoo, std::array<double, 3> turned out to be a poor choice for Vec3
because it exposed an unwanted operator<.

Using any of the algebraic types (tuple, pair, optional, or variant) directly in your
interfaces and APIs is probably a mistake. You'll find that your code is easier to read,
understand, and maintain if you write named classes for your own "domain-specific
vocabulary" types, even if--especially if--they end up being thin wrappers around the
algebraic types.

Expressing alternatives with std::variant
Whereas std::tuple<A,B,C> is a product type, std::variant<A,B,C> is a sum type. A
variant is allowed to hold either an A, a B, or a C--but never more (or less) than one of those
at a time. Another name for this concept is discriminated union, because a variant behaves a
lot like a native C++ union; but unlike a native union, a variant is always able to tell you
which of its elements, A, B, or C, is "active" at any given time. The official name for these
elements is "alternatives," since only one can be active at once:

    std::variant<int, double> v1;

    v1 = 1; // activate the "int" member
    assert(v1.index() == 0);
    assert(std::get<0>(v1) == 1);

    v1 = 3.14; // activate the "double" member
    assert(v1.index() == 1);
    assert(std::get<1>(v1) == 3.14);
    assert(std::get<double>(v1) == 3.14);

    assert(std::holds_alternative<int>(v1) == false);
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    assert(std::holds_alternative<double>(v1) == true);

    assert(std::get_if<int>(&v1) == nullptr);
    assert(*std::get_if<double>(&v1) == 3.14);

As with tuple, you can get a specific element of the variant using std::get<I>(v). If
your variant object's alternatives are all distinct (which should be the most common case,
unless you're doing deep metaprogramming), you can use std::get<T>(v) with types as
well as with indices--for an example, look at the preceding code sample, where
std::get<0>(v1) and std::get<int>(v1) work interchangeably because the zeroth
alternative in the variant v1 is of type int. Unlike tuple, however, std::get on a variant
is allowed to fail! If you call std::get<double>(v1) while v1 currently holds a value of
type int, then you'll get an exception of type std::bad_variant_access. std::get_if
is the "non-throwing" version of std::get. As shown in the preceding example, get_if
returns a pointer to the specified alternative if it's the active one, and otherwise returns a
null pointer. Therefore the following code snippets are all equivalent:

    // Worst...
    try {
      std::cout << std::get<int>(v1) << std::endl;
    } catch (const std::bad_variant_access&) {}

    // Still bad...
    if (v1.index() == 0) {
      std::cout << std::get<int>(v1) << std::endl;
    }

    // Slightly better...
    if (std::holds_alternative<int>(v1)) {
      std::cout << std::get<int>(v1) << std::endl;
    }

    // ...Best.
    if (int *p = std::get_if<int>(&v1)) {
      std::cout << *p << std::endl;
    }
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Visiting variants
In the preceding example, we showed how when we had a variable std::variant<int,
double> v, calling std::get<double>(v) would give us the current value if the variant
currently held a double, but would throw an exception if the variant held an int. This
might have struck you as odd--since int is convertible to double, why couldn't it just have
given us the converted value?

We can get that behaviour if we want it, but not from std::get. We have to re-express our
desire this way: "I have a variant. If it currently holds a double, call it d, then I want to get
double(d). If it holds an int i, then I want to get double(i)." That is, we have a list of
behaviors in mind, and we want to invoke exactly one of those behaviors on whichever
alternative is currently held by our variant v. The standard library expresses this algorithm
by the perhaps obscure name std::visit:

    struct Visitor {
      double operator()(double d) { return d; }
      double operator()(int i) { return double(i); }
      double operator()(const std::string&) { return -1; }
    };

    using Var = std::variant<int, double, std::string>;

    void show(Var v)
    {
      std::cout << std::visit(Visitor{}, v) << std::endl;
    }

    void test()
    {
      show(3.14);
      show(1);
      show("hello world");
    }
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Generally speaking, when we visit a variant, all of the behaviors that we have in mind are
fundamentally similar. Because we're writing in C++, with its overloading of functions and
operators, we can generally express our similar behaviors using exactly identical syntax. If
we can express them with identical syntax, we can wrap them up into a template function
or--the most common case--a C++14 generic lambda, like this:

    std::visit([](const auto& alt) {
      if constexpr (std::is_same_v<decltype(alt), const std::string&>) {
        std::cout << double(-1) << std::endl;
      } else {
        std::cout << double(alt) << std::endl;
      }
    }, v);

Notice the use of C++17 if constexpr to take care of the one case that's
fundamentally unlike the others. It's somewhat a matter of taste whether
you prefer to use explicit switching on decltype like this, or to make a
helper class such as the previous code sample's Visitor and rely on
overload resolution to pick out the correct overload of operator() for
each possible alternative.

There is also a variadic version of std::visit taking two, three, or even more variant
objects, of the same or different types. This version of std::visit can be used to
implement a kind of "multiple dispatch," as shown in the following code. However, you
almost certainly will never need this version of std::visit unless you're doing really
intense metaprogramming:

    struct MultiVisitor {
      template<class T, class U, class V>
      void operator()(T, U, V) const { puts("wrong"); }

      void operator()(char, int, double) const { puts("right!"); }
    };

    void test()
    {
      std::variant<int, double, char> v1 = 'x';
      std::variant<char, int, double> v2 = 1;
      std::variant<double, char, int> v3 = 3.14;
      std::visit(MultiVisitor{}, v1, v2, v3); // prints "right!"
    }
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What about make_variant? and a note on value
semantics
Since you can create a tuple object with std::make_tuple, or a pair with make_pair, you
might reasonably ask, "Where is make_variant?" It turns out that there is none. The 
primary reason for its absence is that whereas tuple and pair are product types, variant
is a sum type. To create a tuple, you always have to provide all n of its elements' values, and
so the element types can always be inferred. With variant, you only have to provide one
of its values--of type let's say A--but the compiler can't create a variant<A,B,C> object
without knowing the identities of types B and C as well. So there'd be no point in providing
a function my::make_variant<A,B,C>(a), given that the actual class constructor can be
spelled more concisely than that: std::variant<A,B,C>(a).

We have already alluded to the secondary reason for the existence of make_pair and
make_tuple: They automatically decay the special vocabulary type
std::reference_wrapper<T> into T&, so that std::make_pair(std::ref(a),
std::cref(b)) creates an object of type std::pair<A&, const B&>. Objects of "pair-of-
reference" or "tuple-of-reference" type behave very strangely: you can compare and copy
them with the usual semantics, but when you assign to an object of this type, rather than
"rebinding" the reference elements (so that they refer to the objects on the right-hand side),
the assignment operator actually "assigns through," changing the values of the referred-to
objects. As we saw in the code sample in section "Working with std::tuple", this
deliberate oddity allows us to use std::tie as a sort of "multiple assignment" statement.

So another reason that we might expect or desire to see a make_variant function in the
standard library would be for its reference-decaying ability. However, this is a moot point
for one simple reason--the standard forbids making variants whose elements are reference
types! We will see later in this chapter that std::optional and std::any are likewise
forbidden from holding reference types. (However,
std::variant<std::reference_wrapper<T>, ...> is perfectly legitimate.) This
prohibition comes because the designers of the library have not come to a consensus as to
what a variant of references should mean. Or, for that matter, what a tuple of references
should mean! only reason we have tuples of references in the language today is because
std::tie seemed like such a good idea in 2011. In 2017, nobody is particularly eager to
compound the confusion by introducing variants, optionals, or "anys" of references.
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We have established that a std::variant<A,B,C> always holds exactly one value of type
A, B, or C--no more and no less. Well, that's not technically correct. Under very unusual
circumstances, it is possible to construct a variant with no value whatsoever. The only way to
make this happen is to construct the variant with a value of type A, and then assign it a
value of type B in such a way that the A is successfully destroyed but the constructor B
throws an exception and the B is never actually emplaced. When this happens, the variant
object enters a state known as "valueless by exception":

    struct A {
      A() { throw "ha ha!"; }
    };
    struct B {
      operator int () { throw "ha ha!"; }
    };
    struct C {
      C() = default;
      C& operator=(C&&) = default;
      C(C&&) { throw "ha ha!"; }
    };

    void test()
    {
      std::variant<int, A, C> v1 = 42;

      try {
        v1.emplace<A>();
      } catch (const char *haha) {}
      assert(v1.valueless_by_exception());

      try {
        v1.emplace<int>(B());
      } catch (const char *haha) {}
      assert(v1.valueless_by_exception());
    }

This will never happen to you, unless you are writing code where your constructors or
conversion operators throw exceptions. Furthermore, by using operator= instead of
emplace, you can avoid valueless variants in every case except when you have a move
constructor that throws:

    v1 = 42;

    // Constructing the right-hand side of this assignment
    // will throw; yet the variant is unaffected.
    try { v1 = A(); } catch (...) {}
    assert(std::get<int>(v1) == 42);
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    // In this case as well.
    try { v1 = B(); } catch (...) {}
    assert(std::get<int>(v1) == 42);

    // But a throwing move-constructor can still foul it up.
    try { v1 = C(); } catch (...) {}
    assert(v1.valueless_by_exception());

Recall from the discussion of std::vector in Chapter 4, The Container Zoo, that your
types' move constructors should always be marked noexcept; so, if you follow that advice
religiously, you'll be able to avoid dealing with valueless_by_exception at all.

Anyway, when a variant is in this state, its index() method returns size_t(-1) (a
constant also known as std::variant_npos) and any attempt to std::visit it will
throw an exception of type std::bad_variant_access.

Delaying initialization with std::optional
You might already be thinking that one potential use for std::variant would be to
represent the notion of "Maybe I have an object, and maybe I don't." For example, we could
represent the "maybe I don't" state using the standard tag type std::monostate:

    std::map<std::string, int> g_limits = {
      { "memory", 655360 }
    };

    std::variant<std::monostate, int>
    get_resource_limit(const std::string& key)
    {
      if (auto it = g_limits.find(key); it != g_limits.end()) {
        return it->second;
      }
      return std::monostate{};
    }

    void test()
    {
      auto limit = get_resource_limit("memory");
      if (std::holds_alternative<int>(limit)) {
        use( std::get<int>(limit) );
      } else {
        use( some_default );
      }
    }
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You'll be pleased to know that this is not the best way to accomplish that goal! The standard
library provides the vocabulary type std::optional<T> specifically to deal with the notion
of "maybe I have an object, maybe I don't."

    std::optional<int>
    get_resource_limit(const std::string& key)
    {
      if (auto it = g_limits.find(key); it != g_limits.end()) {
        return it->second;
      }
      return std::nullopt;
    }

    void test()
    {
      auto limit = get_resource_limit("memory");
      if (limit.has_value()) {
        use( *limit );
      } else {
        use( some_default );
      }
    }

In the logic of algebraic data types, std::optional<T> is a sum type: it has exactly as
many possible values as T does, plus one. This one additional value is called the "null,"
"empty," or "disengaged" state, and is represented in source code by the special constant
std::nullopt.

Do not confuse std::nullopt with the similarly named std::nullptr!
They have nothing in common except that they're both vaguely null-ish.

Unlike std::tuple and std::variant with their mess of free (non-member) functions,
the std::optional<T> class is full of convenient member functions. o.has_value() is
true if the optional object o currently holds a value of type T. The "has-value" state is
commonly known as the "engaged" state; an optional object containing a value is "engaged"
and an optional object in the empty state is "disengaged."

The comparison operators ==, !=, <, <=, >, and >= are all overloaded for optional<T> if
they are valid for T. To compare two optionals, or to compare an optional to a value of type
T, all you need to remember is that an optional in the disengaged state compares "less than"
any real value of T.
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bool(o) is a synonym for o.has_value(), and !o is a synonym for !o.has_value().
Personally, I recommend that you always use has_value, since there's no difference in
runtime cost; the only difference is in the readability of your code. If you do use the
abbreviated conversion-to-bool form, be aware that for a std::optional<bool>, o ==
false and !o mean very different things!

o.value() returns a reference to the value contained by o. If o is currently disengaged,
then o.value() throws an exception of type std::bad_optional_access.

*o (using the overloaded unary operator*) returns a reference to the value contained by o,
without checking for engagement. If o is currently disengaged and you call *o, that's
undefined behavior, just as if you called *p on a null pointer. You can remember this
behavior by noticing that the C++ standard library likes to use punctuation for its most
efficient, least sanity-checked operations. For example, std::vector::operator[] does
less bounds-checking than std::vector::at(). Therefore, by the same logic,
std::optional::operator* does less bounds-checking than
std::optional::value().

o.value_or(x) returns a copy of the value contained by o, or, if o is disengaged, it returns
a copy of x converted to type T. We can use value_or to rewrite the preceding code sample
into a one-liner of utter simplicity and readability:

    std::optional<int> get_resource_limit(const std::string&);

    void test() {
      auto limit = get_resource_limit("memory");
      use( limit.value_or(some_default) );
    }

The preceding examples have shown how to use std::optional<T> as a way to handle
"maybe a T" in flight (as a function return type, or as a parameter type). Another common
and useful way to use std::optional<T> is as a way to handle "not yet a T" at rest, as a
class data member. For example, suppose we have some type L which is not default-
constructible, such as the closure type produced by a lambda expression:

    auto make_lambda(int arg) {
      return [arg](int x) { return x + arg; };
    }
    using L = decltype(make_lambda(0));

    static_assert(!std::is_default_constructible_v<L>);
    static_assert(!std::is_move_assignable_v<L>);
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Then a class with a member of that type would also fail to be default-constructible:

    class ProblematicAdder {
      L fn_;
    };

    static_assert(!std::is_default_constructible_v<ProblematicAdder>);

But, by giving our class a member of type std::optional<L>, we allow it to be used in
contexts that require default-constructibility:

    class Adder {
      std::optional<L> fn_;
      public:
      void setup(int first_arg) {
        fn_.emplace(make_lambda(first_arg));
      }
      int call(int second_arg) {
        // this will throw unless setup() was called first
        return fn_.value()(second_arg);
      }
    };

    static_assert(std::is_default_constructible_v<Adder>);

    void test() {
      Adder adder;
      adder.setup(4);
      int result = adder.call(5);
      assert(result == 9);
    }

It would be very difficult to implement this behavior without std::optional. You could
do it with placement-new syntax, or using a union, but essentially you'd have to
reimplement at least half of optional yourself. Much better to use std::optional!

And notice that if for some reason we wanted to get undefined behavior
instead of the possibility of throwing from call(), we could just replace
fn_.value() with *fn_.

std::optional is truly one of the biggest wins among the new features of C++17, and
you'll benefit immensely by getting familiar with it.
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From optional, which could be described as a sort of limited one-type variant, we now
approach the other extreme: the algebraic-data-type equivalent of infinity.

Revisiting variant
The variant data type is good at representing simple alternatives, but as of C++17, it is not
particularly suitable for representing recursive data types such as JSON lists. That is, the
following C++17 code will fail to compile:

    using JSONValue = std::variant<
      std::nullptr_t,
      bool,
      double,
      std::string,
      std::vector<JSONValue>,
      std::map<std::string, JSONValue>
    >;

There are several possible workarounds. The most robust and correct is to continue using
the C++11 Boost library boost::variant, which specifically supports recursive variant
types via the marker type boost::recursive_variant_:

    using JSONValue = boost::variant<
      std::nullptr_t,
      bool,
      double,
      std::string,
      std::vector<boost::recursive_variant_>,
      std::map<std::string, boost::recursive_variant_>
    >;

You could also get around the problem by introducing a new class type called JSONValue,
which either HAS-A or IS-A std::variant of the recursive type.

Notice that in the following example I chose HAS-A rather than IS-A;
inheriting from non-polymorphic standard library types is almost always
a really bad idea.

Since forward references to class types are acceptable to C++, this will compile:

    struct JSONValue {
      std::variant<
        std::nullptr_t,
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        bool,
        double,
        std::string,
        std::vector<JSONValue>,
        std::map<std::string, JSONValue>
      > value_;
    };

The final possibility is to switch to an algebraic type from the standard library that is even
more powerful than variant.

Infinite alternatives with std::any
To paraphrase Henry Ford, an object of type std::variant<A, B, C> can hold a value
of any type--as long as it's A, B, or C. But suppose we wanted to hold a value of truly any
type? Perhaps our program will load plugins at runtime that might contain new types
impossible to predict. We can't specify those types in a variant. Or perhaps we are in the
"recursive data type" situation detailed in the preceding section.

For these situations, the C++17 standard library provides an algebraic-data-type version of
"infinity": the type std::any. This is a sort of a container (see Chapter 4, The Container Zoo)
for a single object of any type at all. The container may be empty, or it may contain an
object. You can perform the following fundamental operations on an any object:

Ask if it currently holds an object
Put a new object into it (destroying the old object, whatever it was)
Ask the type of the held object
Retrieve the held object, by correctly naming its type

In code the first three of these operations look like this:

    std::any a; // construct an empty container

    assert(!a.has_value());

    a = std::string("hello");
    assert(a.has_value());
    assert(a.type() == typeid(std::string));

    a = 42;
    assert(a.has_value());
    assert(a.type() == typeid(int));
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The fourth operation is a little more fiddly. It is spelled std::any_cast, and, like
std::get for variants, it comes in two flavors: a std::get-like flavor that throws
std::bad_any_cast on failure, and a std::get_if-like flavor that returns a null pointer
on failure:

    if (std::string *p = std::any_cast<std::string>(&a)) {
      use(*p);
    } else {
      // go fish!
    }

    try {
      std::string& s = std::any_cast<std::string&>(a);
      use(s);
    } catch (const std::bad_any_cast&) {
      // go fish!
    }

Observe that in either case, you must name the type that you want to retrieve from the any
object. If you get the type wrong, then you'll get an exception or a null pointer. There is no
way to say "Give me the held object, no matter what type it is," since then what would be
the type of that expression?

Recall that when we faced a similar problem with std::variant in the preceding section,
we solved it by using std::visit to visit some generic code onto the held alternative.
Unfortunately, there is no equivalent std::visit for any. The reason is simple and
insurmountable: separate compilation. Suppose in one source file, a.cc, I have:

    template<class T> struct Widget {};

    std::any get_widget() {
      return std::make_any<Widget<int>>();
    }

And in another source file, b.cc, (perhaps compiled into a different plugin, .dll, or shared
object file) I have:

    template<class T> struct Widget {};

    template<class T> int size(Widget<T>& w) {
      return sizeof w;
    }

    void test()
    {
      std::any a = get_widget();
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      int sz = hypothetical_any_visit([](auto&& w){
        return size(w);
      }, a);
      assert(sz == sizeof(Widget<int>));
    }

How should the compiler know, when compiling b.cc, that it needs to output a template
instantiation for size(Widget<int>&) as opposed to, let's say,
size(Widget<double>&)? When someone changes a.cc to return
make_any(Widget<char>&), how should the compiler know that it needs to recompile
b.cc with a fresh instantiation of size(Widget<char>&) and that the instantiation of
size(Widget<int>&) is no longer needed--unless of course we're anticipating being
linked against a c.cc that does require that instantiation! Basically, there's no way for the
compiler to figure out what kind of code-generation might possibly be needed by visitation,
on a container that can by definition contain any type and trigger any code-generation.

Therefore, in order to extract any function of the contained value of an any, you must know
up front what the type of that contained value might be. (And if you guess wrong--go fish!)

std::any versus polymorphic class types
std::any occupies a position in between the compile-time polymorphism of
std::variant<A, B, C> and the runtime polymorphism of polymorphic inheritance
hierarchies and dynamic_cast. You might wonder whether std::any interacts with the
machinery of dynamic_cast at all. The answer is "no, it does not"--nor is there any
standard way to get that behavior. std::any is one hundred percent statically type-safe:
there is no way to break into it and get a "pointer to the data" (for example, a void *)
without knowing the exact static type of that data:

    struct Animal {
      virtual ~Animal() = default;
    };

    struct Cat : Animal {};

    void test()
    {
      std::any a = Cat{};

      // The held object is a "Cat"...
      assert(a.type() == typeid(Cat));
      assert(std::any_cast<Cat>(&a) != nullptr);
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      // Asking for a base "Animal" will not work.
      assert(a.type() != typeid(Animal));
      assert(std::any_cast<Animal>(&a) == nullptr);

      // Asking for void* certainly will not work!
      assert(std::any_cast<void>(&a) == nullptr);
    }

Type erasure in a nutshell
Let's look briefly at how std::any might be implemented by the standard library. The core
idea is called "type erasure," and the way we achieve it is to identify the salient or relevant
operations that we want to support for all types T, and then "erase" every other idiosyncratic
operation that might be supported by any specific type T.

For std::any, the salient operations are as follows:

Constructing a copy of the contained object
Constructing a copy of the contained object "by move"
Getting typeid of the contained object

Construction and destruction are also required, but those two operations are concerned
with the lifetime management of the contained object itself, not "what you can do with it,"
so at least in this case we don't need to consider them.

So we invent a polymorphic class type (call it AnyBase) which supports only those three
operations as overrideable virtual methods, and then we create a brand-new derived
class (call it AnyImpl<T>) each time the programmer actually stores an object of a specific
type T into any:

    class any;

    struct AnyBase {
      virtual const std::type_info& type() = 0;
      virtual void copy_to(any&) = 0;
      virtual void move_to(any&) = 0;
      virtual ~AnyBase() = default;
    };

    template<typename T>
    struct AnyImpl : AnyBase {
      T t_;
      const std::type_info& type() {
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        return typeid(T);
      }
      void copy_to(any& rhs) override {
        rhs.emplace<T>(t_);
      }
      void move_to(any& rhs) override {
        rhs.emplace<T>(std::move(t_));
      }
      // the destructor doesn't need anything
      // special in this case
    };

With these helper classes, the code to implement std::any becomes fairly trivial, especially
when we use a smart pointer (see Chapter 6, Smart Pointers) to manage the lifetime of our
AnyImpl<T> object:

    class any {
      std::unique_ptr<AnyBase> p_ = nullptr;
      public:
      template<typename T, typename... Args>
      std::decay_t<T>& emplace(Args&&... args) {
        p_ = std::make_unique<AnyImpl<T>>(std::forward<Args>(args)...);
      }

      bool has_value() const noexcept {
        return (p_ != nullptr);
      }

      void reset() noexcept {
        p_ = nullptr;
      }

      const std::type_info& type() const {
        return p_ ? p_->type() : typeid(void);
      }

      any(const any& rhs) {
        *this = rhs;
      }

      any& operator=(const any& rhs) {
        if (rhs.has_value()) {
          rhs.p_->copy_to(*this);
        }
        return *this;
      }
    };



Vocabulary Types

[ 134 ]

The preceding code sample omits the implementation of move-assignment. It can be done
in the same way as copy-assignment, or it can be done by simply swapping the pointers.
The standard library actually prefers to swap pointers when possible, because that is
guaranteed to be noexcept; the only reason that you might see std::any not swapping
pointers is if it uses a "small object optimization" to avoid heap allocation altogether for
very small, nothrow-move-constructible types T. As of this writing, libstdc++ (the library
used by GCC) will use small object optimization and avoid heap allocation for types up to 8
bytes in size; libc++ (the library used by Clang) will use small object optimization for types
up to 24 bytes in size.

Unlike the standard containers discussed in Chapter 4, The Container Zoo, std::any does
not take an allocator parameter and does not allow you to customize or configure the source
of its heap memory. If you use C++ on a real-time or memory-constrained system where
heap allocation is not allowed, then you should not use std::any. Consider an alternative
such as Tiemo Jung's tj::inplace_any<Size, Alignment>. If all else fails, you have
now seen how to roll your own!

std::any and copyability
Notice that our definition of AnyImpl<T>::copy_to required T to be copy-constructible.
This is true of the standard std::any as well; there is simply no way to store a move-only
type into a std::any object. The way to work around this is with a sort of a "shim"
wrapper, whose purpose is to make its move-only object conform to the syntactic
requirement of copy-constructibility while eschewing any actual copying:

    using Ptr = std::unique_ptr<int>;

    template<class T>
    struct Shim {
      T get() { return std::move(*t_); }

      template<class... Args>
      Shim(Args&&... args) : t_(std::in_place,
        std::forward<Args>(args)...) {}

      Shim(Shim&&) = default;
      Shim& operator=(Shim&&) = default;
      Shim(const Shim&) { throw "oops"; }
      Shim& operator=(const Shim&) { throw "oops"; }
      private:
      std::optional<T> t_;
    };
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    void test()
    {
      Ptr p = std::make_unique<int>(42);

      // Ptr cannot be stored in std::any because it is move-only.
      // std::any a = std::move(p);

      // But Shim<Ptr> can be!
      std::any a = Shim<Ptr>(std::move(p));
      assert(a.type() == typeid(Shim<Ptr>));

      // Moving a Shim<Ptr> is okay...
      std::any b = std::move(a);

      try {
        // ...but copying a Shim<Ptr> will throw.
        std::any c = b;
      } catch (...) {}

      // Get the move-only Ptr back out of the Shim<Ptr>.
      Ptr r = std::any_cast<Shim<Ptr>&>(b).get();
      assert(*r == 42);
    }

Notice the use of std::optional<T> in the preceding code sample; this guards our fake
copy constructor against the possibility that T might not be default-constructible.

Again with the type erasure: std::function
We observed that for std::any, the salient operations were as follows:

Constructing a copy of the contained object
Constructing a copy of the contained object "by move"
Getting the typeid of the contained object

Suppose we were to add one to this set of salient operations? Let's say our set is:

Constructing a copy of the contained object
Constructing a copy of the contained object "by move"
Getting the typeid of the contained object
Calling the contained object with a particular fixed sequence of argument types
A..., and converting the result to some particular fixed type R
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The type-erasure of this set of operations corresponds to the standard library type
std::function<R(A...)>!

    int my_abs(int x) { return x < 0 ? -x : x; }
    long unusual(long x, int y = 3) { return x + y; }

    void test()
    {
      std::function<int(int)> f; // construct an empty container
      assert(!f);

      f = my_abs; // store a function in the container
      assert(f(-42) == 42);

      f = [](long x) { return unusual(x); }; // or a lambda!
      assert(f(-42) == -39);
    }

Copying std::function always makes a copy of the contained object, if the contained
object has state. Of course if the contained object is a function pointer, you won't observe
any difference; but you can see the copying happen if you try it with an object of user-
defined class type, or with a stateful lambda:

    f = [i=0](int) mutable { return ++i; };
    assert(f(-42) == 1);
    assert(f(-42) == 2);

    auto g = f;
    assert(f(-42) == 3);
    assert(f(-42) == 4);
    assert(g(-42) == 3);
    assert(g(-42) == 4);

Just as with std::any, std::function<R(A...) allows you to retrieve the typeid of the
contained object, or to retrieve a pointer to the object itself as long as you statically know (or
can guess) its type:

f.target_type() is the equivalent of a.type()
f.target<T>() is the equivalent of std::any_cast<T*>(&a)

    if (f.target_type() == typeid(int(*)(int))) {
      int (*p)(int) = *f.target<int (*)(int)>();
      use(p);
    } else {
      // go fish!
    }
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That said, I have never seen a use-case for these methods in real life. Generally, if you have
to ask what the contained type of a std::function is, you've already done something
wrong.

The most important use-case for std::function is as a vocabulary type for passing
"behaviors" across module boundaries, where using a template would be impossible--for
example, when you need to pass a callback to a function in an external library, or when
you're writing a library that needs to receive a callback from its caller:

    // templated_for_each is a template and must be visible at the
    // point where it is called.
    template<class F>
    void templated_for_each(std::vector<int>& v, F f) {
      for (int& i : v) {
        f(i);
      }
    }

    // type_erased_for_each has a stable ABI and a fixed address.
    // It can be called with only its declaration in scope.
    extern void type_erased_for_each(std::vector<int>&,
      std::function<void(int)>);

We started this chapter talking about std::string, the standard vocabulary type for
passing strings between functions; now, as the end of the chapter draws near, we're talking
about std::function, the standard vocabulary type for passing functions between
functions!

std::function, copyability, and allocation
Just like std::any, std::function requires that whatever object you store in it must be
copy-constructible. This can present a problem if you are using a lot of lambdas that capture
std::future<T>, std::unique_ptr<T>, or other move-only types: such lambda types
will be move-only themselves. One way to fix that was demonstrated in the std::any and
copyability section in this chapter: we could introduce a shim that is syntactically copyable
but throws an exception if you try to copy it.
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When working with std::function and lambda captures, it might often be preferable to
capture your move-only lambda captures by shared_ptr. We'll cover shared_ptr in the
next chapter:

    auto capture = [](auto& p) {
      using T = std::decay_t<decltype(p)>;
      return std::make_shared<T>(std::move(p));
    };

   std::promise<int> p;

   std::function<void()> f = [sp = capture(p)]() {
     sp->set_value(42);
   };

Like std::any, std::function does not take an allocator parameter and does not allow
you to customize or configure the source of its heap memory. If you use C++ on a real-time
or memory-constrained system where heap allocation is not allowed, then you should not
use std::function. Consider an alternative such as Carl Cook's
sg14::inplace_function<R(A...), Size, Alignment>.

Summary
Vocabulary types like std::string and std::function allow us to share a lingua franca
for dealing with common programming concepts. In C++17, we have a rich set of
vocabulary types for dealing with the algebraic data types: std::pair and std::tuple
(product types), std::optional and std::variant (sum types), and std::any (the
ultimate in sum types--it can store almost anything). However, don't get carried away and
start using std::tuple and std::variant return types from every function! Named class
types are still the most effective way to keep your code readable.

Use std::optional to signal the possible lack of a value, or to signal the "not-yet-ness" of
a data member.

Use std::get_if<T>(&v) to query the type of a variant; use std::any_cast<T>(&a)
to query the type of an any. Remember that the type you provide must be an exact match; if
it's not, you'll get nullptr.
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Be aware that make_tuple and make_pair do more than construct tuple and pair
objects; they also decay reference_wrapper objects into native references. Use std::tie
and std::forward_as_tuple to create tuples of references. std::tie is particularly
useful for multiple assignment and for writing comparison operators.
std::forward_as_tuple is useful for metaprogramming.

Be aware that std::variant always has the possibility of being in a "valueless by
exception" state; but know that you don't have to worry about that case unless you write
classes with throwing move-constructors. Separately: don't write classes with throwing
move-constructors!

Be aware that the type-erased types std::any and std::function implicitly use the heap.
Third-party libraries provide non-standard inplace_ versions of these types. Be aware that
std::any and std::function require copyability of their contained types. Use "capture
by shared_ptr" to deal with this case if it arises.



6
Smart Pointers

C++ holds its grip on large swaths of the software industry by virtue of its performance--
well-written C++ code runs faster than anything else out there, almost by definition, because
C++ gives the programmer almost complete control over the code that is ultimately
generated by the compiler.

One of the classic features of low-level, performant code is the use of raw pointers (Foo*).
However, raw pointers come with many pitfalls, such as memory leaks and dangling
pointers. The C++11 library's "smart pointer" types can help you avoid these pitfalls at little
to no expense.

In this chapter we'll learn the following:

The definition of "smart pointer" and how you might write your own
The usefulness of std::unique_ptr<T> in preventing resource leaks of all types
(not just memory leaks)
How std::shared_ptr<T> is implemented, and its implications for memory
usage
The meaning and uses of the Curiously Recurring Template Pattern

The origins of smart pointers
Raw pointers have many uses in C:

As a cheap, non-copying view of an object owned by the caller
As a way for the callee to modify an object owned by the caller
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As one-half of a pointer/length pair, used for arrays
As an optional argument (either a valid pointer or null)
As a way to manage memory on the heap

In C++, we have native references (const Foo& and Foo&) to handle the first two bullets;
plus, move semantics makes it cheap for a callee to take and pass back a complex object by
value in most cases, thus completely avoiding aliasing. In C++17 we can use
std::string_view to address some of the first and third bullet. And we've just seen in
Chapter 5, Vocabulary Types, that passing an optional<T>--or perhaps getting fancy with
an optional<reference_wrapper<T>>--is sufficient to handle the fourth bullet.

This chapter will be concerned with the fifth bullet.

Heap allocation comes with a host of problems in C, and all those problems (and more!)
applied to C++ prior to 2011. As of C++11, though, almost all of those problems have
disappeared. Let's enumerate them:

Memory leaks: You might allocate a piece of memory or an object on the heap,
and accidentally forget to write the code that frees it.
Memory leaks: You might have written that code, but due to an early return or
an exception being thrown, the code never runs and the memory remains
unfreed!
Use-after-free: You take a copy of a pointer to an object on the heap, and then
free that object through the original pointer. The holder of the copied pointer
doesn't realize that their pointer is no longer valid.
Heap corruption via pointer arithmetic: You allocate an array on the heap at
address A. Having a raw pointer to an array tempts you to do pointer arithmetic,
and in the end you accidentally free a pointer to address A+k. When k=0 (as
Murphy's Law ensures it will be, in testing) there is no problem; when k=1 you
corrupt your heap and cause a crash.

The first two problems are compounded by the fact that heap allocation is semantically
allowed to fail--malloc can return null, operator new can throw std::bad_alloc--
which means that if you're writing pre-C++11 code that allocates memory, you are probably
writing a lot of cleanup code to deal with allocation failure. (In C++, you're "writing" that
code whether you know it or not, because the control flow paths due to exception handling
are there even if you're not consciously thinking about them.) The upshot of all this is that
managing heap-allocated memory in C++ is hard.

Unless you use smart pointers!
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Smart pointers never forget
The idea of a "smart pointer" type (not to be confused with a "fancy pointer" type, which
we'll cover in Chapter 8, Allocators) is that it's a class--typically a class template--which
behaves syntactically just like a pointer, but whose special member functions (construction,
destruction, and copying/moving) have additional bookkeeping to ensure certain
invariants. For example, we might ensure the following:

The pointer's destructor also frees its pointee--helping to solve memory leaks
Maybe the pointer cannot be copied--helping to solve use-after-free
Or maybe the pointer can be copied, but it knows how many copies exist and
won't free the pointee until the last pointer to it has been destroyed
Or maybe the pointer can be copied, and you can free the pointee, but if you do,
all other pointers to it magically become null
Or maybe the pointer has no built-in operator+--helping
to solve corruption due to pointer arithmetic
Or maybe you're allowed to adjust the pointer's value arithmetically, but the
arithmetic "what object is pointed-to" is managed separately from the identity of
"what object is to be freed"

The standard smart pointer types are std::unique_ptr<T>, std::shared_ptr<T>, and
(not really a pointer type, but we'll lump it in with them) std::weak_ptr<T>. In this
chapter we'll cover all three of those types, plus one non-standard smart pointer that you
might find useful--and which might become a standard smart pointer type in a future C++
standard!

Automatically managing memory with
std::unique_ptr<T>
The fundamental properties of a smart pointer type are simple: it should support
operator*, and it should overload the special member functions to preserve its class
invariants, whatever those are.
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std::unique_ptr<T> supports the same interface as T*, but with the class invariant that,
once you construct a unique_ptr pointing to a given heap-allocated object, that object will
be freed when the destructor unique_ptr is called. Let's write some code supporting that
T* interface:

    template<typename T>
    class unique_ptr {
      T *m_ptr = nullptr;
    public:
      constexpr unique_ptr() noexcept = default;
      constexpr unique_ptr(T *p) noexcept : m_ptr(p) {}

      T *get() const noexcept { return m_ptr; }
      operator bool() const noexcept { return bool(get()); }
      T& operator*() const noexcept { return *get(); }
      T* operator->() const noexcept { return get(); }

If we stopped here--with just a way to construct a pointer object from a T* and a way to get
the pointer out again--we'd have the observer_ptr<T> discussed at the end of this
chapter. But we'll keep going. We'll add methods release and reset:

      void reset(T *p = nullptr) noexcept {
        T *old_p = std::exchange(m_ptr, p);
        delete old_p;
      }

      T *release() noexcept {
        return std::exchange(m_ptr, nullptr);
      }

p.release() is just like p.get(), but in addition to returning a copy of the original raw
pointer, it nulls out the contents of p (without freeing the original pointer, of course,
because presumably our caller wants to take ownership of it).

p.reset(q) does free the current contents of p, and then puts the raw pointer q in its place.

Notice that we have implemented both of these member functions in terms of the standard
algorithm std::exchange, which we didn't cover in Chapter 3, The Iterator-Pair
Algorithms. It's sort of a value-returning version of std::swap: pass in a new value, get out
the former value.
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Finally, with these two primitive operations, we can implement the special member
functions of std::unique_ptr<T> so as to preserve our invariant--which, again, is this:
once a raw pointer has been acquired by a unique_ptr object, it will remain valid as long
as the unique_ptr object has the same value, and when that's no longer true--when the
unique_ptr is adjusted to point elsewhere, or destroyed--the raw pointer will be freed
correctly. Here are the special member functions:

      unique_ptr(unique_ptr&& rhs) noexcept {
        this->reset(rhs.release());
      }

      unique_ptr& operator=(unique_ptr&& rhs) noexcept {
        reset(rhs.release());
        return *this;
      }

      ~unique_ptr() {
        reset();
      }
    };

In memory, our std::unique_ptr<T> will look like this:

There is one more little helper function we need, so as never to touch raw pointers with our
hands:

    template<typename T, typename... Args>
    unique_ptr<T> make_unique(Args&&... args)
    {
      return unique_ptr<T>(new T(std::forward<Args>(args)...));
    }
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With unique_ptr in our toolbox, we can replace old-style code such as this:

    struct Widget {
      virtual ~Widget();
    };
    struct WidgetImpl : Widget {
      WidgetImpl(int size);
    };
    struct WidgetHolder {
      void take_ownership_of(Widget *) noexcept;
    };
    void use(WidgetHolder&);

    void test() {
      Widget *w = new WidgetImpl(30);
      WidgetHolder *wh;
      try {
        wh = new WidgetHolder();
      } catch (...) {
        delete w;
        throw;
      }
      wh->take_ownership_of(w);
      try {
        use(*wh);
      } catch (...) {
        delete wh;
        throw;
      }
      delete wh;
    }

It can be replaced with modern C++17 code like this:

    void test() {
      auto w = std::make_unique<WidgetImpl>(30);
      auto wh = std::make_unique<WidgetHolder>();
      wh->take_ownership_of(w.release());
      use(*wh);
    }
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Notice that unique_ptr<T> is yet another application of RAII--in this case, quite literally.
Although the "interesting" action (the freeing of the underlying raw pointer) still happens
during destruction (of the unique_ptr), the only way you'll get the full benefit of
unique_ptr is if you make sure that whenever you allocate a resource, you also initialize a
unique_ptr to manage it. The std::make_unique<T>() function shown in the previous
section (and introduced to the standard library in C++14) is the key to safe memory
management in modern C++.

While it is possible to use unique_ptr without using make_unique, you should not do it:

    std::unique_ptr<Widget> bad(new WidgetImpl(30));
    bad.reset(new WidgetImpl(40));

    std::unique_ptr<Widget> good = std::make_unique<WidgetImpl>(30);
    good = std::make_unique<WidgetImpl>(40);

Why C++ doesn't have the finally keyword
Consider again this snippet of code from the preceding section's "pre-modern" code sample:

    try {
      use(*wh);
    } catch (...) {
      delete wh;
      throw;
    }
    delete wh;

In other languages such as Java and Python, these semantics might be expressed more
compactly using the finally keyword:

    try {
      use(*wh);
    } finally {
      delete wh;
    }

C++ doesn't have the finally keyword, and shows no signs that it will ever enter the
language. This is simply due to a philosophical difference between C++ and those other
languages: the C++ philosophy is that if you're concerned with enforcing some invariant--such
as "this pointer shall always be freed at the end of this block, no matter how we get there"--
then you shouldn't ever be writing explicit code, because then there's always a chance for you
to write it wrong, and then you'll have bugs.
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If you have some invariant that you want to enforce, then the right place to enforce it is in the
type system, using constructors, destructors, and other special member functions--the tools
of RAII. Then, you can ensure that any possible use of your new type preserves its invariants-
-such as "the underlying pointer shall be freed whenever it's no longer held by an object of
this type"--and when you go to write your business logic, you won't have to write anything
explicitly; the code will look simple and yet always--provably--have correct behavior.

So if you find yourself writing code that looks like the preceding example, or if you find
yourself wishing you could just write finally, stop and think: "Should I be using
unique_ptr for this?" or "Should I write an RAII class type for this?"

Customizing the deletion callback
Speaking of custom RAII types, you might be wondering whether it's possible to use
std::unique_ptr with a customized deletion callback: for example, instead of passing the
underlying pointer to delete, you might want to pass it to free(). Yes you can!

std::unique_ptr<T,D> has a second template type parameter: a deletion callback type. The
parameter D defaults to std::default_delete<T>, which just calls operator delete,
but you can pass in any type you want--typically a user-defined class type with an
overloaded operator():

    struct fcloser {
      void operator()(FILE *fp) const {
        fclose(fp);
      }

      static auto open(const char *name, const char *mode) {
        return std::unique_ptr<FILE, fcloser>(fopen(name, mode));
      }
    };

    void use(FILE *);

    void test() {
      auto f = fcloser::open("test.txt", "r");
      use(f.get());
      // f will be closed even if use() throws
    }
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Incidentally, notice that the destructor of std::unique_ptr is carefully written so that it
guarantees never to call your callback with a null pointer. This is absolutely critical in the
preceding example, because fclose(NULL) is a special case that means "close all open file
handles in the current process"--which is never what you wanted to do!

Observe also that std::make_unique<T>() only ever takes one template type parameter;
there is no std::make_unique<T,D>(). But the rule to avoid touching raw pointers with
your hands is still a good one; that's why our preceding example wraps the fopen and
unique_ptr construction into a small reusable helper function fcloser::open, rather
than inlining the call to fopen into the body of test.

The space for your custom deleter will be allocated in the body of the
std::unique_ptr<T,D> object itself, which means sizeof(unique_ptr<T,D>) may be
bigger than sizeof(unique_ptr<T>) if D has any member data:

Managing arrays with std::unique_ptr<T[]>
Another case where delete p is not the appropriate way to free a raw pointer is if p is a
pointer to the first element of an array; in that case, delete [] p should be used instead.
Fortunately, as of C++14, std::unique_ptr<T[]> exists and does the right thing in this
case (by virtue of the fact that std::default_delete<T[]> also exists and does the right
thing, which is to call operator delete[]).
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An overload of std::make_unique for array types does exist, although be careful--it
assigns a different meaning to its argument! std::make_unique<T[]>(n) essentially calls
new T[n](), where the parentheses on the end signify that it's going to value-initialize all
the elements; that is, it will zero out primitive types. In the rare case that you don't want this
behavior, you'll have to call new yourself and wrap the return value in a
std::unique_ptr<T[]>, preferably using a helper function as we did in the example in
the preceding section (where we used fcloser::open).

Reference counting with std::shared_ptr<T>
Having completely solved the problem of memory leaks, we now tackle the problem of use-
after-free bugs. The essential problem to be solved here is unclear ownership--or rather
shared ownership--of a given resource or chunk of memory. This chunk of memory
might have several people looking at it at different times, maybe from different data
structures or from different threads, and we want to make sure that all these stakeholders
are involved in the decision about when to free it. The ownership of the underlying chunk
of memory should be shared.

For this, the standard has provided std::shared_ptr<T>. Its interface appears very
similar to std::unique_ptr<T>; all of the differences are hidden under the hood, in the
implementations of the special member functions.

std::shared_ptr<T> provides an approach to memory management that is often known
as reference counting. Each object managed by a shared_ptr keeps count of how many
references to it are in the system--that is, how many stakeholders care about it right now--
and as soon as that number drops to zero, the object knows it's time to clean itself up. Of
course, it's not really "the object" that cleans itself up; the entity that knows how to count
references and clean things up is a small wrapper, or "control block," which is created on the
heap whenever you transfer ownership of an object to shared_ptr. The control block is
handled invisibly by the library, but if we were to view its layout in memory, it might look
something like this:
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Just as unique_ptr has make_unique, the standard library provides shared_ptr with
make_shared so that you never have to touch raw pointers with your hands. The other
advantage of using std::make_shared<T>(args) to allocate shared objects is that
transferring ownership into a shared_ptr requires allocating additional memory for the
control block. When you call make_shared, the library is permitted to allocate a single
chunk of memory that's big enough for both the control block and your T object, in one
allocation. (This is illustrated by the physical placement of the rectangles for
control_block_impl and Super in the preceding diagram.)

Copying a shared_ptr increments the "use-count" of its associated control block;
destroying a shared_ptr decrements its use-count. Assigning over the value of a
shared_ptr will decrement the use-count of its old value (if any), and increment the use-
count of its new value. Here are some examples of playing with shared_ptr:

    std::shared_ptr<X> pa, pb, pc;

    pa = std::make_shared<X>();
    // use-count always starts at 1

    pb = pa;
    // make a copy of the pointer; use-count is now 2

    pc = std::move(pa);
    assert(pa == nullptr);
    // moving the pointer keeps the use-count at 2

    pb = nullptr;
    // decrement the use-count back to 1
    assert(pc.use_count() == 1);
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The following diagram illustrates an interesting and occasionally useful aspect of
shared_ptr: the ability for two instances of shared_ptr to refer to the same control block
and yet point to different pieces of the memory being managed by that control block:

The constructor being used in the preceding diagram, which is also used in the
get_second() function, is often called the "aliasing constructor" of shared_ptr. It takes
an existing non-null shared_ptr object of any type, whose control block will be shared by
the newly constructed object. In the following code sample, the message "destroying Super"
will not be printed until after the message "accessing Super::second":

    struct Super {
      int first, second;
      Super(int a, int b) : first(a), second(b) {}
      ~Super() { puts("destroying Super"); }
    };

    auto get_second() {
      auto p = std::make_shared<Super>(4, 2);
      return std::shared_ptr<int>(p, &p->second);
    }

    void test() {
      std::shared_ptr<int> q = get_second();
      puts("accessing Super::second");
      assert(*q == 2);
    }
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As you can see, once ownership has been transferred into the shared_ptr system, the
responsibility for remembering how to free a managed resource rests entirely on the
shoulders of the control block. It isn't necessary for your code to deal in shared_ptr<T>
just because the underlying managed object happens to be of type T.

Don't double-manage!
While shared_ptr<T> has the potential to eliminate nasty double-free bugs from your
pointer code, it is sadly all too common for inexperienced programmers to write the same
bugs using shared_ptr simply by over-using the constructors that take raw pointer
arguments. Here's an example:

    std::shared_ptr<X> pa, pb, pc;

    pa = std::make_shared<X>();
      // use-count always starts at 1

    pb = pa;
      // make a copy of the pointer; use-count is now 2

    pc = std::shared_ptr<X>(pb.get()); // WRONG!
      // give the same pointer to shared_ptr again,
      // which tells shared_ptr to manage it -- twice!
    assert(pb.use_count() == 2);
    assert(pc.use_count() == 1);

    pc = nullptr;
      // pc's use-count drops to zero and shared_ptr
      // calls "delete" on the X object

    *pb; // accessing the freed object yields undefined behavior

Remember that your goal should be never to touch raw pointers with your hands! The place
where this code goes wrong is the very first time it calls pb.get() to fetch the raw pointer
out of shared_ptr.
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It would have been correct to call the aliasing constructor here, pc =
std::shared_ptr<X>(pb, pb.get()), but that would have had the same effect as a
simple assignment pc = pb. So another general rule we can state is: if you have to use the
word shared_ptr explicitly in your code, you're doing something out of the ordinary--and
perhaps dangerous. Without naming shared_ptr in your code, you can already allocate
and manage heap objects (using std::make_shared) and manipulate a managed object's
use-count by creating and destroying copies of the pointer (using auto to declare variables
as you need them). The one place this rule definitely breaks down is when you sometimes
need to declare a class data member of type shared_ptr<T>; you generally can't do that
without writing the name of the type!

Holding nullable handles with weak_ptr
You may have noticed in the previous diagrams, an unexplained data member of the 
control block marked "weak count". It's time to explain what that is.

Sometimes--it's rare, but sometimes--we have a situation where we're using shared_ptr to
manage the ownership of shared objects, and we'd like to keep a pointer to an object
without actually expressing ownership of that object. Of course we could use a raw pointer,
reference, or observer_ptr<T> to express the idea of "non-owning reference," but the
danger then would be that the actual owners of the referenced object could decide to free it,
and then when we went to dereference our non-owning pointer, we'd visit a freed object
and get undefined behavior. DangerousWatcher in the following code sample illustrates
this dangerous behavior:

    struct DangerousWatcher {
      int *m_ptr = nullptr;

      void watch(const std::shared_ptr<int>& p) {
        m_ptr = p.get();
      }
      int current_value() const {
        // By now, *m_ptr might have been deallocated!
        return *m_ptr;
      }
    };
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We could alternatively use a shared_ptr to express the idea of "reference," but of course
that would give us an owning reference, making us less of a Watcher and more of a
Participant:

    struct NotReallyAWatcher {
      std::shared_ptr<int> m_ptr;

      void watch(const std::shared_ptr<int>& p) {
        m_ptr = p;
      }
      int current_value() const {
        // Now *m_ptr cannot ever be deallocated; our
        // mere existence is keeping *m_ptr alive!
        return *m_ptr;
      }
    };

What we really want is a non-owning reference that is nevertheless aware of the
shared_ptr system for managing memory, and is able to query the control block and find
out whether the referenced object still exists. But by the time we found out that the object
existed and went to access it, it might have been deallocated by some other thread! So the
primitive operation we need is "atomically get an owning reference (a shared_ptr) to the
referenced object if it exists, or otherwise indicate failure." That is, we don't want a non-
owning reference; what we want is a ticket that we can exchange at some future date for an owning
reference.

The standard library provides this "ticket for a shared_ptr" under the name
std::weak_ptr<T>. (It's called "weak" in opposition to the "strong" owning references of
shared_ptr.) Here's an example of how to use weak_ptr to solve our Watcher problem:

    struct CorrectWatcher {
      std::weak_ptr<int> m_ptr;

      void watch(const std::shared_ptr<int>& p) {
        m_ptr = std::weak_ptr<int>(p);
      }
      int current_value() const {
        // Now we can safely ask whether *m_ptr has been
        // deallocated or not.
        if (auto p = m_ptr.lock()) {
            return *p;
        } else {
          throw "It has no value; it's been deallocated!";
        }
      }
    };
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The only two operations you need to know with weak_ptr are that you can construct a
weak_ptr<T> from a shared_ptr<T> (by calling the constructor, as shown in the watch()
function), and you can attempt to construct a shared_ptr<T> from a weak_ptr<T> by
calling wptr.lock(). If the weak_ptr has expired, you'll get back a null shared_ptr.

There's also the member function wptr.expired(), which can tell you if the weak_ptr in
question has already expired; but notice that it's essentially useless, since even if it returns
false right now, it might return true a few microseconds later.

The following diagram continues the narrative started in the previous diagram by creating
weak_ptr from q and then nulling out the shared_ptr it came from:

Copying a weak_ptr increments the weak-count associated with the referenced object's
control block, and destroying a weak_ptr decrements the weak-count. When the use-count
hits zero, the system knows it's safe to deallocate the controlled object; but the control block
itself will not be deallocated until the weak-count hits zero, at which point we know that
there are no more weak_ptr objects pointing at this control block:
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You might have noticed that shared_ptr is using the same trick on its Deleter that we
saw in the context of std::any and std::function in Chapter 5, Vocabulary Types--it is
using type erasure. And, like std::any and std::function, std::shared_ptr provides a
"go fish" function--std::get_deleter<Deleter>(p)--to retrieve the original deleter
object. This tidbit will be entirely useless to you in your work; I mention it only to call
attention to the importance of type erasure in modern C++. Even shared_ptr, whose
ostensible purpose has nothing to do with erasing types, relies on type erasure in one little
corner of its functionality.

Talking about oneself with
std::enable_shared_from_this
There's just one more piece of the shared_ptr ecosystem that we should discuss. We've
mentioned the danger of "double-managing" a pointer by creating multiple control blocks.
So we might want a way to ask, given a pointer to a heap-allocated object, just who exactly
is managing it right now.

The most common use-case for this feature is in object-oriented programming, where a
method A::foo() wants to invoke some external function bar(), and bar() needs a
pointer back to the A object. If we weren't worrying about lifetime management, this would
be easy; A::foo() would simply invoke bar(this). But let's say our A is being managed
by shared_ptr, and let's say that bar() is likely to stash a copy of the this pointer
somewhere internally--maybe we're registering a callback for later, or maybe we're
spawning a new thread that will run concurrently while A::foo() finishes up and returns
to its caller. So we need some way to keep A alive while bar() is still running.
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Clearly bar() should take a parameter of type std::shared_ptr<A>; this will keep our A
alive. But within A::foo(), where do we get that shared_ptr from? We could give A a
member variable of type std::shared_ptr<A>, but then A would be keeping itself alive--it
would never die! That's certainly not what we!

A preliminary solution is that A should keep a member variable of type
std::weak_ptr<A> pointing to itself, and when it invokes bar, it should do so with
bar(this->m_wptr.lock()). This has quite a bit of syntactic overhead, though, and
besides it's unclear how the pointer m_wptr ought to get initialized. So, C++ took this idea
and built it right into the standard library!

    template<class T>
    class enable_shared_from_this {
      weak_ptr<T> m_weak;
    public:
      enable_shared_from_this(const enable_shared_from_this&) {}
      enable_shared_from_this& operator=(const enable_shared_from_this&) {}
      shared_ptr<T> shared_from_this() const {
        return shared_ptr<T>(m_weak);
      }
    };

The std::enable_shared_from_this<A> class holds our member variable of type
std::weak_ptr<A>, and exposes the operation "get a shared_ptr to myself" under the
name x.shared_from_this(). There are a couple of interesting details to notice in the
preceding code: First, if you try to call x.shared_from_this() on an object that isn't
currently being managed by the shared_ptr system, you'll get an exception of type
std::bad_weak_ptr. Second, notice the empty copy constructor and copy assignment
operator. Empty braces in this case is not the same thing as =default! If we had used
=default to make the copy operations defaulted, they would have performed memberwise
copying. Every time you made a copy of a managed object, the new object would receive a
copy of the original's m_weak; which isn't what we want here at all. The "identity" of the
enable_shared_from_this portion of a C++ object is tied to its location in memory, and
therefore it does not (and should not) follow the rules of copying and value semantics for
which we typically strive.
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The last question to answer is: how does the member m_weak (which remember is a private
member; we're using the name m_weak purely for exposition) get initialized in the first
place? The answer is that the constructor of shared_ptr includes some lines of code to
detect whether T publicly inherits from enable_shared_from_this<T>, and, if so, to set
its m_weak member through some hidden back door. Notice that the inheritance must be
public and unambiguous, since the constructor of shared_ptr is just another user-defined
function as far as the rules of C++ are concerned; it can't crack open your class to find its
private base classes, or to disambiguate between multiple copies of
enable_shared_from_this.

These restrictions imply that you should only ever inherit from
enable_shared_from_this publicly; that once a class derives from
enable_shared_from_this you should only ever inherit from it
publicly; and to keep things simple you probably ought to inherit from
enable_shared_from_this only at the very leaves of your inheritance
hierarchy. Of course, if you do not make deep inheritance hierarchies in
the first place, following these rules will be fairly easy!

Let's put everything we know about enable_shared_from_this together into a single
example:

    struct Widget : std::enable_shared_from_this<Widget> {
      template<class F>
      void call_on_me(const F& f) {
        f(this->shared_from_this());
      }
    };

    void test() {
      auto sa = std::make_shared<Widget>();

      assert(sa.use_count() == 1);
      sa->call_on_me([](auto sb) {
        assert(sb.use_count() == 2);
      });

      Widget w;
      try {
        w.call_on_me([](auto) {});
      } catch (const std::bad_weak_ptr&) {
        puts("Caught!");
      }
    }
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The Curiously Recurring Template Pattern
You may already have noticed, but especially after seeing the preceding code sample it
should be apparent, that whenever you inherit from enable_shared_from_this the name
of your class always appears in the template parameter list of its own base class! This pattern
of "X inherits from A<X>" is known as the Curiously Recurring Template Pattern, or CRTP
for short. It's common whenever some aspect of the base class depends on its derived class.
For example, in our case the name of the derived class is incorporated into the return type
of the shared_from_this method.

Another common case where the CRTP is warranted is when some behavior of the derived
class is incorporated into the behavior provided by the base class. For example, using the
CRTP we can write a base class template that provides a value-returning operator+ for
any derived class that implements operator+= and copy-construction. Notice the required
static_cast from addable<Derived> to Derived, so that we call the copy constructor of
Derived instead of the copy constructor of the base class addable<Derived>:

    template<class Derived>
    class addable {
    public:
      auto operator+(const Derived& rhs) const {
        Derived lhs = static_cast<const Derived&>(*this);
        lhs += rhs;
        return lhs;
      }
    };

In fact, this is almost exactly the service provided by boost::addable in the Boost
Operators library; except that boost::addable uses the so-called "Barton-Nackman trick"
to make its operator+ a friend free function instead of a member function:

    template<class Derived>
    class addable {
    public:
      friend auto operator+(Derived lhs, const Derived& rhs) {
        lhs += rhs;
        return lhs;
      }
    };

Even if you never use enable_shared_from_this in your codebase, you should be aware
of the Curiously Recurring Template Pattern and be able to pull it out of your toolbox
whenever you need to "inject" some derived-class behavior into a method of your base class.
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A final warning
The mini-ecosystem of shared_ptr, weak_ptr, and enable_shared_from_this is one of
the coolest parts of modern C++; it can give your code the safety of a garbage-collected
language while preserving the speed and deterministic destruction that have always
characterized C++. However, be careful not to abuse shared_ptr! Most of your C++ code
shouldn't be using shared_ptr at all, because you shouldn't be sharing the ownership of
heap-allocated objects. Your first preference should always be to avoid heap-allocation
altogether (by using value semantics); your second preference should be to make sure each
heap-allocated object has a unique owner (by using std::unique_ptr<T>); and only if
both of those are really impossible should you consider use of shared ownership and
std::shared_ptr<T>.

Denoting un-special-ness with
observer_ptr<T>
We've now seen two or three different smart pointer types (depending on whether you
count weak_ptr as a pointer type in its own right, or more like a ticket for a shared_ptr).
Each of these types carries with it some useful source-level information about lifetime
management. For example, just from the function signatures of these two C++ functions,
what can we say about their semantics?

    void remusnoc(std::unique_ptr<Widget> p);

    std::unique_ptr<Widget> recudorp();

We see that remusnoc takes a unique_ptr by value, which means that ownership of the
controlled object is transferred to remusnoc. When we call this function, we must have
unique ownership of a Widget, and after we call this function, we will no longer be able to
access that Widget. We don't know whether remusnoc is going to destroy the Widget,
keep it around, or attach it to some other object or thread; but it's explicitly no longer our
concern. The remusnoc function is a consumer of widgets.

More subtly, we can also say that when we call remusnoc, we must have unique ownership
of a Widget that was allocated with new, and which it is safe to delete!
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And vice versa: when I call recudorp, I know that whatever Widget we receive will be
uniquely owned by me. It isn't a reference to someone else's Widget; it isn't a pointer to some
static data. It's explicitly a heap-allocated Widget owned by me and me alone. Even if the
first thing I do with the return value is to call .release() on it and stuff the raw pointer
into some "pre-modern" struct, I can be sure that it is safe to do so, because I am definitely
the unique owner of the return value.

What can we say about the semantics of this C++ function?

    void suougibma(Widget *p);

It's ambiguous. Maybe this function will take ownership of the passed pointer; maybe it
won't. We can tell (we hope) from the documentation of suougibma, or from certain
stylistic conventions in our codebase (such as "a raw pointer shall never denote ownership,"
which is a reasonable convention), but we can't tell from the signature alone. Another way
to express this distinction is to say that unique_ptr<T> is a vocabulary type for expressing
ownership transfer, whereas T* is not a vocabulary type for anything at all; it's the C++
equivalent of a nonsense word or a Rorschach blot, in that no two people will necessarily
agree on what it means.

So, if you find yourself passing around a lot of non-owning pointers in your codebase, you
might want a vocabulary type to represent the idea of a non-owning pointer. (Your first step
should be to pass references instead of pointers whenever possible, but let's say that you've
already exhausted that avenue.) Such a vocabulary type does exist, although it is not (yet) in
the C++ standard library: due to Walter Brown, it's called "the world's dumbest smart
pointer," and is merely a class-shaped wrapper around a raw non-owning pointer:

    template<typename T>
    class observer_ptr {
      T *m_ptr = nullptr;
      public:
      constexpr observer_ptr() noexcept = default;
      constexpr observer_ptr(T *p) noexcept : m_ptr(p) {}
      T *get() const noexcept { return m_ptr; }
      operator bool() const noexcept { return bool(get()); }
      T& operator*() const noexcept { return *get(); }
      T* operator->() const noexcept { return get(); }
    };

    void revresbo(observer_ptr<Widget> p);
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With observer_ptr in our toolbox, it becomes crystal clear that revresbo merely observes
its argument; it definitely doesn't take ownership of it. In fact, we can assume that it doesn't
even keep a copy of the passed-in pointer, because the validity of that pointer would
depend on the lifetime of the controlled object, and revresbo is explicitly claiming not to
have any stake in the lifetime of that object. If it wanted a stake in the lifetime of the
controlled object, it would ask for that stake explicitly, by requesting unique_ptr or
shared_ptr from its caller. By requesting observer_ptr, revresbo is "opting out" of the
whole ownership debate.

As I said, observer_ptr is not part of the C++17 standard. One of the main objections
keeping it out is its terrible name (being as it has nothing to do with the "observer pattern").
There are also many knowledgeable people who would say that T* should be the vocabulary
type for "non-owning pointer," and that all old code using T* for ownership transfer should
be rewritten or at least re-annotated with constructs such as owner<T*>. This is the
approach currently recommended by the editors of the C++ Core Guidelines, including C++
inventor Bjarne Stroustrup. One thing is certain, though: never use raw pointers for ownership
transfer!

Summary
In this chapter, we have learned a few things about smart pointers.

std::unique_ptr<T> is a vocabulary type for ownership, and for ownership transfer;
prefer it over raw T*. Consider the use of observer_ptr in situations where ownership is
explicitly not being transferred, or where raw T* might be ambiguous to the reader.

std::shared_ptr<T> is a good (and standard) tool for dealing with shared ownership,
where many different entities are all stakeholders in the lifetime of a single controlled
object. std::weak_ptr<T> is a "ticket for shared_ptr"; it provides .lock() instead of
operator*. If your class needs the ability to get shared_ptr to itself, inherit from
std::enable_shared_from_this<T>. Remember to inherit publicly, and generally
speaking, only at the leaves of your inheritance graph. And don't overuse these features in
situations that do not absolutely require shared ownership!
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Never touch raw pointers with your hands: use make_unique and make_shared to create
heap-allocated objects and manage them in a single swoop. And remember the Curiously
Recurring Template Pattern whenever you need to "inject" derived-class behaviors back into
a function provided by your base class.

In the next chapter, we'll talk about a different kind of "sharing": the kind that arises in
multi-threaded programming.



7
Concurrency

In the previous chapter, we discussed how std::shared_ptr<T> implements reference-
counting memory management, so that an object's lifetime can be cooperatively controlled
by stakeholders who might be otherwise unaware of each other--for example, the
stakeholders might live in different threads. In C++ before C++11, this would have posed a
stumbling block right away: if one stakeholder decrements the reference count while,
simultaneously, a stakeholder in another thread is in the process of decrementing the
reference count, then don't we have a data race and therefore undefined behavior?

In C++ before C++11, the answer was generally "yes." (In fact, C++ before C++11 didn't have
a standard concept of "threads," so another reasonable answer might have been that the
question itself was irrelevant.) In C++ as of 2011, though, we have a standard memory
model that accounts for concepts such as "threading" and "thread-safety," and so the
question is meaningful and the answer is categorically "No!" Accesses to the reference count
of std::shared_ptr are guaranteed not to race with each other; and in this chapter we'll
show you how you can implement similarly thread-safe constructions using the tools the
standard library provides.

In this chapter we'll cover the following topics:

The difference between volatile T and std::atomic<T>
std::mutex, std::lock_guard<M>, and std::unique_lock<M>
std::recursive_mutex and std::shared_mutex
std::condition_variable and std::condition_variable_any
std::promise<T> and std::future<T>
std::thread and std::async
The dangers of std::async, and how to build a thread pool to replace it
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The problem with volatile
If you've been living under a rock for the past ten years--or if you're coming from old-style
C--you might ask, "What's wrong with the volatile keyword? When I want to make sure
some access really hits memory, I make sure it's done volatile."

The official semantics of volatile are that volatile accesses are evaluated strictly according
to the rules of the abstract machine, which means, more or less, that the compiler is not
allowed to reorder them or combine multiple accesses into one. For example, the compiler
cannot assume that the value of x remains the same between these two loads; it must
generate machine code that performs two loads, one on either side of the store to y:

    volatile int& x = memory_mapped_register_x();
    volatile bool& y = memory_mapped_register_y();
    int stack;

    stack = x; // load
    y = true; // store
    stack += x; // load

If x were not volatile, then the compiler would be perfectly within its rights to reorder the
code like this:

    stack = 2*x; // load
    y = true; // store

The compiler could do this (if x weren't volatile) because the write to a bool variable y
cannot possibly affect the value of the int variable x. However, since x is volatile, this
reordering optimization is not allowed.

The most common reason you'd use the volatile keyword is suggested by the names I
chose for that example: the use-case is when you are working directly with hardware, such
as memory-mapped registers, where something that looks like a load or store at the source-
code level actually maps onto a more complex hardware operation. In the preceding
example, perhaps x is a view onto some hardware buffer, and the store to memory location
y is the signal for the hardware to load the next four bytes of data into the x register. It
might help to view the situation as an operator overloading, but in hardware. And if
"operator overloading, but in hardware" sounds crazy to you, then you probably have zero
reason to use volatile in your programs!
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So that's what volatile does. But why can't we use volatile to make our programs
thread-safe? In essence, the problem with volatile is that it's too old. The keyword has
been in C++ ever since we split off from C, and it was in C since the original standard in
1989. Back then, there was very little concern about multithreading, and compilers were
simpler, which meant that some potentially problematic optimizations had not yet been
dreamt of. By the late 1990s and early 2000s, when C++'s lack of a thread-aware memory
model started to become a real concern, it was too late to make volatile do everything
that was required for thread-safe memory access, because every vendor had already
implemented volatile and documented exactly what it did. Changing the rules at that
point would have broken a lot of people's code--and the code that would have broken
would have been low-level hardware interface code, the kind of code you really don't want
bugs in.

Here are a couple of examples of the kind of guarantee we need in order to get thread-safe
memory accesses:

    // Global variables:
    int64_t x = 0;
    bool y = false;

    void thread_A() {
      x = 0x42'00000042;
      y = true;
    }

    void thread_B() {
      if (x) {
        assert(x == 0x42'00000042);
      }
    }

    void thread_C() {
      if (y) {
        assert(x == 0x42'00000042);
      }
    }
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Suppose thread_A, thread_B, and thread_C are all running concurrently in different
threads. How could this code go wrong? Well, thread_B is checking that x always holds
exactly either zero or 0x42'00000042. On a 32-bit computer, however, it may not be
possible to make that guarantee; the compiler might have to implement the assignment in
thread_A as a pair of assignments "set the upper half of x to 42; set the lower half of x to
42." If the test in thread_B happens to run at the right (wrong) time, it could end up seeing
x as 0x42'00000000. Making x volatile will not help with this one; in fact, nothing will,
because our 32-bit hardware simply doesn't support this operation! It would be nice for the
compiler to detect that we're trying to get an atomic 64-bit assignment, and give us a
compile-time error if it knows our goal is impossible. In other words, volatile accesses
are not guaranteed to be atomic. In practice, they often are atomic--and so are non-volatile
accesses, but they aren't guaranteed to be, and sometimes you have to go down to the
machine code level to figure out whether you're getting the code you expected. We'd like a
way to guarantee that an access will be atomic (or if that's impossible, we'd like a compiler
error).

Now consider thread_C. It's checking that if the value of y is visibly true, then the value of
x must already be set to its final value. In other words, it's checking that the write to x
"happened before" the write to y. This is definitely true from the point of view of thread_A,
at least if x and y are both volatile, because we have seen that the compiler is not allowed to
reorder volatile accesses. However, the same is not necessarily true from the point of view
of thread_C! If thread_C is running on a different physical CPU, with its own data cache,
then it may become aware of the updated values of x and y at different times, depending on
when it refreshes their respective cache lines. We would like a way to say that when the
compiler loads from y, it must also ensure that its entire cache is up-to-date--that it will
never read a "stale" value for x. However, on some processor architectures, that requires
special instructions, or additional memory-barrier logic. The compiler doesn't generate
those instructions for "old-style" volatile accesses, because threading wasn't a concern when
volatile was invented; and the compiler can't be made to generate those instructions for
volatile accesses, because that would unnecessarily slow down or maybe even break, all the
existing low-level code that uses old-style volatile for its old-style meaning. So we're left
with the problem that even though volatile accesses happen in sequential order from the
point of view of their own thread, they may well appear in a different order from the point
of view of another thread. In other words, volatile accesses are not guaranteed to be
sequentially consistent. We'd like a way to guarantee that an access will be sequentially
consistent with respect to other accesses.

The solution to both of our problems was added to C++ in 2011. That solution is
std::atomic.
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Using std::atomic<T> for thread-safe
accesses
In C++11 and later, the <atomic> header contains the definition of class template
std::atomic<T>. There are two different ways you can think about std::atomic: you
can think of it as a class template just like std::vector, with overloaded operators that
just happen to implement thread-safe operations; or you can think of it as a magical built-in
family of types whose names just happen to contain angle brackets. The latter way of
thinking about it is actually pretty useful, because it suggests--correctly--that std::atomic
is partly built into the compiler, and so the compiler will usually generate optimal code for
atomic operations. The latter also suggests a way in which atomic is different from
vector: with std::vector<T>, the T can be pretty much anything you like. With
std::atomic<T>, the T is can be anything you like, but in practice it is a bad idea to use
any T that doesn't belong to a small set of atomic-friendly types. More on this topic in a
moment.

The atomic-friendly types are the integral types (at least, those no bigger than a machine
register) and the pointer types. Generally speaking, on common platforms, you'll find that
operations on std::atomic objects of these types will do exactly what you want:

    // Global variables:
    std::atomic<int64_t> x = 0;
    std::atomic<bool> y = false;

    void thread_A() {
      x = 0x42'00000042; // atomic!
      y = true; // atomic!
    }

    void thread_B() {
      if (x) {
        // The assignment to x happens atomically.
        assert(x == 0x42'00000042);
      }
    }

    void thread_C() {
      if (y) {
        // The assignment to x "happens before" the
        // assignment to y, even from another thread's
        // point of view.
        assert(x == 0x42'00000042);
      }
    }
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std::atomic<T> overloads its assignment operator to perform atomic, thread-safe
assignment; and likewise its ++, --, +=, and -= operators; and for integral types, also the &=,
|=, and ^= operators.

It's important to bear in mind the difference between objects of type std::atomic<T>
(which conceptually live "out there" in memory) and short-lived values of type T (which
conceptually live "right here," close at hand; for example, in CPU registers). So, for example,
there is no copy-assignment operator for std::atomic<int>:

    std::atomic<int> a, b;
    a = b; // DOES NOT COMPILE!

There's no copy-assignment operator (nor move-assignment operator) because it wouldn't
have a clear meaning: Does the programmer mean that the computer should load the value
of b into a register and then store the value of that register into a? That sounds like two
different atomic operations, not one operation! Or the programmer might mean that the
computer should copy the value from b to a in a single atomic operation; but that involves
touching two different memory locations in a single atomic operation, which is not within
the capabilities of most computer hardware. So instead, C++ requires that you write out
explicitly what you mean: a single atomic load from object b into a register (represented in
C++ by a non-atomic stack variable), and then a single atomic store into object a:

    int shortlived = b; // atomic load
    a = shortlived; // atomic store

std::atomic<T> provides the member functions .load() and .store(v) for the benefit
of programmers who like to see what they're doing at every step. Using them is optional:

    int shortlived = b.load(); // atomic load
    a.store(shortlived); // atomic store

In fact, by using these member functions, you could write the assignment in a single line of
code as b.store(a.load()); but I advise strongly against doing that. Writing both
function calls on one line of code does not mean that they'll happen "closer together" in time,
and certainly doesn't mean they'll happen "atomically" (as we've just seen, that's impossible
on most hardware), but writing both function calls on one line of code might very well
deceive you into thinking that the calls happen "together."

Dealing with threaded code is hard enough when you're doing only one thing at a time. If
you start getting clever and doing several things at once, in a single line of code, the
potential for bugs skyrockets. Stick to a single atomic operation per source line; you'll find
that it clarifies your thinking process and incidentally makes your code easier to read.
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Doing complicated operations atomically
You may have noticed that the operators *=, /=, %=, <<=, and >>= were omitted from the
list of overloaded operators in the preceding section. These operators were deleted by
std::atomic<int> and all the rest of the integral atomic types because they were
perceived as being difficult to provide efficiently on any real hardware. However, even
among the operations that were included in std::atomic<int>, most of them require a
slightly expensive implementation trick.

Let's suppose that our hardware doesn't have an "atomic multiply" instruction, but we'd
still like to implement operator*=). How would we do it? The trick is to use a primitive
atomic operation known as "compare and swap," or in C++ "compare-exchange."

    std::atomic<int> a = 6;

    a *= 9; // This isn't allowed.

    // But this is:

    int expected, desired;
    do {
      expected = a.load();
      desired = expected * 9;
    } while (!a.compare_exchange_weak(expected, desired));

    // At the end of this loop, a's value will
    // have been "atomically" multiplied by 9.

The meaning of a.compare_exchange_weak(expected, desired) is that the processor
should look at a; and if its value is currently expected, then set its value to desired;
otherwise don't. The function call returns true if a was set to desired and false
otherwise.

But there's one more thing it does, too. Notice that every time through the preceding loop,
we're loading the value of a into expected; but the compare-exchange function is also
loading the value of a in order to compare it with expected. The second time we go
through the loop, we'd prefer not to load a a second time; we'd prefer simply to set
expected to the value that the compare-exchange function saw. Fortunately,
a.compare_exchange_weak(expected, desired) anticipates this desire of ours, and
preemptively--if it would return false--updates expected to the value it saw. That is,
whenever we use compare_exchange_weak, we must provide a modifiable value for
expected because the function takes it by reference.
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Therefore, we should really write our example like this:

    int expected = a.load();
    while (!a.compare_exchange_weak(expected, expected * 9)) {
      // continue looping
    }

The desired variable isn't really necessary except if it helps to clarify the code.

The dirty little secret of std::atomic is that most of the compound assignment operations
are implemented as compare-exchange loops just like this. On RISC processors, this is
practically always the case. On x86 processors, this is the case only if you want to use the
return value of the operator, as in x = (a += b).

When the atomic variable a isn't being modified very frequently by other threads, there's no
harm in doing a compare-exchange loop. But when a is being frequently modified--when it
is highly contended--then we might see the loop being taken several times before it succeeds.
In an absolutely pathological case, we might even see starvation of the looping thread; it
might just keep looping forever, until the contention died down. However, notice that every
time our compare-exchange returns false and we loop around again, it is because the
value of a in memory has changed; which means that some other thread must have made a
little bit of progress. Compare-exchange loops by themselves will never cause the program
to enter a state where nobody is making progress (a state known technically as "livelock").

The previous paragraph probably sounds scarier than it ought to. There's generally no need
to worry about this pathological behavior, since it manifests itself only under really high
contention and even then doesn't really cause any terrible problem. The real takeaway you
should take from this section is how you can use a compare-exchange loop to implement
complicated, non-built-in "atomic" operations on atomic<T> objects. Just remember the
order of the parameters to a.compare_exchange_weak(expected, desired) by
remembering what it does to a: "if a has the expected value, give it the desired value."
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Big atomics
The compiler will recognize and generate optimal code for std::atomic<T> when T is an
integral type (including bool), or when T is a pointer type such as void *. But what if T is
a bigger type, such as int[100]? In that case, the compiler will generally call out to a
routine in the C++ runtime library which will perform the assignment under a mutex. (We'll
look at mutexes in a moment.) Since the assignment is being performed out in a library
which doesn't know how to copy arbitrary user-defined types, the C++17 standard restricts
std::atomic<T> to work only with types that are trivially copyable, which is to say they can
be copied safely using memcpy. So, if you wanted std::atomic<std::string>, tough
luck--you'll have to write that one yourself.

The other catch when using big (trivially copyable) types with std::atomic is that the
relevant C++ runtime routines often live in a different place from the rest of the C++
standard library. On some platforms, you'd be required to add -latomic to your linker
command line. But this is only a problem if you actually do use big types with
std::atomic, and as you really shouldn't, there's generally no reason to worry.

Now let's look at how you'd write that atomic string class!

Taking turns with std::mutex
Suppose we want to write a class type that behaves basically like
std::atomic<std::string> would, if it existed. That is, we'd like to make it support
atomic, thread-safe loads and stores, so that if two threads are accessing the std::string
concurrently, neither one will ever observe it in a "halfway assigned" state, the way we
observed a "halfway assigned" int64_t in the code sample in the previous section "The
problem with volatile."

The best way to write this class is to use a standard library type called std::mutex. The
name "mutex" is so common in technical circles that these days it basically just stands for
itself, but originally its name is derived from "mutual exclusion." This is because a mutex
acts as a way to ensure that only one thread is allowed into a particular section of code (or
set of sections of code) at once--that is, to ensure that the possibilities "thread A is executing
this code" and "thread B is executing this code" are mutually exclusive possibilities.
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At the start of such a critical section, to indicate that we don't want to be disturbed by any
other thread, we take a lock on the associated mutex. When we leave the critical section, we
release the lock. The library takes care of making sure that no two threads can hold locks on
the same mutex at the same time. Specifically, this means that if thread B comes in while
thread A is already holding the lock, thread B must wait until thread A leaves the critical
section and releases the lock. As long as thread A holds the lock, thread B's progress is
blocked; therefore this phenomenon is referred to as either waiting or blocking,
interchangeably.

"Taking a lock on a mutex" is often shortened to "locking the mutex," and "releasing the
lock" shortened to "unlocking the mutex."

Sometimes (albeit rarely) it can be useful to test whether a mutex is currently locked. For
this purpose std::mutex exposes not only the member functions .lock() and .unlock()
but also the member function .try_lock(), which returns true if it was able to acquire a
lock on the mutex (in which case the mutex will be locked) and false if the mutex was
already locked by some thread.

In some languages, like Java, each object carries with it its own mutex; this is how Java
implements its synchronized blocks, for example. In C++, a mutex is its own object type;
when you want to use a mutex to control a section of code, you need to think about the
lifetime semantics of the mutex object itself. Where can you put the mutex so that there will
be just a single mutex object that is visible to everyone who wants to use it? Sometimes, if
there is just one critical section that needs protection, you can put the mutex in a function-
scoped static variable:

    void log(const char *message)
    {
      static std::mutex m;
      m.lock(); // avoid interleaving messages on stdout
      puts(message);
      m.unlock();
    }

The static keyword here is very important! If we had omitted it, then m would have been
a plain old stack variable, and each thread that entered log would have received its own
distinct copy of m. That wouldn't have helped us with our goal, because the library merely
ensures that no two threads have a lock on the same mutex object at once. If each thread is
locking and unlocking its own distinct mutex object, then the library has nothing to do;
none of the mutexes are being contended.
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If we want to make sure that two different functions are mutually exclusive with each other,
such that only one thread is allowed in either log1 or log2 at any given time, we must put
the mutex object somewhere that can be seen by both critical sections:

    static std::mutex m;

    void log1(const char *message) {
      m.lock();
      printf("LOG1: %s\n", message);
      m.unlock();
    }

    void log2(const char *message) {
      m.lock();
      printf("LOG2: %s\n", message);
      m.unlock();
    }

Generally, if you find yourself needing to do this, you should try to eliminate the global
variable by creating a class type and making the mutex object a member variable of that
class, like this:

    struct Logger {
      std::mutex m_mtx;

      void log1(const char *message) {
        m_mtx.lock();
        printf("LOG1: %s\n", message);
        m_mtx.unlock();
      }

      void log2(const char *message) {
        m_mtx.lock();
        printf("LOG2: %s\n", message);
        m_mtx.unlock();
      }
    };

Now messages printed by one Logger may interleave with messages printed by another
Logger, but concurrent accesses to the same Logger object will take locks on the same
m_mtx, which means they will block each other and nicely take turns entering the critical
functions log1 and log2, one at a time.
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"Taking locks" the right way
Recall from Chapter 6, Smart Pointers, that one of the major problems of programs written
in C and "old-style" C++ is the presence of pointer bugs--memory leaks, double-frees, and
heap corruption--and that the way we eliminate those bugs from "new-style" C++ programs
is via the use of RAII types such as std::unique_ptr<T>. Multi-threaded programming
with raw mutexes have failure modes that are analogous to the failure modes of heap
programming with raw pointers:

Lock leaks: You might take a lock on a particular mutex, and accidentally forget
to write the code that frees it.
Lock leaks: You might have written that code, but due to an early return or an
exception being thrown, the code never runs and the mutex remains locked!
Use-outside-of-lock: Because a raw mutex is just another variable, it is physically
disassociated from the variables it "guards." You might accidentally access one of
those variables without taking the lock first.
Deadlock: Suppose thread A takes a lock on mutex 1 and thread B takes a lock on
mutex 2. Then, thread A attempts to acquire a lock on mutex 2 (and blocks); and
while thread A is still blocked, thread B attempts to acquire a lock on mutex 1
(and blocks). Now both threads are blocked, and will never make progress again.

This is not an exhaustive list of concurrency pitfalls; for example, we've already briefly
mentioned "livelock" in connection with std::atomic<T>. For a thorough treatment of
concurrency bugs and how to avoid them, consult a book on multithreaded or concurrent
programming.

The C++ standard library has some tools that help us eliminate these bugs from our
multithreaded programs. Unlike the situation with memory management, the standard
library's solutions in this case are not 100 percent guaranteed to fix your issues--
multithreading is much harder than single-threaded programming, and in fact a good rule
of thumb is not to do it if you can help it. But if you must do concurrent programming, the
standard library can help somewhat.

Just as in Chapter 6, Smart Pointers, we can eliminate bugs related to "lock leaks" by the
conscientious use of RAII. You might have noticed that I have been consistently using the
phrase "take a lock on the mutex" instead of "lock the mutex"; now we'll see why. In the
phrase "lock the mutex," "lock" is a verb; this phrasing corresponds exactly to the C++ code
mtx.lock(). But in the phrase "take a lock on the mutex," "lock" is a noun. Let's invent a
type that reifies the idea of "lock"; that is, that turns it into a noun (an RAII class) instead of
a verb (a method on a non-RAII class):
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    template<typename M>
    class unique_lock {
      M *m_mtx = nullptr;
      bool m_locked = false;
    public:
      constexpr unique_lock() noexcept = default;
      constexpr unique_lock(M *p) noexcept : m_mtx(p) {}

      M *mutex() const noexcept { return m_mtx; }
      bool owns_lock() const noexcept { return m_locked; }

      void lock() { m_mtx->lock(); m_locked = true; }
      void unlock() { m_mtx->unlock(); m_locked = false; }

      unique_lock(unique_lock&& rhs) noexcept {
        m_mtx = std::exchange(rhs.m_mtx, nullptr);
        m_locked = std::exchange(rhs.m_locked, false);
      }

      unique_lock& operator=(unique_lock&& rhs) {
        if (m_locked) {
            unlock();
        }
        m_mtx = std::exchange(rhs.m_mtx, nullptr);
        m_locked = std::exchange(rhs.m_locked, false);
        return *this;
      }

      ~unique_lock() {
        if (m_locked) {
            unlock();
        }
      }
    };

As suggested by the name, std::unique_lock<M> is a "unique ownership" RAII class,
similar in spirit to std::unique_ptr<T>. If you stick to using the noun unique_ptr
instead of the verbs new and delete, you'll never forget to free a pointer; and if you stick to
using the noun unique_lock instead of the verbs lock and unlock, you'll never forget to
release a mutex lock.
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std::unique_lock<M> does expose the member functions .lock() and .unlock(), but
generally you will not need to use those. They can be useful if you need to acquire or release
a lock in the middle of a block of code, far away from the natural point of destruction of the
unique_lock object. We will also see in the next section a function that takes as a
parameter a locked unique_lock, which the function unlocks and re-locks as part of its
functionality.

Notice that because unique_lock is movable, it must have a "null" or "empty" state, just
like unique_ptr. In most cases, you won't need to move your locks around; you'll just
unconditionally take the lock at the start of some scope, and unconditionally release it at the
end of the scope. For this use-case, there's std::lock_guard<M>. lock_guard is much like
unique_lock, but it is not movable, nor does it have the .lock() and .unlock() member
functions. Therefore, it doesn't need to carry around an m_locked member, and its
destructor can unconditionally unlock the mutex the object has been guarding, without any
extra tests.

In both cases (unique_lock and lock_guard), the class template is parameterized on the
kind of mutex being locked. (We'll look at a couple more kinds of mutexes in a minute, but
almost invariably, you'll want to use std::mutex.) C++17 has a new language feature
called class template argument deduction that, in most cases, allows you to elide the template
parameter: to write simply std::unique_lock instead of
std::unique_lock<std::mutex>, for example. This is one of the very few cases where I
would personally recommend relying on class template argument deduction, because
writing out the parameter type std::mutex really adds so little information for your
reader.

Let's see some examples of std::lock_guard, with and without class template argument
deduction:

    struct Lockbox {
      std::mutex m_mtx;
      int m_value = 0;

      void locked_increment() {
        std::lock_guard<std::mutex> lk(m_mtx);
        m_value += 1;
      }

      void locked_decrement() {
        std::lock_guard lk(m_mtx); // C++17 only
        m_value -= 1;
      }
    };
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Before we can see similarly practical examples of std::unique_lock, we'll have to explain
a good reason to use std::unique_lock in the first place.

Always associate a mutex with its controlled
data
Consider the following sketch of a thread-safe StreamingAverage class. There is a bug
here; can you find it?

    class StreamingAverage {
      double m_sum = 0;
      int m_count = 0;
      double m_last_average = 0;
      std::mutex m_mtx;
    public:
      // Called from the single producer thread
      void add_value(double x) {
        std::lock_guard lk(m_mtx);
        m_sum += x;
        m_count += 1; // A
      }

      // Called from the single consumer thread
      double get_current_average() {
        std::lock_guard lk(m_mtx);
        m_last_average = m_sum / m_count; // B
        return m_last_average;
      }

      // Called from the single consumer thread
      double get_last_average() const {
        return m_last_average; // C
      }

      // Called from the single consumer thread
      double get_current_count() const {
        return m_count; // D
      }
    };
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The bug is the line A, which writes to this->m_count in the producer thread, races with
line D, which reads from this->m_count in the consumer thread. Line A correctly takes a
lock on this->m_mtx before writing, but line D fails to take a similar lock, which means
that it will happily barge in and attempt to read m_count even while line A is writing to it.

Lines B and C look superficially similar, which is probably how the bug originally crept in.
Line C doesn't need to take a lock; why should line D have to? Well, line C is called only
from the consumer thread, which is the same thread that writes to m_last_average on line
B. Since lines B and C are executed only by the single consumer thread, they can't both be
executed simultaneously--at least as long as the rest of the program conforms to the
comments! (Let's assume the code comments are correct. This is often sadly untrue in
practice, but for the sake of this example let's assume it.)

We have a recipe for confusion here: Locking m_mtx is required when touching m_sum or
m_count, but it is not required when touching m_last_average. If this class becomes even
more complicated, it might even have several mutexes involved (although at that point, it
would clearly be violating the Single Responsibility Principle and would probably benefit
from refactoring into smaller components). Therefore, a very good practice when dealing
with mutexes is to place the mutex in the tightest possible relationship to the variables it
"guards." One way to do this is simply via careful naming:

    class StreamingAverage {
      double m_sum = 0;
      int m_count = 0;
      double m_last_average = 0;
      std::mutex m_sum_count_mtx;

      // ...
    };

A better way is via a nested struct definition:

    class StreamingAverage {
      struct {
        double sum = 0;
        int count = 0;
        std::mutex mtx;
      } m_guarded_sc;
      double m_last_average = 0;

      // ...
    };
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The hope above is that when the programmer is forced to write
this->m_guarded_sc.sum, it reminds him to make sure he's already gotten a lock on
this->m_guarded_sc.mtx. We could use the GNU extension of "anonymous struct
members" to avoid retyping m_guarded_sc all over our code; but this would defeat the
purpose of this approach, which is to make sure that every place the data is accessed must
use the word "guarded," reminding the programmer to take that lock on
this->m_guarded_sc.mtx.

An even more bulletproof, but somewhat inflexible, approach is to place the mutex in a
class that allows access to its private members only when the mutex is locked, by returning
an RAII handle. The handle-returning class would look more or less like this:

    template<class Data>
    class Guarded {
      std::mutex m_mtx;
      Data m_data;

      class Handle {
        std::unique_lock<std::mutex> m_lk;
        Data *m_ptr;
      public:
        Handle(std::unique_lock<std::mutex> lk, Data *p) :
          m_lk(std::move(lk)), m_ptr(p) {}
        auto operator->() const { return m_ptr; }
      };
    public:
      Handle lock() {
        std::unique_lock lk(m_mtx);
        return Handle{std::move(lk), &m_data};
      }
    };

And our StreamingAverage class could use it like this:

    class StreamingAverage {
      struct Guts {
        double m_sum = 0;
        int m_count = 0;
      };
      Guarded<Guts> m_sc;
      double m_last_average = 0;

      // ...

      double get_current_average() {
        auto h = m_sc.lock();
        m_last_average = h->m_sum / h->m_count;
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        return m_last_average;
      }
    };

Notice that in the preceding code snippet, it is impossible for any member function of
StreamingAverage to access m_sum without owning a lock on m_mtx; access to the
guarded m_sum is possible only via the RAII Handle type.

This pattern is included in Facebook's Folly library under the name
folly::Synchronized<T>, and many more variations on it are available
in Ansel Sermersheim and Barbara Geller's "libGuarded" template library.

Notice the use of std::unique_lock<std::mutex> in the Handle class! We're using
unique_lock here, not lock_guard, because we want the ability to pass this lock around,
return it from functions, and so on--so it needs to be movable. This is the main reason you'd
reach into your toolbox for unique_lock.

Do be aware that this pattern does not solve all lock-related bugs--it solves only the simplest
"forget to lock the mutex" cases--and it might encourage programming patterns that lead to
more concurrency bugs of other types. For example, consider the following rewrite of
StreamingAverage::get_current_average:

    double get_sum() {
      return m_sc.lock()->m_sum;
    }

    int get_count() {
      return m_sc.lock()->m_count;
    }

    double get_current_average() {
      return get_sum() / get_count();
    }

Because of the two calls to m_sc.lock(), there is a gap between the read of m_sum and the
read of m_count. If the producer thread calls add_value during this gap, we will compute
an incorrect average (too low by a factor of 1 / m_count). And if we try to "fix" this bug by
taking a lock around the entire computation, we'll find ourselves in deadlock:

    double get_sum() {
      return m_sc.lock()->m_sum; // LOCK 2
    }

    int get_count() {
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      return m_sc.lock()->m_count;
    }

    double get_current_average() {
      auto h = m_sc.lock(); // LOCK 1
      return get_sum() / get_count();
    }

The line marked LOCK 1 causes the mutex to become locked; then, on the line marked LOCK
2, we try to lock the mutex again. The general rule with mutexes is, if you're trying to lock a
mutex and it's already locked, then you must block and wait for it to become unlocked. So
our thread blocks and waits for the mutex to unlock--which will never happen, since the
lock is being held by our own thread!

This problem (deadlock with oneself) should generally be dealt with by careful
programming--that is, you should try not to take locks you already hold! But if taking locks
this way is unavoidably part of your design, then the standard library has your back, so let's
talk about recursive_mutex.

Special-purpose mutex types
Recall that std::lock_guard<M> and std::unique_lock<M> are parameterized on the
mutex type. So far we've seen only std::mutex. However, the standard library does
contain a few other mutex types which can be useful in special circumstances.

std::recursive_mutex is like std::mutex, but remembers which thread has locked it. If
that particular thread tries to lock it a second time, the recursive mutex will merely
increment an internal reference count of "how many times I've been locked." If some other
thread tries to lock the recursive mutex, that thread will block until the original thread has
unlocked the mutex the appropriate number of times.

std::timed_mutex is like std::mutex, but is aware of the passage of time. It has as
member functions not only the usual .try_lock(), but also .try_lock_for() and
.try_lock_until(), which interact with the standard <chrono> library. Here's an
example of try_lock_for:

    std::timed_mutex m;
    std::atomic<bool> ready = false;

    std::thread thread_b([&]() {
      std::lock_guard lk(m);
      puts("Thread B got the lock.");
      ready = true;
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      std::this_thread::sleep_for(100ms);
    });

    while (!ready) {
      puts("Thread A is waiting for thread B to launch.");
      std::this_thread::sleep_for(10ms);
    }

    while (!m.try_lock_for(10ms)) {
      puts("Thread A spent 10ms trying to get the lock and failed.");
    }

    puts("Thread A finally got the lock!");
    m.unlock();

And here's an example of try_lock_until:

    std::timed_mutex m1, m2;
    std::atomic<bool> ready = false;

    std::thread thread_b([&]() {
      std::unique_lock lk1(m1);
      std::unique_lock lk2(m2);
      puts("Thread B got the locks.");
      ready = true;
      std::this_thread::sleep_for(50ms);
      lk1.unlock();
      std::this_thread::sleep_for(50ms);
    });

    while (!ready) {
      std::this_thread::sleep_for(10ms);
    }

    auto start_time = std::chrono::system_clock::now();
    auto deadline = start_time + 100ms;

    bool got_m1 = m1.try_lock_until(deadline);
    auto elapsed_m1 = std::chrono::system_clock::now() - start_time;

    bool got_m2 = m2.try_lock_until(deadline);
    auto elapsed_m2 = std::chrono::system_clock::now() - start_time;

    if (got_m1) {
      printf("Thread A got the first lock after %dms.\n",
      count_ms(elapsed_m1));
      m1.unlock();
    }



Concurrency

[ 184 ]

    if (got_m2) {
      printf("Thread A got the second lock after %dms.\n",
      count_ms(elapsed_m2));
      m2.unlock();
    }

Incidentally, the count_ms function being used here is just a little lambda that factors out
some of the usual <chrono> boilerplate:

    auto count_ms = [](auto&& d) -> int {
      using namespace std::chrono;
      return duration_cast<milliseconds>(d).count();
    };

In both of the preceding examples, pay attention to our use of std::atomic<bool> to
synchronize threads A and B. We simply initialize the atomic variable to false, and then
loop until it becomes true. The body of the polling loop is a call to
std::this_thread::sleep_for, which is a sufficient hint to the compiler that the value
of the atomic variable might change. Be careful never to write a polling loop that does not
contain a sleep, because in that case the compiler is within its rights to collapse all the
consecutive loads of ready down into a single load and a (necessarily infinite) loop.

std::recursive_timed_mutex is like you took recursive_mutex and timed_mutex
and smushed them together; it provides the "counting" semantics of recursive_mutex,
plus the try_lock_for and try_lock_until methods of timed_mutex.

std::shared_mutex is perhaps poorly named. It implements behavior that in most
concurrency textbooks would be called a read-write lock (also known as a rwlock or readers-
writer lock). The defining characteristic of a read-write lock, or shared_mutex, is that it can
be "locked" in two different ways. You can take a normal exclusive ("write") lock by calling
sm.lock(), or you can take a non-exclusive ("read") lock by calling sm.lock_shared().
Many different threads are allowed to take read locks at the same time; but if anybody is
reading, then nobody can be writing; and if anybody is writing, then nobody can be doing
anything else (neither reading nor writing). These happen to be fundamentally the same
rules that define "race conditions" in the C++ memory model: two threads reading from the
same object simultaneously is fine, as long as no thread is writing to it at the same time.
What std::shared_mutex adds to the mix is safety: it ensures that if anyone does try to
write (at least if they play nice and take a write lock on the std::shared_mutex first),
they'll block until all the readers have exited and it's safe to write.
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std::unique_lock<std::shared_mutex> is the noun corresponding to an exclusive
("write") lock on a std::shared_mutex. As you might expect, the standard library also
provides std::shared_lock<std::shared_mutex> to reify the idea of a non-exclusive
("read") lock on a std::shared_mutex.

Upgrading a read-write lock
Suppose you have a read lock on a shared_mutex (that is to say, you have a
std::shared_lock<std::shared_mutex> lk such that lk.owns_lock()), and you
want to get a write lock. Can you "upgrade" your lock?

No, you can't. Consider what would happen if threads A and B both hold read locks, and
simultaneously attempt to upgrade to write locks without first releasing their read locks.
Neither one would be able to acquire a write lock, and so they'd deadlock with each other.

There are third-party libraries that attempt to solve this problem, such as
boost::thread::upgrade_lock, which works with boost::thread::shared_mutex;
but they are outside the scope of this book. The standard solution is that if you hold a read
lock and want a write lock, you must release your read lock and then go stand in line for a
write lock with everyone else:

    template<class M>
    std::unique_lock<M> upgrade(std::shared_lock<M> lk)
    {
      lk.unlock();
      // Some other writer might sneak in here.
      return std::unique_lock<M>(*lk.mutex());
    }

Downgrading a read-write lock
Suppose you have an exclusive write lock on a shared_mutex and you want to get a read
lock. Can you "downgrade" your lock?
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In principle the answer is yes, it should be possible to downgrade a write lock to a read
lock; but in standard C++17 the answer is no, you can't do it directly. As in the upgrade
case, you can use boost::thread::shared_mutex. The standard solution is that if you
hold a write lock and want a read lock, you must release your write lock and then go stand
in line for a read lock with everyone else:

    template<class M>
    std::shared_lock<M> downgrade(std::unique_lock<M> lk)
    {
      lk.unlock();
      // Some other writer might sneak in here.
      return std::shared_lock<M>(*lk.mutex());
    }

As you can see from these examples, C++17's std::shared_mutex is a bit half-baked at the
moment. If your architectural design calls for a read-write lock, I strongly recommend using
something like boost::thread::shared_mutex, which comes "batteries included."

You may have noticed that since new readers can come in while a read lock is held, but new
writers cannot, it is conceivable and even likely for a prospective writer thread to be
"starved" by a steady stream of prospective readers, unless the implementation goes out of
its way to provide a strong "no starvation" guarantee. boost::thread::shared_mutex
provides such a guarantee (at least, it avoids starvation if the underlying operating system's
scheduler does). The standard wording for std::shared_mutex provides no such
guarantee, although any implementation that allowed starvation in practice would be
considered a pretty poor one. In practice you'll find that your standard library vendor's
implementation of shared_mutex is pretty close to the Boost one, except for the missing
upgrade/downgrade functionality.

Waiting for a condition
In the section titled "Special-purpose mutex types," we launched a task in a separate thread
and then needed to wait until a certain bit of initialization was done before continuing. We
used a polling loop around a std::atomic<bool> in that case. But there are better ways to
wait!
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The problem with our 50-millisecond polling loop is that it never spends the right amount of
time asleep. Sometimes our thread will wake up, but the condition it's waiting for hasn't
been satisfied, so it'll go back to sleep--that means we didn't sleep long enough the first
time. Sometimes our thread will wake up and see that the condition it's waiting for has been
satisfied, sometime in the past 50 milliseconds, but we don't know how long ago--that
means we've overslept by about 25 milliseconds on average. Whatever happens, the chance
that we slept just precisely the right amount of time is slim to none.

So, if we don't want to waste time, the right thing to do is to avoid polling loops. The
standard library provides a way to wait just the right amount of time; it's called
std::condition_variable.

Given a variable cv of type std::condition_variable, our thread can "wait on" cv by
calling cv.wait(lk); that puts our thread to sleep. Calling cv.notify_one() or
cv.notify_all() wakes up one, or all of, the threads currently waiting on cv. However,
this is not the only way that those threads might wake up! It's possible that an interrupt
from outside (such as a POSIX signal) might jar your thread awake without anybody's
having called notify_one. This phenomenon is called a spurious wakeup. The usual way to
guard against spurious wakeups is to check your condition when you wake up. For
example, if you're waiting for some input to arrive in a buffer b, then when you wake up,
you ought to check b.empty() and, if it's empty, go back to waiting.

By definition, some other thread is going to be putting that data into b; so when you read
b.empty(), you'd better do it under some kind of mutex. Which means the first thing you'll
do when you wake up is take a lock on that mutex, and the last thing you'll do when you go
back to sleep is release your lock on that mutex. (In fact, you need to release your lock on
that mutex atomically with the going-to-sleep operation, so that nobody can slip in, modify
b, and call cv.notify_one() before you've managed to get to sleep.) This chain of logic
leads us to the reason that cv.wait(lk) takes that parameter lk--it's a
std::unique_lock<std::mutex> that will be released upon going to sleep and regained
upon awaking!
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Here's an example of waiting for some condition to be satisfied. First the simple but
wasteful polling loop on a std::atomic variable:

    std::atomic<bool> ready = false;

    std::thread thread_b([&]() {
      prep_work();
      ready = true;
      main_work();
    });

    // Wait for thread B to be ready.
    while (!ready) {
      std::this_thread::sleep_for(10ms);
    }
    // Now thread B has completed its prep work.

And now the preferable and more efficient condition_variable implementation:

    bool ready = false; // not atomic!
    std::mutex ready_mutex;
    std::condition_variable cv;

    std::thread thread_b([&]() {
      prep_work();
      {
        std::lock_guard lk(ready_mutex);
        ready = true;
      }
      cv.notify_one();
      main_work();
    });

    // Wait for thread B to be ready.
    {
      std::unique_lock lk(ready_mutex);
      while (!ready) {
        cv.wait(lk);
      }
    }
    // Now thread B has completed its prep work.
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If we're waiting to read from a structure protected by a read-write lock (that is, a
std::shared_mutex), then we don't want to pass in a
std::unique_lock<std::mutex>; we want to pass in a
std::shared_lock<std::shared_mutex>. We can do this, if (and sadly only if) we plan
ahead and define our condition variable to be of type std::condition_variable_any
instead of std::condition_variable. In practice, there is unlikely to be any performance
difference between std::condition_variable_any and std::condition_variable,
which means you should choose between them based on your program's needs, or, if either
one would serve, then based on the clarity of the resulting code. Generally this means
saving four characters and using std::condition_variable. However, notice that
because of the layer of insulating abstraction provided by std::shared_lock, the actual
code for waiting on cv under a read-write lock is almost identical to the code for waiting on
cv under a plain old mutex. Here is the read-write lock version:

    bool ready = false;
    std::shared_mutex ready_rwlock;
    std::condition_variable_any cv;
    std::thread thread_b([&]() {
      prep_work();
      {
        std::lock_guard lk(ready_rwlock);
        ready = true;
      }
      cv.notify_one();
      main_work();
    });

    // Wait for thread B to be ready.
    {
      std::shared_lock lk(ready_rwlock);
      while (!ready) {
        cv.wait(lk);
      }
    }
    // Now thread B has completed its prep work.

This is perfectly correct code, and as efficient as it can be. However, manually fiddling with
mutex locks and condition variables is almost as dangerous to one's health as fiddling with
raw mutexes or raw pointers. We can do better! The better solution is the subject of our next
section.
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Promises about futures
If you haven't encountered concurrent programming topics before, the last few sections
probably got progressively more and more challenging. Mutexes are pretty simple to
understand because they model a familiar idea from daily life: getting exclusive access to
some resource by putting a lock on it. Read-write locks (shared_mutex) aren't much harder
to understand. However, we then took a significant jump upward in esotericism with
condition variables--which are hard to grasp partly because they seem to model not a noun
(like "padlock") but a sort of prepositional verb phrase: "sleep until, but also, wake." Their
opaque name doesn't help much either.

Now we continue our journey into concurrent programming with a topic that may be
unfamiliar even if you've taken an undergraduate course in concurrent programming, but is
well worth the learning: promises and futures.

In C++11, the types std::promise<T> and std::future<T> always appear in pairs.
Someone coming from the Go language might think of a promise-future pair as a sort of
channel, in that if one thread shoves a value (of type T) into the "promise" side of the pair,
that value will eventually emerge at the "future" side (which is typically in a different
thread by then). However, promise-future pairs are also like unstable wormholes: as soon
as you've shoved a single value through the wormhole, it collapses.

We might say that a promise-future pair is like a directed, portable, one-shot wormhole. It's
"directed" because you're allowed to shove data into only the "promise" side and retrieve
data only via the "future" side. It's "portable" because if you own one end of the wormhole,
you can move that end around and even move it between threads; you won't break the
tunnel between the two ends. And it's "one-shot" because once you've shoved one piece of
data into the "promise" end, you can't shove any more.

Another metaphor for the pair is suggested by their names: A std::future<T> is not
actually a value of type T, but it is in some sense a future value--it will, at some point in the
future, give you access to a T, but "not yet." (In this way, it is also something like a thread-
safe optional<T>.) Meanwhile, a std::promise<T> object is like an unfulfilled promise,
or an I-O-U. The holder of the promise object promises to put a value of type T into it at some
point; if he doesn't ever put in a value, then he's "broken his promise."
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Generally speaking, you use a promise-future pair by first creating a std::promise<T>,
where T is the type of data you're planning to send through it; then creating the wormhole's
"future" end by calling p.get_future(). When you're ready to fulfill the promise, you call
p.set_value(v). Meanwhile, in some other thread, when you're ready to retrieve the
value, you call f.get(). If a thread calls f.get() before the promise has been fulfilled,
that thread will block until the promise is fulfilled and the value is ready to retrieve. On the
other hand, when the promise-holding thread calls p.set_value(v), if nobody's waiting,
that's fine; set_value will just record the value v in memory so that it's ready and waiting
whenever anyone does ask for it via f.get().

Let's see promise and future in action!

    std::promise<int> p1, p2;
    std::future<int> f1 = p1.get_future();
    std::future<int> f2 = p2.get_future();

      // If the promise is satisfied first,
      // then f.get() will not block.
    p1.set_value(42);
    assert(f1.get() == 42);

      // If f.get() is called first, then it
      // will block until set_value() is called
      // from some other thread.
    std::thread t([&](){
      std::this_thread::sleep_for(100ms);
      p2.set_value(43);
    });
    auto start_time = std::chrono::system_clock::now();
    assert(f2.get() == 43);
    auto elapsed = std::chrono::system_clock::now() - start_time;
    printf("f2.get() took %dms.\n", count_ms(elapsed));
    t.join();

(For the definition of count_ms, see the previous section, Special-purpose mutex types.)
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One nice detail about the standard library's std::promise is that it has a specialization for
void. The idea of std::future<void> might seem a little silly at first--what good is a
wormhole if the only data type you can shove through it is a type with no values? But in
fact future<void> is extremely useful, whenever we don't care so much about the value
that was received as about the fact that some signal was received at all. For example, we can
use std::future<void> to implement yet a third version of our "wait for thread B to
launch" code:

    std::promise<void> ready_p;
    std::future<void> ready_f = ready_p.get_future();

    std::thread thread_b([&]() {
      prep_work();
      ready_p.set_value();
      main_work();
    });

      // Wait for thread B to be ready.
    ready_f.wait();
      // Now thread B has completed its prep work.

Compare this version to the code samples from the section titled "Waiting for a condition."
This version is much cleaner! There's practically no cruft, no boilerplate at all. The "signal
B's readiness" and "wait for B's readiness" operations both take only a single line of code. So
this is definitely the preferred way to signal between a single pair of threads, as far as
syntactic cleanliness is concerned. For yet a fourth way to signal from one thread to a group
of threads, see this chapter's subsection titled "Identifying individual threads and the
current thread."
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There is a price to pay for std::future, though. The price is dynamic memory allocation.
You see, promise and future both need access to a shared storage location, so that when
you store 42 in the promise side, you'll be able to pull it out from the future side. (That
shared storage location also holds the mutex and condition variable required for
synchronizing between the threads. The mutex and condition variable haven't disappeared
from our code; they've just moved down a layer of abstraction so that we don't have to
worry about them.) So, promise and future both act as a sort of "handle" to this shared
state; but they're both movable types, so neither of them can actually hold the shared state
as a member. They need to allocate the shared state on the heap, and hold pointers to it; and
since the shared state isn't supposed to be freed until both handles are destroyed, we're
talking about shared ownership via something like shared_ptr (see Chapter 6, Smart
Pointers). Schematically, promise and future look like this:

The shared state in this diagram will be allocated with operator new, unless you use a
special "allocator-aware" version of the constructor std::promise. To use std::promise
and std::future with an allocator of your choice, you'd write the following:

    MyAllocator myalloc{};
    std::promise<int> p(std::allocator_arg, myalloc);
    std::future<int> f = p.get_future();

std::allocator_arg is defined in the <memory> header. See Chapter 8, Allocators, for the
details of MyAllocator.
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Packaging up tasks for later
Another thing to notice about the preceding diagram is that the shared state doesn't just
contain an optional<T>; it actually contains a variant<T, exception_ptr> (for
variant and optional, see Chapter 5, Vocabulary Types). This implies that not only can
you shove data of type T through the wormhole; you can also shove exceptions through. This
is particularly convenient and symmetrical because it allows std::future<T> to represent
all the possible outcomes of calling a function with the signature T(). Maybe it returns a T;
maybe it throws an exception; and of course maybe it never returns at all. Similarly, a call to
f.get() may return a T; or throw an exception; or (if the promise-holding thread loops
forever) might never return at all. In order to shove an exception through the wormhole,
you'd use the method p.set_exception(ex), where ex is an object of type
std::exception_ptr such as might be returned from std::current_exception()
inside a catch handler.

Let's take a function of signature T() and package it up in a future of type
std::future<T>:

    template<class T>
    class simple_packaged_task {
      std::function<T()> m_func;
      std::promise<T> m_promise;
    public:
      template<class F>
      simple_packaged_task(const F& f) : m_func(f) {}

      auto get_future() { return m_promise.get_future(); }

      void operator()() {
        try {
          T result = m_func();
          m_promise.set_value(result);
        } catch (...) {
          m_promise.set_exception(std::current_exception());
        }
      }
    };
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This class superficially resembles the standard library type
std::packaged_task<R(A...)>; the difference is that the standard library type takes
arguments, and uses an extra layer of indirection to make sure that it can hold even move-
only functor types. Back in Chapter 5, Vocabulary Types, we showed you some workarounds
for the fact that std::function can't hold move-only function types; fortunately those
workarounds are not needed when dealing with std::packaged_task. On the other
hand, you'll probably never have to deal with std::packaged_task in your life. It's
interesting mainly as an example of how to compose promises, futures, and functions
together into user-friendly class types with externally very simple interfaces. Consider for a
moment: The simple_packaged_task class above uses type-erasure in std::function,
and then has the std::promise member, which is implemented in terms of
std::shared_ptr, which does reference counting; and the shared state pointed to by that
reference-counted pointer holds a mutex and a condition variable. That's quite a lot of ideas
and techniques packed into a very small volume! And yet the interface to
simple_packaged_task is indeed simple: construct it with a function or lambda of some
kind, then call pt.get_future() to get a future that you can f.get(); and meanwhile call
pt() (probably from some other thread) to actually execute the stored function and shove
the result through the wormhole into f.get().

If the stored function throws an exception, then packaged_task will catch that exception
(in the promise-holding thread) and shove it into the wormhole. Then, whenever the other
thread calls f.get() (or maybe it already called it and it's blocked inside f.get() right
now), f.get() will throw that exception out into the future-holding thread. In other
words, by using promises and futures, we can actually "teleport" exceptions across threads.
The exact mechanism of this teleportation, std::exception_ptr, is unfortunately outside
the scope of this book. If you do library programming in a codebase that uses a lot of
exceptions, it is definitely worth becoming familiar with std::exception_ptr.

The future of futures
As with std::shared_mutex, the standard library's own version of std::future is only
half-baked. A much more complete and useful version of future is coming, perhaps in
C++20, and there are very many third-party libraries that incorporate the best features of the
upcoming version. The best of these libraries include boost::future and Facebook's
folly::Future.
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The major problem with std::future is that it requires "touching down" in a thread after
each step of a potentially multi-step computation. Consider this pathological usage of
std::future:

    template<class T>
    auto pf() {
      std::promise<T> p;
      std::future<T> f = p.get_future();
      return std::make_pair(std::move(p), std::move(f));
    }

    void test() {
      auto [p1, f1] = pf<Connection>();
      auto [p2, f2] = pf<Data>();
      auto [p3, f3] = pf<Data>();

      auto t1 = std::thread([p1 = std::move(p1)]() mutable {
        Connection conn = slowly_open_connection();
        p1.set_value(conn);
        // DANGER: what if slowly_open_connection throws?
      });
      auto t2 = std::thread([p2 = std::move(p2)]() mutable {
        Data data = slowly_get_data_from_disk();
        p2.set_value(data);
      });
      auto t3 = std::thread(
      [p3 = std::move(p3), f1 = std::move(f1)]() mutable {
        Data data = slowly_get_data_from_connection(f1.get());
        p3.set_value(data);
      });
      bool success = (f2.get() == f3.get());

      assert(success);
    }

Notice the line marked DANGER: each of the three thread bodies has the same bug, which is
that they fail to catch and .set_exception() when an exception is thrown. The solution is
a try...catch block, just like we used in our simple_packaged_task in the preceding
section; but since that would get tedious to write out every time, the standard library
provides a neat wrapper function called std::async(), which takes care of creating a
promise-future pair and spawning a new thread. Using std::async(), we have this much
cleaner-looking code:

    void test() {
      auto f1 = std::async(slowly_open_connection);
      auto f2 = std::async(slowly_get_data_from_disk);
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      auto f3 = std::async([f1 = std::move(f1)]() mutable {
        return slowly_get_data_from_connection(f1.get());
        // No more danger.
      });
      bool success = (f2.get() == f3.get());

      assert(success);
    }

However, this code is cleaner only in its aesthetics; it's equally horrifically bad for the
performance and robustness of your codebase. This is bad code!

Every time you see a .get() in that code, you should think, "What a waste of a context
switch!" And every time you see a thread being spawned (whether explicitly or via async),
you should think, "What a possibility for the operating system to run out of kernel threads
and for my program to start throwing unexpected exceptions from the constructor of
std::thread!" Instead of either of the preceding codes, we'd prefer to write something like
this, in a style that might look familiar to JavaScript programmers:

    void test() {
      auto f1 = my::async(slowly_open_connection);
      auto f2 = my::async(slowly_get_data_from_disk);
      auto f3 = f1.then([](Connection conn) {
        return slowly_get_data_from_connection(conn);
      });
      bool success = f2.get() == f3.get();

      assert(success);
    }

Here, there are no calls to .get() except at the very end, when we have nothing to do but
wait for the final answer; and there is one fewer thread spawned. Instead, before f1 finishes
its task, we attach a "continuation" to it, so that when f1 does finish, the promise-holding
thread can immediately segue right into working on the continuation task (if original task of
f1 threw an exception, we won't enter this continuation at all. The library should provide a
symmetrical method, f1.on_error(continuation), to deal with the exceptional
codepath).

Something like this is already available in Boost; and Facebook's Folly library contains a
particularly robust and fully featured implementation even better than Boost's. While we
wait for C++20 to improve the situation, my advice is to use Folly if you can afford the
cognitive overhead of integrating it into your build system. The single advantage of
std::future is that it's standard; you'll be able to use it on just about any platform
without needing to worry about downloads, include paths, or licensing terms.
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Speaking of threads...
Throughout this entire chapter, we've been using the word "thread" without ever defining
exactly what we mean by it; and you've probably noticed that many of our multithreaded
code examples have used the class type std::thread and the namespace
std::this_thread without much explanation. We've been focusing on how to
synchronize behavior between different threads of execution, but so far we have glossed
over exactly who is doing the executing!

To put it another way: When execution reaches the expression mtx.lock(), where mtx is a
locked mutex, the semantics of std::mutex say that the current thread of execution should
block and wait. While that thread is blocked, what is happening? Our C++ program is still
"in charge" of what's going on, but clearly this particular C++ code is no longer executing; so
who is executing? The answer is: another thread. We specify the existence of other threads,
and the code we want them to execute, by using the standard library class std::thread,
defined in the <thread> header.

To spawn a new thread of execution, simply construct an object of type std::thread, and
pass a single argument to the constructor: a lambda or function that tells you what code you
want to run in the new thread. (Technically, you are allowed to pass multiple arguments; all
arguments after the first will be passed along to the first argument as its function
parameters, after undergoing reference_wrapper decay as described in Chapter 5,
Vocabulary Types. As of C++11, lambdas have made the extra arguments to the thread
constructor unnecessary and even error-prone; I recommend avoiding them.)

The new thread will immediately start running; if you want it to "start up paused," you'll
have to build that functionality yourself using one of the synchronization tricks shown in
the section titled "Waiting for a condition," or the alternative trick shown in "Identifying
individual threads and the current thread."

The new thread will run through the code it's given, and when it gets to the end of the
lambda or function you provided to it, it will "become joinable." This idea is very similar to
what happens with std::future when it "becomes ready": the thread has completed its
computation and is ready to deliver the result of that computation to you. Just as with
std::future<void>, the result of that computation is "valueless"; but the very fact that the
computation has finished is valuable nonetheless--no pun intended!
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Unlike std::future<void>, though, it is not permitted to destroy a std::thread object
without fetching that valueless result. By default, if you destroy any new thread without
dealing with its result, the destructor will call std::terminate, which is to say, it will
bluntly kill your program. The way to avoid this fate is to indicate to the thread that you see
and acknowledge its completion--"Good job, thread, well done!"--by calling the member
function t.join(). Alternatively, if you do not expect the thread to finish (for example if it
is a background thread running an infinite loop) or don't care about its result (for example if
it represents some short-lived "fire and forget" task), you can dismiss it to the background--
"Go away, thread, I don't want to hear from you again!"--via t.detach().

Here are some complete examples of how to use std::thread:

    using namespace std::literals; // for "ms"

    std::thread a([](){
      puts("Thread A says hello ~0ms");
      std::this_thread::sleep_for(10ms);
      puts("Thread A says goodbye ~10ms");
    });

    std::thread b([](){
      puts("Thread B says hello ~0ms");
      std::this_thread::sleep_for(20ms);
      puts("Thread B says goodbye ~20ms");
    });

    puts("The main thread says hello ~0ms");
    a.join(); // waits for thread A
    b.detach(); // doesn't wait for thread B
    puts("The main thread says goodbye ~10ms");

Identifying individual threads and the current
thread
Objects of type std::thread, like every other type described in this chapter, do not
support operator==. You can't directly ask "Are these two thread objects the same?" This
also means that you can't use std::thread objects as the keys in an associative container
such as std::map or std::unordered_map. However, you can ask about equality
indirectly, via a feature called thread-ids.
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The member function t.get_id() returns a unique identifier of type std::thread::id,
which, although it is technically a class type, behaves an awful lot like an integer type. You
can compare thread-ids using operators < and ==; and you can use thread-ids as keys in
associative containers. Another valuable feature of thread-id objects is that they can be
copied, unlike std::thread objects themselves, which are move-only. Remember, each
std::thread object represents an actual thread of execution; if you could copy thread
objects, you would be "copying" threads of execution, which doesn't make a whole lot of
sense--and would certainly lead to some interesting bugs!

The third valuable feature of std::thread::id is that it is possible to get the thread-id of
the current thread, or even of the main thread. From within a thread, there is no way to say
"Please give me the std::thread object that manages this thread." (This would be a trick
analogous to std::enable_shared_from_this<T> from Chapter 6, Smart Pointers; but as
we've seen, such a trick requires support from the part of the library that creates managed
resources--which in this case would be the constructor of std::thread.) And the main
thread, the thread in which main begins execution, doesn't have a corresponding
std::thread object at all. But it still has a thread-id!

Finally, thread-ids are convertible in some implementation-defined manner to a string
representation, which is guaranteed to be unique--that is, to_string(id1) ==
to_string(id2) if and only if id1 == id2. Unfortunately this string representation is
exposed only via the stream operator (see Chapter 9, Iostreams); if you want to use the
syntax to_string(id1) you need to write a simple wrapper function:

    std::string to_string(std::thread::id id)
    {
      std::ostringstream o;
      o << id;
      return o.str();
    }

You can get the thread-id of the current thread (including of the main thread, if that
happens to be your current thread) by calling the free function
std::this_thread::get_id(). Look carefully at the syntax! std::thread is the name
of a class, but std::this_thread is the name of a namespace. In this namespace live some
free functions (unassociated with any C++ class instance) that manipulate the current
thread. get_id() is one of those functions. Its name was chosen to be reminiscent of
std::thread::get_id(), but in fact it is a completely different function:
thread::get_id() is a member function and this_thread::get_id() is a free
function.
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Using two thread-ids, you can find out, for example, which of an existing list of threads
represents your current thread:

    std::mutex ready;
    std::unique_lock lk(ready);
    std::vector<std::thread> threads;

    auto task = [&](){
        // Block here until the main thread is ready.
      (void)std::lock_guard(ready);
        // Now go. Find my thread-id in the vector.
      auto my_id = std::this_thread::get_id();
      auto iter = std::find_if(
        threads.begin(), threads.end(),
        [=](const std::thread& t) {
          return t.get_id() == my_id;
         }
      );
      printf("Thread %s %s in the list.\n",
        to_string(my_id).c_str(),
        iter != threads.end() ? "is" : "is not");
    };

    std::vector<std::thread> others;
    for (int i = 0; i < 10; ++i) {
      std::thread t(task);
      if (i % 2) {
        threads.push_back(std::move(t));
      } else {
        others.push_back(std::move(t));
      }
    }

      // Let all the threads run.
    ready.unlock();

      // Join all the threads.
    for (std::thread& t : threads) t.join();
    for (std::thread& t : others) t.join();

What you cannot do, ever, is go the other direction; you cannot reconstruct the
std::thread object corresponding to a given std::thread::id. Because if you could,
you'd have two different objects in your program representing that thread of execution: the
original std::thread wherever it is, and the one you just reconstructed from its thread-id.
And you can never have two std::thread objects controlling the same thread.
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The two other free functions in the std::this_thread namespace are
std::this_thread::sleep_for(duration), which you've seen me use extensively in
this chapter, and std::this_thread::yield(), which is basically the same thing as
sleep_for(0ms): it tells the runtime that it would be a good idea to context-switch to a
different thread right now, but doesn't connote any particular time delay on the current
thread.

Thread exhaustion and std::async
In this chapter's section The future of futures, we introduced std::async, which is a simple
wrapper around a thread constructor with the result captured into a std::future. Its 
implementation looks more or less like this:

    template<class F>
    auto async(F&& func) {
      using ResultType = std::invoke_result_t<std::decay_t<F>>;
      using PromiseType = std::promise<ResultType>;
      using FutureType = std::future<ResultType>;

      PromiseType promise;
      FutureType future = promise.get_future();
      auto t = std::thread([
        func = std::forward<F>(func),
        promise = std::move(promise)
      ]() mutable {
        try {
          ResultType result = func();
           promise.set_value(result);
        } catch (...) {
          promise.set_exception(std::current_exception());
        }
      });
      // This special behavior is not implementable
      // outside of the library, but async does do it.
      // future.on_destruction([t = std::move(t)]() {
      //  t.join();
      // });
      return future;
    }
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Notice the commented-out lines indicating a special behavior "on destruction" of the
std::future returned from std::async. This is a strange and awkward behavior of the
standard library's std::async implementation, and a good reason to avoid or reimplement
std::async in your own code: The futures returned from std::async have destructors
that call .join() on their underlying threads! This means that their destructors can block,
and that the task certainly will not be "executing in the background" as you might naturally
expect. If you call std::async and don't assign the returned future to a variable, the return
value will be destroyed right then and there, which means ironically that a line containing
nothing but a call to std::async will actually execute the specified function synchronously:

    template<class F>
    void fire_and_forget_wrong(const F& f) {
      // WRONG! Runs f in another thread, but blocks anyway.
      std::async(f);
    }

    template<class F>
    void fire_and_forget_better(const F& f) {
      // BETTER! Launches f in another thread without blocking.
      std::thread(f).detach();
    }

The original reason for this limitation seems to have been a concern that if std::async
launched background threads in the usual way, it would lead to people overusing
std::async and possibly introducing dangling-reference bugs, as in this example:

    int test() {
      int i = 0;
      auto future = std::async([&]() {
        i += 1;
      });
      // suppose we do not call f.wait() here
      return i;
    }
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If we didn't wait for the result of this future, the function test() might return to its caller
before the new thread got a chance to run; then, when the new thread did finally run and
attempt to increment i, it would be accessing a stack variable that no longer existed. So,
rather than run the risk of people writing such buggy code, the Standards Committee
decided that std::async should return futures with special, "magic" destructors that join
their threads automatically.

Anyway, overuse of std::async is problematic for other reasons as well. The biggest
reason is that on all popular operating systems, std::thread represents a kernel thread--a
thread whose scheduling is under the control of the OS kernel. Because the OS has only
finite resources to track these threads, the number of threads available to any one process is
fairly limited: often only a few tens of thousands. If you're using std::async as your
thread manager, spawning a new std::thread every time you have another task that
might benefit from concurrency, you'll quickly find yourself running out of kernel threads.
When this happens, the constructor of std::thread will start throwing exceptions of type
std::system_error, often with the text Resource temporarily unavailable.

Building your own thread pool
If you use std::async to spawn a thread every time you have a new task, you risk
exhausting the kernel's number of available threads for your process. A better way to run
tasks concurrently is to use a thread pool--a small number of "worker threads" whose sole job
is to run tasks as they are provided by the programmer. If there are more tasks than
workers, the excess tasks are placed in a work queue. Whenever a worker finishes a task, it
checks the work queue for new tasks.

This is a well-known idea, but has not yet been taken up into the standard library as of
C++17. However, you can combine the ideas shown in this chapter to create your own
production-quality thread pool. I'll walk through a simple one here; it's not "production
quality" in terms of performance, but it is properly thread-safe and correct in all its
functionality. Some performance tweaks will be discussed at the end of the walkthrough.
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We'll start with the member data. Notice that we are using the rule that all the data
controlled by a mutex should be located together under a single visual namespace; in this
case, a nested struct definition. We're also going to use std::packaged_task<void()> as
our move-only function type; if your codebase already has a move-only function type,
you'll probably want to use that instead. If you don't already have a move-only function
type, consider adopting Folly's folly::Function or Denis Blank's
fu2::unique_function:

    class ThreadPool {
      using UniqueFunction = std::packaged_task<void()>;
      struct {
        std::mutex mtx;
        std::queue<UniqueFunction> work_queue;
        bool aborting = false;
      } m_state;
      std::vector<std::thread> m_workers;
      std::condition_variable m_cv;

The work_queue variable will hold tasks as they come in to us. The member variable
m_state.aborting will be set to true when it's time for all the workers to stop working
and "come home to rest." m_workers holds the worker threads themselves; and
m_state.mtx and m_cv are just for synchronization. (The workers will spend much of their
time asleep when there's no work to do. When a new task comes in and we need to wake up
some worker, we'll notify m_cv.)

The constructor of ThreadPool spawns worker threads and populates the m_workers
vector. Each worker thread will be running the member function this->worker_loop(),
which we'll see in a minute:

    public:
      ThreadPool(int size) {
        for (int i=0; i < size; ++i) {
          m_workers.emplace_back([this]() { worker_loop(); });
        }
      }

As promised, the destructor sets m_state.aborting to true and then waits for all of the
worker threads to notice the change and terminate. Notice that when we touch
m_state.aborting, it's only under a lock on m_state.mtx; we are following good
hygiene in order to avoid bugs!

      ~ThreadPool() {
        if (std::lock_guard lk(m_state.mtx); true) {
          m_state.aborting = true;
        }
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        m_cv.notify_all();
        for (std::thread& t : m_workers) {
          t.join();
        }
      }

Now let's see how we enqueue tasks into the work queue. (We have not yet seen how
workers grab tasks out; we'll see that happening in the worker_loop member function.) It's
very straightforward; we just have to make sure that we access m_state only under the
mutex lock, and that once we have enqueued the task, we call m_cv.notify_one() so that
some worker will wake up to handle the task:

      void enqueue_task(UniqueFunction task) {
        if (std::lock_guard lk(m_state.mtx); true) {
          m_state.work_queue.push(std::move(task));
        }
        m_cv.notify_one();
      }

At last, here is the worker loop. This is the member function that each worker runs:

    private:
      void worker_loop() {
        while (true) {
          std::unique_lock lk(m_state.mtx);
          while (m_state.work_queue.empty() && !m_state.aborting) {
            m_cv.wait(lk);
          }
          if (m_state.aborting) break;
          // Pop the next task, while still under the lock.
          assert(!m_state.work_queue.empty());
          UniqueFunction task = std::move(m_state.work_queue.front());
          m_state.work_queue.pop();

          lk.unlock();
          // Actually run the task. This might take a while.
          task();
          // When we're done with this task, go get another.
        }
      }
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Notice the inevitable loop around m_cv.wait(lk), and notice that we hygienically access
m_state only under the mutex lock. Also notice that when we actually call out to perform
task, we release the mutex lock first; this ensures that we are not holding the lock for a
very long time while the user's task executes. If we were to hold the lock for a long time,
then no other worker would be able to get in and grab its next task--we'd effectively reduce
the concurrency of our pool. Also, if we were to hold the lock during task, and if task
itself tried to enqueue a new task on this pool (which requires taking the lock itself), then
task would deadlock and our whole program would freeze up. This is a special case of the
more general rule never to call a user-provided callback while holding a mutex lock: that's
generally a recipe for deadlock.

Finally, let's round out our ThreadPool class by implementing a safe version of async. Our
version will allow calling tp.async(f) for any f that is callable without arguments, and
just like std::async, we'll return a std::future via which our caller can retrieve the
result of f once it's ready. Unlike the futures returned from std::async, our futures will
be safe to drop on the floor: If the caller decides that he doesn't want to wait for the result
after all, the task will remain enqueued and will eventually be executed, and the result will
simply be ignored:

    public:
      template<class F>
      auto async(F&& func) {
        using ResultType = std::invoke_result_t<std::decay_t<F>>;

        std::packaged_task<ResultType()> pt(std::forward<F>(func));
        std::future<ResultType> future = pt.get_future();

        UniqueFunction task(
           [pt = std::move(pt)]() mutable { pt(); }
        );

        enqueue_task(std::move(task));

        // Give the user a future for retrieving the result.
        return future;
      }
    }; // class ThreadPool
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We can use our ThreadPool class to write code like this function, which creates 60,000
tasks:

    void test() {
      std::atomic<int> sum(0);
      ThreadPool tp(4);
      std::vector<std::future<int>> futures;
      for (int i=0; i < 60000; ++i) {
        auto f = tp.async([i, &sum](){
          sum += i;
          return i;
        });
        futures.push_back(std::move(f));
      }
      assert(futures[42].get() == 42);
      assert(903 <= sum && sum <= 1799970000);
    }

We could try to do the same with std::async, but we'd likely run into thread exhaustion
when we tried to create 60,000 kernel threads. The preceding example uses only four kernel
threads, as indicated by the parameter to the ThreadPool constructor.

When you run this code, you'll see at least the numbers 0 through 42 printed to standard
output, in some order. We know that 42 must be printed because the function definitely
waits for futures[42] to be ready before it exits, and all the previous numbers must be
printed because their tasks were placed in the work queue ahead of task number 42. The
numbers 43 through 59,999 might or might not be printed, depending on the scheduler;
because as soon as task 42 is completed, we exit test and thus destroy the thread pool. The
thread pool's destructor, as we've seen, notifies all of its workers to stop working and come
home after they complete their current tasks. So it is likely that we'll see a few more
numbers printed, but then all the workers will come home and the remaining tasks will be
dropped on the floor.

Of course if you wanted the destructor of ThreadPool to block until all enqueued tasks
were completed, you could do that, by changing the code of the destructor. However,
typically when you're destroying a thread pool, it's because your program (such as a web
server) is exiting, and that's because you've received a signal such as the user pressing Ctrl +
C. In that situation, you probably want to exit as soon as you can, as opposed to trying to
clear the queue. Personally, I'd prefer to add a member function
tp.wait_for_all_enqueued_tasks(), so that the user of the thread pool could decide
whether they want to block or just drop everything on the floor.
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Improving our thread pool's performance
The biggest performance bottleneck in our ThreadPool is that every worker thread is vying
for the same mutex, this->m_state.mtx. The reason they're all contending that mutex is
because that is the mutex that guards this->m_state.work_queue, and every worker
needs to touch that queue in order to find out its next job. So one way to reduce contention
and speed up our program is to find a way of distributing work to our workers that doesn't
involve a single central work queue.

The simplest solution is to give each worker its own "to-do list"; that is, to replace our single
std::queue<Task> with a whole std::vector<std::queue<Task>>, with one entry for
each worker thread. Of course then we'd also need a std::vector<std::mutex> so that
we had one mutex for each work queue. The enqueue_task function distributes tasks to
the work queues in a round-robin fashion (using atomic increments of a
std::atomic<int> counter to deal with simultaneous enqueues).

You could alternatively use a thread_local counter per enqueuing thread, if you are
fortunate enough to work on a platform that supports C++11's thread_local keyword. On
x86-64 POSIX platforms, access to a thread_local variable is approximately as fast as
access to a plain old global variable; all the complication of setting up thread-local variables
happens under the hood and only when you spawn a new thread. However, because that
complication does exist and needs runtime support, many platforms do not yet support the
thread_local storage class specifier. (On those that do, thread_local int x is basically
the same thing as static int x, except that when your code accesses x by name, the
actual memory address of x will vary depending on std::this_thread::get_id(). In
principle, there is a whole array of x somewhere behind the scenes, indexed by thread-id
and populated by the C++ runtime as threads are created and destroyed.)

The next significant performance improvement to our ThreadPool would be "work-
stealing": now that each worker has its own to-do list, it might happen by chance or malice
that one worker becomes overworked while all the other workers lie idle. In this case, we
want the idle workers to scan the queues of the busy workers and "steal" tasks if possible.
This re-introduces lock contention among the workers, but only when an inequitable
assignment of tasks has already produced inefficiency--inefficiency which we are hoping to
correct via work-stealing.

Implementing separate work queues and work-stealing is left as an exercise for the reader;
but I hope that after seeing how simple the basic ThreadPool turned out, you won't be too
daunted by the idea of modifying it to include those extra features.
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Of course, there also exists professionally written thread-pool classes. Boost.Asio contains
one, for example, and Asio is on track to be brought into the standard perhaps in C++20.
Using Boost.Asio, our ThreadPool class would look like this:

    class ThreadPool {
      boost::thread_group m_workers;
      boost::asio::io_service m_io;
      boost::asio::io_service::work m_work;
    public:
      ThreadPool(int size) : m_work(m_io) {
        for (int i=0; i < size; ++i) {
          m_workers.create_thread([&](){ m_io.run(); });
        }
      }

      template<class F>
      void enqueue_task(F&& func) {
        m_io.post(std::forward<F>(func));
      }

      ~ThreadPool() {
        m_io.stop();
        m_workers.join_all();
      }
    };

An explanation of Boost.Asio is, of course, far outside the scope of this book.

Any time you use a thread pool, be careful that the tasks you enqueue never block
indefinitely on conditions controlled by other tasks in the same thread pool. A classic
example would be a task A that waits on a condition variable, expecting that some later task
B will notify the condition variable. If you make a ThreadPool of size 4 and enqueue four
copies of task A followed by four copies of task B, you'll find that task B never runs--the
four worker threads in your pool are all occupied by the four copies of task A, which are all
asleep waiting for a signal that will never come! "Handling" this scenario is tantamount to
writing your own user-space threading library; if you don't want to get into that business,
then the only sane answer is to be careful that the scenario cannot arise in the first place.
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Summary
Multithreading is a difficult and subtle subject, with many pitfalls that are obvious only in
hindsight. In this chapter we have learned:

volatile, while useful for dealing directly with hardware, is insufficient for thread-safety.
std::atomic<T> for scalar T (up to the size of a machine register) is the right way to access
shared data without races and without locks. The most important primitive atomic
operation is compare-and-swap, which in C++ is spelled compare_exchange_weak.

To force threads to take turns accessing shared non-atomic data, we use std::mutex.
Always lock mutexes via an RAII class such as std::unique_lock<M>. Remember that
although C++17 class template argument deduction allows us to omit the <M> from these
templates' names, that is just a syntactic convenience; they remain template classes.

Always clearly indicate which data is controlled by each mutex in your program. One good
way to do this is with a nested struct definition.

std::condition_variable allows us to "sleep until" some condition is satisfied. If the
condition can be satisfied only once, such as a thread becoming "ready," then you probably
want to use a promise-future pair instead of a condition variable. If the condition can be
satisfied over and over again, consider whether your problem can be rephrased in terms of
the work queue pattern.

std::thread reifies the idea of a thread of execution. The "current thread" is not directly
manipulable as a std::thread object, but a limited set of operations are available as free
functions in the std::this_thread namespace. The most important of these operations
are sleep_for and get_id. Each std::thread must always be joined or detached before
it can be destroyed. Detaching is useful only for background threads that you will never
need to shut down cleanly.

The standard function std::async takes a function or lambda for execution on some other
thread, and returns a std::future that becomes ready when the function is done
executing. While std::async itself is fatally flawed (destructors that join; kernel thread
exhaustion) and thus should not be used in production code, the general idea of dealing
with concurrency via futures is a good one. Prefer to use an implementation of promises
and futures that supports the .then method. Folly's implementation is the best.

Multithreading is a difficult and subtle subject, with many pitfalls that are obvious only in
hindsight.
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Allocators

We've seen in the preceding chapters that C++ has a love-hate relationship with dynamic
memory allocation.

On one hand, dynamic memory allocation from the heap is a "code smell"; chasing pointers
can hurt a program's performance, the heap can be exhausted unexpectedly (leading to
exceptions of type std::bad_alloc), and manual memory management is so subtly
difficult that C++11 introduced several different "smart pointer" types to manage the
complexity (see Chapter 6, Smart Pointers). Successive versions of C++ after 2011 have also
added a great number of non-allocating algebraic data types, such as tuple, optional, and
variant (see Chapter 5, Vocabulary Types) that can express ownership or containment
without ever touching the heap.

On the other hand, the new smart pointer types do effectively manage the complexity of
memory management; in modern C++ you can safely allocate and deallocate memory
without ever using raw new or delete and without fear of memory leaks. And heap
allocation is used "under the hood" of many of the new C++ features (any, function,
promise) just as it continues to be used by many of the old ones (stable_partition,
vector).

So there's a conflict here: How can we use these great new features (and the old ones) that
depend on heap allocation, if we are simultaneously being told that good C++ code avoids
heap allocation?
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In most cases, you should err on the side of using the features that C++ provides. If you want a
resizeable vector of elements, you should be using the default std::vector, unless you
have measured an actual performance problem with using it in your case. But there also
exists a class of programmers--working in very constrained environments such as flight
software--who have to avoid touching the heap for a very simple reason: "the heap" does
not exist on their platforms! In these embedded environments, the entire footprint of the
program must be laid out at compile time. Some such programs simply avoid any algorithm
that resembles heap allocation--you can never encounter unexpected resource exhaustion if
you never dynamically allocate resources of any kind! Other such programs do use
algorithms resembling heap allocation, but require that the "heap" be represented explicitly
in their program (say, by a very large array of char and functions for "reserving" and
"returning" consecutive chunks of that array).

It would be extremely unfortunate if programs of this last kind were unable to use the
features that C++ provides, such as std::vector and std::any. So, ever since the original
standard in 1998, the standard library has provided a feature known as allocator-awareness.
When a type or an algorithm is allocator-aware, it provides a way for the programmer to
specify exactly how the type or algorithm ought to reserve and return dynamic memory.
This "how" is reified into an object known as an allocator.

In this chapter we'll learn:

The definitions of "allocator" and "memory resource"
How to create your own memory resource that allocates out of a static buffer
How to make your own containers "allocator-aware"
The standard memory-resource types from namespace std::pmr, and their
surprising pitfalls
That many of the strange features of the C++11 allocator model are intended
purely to support scoped_allocator_adaptor
What makes a type a "fancy pointer" type, and where such types might be useful
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An allocator is a handle to a memory
resource
In reading this chapter, you'll have to keep in mind the difference between two
fundamental concepts, which I am going to call memory resource and allocator. A memory
resource (a name inspired by the standard's own terminology--you might find it more
natural to call it "a heap") is a long-lived object that can dole out chunks of memory on
request (usually by carving them out of a big block of memory that is owned by the
memory resource itself). Memory resources have classically object-oriented semantics (see
Chapter 1, Classical Polymorphism and Generic Programming): you create a memory resource
once and never move or copy it, and equality for memory resources is generally defined by
object identity. On the other hand, an allocator is a short-lived handle pointing to a memory
resource. Allocators have pointer semantics: you can copy them, move them around, and
generally mess with them as much as you want, and equality for allocators is generally
defined by whether they point to the same memory resource. Instead of saying an allocator
"points to" a particular memory resource, we might also say that the allocator is "backed by"
that memory resource; the terms are interchangeable.

When I talk about "memory resources" and "allocators" in this chapter, I will be talking
about the preceding concepts. The standard library also has a couple of types named
memory_resource and allocator; whenever I'm talking about those types I'll be careful
to use typewriter text. It shouldn't be too confusing. The situation is similar to Chapter
2, Iterators and Ranges, where we talked about "iterators" and also about std::iterator. Of
course that was easier because I only mentioned std::iterator in order to tell you never
to use it; it has no place in well-written C++ code. In this chapter we'll learn that
std::pmr::memory_resource does have a place in certain C++ programs!

Even though I described an allocator as a handle "pointing to" a memory resource, you
should notice that sometimes the memory resource in question is a global singleton--one
example of such a singleton is the global heap, whose accessors are the global operator
new and operator delete. Just as a lambda which "captures" a global variable doesn't
actually capture anything, an allocator backed by the global heap doesn't actually need any
state. In fact, std::allocator<T> is just such a stateless allocator type--but we're getting
ahead of ourselves here!
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Refresher - Interfaces versus concepts
Recall from Chapter 1, Classical Polymorphism and Generic Programming, that C++ offers two
mostly incompatible ways of dealing with polymorphism. Static, compile-time
polymorphism is called generic programming; it relies on expressing the polymorphic
interface as a concept with many possible models, and the code that interacts with the
interface is expressed in terms of templates. Dynamic, runtime polymorphism is called
classical polymorphism; it relies on expressing the polymorphic interface as a base class with 
many possible derived classes, and the code that interacts with the interface is expressed in
terms of calls to virtual methods.

In this chapter we'll have our first (and last) really close encounter with generic
programming. It is impossible to make sense of C++ allocators unless you can hold in your
mind two ideas at once: on one hand the concept Allocator, which defines an interface,
and on the other hand some particular model, such as std::allocator, that implements
behavior conforming to the Allocator concept.

To complicate matters further, the Allocator concept is really a templated family of
concepts! It would be more accurate to talk about the family of concepts Allocator<T>; for
example, Allocator<int> would be the concept defining "an allocator that allocates int
objects," and Allocator<char> would be "an allocator that allocates char objects," and so
on. And, for example, the concrete class std::allocator<int> is a model of the concept
Allocator<int>, but it is not a model of Allocator<char>.

Every allocator of T (every Allocator<T>) is required to provide a member function
named allocate, such that a.allocate(n) returns a pointer to enough memory for an
array of n objects of type T. (That pointer will come from the memory resource that backs
the allocator instance.) It is not specified whether the allocate member function ought to
be static or non-static, nor whether it ought to take exactly one parameter (n) or perhaps
some additional parameters with default values. So both of the following class types would
be acceptable models of Allocator<int> in that respect:

    struct int_allocator_2014 {
      int *allocate(size_t n, const void *hint = nullptr);
    };

    struct int_allocator_2017 {
      int *allocate(size_t n);
    };
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The class designated int_allocator_2017 is obviously a simpler way to model
Allocator<int>, but int_allocator_2014 is just as correct a model, because in both
cases the expression a.allocate(n) will be accepted by the compiler; and that's all we ask
for, when we're talking about generic programming.

In contrast, when we do classical polymorphism, we specify a fixed signature for each
method of the base class, and derived classes are not allowed to deviate from that signature:

    struct classical_base {
      virtual int *allocate(size_t n) = 0;
    };

    struct classical_derived : public classical_base {
      int *allocate(size_t n) override;
    };

The derived class classical_derived is not allowed to add any extra parameters onto the
signature of the allocate method; it's not allowed to change the return type; it's not
allowed to make the method static. The interface is more "locked down" with classical
polymorphism than it is with generic programming.

Because a "locked-down" classical interface is naturally easier to describe than a wide-open
conceptual one, we'll start our tour of the allocator library with C++17's brand-new,
classically polymorphic memory_resource.

Defining a heap with memory_resource
Recall that on resource-constrained platforms, we might not be permitted to use "the heap"
(for example via new and delete), because the platform's runtime might not support 
dynamic memory allocation. But we can make our own little heap--not "the heap," just "a
heap"--and simulate the effect of dynamic memory allocation by writing a couple of
functions allocate and deallocate that reserve chunks of a big statically allocated array
of char, something like this:

    static char big_buffer[10000];
    static size_t index = 0;

    void *allocate(size_t bytes) {
      if (bytes > sizeof big_buffer - index) {
        throw std::bad_alloc();
      }
      index += bytes;
      return &big_buffer[index - bytes];
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    }

    void deallocate(void *p, size_t bytes) {
      // drop it on the floor
    }

To keep the code as simple as possible, I made deallocate a no-op. This little heap allows
the caller to allocate up to 10,000 bytes of memory, and then starts throwing bad_alloc
from then on.

With a little more investment in the code, we can allow the caller to allocate and deallocate
an infinite number of times, as long as the total outstanding amount of allocated memory
doesn't exceed 10,000 bytes and as long as the caller always follows a "last-allocated-first-
deallocated" protocol:

    void deallocate(void *p, size_t bytes) {
      if ((char*)p + bytes == &big_buffer[index]) {
        // aha! we can roll back our index!
        index -= bytes;
      } else {
        // drop it on the floor
      }
    }

The salient point here is that our heap has some state (in this case, big_buffer and index),
and a couple of functions that manipulate this state. We've seen two different possible
implementations of deallocate already--and there are other possibilities, with additional
shared state, that wouldn't be so "leaky"--yet the interface, the signatures of allocate and
deallocate themselves, has remained constant. This suggests that we could wrap up our
state and accessor functions into a C++ object; and the wide variety of implementation
possibilities plus the constancy of our function signatures suggests that we could use some
classical polymorphism.

The C++17 allocator model does exactly that. The standard library provides the definition of
a classically polymorphic base class, std::pmr::memory_resource, and then we
implement our own little heap as a derived class. (In practice we might use one of the
derived classes provided by the standard library, but let's finish up our little example before
talking about those.) The base class std::pmr::memory_resource is defined in the
standard header <memory_resource>:

    class memory_resource {
      virtual void *do_allocate(size_t bytes, size_t align) = 0;
      virtual void do_deallocate(void *p, size_t bytes, size_t align) = 0;
      virtual bool do_is_equal(const memory_resource& rhs) const = 0;
    public:
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      void *allocate(size_t bytes, size_t align) {
        return do_allocate(bytes, align);
      }
      void deallocate(void *p, size_t bytes, size_t align) {
        return do_deallocate(p, bytes, align);
      }
      bool is_equal(const memory_resource& rhs) const {
        return do_is_equal(rhs);
      }
    };

Notice the curious layer of indirection between the public interface of the class and the
virtual implementation. Usually when we're doing classical polymorphism, we have just
one set of methods that are both public and virtual; but in this case, we have a public
non-virtual interface that calls down into the private virtual methods. This splitting of the
interface from the implementation has a few obscure benefits--for example, it prevents any
child class from invoking this->SomeBaseClass::allocate() using the "directly
invoke a virtual method non-virtually" syntax--but honestly, its main benefit to us is that
when we define a derived class, we don't have to use the public keyword at all. Because
we are specifying only the implementation, not the interface, all the code we write can be
private. Here's our trivial little leaky heap:

    class example_resource : public std::pmr::memory_resource {
      alignas(std::max_align_t) char big_buffer[10000];
      size_t index = 0;
      void *do_allocate(size_t bytes, size_t align) override {
        if (align > alignof(std::max_align_t) ||
            (-index % align) > sizeof big_buffer - index ||
            bytes > sizeof big_buffer - index - (-index % align))
        {
            throw std::bad_alloc();
        }
        index += (-index % align) + bytes;
        return &big_buffer[index - bytes];
      }
      void do_deallocate(void *, size_t, size_t) override {
        // drop it on the floor
      }
      bool do_is_equal(const memory_resource& rhs) const override {
        return this == &rhs;
      }
    };
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Notice that the standard library's std::pmr::memory_resource::allocate takes not
only a size in bytes, but also an alignment. We need to make sure that whatever pointer we
return from do_allocate is suitably aligned; for example, if our caller is planning to store
int in the memory we give him, he might ask for four-byte alignment.

The last thing to notice about our derived class example_resource is that it represents the
actual resources controlled by our "heap"; that is, it actually contains, owns, and manages
the big_buffer out of which it's allocating memory. For any given big_buffer, there will
be exactly one example_resource object in our program that manipulates that buffer. Just
as we said earlier: objects of type example_resource are "memory resources," and thus
they are not intended to be copied or moved around; they are classically object-oriented, not
value-semantic.

The standard library provides several species of memory resource, all derived from
std::pmr::memory_resource. Let's look at a few of them.

Using the standard memory resources
Memory resources in the standard library come in two flavors. Some of them are actual
class types, of which you can create instances; and some of them are "anonymous" class
types accessed only via singleton functions. Generally you can predict which is which by
thinking about whether two objects of the type could ever possibly be "different," or
whether the type is basically a singleton anyway.

The simplest memory resource in the <memory_resource> header is the "anonymous"
singleton accessed via std::pmr::null_memory_resource(). The definition of this
function is something like this:

    class UNKNOWN : public std::pmr::memory_resource {
      void *do_allocate(size_t, size_t) override {
        throw std::bad_alloc();
      }
      void do_deallocate(void *, size_t, size_t) override {}
      bool do_is_equal(const memory_resource& rhs) const override {
        return this == &rhs;
      }
    };

    std::pmr::memory_resource *null_memory_resource() noexcept {
      static UNKNOWN singleton;
      return &singleton;
    }
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Notice that the function returns a pointer to the singleton instance. Generally,
std::pmr::memory_resource objects will be manipulated via pointers, because the
memory_resource objects themselves cannot move around.

null_memory_resource seems fairly useless; all it does is throw an exception when you
try to allocate from it. However, it can be useful when you start using the more complicated
memory resources which we'll see in a moment.

The next most complicated memory resource is the singleton accessed via
std::pmr::new_delete_resource(); it uses ::operator new and ::operator
delete to allocate and deallocate memory.

Now we move on to talking about the named class types. These are resources where it
makes sense to have multiple resources of identical type in a single program. For example,
there's class std::pmr::monotonic_buffer_resource. This memory resource is
fundamentally the same as our example_resource from earlier, except for two differences:
Instead of holding its big buffer as member data (std::array-style), it just holds a pointer
to a big buffer allocated from somewhere else (std::vector-style). And when its first big
buffer runs out, rather than immediately starting to throw bad_alloc, it will attempt to
allocate a second big buffer, and allocate chunks out of that buffer until it's all gone; at which
point it will allocate a third big buffer... and so on, until eventually it cannot even allocate
any more big buffers. As with our example_resource, none of the deallocated memory is
ever freed until the resource object itself is destroyed. There is one useful escape valve: If
you call the method a.release(), the monotonic_buffer_resource will release all of
the buffers it's currently holding, sort of like calling clear() on a vector.

When you construct a resource of type std::pmr::monotonic_buffer_resource, you
need to tell it two things: Where is its first big buffer located? and, when that buffer is
exhausted, who it should ask for another buffer? The first of these questions is answered by
providing a pair of arguments void*, size_t that describes the first big buffer (optionally
nullptr); and the second question is answered by providing a
std::pmr::memory_resource* that points to this resource's "upstream" resource. One
sensible thing to pass in for the "upstream" resource would be
std::pmr::new_delete_resource(), so as to allocate new buffers using ::operator
new. Or, another sensible thing to pass in would be
std::pmr::null_memory_resource(), so as to put a hard cap on the memory usage of
this particular resource. Here's an example of the latter:

    alignas(16) char big_buffer[10000];

    std::pmr::monotonic_buffer_resource a(
      big_buffer, sizeof big_buffer,
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      std::pmr::null_memory_resource()
    );

    void *p1 = a.allocate(100);
    assert(p1 == big_buffer + 0);

    void *p2 = a.allocate(100, 16); // alignment
    assert(p1 == big_buffer + 112);

    // Now clear everything allocated so far and start over.
    a.release();
    void *p3 = a.allocate(100);
    assert(p3 == big_buffer + 0);

    // When the buffer is exhausted, a will go upstream
    // to look for more buffers... and not find any.
    try {
      a.allocate(9901);
    } catch (const std::bad_alloc&) {
      puts("The null_memory_resource did its job!");
    }

If you forget what upstream resource a particular monotonic_buffer_resource is using,
you can always find out by calling a.upstream_resource(); that method returns a
pointer to the upstream resource that was provided to the constructor.

Allocating from a pool resource
The final kind of memory resource provided by the C++17 standard library is what's called
a "pool resource." A pool resource doesn't just manage one big buffer, such as
example_resource; or even a monotonically increasing chain of buffers, such as
monotonic_buffer_resource. Instead it manages a whole lot of "blocks" of various sizes.
All the blocks of a given size are stored together in a "pool," so that we can talk about "the
pool of blocks of size 4," "the pool of blocks of size 16," and so on. When a request comes in
for an allocation of size k, the pool resource will look in the pool of blocks of size k, pull one
out and return it. If the pool for size k is empty, then the pool resource will attempt to
allocate some more blocks from its upstream resource. Also, if a request comes in for an
allocation so large that we don't even have a pool for blocks of that size, then the pool
resource is allowed to pass the request directly on to its upstream resource.
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Pool resources come in two flavors: synchronized and unsynchronized, which is to say, thread-
safe and thread-unsafe. If you're going to be accessing a pool from two different threads
concurrently, then you should use std::pmr::synchronized_pool_resource, and if
you're definitely never going to do that, and you want raw speed, then you should use
std::pmr::unsynchronized_pool_resource. (By the way,
std::pmr::monotonic_buffer_resource is always thread-unsafe; and
new_delete_resource() is effectively thread-safe, since all it does is call new and
delete.)

When you construct a resource of type std::pmr::synchronized_pool_resource, you
need to tell it three things: Which block sizes it should keep in its pools; how many blocks it
should glom together into a "chunk" when it goes to get more blocks from the upstream
resource; and who is its upstream resource. Unfortunately, the standard interface leaves
much to be desired here--so much so that frankly I recommend that if these parameters
truly matter to you, you should be implementing your own derived memory_resource and
not touching the standard library's version at all. The syntax for expressing these options is
also fairly wonky:

    std::pmr::pool_options options;
    options.max_blocks_per_chunk = 100;
    options.largest_required_pool_block = 256;

    std::pmr::synchronized_pool_resource a(
      options,
      std::pmr::new_delete_resource()
    );

Notice that there is no way to specify exactly which block sizes you want; that's left up to
the vendor's implementation of synchronized_pool_resource. If you're lucky, it will
choose decent block sizes that match your use-case; but personally I wouldn't rely on that
assumption. Notice also that there's no way to use different upstream resources for the
different block sizes, nor a different upstream resource for the "fallback" resource that's
used when the caller requests an unusually sized allocation.

In short, I would steer clear of the built-in pool_resource derived classes for the
foreseeable future. But the fundamental idea of deriving your own classes from
memory_resource is solid. If you're concerned about memory allocation and managing
your own little heaps, I'd recommend adopting memory_resource into your codebase.
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Now, so far we've only been talking about various allocation strategies, as "personified" by
the different memory_resource derived classes. We still need to see how to hook
memory_resource into the algorithms and containers of the Standard Template Library.
And to do that, we'll have to transition from the classically polymorphic world of
memory_resource back into the value-semantic world of the C++03 STL.

The 500 hats of the standard allocator
The standard allocator model must have seemed amazing in 2011. We're about to see how,
with just one C++ type, we can accomplish all of the following feats:

Specify a memory resource to be used for allocating memory.
Annotate each allocated pointer with some metadata that will be carried along
for its whole lifetime, all the way to deallocation time.
Associate a container object with a particular memory resource, and make sure
that association is "sticky"--this container object will always use the given
heap for its allocations.
Associate a container value with a particular memory resource, meaning
that the container can be efficiently moved around using value semantics without
forgetting how to deallocate its contents.
Choose between the two mutually exclusive behaviors above.
Specify a strategy for allocating memory at all levels of a multi-level
container, such as a vector of vectors.
Redefine what it means to "construct" the contents of a container, so that
for example, vector<int>::resize could be defined to default-initialize new
elements instead of zero-initializing them.

This is just an insane number of hats for any one class type to wear--a massive violation of
the Single Responsibility Principle. Nevertheless, this is what the standard allocator model
does; so let's try to explain all these features.

Remember that a "standard allocator" is just any class type that satisfies the concept
Allocator<T> for some type T. The standard library provides three standard allocator
types: std::allocator<T>, std::pmr::polymorphic_allocator<T>, and
std::scoped_allocator_adaptor<A...>.
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Let's start by looking at std::allocator<T>:

    template<class T>
    struct allocator {
      using value_type = T;

      T *allocate(size_t n) {
        return static_cast<T *>(::operator new(n * sizeof (T)));
      }
      void deallocate(T *p, size_t) {
        ::operator delete(static_cast<void *>(p));
      }

      // NOTE 1
      template<class U>
      explicit allocator(const allocator<U>&) noexcept {}

      // NOTE 2
      allocator() = default;
      allocator(const allocator&) = default;
    };

std::allocator<T> has the member functions allocate and deallocate that are
required by the Allocator<T> concept. Remember that we are in the world of concept-
based generic programming now! The classically polymorphic memory_resource also had
member functions named allocate and deallocate, but they always returned void*,
not T*. (Also, memory_resource::allocate() took two arguments--bytes and align--
whereas allocator<T>::allocate() takes only one argument. The first reason for this is
that allocator<T> predated the mainstream understanding that alignment was a big deal;
remember that the sizeof operator was inherited from C in the 1980s but the alignof
operator only showed up in C++11. The second reason is that in the context of
std::allocator<T>, we know that the type of the objects being allocated is T, and thus
the requested alignment must necessarily be alignof(T). std::allocator<T> doesn't
use that information, because it predates alignof; but in principle it could, and that's why
the Allocator<T> concept requires only the signature a.allocate(n) instead of
a.allocate(n, align).)

The constructor marked NOTE 1 is important; every allocator needs a templated constructor
modeled after this one. The constructors following the line marked NOTE 2 are
unimportant; the only reason we wrote them explicitly in the code is because if we had not
written them, they would have been implicitly deleted due to the presence of a user-defined
constructor (namely, the NOTE 1 constructor).
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The idea of any standard allocator is that we can plug it in as the very last template type
parameter of any standard container (Chapter 4, The Container Zoo) and the container will
then use that allocator instead of its usual mechanisms anytime it needs to allocate memory
for any reason. Let's see an example:

    template<class T>
    struct helloworld {
      using value_type = T;

      T *allocate(size_t n) {
        printf("hello world %zu\n", n);
        return static_cast<T *>(::operator new(n * sizeof (T)));
      }
      void deallocate(T *p, size_t) {
        ::operator delete(static_cast<void *>(p));
      }
    };

    void test() {
      std::vector<int, helloworld<int>> v;
      v.push_back(42); // prints "hello world 1"
      v.push_back(42); // prints "hello world 2"
      v.push_back(42); // prints "hello world 4"
    }

Here our class helloworld<int> models Allocator<int>; but we've omitted the
templated constructor. This is fine if we're dealing only with vector, because vector will
allocate only arrays of its element type. However, watch what happens if we change the test
case to use list instead:

    void test() {
      std::list<int, helloworld<int>> v;
      v.push_back(42);
    }

Under libc++, this code spews several dozen lines of error messages, which boil down to the
essential complaint "no known conversion from helloworld<int> to
helloworld<std::__1::__list_node<int, void *>>." Recall from the diagram in
Chapter 4, The Container Zoo, that std::list<T> stores its elements in nodes that are
larger than the size of T itself. So std::list<T> isn't going to be trying to allocate any T
objects; it wants to allocate objects of type __list_node. To allocate memory for
__list_node objects, it needs an allocator that models the concept
Allocator<__list_node>, not Allocator<int>.
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Internally, the constructor of std::list<int> takes our helloworld<int> and attempts
to "rebind" it to allocate __list_node objects instead of int objects. This is accomplished
via a traits class--a C++ idiom that we first encountered in Chapter 2, Iterators and Ranges:

    using AllocOfInt = helloworld<int>;

    using AllocOfChar =
      std::allocator_traits<AllocOfInt>::rebind_alloc<char>;

    // Now alloc_of_char is helloworld<char>

The standard class template std::allocator_traits<A> wraps up a lot of information
about the allocator type A into one place, so it's easy to get at. For example,
std::allocator_traits<A>::value_type is an alias for the type T whose memory is
allocated by A; and std::allocator_traits<A>::pointer is an alias for the
corresponding pointer type (generally T*).

The nested alias template std::allocator_traits<A>::rebind_alloc<U> is a way of
"converting" an allocator from one type T to another type U. This type trait uses
metaprogramming to crack open the type A and see: first, whether A has a nested template
alias A::rebind<U>::other (this is rare), and second, whether type A can be expressed in
the form Foo<Bar,Baz...> (where Baz... is some list of types which might be an empty
list). If A can be expressed that way, then
std::allocator_traits<A>::rebind_alloc<U> will be a synonym for
Foo<U,Baz...>. Philosophically, this is completely arbitrary; but in practice it works for
every allocator type you'll ever see. In particular, it works for helloworld<int>--which
explains why we didn't have to muck around with providing a nested alias
rebind<U>::other in our helloworld class. By providing a sensible default behavior, the
std::allocator_traits template has saved us some boilerplate. This is the reason
std::allocator_traits exists.

You might wonder why std::allocator_traits<Foo<Bar,Baz...>>::value_type
doesn't default to Bar. Frankly, I don't know either. It seems like a no-brainer; but the
standard library doesn't do it. Therefore, every allocator type you write (remember now
we're talking about classes modeling Allocator<T>, and not about classes derived from
memory_resource) must provide a nested typedef value_type that is an alias for T.
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However, once you've defined the nested typedef for value_type, you can rely on
std::allocator_traits to infer the correct definitions for its nested typedef pointer
(that is, T*), and const_pointer (that is, const T*), and void_pointer (that is, void*),
and so on. If you were following the previous discussion of rebind_alloc, you might
guess that "converting" a pointer type like T* to void* is just as difficult or easy as
"converting" an allocator type Foo<T> to Foo<void>; and you'd be correct! The values of
these pointer-related type aliases are all computed via a second standard traits class,
std::pointer_traits<P>:

    using PtrToInt = int*;

    using PtrToChar =
      std::pointer_traits<PtrToInt>::rebind<char>;

    // Now PtrToChar is char*

    using PtrToConstVoid =
      std::pointer_traits<PtrToInt>::rebind<const void>;

    // Now PtrToConstVoid is const void*

This traits class becomes very important when we talk about the next responsibility of
Allocator<T>, which was "annotate each allocated pointer with some metadata that will
be carried along for its whole lifetime."

Carrying metadata with fancy pointers
Consider the following high-level design for a memory resource, which should remind you
very much of std::pmr::monotonic_buffer_resource:

Keep a list of chunks of memory we've gotten from the system. For each chunk,
also store an index of how many bytes we've allocated from the beginning of the
chunk; and store a count freed of how many bytes we've deallocated from this
specific chunk.
When someone calls allocate(n), increment any one of our chunks' index by
the appropriate number of bytes if possible, or get a new chunk from the
upstream resource if absolutely necessary.
When someone calls deallocate(p, n), figure out which of our chunks p came
from and increment its freed += n. If freed == index, then the entire chunk
is empty, so set freed = index = 0.
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It's pretty straightforward to turn the foregoing description into code. The only problematic
item is: in deallocate(p, n), how do we figure out which of our chunks p came from?

This would be easy if we simply recorded the identity of the chunk in the "pointer" itself:

    template<class T>
    class ChunkyPtr {
      T *m_ptr = nullptr;
      Chunk *m_chunk = nullptr;
    public:
      explicit ChunkyPtr(T *p, Chunk *ch) :
      m_ptr(p), m_chunk(ch) {}

      T& operator *() const {
        return *m_ptr;
      }
      explicit operator T *() const {
        return m_ptr;
      }
      // ... and so on ...

      // ... plus this extra accessor:
      auto chunk() const {
        return m_chunk;
      }
    };

Then in our deallocate(p, n) function, all we'd have to do is to look at p.chunk(). But
to make this work, we'd need to change the signature of the allocate(n) and
deallocate(p, n) functions so that deallocate took a ChunkyPtr<T> instead of T*,
and allocate returned ChunkyPtr<T> instead of T*.

Fortunately, the C++ standard library gives us a way to do this! All we need to do is define
our own type that models Allocator<T> and give it a member typedef pointer that
evaluates to ChunkyPtr<T>:

    template<class T>
    struct ChunkyAllocator {
      using value_type = T;
      using pointer = ChunkyPtr<T>;

      ChunkyAllocator(ChunkyMemoryResource *mr) :
        m_resource(mr) {}

      template<class U>
      ChunkyAllocator(const ChunkyAllocator<U>& rhs) :
        m_resource(rhs.m_resource) {}
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      pointer allocate(size_t n) {
        return m_resource->allocate(
          n * sizeof(T), alignof(T));
      }
      void deallocate(pointer p, size_t n) {
        m_resource->deallocate(
          p, n * sizeof(T), alignof(T));
      }
    private:
      ChunkyMemoryResource *m_resource;

      template<class U>
      friend struct ChunkyAllocator;
    };

The traits classes std::allocator_traits and std::pointer_traits will take care of
inferring the other typedefs--such as void_pointer, which through the magic of
pointer_traits::rebind will end up as an alias for ChunkyPtr<void>.

I've left out the implementations of the allocate and deallocate functions here because
they would depend on the interface of ChunkyMemoryResource. We might implement
ChunkyMemoryResource something like this:

    class Chunk {
      char buffer[10000];
      int index = 0;
      int freed = 0;
    public:
      bool can_allocate(size_t bytes) {
        return (sizeof buffer - index) >= bytes;
      }
      auto allocate(size_t bytes) {
        index += bytes;
        void *p = &buffer[index - bytes];
        return ChunkyPtr<void>(p, this);
      }
      void deallocate(void *, size_t bytes) {
        freed += bytes;
        if (freed == index) {
            index = freed = 0;
        }
      }
    };

    class ChunkyMemoryResource {
      std::list<Chunk> m_chunks;
    public:
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      ChunkyPtr<void> allocate(size_t bytes, size_t align) {
        assert(align <= alignof(std::max_align_t));
        bytes += -bytes % alignof(std::max_align_t);
        assert(bytes <= 10000);

        for (auto&& ch : m_chunks) {
          if (ch.can_allocate(bytes)) {
            return ch.allocate(bytes);
          }
        }
        return m_chunks.emplace_back().allocate(bytes);
      }
      void deallocate(ChunkyPtr<void> p, size_t bytes, size_t) {
        bytes += -bytes % alignof(std::max_align_t);
        p.chunk()->deallocate(static_cast<void*>(p), bytes);
      }
    };

Now we can use our ChunkyMemoryResource to allocate memory for standard allocator-
aware containers like this:

    ChunkyMemoryResource mr;
    std::vector<int, ChunkyAllocator<int>> v{&mr};
    v.push_back(42);
    // All the memory for v's underlying array
    // is coming from blocks owned by "mr".

Now, I've chosen this example to make it look very simple and straightforward; and I've left
out a lot of the details of the ChunkyPtr<T> type itself. If you try copying this code
yourself, you'll find that you need to provide ChunkyPtr with a lot of overloaded operators
such as ==, !=, <, ++, --, and -; and you'll also need to provide a specialization for
ChunkyPtr<void> that omits the overloaded operator*. Most of the details are the same
as what we covered in Chapter 2, Iterators and Ranges, when we implemented our own
iterator type. In fact, every "fancy pointer" type is required to be usable as a random-access
iterator--which means that you must provide the five nested typedefs listed at the end of
Chapter 2, Iterators and Ranges: iterator_category, difference_type, value_type,
pointer, and reference.

Finally, if you want to use certain containers such as std::list and std::map, you'll need
to implement a static member function with the surprising name pointer_to(r):

    static ChunkyPtr<T> pointer_to(T &r) noexcept {
      return ChunkyPtr<T>(&r, nullptr);
    }
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This is because--as you may recall from Chapter 4, The Container Zoo--a few containers such
as std::list store their data in nodes whose prev and next pointers need to be able to
point either to an allocated node or to a node which is contained within the member data of
the std::list object itself. There are two obvious ways to accomplish this: Either every
next pointer must be stored in a sort of tagged union of a fancy pointer and a raw pointer
(perhaps a std::variant as described in Chapter 5, Vocabulary Types), or else we must
find a way of encoding a raw pointer as a fancy pointer. The standard library chose the
latter approach. So, whenever you write a fancy pointer type, not only must it do all the
things required of it by the allocator, and not only must it satisfy the requirements of a
random-access iterator, but it must also have a way of representing any arbitrary pointer in
the program's address space--at least if you want to use your allocator with node-based
containers such as std::list.

Even after jumping through all these hoops, you'll find that (as of press time) neither libc++
nor libstdc++ can handle fancy pointers in any container more complicated than
std::vector. They support just enough to work with a single fancy pointer type--
boost::interprocess::offset_ptr<T>, which carries no metadata. And the standard
continues to evolve; std::pmr::memory_resource was newly introduced in C++17, and
as of this writing it is still not implemented by libc++ nor libstdc++.

You may also have noticed the lack of any standard base class for memory resources that
use fancy pointers. Fortunately, this is easy to write yourself:

    namespace my {

      template<class VoidPtr>
      class fancy_memory_resource {
      public:
        VoidPtr allocate(size_t bytes,
          size_t align = alignof(std::max_align_t)) {
          return do_allocate(bytes, align);
        }
        void deallocate(VoidPtr p, size_t bytes,
          size_t align = alignof(std::max_align_t)) {
          return do_deallocate(p, bytes, align);
        }
        bool is_equal(const fancy_memory_resource& rhs) const noexcept {
          return do_is_equal(rhs);
        }
        virtual ~fancy_memory_resource() = default;
      private:
        virtual VoidPtr do_allocate(size_t bytes, size_t align) = 0;
        virtual void do_deallocate(VoidPtr p, size_t bytes,
          size_t align) = 0;
        virtual bool do_is_equal(const fancy_memory_resource& rhs)



Allocators

[ 232 ]

          const noexcept = 0;
      };

      using memory_resource = fancy_memory_resource<void*>;

    } // namespace my

The standard library provides no allocators that use fancy pointers; every library-provided
allocator type uses raw pointers.

Sticking a container to a single memory
resource
The next hat worn by the standard allocator model--the next feature controlled by
std::allocator_traits--is the ability to associate specific container objects with specific
heaps. We used three bullet points to describe this feature earlier:

Associate a container object with a particular memory resource, and make sure
that association is "sticky"--this container object will always use the given
heap for its allocations.
Associate a container value with a particular memory resource, meaning
that the container can be efficiently moved around using value semantics without
forgetting how to deallocate its contents.
Choose between the two mutually exclusive behaviors just mentioned.

Let's look at an example, using std::pmr::monotonic_buffer_resource for our
resource but using a hand-written class type for our allocator type. (Just to reassure you that
you haven't missed anything: Indeed, we still haven't covered any standard-library-
provided allocator types--except for std::allocator<T>, the trivial stateless allocator that
is a handle to the global heap managed by new and delete.)

    template<class T>
    struct WidgetAlloc {
      std::pmr::memory_resource *mr;

      using value_type = T;

      WidgetAlloc(std::pmr::memory_resource *mr) : mr(mr) {}

      template<class U>
      WidgetAlloc(const WidgetAlloc<U>& rhs) : mr(rhs.mr) {}
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      T *allocate(size_t n) {
        return (T *)mr->allocate(n * sizeof(T), alignof(T));
      }
      void deallocate(void *p, size_t n) {
        mr->deallocate(p, n * sizeof(T), alignof(T));
      }
    };

    class Widget {
      char buffer[10000];
      std::pmr::monotonic_buffer_resource mr {buffer, sizeof buffer};
      std::vector<int, WidgetAlloc<int>> v {&mr};
      std::list<int, WidgetAlloc<int>> lst {&mr};
    public:
      static void swap_elems(Widget& a, Widget& b) {
        std::swap(a.v, b.v);
      }
    };

Here our Widget is a classically object-oriented class type; we expect it to live at a specific
memory address for its entire lifetime. Then, to reduce heap fragmentation or to improve
cache locality, we've placed a large buffer inside each Widget object and made the Widget
use that buffer as the backing store for its data members v and lst.

Now look at the Widget::swap_elems(a, b) function. It swaps the v data members of
Widget a and Widget b. You might recall from Chapter 4, The Container Zoo, that a
std::vector is little more than a pointer to a dynamically allocated array, and so usually
the library can swap two instances of std::vector by simply swapping their underlying
pointers, without moving any of the underlying data--making vector swap an O(1)
operation instead of an O(n) operation.

Furthermore, vector is smart enough to know that if it swaps pointers, it also needs to
swap allocators--so that the information about how to deallocate travels along with the
pointer that will eventually be in need of deallocation.

But in this case, if the library just swapped the pointers and allocators, it would be
disastrous! We'd have a vector a.v whose underlying array was now "owned" by b.mr, and
vice versa. If we destroyed Widget b, then the next time we accessed the elements of a.v
we'd be accessing freed memory. And furthermore, even if we never accessed a.v again,
our program would likely crash when the destructor of a.v attempted to call the
deallocate method of the long-dead b.mr!
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Fortunately, the standard library saves us from this fate. One of the responsibilities of an
allocator-aware container is to appropriately propagate its allocator on copy-assignment,
move-assignment, and swap. For historical reasons this is handled by a whole mess of
typedefs in the allocator_traits class template, but in order to use allocator propagation
correctly, you only have to know a couple of things:

Whether the allocator propagates itself, or whether it sticks firmly to a specific
container, is a property of the allocator type. If you want one allocator to "stick"
while another propagates, you must make them different types.
When an allocator is "sticky," it sticks to a particular (classical, object-oriented)
container object. Operations that with a non-sticky allocator type would be O(1)
pointer-swaps may become O(n), because "adopting" elements from some other
allocator's memory space into our own requires allocating room for them in our
own memory space.
Stickiness has a clear use-case (as we have just shown with Widget), and
the effects of non-stickiness can be disastrous (again, see Widget). Therefore,
std::allocator_traits assumes by default that an allocator type is sticky,
unless it can tell that the allocator type is empty and thus is quite definitely
stateless. The default for empty allocator types is effectively non-stickiness.
As a programmer, you basically always want the default: stateless allocators
might as well propagate, and stateful allocators probably don't have much use
outside of Widget-like scenarios where stickiness is required.

Using the standard allocator types
Let's talk about the allocator types provided by the standard library.

std::allocator<T> is the default allocator type; it is the default value of the template
type parameter to every standard container. So for example when you write
std::vector<T> in your code, that's secretly the exact same type as std::vector<T,
std::allocator<T>>. As we've mentioned before in this chapter, std::allocator<T> is
a stateless empty type; it is a "handle" to the global heap managed by new and delete.
Because std::allocator is a stateless type, allocator_traits assumes (correctly) that
it should be non-sticky. This means that operations such as std::vector<T>::swap and
std::vector<T>::operator= are guaranteed to be very efficient pointer-swaps--because
any object of type std::vector<T, std::allocator<T>> always knows how to
deallocate memory that was originally allocated by any other std::vector<T,
std::allocator<T>>.
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std::pmr::polymorphic_allocator<T> is a new addition in C++17. It is a stateful, non-
empty type; its one data member is a pointer to a std::pmr::memory_resource. (In fact,
it is almost identical to WidgetAlloc in our sample code from earlier in this chapter!) Two
different instances of std::pmr::polymorphic_allocator<T> are not necessarily
interchangeable, because their pointers might point to completely different
memory_resources; this means that an object of type std::vector<T,
std::pmr::polymorphic_allocator<T>> does not necessarily know how to deallocate
memory that was originally allocated by some other std::vector<T,
std::pmr::polymorphic_allocator<T>>. That, in turn, means that
std::pmr::polymorphic_allocator<T> is a "sticky" allocator type; and that means that
operations such as std::vector<T,
std::pmr::polymorphic_allocator<T>>::operator= can end up doing lots of
copying.

By the way, it's quite tedious to write out the name of the type std::vector<T,
std::pmr::polymorphic_allocator<T>> over and over. Fortunately, the standard
library implementors came to the same realization, and so the standard library provides
type aliases in the std::pmr namespace:

    namespace std::pmr {

      template<class T>
      using vector = std::vector<T,
        polymorphic_allocator<T>>;

      template<class K, class V, class Cmp = std::less<K>>
      using map = std::map<K, V, Cmp,
        polymorphic_allocator<typename std::map<K, V>::value_type>>;

      // ...

    } // namespace std::pmr

Setting the default memory resource
The biggest difference between the standard polymorphic_allocator and our example
WidgetAlloc is that polymorphic_allocator is default-constructible. Default-
constructibility is arguably an attractive feature of an allocator; it means that we can write
the second of these two lines instead of the first:

    std::pmr::vector<int> v2({1, 2, 3}, std::pmr::new_delete_resource());
        // Specifying a specific memory resource
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    std::pmr::vector<int> v1 = {1, 2, 3};
        // Using the default memory resource

On the other hand, when you look at that second line, you might wonder, "Where is the
underlying array actually being allocated?" After all, the main point of specifying an
allocator is that we want to know where our bytes are coming from! That's why the normal
way to construct a standard polymorphic_allocator is to pass in a pointer to a
memory_resource--in fact, this idiom is expected to be so common that the conversion
from std::pmr::memory_resource* to std::pmr::polymorphic_allocator is an
implicit conversion. But polymorphic_allocator does have a default, zero-argument
constructor as well. When you default-construct a polymorphic_allocator, you get a
handle to the "default memory resource," which by default is new_delete_resource().
However, you can change this! The default memory resource pointer is stored in a global
atomic (thread-safe) variable which can be manipulated with the library functions
std::pmr::get_default_resource() (which returns the pointer) and
std::pmr::set_default_resource() (which assigns a new value to the pointer and
returns the previous value).

If you want to avoid heap allocation via new and delete altogether, it might make sense to
call std::pmr::set_default_resource(std::pmr::null_memory_resource()) at
the start of your program. Of course you can't stop any other part of your program from
going rogue and calling set_default_resource itself; and because the same global
variable is shared by every thread in your program, you might run into some very strange
behavior if you try to modify the default resource during the program's execution. There is
no way to say "set the default resource only for my current thread," for example.
Furthermore, calling get_default_resource() (such as from the default constructor of
polymorphic_allocator) performs an atomic access, which will tend to be marginally
slower than if the atomic access could have been avoided. Therefore, your best course of
action is to avoid the default constructor of polymorphic_allocator; always be explicit
as to which memory resource you're trying to use. For absolute foolproofness, you might
consider simply using the above WidgetAlloc instead of polymorphic_allocator;
having no default constructor, WidgetAlloc flatly cannot be misused.



Allocators

[ 237 ]

Making a container allocator-aware
Having covered memory resources (heaps) and allocators (handles to heaps), let's turn now
to the third leg of the tripod: container classes. Inside each allocator-aware container, at
least four things have to happen:

The container instance must store an allocator instance as member data.
(Therefore the container must take the type of the allocator as a template
parameter; otherwise it can't know how much space to reserve for that member
variable.)
The container must provide constructors taking an allocator argument.
The container must actually use its allocator to allocate and deallocate memory;
every use of new or delete must be banished.
The container's move constructor, move assignment operator, and swap function
must all propagate the allocator according to its allocator_traits.

Here is a very simple allocator-aware container--a container of just one single object,
allocated on the heap. This is something like an allocator-aware version of
std::unique_ptr<T> from Chapter 6, Smart Pointers:

    template<class T, class A = std::allocator<T>>
    class uniqueish {
      using Traits = std::allocator_traits<A>;
      using FancyPtr = typename Traits::pointer;

      A m_allocator;
      FancyPtr m_ptr = nullptr;

    public:
      using allocator_type = A;

      uniqueish(A a = {}) : m_allocator(a) {
        this->emplace();
      }

      ~uniqueish() {
        clear();
      }

      T& value() { return *m_ptr; }
      const T& value() const { return *m_ptr; }

      template<class... Args>
      void emplace(Args&&... args) {
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        clear();
        m_ptr = Traits::allocate(m_allocator, 1);
        try {
          T *raw_ptr = static_cast<T *>(m_ptr);
          Traits::construct(m_allocator, raw_ptr,
              std::forward<Args>(args)...
          );
        } catch (...) {
          Traits::deallocate(m_allocator, m_ptr, 1);
          throw;
        }
      }

      void clear() noexcept {
        if (m_ptr) {
          T *raw_ptr = static_cast<T *>(m_ptr);
          Traits::destroy(m_allocator, raw_ptr);
          Traits::deallocate(m_allocator, m_ptr, 1);
          m_ptr = nullptr;
        }
      }
    };

Notice that where unique_ptr uses T*, our present code uses
allocator_traits<A>::pointer; and where make_unique uses new and delete, our
present code uses the one-two punch of allocator_traits<A>::allocate/construct
and allocator_traits<A>::destroy/deallocate. We've already discussed the
purpose of allocate and deallocate--they deal with getting memory from the
appropriate memory resource. But those chunks of memory are just raw bytes; to turn a
chunk of memory into a usable object we have to construct an instance of T at that address.
We could use "placement new" syntax for this purpose; but we'll see in the next section why
it's important to use construct and destroy instead.

Finally, before we proceed, notice that the destructor of uniqueish checks to see whether
an allocation exists before trying to deallocate it. This is important because it gives us a
value of uniqueish representing the "empty object"--a value that can be constructed
without allocating any memory, and that is a suitably "moved-from" representation for our
type.
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Now let's implement the move operations for our type. We'd like to ensure that after you
move out of a uniqueish<T> object, the moved-from object is "empty." Furthermore, if the
left-hand object and the right-hand object share the same allocator, or if the allocator type is
"not sticky," then we'd like to avoid calling the move constructor of T at all--we'd like to
transfer ownership of the allocated pointer from the right-hand-side object to the left-hand
object:

    uniqueish(uniqueish&& rhs) : m_allocator(rhs.m_allocator)
    {
      m_ptr = std::exchange(rhs.m_ptr, nullptr);
    }

    uniqueish& operator=(uniqueish&& rhs)
    {
      constexpr bool pocma =
        Traits::propagate_on_container_move_assignment::value;
      if constexpr (pocma) {
        // We can adopt the new allocator, since
        // our allocator type is not "sticky".
        this->clear(); // using the old allocator
        this->m_allocator = rhs.m_allocator;
        this->m_ptr = std::exchange(rhs.m_ptr, nullptr);
      } else if (m_allocator() == rhs.m_allocator()) {
        // Our allocator is "stuck" to this container;
        // but since it's equivalent to rhs's allocator,
        // we can still adopt rhs's memory.
        this->clear();
        this->m_ptr = std::exchange(rhs.m_ptr, nullptr);
      } else {
        // We must not propagate this new allocator
        // and thus cannot adopt its memory.
        if (rhs.m_ptr) {
          this->emplace(std::move(rhs.value()));
          rhs.clear();
        } else {
          this->clear();
        }
      }
      return *this;
    }

The move constructor is just about as simple as it ever was. The only minor difference is that
we have to remember to construct our m_allocator as a copy of the right-hand object's
allocator.
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We could use std::move to move the allocator instead of copying it, but I
didn't think it was worth it for this example. Remember that an allocator is
just a thin "handle" pointing to the actual memory resource, and that a lot
of allocator types, such as std::allocator<T>, are actually empty.
Copying an allocator type should always be relatively cheap. Still, using
std::move here wouldn't have hurt.

The move assignment operator, on the other hand, is very complicated! The first thing we
need to do is check whether our allocator type is "sticky" or not. Non-stickiness is denoted
by having a true value for propagate_on_container_move_assignment::value, which
we abbreviate to "pocma." (Actually, the standard says that
propagate_on_container_move_assignment ought to be exactly the type
std::true_type; and GNU's libstdc++ will hold you firmly to that requirement. So watch
out when defining your own allocator types.) If the allocator type is non-sticky, then our
most efficient course of action for move-assignment is to destroy our current value (if any)--
making sure to use our old m_allocator--and then adopt the right-hand object's pointer
along with its allocator. Because we adopt the allocator along with the pointer, we can be
sure that we'll know how to deallocate the pointer down the road.

On the other hand, if our allocator type is "sticky," then we cannot adopt the allocator of the
right-hand object. If our current ("stuck") allocator instance happens to be equal to the right-
hand object's allocator instance, then we can adopt the right-hand object's pointer anyway;
we already know how to deallocate pointers allocated by this particular allocator instance.

Finally, if we cannot adopt the right-hand object's allocator instance, and our current
allocator instance isn't equal to the right-hand object's, then we cannot adopt the right-hand
object's pointer--because at some point down the road we're going to have to free that
pointer, and the only way to free that pointer is to use the right-hand object's allocator
instance, and we're not allowed to adopt the right-hand object's allocator instance because
our own instance is "stuck." In this case, we actually have to allocate a completely new
pointer using our own allocator instance, and then copy over the data from rhs.value()
to our own value by invoking the move constructor of T. This final case is the only one
where we actually call the move constructor of T!

Copy assignment follows similar logic for the propagation of the right-hand allocator
instance, except that it looks at the trait propagate_on_container_copy_assignment, or
"pocca."
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Swap is particularly interesting because its final case (when the allocator type is "sticky" and
the allocator instances are unequal) requires extra allocations:

    void swap(uniqueish& rhs) noexcept {
      constexpr bool pocs =
        Traits::propagate_on_container_swap::value;
      using std::swap;
      if constexpr (pocs) {
        // We can swap allocators, since
        // our allocator type is not "sticky".
        swap(this->m_allocator, rhs.m_allocator);
        swap(this->m_ptr, rhs.m_ptr);
      } else if (m_allocator == rhs.m_allocator) {
        // Our allocator is "stuck" to this container;
        // but since it's equivalent to rhs's allocator,
        // we can still adopt rhs's memory and vice versa.
        swap(this->m_ptr, rhs.m_ptr);
      } else {
        // Neither side can adopt the other's memory, and
        // so one side or the other must allocate.
        auto temp = std::move(*this);
        *this = std::move(rhs); // might throw
        rhs = std::move(temp); // might throw
      }
    }

On each of the two lines marked "might throw," we're calling the move assignment
operator, which in this case might call emplace, which will ask the allocator for memory. If
the underlying memory resource has been exhausted, then
Traits::allocate(m_allocator, 1) might well throw an exception--and then we'd be
in trouble, for two reasons. First, we've already started moving state around and
deallocating old memory, and we might find it impossible to "unwind" back to a reasonable
state. Second, and more importantly, swap is one of those functions that is so primitive and
so fundamental that the standard library makes no provision for its failing--for example, the
std::swap algorithm (Chapter 3, The Iterator-Pair Algorithms) is declared as noexcept,
which means it must succeed; it is not allowed to throw an exception.

Thus, if allocation fails during our noexcept swap function, we'll see a bad_alloc
exception percolate up through the call stack until it reaches our noexcept swap function
declaration; at which point the C++ runtime will stop unwinding and call
std::terminate, which (unless the programmer has altered its behavior via
std::set_terminate) will cause our program to crash and burn.
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The C++17 Standard goes several steps further than this in its specification of what ought to
happen during the swapping of standard container types. First, instead of saying that
allocation failure during swap will result in a call to std::terminate, the Standard simply
says that allocation failure during swap will result in undefined behavior. Second, the
Standard does not limit that undefined behavior to allocation failure! According to the
C++17 Standard, merely calling swap on any standard library container instances whose
allocators do not compare equally will result in undefined behavior, whether an allocation
failure would have been encountered or not!

In fact, libc++ exploits this optimization opportunity to generate code for all standard
container swap functions that looks roughly like this:

    void swap(uniqueish& rhs) noexcept {
      constexpr bool pocs =
        Traits::propagate_on_container_swap::value;
      using std::swap;
      if constexpr (pocs) {
        swap(this->m_allocator, rhs.m_allocator);
      }
      // Don't even check that we know how to free
      // the adopted pointer; just assume that we can.
      swap(this->m_ptr, rhs.m_ptr);
    }

Notice that if you use this code (as libc++ does) to swap two containers with unequal
allocators, you'll wind up with a mismatch between pointers and their allocators, and then
your program will probably crash--or worse--the next time you try to deallocate one of
those pointers using the mismatched allocator. It is supremely important that you
remember this pitfall when dealing with the C++17 "convenience" types such as
std::pmr::vector!

    char buffer[100];
    auto mr = std::pmr::monotonic_buffer_resource(buffer, 100);

    std::pmr::vector<int> a {1,2,3};
    std::pmr::vector<int> b({4,5,6}, &mr);

    std::swap(a, b);
      // UNDEFINED BEHAVIOR

    a.reserve(a.capacity() + 1);
      // this line will undoubtedly crash, as
      // it tries to delete[] a stack pointer
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If your code design allows containers backed by different memory resources to be swapped
with each other, then you must avoid std::swap and instead use this safe idiom:

    auto temp = std::move(a); // OK
    a = std::move(b); // OK
    b = std::move(temp); // OK

When I say "avoid std::swap," I mean "avoid any of the permutative algorithms in the
STL," including such algorithms as std::reverse and std::sort. This would be quite an
undertaking and I do not advise attempting it!

If your code design allows containers backed by different memory resources to be swapped
with each other, then really, you might want to reconsider your design. If you can fix it so
that you only ever swap containers that share the same memory resource, or if you can
avoid stateful and/or sticky allocators entirely, then you will never need to think about this
particular pitfall.

Propagating downwards with
scoped_allocator_adaptor
In the preceding section, we introduced std::allocator_traits<A>::construct(a,
ptr, args...) and described it as a preferable alternative to the placement-new syntax
::new ((void*)ptr) T(args...). Now we'll see why the author of a particular 
allocator might want to give it different semantics.

One perhaps obvious way to change the semantics of construct for our own allocator type
would be to make it trivially default-initialize primitive types instead of zero-initializing
them. That code would look like this:

    template<class T>
    struct my_allocator : std::allocator<T>
    {
      my_allocator() = default;

      template<class U>
      my_allocator(const my_allocator<U>&) {}

      template<class... Args>
      void construct(T *p, Args&&... args) {
        if (sizeof...(Args) == 0) {
          ::new ((void*)p) T;
        } else {
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          ::new ((void*)p) T(std::forward<Args>(args)...);
        }
      }
    };

Now you can use std::vector<int, my_allocator<int>> as a "vector-like" type
satisfying all the usual invariants of std::vector<int>, except that when you implicitly
create new elements via v.resize(n) or v.emplace_back(), the new elements are
created uninitialized, just like stack variables, instead of being zero-initialized.

In a sense, what we've designed here is an "adaptor" that fits over the top of
std::allocator<T> and modifies its behavior in an interesting way. It would be even
better if we could modify or "adapt" any arbitrary allocator in the same way; to do that,
we'd just change our template<class T> to template<class A> and inherit from A
where the old code inherited from std::allocator<T>. Of course our new adaptor's
template parameter list no longer starts with T, so we'd have to implement rebind
ourselves; this path quickly gets into deep metaprogramming, so I won't digress to show it.

However, there's another useful way we could fiddle with the construct method for our
own allocator type. Consider the following code sample, which creates a vector of vectors of
int:

    std::vector<std::vector<int>> vv;
    vv.emplace_back();
    vv.emplace_back();
    vv[0].push_back(1);
    vv[1].push_back(2);
    vv[1].push_back(3);

Suppose we wanted to "stick" this container to a memory resource of our own devising,
such as our favorite WidgetAlloc. We'd have to write something repetitive like this:

    char buffer[10000];
    std::pmr::monotonic_buffer_resource mr {buffer, sizeof buffer};

    using InnerAlloc = WidgetAlloc<int>;
    using InnerVector = std::vector<int, InnerAlloc>;
    using OuterAlloc = WidgetAlloc<InnerVector>;

    std::vector<InnerVector, OuterAlloc> vv(&mr);
    vv.emplace_back(&mr);
    vv.emplace_back(&mr);
    vv[0].push_back(1);
    vv[1].push_back(2);
    vv[1].push_back(3);
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Notice the repetition of the allocator object's initializer &mr at both levels. The need to repeat
&mr makes it difficult to use our vector vv in generic contexts; for example, we can't easily
pass it to a function template to populate it with data, because every time the callee would
want to emplace_back a new vector-of-int, it would need to know the address &mr that is
only known to the caller. What we'd like to do is wrap up and reify the notion that "every
time you construct an element of the vector-of-vectors, you need to tack &mr onto the end of
the argument list." And the standard library has us covered!

Since C++11, the standard library has provided (in the header named
<scoped_allocator>) a class template called scoped_allocator_adaptor<A>. Just like
our default-initializing "adaptor," scoped_allocator_adaptor<A> inherits from A, thus
picking up all of A's behaviors; and then it overrides the construct method to do
something different. Namely, it attempts to figure out whether the T object it's currently
constructing "uses an allocator," and if so, it will pass itself down as an extra argument to
the constructor of T.

To decide whether type T "uses an allocator,"
scoped_allocator_adaptor<A>::construct defers to the type trait
std::uses_allocator_v<T,A>, which (unless you've specialized it, which you probably
shouldn't) will be true if and only if A is implicitly convertible to T::allocator_type. If T
doesn't have an allocator_type, then the library will assume that T doesn't care about
allocators, except in the special cases of pair and tuple (which all have special overloads
of their constructors intended specifically to propagate allocators downward to their
members) and in the special case of promise (which can allocate its shared state with an
allocator even though it provides no way of referring to that allocator object afterward; we
say that promise's allocator support is "type-erased" even more thoroughly than the
examples of type erasure we saw in Chapter 5, Vocabulary Types).

For historical reasons, the constructors of allocator-aware types can follow either of two
different patterns, and scoped_allocator_adaptor is smart enough to know them both.
Older and simpler types (that is, everything except tuple and promise) tend to have
constructors of the form T(args..., A) where the allocator A comes at the end. For tuple
and promise, the standard library has introduced a new pattern:
T(std::allocator_arg, A, args...) where the allocator A comes at the beginning but
is preceded by the special tag value std::allocator_arg, whose sole purpose is to
indicate that the next argument in the argument list represents an allocator, similarly to
how the sole purpose of the tag std::nullopt is to indicate that an optional has no
value (see Chapter 5, Vocabulary Types). Just as the standard forbids creating the type
std::optional<std::nullopt_t>, you will also find yourself in a world of trouble if
you attempt to create std::tuple<std::allocator_arg_t>.
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Using scoped_allocator_adaptor, we can rewrite our cumbersome example from
earlier in a slightly less cumbersome way:

    char buffer[10000];
    std::pmr::monotonic_buffer_resource mr {buffer, sizeof buffer};

    using InnerAlloc = WidgetAlloc<int>;
    using InnerVector = std::vector<int, InnerAlloc>;
    using OuterAlloc =
std::scoped_allocator_adaptor<WidgetAlloc<InnerVector>>;

    std::vector<InnerVector, OuterAlloc> vv(&mr);
    vv.emplace_back();
    vv.emplace_back();
    vv[0].push_back(1);
    vv[1].push_back(2);
    vv[1].push_back(3);

Notice that the allocator type has gotten more cumbersome, but the important thing is that
the &mr argument to emplace_back has disappeared; we can now use vv in contexts that
expect to be able to push back elements in a natural way, without having to remember to
add &mr all over the place. In our case, because we're using our WidgetAlloc, which is not
default-constructible, the symptom of a forgotten &mr is a spew of compile-time errors. But
you may recall from preceding sections in this chapter that
std::pmr::polymorphic_allocator<T> will happily allow you to default-construct it,
with potentially disastrous results; so if you are planning to use polymorphic_allocator,
it might also be wise to look into scoped_allocator_adaptor just in order to limit the
number of places in which you might forget to specify your allocation strategy.

Propagating different allocators
In my introduction of scoped_allocator_adaptor<A>, I left out one more complication.
The template parameter list isn't limited to just one allocator type argument! You can 
actually create a scoped-allocator type with multiple allocator type arguments, like this:

    using InnerAlloc = WidgetAlloc<int>;
    using InnerVector = std::vector<int, InnerAlloc>;

    using MiddleAlloc = std::scoped_allocator_adaptor<
      WidgetAlloc<InnerVector>,
      WidgetAlloc<int>
    >;
    using MiddleVector = std::vector<InnerVector, MiddleAlloc>;
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    using OuterAlloc = std::scoped_allocator_adaptor<
      WidgetAlloc<MiddleVector>,
      WidgetAlloc<InnerVector>,
      WidgetAlloc<int>
    >;
    using OuterVector = std::vector<MiddleVector, OuterAlloc>;

Having set up these typedefs, we proceed to set up three distinct memory resources and
construct an instance of scoped_allocator_adaptor capable of remembering all three of
the memory resources (because it contains three distinct instances of WidgetAlloc, one per
"level"):

    char bi[1000];
    std::pmr::monotonic_buffer_resource mri {bi, sizeof bi};
    char bm[1000];
    std::pmr::monotonic_buffer_resource mrm {bm, sizeof bm};
    char bo[1000];
    std::pmr::monotonic_buffer_resource mro {bo, sizeof bo};

    OuterAlloc saa(&mro, &mrm, &mri);

Finally, we can construct an instance of OuterVector, passing in our
scoped_allocator_adaptor argument; and that's all! The overridden construct
method hidden deep within our carefully crafted allocator type takes care of passing the
argument &bm or &bi to any constructor that needs one of them:

    OuterVector vvv(saa);

    vvv.emplace_back();
      // This allocation comes from buffer "bo".

    vvv[0].emplace_back();
      // This allocation comes from buffer "bm".

    vvv[0][0].emplace_back(42);
      // This allocation comes from buffer "bi".

As you can see, a deeply nested scoped_allocator_adaptor is not for the faint of heart;
and they're really only usable at all if you make a lot of "helper" typedefs along the way, as
we did in this example.
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One last note about std::scoped_allocator_adaptor<A...>: if the nesting of
containers goes deeper than the number of allocator types in the template parameter list,
then scoped_allocator_adaptor will act as if the last allocator type in its parameter list
repeats forever. For example:

    using InnerAlloc = WidgetAlloc<int>;
    using InnerVector = std::vector<int, InnerAlloc>;

    using MiddleAlloc = std::scoped_allocator_adaptor<
      WidgetAlloc<InnerVector>
    >;
    using MiddleVector = std::vector<InnerVector, MiddleAlloc>;

    using TooShortAlloc = std::scoped_allocator_adaptor<
      WidgetAlloc<MiddleVector>,
      WidgetAlloc<InnerVector>
    >;
    using OuterVector = std::vector<MiddleVector, TooShortAlloc>;

    TooShortAlloc tsa(&mro, WidgetAlloc<InnerVector>(&mri));
    OuterVector tsv(tsa);

    tsv.emplace_back();
      // This allocation comes from buffer "bo".

    tsv[0].emplace_back();
      // This allocation comes from buffer "bi".

    tsv[0][0].emplace_back(42);
      // This allocation AGAIN comes from buffer "bi"!

We actually relied on this behavior in our very first scoped_allocator_adaptor
example, the one involving vv, even though I didn't mention it at the time. Now that you
know about it, you might want to go back and study that example to see where the "repeat
forever" behavior is being used, and how you'd change that code if you wanted to use a
different memory resource for the inner array of int than for the outer array of
InnerVector.

Summary
Allocators are a fundamentally arcane topic in C++, mainly for historical reasons. Several
different interfaces, with different obscure use-cases, are piled one on top of the other; all of
them involve intense metaprogramming; and vendor support for many of these features,
even relatively old C++11 features such as fancy pointers, is still lacking.
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C++17 offers the standard library type std::pmr::memory_resource to clarify the
existing distinction between memory resources (a.k.a. heaps) and allocators (a.k.a. handles
to heaps). Memory resources provide allocate and deallocate methods; allocators
provide those methods as well as construct and destroy.

If you implement your own allocator type A, it must be a template; its first template
parameter should be the type T that it expects to allocate. Your allocator type A must also
have a templated constructor to support "rebinding" from A<U> to A<T>. Just like any other
kind of pointer, an allocator type must support the == and != operators.

A heap's deallocate method is allowed to require additional metadata attached to the
incoming pointer. C++ handles this via fancy pointers. C++17's
std::pmr::memory_resource does not support fancy pointers, but it's easy to implement
your own.

Fancy pointer types must satisfy all the requirements of random access iterators, and must
be nullable, and must be convertible to plain raw pointers. If you want to use your fancy
pointer type with node-based containers such as std::list, you must give it a static
pointer_to member function.

C++17 distinguishes between "sticky" and "non-sticky" allocator types. Stateless allocator
types such as std::allocator<T> are non-sticky; stateful allocator types such as
std::pmr::polymorphic_allocator<T> are sticky by default. Making your own
allocator type of a non-default stickiness requires setting all three of the member typedefs
familiarly known as "POCCA," "POCMA," and "POCS." Sticky allocator types such as
std::pmr::polymorphic_allocator<T> are useful primarily--perhaps only--in classical
object-oriented situations, where a container object is pinned to a particular memory
address. Value-oriented programming (with lots of moves and swaps) calls for stateless
allocator types, or else for everyone in the program to use the same heap and a single sticky
but effectively stateless allocator type.

scoped_allocator_adaptor<A...> can help simplify the usage of deeply nested
containers that use custom allocators or memory resources. Just about any deeply nested
container using a non-default allocator type requires a lot of helper typedefs to remain even
remotely readable.

Swapping two containers with unequal sticky allocators: in theory this invokes undefined
behavior, and in practice it corrupts memory and segfaults. Don't do it!



9
Iostreams

So far, we've seen classical polymorphism in just a couple of places in the standard library.
We just saw the classically polymorphic std::pmr::memory_resource in Chapter 8,
Allocators; and polymorphism is used "behind the scenes" in the type-erased types
std::any and std::function, as detailed in Chapter 5, Vocabulary Types. However, by
and large, the standard library gets by without classical polymorphism.

Two places in the standard library, however, make massive use of classical polymorphism.
One is the standard exception hierarchy--for convenience, all exceptions thrown by the
standard library are subclasses of std::exception. (We don't cover the exception
hierarchy in this book.) The other is the contents of the standard <iostream> header,
which we will cover in this chapter. However, we have a lot of background to cover before
we get there!

In this chapter, we will cover the following topics:

The division of output into buffering and formatting; and of input into buffering,
lexing, and parsing
The POSIX API for unformatted file I/O
The "C" API in <stdio.h>, which adds both buffering and formatting
The pros and cons of the classical <iostream> API
The dangers of locale-dependent formatting, and new C++17 features that can help
avoid them
Many ways to convert numeric data to and from strings
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The trouble with I/O in C++
A common measure of a programming language's ease of use is what's called TTHW--"time
to hello world." Many popular programming languages have a very low TTHW: in many
scripting languages, such as Python and Perl, the "hello world" program is literally the
single line: print "hello world".

C++ and its ancestor C are systems programming languages, which is to say that their
primary concerns are with "power": control over the machine, speed, and (in C++'s case) the
ability to leverage the type system with generic algorithms. This is a mixture of concerns
not suited to small "hello world" programs.

The canonical "hello world" program in C is as follows:

    #include <stdio.h>

    int main()
    {
      puts("hello world");
    }

In C++, it is as follows:

    #include <iostream>

    int main()
    {
      std::cout << "hello world" << std::endl;
    }

The canonical C++ source code is not much longer than the canonical C source code, but it
has many more "parameters" or "knobs" that can be adjusted--knobs that the novice user
must learn about even if all he learns is not to adjust them. For example, where, in C, we
called a function named puts (informally, a "verb"), in C++, we apply an operator to an
object named std::cout (so, informally, we have both a "verb" and an "indirect object"). In
the C++ example, we also had to learn a special name for the end-of-line (newline)
character--std::endl--a detail that C's puts function hid from us.
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Sometimes, this complexity "turns off" newcomers to C++, especially if they're learning C++
in school and maybe aren't sure they want to be learning it in the first place. However, this
is an unfortunate misunderstanding! You see, the preceding "C" source code (using puts) is
also perfectly valid C++, and there is nothing wrong with using the facilities of the
<stdio.h> header. In fact, in this chapter, we'll explain the facilities of <stdio.h> before
we even tackle the facilities of <iostream>. However, we'll see that C++14 and C++17 have
introduced some little-known new features--in headers such as <string> and <utility>--
that help with some common I/O tasks.

A note on header naming: I've been using the <stdio.h> name for the header that contains
"C-style" I/O facilities. Ever since C++03, there has been a similar standard header named
<cstdio>. The only difference between <stdio.h> and <cstdio> is that in <stdio.h>,
all of the facilities are guaranteed to be in the global namespace (for example, ::printf)
and may or may not be in the std namespace (for example, std::printf); whereas, in
<cstdio>, they are guaranteed to be in std (for example, std::printf), but not
necessarily in the global namespace (for example, ::printf). In practice, there is no
difference at all, because all major vendors put the facilities in both namespaces, no matter
which header you include. My recommendation is merely to pick a style and stick with it. If
your code base uses a lot of POSIX headers, such as <unistd.h>, which only ever have
names with .h; it may be aesthetically preferable to stick with the .h names of the standard
"C-style" headers as well.

Buffering versus formatting
It will be easier for you to understand both "C-style" I/O and "iostream-style" I/O if you
remember that there are at least two fundamentally different things going on when you
"output" some data (and likewise, in reverse, when you input some data). Just to have some
sort of name for them, let's refer to them as formatting and buffering:

Formatting is the task of taking a bunch of strongly typed data values from the
program--ints, strings, floating-point numbers, user-defined class types--and
translating or serializing them into "text." For example, when the number 42 is
printed out as "42" (or "+42" or "0x002A"), that's formatting. Generally, a
formatting library will have its own "mini-language" to describe how you want
each value to be formatted.
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Buffering is the task of taking a bunch of raw bytes from the program and sending
them to some output device (on output), or collecting data from some input
device and making it available to the program as a bunch of raw bytes (on input).
The part of the library concerned with buffering may do things such as "collect
4096 bytes of data at a time, then flush"; or it might be concerned with where the
data is going: to a file in the filesystem, a network socket, or an array of bytes in
memory?

Now, I deliberately said that the output of the formatting stage is "text" and the input to the
buffering stage is "a bunch of bytes." On sensible operating systems, "text" and "bytes" are
the same thing. However, if you're on one of those strange operating systems where
newlines are encoded as two bytes, or where the expected encoding for text files is not
UTF-8, then there must be some additional processing going on in one or both of these
stages, or even further downstream (such as in the operating system syscall that writes the
data to the file). We won't talk much more about that kind of thing, because my hope is that
you're not using that kind of operating system (or locale) for actual production use. In
production, you should always be using UTF-8 for character encoding, and UTC for your
time zone, and "C.UTF-8" for your locale. So, for our purposes, we can pretend that
"formatting" and "buffering" are the only pieces of the pipeline we need to worry about.

When we're doing input, we do the "buffering" first, to read some unformatted bytes from
the input device; and then we do "formatting" to turn the bytes into strongly typed data
values. The "formatting" stage for input may be subdivided further into lexing (to determine
the length of an individual data item in the stream) and parsing (to determine the actual
value of the item from those bytes). We'll talk more about lexing in Chapter 10, Regular
Expressions.

Using the POSIX API
The most important thing to keep in mind whenever we're talking about file I/O is that
everything I/O-related in C and C++ is built on top of the POSIX standard. POSIX is a very
low-level specification, almost at the level of Linux system calls, that has quite a bit of
overlap with the C and C++ standards for I/O; and, if you don't understand the gist of the
POSIX layer, you'll have a very hard time understanding the concepts that come later.

Bear in mind that technically, none of what follows is standard C++! It is, rather, valid C++
that conforms to a non-C++ standard: the POSIX standard. In practice, this means that it'll
work on any operating system except Windows, and may even work on modern Windows 
systems via the Windows Subsystem for Linux (WSL). Regardless, all the standard APIs
(both <stdio.h> and <iostream>) are built on top of this model.
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The non-standard headers that define most of what follows are <unistd.h> and
<fcntl.h>.

In POSIX, the term file refers to an actual file on disk (or at least in some sort of file system;
forgive me if I occasionally use the word "disk" to refer to the file system). Multiple
programs can read or write the same file concurrently, via operating system resources
known as file descriptors. In a C or C++ program, you'll never see a file descriptor object
itself; all you'll see is a handle (or pointer) to a file descriptor. These handles (or pointers)
present themselves not as pointer types, but as small integers--literally, values of type int.
(The committee behind POSIX is not nearly as obsessed with type-safety as your average
C++ programmer!)

To create a new file descriptor and get an integer handle to it, you use the open function; for
example, int fd = open("myfile.txt", O_RDONLY). The second argument is a
bitmask, which may contain any of the following bit-flags, or'ed together:

Required: One and only one "access mode." The possible "access modes" are
O_RDONLY (read only), O_WRONLY (write only), and O_RDWR (both read and write).
Optionally: Some "open-time flags," describing actions you want the system to
take at the time the file is opened. For example, O_CREAT means "if the named file
doesn't exist, please create it for me" (as opposed to returning failure); and you
can even add O_EXCL, which means "...and if the named file does exist already,
then do return failure." The other important open-time flag is O_TRUNC, which
means "truncate--clear out, empty, reset--the file after opening it."
Optionally: Some "operating modes," describing the manner in which I/O is to be
done via this file descriptor. The important one here is O_APPEND.

O_APPEND indicates "append mode." When a file is in "append mode," you can seek around
in it (as you'll see next) as usual, but every time you write to the file, your write is implicitly
preceded by a seek to the end of the file (which means that after the write, your cursor will
be located at the end of the file, even if you had just been reading from a different position).
Opening a file descriptor in append mode is useful if you're using it for logging, especially
if you're using it for logging from different threads. Some standard utility programs, such
as logrotate, work best when the program doing the logging has correctly opened their
log file in "append mode." In short, append mode is so broadly useful that we'll see it
coming back again and again in every one of the higher-level APIs.
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Now to explain "cursor" and "seek." Each POSIX file descriptor has some associated data--
basically its "member variables." One of those pieces of associated data is the descriptor's
current operating mode; another is the descriptor's current file position indicator, henceforth
referred to as a "cursor." Like the cursor in a text editor, this cursor points to the place in the
underlying file where the next read or write will take place. Using read or write on a
descriptor advances its cursor. And, as described in the previous paragraph, using write
on a file descriptor in "append mode" will reset the cursor to the very end of the file. Notice
that there is only a single cursor per file descriptor! If you open a file descriptor with
O_RDWR, you don't get a read cursor and a write cursor; you get just a single cursor that is
advanced by reading and by writing.

read(fd, buffer, count): This reads raw bytes from the underlying file and
stores them in the given buffer--up to count bytes, or until it encounters some
sort of temporary or permanent error (for example, if we'd need to wait for more
data over a network connection, or if someone unmounts the underlying
filesystem in the middle of the read). It returns the number of bytes read; and
remember, it advances the cursor.
write(fd, buffer, count): This writes raw bytes from the given buffer into
the underlying file--up to count bytes, or until it encounters some sort of
temporary or permanent error. It returns the number of bytes written; and
remember, it advances the cursor. (And before it writes any data, if the file
descriptor is in append mode, it will seek to the end of the file.)
lseek(fd, offset, SEEK_SET): This seeks (that is, moves the cursor) to the 
given offset from the start of the file, and returns that offset (or -1 if the operation
fails, for example, by running off the end of the file).
lseek(fd, offset, SEEK_CUR): This seeks to the given offset relative to the
current cursor. Relative movements like this generally aren't important, but the
special case of lseek(fd, 0, SEEK_CUR) is very important because that's how
you find out the current position of your cursor!
lseek(fd, offset, SEEK_END): This seeks to the given offset relative to the
end of the file. Again, this version is most useful when offset is zero.

Incidentally, there is no way to "copy-construct" a POSIX file descriptor so that you can get
a second cursor to the same file. If you want two cursors, you'll need to open the file twice.
Confusingly, there is a POSIX function named dup, which takes an integer file descriptor
handle and returns a different integer that can be used as a second handle to the same
descriptor; this is a kind of primitive reference-counting.
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When you're done with a file descriptor, you call close(fd) to release your handle; if this
was the last handle to the descriptor (that is, if nobody has called dup on it in the
meantime), then the file descriptor itself will be reclaimed by the operating system--which is
to say, the underlying file will be "closed."

Putting it all together, we can write a simple program like this using the POSIX API to open,
read, write, seek, and close file descriptors:

    #include <cassert>
    #include <string>
    #include <unistd.h>
    #include <fcntl.h>

    int main()
    {
      int fdw = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC);
      int fdr = open("myfile.txt", O_RDONLY);
      if (fdw == -1 || fdr == -1)
        return EXIT_FAILURE;

      write(fdw, "hello world", 11);
      lseek(fdw, 6, SEEK_SET);
      write(fdw, "neighbor", 8);

      std::string buffer(14, '\0');
      int b = read(fdr, buffer.data(), 14);
      assert(b == 14);
      assert(buffer == "hello neighbor");
      close(fdr);
      close(fdw);
    }

Notice that the POSIX API doesn't bother with anything related to formatting. It is merely
concerned with making sure that we can get raw bytes into and out of files on disk; that is,
with about half of the buffering stage--the "where the data is going" half. POSIX doesn't
bother with the "buffered output"; when you call write, your data will be written out. That
is, it may still be sitting in a buffer at the OS level, or at the disk-controller level, or in the
hardware, but as far as your program is concerned, the data is on its way. Any further delay
in the output is out of your control and not your fault. This, in turn, means that if you need
to write a lot of data efficiently using the POSIX API, your program must take charge of
writing data to a buffer and then sending that whole buffer to write at once. A single 4096-
byte write will be much faster than a 4,096 one-byte write!

Or, instead of writing your own buffer-management code, you could step up one level of
abstraction and use the C API.
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Using the standard C API
This description is necessarily almost as brief and incomplete as our discussion of POSIX
earlier. For a complete description of the facilities in <stdio.h>, you'll have to consult
another source, such as cppreference.com or your local man pages.

In the "C-style" API, POSIX file descriptors are given a new name: the thing corresponding to
a file descriptor is called FILE, and the thing corresponding to an integer file descriptor
handle is (naturally) called FILE*. Just as in the POSIX API, though, you'll never construct
an instance of FILE yourself.

To create a new FILE object and get a pointer to it, you use the fopen function; for example,
FILE *fp = fopen("myfile.txt", "r"). The second argument is a string (that is, a
pointer to a null-terminated array of characters--generally, you'll just use a string literal, as I
did here), which must be one of the following:

"r": This is equivalent to POSIX O_RDONLY. Open for reading. Fail (that is, return
nullptr) if the file doesn't exist.
"w": This is equivalent to POSIX O_WRONLY | O_CREAT | O_TRUNC. Open for
writing. Create the file if it doesn't exist. Regardless, make the file empty before
proceeding.
"r+": This is equivalent to POSIX O_RDWR | O_CREAT. Open for both reading
and writing. Create the file empty if it doesn't exist.
"w+": This is equivalent to POSIX O_RDWR | O_CREAT | O_TRUNC.
Open for both reading and writing. Create the file if it doesn't exist. Regardless,
make the file empty before proceeding.
"a": This is equivalent to POSIX O_WRONLY | O_CREAT | O_APPEND. Open for
writing. Create the file empty if it doesn't exist. Enter append mode.
"a+": This is equivalent to POSIX O_RDWR | O_CREAT | O_APPEND. Open for
both reading and writing. Create the file empty if it doesn't exist. Enter append
mode.

Notice that there is some pattern to the preceding strings--strings with '+' always map to
O_RDWR, strings with 'w' always map to O_TRUNC, and strings with 'a' always map to
O_APPEND; however, there is no perfectly regular pattern that describes the mapping from
fopen mode strings into POSIX open flags.

https://cppreference.com
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Some platforms support appending additional characters to the mode string; for example, a
common extension on POSIX platforms is that an added 'x' means O_EXCL; on GNU
platforms, an added 'e' means O_CLOEXEC; and on Windows, a similar behavior can be
gotten by adding a capital 'N'.

The one character that can be appended to the mode string on any platform (that is, it's
guaranteed by the C++ standard to be available everywhere) is 'b', for "binary." This
matters only on Windows, where, if you do not specify this character, the library will
automatically translate every '\n' byte you output into the Windows line terminator
sequence, '\r', '\n'. If you specifically do want this translation when running on
Windows, a useful convention is to add 't' to your mode string. All vendors' libraries will
recognize and ignore this character; it merely serves as an indication to the human reader
that indeed you meant to open the file in "text" mode, and didn't accidentally omit an
intended 'b'.

When you're done using a file, you must call fclose(fp), which corresponds to calling
close(fd) on the underlying file descriptor handle.

To deal with the bookkeeping on C-style FILE pointers, you may want to use the RAII
smart pointers from Chapter 5, Vocabulary Types. You can write a "unique FILE pointer"
like this:

    struct fcloser {
      void operator()(FILE *fp) const {
        fclose(fp);
      }

      static auto open(const char *name, const char *mode) {
        return std::unique_ptr<FILE, fcloser>(fopen(name, mode));
      }
    };

    void test() {
      auto f = fcloser::open("test.txt", "w");
      fprintf(f.get(), "hello world\n");
        // f will be closed automatically
    }

Moreover, remember that you can always move unique_ptr into shared_ptr if you want
the reference-counted, "last person out of the room turns out the lights" semantics:

    auto f = fcloser::open("test.txt", "w");
    std::shared_ptr<FILE> g1 = std::move(f);
      // now f is empty and g1's use-count is 1
    if (true) {
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      std::shared_ptr<FILE> g2 = g1;
        // g1's use-count is now 2
      fprintf(g2.get(), "hello ");
        // g1's use-count drops back to 1
    }
    fprintf(g1.get(), "world\n");
      // g1's use-count drops to 0; the file is closed

Buffering in the standard C API
The standard C API offers a family of functions that look just like the POSIX functions,
but with the letter f on the front.

The fread(buffer, 1, count, fp) method reads raw bytes from the underlying file
and stores them in the given buffer--up to count bytes, or until it encounters some sort of
permanent error (for example, if someone unmounts the underlying filesystem in the
middle of the read). It returns the number of bytes read and advances the cursor.

The literal 1 in that call is not a mistake! Technically, the function signature is
fread(buffer, k, count, fp). It reads up to k * count bytes, or until it encounters a
permanent error and returns the number of bytes read divided by k. However, in your own
code, k should always be the literal 1; using anything else is a mistake, for at least two
reasons. First, since the return value is always divided by k, and if k is anything but 1, you
will lose information. For example, if k is 8, a return value of 3 indicates that "somewhere
between 24 and 31" bytes were read and stored into the buffer, but buffer[3] may now
contain a partially written value--that is to say, garbage--and you have no way of detecting
that. Second, since the library internally multiplies k * count, passing any k other than 1
runs the risk of overflow and an incorrectly computed buffer length. No popular
implementation checks that multiplication for overflow; this is for performance reasons if
nothing else. It doesn't make sense to spend CPU time on an expensive division operation if
every programmer already knows never to pass any other value for k but 1!

The fwrite(buffer, 1, count, fp) method writes raw bytes from the given buffer
into the underlying file--up to count bytes, or until it encounters some sort of permanent
error. It returns the number of bytes written, and advances the cursor. (And before it writes
any data, if the file descriptor is in append mode, it will seek to the end of the file.)
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The fseek(fp, offset, SEEK_SET) method seeks (that is, moves the cursor) to the
given offset from the start of the file; fseek(fp, offset, SEEK_CUR) seeks to the given
offset relative to the current cursor; and fseek(fp, offset, SEEK_END) seeks to the
given offset relative to the end of the file. Unlike the POSIX lseek, the standard C version
fseek does not return the value of the current cursor; it merely returns 0 on success or -1
on failure.

The ftell(fp) method returns the value of the current cursor; that is, it's equivalent to the
underlying POSIX call lseek(fd, 0, SEEK_CUR).

Speaking of underlying POSIX calls: if you are on a POSIX platform and need to do
something non-portable with the POSIX file descriptor underlying a standard C FILE *,
you can always retrieve the file descriptor by calling fileno(fp). So, for example, we
could express ftell as follows:

    long ftell(FILE *fp)
    {
      int fd = fileno(fp);
      return lseek(fd, 0, SEEK_CUR);
    }

Working with fread and fwrite is quite possible, but it is not the most common way of
using the C API. Many programs prefer to deal with input and output not in terms of large
chunks of data but rather character by character, or byte by byte. The original "Unix
philosophy" is oriented toward small simple command-line utilities that read and transform
a "stream" of bytes; these small stream-oriented programs are known as "filters," and they
really shine when you link them together with the Unix shell's pipes. For example, here is a
tiny program that opens a file and counts the number of bytes, space-separated "words,"
and lines in that file using the <stdio.h> API:

    struct LWC {
      int lines, words, chars;
    };

    LWC word_count(FILE *fp)
    {
      LWC r {};
      bool in_space = true;
      while (true) {
        int ch = getc(fp);
        if (ch == EOF) break;
        r.lines += (ch == '\n');
        r.words += (in_space && !isspace(ch));
        r.chars += 1;
        in_space = isspace(ch);
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      }
      return r;
    }

    int main(int argc, const char **argv)
    {
      FILE *fp = (argc < 2) ? stdin : fopen(argv[1], "r");
      auto [lines, words, chars] = word_count(fp);
      printf("%8d %7d %7d\n", lines, words, chars);
    }

(Do you recognize it? This is the command-line utility wc.)

This program introduces two new ideas (besides the standard guarantee that all the FILE
objects are implicitly closed at program exit so that it is safe for us to omit the fclose
bookkeeping and save a few lines in this example). The first is the idea of standard streams.
There are three standard streams in C and C++: stdin, stdout, and stderr. In our word-
counting program, we follow the rule that if the command-line user has not explicitly told
us any filename to read from, we'll read from stdin, the standard input stream, which is
usually a synonym for the console (or terminal or keyboard--point is, it's the human being
sitting there typing). Various mechanisms within the operating system and the command-
line shell can be used to redirect the standard input stream from other inputs; these
mechanisms (such as typing wc <myfile.txt at the shell prompt) are far outside the scope
of this book. The main things to remember about the three standard streams are that they
are automatically available to you by name without having to fopen them; and that it is
always an error to fclose any of them.

The second new idea introduced in our word-counting program is the getc function. The
getc(fp) function reads a single byte from the given FILE * and returns the byte it read.
If there was an error, or (more likely) if it hit end-of-file, it returns a special value named
EOF. The numerical value of EOF is usually -1;, but the guaranteed thing about it is that it is
completely different from any possible valid byte. For this reason, getc(fp) does not return
its return value as char; it returns it as int, which is big enough to store any possible char
and, in addition, big enough to store the value EOF distinct from any of those char values
(if char is a signed type on your platform--as it is on many platforms--then getc will
convert char it read into unsigned char before returning it; this ensures that if the 0xFF
byte appears in the input file, it will be returned as 255, which is a different integer value
than -1 that represents EOF).
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Now, for the crucial difference between fread/fwrite and read/write.
Recall that the POSIX API doesn't do any additional buffering of input or output bytes;
when you call read, you're going all the way to the operating system to retrieve the
next chunk of input bytes. If getc(fp) were implemented as fread(&ch, 1, 1, fp),
and fread(buf, 1, count, fp) were implemented as read(fileno(fp), buf,
count), then our word-counting program would be horrendously inefficient--reading a file
of a million bytes would result in a million system calls! So, when the C library wraps a file
descriptor handle in a FILE object, it also adds one more feature: buffering.

FILE streams may be "unbuffered" (meaning that every fread really does correspond to
read, and every fwrite to write); "fully buffered," also known as "block buffered"
(meaning that writes will be accumulated into a private buffer that is sent to the underlying
file descriptor only when it becomes full, and likewise, reads will be served from a private
buffer that is refilled from the underlying file descriptor only when it becomes empty); or
"line-buffered" (meaning that there is a private buffer just like the previous case, but writing
'\n' causes a flush even if the buffer is not yet full). When the program starts up and opens
its standard streams, stdin and stdout will be line-buffered, and stderr will be
unbuffered. Any files you open yourself via fopen will generally be fully buffered,
although the operating system may have something to say about that as well; for example,
if the "file" you're opening is actually a terminal device, it may end up being line-buffered
by default.

In the very rare case that you need to control the buffering mode of a FILE stream, you can
do it via the standard setvbuf function. You can also use setvbuf to provide your own
buffer, as shown in the following example:

FILE *fp = fopen("myfile.txt", "w");
    int fd = fileno(fp);
    char buffer[150];
    setvbuf(fp, buffer, _IOFBF, 150);
      // setvbuf returns 0 on success, or EOF on failure.

    std::string AAAA(160, 'A');
    int bytes_written = fwrite(AAAA.data(), 1, 160, fp);
      // This fills the buffer with 150 bytes, flushes it,
      // and writes 10 more bytes into the buffer.

    assert(bytes_written == 160);
    assert(lseek(fd, 0, SEEK_CUR) == 150);
    assert(ftell(fp) == 160);
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Notice the discrepancy between ftell(fp) and lseek(fd, 0, SEEK_CUR) in the last line
of the example. Ten bytes remain buffered in the buffer of FILE; so FILE reports that your
cursor is currently at offset 160, but, in actuality, the underlying POSIX file descriptor's
cursor is still at offset 150, and will remain there until the FILE's buffer fills up and is
flushed a second time--at which point the underlying POSIX file descriptor's cursor will
jump to offset 300. This feels awkward, but it's actually exactly what we want! We want the
efficiency that comes with writing the underlying file descriptor in large chunks. (Note that
150 bytes is not "large" in reality. A typical default file buffer size, if you don't use setvbuf
at all, would be more like 4096 bytes.)

On some platforms, calling ftell will cause the buffer to be flushed as a side effect, since
that makes the library's bookkeeping easier; the library doesn't like to be caught telling lies.
(Calling fseek is also a likely way to cause a flush.) However, on other platforms, ftell
and even fseek don't always flush the buffer. To make sure that your FILE stream's buffer
has definitely been flushed to the underlying file, use fflush. Let's continue the previous
example as follows:

    // Flush the FILE's buffer by force.
    fflush(fp);
    // Now, fd and fp agree about the state of the file.
    assert(lseek(fd, 0, SEEK_CUR) == 160);

Putting it all together, we can rewrite our simple program from the Using the POSIX API
section like this, using the <stdio.h> API to open, read, write, seek, flush, and close file
streams:

    #include <cassert>
    #include <cstdio>
    #include <string>

    int main()
    {
      FILE *fpw = fopen("myfile.txt", "w");
      FILE *fpr = fopen("myfile.txt", "r");
      if (fpw == nullptr || fpr == nullptr)
        return EXIT_FAILURE;

      fwrite("hello world", 1, 11, fpw);
      fseek(fpw, 6, SEEK_SET);
      fwrite("neighbor", 1, 8, fpw);
      fflush(fpw);

      std::string buffer(14, '\0');
      int b = fread(buffer.data(), 1, 14, fpr);
      assert(b == 14 && buffer == "hello neighbor");
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      fclose(fpr);
      fclose(fpw);
    }

This concludes our exploration of the buffering capabilities of the standard <stdio.h> API;
now, we move on to consider how <stdio.h> deals with formatting.

Formatting with printf and snprintf
In the formatting stage, we start with the high-level data values that we want to print out;
for example, we might want to print the number of piano tuners in Chicago, which our 
program has computed as 225. Printing out the three-byte string "225" is easy; we've solved
that in the preceding sections. The task of formatting is to get us from the number 225 (an
int, let's say) to that three-byte string "225".

When printing numbers, we have many possible concerns: should the number be printed in
base 10, base 16, base 8, base 2, or some other base? If the number is negative, presumably,
we should prefix it with -; if it is positive, should we prefix it with +? Should we use
thousands-separators, and if so, should we use commas, periods, or spaces? What about
decimal points? Once we're talking about floating-point numbers, how many digits after the
decimal point should we print? Or should we use scientific notation, and if so, to how many
significant digits?

Then, there are concerns that extend even to non-numeric input. Should the printed value
be aligned within a fixed-width column, and if so, should it be left-aligned, right-aligned, or
even aligned in some other clever way? (And what character should we use to fill the
unoccupied columns?) What if the value doesn't fit in the given column width--should it be
truncated left or right or just overflow the column's bounds?

Similarly, when reading formatted input (that is, parsing), we have to answer many of the
same questions about numerics: do we expect thousands-separators? Scientific notation?
Leading + signs? What numeric base do we expect? And even for non-numerics: do we
expect leading whitespace? If we're reading in a value of type "string," what indicates the
end of the value other than EOF?
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The standard C API provides a whole family of formatting functions with names ending in
printf, and a matching family of parsing functions with names ending in scanf. A
commonality of every function in this family is that it takes a variadic argument list (using
C-style varargs, not C++ variadic templates) and, prior to the variadic arguments, a single
"format string" that answers many of the above questions (but not all of them) for each
argument to be formatted, and also provides a "shape" for the overall message, into which
the library will insert the formatted arguments:

    int tuners = 225;
    const char *where = "Chicago";
    printf("There are %d piano tuners in %s.\n", tuners, where);

There is also fprintf(fp, "format", args...) to print to any arbitrary stream (not
necessarily stdout); snprintf(buf, n, "format", args...) to write to a buffer,
about which we'll discuss more in a moment; and a matching family of vprintf,
vfprintf, and vsnprintf functions that are useful in building your own printf-like
functions. As you've probably learned to expect in this chapter, a complete treatment of C-
style format strings is out of the scope of this book. However, the C-style "format string
language" is widely used even in languages that don't directly descend from C; for example,
in Python 2, you can say:

    tuners = 225
    where = "Chicago"
    print "There are %d piano tuners in %s." % (tuners, where)

However, there are major differences between what's happening in C and what's happening
in Python!

The biggest difference is that Python is dynamically typed, so if you write "%s tuners" %
(tuners), it will still be able to do the right thing. With C-style variadic argument lists, the
original type of tuners is lost; if you use the "%s" format specifier (which expects a const
char * argument) with an argument of type int, you'll get a friendly compiler warning at
best and undefined behavior at worst. That is to say, when you use <stdio.h> formatting
functions, the format string does double duty: it encodes not only how to format each data
value, but also the type of each data value--and if you get one of those types wrong, such as
by using "%s" when you meant "%d", then your program will have a bug. Fortunately, all
major compilers can detect and diagnose such mismatches these days, as long as your
format string is passed directly to printf or to a function annotated with the (non-
standard) format attribute, as demonstrated in the code sample we'll see shortly.
Unfortunately, these diagnostics can be unreliable when you're dealing with typedefs for
platform-dependent types; for example, some 64-bit compilers will not diagnose an attempt
to format a size_t value with the "%llu" format specifier, even though the properly
portable specifier would be "%zu".
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Another difference is that in C, printf is effectively writing directly to the standard output
stream, stdout; the formatting of the data is interleaved with the buffering of the output
bytes. In Python, the "There are %d piano tuners in %s." % (tuners, where)
construct is actually an expression of type str (string); all of the formatting happens right
there, producing a single string value with the proper bytes, before we decide that the string
is to be printed to stdout at all.

To produce a formatted string using the <stdio.h> API, we will use snprintf:

    char buf[13];
    int needed = snprintf(
      buf, sizeof buf,
      "There are %d piano tuners in %s", tuners, where
    );
    assert(needed == 37);
    assert(std::string_view(buf) == "There are 22");

Notice that snprintf always null-terminates its buffer, even if it means not writing the
entire message into it; and it returns strlen of the message that it wanted to write. A
common idiom to format an arbitrarily long message is to call snprintf first with
nullptr, to learn the message's final size; and then call it a second time with a buffer of
that size:

    template<class... Args>
    std::string format(const char *fmt, const Args&... args)
    {
      int needed = snprintf(nullptr, 0, fmt, args...);
      std::string s(needed + 1, '\0');
      snprintf(s.data(), s.size(), fmt, args...);
      s.pop_back(); // remove the written '\0'
      return s;
    }

    void test()
    {
      std::string s = format("There are %d piano tuners in %s", tuners,
where);
      assert(s == "There are 225 piano tuners in Chicago");
    }
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The preceding implementation of format uses a variadic function template, which will
tend to produce a lot of similar copies of the code. A more efficient implementation (in
terms of compile time and code bloat) would be to use a single (non-template) function with
a C-style variadic argument list, and use vsnprintf for formatting. Sadly, further
discussion of va_list and vsnprintf is far outside the scope of this book.

    std::string better_format(const char *fmt, ...)
    {
      va_list ap;
      va_start(ap, fmt);
      int needed = vsnprintf(nullptr, 0, fmt, ap);
      va_end(ap);
      std::string s(needed + 1, '\0');
      va_start(ap, fmt);
      vsnprintf(s.data(), s.size(), fmt, ap);
      va_end(ap);
      s.pop_back(); // remove the written '\0'
      return s;
    }

We'll defer the discussion of the scanf format strings until the recipes portion of this
chapter. For a complete treatment of scanf, consult cppreference.com or a book on the C
standard library.

Having seen how both buffering and formatting (at least, output formatting) work in the
<stdio.h> regime, we now move on to the standard C++ <iostream> API.

The classical iostreams hierarchy
The <stdio.h> API suffers from at least three problems. First, the formatting functionality
is far from type-safe. Second, the buffering functionality is awkwardly split up into
"buffering into a file stream" (FILE * and fprintf) and "buffering into a character buffer"
(snprintf). (Okay, technically, the GNU C library provides fopencookie to construct
FILE * that buffers into anything you want; but this is fairly obscure and extremely non-
standard.) Third, there is no easy way to extend the formatting functionality for user-
defined classes; I cannot even printf a std::string, let alone my::Widget!

https://cppreference.com
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When C++ was being developed in the mid-1980s, the designers felt a need for a type-safe,
composable, and extensible I/O library. Thus was born the feature known as "iostreams," or
simply as "C++ streams" (not to be confused with the <stdio.h> streams we just finished
talking about). The fundamental architecture of iostreams has not changed since the
mid-1980s, which makes it very different from anything else in the standard library with the
possible exception (no pun intended) of the std::exception hierarchy.

The C++ iostreams library consists of two major pieces: streams, which are concerned with
formatting, and streambufs, which are concerned with buffering. The majority of C++
programmers will never interact with streambufs; only with streams. However, let's very
quickly explain what a streambuf is.

A streambuf is very similar to FILE in the C API. It tells the program where the input (in
the form of raw bytes) should come from, and where the output should go to. It also
maintains a buffer of bytes to reduce the number of round-trips to those destinations (such
as the POSIX read and write functions). In order to allow different kinds of streambufs
with the same interface--well, remember my promise that we'd see classical polymorphism
in this chapter? We've finally gotten to it!

std::streambuf (which is actually an alias for std::basic_streambuf<char,
char_traits<char>>, but let's not make this any more complicated) is the base class of an
inheritance hierarchy whose derived classes are std::filebuf and std::stringbuf. The
virtual methods provided by the streambuf interface are too many to list, but they include
sb.setbuf(buf, n) (corresponding to setvbuf(fp, buf, _IO_FBF, n)),
sb.overflow() (corresponding to fflush(fp)), and sb.seekpos(offset, whence)
(corresponding to fseek(fp, offset, whence)). When I say corresponding, I mean
corresponding for std::filebuf, of course. These methods have implementation-defined
(and in practice, non-portable) behavior when called on std::stringbuf.

Any streambuf derived class must also support some primitive operations to interact with
its buffer (to put in and take out bytes). These primitive operations are not for use by
normal programmers, though; they're for use by the stream object that wraps this streambuf
and provides a more programmer-friendly interface.

A C++ stream encapsulates a streambuf and restricts the set of operations you can do on it.
For example, notice that streambuf doesn't have any conception of "access mode": you can
put bytes into it ("write") as easily as you can take bytes out ("read"). However, when we
take that streambuf and wrap it in a std::ostream, the ostream object exposes only a
write method; there is no read method on ostream.
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The following diagram expresses the class hierarchy of streams and streambufs in C++17, as
defined in the standard <iostream>, <fstream>, and/or <sstream> headers. The
streambuf, istream, ostream, and iostream base classes are "abstract-ish": while they
have no pure virtual methods, they contain only the streambuf* member variable
inherited from ios. To protect you from accidentally constructing instances of these
"abstract-ish" types, the standard library defines their constructors as protected.
Contrariwise, the classes with names containing stringstream and fstream actually
contain instances of stringbuf and filebuf respectively, to which their constructors
initialize the inherited streambuf* member to point. Later in this chapter, in the Solving the
sticky-manipulator problem section, we'll see how to construct an ostream object whose
streambuf* member points to a streambuf instance not owned by *this:

The stream classes expose a motley collection of methods that correspond, more or less
exactly, to the functions we've seen twice before. In particular, the fstream class wraps
filebuf and, together, they behave a lot like FILE from the C API: filebuf has a "cursor"
that you can manipulate with the seekp method of fstream. (The name seekp is inherited
from the ostream class. On ifstream, the method is named seekg: "g" for "get" and "p" for
"put." On a full fstream, you can use either seekg or seekp; they are synonyms in that
case. As always, remember that there is just a single cursor, even though the iostreams API
has two different names for the cursor in this case!)
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The constructor of fstream takes a bitmask or'ed together from the std::ios_base::in,
out, app (for "append mode"), trunc, ate, and binary flag values; however, just as we
saw with fopen, there is only a very small dash of rhyme and reason as to how those flags
are translated into POSIX open flags:

in: This is equivalent to fopen("r"), or POSIX O_RDONLY.
out: This is equivalent to fopen("w"), or POSIX O_WRONLY | O_CREAT |
O_TRUNC. (Notice that out alone means O_TRUNC even if trunc was not passed!)
in|out: This is equivalent to fopen("r+"), or POSIX O_RDWR | O_CREAT.
in|out|trunc: This is equivalent to fopen("w+"), or POSIX O_RDWR |
O_CREAT | O_TRUNC. (Notice that the iostreams syntax makes more sense than
the fopen syntax, in this case.)
out|app: This is equivalent to fopen("a"), or POSIX O_WRONLY | O_CREAT |
O_APPEND.
in|out|app: This is equivalent to fopen("a+"), or POSIX O_RDWR | O_CREAT
| O_APPEND.

Adding binary to the bitmask is just like adding "b" to fopen. Adding ate tells the stream
to begin with a seek to the end of the file, even if the file is not being opened in O_APPEND
mode.

Passing an unsupported set of flags, such as app|trunc, will still construct the stream
object, but place it into the "fail" state, which we'll discuss soon. In general, you should
design your own classes' constructors so that failure is indicated by an exception. That rule
is broken here partly because this class hierarchy was designed almost forty years ago, and
partly because we need a "failure" mechanism anyway, to deal with the relatively likely
possibility that the named file cannot be opened (for example, if it doesn't exist).

Putting it all together, we can rewrite our simple program from "Using the POSIX API" like
this, using the <fstream> API to open, read, write, seek, flush, and close file streams:

    #include <cassert>
    #include <fstream>
    #include <string>

    int main()
    {
      std::fstream fsw("myfile.txt", std::ios_base::out);
      std::fstream fsr("myfile.txt", std::ios_base::in);
      if (fsw.fail() || fsr.fail())
        return EXIT_FAILURE;
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      fsw.write("hello world", 11);
      fsw.seekp(6, std::ios_base::beg);
      fsw.write("neighbor", 8);
      fsw.flush();

      std::string buffer(14, '\0');
      fsr.read(buffer.data(), 14);
      assert(fsr.gcount() == 14 && buffer == "hello neighbor");
    }

One odd thing about the preceding example is that fsr.read(buffer.data(), 14)
does not return any indication of how many bytes were read! Instead, it stores the count of
bytes read in a member variable, and you must retrieve the count yourself via the accessor
fsr.gcount() function. And the write method doesn't even allow you to find out how
many bytes were written. This may seem like a problem; but, in general, if a stream
encounters an error on reading or writing, the error is often essentially "unrecoverable"
anyway, due to the uncertain number of bytes actually read from or written to the
underlying file descriptor and due to the several layers of buffers between the application
program and hardware. When a read or write error is encountered, we pretty much have to
give up on understanding the state of that stream at all--except in the special case of "end of
file" on input. If we intended to read 100 bytes and instead hit "end of file," it is meaningful
to ask, "How many bytes did we succeed at reading?" However, if we intended to write 100
bytes and instead received a network error, or a disk error, it's not so meaningful to ask,
"How many bytes did we succeed at writing?" We simply cannot tell whether our "written"
bytes managed to reach their destination or not.

If we asked for 100 bytes and only read 99 (or fewer) before hitting end-of-file, then not only
will fs.gcount() report a number less than 100, but also the eof indicator will be set on the
stream object's state. You can ask any stream about its current state with the accessor
functions fs.good() (is it hunky-dory?), fs.bad() (did the underlying stream encounter
an unrecoverable error?), fs.eof() (did the last input operation hit end-of-file?), and
fs.fail() (did the last operation "fail" for any reason?). Notice that fs.good() is not the
inverse of fs.bad(); it is possible for a stream to be in a state, such as eof, that is, !good()
&& !bad().
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We have now seen the simplest, most primitive way to do buffered input and output using
fstream streams. However, if you're using C++ streams like this, you may as well just be
using FILE *, or even the POSIX API. The "new and (arguably) improved" thing about C++
streams is the way they handle formatting.

Streaming and manipulators
Recall that with printf, the original types of the arguments are lost, and so the format
string must do double duty, encoding not only how to format each data value, but also the
type of each data value. When we use iostreams, this disadvantage goes away. Formatting
with iostreams looks like this:

    int tuners = 225;
    const char *where = "Chicago";
    std::cout << "There are " << tuners << " piano tuners in " << where <<
"\n";

Here, std::cout is a global variable of type ostream, corresponding to stdout or POSIX
file descriptor 1. There's also std::cerr, corresponding to unbuffered stderr or POSIX
file descriptor 2; std::clog, again corresponding to file descriptor 2 but fully buffered this
time; and std::cin, a global variable of type istream, corresponding to stdin or POSIX
file descriptor 0.

The standard ostream class, which, again, is really basic_ostream<char,
char_traits<char>>, but let's ignore that) has many, many non-member overloads of
operator<<. For example, here's the simplest possible overloaded operator<<:

    namespace std {
      ostream& operator<< (ostream& os, const string& s)
      {
        os.write(s.data(), s.size());
        return os;
      }
    } // namespace std

As this function returns a reference to the same os it received, we can chain the <<
operators together, as shown in the previous example. This allows us to format complicated
messages.
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Unfortunately, our simple operator<<(ostream&, const string&) is not nearly
sufficient to satisfy the variety of formatting concerns described in the Formatting with printf
and snprintf section. Suppose we wanted to print that left-aligned string in a column of
width 7; how would we do that? The operator<< syntax doesn't allow us to pass any
additional "formatting option" parameters, which means that we simply cannot do
complicated formatting unless the formatting options are carried along in either the left-
hand side of << (the ostream object itself) or the right-hand side (the object to be formatted).
The standard library uses a mix of both approaches. Generally, functionality that first
appeared in the 1980s and 1990s carried its formatting options in the ostream object itself;
and anything added later--not being able to add new member variables to ostream without
breaking binary compatibility--has had to make do by fiddling with the right-hand side of
the << operator. Let's look at alignment within a column, as an example of the 1980s
approach. This is a slightly more full-featured version of our operator<< for
std::string:

    void pad(std::ostream& os, size_t from, size_t to)
    {
      char ch = os.fill();
      for (auto i = from; i < to; ++i) {
        os.write(&ch, 1);
      }
    }

    std::ostream& operator<< (std::ostream& os, const std::string& s)
    {
      auto column_width = os.width();
      auto padding = os.flags() & std::ios_base::adjustfield;

      if (padding == std::ios_base::right) {
        pad(os, s.size(), column_width);
      }
      os.write(s.data(), s.size());
      if (padding == std::ios_base::left) {
        pad(os, s.size(), column_width);
      }
      os.width(0); // reset "column width" to 0
      return os;
    }
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Here, os.width(), os.flags(), and os.fill() are all built-in members of
the std::ostream class. There's also os.precision() for floating-point numbers,
and os.flags() can indicate the base-10, base-16, or base-8 output for some numeric types
as well. You can set the "column width" state on a stream by calling os.width(n);
however, it would be quite painful (and silly!) if we had to set up by writing
std::cout.width(10), std::cout.setfill('.'), and so on, before each output
operation. So, the iostreams library provides some standard stream manipulators that can be
used to get the effect of these member functions but in a more "fluent" manner. These
manipulators are generally defined in a standard header, <iomanip>, not in <iostream>
proper. For example, here's a manipulator that sets the column width of a stream:

    struct WidthSetter { int n; };

    auto& operator<< (std::ostream& os, WidthSetter w)
    {
      os.width(w.n);
      return os;
    }

    auto setw(int n) { return WidthSetter{n}; }

And here are two more standard manipulators, one of which should look very familiar to
you by now. The std::endl manipulator streams a newline to the output stream and then
flushes it:

    using Manip = std::ostream& (*)(std::ostream&);

    auto& operator<< (std::ostream& os, Manip f) {
      return f(os);
    }

    std::ostream& flush(std::ostream& os) {
      return os.flush();
    }

    std::ostream& endl(std::ostream& os) {
      return os << '\n' << flush;
    }



Iostreams

[ 275 ]

Once we have std::setw; its friends, std::left, std::right, std::hex, std::dec,
std::oct, std::setfill, and std::precision; and all the rest--I say once we have all
these manipulators--, we can write iostreams code that looks almost natural, if extremely
verbose. Compare these <stdio.h> and <iostream> snippets:

    printf("%-10s.%6x\n", where, tuners);
      // "Chicago . e1"

    std::cout << std::setw(8) << std::left << where << "."
              << std::setw(4) << std::right << std::hex
              << tuners << "\n";
      // "Chicago . e1"

Bear in mind that every time we use one of these manipulators, we are imperatively
affecting the state of the stream object itself; this effect may persist for longer than just the
current output statement. For example, our preceding snippet may continue like this:

    printf("%d\n", 42); // "42"

    std::cout << 42 << "\n"; // "2a" -- oops!

The std::hex manipulator from the previous example set the mode of this stream to
"hexadecimal output for numbers," and nothing ever set it back to the "default" decimal
mode. So now we've unintentionally made everything later in the program also print in
hex! This is a major disadvantage of the iostreams library (and of stateful, imperative
programming in general).

Streaming and wrappers
The parameters provided by std::ios_base (left, right, hex, width, precision, and
so on) are a closed set--a set defined in the mid-1980s and basically untouched since then.
Since each manipulator modifies one of these parameters in the state of the stream, the set
of manipulators is essentially closed as well. The modern way to affect the formatting of a 
particular data value is to wrap it in a wrapper. For example, suppose that we have written a
generic algorithm for quoting values in a data file:

    template<class InputIt, class OutputIt>
    OutputIt do_quote(InputIt begin, InputIt end,
      OutputIt dest)
    {
      *dest++ = '"';
      while (begin != end) {
        auto ch = *begin++;
        if (ch == '"') {
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            *dest++ = '\\';
        }
        *dest++ = ch;
      }
      *dest++ = '"';
      return dest;
    }

(This algorithm is not part of the standard library.) Having this algorithm in hand, we could
easily construct a wrapper class, where the wrapper class' operator<< would invoke the
following algorithm:

    struct quoted {
      std::string_view m_view;
      quoted(const char *s) : m_view(s) {}
      quoted(const std::string& s) : m_view(s) {}
    };

    std::ostream& operator<< (std::ostream& os, const quoted& q)
    {
      do_quote(
        q.m_view.begin(),
        q.m_view.end(),
        std::ostreambuf_iterator<char>(os)
      );
      return os;
    }

(The std::ostreambuf_iterator<char> type is part of the standard library; it comes
from the <iterator> header. We'll see its friend, istream_iterator, later in this
chapter.) Then, having the wrapper class, we'd be able to write very reasonable-looking
code to print quoted values to an output stream:

    std::cout << quoted("I said \"hello\".");
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The wrapper we just invented bears a deliberate resemblance to the std::quoted wrapper
function found in the standard library's <iomanip> header. The major difference is that
std::quoted doesn't use an iterator-based algorithm to produce its output; it constructs
the entire output in a local std::string variable and then uses os << str to print it out
in one fell swoop. This means that std::quoted is not allocator-aware (see Chapter 8,
Allocators) and thus is not suitable for environments where heap allocation is forbidden.
While the fine details may have been botched in this case,
the fundamental idea of using a wrapper function or class to adjust the formatting of a data
value is a good one. You can see it taken to extremes in libraries like Boost.Format, where
syntax like the following is legal:

    std::cout << boost::format("There are %d piano tuners in %s.") % tuners
% where
              << std::endl;

Prefer to use wrappers that describe self-contained formatting operations instead of
manipulators, which "stickily" mutate the state of the stream. In the preceding code, we saw
how an ill-placed std::hex can put a curse on everyone "downstream." Now, we'll look at
two ways to solve that problem--and two new problems that crop up in its place!

Solving the sticky-manipulator problem
Our "sticky std::hex" problem can be solved by saving and restoring the state of the
ostream around each complicated output operation, or by creating a brand-new ostream
each time we want to output something. An example of the former is as follows:

    void test() {
      std::ios old_state(nullptr);
      old_state.copyfmt(std::cout);
        std::cout << std::hex << 225; // "e1"
      std::cout.copyfmt(old_state);

      std::cout << 42; // "42"
    }

An example of the latter is as follows:

    void test() {
      std::ostream os(std::cout.rdbuf());
      os << std::hex << 225; // "e1"

      std::cout << 42; // "42"
    }
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Notice how convenient it is that the iostreams library separates the idea of a "streambuf"
from the idea of a "stream"; in the preceding example, we easily strip all the formatting-
related fields away from a stream by extracting just its streambuf: std::cout.rdbuf())
and then layer a brand new stream (with its own formatting-related fields) on top of that
same streambuf.

However, iostreams formatting has another major disadvantage. Each piece of our intended
message is output "eagerly" as soon as its respective operator<< is reached--or, if you
prefer, each piece of our intended message is computed "lazily" only when its respective
operator<< is reached--so that we have the following piece of code:

    void test() {
      try {
        std::cout << "There are "
                  << computation_that_may_throw()
                  << "piano tuners here.\n";
      } catch (...) {
        std::cout << "An exception was thrown";
      }
    }

We'll see the output There are An exception was thrown for the preceding piece of
code.

Also, iostreams formatting is intensely disagreeable to internationalization ("i18n"), because
the "shape" of the overall message is never present in the source code. Instead of a single
string literal "There are %d piano tuners here.\n" representing a complete thought,
which could be translated by a human and stored in an external file of translated messages;
we have two sentence fragments: "There are " and "piano tuners here.\n", neither
of which can be translated in isolation.

For all these reasons, I strongly discourage you from attempting to use iostreams as the
foundation of your codebase. Using <stdio.h> or a third-party library such as fmt for
formatting is preferable. Boost.Format is also a possibility, although it tends to have very
long compile times and poor runtime performance compared to either of the other two
options. If you find yourself typing <<, std::hex, or os.rdbuf() more than once or twice
a week, you're doing something wrong.

Yet the iostreams library still has some usable and even useful features! Let's look at one of
them.
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Formatting with ostringstream
So far, we've been talking mostly about fstream, which roughly corresponds to the
fprintf and vfprintf formatting functions in the C API. There is also stringstream,
which corresponds to snprintf and vsnprintf.

An ostringstream is just like ostream, exposing all the usual operator<< functionality;
however, it is backed by stringbuf that writes not to a file descriptor but to a resizable
character buffer--in practice, std::string! You can use the oss.str() method to get a
copy of this string for your own use. This leads to the following idiom for, for example,
"stringifying" an object of any type T:

    template<class T>
    std::string to_string(T&& t)
    {
      std::ostringstream oss;
      oss << std::forward<T>(t);
      return oss.str();
    }

In C++17, you may even consider a multi-argument version of to_string:

    template<class... Ts>
    std::string to_string(Ts&&... ts)
    {
      std::ostringstream oss;
      (oss << ... << std::forward<Ts>(ts));
      return oss.str();
    }

With this version, a call such as to_string(a, " ", b) or to_string(std::hex, 42)
will have the appropriate semantics.
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A note on locales
There is still a pernicious pitfall to beware any time you use either printf or ostream for
string formatting (or string parsing). That pitfall is locales. A full treatment of locales is out
of the scope of this book; however, in short, the locale is "the subset of a user's environment
that depends on language and cultural conventions." Locale information is exposed
programmatically via the operating system, allowing a single program to adjust its behavior
depending on the current user's preferred locale, for example, to control whether "á" is
considered an alphabetic character, whether the week begins with Sunday or Monday,
whether dates print as "23-01-2017" or "01-23-2017", and whether floating-point numbers
print as "1234.56" or "1.234,56". Now, a programmer from the 21st century may look at all of
those examples and say, "This is crazy! You mean, not one of these things is specified by a
standard? It seems like this situation would inevitably lead to subtle and painful bugs!" And
you'd be correct!

    std::setlocale(LC_ALL, "C.UTF-8");
    std::locale::global(std::locale("C.UTF-8"));

    auto json = to_string('[', 3.14, ']');
    assert(json == "[3.14]"); // Success!

    std::setlocale(LC_ALL, "en_DK.UTF-8");
    std::locale::global(std::locale("en_DK.UTF-8"));

    json = to_string('[', 3.14, ']');
    assert(json == "[3,14]"); // Silent, abject failure!

By changing the global locale to "en_DK.UTF-8", we've made it so that none of our JSON
printing works anymore. Woe betide the hapless user who attempts to run a web server or a
database in any locale other than "C.UTF-8"!

Besides the correctness costs of locale-specific programming, we must also contend with the
performance costs. Notice that "current locale" is a global variable, which means that every
access to it must be guarded by either an atomic access or--worse--a global mutex lock. And,
every call to snprintf or operator<<(ostream&, double) must access the current
locale. This is a horrendous performance cost, and, in certain scenarios, can actually be the
performance bottleneck in multi-threaded code.
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As an application programmer, for applications above a certain level of complexity, you
should get in the habit of writing std::locale::global(std::locale("C")) as the
first line of main(). (If you write only setlocale(LC_ALL, "C"), as you would in a C
program, you'll make <stdio.h> work correctly but not affect the locale used by
<iostream>. In other words, setting the C++ library's "global locale" also modifies the C
library's "global locale," but not vice versa.)

If you don't even trust your users to be using UTF-8, perhaps prefer the
locale name "C.UTF-8" instead of just "C"; however, be aware that the
name "C.UTF-8" has been around only since about 2015, and may not be
available on older systems. In fact, the availability of any locale other than
"C" depends on the user. Locales are similar to time zones in this way:
there is only one locale and one timezone that is guaranteed to be available
on any platform in the world, and not coincidentally, it's the one you
should always be using.

As a programmer of third-party libraries, you have two possible paths. The easier path is to
assume that your library will only ever be used in applications that have set their global
locale to "C", and so you don't need to worry about locales; go ahead and use snprintf
and operator<< to your heart's content. (However, notice that this does not solve the
performance problem associated with locale-aware programming. That global mutex lock
will still be there, taking up valuable cycles.) The harder path--harder because it requires
conscientious adherence to a subtle guideline--is to avoid all use of locale-aware formatting
functions. This path has only really become feasible as of C++17, with some of the very
newest library facilities, to which we will turn now.

Converting numbers to strings
Consider the following declarations:

    std::ostringstream oss;
    std::string str;
    char buffer[100];
    int intvalue = 42;
    float floatvalue = 3.14;
    std::to_chars_result r;

To convert the intvalue integer to a string of digits, C++17 offers us the following options:

    snprintf(buffer, sizeof buffer, "%d", intvalue);
      // available in <stdio.h>
      // locale-independent (%d is unaffected by locales)
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      // non-allocating
      // bases 8, 10, 16 only

    oss << intvalue;
    str = oss.str();
      // available in <sstream>
      // locale-problematic (thousands separator may be inserted)
      // allocating; allocator-aware
      // bases 8, 10, 16 only

    str = std::to_string(intvalue);
      // available since C++11 in <string>
      // locale-independent (equivalent to %d)
      // allocating; NOT allocator-aware
      // base 10 only

    r = std::to_chars(buffer, std::end(buffer), intvalue, 10);
    *r.ptr = '\0';
      // available since C++17 in <charconv>
      // locale-independent by design
      // non-allocating
      // bases 2 through 36

All four alternatives have their advantages. The main advantage of std::to_string is that
it is conveniently composable into larger messages in a high-level code:

    std::string response =
      "Content-Length: " + std::to_string(body.size()) + "\r\n" +
      "\r\n" +
      body;

The main advantages of std::to_chars are that it is locale-independent and that it can
easily be composed in low-level code:

    char *write_string(char *p, char *end, const char *from)
    {
      while (p != end && *from != '\0') *p++ = *from++;
      return p;
    }

    char *write_response_headers(char *p, char *end, std::string body)
    {
      p = write_string(p, end, "Content-Length: ");
      p = std::to_chars(p, end, body.size(), 10).ptr;
      p = write_string(p, end, "\r\n\r\n");
      return p;
    }
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The main disadvantage of std::to_chars is that it is a very new feature of C++17; as of
this writing, the <charconv> header is not present in any major implementation of the
standard library.

To convert the floating-point floatvalue number to a string of digits, C++17 offers us the
following options:

    snprintf(buffer, sizeof buffer, "%.6e", floatvalue);
    snprintf(buffer, sizeof buffer, "%.6f", floatvalue);
    snprintf(buffer, sizeof buffer, "%.6g", floatvalue);
      // available in <stdio.h>
      // locale-problematic (decimal point)
      // non-allocating

    oss << floatvalue;
    str = oss.str();
      // available in <sstream>
      // locale-problematic (decimal point)
      // allocating; allocator-aware

    str = std::to_string(floatvalue);
      // available since C++11 in <string>
      // locale-problematic (equivalent to %f)
      // allocating; NOT allocator-aware
      // no way to adjust the formatting

    r = std::to_chars(buffer, std::end(buffer), floatvalue,
                      std::chars_format::scientific, 6);
    r = std::to_chars(buffer, std::end(buffer), floatvalue,
                      std::chars_format::fixed, 6);
    r = std::to_chars(buffer, std::end(buffer), floatvalue,
                      std::chars_format::general, 6);
    *r.ptr = '\0';
      // available since C++17 in <charconv>
      // locale-independent by design
      // non-allocating

Notice that when printing the floating-point, every method except std::to_string offers
the possibility of adjusting the formatting; and every method except std::to_chars is
locale-aware and thus problematic in a portable code. All of these methods are available for
the double and long double data types, as well as for float. In any case, the same
respective advantages and disadvantages apply for integer formatting.
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Converting strings to numbers
The reverse problem of formatting numbers for output is parsing numbers from the user's
input. Parsing is intrinsically much more subtle and difficult than formatting, because we
must account for the possibility of error. Every number can plausibly be turned into a string
of digits, but not every string (or even every string of digits!) can plausibly be turned into a
number. So, any function that purports to parse numbers must have some way of dealing
with strings that do not represent valid numbers.

Consider the following declarations:

    std::istringstream iss;
    std::string str = "42";
    char buffer[] = "42";
    int intvalue;
    float floatvalue;
    int rc;
    char *endptr;
    size_t endidx;
    std::from_chars_result r;

To convert the string in buffer or str to an intvalue integer, C++17 offers us the
following options:

    intvalue = strtol(buffer, &endptr, 10);
      // saturates on overflow
      // sets global "errno" on most errors
      // sets endptr==buffer when input cannot be parsed
      // available in <stdlib.h>
      // locale-problematic, in theory
      // non-allocating
      // bases 0 and 2 through 36
      // always skips leading whitespace
      // skips leading 0x for base 16
      // recognizes upper and lower case

    rc = sscanf(buffer, "%d", &intvalue);
      // fails to detect overflow
      // returns 0 (instead of 1) when input cannot be parsed
      // available in <stdio.h>
      // locale-problematic (equivalent to strtol)
      // non-allocating
      // bases 0, 8, 10, 16 only
      // always skips leading whitespace
      // skips leading 0x for base 16
      // recognizes upper and lower case
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    intvalue = std::stoi(str, &endidx, 10);
      // throws on overflow or error
      // available since C++11 in <string>
      // locale-problematic (equivalent to strtol)
      // NOT allocator-aware
      // bases 0 and 2 through 36
      // always skips leading whitespace
      // skips leading 0x for base 16
      // recognizes upper and lower case

    iss.str("42");
    iss >> intvalue;
      // saturates on overflow
      // sets iss.fail() on any error
      // available in <sstream>
      // locale-problematic
      // allocating; allocator-aware
      // bases 8, 10, 16 only
      // skips leading 0x for base 16
      // skips whitespace by default

    r = std::from_chars(buffer, buffer + 2, intvalue, 10);
      // sets r.ec != 0 on any error
      // available since C++17 in <charconv>
      // locale-independent by design
      // non-allocating
      // bases 2 through 36
      // always skips leading whitespace
      // recognizes lower case only

There are more parsing methods here than there were formatting methods in the previous
section; this is because the C standard library alone offers us three different methods: atoi,
the oldest method, and the only one whose behavior on invalid input is literally undefined, so
avoid it in production code; strtol, the standard replacement for atoi, it communicates
overflow errors via the global variable errno, which may be inappropriate for threaded or
high-performance code); and sscanf, a function in the same family as snprintf.
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std::stoi is a very good replacement for atoi in one-off parsing of user input, and a very
bad option for high-performance work. It does a very good job of detecting errors--
std::stoi("2147483648") throws std::out_of_range and std::stoi("abc")
throws std::invalid_argument. (And, although std::stoi("42abc") returns 42
without complaint, the std::stoi("42abc", &endidx) invocation will set endidx to 2
instead of 5, indicating that something may be amiss.) The major disadvantage of
std::stoi is that it works only on the exact type std::string--there is no overload of
std::stoi for string_view, no overload for std::pmr::string, and certainly no
overload for const char *!

std::from_chars is the most modern and performant option to parse integers. Its main
advantage is that unlike any of the other contenders, from_chars does not require its input
buffer to be null-terminated--it takes a pair of begin, end pointers to indicate the range of
characters to be parsed, and will never read past end. It still has some unfortunate
limitations--for example, it cannot be taught not to skip whitespace, nor can it be taught to
parse uppercase hexadecimal input. The idiom to test r.ec for error is shown near the
beginning of Chapter 12, Filesystem.

The strtol, sscanf, and stoi functions indicate that they recognize "base 0." This is a
special-case syntax in the library, where passing a base of 0 (or, in the case of sscanf, a
format specifier of "%i") tells the library to parse the input as if it were a C integer literal:
0123 will parse as the octal representation of decimal 83, 0x123 will parse as the
hexadecimal representation of 291, and 019 will parse as the octal representation of the
integer 1, with the character 9 left unparsed because it is not a valid octal. "Base 0" is never
an appropriate behavior for a computer program, and from_chars wisely chucks it to the
trash can, where it belongs.

To convert a string to a floating-point floatvalue, C++17 offers the following options:

    floatvalue = strtof(buffer, &endptr);
      // saturates on overflow
      // sets global "errno" on most errors
      // sets endptr==buffer when input cannot be parsed
      // available in <stdlib.h>
      // locale-problematic
      // non-allocating
      // base 10 or 16, auto-detected
      // always skips leading whitespace

    rc = sscanf(buffer, "%f", &floatvalue);
      // fails to detect overflow
      // returns 0 (instead of 1) when input cannot be parsed
      // available in <stdio.h>
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      // locale-problematic (equivalent to strtof)
      // non-allocating
      // base 10 or 16, auto-detected
      // always skips leading whitespace

    floatvalue = std::stof(str, &endidx);
      // throws on overflow or error
      // available since C++11 in <string>
      // locale-problematic (equivalent to strtol)
      // NOT allocator-aware
      // base 10 or 16, auto-detected
      // always skips leading whitespace

    iss.str("3.14");
    iss >> floatvalue;
      // saturates on overflow
      // sets iss.fail() on any error
      // available in <sstream>
      // locale-problematic
      // allocating; allocator-aware
      // base 10 or 16, auto-detected
      // skips whitespace by default
      // non-portable behavior on trailing text

    r = std::from_chars(buffer, buffer + 2, floatvalue,
                        std::chars_format::general);
      // sets r.ec != 0 on any error
      // available since C++17 in <charconv>
      // locale-independent by design
      // non-allocating
      // base 10 or 16, auto-detected
      // always skips leading whitespace

All of these parsers--even std::from_chars--accept input strings, "Infinity" and "Nan"
(case-insensitively), and also accept "hex float" inputs so that, for example, "0x1.c" parses
as the decimal number 1.75. All but std::from_chars are locale-aware, and thus
problematic in portable code. Where the locale problems with integer parsing are largely
theoretical, the widespread real-world use of locales where . is not the decimal separator
means that it is very easy to run into cases where std::stof and std::stod don't work as
expected:

    std::setlocale(LC_ALL, "C.UTF-8");
    assert(std::stod("3.14") == 3.14); // Success!
    std::setlocale(LC_ALL, "en_DK.UTF-8");
    assert(std::stod("3.14") == 3.00); // Silent, abject failure!
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Notice in passing the "non-portable behavior on trailing text" mentioned in connection with
istringstream. Different library vendors do different things with stream input, and it's
not always clear which should be considered "correct":

    double d = 17;
    std::istringstream iss("42abc");
    iss >> d;
    if (iss.good() && d == 42) {
      puts("Your library vendor is libstdc++");
    } else if (iss.fail() && d == 0) {
      puts("Your library vendor is libc++");
    }

Because of these portability issues--symptoms of the subtle complexity of stream input in
general--, I recommend you avoid using istringstream for input parsing, even though
ostringstream may sometimes be the most appropriate choice for output formatting.

Another good rule of thumb is to separate the validation (or lexing) of input from the parsing
of input. If you can validate beforehand that a certain string contains all digits, or matches
the regular-expression syntax of a valid floating-point number, then you merely have to
pick a parsing method that can detect overflow and/or trailing text; for example,
std::stof or std::from_chars. For more on lexing input with regular expressions, see
Chapter 10, Regular Expressions.

Reading a line or word at a time
Reading from standard input one line at a time is a very common task in simple scripts, and
most scripting languages make it a one-liner. For example, in Python:

    for line in sys.stdin:
    # preserves trailing newlines
    process(line)

And in Perl:

    while (<>) {
      # preserves trailing newlines
      process($_);
    }
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In C++, the task is almost as easy. Notice that C++'s std::getline function, unlike the
other languages' idioms, removes the trailing newline (if any) from each line it reads:

    std::string line;
    while (std::getline(std::cin, line)) {
      // automatically chomps trailing newlines
      process(line);
    }

In each of these cases, the entire input never lives in memory at once; we are indeed
"streaming" the lines through our program in an efficient manner. (And the std::getline
function is allocator-aware; if we absolutely need to avoid heap allocation, we can exchange
std::string line for std::pmr::string.) The process function may take each line
and use a regular expression (see Chapter 10, Regular Expressions) to validate and split the
line into fields for further parsing.

To read a word, instead of a line, at a time, we can use the following code snippet as our
guide (as long as we trust the current locale's definition of isspace to separate words
correctly, of course):

    template<class T>
    struct streamer {
      std::istream& m_in;
      explicit streamer(std::istream& in) : m_in(in) {}
      auto begin() const
        { return std::istream_iterator<T>(m_in); }
      auto end() const
        { return std::istream_iterator<T>{}; }
    };

    int main()
    {
      for (auto word : streamer<std::string>(std::cin)) {
        process(word);
      }
    }



Iostreams

[ 290 ]

std::istream_iterator<T> is a standard library type, defined in the <iterator>
header, which wraps a pointer to istream. The iterator's operator++ reads a value of type
T from the istream, as if by operator>>, and that value is returned by the iterator's
operator*. Putting it all together, this allows us to read a whole sequence of whitespace-
delimited words from std::cin by relying on the fact that
std::istream::operator>>(std::string&) reads a single whitespace-delimited word.

We can reuse our streamer class template to read a whole sequence of integers from
std::cin and do something with each of them:

    // Double every int the user gives us
    for (auto value : streamer<int>(std::cin)) {
      printf("%d\n", 2*value);
    }

While the I/O facilities of C++ are certainly very complicated, as befits a system's
programming language with its roots in the 1980s, we see from these last few examples that
it is nonetheless possible to hide this complexity under a layer of abstraction and end up
with code that looks almost as simple as Python.

Summary
Data output can be divided roughly into formatting and buffering. Data input can be divided
just as roughly into buffering and parsing; although, the parsing step gets easier if you can
put a lexing step in front. (We'll talk more about lexing in the very next chapter!)

The classical iostreams API is built on top of <stdio.h>, which in turn is built on top of the
POSIX file-descriptor API. You can't understand the higher levels without a good
understanding of the levels beneath it. In particular, the mess of fopen mode strings and
fstream constructor flags can be understood only by reference to lookup tables mapping
them onto the actual underlying POSIX open flags.

The POSIX API is concerned only with moving chunks of data to and from file descriptors;
it does not "buffer" data in the naive sense. The <stdio.h> API adds a layer of buffering on
top of POSIX; the C FILE may be fully buffered, line-buffered, or unbuffered. Furthermore,
<stdio.h> provides performant (but locale-aware) formatting routines, of which the most
important are fprintf, snprintf, and sscanf.
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The <iostream> API separates the "streambuf", (which identifies the source or sink of raw
bytes, and its buffering mode) from the "stream" (which holds the state related to
formatting). The different kinds of streams (input or output? file or string?) form a classical
polymorphic hierarchy with complicated and, at times, unintuitive inheritance
relationships. Avoiding <iostream> in production code is preferable as it is slow and
opaque compared to the <stdio.h> or POSIX interfaces. Either way, beware of locale-
dependent formatting routines.

For one-off quick tasks, prefer parsing numbers via std::stoi, which detects and throws
on error, and formatting with std::to_string or snprintf. For high-performance
situations, parsing with std::from_chars and formatting with std::to_chars is
preferable if you can find a library implementation that supports these brand new functions
from the <charconv> header.



10
Regular Expressions

In the previous chapter, we learned all about formatted input and output in C++. We saw
that there are good solutions for formatted output--as long as you make sure you're in the C
locale--but that despite the many approaches to input parsing, even the simple task of
parsing an int out of a string can be quite difficult. (Recall that of the two most foolproof
methods, std::stoi(x) requires converting x to a heap-allocated std::string, and the
verbose std::from_chars(x.begin(), x.end(), &value, 10) is lagging the rest of
C++17 in vendor adoption.) The fiddliest part of parsing numbers is figuring out what to do
with the part of the input that isn't numeric!

Parsing gets easier if you can split it into two subtasks: First, figure out exactly how many
bytes of the input correspond to one "input item" (this is called lexing); and second, parse
the value of that item, with some error recovery in the case that the item's value is out of
range or otherwise nonsensical. If we apply this approach to integer input, lexing
corresponds to finding the longest initial sequence of digits in the input, and parsing
corresponds to computing the numeric value of that sequence in base 10.

Regular expressions (or regexes) is a tool provided by many programming languages that
solve the lexing problem, not just for sequences of digits but for arbitrarily complicated
input formats. Regular expressions have been part of the C++ standard library since 2011, in
the <regex> header. In this chapter we'll show you how to use regexes to simplify some
common parsing tasks.
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Bear in mind that regexes are likely to be overkill for most parsing tasks that you'll face in
your daily work. They can be slow and bloated, and unavoidably require heap allocation
(that is, the regex data types are not allocator-aware as described in Chapter 8, Allocators).
Where regexes really shines is for complicated tasks where hand-written parsing code
would be just as slow anyway; and for extremely simple tasks where the readability and
robustness of regular expressions outweigh their performance costs. In short, regex support
has taken C++ one step closer to the everyday usability of scripting languages such as
Python and Perl.

In this chapter we'll learn:

"Modified ECMAScript", the dialect used by C++ regexes
How to match, search, and even replace substrings using regexes
Further dangers of dangling iterators
Regex features to avoid

What are regular expressions?
A regular expression is a way of writing down the rules for recognizing a string of bytes or
characters as belonging (or not belonging) to a certain "language." In this context, a
"language" can be anything from "the set of all digit-sequences" to "the set of all sequences
of valid C++ tokens." Essentially, a "language" is just a rule for dividing the world of all
strings into two sets--the set of strings matching the rules of the language, and the set of
strings that don't match.

Some kinds of languages follow simple enough rules that they can be recognized by a finite
state machine, a computer program with no memory at all--just a program counter and a
pointer that scans over the input in a single pass. The language of "digit-sequences" is
certainly in the category of languages that can be recognized by a finite state machine. We
call these languages regular languages.

There also exist non-regular languages. One very common non-regular language is "valid
arithmetic expressions," or, to boil it down to its essence, "properly matched parentheses."
Any program that can distinguish the properly matched string (((()))) from the
improperly matched strings (((())) and (((())))) must essentially be able to "count"--
to distinguish the case of four parentheses from the cases of three or five. Counting in this
way cannot be done without a modifiable variable or a push-down stack; so parenthesis-
matching is not a regular language.
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It turns out that, given any regular language, there is a nice straightforward way to write a
representation of the finite state machine that recognizes it, which of course is also a
representation of the rules of the language itself. We call this representation a regular
expression, or regex. The standard notation for regexes was developed in the 1950s, and was
really set in stone by the late 1970s in Unix programs such as grep and sed--programs
which are still very much worth learning today, but which are of course outside the scope
of this book.

The C++ standard library offers several different "flavors" of regex syntax, but the default
flavor (and the one you should always use) was borrowed wholesale from the standard for
ECMAScript--the language better known as JavaScript--with only minor modifications in
the vicinity of square-bracket constructs. I've included a primer on ECMAScript regex
syntax near the end of this chapter; but if you've ever used grep, you'll be able to follow the
rest of this chapter easily without consulting that section.

A note on backslash-escaping
In this chapter, we'll be referring frequently to strings and regular expressions that contain
literal backslashes. As you know, to write a string containing a literal backslash in C++, you
have to escape the backslash with another backslash: thus "\n" represents a newline
character but "\\n" represents the two-character string of "backslash" followed by "n". This
kind of thing is usually easy to keep track of, but in this chapter we're going to have to take
special pains. Regexes are implemented purely as a library feature; so when you write
std::regex("\n") the regex library will see a "regex" containing only a single whitespace
character, and if you write std::regex("\\n") the library will see a two-character string
starting with a backslash, which the library will interpret as a two-character escape sequence
meaning "newline." If you want to communicate the idea of a literal backslash-n to the regex
library, you'll have to get the regex library to see the three-character string \\\\n, which
means writing the five-character string "\\\\n" in your C++ source code.

You might have noticed in the preceding paragraph the solution I'm going to be using in
this chapter. When I talk about a C++ string literal or string value, I will put it in double
quotes, like this: "cat", "a\\.b". When I talk about a regular expression as you would type
it in an email or a text editor, or hand it to the library for evaluation, I will express it
without quotes: cat, a\.b. Just remember that when you see an unquoted string, that's a
literal sequence of characters, and if you want to put it into a C++ string literal, you'll need
to double up all the backslashes, thus: a\.b goes into your source code as
std::regex("a\\.b").
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I hear some of you asking: What about raw string literals? Raw string literals are a C++11
feature that allows you to write the character sequence a\.b by "escaping" the entire string
with an R and some parentheses, like this--R"(a\.b)"--instead of escaping each backslash
in the string. If your string contains parentheses itself, then you can get fancier by writing
any arbitrary string before the first parenthesis and after the last, like this:
R"fancy(a\.b)fancy". A raw string literal like this one is allowed to contain any
characters--backslashes, quotation marks, even newlines--as long as it doesn't contain the
consecutive sequence )fancy" (and if you think there's a chance it might contain that
sequence, then you just pick a new arbitrary string, such as
)supercalifragilisticexpialidocious").

The syntax of C++ raw string literals, with its leading R, is reminiscent of the raw string
literal syntax in Python (with its leading r). In Python, r"a\.b" similarly represents the
literal string a\.b; and it is both common and idiomatic to represent regular expressions in
code by strings such as r"abc" even if they don't contain any special characters. But notice
the all-important difference between r"a\.b" and R"(a\.b)"--the C++ version has an
extra set of parentheses! And parentheses are significant special characters in the regex
grammar. The C++ string literals "(cat)" and R"(cat)" are as different as night and day--
the former represents the five-character regex (cat), and the latter represents the three-
character regex cat. If you trip up and write R"(cat)" when you meant "(cat)" (or
equivalently, R"((cat))"), your program will have a very subtle bug. Even more
sadistically, R"a*(b*)a*" is a valid regex with a surprising meaning! Therefore, I
recommend that you use raw string literals for regexes with great caution; generally it is
safer and clearer to double all your backslashes than to worry about doubling only the
outermost of your parentheses.

Where raw string literals are useful is for what other languages call "heredocs":

    void print_help() {
      puts(R"(The regex special characters are:
      \ - escaping
      | - separating alternatives
      . - match any character
      [] - character class or set
      () - capturing parentheses, or lookahead
      ?*+ - "zero or one", "zero or more", "one or more"
      {} - "exactly N" or "M to N" repetitions
      ^$ - beginning and end of a "line"
      \b - word boundary
      \d \s \w - digit, space, and word
      (?=foo) (?!foo) - lookahead; negative lookahead
    )");
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That is, raw string literals are the only kind of string literal in C++ that can encode newline
characters without any kind of escaping. This is useful for printing long messages to the
user, or maybe for things such as HTTP headers; but raw strings' behavior with parentheses
makes them mildly dangerous for use with regular expressions--I will not be using them in
this book.

Reifying regular expressions into std::regex
objects
To use regular expressions in C++, you can't use a string such as "c[a-z]*t" directly.
Instead, you have to use that string to construct a regular expression object of type
std::regex, and then pass the regex object as one of the arguments to a matching function
such as std::regex_match, std::regex_search, or std::regex_replace. Each object
of type std::regex encodes a complete finite state machine for the given expression, and
constructing this finite state machine requires a lot of computation and memory allocation;
so if we are going to match a lot of input text against the same regex, it is convenient that
the library gives us a way to pay for that expensive construction just once. On the other
hand, this means that the std::regex objects are relatively slow to construct and
expensive to copy; constructing a regex inside a tight inner loop is a good way to kill your
program's performance:

    std::regex rx("(left|right) ([0-9]+)");
    // Construct the regex object "rx" outside the loop.
    std::string line;
    while (std::getline(std::cin, line)) {
      // Inside the loop, use the same "rx" over and over.
      if (std::regex_match(line, rx)) {
        process_command(line);
      } else {
        puts("Unrecognized command.");
      }
    }
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Keep in mind that this regex object has value semantics; when we "match" an input string
against a regex, we aren't mutating the regex object itself. A regex has no memory of what
it's been matched against. Therefore, when we want to pull information out of a regex-
matching operation--such as "did the command say to move left or right? what was the
number we saw?"--we'll have to introduce a new entity that we can mutate.

A regex object offers the following methods:

std::regex(str, flags) constructs a new std::regex object by translating (or
"compiling") the given str into a finite state machine. Options affecting the compilation
process itself can be specified via the bitmask argument flags:

std::regex::icase: Treat all alphabetic characters as case-insensitive
std::regex::nosubs: Treat all parenthesized groups as non-capturing
std::regex::multiline: Make the non-consuming assertion ^ (and $) match
immediately after (and before) a "\n" character in the input, rather than only at
the beginning (and end) of the input

There are several other options that you could bitwise-OR into flags; but the others either
change the "flavor" of regex syntax away from ECMAScript towards less well-documented
and less well-tested flavors (basic, extended, awk, grep, egrep), introduce locale
dependencies (collate), or simply don't do anything at all (optimize). Therefore, you
should avoid all of them in production code.

Notice that even though the process of turning a string into a regex object is often called
"compiling the regex," it is still a dynamic process that happens at runtime when the regex
constructor is called, not during the compilation of your C++ program. If you make a syntax
error in your regular expression, it will be caught not at compile time, but at runtime--the
regex constructor will throw an exception of type std::regex_error, which is a subclass
of std::runtime_error. Properly robust code should also be prepared for the regex
constructor to throw std::bad_alloc; recall that std::regex is not allocator-aware.

rx.mark_count() returns the number of parenthesized capturing groups in the regex. The
name of this method comes from the phrase "marked subexpression," an older synonym for
"capturing group."

rx.flags() returns the bit-mask that was passed to the constructor originally.
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Matching and searching
To ask whether a given input string haystack conforms to a given regex rneedle, you can
use std::regex_match(haystack, rneedle). The regex always comes last, which is 
reminiscent of JavaScript's syntax haystack.match(rneedle) and Perl's haystack =~
rneedle even as it's opposed to Python's re.match(rneedle, haystack). The
regex_match function returns true if the regex matches the entire input string, and false
otherwise:

    std::regex rx("(left|right) ([0-9]+)");
    std::string line;
    while (std::getline(std::cin, line)) {
      if (std::regex_match(line, rx)) {
        process_command(line);
      } else {
        printf("Unrecognized command '%s'.\n",
          line.c_str());
      }
    }

The regex_search function returns true if the regex matches any portion of the input
string. Essentially, it just puts .* on both sides of the regex you provided and then runs the
regex_match algorithm; but implementations can generally perform a regex_search
faster than they could recompile a whole new regex.

To match within just part of a character buffer (such as you might do when pulling data in
bulk over a network connection or from a file), you can pass an iterator pair to
regex_match or regex_search, very similarly to what we saw in Chapter 3, The Iterator-
Pair Algorithms. In the following example, bytes outside the range [p, end) are never
considered, and the "string" p doesn't need to be null-terminated:

    void parse(const char *p, const char *end)
    {
      static std::regex rx("(left|right) ([0-9]+)");
      if (std::regex_match(p, end, rx)) {
        process_command(p, end);
      } else {
        printf("Unrecognized command '%.*s'.\n",
          int(end - p), p);
      }
    }

This interface is similar to what we saw with std::from_chars in Chapter 9, Iostreams.
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Pulling submatches out of a match
To use regexes for the lexing stage of input, you'll need a way to pull out the input
substrings that matched each capturing group. The way you do this in C++ is by creating a
match object of type std::smatch. No, that's not a typo! The name of the match-object type
really is smatch, which stands for std::string match; there is also cmatch for const
char * match. The difference between smatch or cmatch is the type of iterator they store
internally: smatch stores string::const_iterator, while cmatch stores const char *.

Having constructed an empty std::smatch object, you'll pass it by reference as the middle
parameter to regex_match or regex_search. Those functions will "fill in" the smatch
object with information about the substrings that matched, if the regex match actually
succeeded. If the match failed, then the smatch object will become (or remain) empty.

Here's an example of using std::smatch to pull out the substrings matching the direction
and the integer distance from our "robot command":

    std::pair<std::string, std::string>
    parse_command(const std::string& line)
    {
      static std::regex rx("(left|right) ([0-9]+)");
      std::smatch m;
      if (std::regex_match(line, m, rx)) {
        return { m[1], m[2] };
      } else {
        throw "Unrecognized command!";
      }
    }

    void test() {
      auto [dir, dist] = parse_command("right 4");
      assert(dir == "right" && dist == "4");
    }

Notice that we use a static regex object to avoid constructing ("compiling") a new regex
object every time the function is entered. Here's the same code using const char * and
std::cmatch just for comparison:

    std::pair<std::string, std::string>
    parse_command(const char *p, const char *end)
    {
      static std::regex rx("(left|right) ([0-9]+)");
      std::cmatch m;
      if (std::regex_match(p, end, m, rx)) {
        return { m[1], m[2] };
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      } else {
        throw "Unrecognized command!";
      }
    }

    void test() {
      char buf[] = "left 20";
      auto [dir, dist] = parse_command(buf, buf + 7);
      assert(dir == "left" && dist == "20");
    }

In both cases, something interesting happens on the line with the return. Having
successfully matched the input string against our regex, we can query the match object m to
find out which pieces of the input string correspond to the individual capturing groups in
our regex. The first capturing group ((left|right) in our example) corresponds to m[1],
the second group (([0-9]+) in our example) corresponds to m[2], and so on. If you try to
refer to a group that doesn't exist in the regex, such as m[3] in our example, you'll get an
empty string; accessing a match object will never throw an exception.

The group m[0] is a special case: it refers to the entire matched sequence. If the match was
filled in by std::regex_match, this will always be the entire input string; if the match was
filled in by std::regex_search, then this will be just the part of the string that matched
the regex.

There are also two named groups: m.prefix() and m.suffix(). These refer to the
sequences that were not part of the match--before the matched substring and after it,
respectively. It is an invariant that if the match succeeded at all, then m.prefix() + m[0]
+ m.suffix() represents the entire input string.

All of these "group" objects are represented not by std::string objects--that would be too
expensive--but by lightweight objects of type std::sub_match<It> (where It is either
std::string::const_iterator or const char * as noted previously). Every
sub_match object is implicitly convertible to std::string, and otherwise behaves a lot
like a std::string_view: you can compare submatches against string literals, ask them
for their lengths, and even output them to a C++ stream with operator<<, without ever
converting them to std::string. The downside of this lightweight efficiency is the same
downside we get every time we deal with iterators pointing into a container we may not
own: we run the risk of dangling iterators:

    static std::regex rx("(left|right) ([0-9]+)");
    std::string line = "left 20";
    std::smatch m;
    std::regex_match(line, m, rx);
      // m[1] now holds iterators into line
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    line = "hello world";
      // reallocate line's underlying buffer
    std::string oops = m[1];
      // this invokes undefined behavior because
      // of iterator invalidation

Looking at the preceding code snippet, you might worry that an implicit conversion (from,
say, const char * to std::string) might cause iterator-invalidation bugs in harmless-
looking code. Consider the following:

    static std::regex rx("(left|right) ([0-9]+)");
    std::smatch m;
    std::regex_match("left 20", m, rx);
      // m[1] would hold iterators into a temporary
      // string, so they would ALREADY be invalid.
      // Fortunately this overload is deleted.

Fortunately, the standard library foresaw this lurking horror and evaded it by providing a
special-case overload regex_match(std::string&&, std::smatch&, const
std::regex&), which is explicitly deleted (using the same =delete syntax you'd use to
delete an unwanted special member function). This ensures that the preceding innocent-
looking code will fail to compile, rather than being a source of iterator-invalidation bugs.
Still, iterator invalidation bugs can happen, as in the previous example; to prevent them,
you should treat smatch objects as extremely temporary, kind of like a [&] lambda that
captures the world by reference. Once a smatch object has been filled in, don't touch
anything else in the environment until you've extracted the parts of the smatch that you
care about!

To summarize, a smatch or cmatch object offers the following methods:

m.ready(): True if m has been filled in at all, in the time since its construction.
m.empty(): True if m represents a failed match (that is, if it was most recently
filled in by a failed regex_match or regex_search); false if m represents a
successful match.
m.prefix(), m[0], m.suffix(): sub_match objects representing the
unmatched prefix, matched, and unmatched suffix parts of the input string. (If m
represents a failed match, then none of these are meaningful.)
m[k]: A sub_match object representing the part of the input string matched by
the kth capturing group. m.str(k) is a convenient shorthand for m[k].str().
m.size(): Zero if m represents a failed match; otherwise, one more than the
number of capturing groups in the regex whose successful match is represented
by m. Notice that m.size() always agrees with operator[]; the range of
meaningful submatch objects is always m[0] through m[m.size()-1].
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m.begin(), m.end(): Iterators enabling ranged for-loop syntax over a match
object.

And a sub_match object offers the following methods:

sm.first: The iterator to the beginning of the matched input substring.
sm.second: The iterator to the end of the matched input substring.
sm.matched: True if sm was involved in the successful match; false if sm was part
of an optional branch that got bypassed. For example, if the regex was (a)|(b)
and the input was "a", we would have m[1].matched && !m[2].matched;
whereas if the input were "b", we would have m[2].matched &&
!m[1].matched.
sm.str(): The matched input substring, pulled out and converted to
std::string.
sm.length(): The length of the matched input substring (second - first).
Equivalent to sm.str().length(), but much faster.
sm == "foo": Comparison against std::string, const char *, or a single
char. Equivalent to sm.str() == "foo", but much faster. Unfortunately, the
C++17 standard library does not provide any overload of operator== taking
std::string_view.

Although you will likely never have a use for this in real code, it is possible to create a
match or submatch object storing iterators into containers other than std::string or
buffers of char. For example, here's our same function, but matching our regex against a
std::list<char>--silly, but it works!

    template<class Iter>
    std::pair<std::string, std::string>
    parse_command(Iter begin, Iter end)
    {
      static std::regex rx("(left|right) ([0-9]+)");
      std::match_results<Iter> m;
      if (std::regex_match(begin, end, m, rx)) {
        return { m.str(1), m.str(2) };
      } else {
        throw "Unrecognized command!";
      }
    }

    void test() {
      char buf[] = "left 20";
      std::list<char> lst(buf, buf + 7);
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      auto [dir, dist] = parse_command(lst.begin(), lst.end());
      assert(dir == "left" && dist == "20");
    }

Converting submatches to data values
Just to close the loop on parsing, here's an example of how we could parse string and
integer values out of our submatches to actually move our robot:

    int main()
    {
      std::regex rx("(left|right) ([0-9]+)");
      int pos = 0;
      std::string line;
      while (std::getline(std::cin, line)) {
        try {
          std::smatch m;
          if (!std::regex_match(line, m, rx)) {
              throw std::runtime_error("Failed to lex");
          }
          int how_far = std::stoi(m.str(2));
          int direction = (m[1] == "left") ? -1 : 1;
          pos += how_far * direction;
          printf("Robot is now at %d.\n", pos);
        } catch (const std::exception& e) {
          puts(e.what());
          printf("Robot is still at %d.\n", pos);
        }
      }
    }

Any unrecognized or invalid string input is diagnosed either by our custom"Failed to

lex" exception or by the std::out_of_range exception thrown by std::stoi(). If we
were to add a check for integer overflow before modifying pos, we'd have a rock-solid
input parser.

If we wanted to handle negative integers and case-insensitive directions, the following
modifications would do the trick:

    int main()
    {
      std::regex rx("((left)|right) (-?[0-9]+)", std::regex::icase);
      int pos = 0;
      std::string line;
      while (std::getline(std::cin, line)) {
        try {
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          std::smatch m;
          if (!std::regex_match(line, m, rx)) {
            throw std::runtime_error("Failed to lex");
          }
          int how_far = std::stoi(m.str(3));
          int direction = m[2].matched ? -1 : 1;
          pos += how_far * direction;
          printf("Robot is now at %d.\n", pos);
        } catch (const std::exception& e) {
          puts(e.what());
          printf("Robot is still at %d.\n", pos);
        }
      }
    }

Iterating over multiple matches
Consider the regex (?!\d)\w+, which matches a single C++ identifier. We already know
how to use std::regex_match to tell whether an input string is a C++ identifier, and how
to use std::regex_search to find the first C++ identifier in a given input line. But what if
we want to find all the C++ identifiers in a given input line?

The fundamental idea here is to call std::regex_search in a loop. This gets complicated,
though, because of the non-consuming "lookbehind" anchors such as ^ and \b. To
implement a loop over std::regex_search correctly from scratch, we'd have to preserve
the state of these anchors. std::regex_search (and std::regex_match for that matter)
supports this use-case by providing flags of its own--flags which determine the starting state
of the finite state machine for this particular matching operation. For our purposes, the only
important flag is std::regex::match_prev_avail, which tells the library that the
iterator begin, representing the start of the input, is not actually at the "beginning" of the
input (that is, it might not match ^) and that if you want to know the previous character of
the input for purposes of \b, it is safe to inspect begin[-1]:

    auto get_all_matches(
      const char *begin, const char *end,
      const std::regex& rx,
      bool be_correct)
    {
      auto flags = be_correct ?
      std::regex_constants::match_prev_avail :
      std::regex_constants::match_default;
      std::vector<std::string> result;
      std::cmatch m;
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      std::regex_search(begin, end, m, rx);
      while (!m.empty()) {
        result.push_back(m[0]);
        begin = m[0].second;
        std::regex_search(begin, end, m, rx, flags);
      }
      return result;
    }

    void test() {
      char buf[] = "baby";
      std::regex rx("\\bb.");
        // get the first 2 letters of each word starting with "b"
      auto v = get_all_matches(buf, buf+4, rx, false);
      assert(v.size() == 2);
        // oops, "by" is considered to start on a word boundary!

      v = get_all_matches(buf, buf+4, rx, true);
      assert(v.size() == 1);
        // "by" is correctly seen as part of the word "baby"
    }

In the preceding example, when !be_correct, each regex_search invocation is treated
independently, so there is no difference between searching for \bb. from the first letter of
the word "by" or from the third letter of the word "baby". But when we pass
match_prev_avail to the later invocations of regex_search, it takes a step back--
literally--to see whether the letter before "by" was a "word" letter or not. Since the
preceding "a" is a word letter, the second regex_search correctly refuses to treat "by" as
a match.
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Using regex_search in a loop like this is easy... unless the given regex might match an
empty string! If the regex ever returns a successful match m where m[0].length() == 0,
then we'll have an infinite loop. So the inner loop of our get_all_matches() should really
look more like this:

    while (!m.empty()) {
      result.push_back(m[0]);
      begin = m[0].second;
      if (begin == end) break;
      if (m[0].length() == 0) ++begin;
      if (begin == end) break;
      std::regex_search(begin, end, m, rx, flags);
    }

The standard library provides a "convenience" type called std::regex_iterator that will
encapsulate the preceding code snippets' logic; using regex_iterator might conceivably
save you some subtle bugs related to zero-length matches. Sadly, it won't save you any
typing, and it slightly increases the chances of dangling-iterator pitfalls. regex_iterator
is templated on its underlying iterator type in the same way as match_results, so if you're
matching std::string input you want std::sregex_iterator and if you're matching
on const char * input you want std::cregex_iterator. Here's the preceding
example, recoded in terms of sregex_iterator:

    auto get_all_matches(
      const char *begin, const char *end,
      const std::regex& rx)
    {
      std::vector<std::string> result;
      using It = std::cregex_iterator;
      for (It it(begin, end, rx); it != It{}; ++it) {
        auto m = *it;
        result.push_back(m[0]);
      }
      return result;
    }

Consider how this awkward for-loop might benefit from a helper class, along the lines
of streamer<T> from the example near the end of Chapter 9, Iostreams.
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You can also iterate over the submatches within each match, either manually or using a
"convenience" library type. Manually, it would look something like this:

    auto get_tokens(const char *begin, const char *end,
      const std::regex& rx)
    {
      std::vector<std::string> result;
      using It = std::cregex_iterator;
      std::optional<std::csub_match> opt_suffix;
      for (It it(begin, end, rx); it != It{}; ++it) {
        auto m = *it;
        std::csub_match nonmatching_part = m.prefix();
        result.push_back(nonmatching_part);
        std::csub_match matching_part = m[0];
        result.push_back(matching_part);
        opt_suffix = m.suffix();
      }
      if (opt_suffix.has_value()) {
        result.push_back(opt_suffix.value());
      }
      return result;
    }

Recall that regex_iterator is just a wrapper around regex_search, so m.prefix() in
this case is guaranteed to hold an entire non-matching portion, all the way back to the end
of the previous match. By alternately pushing back non-matching prefixes and matches, and
finishing with a special case for the non-matching suffix, we split the input string into a
vector of "words" alternating with "word separators." It's easy to modify this code to save
only the "words" or only the "separators" if that's all you need; or even to save m[1] instead
of m[0], and so forth.

The library type std::sregex_token_iterator encapsulates all of this logic very
directly, although its constructor interface is fairly confusing if you aren't already familiar
with the preceding manual code. sregex_token_iterator's constructor takes an input
iterator-pair, a regex, and then a vector of submatch indices, where the index -1 is a special
case meaning "prefixes (and also, suffix)."

    auto get_tokens(const char *begin, const char *end,
      const std::regex& rx)
    {
      std::vector<std::string> result;
      using TokIt = std::cregex_token_iterator;
      for (TokIt it(begin, end, rx, {-1, 0}); it != TokIt{}; ++it) {
        std::csub_match some_part = *it;
        result.push_back(some_part);
      }
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      return result;
    }

If we change the array {-1, 0} to just {0}, then our resulting vector will contain
only the pieces of the input string matching rx. If we change it to {1, 2, 3}, our
loop will see only those submatches (m[1], m[2], and m[3]) in each match m of rx. Recall
that because of the | operator, submatches can be bypassed, leaving m[k].matched false.
regex_token_iterator does not skip those matches. For example:

    std::string input = "abc123...456...";
    std::vector<std::ssub_match> v;
    std::regex rx("([0-9]+)|([a-z]+)");
    using TokIt = std::sregex_token_iterator;
    std::copy(
      TokIt(input.begin(), input.end(), rx, {1, 2}),
      TokIt(),
      std::back_inserter(v)
    );
    assert(!v[0].matched); assert(v[1] == "abc");
    assert(v[2] == "123"); assert(!v[3].matched);
    assert(v[4] == "456"); assert(!v[5].matched);

The most attractive use of regex_token_iterator might be to split a string into "words"
at whitespace boundaries. Unfortunately it is not significantly easier to use--or to debug--
than old-school approaches such as istream_iterator<string> (see Chapter 9,
Iostreams) or strtok_r.

Using regular expressions for string
replacement
If you're coming from Perl, or if you often use the command-line utility sed, you probably
think of regexes primarily as a way to modify strings--for example, "remove all substrings
matching this regex," or "replace all instances of this word with another word." The C++
standard library does provide a sort of replace-by-regex functionality, under the name
std::regex_replace. It's based on the JavaScript String.prototype.replace method,
which means that it comes with its own idiosyncratic formatting mini-language.
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std::regex_replace(str, rx, "replacement") returns a std::string constructed
by searching through str for every substring matching the regex rx and replacing each
such substring with the literal string "replacement". For example:

    std::string s = "apples and bananas";
    std::string t = std::regex_replace(s, std::regex("a"), "e");
    assert(t == "epples end benenes");
    std::string u = std::regex_replace(s, std::regex("[ae]"), "u");
    assert(u == "upplus und bununus");

However, if "replacement" contains any '$' characters, special things will happen!

"$&" is replaced with the entire matching substring, m[0]. Both libstdc++ and
libc++ support "$0" as a non-standard synonym for "$&".
"$1" is replaced with the first submatch, m[1]; "$2" is replaced with m[2]; and
so on, all the way up to "$99". There is no way to refer to the 100th submatch.
"$100" represents "m[10] followed by a literal '0'." To express "m[1] followed
by a literal '0'," write "$010".
"$`" (that's a backtick) is replaced with m.prefix().
"$'" (that's a single-quote) is replaced with m.suffix().
"$$" is replaced with a literal dollar sign.

Notice that "$`" and "$'" are far from symmetrical, because m.prefix() always refers to
the part of the string between the end of the last match and the start of the current one, but
m.suffix() always refers to the part of the string between the end of the current match
and the end of the string! You'll never use either "$`" or "$'" in real code.

Here's an example of using regex_replace to remove all the instances of std:: from a
piece of code, or to change them all to my:::

    auto s = "std::sort(std::begin(v), std::end(v))";
    auto t = std::regex_replace(s, std::regex("\\bstd::(\\w+)"), "$1");
    assert(t == "sort(begin(v), end(v))");
    auto u = std::regex_replace(s, std::regex("\\bstd::(\\w+)"), "my::$1");
    assert(u == "my::sort(my::begin(v), my::end(v))");

JavaScript's String.prototype.replace allows you to pass in an arbitrary function
instead of a dollar-sign-studded format string. C++'s regex_replace doesn't support
arbitrary functions yet, but it's easy to write your own version that does:

    template<class F>
    std::string regex_replace(std::string_view haystack,
      const std::regex& rx, const F& f)
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    {
      std::string result;
      const char *begin = haystack.data();
      const char *end = begin + haystack.size();
      std::cmatch m, lastm;
      if (!std::regex_search(begin, end, m, rx)) {
        return std::string(haystack);
      }
      do {
        lastm = m;
        result.append(m.prefix());
        result.append(f(m));
        begin = m[0].second;
        begin += (begin != end && m[0].length() == 0);
        if (begin == end) break;
      } while (std::regex_search(begin, end, m, rx,
        std::regex_constants::match_prev_avail));
      result.append(lastm.suffix());
      return result;
    }

    void test()
    {
      auto s = "std::sort(std::begin(v), std::end(v))";
      auto t = regex_replace(s, std::regex("\\bstd::(\\w+)"),
        [](auto&& m) {
          std::string result = m[1].str();
          std::transform(m[1].first, m[1].second,
          begin(result), ::toupper);
          return result;
        });
      assert(t == "SORT(BEGIN(v), END(v))");
    }

With this improved regex_replace in hand, you can perform complicated operations
such as "convert every identifier from snake_case to CamelCase" with ease.

This concludes our whirlwind tour of the facilities provided in C++'s <regex> header. The
remainder of this chapter consists of a detailed introduction to the ECMAScript dialect of
regex notation. I hope it will be useful to readers who haven't worked with regexes before,
and that it will serve as a refresher and reference for those who have.



Regular Expressions

[ 311 ]

A primer on the ECMAScript regex grammar
The rules for reading and writing regexes in the ECMAScript dialect are simple. A regex is
just a string of characters (such as a[bc].d*e), and you read it from left to right. Most
characters represent only themselves, so that cat is a valid regex and matches only the
literal string "cat". The only characters that don't represent themselves--and thus the only
way to build regexes that represent languages more interesting than "cat"--are the
following punctuation characters:

    ^ $ \ . * + ? ( ) [ ] { } |

\--if you're using a regex to describe a set of strings involving punctuation characters, you
can use a backslash to escape those special characters. For example, \$42\.00 is a regex for
the singleton language whose only member is the string "$42.00". Perhaps confusingly,
backslash is also used to turn some normal characters into special characters! n is a regex for
the letter "n", but \n is a regex for the newline character. d is a regex for the letter "d", but \d
is a regex equivalent to [0-9].

The complete list of backslash characters recognized by C++'s regex grammar is:

\1, \2, ... \10, ... for backreferences (to be avoided)
\b for a word boundary and \B for (?!\b)
\d for [[:digit:]] and \D for [^[:digit:]]
\s for [[:space:]] and \S for [^[:space:]]
\w for [0-9A-Za-z_] and \W for [^0-9A-Za-z_]
\cX for various "control characters" (to be avoided)
\xXX for hexadecimal, with the usual meaning
\u00XX for Unicode, with the usual meaning
\0, \f, \n, \r, \t, \v with their usual meanings

.--This special character represents "exactly one character," with almost no other
requirements. For example, a.c is a valid regex and matches inputs such as "aac", "a!c",
and "a\0c". However, . will never match a newline or carriage-return character; and
because C++ regexes work at the byte level, not the Unicode level, . will match any single
byte (other than '\\n' and '\\r') but will never match a sequence of multiple bytes even
if they happen to make up a valid UTF-8 codepoint.
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[]--A group of characters enclosed in square brackets represents "exactly one of this set," so
that c[aou]t is a valid regex and matches the strings "cat", "cot", and "cut". You can
use square-bracket syntax to "escape" most characters; for example,
[$][.][*][+][?][(][)][[][{][}][|] is a regex for the singleton language whose only
member is the string "$.*+?()[{}|". However, you cannot use brackets to escape ], \, or
^.

[^]--A group of characters enclosed in square brackets with a leading ^ represents "exactly
one, not of this set," so that c[^aou]t will match "cbt" or "c^t" but not "cat". The
ECMAScript dialect does not treat the trivial cases [] or [^] specially; [] means "exactly
one character from the empty set" (which is to say, it never matches anything), and [^]
means "exactly one character not from the empty set" (which is to say, it matches any single
character--just like . but better, because it will match newline and carriage-return
characters).

The [] syntax treats a couple more characters specially: If - appears inside square brackets
anywhere except as the first or last character, it denotes a "range" with its left and right
neighbors. So ro[s-v]e is a regex for the language whose members are the four strings
"rose", "rote", "roue", and "rove". A few commonly useful ranges--the same ranges
exposed via the <ctype.h> header--are built in using the syntax [:foo:] inside square
brackets: [[:digit:]] is the same as [0-9], [[:upper:][:lower:]] is the same as
[[:alpha:]] is the same as [A-Za-z], and so on.

There are also built-in syntaxes that look like [[.x.]] and [[=x=]]; they deal with locale-
dependent comparisons and you will never have to use them. Merely be aware that if you
ever need to include the character [ inside a square-bracketed character class, it will be in
your best interest to backslash-escape it: both foo[=([;] and foo[(\[=;] match the
strings "foo=", "foo(", "foo[", and "foo;", but foo[([=;] is an invalid regex and will
throw an exception at runtime when you try to construct a std::regex object from it.

+--An expression or single character followed immediately by + matches the previous
expression or character any positive number of times. For example, the regex ba+ matches
the strings "ba", "baa", "baaa", and so on.

*--An expression or single character followed immediately by * matches the previous
expression or character any number of times--even no times at all! So the regex ba* matches
the strings "ba", "baa", and "baaa", and also matches "b" alone.

?--An expression or single character followed immediately by ? matches the previous
expression or character exactly zero or one times. For example, coo?t is a regex matching
only "cot" and "coot".



Regular Expressions

[ 313 ]

{n}--An expression or single character followed immediately by a curly-braced integer
matches the previous expression or character exactly the number of times indicated. For
example, b(an){2}a is a regex matching "banana"; b(an){3}a is a regex matching
"bananana".

{m,n}--When the curly-braced construct has the form of two integers m and n separated by
a comma, the construct matches the previous expression or character anywhere from m to n
times (inclusive). So b(an){2,3}a is a regex matching only the strings "banana" and
"bananana".

{m,}--Leaving n blank effectively makes it infinite; so x{42,} means "match x 42 or more
times," and is equivalent to x{42}x*. The ECMAScript dialect does not allow leaving m
blank.

|--Two regular expressions can be "glued together" with | to express the idea of either-or.
For example, cat|dog is a regex matching only the strings "cat" and "dog"; and
(tor|shark)nado matches either "tornado" or "sharknado". The | operator has very
low precedence in regexes, just as it does in C++ expressions.

()--Parentheses work just as in mathematics, to enclose a sub-expression that you want to
bind tightly together and treat as a unit. For example, ba* means "the character b, and then
zero or more instances of a; but (ba)* means "zero or more instances of ba." So the former
matches "b", "ba", "baa", and so on; but the version with parentheses matches "", "ba",
"baba", and so on.

Parentheses also have a second purpose--they are used not just for grouping but also for
capturing parts of a match for further processing. Each opening ( in the regex generates
another submatch in the resulting std::smatch object.

If you want to group some subexpression tightly together without generating a submatch,
you can use a non-capturing group with the syntax (?:foo):

    std::string s = "abcde";
    std::smatch m;
    std::regex_match(s, m, std::regex("(a|b)*(.*)e"));
    assert(m.size() == 3 && m[2] == "cd");
    std::regex_match(s, m, std::regex("(?:a|b)*(.*)e"));
    assert(m.size() == 2 && m[1] == "cd");

Non-capturing might be useful in some obscure context; but generally, it will be clearer to
the reader if you just use regular capturing () and ignore the submatches you don't care
about, as opposed to scattering (?:) around your codebase in an attempt to squelch all
unused submatches. Unused submatches are very cheap, performance-wise.
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Non-consuming constructs
(?=foo) matches the pattern foo against the input, and then "rewinds" so that none of the
input is actually consumed. This is called "lookahead." So for example
c(?=a)(?=a)(?=a)at matches "cat"; and (?=.*[A-Za-z])(?=.*[0-9]).* matches
any string containing at least one alphabetic character and at least one digit.

(?!foo) is a "negative lookahead"; it looks ahead to match foo against the input, but then
rejects the match if foo would have accepted, and accepts the match if foo would have
rejected. So, for example, (?!\d)\w+ matches any C++ identifier or keyword--that is, any
sequence of alphanumeric characters that does not start with a digit. Notice that the first
character must not match \d but is not consumed by the (?!\d) construct; it must still be
accepted by \w. The similar-looking regex [^0-9]\w+ would "erroneously" accept strings
such as "#xyzzy" which are not valid identifiers.

Both (?=) and (?!) are not only non-consuming but also non-capturing, just like (?:). But
it is perfectly fine to write (?=(foo)) to capture all or part of the "looked-ahead" portion.

^ and $--A caret ^ on its own, outside any square brackets, matches only at the beginning of
the string to be matched; and $ matches only at the end. This is useful to "anchor" the regex
to the beginning or end of the input string, in the context of std::regex_search. In
std::regex::multiline regexes, ^ and $ act as "lookbehind" and "lookahead" assertions
respectively:

    std::string s = "ab\ncd";
    std::regex rx("^ab$[^]^cd$", std::regex::multiline);

    assert(std::regex_match(s, rx));

Putting it all together, we might write the regex foo[a-z_]+(\d|$) to match "the letters
foo, followed by one or more other letters and/or underscore; followed by either a digit or
the end of the line."

If you need a deeper dive into regex syntax, consult cppreference.com. And if that's not
enough--the best thing about C++'s copying the ECMAScript flavor of regexes is that any
tutorial on JavaScript regexes will also be applicable to C++! You can even test out regular
expressions in your browser's console. The only difference between C++ regexes and
JavaScript regexes is that C++ supports the double-square-bracket syntax for character
classes such as [[:digit:]], [[.x.]], and [[=x=]], whereas JavaScript doesn't.
JavaScript treats those regexes as equivalent to [\[:digt]\], [\[.x]\], and [\[=x]\]
respectively.

https://cppreference.com
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Obscure ECMAScript features and pitfalls
Earlier in this chapter I mentioned a few features of std::regex that you would be better
off to avoid, such as std::regex::collate, std::regex::optimize, and flags that
change the dialect away from ECMAScript. The ECMAScript regex grammar itself contains
a few obscure and avoid worthy features as well.

A backslash followed by one or more digits (other than \0) creates a backreference. The
backreference \1 matches "the same sequence of characters that was matched by my first
capturing group"; so for example the regex (cat|dog)\1 will match the strings "catcat"
and "dogdog" but not "catdog", and (a*)(b*)c\2\1 will match "aabbbcbbbaa" but not
"aabbbcbbba". Backreferences can have subtly weird semantics, especially when
combined with non-consuming constructs such as (?=foo), and I recommend avoiding
them when possible.

If you're having trouble with backreferences, the first thing to check is
your backslash-escaping. Remember that std::regex("\1") is a regex
matching ASCII control character number 1. What you meant to type was
std::regex("\\1").

Using backreferences takes you out of the world of regular languages and into the wider
world of context-sensitive languages, which means that the library must trade in its extremely
efficient finite-state-machine-based matching algorithm for more powerful but expensive
and slow "backtracking" algorithms. This seems like another good reason to avoid
backreferences unless they're absolutely necessary.

However, as of 2017, most vendors do not actually switch algorithms based on the presence
of backreferences in a regex; they'll use the slower backtracking algorithm based on the mere
possibility of backreferences in the ECMAScript regex dialect. And then, because no vendor
wants to implement a whole second algorithm just for the backreference-less dialects
std::regex::awk and std::regex::extended, they end up using the backtracking
algorithm even for those dialects! Similarly, most vendors will implement
regex_match(s, rx) in terms of regex_match(s, m, rx) and then throw out the
expensively computed m, rather than using a potentially faster algorithm for
regex_match(s, rx). Optimizations like this might come to a library near you sometime
in the next 10 years, but I wouldn't hold your breath waiting for them.
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Another obscure quirk is that the *, +, and ? quantifiers are all greedy by default, meaning
that, for example, (a*) will prefer to match as many a characters as it can. You can turn a
greedy quantifier non-greedy by suffixing an extra ?; so for example (a*?) matches the
smallest number of a characters it can. This makes no difference at all unless you're using
capturing groups. Here's an example:

    std::string s = "abcde";
    std::smatch m;
    std::regex_match(s, m, std::regex(".*([bcd].*)e"));
    assert(m[1] == "d");
    std::regex_match(s, m, std::regex(".*?([bcd].*)e"));
    assert(m[1] == "bcd");

In the first case, .* greedily matches abc, leaving only d to be matched by the capturing
group. In the second case, .*? non-greedily matches only a, leaving bcd for the capturing
group. (In fact, .*? would have preferred to match the empty string; but it couldn't do that
without the overall match being rejected.)

Notice that the syntax for non-greediness doesn't follow the "normal" rules of operator
composition. From what we know of C++'s operator syntax, we'd expect that a+* would
mean (a+)* (which it does) and a+? would mean (a+)? (which it doesn't). So, if you see
consecutive punctuation characters in a regular expression, watch out--it may mean
something different from what your intuition tells you!

Summary
Regular expressions (regexes) are a good way to lex out the pieces of an input string before
parsing them. The default regex dialect in C++ is the same as in JavaScript. Use this to your
advantage.

Prefer to avoid raw string literals in situations where an extra pair of parentheses could be
confusing. When possible, limit the number of escaped backslashes in your regexes by
using square brackets to escape special characters instead.

std::regex rx is basically immutable and represents a finite state machine. std::smatch
m is mutable and holds information about a particular match within the haystack string.
Submatch m[0] represents the whole matched substring; m[k] represents the kth capturing
group.
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std::regex_match(s, m, rx) matches the needle against the entire haystack string;
std::regex_search(s, m, rx) looks for the needle in the haystack. Remember that the
haystack goes first and the needle goes last, just like in JavaScript and Perl.

std::regex_iterator, std::regex_token_iterator, and std::regex_replace are
relatively inconvenient "convenience" functions built on top of regex_search. Get
comfortable with regex_search before worrying about these wrappers.

Beware of dangling-iterator bugs! Never modify or destroy a regex that is still referenced
by regex_iterator; and never modify or destroy a string that is still referenced by
smatch.



11
Random Numbers

In the previous chapter, you learned about regular expressions, a feature that has been part
of the C++ standard library since C++11, but which is still little-known by many
programmers. You saw that regular expressions are useful in two situations at the opposite
ends of the C++ spectrum--in complex programs requiring bulletproof parsing of
complicated input formats, and in trivial scripts where the important things are readability
and speed of development.

Another library feature that lands squarely in both of these categories is random number
generation. Many scripting programs require a little bit of randomness here and there, but
C++ programmers have been taught for decades that the classic libc rand() function is
passé. At the other end of the spectrum, rand() is spectacularly inappropriate, both for
cryptography and for complicated numerical simulations. The C++11 <random> library,
however, manages to hit all three of these targets.

In this chapter, we'll cover the following topics:

The difference between truly random and pseudo-random number sequences
The difference between a generator of random bits and a distribution that produces
data values
Three strategies to seed a random number generator
Several standard library generators and distributions, and their use cases
How to shuffle a deck of cards in C++17
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Random numbers versus pseudo-random
numbers
When talking about random numbers in the context of computer programming, we must be
careful to distinguish between truly random numbers, which come from a physically non-
deterministic source, and pseudo-random numbers, which come from an algorithm that
deterministically produces a stream of "random-looking" numbers. Such an algorithm is 
called a pseudo-random number generator (PRNG). Every PRNG conceptually works the
same way--it has some internal state, and it has some way for the user to ask for the next
output. Every time we ask for the next output, the PRNG scrambles its internal state
according to some deterministic algorithm and returns some piece of that state. Here's an
example:

    template<class T>
    class SimplePRNG {
      uint32_t state = 1;
    public:
      static constexpr T min() { return 0; }
      static constexpr T max() { return 0x7FFF; }

      T operator()() {
        state = state * 1103515245 + 12345;
        return (state >> 16) & 0x7FFF;
      }
    };

This SimplePRNG class implements a linear congruential generator, which is likely very
similar to your standard library's implementation of rand(). Notice that
SimplePRNG::operator() produces integers in the [0, 32767] 15-bit range, but its
internal state has a 32-bit range. This pattern is true in real-world PRNGs as well.
For example, the standard Mersenne Twister algorithm keeps almost 20 kilobytes of state!
Keeping so much internal state means that there are lots of bits to scramble, and only a
small fraction of the PRNG's internal state leaks out at each generation. This makes it
difficult for a human (or a computer) to predict the PRNG's next output, given only a few of
the preceding outputs. The difficulty of predicting its outputs leads us to call this thing a
pseudo-random number generator. If its output was full of obvious patterns and easy to
predict, we'd probably call it a non-random number generator!
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Despite its pseudo-random qualities, a PRNG's behavior is always perfectly deterministic; it
follows exactly the algorithm it was coded to follow. If we take a program that uses a PRNG
and run it several times in a row, we expect to get the exact same sequence of pseudo-
random numbers each time. Its strict determinism leads us to call this thing a pseudo-
random number generator.

Another aspect of pseudo-random number generators is that two generators running the
exact same algorithm, but with tiny variations in their initial states, will rapidly magnify
these variations, diverge from each other, and produce completely different-looking output
sequences--just as two drops of water placed in slightly different spots on the back of your
hand will run off in completely divergent directions. This means that if we want a different
sequence of pseudo-random numbers each time we run our program, all we have to do is
make sure that we use a different initial state for our PRNG. Setting a PRNG's initial state is
called seeding the PRNG.

We have at least three strategies for seeding our PRNG:

Using a seed supplied from outside--from the caller or end user. This is the most
appropriate for anything that needs reproducibility, such as Monte Carlo
simulations or anything that you'll unit test.
Using a predictable but variable seed, such as the current timestamp. Prior to
C++11, this was the most common strategy, because the C standard library
provides a portable and convenient time function, but does not provide any
portable source of truly random bits. Seeding based on something as predictable
as time is not suitable for anything security-related. As of C++11, you shouldn't
ever use this strategy.
Using a truly random seed obtained directly from some platform-specific source of
"truly random" bits.

Truly random bits are collected by the operating system based on all sorts of random events;
a classic approach is for every system call to collect the low-order bits of the hardware cycle
counter and XOR them into the operating system's entropy pool. A PRNG deep inside the
kernel is periodically reseeded with bits from the entropy pool; the output sequence of that
PRNG is exposed to application programmers. On Linux, the raw entropy pool is exposed
as /dev/random and the PRNG's output sequence is exposed as /dev/urandom.
Fortunately, you'll never need to deal with either of those devices directly; the C++ standard
library has you covered. Read on.
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The problem with rand()
The old school C way of generating random numbers is to call rand(). The rand()
function, which is still part of C++, takes no arguments and produces a single, uniformly 
distributed integer in the [0, RAND_MAX] range. The internal state can be seeded by calling
the library function, srand(seed_value).

The classic code to generate a random number in the [0, x) range hasn't changed since the
1980s, shown here:

    #include <stdlib.h>

    int randint0(int x) {
      return rand() % x;
    }

However, this code has several problems. The first and most obvious problem is that it
doesn't generate all x outputs with equal likelihood. Suppose, for the sake of argument,
rand() returns a uniformly distributed value in the [0, 32767] range, then
randint0(10) will return each value in the [0, 7] range one-3276th more often than it
returns either 8 or 9.

The second problem is that rand() accesses global state; the same random number
generator is shared by every thread in your C++ program. This isn't a thread-safety concern-
-rand() has been guaranteed to be thread-safe since C++11. However, it is a problem for
performance (because each call to rand() must take a global mutex lock), and it is a
problem for reproducibility (because if you use rand() from multiple threads concurrently,
different runs of the program may yield different answers).

A third and related problem with the global-statefulness of rand() is that any function
anywhere in the program can modify that state just by calling rand(). This makes it
effectively impossible to use rand() in a unit-test-driven environment. Consider the
following code snippet:

    int heads(int n) {
      DEBUG_LOG("heads");
      int result = 0;
      for (int i = 0; i < n; ++i) {
        result += (rand() % 2);
      }
      return result;
    }

    void test_heads() {
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      srand(17); // nail down the seed
      int result = heads(42);
      assert(result == 27);
    }

Clearly, the unit test, test_heads, will break as soon as we start parallelizing our unit tests
(because a call to rand() from some other thread will interfere with the delicate workings
of this test). However, more subtly, it can also break simply because someone changed the
implementation of DEBUG_LOG to add or remove a call to rand()! This kind of spooky action
at a distance is a problem any time your architecture depends on global variables. We saw a
similar danger with std::pmr::get_default_resource() in Chapter 8, Allocators. In
every case, my strongly recommended remedy is the same--Don't use global variables. Don't
use global state.

So, the C library has two problems--it provides no way to generate a truly uniform
distribution of pseudo-random numbers, and it fundamentally depends on global variables.
Let's see how the C++ standard library's <random> header fixed both of these problems.

Solving problems with <random>
There are two core concepts provided by the <random> header--the generator and the
distribution. A generator (a class modeling the UniformRandomBitGenerator concept)
encapsulates the internal state of a PRNG into a C++ object, and provides a next output
member function in the form of the function-call operator, operator()(void). A
distribution (a class modeling RandomNumberDistribution) is a kind of filter you can
place over the output of a generator so that instead of getting uniformly distributed random
bits, as you do from rand(), you get actual data values distributed according to a specified
mathematical distribution and constrained to a specific range, such as rand() % n, but
more mathematically appropriate and vastly more flexible.

The <random> header contains a total of seven generator types and twenty distribution types.
Most of them are templates taking lots of parameters. The majority of these generators are
more historically interesting than practically useful, and the vast majority of these
distributions are of interest only to mathematicians. So, in this chapter, we'll concentrate on
just a few standard generators and distributions, each of which illustrates something
interesting about the standard library.
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Dealing with generators
Given any generator object g, you can perform the following operations on it:

g(): This scrambles the internal state of the generator and yields its next output.
g.min(): This tells you the smallest possible output of g() (typically 0).
g.max(): This tells you the largest possible output of g(). That is, the range of
possible outputs of g() is g.min() to g.max() inclusive.
g.discard(n): This effectively makes n calls to g() and discards the
results. In a good library implementation, you'll pay for scrambling the
generator's internal state n times, but save any cost associated with computing
the next outputs from the state.

Truly random bits with std::random_device
The std::random_device is a generator. Its interface is incredibly simple; it's not even a
class template, just a plain old class. Once you've constructed an instance of
std::random_device using its default constructor, you can use its overloaded call
operator to fetch values of type unsigned int that are uniformly distributed in the closed
[rd.min(), rd.max()] range.

One caveat--std::random_device doesn't fully model the
UniformRandomBitGenerator concept. Most importantly, it is neither copyable nor
moveable. This isn't much of a problem in practice, because you generally don't keep a truly
random generator around for very long. Instead, you'll use a very short-lived instance of
std::random_device to generate a seed for a long-lived pseudo-random generator of
some other type, like this:

    std::random_device rd;
    unsigned int seed = rd();
    assert(rd.min() <= seed && seed <= rd.max());

Now let's look at the only pseudo-random generator you'll ever need to know.
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Pseudo-random bits with std::mt19937
The only pseudo-random generator you'll ever need to know is called the Mersenne Twister
algorithm. This algorithm has been known since 1997, and high-quality implementations in
any programming language are easy to find. Technically speaking, the Mersenne Twister
algorithm defines a whole family of related PRNGs--it's the algorithmic equivalent of a C++
template--but the most commonly used member of the family is known as MT19937. That
string of digits might look like a timestamp, but it's not; it's the size in bits of the Twister's
internal state. Because the Mersenne Twister's next output function scrambles its state so
perfectly that it will eventually reach every possible state (but one) before looping back
around to the beginning--the period of the MT19937 generator is 219937-1. Compare this to our
SimplePRNG from the beginning of this chapter, which has an internal state of only 32 bits
and a period of 231. (Our SimplePRNG generator has 232 possible internal states, but only half
of them are reached before it loops around again. For example, state=3 is not reachable
from the initial state=1.)

Enough theory. Let's see the Mersenne Twister in action! The C++ class template
corresponding to the Mersenne Twister algorithm template is
std::mersenne_twister_engine<...>, but you won't use it directly; you'll use the
convenience typedef std::mt19937, as shown here:

    std::mt19937 g;
    assert(g.min() == 0 && g.max() == 4294967295);

    assert(g() == 3499211612);
    assert(g() == 581869302);
    assert(g() == 3890346734);

The default constructor for std::mt19937 sets its internal state to a well-known standard
value. This ensures that the output sequence you get from a default-constructed mt19937
object will be identical across all platforms--as opposed to rand(), which tends to give
different output sequences on different platforms.
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To get a different output sequence, you need to provide a seed to the constructor of
std::mt19937. There are two ways to do this in C++17--the tedious way and the simple
way. The tedious way is to construct a truly random 19937-bit seed and copy it into the
std::mt19937 object via a seed sequence, as shown here:

    std::random_device rd;

    uint32_t numbers[624];
    std::generate(numbers, std::end(numbers), std::ref(rd));
      // Generate initial state.

    SeedSeq sseq(numbers, std::end(numbers));
      // Copy our state into a heap-allocated "seed sequence".

    std::mt19937 g(sseq);
      // Initialize a mt19937 generator with our state.

Here, the SeedSeq type can be either std::seed_seq (a glorified std::vector; it uses
heap allocation) or a properly handwritten "seed sequence" class, such as the following
piece of code:

    template<class It>
    struct SeedSeq {
      It begin_;
      It end_;
    public:
      SeedSeq(It begin, It end) : begin_(begin), end_(end) {}

      template<class It2>
      void generate(It2 b, It2 e) {
        assert((e - b) <= (end_ - begin_));
        std::copy(begin_, begin_ + (e - b), b);
      }
    };

Of course, this is quite a bit of code to write just to construct a single PRNG object! (I told
you, this was the tedious way.) The simple way, and the way you'll see being used in
practice, is to seed MT19937 with a single, truly random 32-bit integer, as follows:

    std::random_device rd;

    std::mt19937 g(rd());
      // 32 bits of randomness ought to be enough for anyone!
      // ...Right?
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Beware! 32 is a much, much smaller number than 19937! This simple method of seeding is
capable of producing only four billion different output sequences, ever; this means that if
you run your program over and over with random seeds, you can expect to see some
repetitions after only a few hundred thousand runs. (This is an application of the famous
Birthday Paradox.) However, if this level of predictability is important to you, you should
probably also be aware that the Mersenne Twister is not cryptographically secure. This means
that even if you initialize it with a truly random 19937-bit seed sequence, a malicious
attacker can reverse-engineer all 19937 bits of your original seed and predict every
subsequent output with perfect accuracy after seeing only a few hundred terms of the
output sequence. If you need a cryptographically secure pseudo-random number
generator (CSPRNG), you should be using something like AES-CTR or ISAAC, neither of
which is provided by the C++ standard library. You should still wrap your CSPRNG
implementation in a class modeling UniformRandomBitGenerator so that it can be used
with standard algorithms, which we'll get to at the end of this chapter.

Filtering generator outputs with adaptors
We've mentioned that the raw output of a generator is usually filtered through a single
distribution in order to convert the generator's raw bits into usable data values. Interestingly,
it is also possible to send a generator's output through a generator adaptor, which can
reformat the raw bits in various, perhaps useful ways. The standard library provides three
adaptors--std::discard_block_engine, std::shuffle_order_engine, and
std::independent_bits_engine. These adaptor types work just like the container
adaptors (such as std::stack) we discussed in Chapter 4, The Container Zoo--they provide
a certain interface but delegate most of their implementation details to some other class.

An instance of std::discard_block_engine<Gen, p, r> keeps an underlying generator
of type Gen, and delegates all its operations to that underlying generator, except that
discard_block_engine::operator() will return only the first r of every p outputs from
the underlying generator. For example, consider the following example:

    std::vector<uint32_t> raw(10), filtered(10);

    std::discard_block_engine<std::mt19937, 3, 2> g2;
    std::mt19937 g1 = g2.base();

    std::generate(raw.begin(), raw.end(), g1);
    std::generate(filtered.begin(), filtered.end(), g2);

    assert(raw[0] == filtered[0]);
    assert(raw[1] == filtered[1]);
      // raw[2] doesn't appear in filtered[]
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    assert(raw[3] == filtered[2]);
    assert(raw[4] == filtered[3]);
      // raw[5] doesn't appear in filtered[]

Notice that a reference to the underlying generator can be retrieved via g2.base(). In the
preceding example, g1 is initialized as a copy of g2.base(); this explains how calling g1()
doesn't affect the state of g2, and vice versa.

An instance of std::shuffle_order_engine<Gen, k> keeps a buffer of the last k
outputs from its underlying generator, and an additional integer Y. Each call to
shuffle_order_engine::operator() sets Y = buffer[Y % k], then sets buffer[Y]
= base()(). (The formula to compute the buffer index from Y is actually more complicated
than a simple modulus, but it basically has the same effect.) Notably,
std::shuffle_order_engine does not use std::uniform_int_distribution to map
Y onto the [0, k) range. This doesn't affect the randomness of the generator's output--if the
underlying generator is already pseudo-random, shuffling its outputs a little bit won't make
them any more or less random, no matter what algorithm we use to do the shuffling.
Therefore, the algorithm used by shuffle_order_engine was picked specifically for its
historical interest--it is a building block for a classic algorithm described in Donald Knuth's
The Art of Computer Programming:

    using knuth_b = std::shuffle_order_engine<
      std::linear_congruential_engine<
        uint_fast32_t, 16807, 0, 2147483647
      >,
      256
    >;

An instance of std::independent_bits_engine<Gen, w, T> keeps no state other than
its underlying generator of type Gen. The independent_bits_engine::operator()
function calls base()() just enough times to compute at least w random bits; then, it pastes
together exactly w of those bits (via an algorithm of more historical than practical interest)
and serves them up as an unsigned integer of type T. (It is an error if T is not an unsigned
integer type, or if T has fewer than w bits.)

Here is an example of independent_bits_engine pasting together bits from multiple
calls to base()():

    std::independent_bits_engine<std::mt19937, 40, uint64_t> g2;
    std::mt19937 g1 = g2.base();

    assert(g1() == 0xd09'1bb5c); // Take "1bb5c"...
    assert(g1() == 0x22a'e9ef6); // and "e9ef6"...
    assert(g2() == 0x1bb5c'e9ef6); // Paste and serve!
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And here is an example of using independent_bits_engine to chop off all but the least
significant digit from the output of mt19937 (creating a coin flipper generator), and then,
pasting together 32 of this generator's outputs to build back up to a 32-bit generator:

    using coinflipper = std::independent_bits_engine<
      std::mt19937, 1, uint8_t>;

    coinflipper onecoin;
    std::array<int, 64> results;
    std::generate(results.begin(), results.end(), onecoin);
    assert((results == std::array<int, 64>{{
      0,0,0,1, 0,1,1,1, 0,1,1,1, 0,0,1,0,
      1,0,1,0, 1,1,1,1, 0,0,0,1, 0,1,0,1,
      1,0,0,1, 1,1,1,0, 0,0,1,0, 1,0,1,0,
      1,0,0,1, 0,0,0,0, 0,1,0,0, 1,1,0,0,
    }}));

    std::independent_bits_engine<coinflipper, 32, uint32_t> manycoins;
    assert(manycoins() == 0x1772af15);
    assert(manycoins() == 0x9e2a904c);

Notice that independent_bits_engine does not perform any complicated operation on
the bits of its underlying generator; in particular, it assumes that its underlying generator
has no bias. If the WeightedCoin generator has a bias toward even numbers. You'll see that
bias show up in the output of independent_bits_engine<WeightedCoin, w, T> as
well.

Despite our spending several pages talking about these generators, remember that there is
no reason to use any of these obscure classes in your own code! If you need a PRNG, use
std::mt19937; if you need a cryptographically secure PRNG, use something like AES-
CTR, or ISAAC; and, if you need a relatively small number of true random bits, to seed
your PRNG; use std::random_device. These are the only generators that you will ever
use in practice.

Dealing with distributions
Now that we've seen how to generate random bits on demand, let's look at how to convert
those random bits to numeric values matching a particular distribution. This two-step
process--generate raw bits, and then format them into data values--is very similar to the
two-step process of buffering and parsing we covered in Chapter 9, Iostreams. First, get the
raw bits and bytes, then perform some kind of operation to convert those bits and bytes into
typed data values.
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Given any distribution object dist, you can perform the following operations on it:

dist(g): This yields the next output according to the appropriate mathematical
distribution. It may require several calls to g(), or none at all, depending on the
internal state of the dist object.
dist.reset(): This clears the internal state of the dist object, if any. You'll
never need to use this member function.
dist.min() and dist.max(): These tell you the smallest and largest possible
outputs of dist(g) for any random bit generator g. Generally, these values are
either self-evident or meaningless; for example,
std::normal_distribution<float>().max() is INFINITY.

Let's see a few distribution types in action.

Rolling dice with uniform_int_distribution
The std::uniform_int_distribution method is the simplest distribution type in the 
standard library. It performs the same operation we tried to perform with randint0 earlier
in this chapter--map a random unsigned integer into a given range--, but it does it without
any bias. The simplest implementation of uniform_int_distribution looks something
like this:

    template<class Int>
    class uniform_int_distribution {
      using UInt = std::make_unsigned_t<Int>;
      UInt m_min, m_max;
    public:
      uniform_int_distribution(Int a, Int b) :
        m_min(a), m_max(b) {}

      template<class Gen>
      Int operator()(Gen& g) {
        UInt range = (m_max - m_min);
        assert(g.max() - g.min() >= range);
        while (true) {
          UInt r = g() - g.min();
          if (r <= range) {
            return Int(m_min + r);
          }
        }
      }
    };
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The actual standard library implementation has to do something to get rid of that assert.
Typically, they'll use something like independent_bits_engine to generate exactly
ceil(log2(range)) random bits at a time, minimizing the number of times the while
loop needs to run.

As implied in the preceding example, uniform_int_distribution is stateless (although
this is not technically guaranteed), and so the most common way to use it is to create a new
distribution object every time you generate a number. So, we can implement our randint0
function like this:

    int randint0(int x) {
      static std::mt19937 g;
      return std::uniform_int_distribution<int>(0, x-1)(g);
    }

Now will probably be a good time to remark on an oddity of the <random> facilities. As a
general rule, any time you supply an integral numeric range to one of these functions or
constructors, it is treated as a closed range. This is in stark contrast to how ranges usually
work in C and C++; we even saw in Chapter 3, The Iterator-Pair Algorithms, how deviating
from the half-open range rule was usually the sign of buggy code. However, in the case of
C++'s random-number facilities, there is a new rule--the closed range rule. Why?

Well, the key advantage of the half-open range is that it can easily represent an empty range.
On the other hand, half-open ranges cannot represent a completely full range, that is, a range
that covers the entire domain. (We saw this difficulty pop up in Chapter 4, The Container
Zoo, in the implementation of std::list<T>::end().) Suppose we want to express the
idea of a uniform distribution over the entire range of long long. We can't express that as
the half-open range [LLONG_MIN, LLONG_MAX+1) because LLONG_MAX+1 will overflow.
However, we can express it as the closed range [LLONG_MIN, LLONG_MAX]--and so, that's
what the <random> library's functions and classes (such as uniform_int_distribution)
do. The uniform_int_distribution<int>(0,6) method is a distribution over the
seven-number range [0,6], and uniform_int_distribution<int>(42,42) is a
perfectly valid distribution that invariably returns 42.
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On the other hand, std::uniform_real_distribution<double>(a, b) does operate on
a half-open range! The std::uniform_real_distribution<double>(0, 1) method
yields values of type double, uniformly distributed in the [0, 1) range. In the floating-
point domain, there's no problem with overflow--a half-open range of [0, INFINITY) is
actually expressible, although, of course, there's no such thing as a uniform distribution over
an infinite range. Floating-point also makes it difficult to say the difference between a half-
open range and a closed range; for example,
std::uniform_real_distribution<float>(0, 1)(g) can legitimately return
float(1.0) any time it generates a random real number close enough to 1 that it rounds
up about one in every 225 results. (At press time, libc++ behaves as described here. GNU's
libstdc++ applies a patch that makes close-to-1 real numbers round down instead of up so
that the floating-point number just below 1.0 appears marginally more often than chance
would predict.)

Generating populations with normal_distribution
The most useful example of a real-valued distribution is probably the normal distribution,
also known as the bell curve. In the real world, normal distributions show up all over the
place, particularly in the distribution of physical traits in a population. For example, a
histogram of adult human heights will tend to look like a normal distribution--lots of
individuals clustered around the average height, and others tailing off to each side. Flip this
around, and it means that you might want to use a normal distribution to assign heights,
weights, and so on, to the simulated individuals in a game.

The std::normal_distribution<double>(m, sd) method constructs an instance of
normal_distribution<double> with mean (m) and standard deviation (sd). (These
parameters default to m=0 and sd=1 if you don't provide them, so watch out for typos!)
Here's an example of using normal_distribution to create a "population" of 10,000
normally distributed samples, and then verifying their distribution mathematically:

    double mean = 161.8;
    double stddev = 6.8;
    std::normal_distribution<double> dist(mean, stddev);

      // Initialize our generator.
    std::mt19937 g(std::random_device{}());

      // Fill a vector with 10,000 samples.
    std::vector<double> v;
    for (int i=0; i < 10000; ++i) {
      v.push_back( dist(g) );
    }
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    std::sort(v.begin(), v.end());

      // Compare expectations with reality.
    auto square = [](auto x) { return x*x; };
    double mean_of_values = std::accumulate(
      v.begin(), v.end(), 0.0) / v.size();
    double mean_of_squares = std::inner_product(
      v.begin(), v.end(), v.begin(), 0.0) / v.size();
    double actual_stddev =
      std::sqrt(mean_of_squares - square(mean_of_values));
    printf("Expected mean and stddev: %g, %g\n", mean, stddev);
    printf("Actual mean and stddev: %g, %g\n",
           mean_of_values, actual_stddev);

Unlike the other distributions we've seen in this chapter (or will see),
std::normal_distribution is stateful. While it is okay to construct a new instance of
std::normal_distribution for each value you generate, if you do that, you're
effectively halving the efficiency of your program. This is because the most popular
algorithm to generate normally distributed values produces two independent values per
step; std::normal_distribution can't give you both values at once, so it hangs onto one
of them in a member variable to give it to you the next time you ask. The dist.reset()
member function can be used to clear out this saved state, not that you'd ever want to do
that.

Making weighted choices with
discrete_distribution
The std::discrete_distribution<int>(wbegin, wend) method constructs a
discrete, or weighted, distribution over the integers in the half-open [0, wend - wbegin)
range. This is easiest to explain with the following example:

    template<class Values, class Weights, class Gen>
    auto weighted_choice(const Values& v, const Weights& w, Gen& g)
    {
      auto dist = std::discrete_distribution<int>(
        std::begin(w), std::end(w));
      int index = dist(g);
      return v[index];
    }

    void test() {
      auto g = std::mt19937(std::random_device{}());
      std::vector<std::string> choices =
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        { "quick", "brown", "fox" };
      std::vector<int> weights = { 1, 7, 2 };
      std::string word = weighted_choice(choices, weights, g);
        // 7/10 of the time, we expect word=="brown".
    }

The std::discrete_distribution<int> method makes its own internal copy of the
weights you pass in, in a private member variable of type std::vector<double> (and as
usual for <random>, it's not allocator-aware). You can get a copy of this vector by calling
dist.probabilities() as follows:

    int w[] = { 1, 0, 2, 1 };
    std::discrete_distribution<int> dist(w, w+4);
    std::vector<double> v = dist.probabilities();
    assert((v == std::vector{ 0.25, 0.0, 0.50, 0.25 }));

You probably don't want to use discrete_distribution directly in your own code; at
best, you'll want to encapsulate its use in something like the preceding weighted_choice
function. However, if you need to avoid heap allocation or floating-point math, it might pay
to use a simpler, non-allocating function, such as the following:

    template<class Values, class Gen>
    auto weighted_choice(
      const Values& v, const std::vector<int>& w,
      Gen& g)
    {
      int sum = std::accumulate(w.begin(), w.end(), 0);
      int cutoff = std::uniform_int_distribution<int>(0, sum - 1)(g);
      auto vi = v.begin();
      auto wi = w.begin();
      while (cutoff > *wi) {
        cutoff -= *wi++;
        ++vi;
      }
      return *vi;
    }

However, there's a reason the default library implementation of discrete_distribution
does all its math as floating-point: it saves you from having to worry about integer
overflow. The preceding code will have bad behavior if sum overflows the range of int.
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Shuffling cards with std::shuffle
Let's close this chapter by looking at std::shuffle(a,b,g), the one standard algorithm
that takes a random number generator as input. It's a permutative algorithm by the definitions
of Chapter 3, The Iterator Pair-Algorithms--it takes a range of elements [a,b) and shuffles
them around, preserving their values but not their positions.

The std::shuffle(a,b,g) method was introduced in C++11 to replace the older
std::random_shuffle(a,b) algorithm. That older algorithm "randomly" shuffled the
[a,b) range, but without specifying the source of the randomness; in practice, this meant
that it would use the global C library's rand() with all its attendant problems. As soon as
C++11 introduced a standardized way of talking about random number generators with
<random>, it was time to get rid of the old rand() based random_shuffle; and, as of
C++17, std::random_shuffle(a,b) is no longer part of the C++ standard library.

Here's how we can use C++11's std::shuffle to shuffle a deck of playing cards:

    std::vector<int> deck(52);
    std::iota(deck.begin(), deck.end(), 1);
      // deck now contains ints from 1 to 52.

    std::mt19937 g(std::random_device{}());
    std::shuffle(deck.begin(), deck.end(), g);
      // The deck is now randomly shuffled.

Recall that every generator in <random> is completely specified so that, for example, an
instance of std::mt19937 seeded with a fixed value will produce exactly the same outputs
on every platform. The same is not true of distributions such as
uniform_real_distribution, nor is it true of the shuffle algorithm. Switching from
libc++ to libstdc++, or even just upgrading your compiler, may cause changes in the
behavior of your std::shuffle.

Notice that the preceding code snippet uses the "simple" method of seeding its Mersenne
Twister, which means that it can only ever produce about 4 × 109 different shuffles--out of
the 8 × 1067 ways, you can shuffle a deck of cards by hand! If you were shuffling cards for a
real casino game, you'd certainly want to use the "tedious" method of seeding, described
earlier in this chapter, or--simpler, if performance isn't a concern--just use
std::random_device directly:

    std::random_device rd;
    std::shuffle(deck.begin(), deck.end(), rd);
    // The deck is now TRULY randomly shuffled.
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Whatever generator and seeding method you use, you'll be able to plug it right into
std::shuffle. This is the benefit of the standard library's composable approach to
random number generation.

Summary
The standard library provides two random-number-related concepts--generator and
distribution. Generators are stateful, must be seeded, and produce unsigned integer outputs
(raw bits) via operator()(void). The two important generator types are
std::random_device, which produces truly random bits, and std::mt19937, which
produces pseudo-random bits.

Distributions are usually stateless, and produce numeric data values via
operator()(Gen&). The most important distribution type for most programmers will be
std::uniform_int_distribution<int>(a,b), which produces integers in the closed
range [a,b]. The standard library provides other distributions, such as
std::uniform_real_distribution, std::normal_distribution, and
std::discrete_distribution, as well as many arcane distributions useful to
mathematicians and statisticians.

The one standard algorithm that uses randomness is std::shuffle, which replaces the
old-style std::random_shuffle. Don't use random_shuffle in the new code.

Be aware that std::mt19937 has exactly the same behavior on every platform, but the
same is not true of any distribution type, nor of std::shuffle.



12
Filesystem

One of the biggest new features of C++17 is its <filesystem> library. This library, like
many other major features of modern C++, originated in the Boost project. In 2015, it went
into a standard technical specification to gather feedback, and finally, was merged into the
C++17 standard with some changes based on that feedback.

In this chapter, you'll learn the following:

How <filesystem> returns dynamically typed errors without throwing
exceptions, and how you can too
The format of a path, and the fundamentally incompatible positions of POSIX and
Windows on the subject
How to stat files and walk directories using portable C++17
How to create, copy, rename, and remove files and directories
How to fetch the free space of a filesystem

A note about namespaces
The standard C++17 filesystem facilities are all provided in a single header, <filesystem>,
and everything in that header is placed in its own namespace: namespace
std::filesystem. This follows the precedent set by C++11's <chrono> header with its
namespace std::chrono. (This book omits a full treatment of <chrono>. Its interactions
with std::thread and std::timed_mutex are covered briefly in Chapter 7,
Concurrency.)
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This namespacing strategy means that when you use the <filesystem> facilities, you'll be
using identifiers such as std::filesystem::directory_iterator and
std::filesystem::temp_directory_path(). These fully qualified names are quite
unwieldy! But pulling the entire namespace into your current context with a using
declaration is probably an overkill, especially, if you have to do it at file scope. We've all
been taught over the past decade never to write using namespace std, and that advice
won't change, no matter how deeply the standard library nests its namespaces. Consider the
following code:

    using namespace std::filesystem;

    void foo(path p)
    {
      remove(p); // What function is this?
    }

A better solution for everyday purposes is to define a namespace alias at file scope (in a .cc
file) or namespace scope (in a .h file). A namespace alias allows you to refer to an existing
namespace by a new name, as seen in the following example:

    namespace fs = std::filesystem;

    void foo(fs::path p)
    {
      fs::remove(p); // Much clearer!
    }

In the remainder of this chapter, I will be using the namespace alias fs to refer to
namespace std::filesystem. When I say fs::path, I mean std::filesystem::path.
When I say fs::remove, I mean std::filesystem::remove.

Defining a namespace alias fs somewhere global has another pragmatic benefit as well. At
press time, of all the major library vendors, only Microsoft Visual Studio claims to have
implemented the C++17 <filesystem> header. However, the facilities of <filesystem>
are very similar to those provided by libstdc++ and libc++ in
<experimental/filesystem>, and by Boost in <boost/filesystem.hpp>. So, if you
consistently refer to these facilities by a custom namespace alias, such as fs, you'll be able to
switch from one vendor's implementation to another just by changing the target of that
alias--a one-line change, as opposed to a massive and error-prone search-and-replace
operation on your entire codebase. This can be seen in the following example:

    #if USE_CXX17
     #include <filesystem>
     namespace fs = std::filesystem;
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    #elif USE_FILESYSTEM_TS
     #include <experimental/filesystem>
     namespace fs = std::experimental::filesystem;
    #elif USE_BOOST
     #include <boost/filesystem.hpp>
     namespace fs = boost::filesystem;
    #endif

A very long note on error-reporting
C++ has a love-hate relationship with error-reporting. By "error-reporting" in this context, I
mean "what to do, when you can't do what you were asked". The classical, typical, and still
the best-practice way to report this kind of "disappointment" in C++ is to throw an
exception. We have seen in the previous chapters that, sometimes, throwing an exception is
the only sensible thing to do, because there is no way to return to your caller. For example, if
your task was to construct an object, and construction fails, you cannot return; when a
constructor fails, the only same course of action is to throw. However, we have also seen (in
Chapter 9, Iostreams) that C++'s own <iostream> library does not take this sane course of
action! If the construction of a std::fstream object fails (because the named file cannot be
opened), you will get an exception; you'll get a fully constructed fstream object where
f.fail() && !f.is_open().

The reason we gave in Chapter 9, Iostreams, for the "bad" behavior of fstream was the
relatively high likelihood that the named file will not be openable. Throwing an exception
every time a file can't be opened is uncomfortably close to using exceptions for control flow,
which we have been taught--properly--to avoid. So, rather than force the programmer to
write try and catch blocks everywhere, the library returns as if the operation had
succeeded, but allows the user to check (with a normal if, not a catch) whether the
operation really did succeed or not.

That is, we can avoid writing this cumbersome code:

    try {
      f.open("hello.txt");
      // Opening succeeded.
    } catch (const std::ios_base::failure&) {
      // Opening failed.
    }

https://cdp.packtpub.com/mastering_c___stl/wp-admin/post.php?post=64&action=edit#post_58
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Instead, we can simply write this:

    f.open("hello.txt");
    if (f.is_open()) {
      // Opening succeeded.
    } else {
      // Opening failed.
    }

The iostreams approach works pretty well when the result of the operation is described by a
heavyweight object (such as an fstream) which has a natural failed state, or where such a
failed state can be added during the design stage. However, it has some downsides as well,
and it flatly cannot be used if there is no heavyweight type involved. We saw this scenario
at the end of Chapter 9, Iostreams, when we looked at ways of parsing integers from strings.
If we don't expect failure, or don't mind the performance hit of "using exceptions for control
flow," then we use std::stoi:

    // Exception-throwing approach.
    try {
      int i = std::stoi(s);
      // Parsing succeeded.
    } catch (...) {
      // Parsing failed.
    }

If we need portability to C++03, we use strtol, which reports errors via the thread-local
global variable errno, as seen in this code:

    char *endptr = nullptr;
    errno = 0;
    long i = strtol(s, &endptr, 10);
    if (endptr != s && !errno) {
      // Parsing succeeded.
    } else {
      // Parsing failed.
    }
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And in bleeding-edge C++17 style, we use std::from_chars, which returns a lightweight
struct containing the end-of-string pointer and a value of the strong enum type std::errc
indicating success or failure, as follows:

    int i = 0;
    auto [ptr, ec] = std::from_chars(s, end(s), i);
    if (ec != std::errc{}) {
      // Parsing succeeded.
    } else {
      // Parsing failed.
    }

The <filesystem> library needs approximately the same capacity for error-reporting as
std::from_chars. Pretty much any operation you can perform on your filesystem might
fail due to the actions of other processes running on the system; so, throwing an exception
on every failure (á là std::stoi) seems uncomfortably close to using exceptions for control
flow. But threading an "error result" like ec through your entire codebase can also be
tedious and (no pun intended) error-prone. So, the standard library decided to have its cake
and eat it too by providing two interfaces to almost every function in the <filesystem>
header!

For example, the following are the two <filesystem> functions for determining the size of
a file on disk:

    uintmax_t file_size(const fs::path& p);

    uintmax_t file_size(const fs::path& p,
       std::error_code& ec) noexcept;

Both the preceding functions take an fs::path (which we'll discuss more further in the
chapter), and return a uintmax_t telling the size of the named file in bytes. But what if the
file doesn't exist, or it exists, but the current user-account doesn't have permission to query
its size? Then, the first overload will simply throw an exception of type
fs::filesystem_error, indicating what went wrong. But the second overload will never
throw (in fact, it's marked noexcept). Instead, it takes an out-parameter of type
std::error_code, which the library will fill in with an indication of what went wrong (or
clear, if nothing went wrong at all).

Comparing the signatures of fs::file_size and std::from_chars, you might notice
that from_chars deals in std::errc, and file_size deals in std::error_code. These
two types, while related, are not the same! To understand the difference--and the entire
design of the non-throwing <filesystem> API--we'll have to take a quick detour into
another part of the C++11 standard library.
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Using <system_error>
The difference between the error-reporting mechanisms of std::from_chars and
fs::file_size is a difference in their intrinsic complexity. from_chars can fail in exactly
two ways-- either the given string had no initial string of digits at all, else there were so
many digits that it would cause an overflow to read them all. In the former case, a classic
(but inefficient and, generally, dangerous) way to report the error would be to set errno to
EINVAL (and return some useless value such as 0). In the latter case, a classic approach
would be to set errno to ERANGE (and return some useless value). This is more or less (but
rather less than more) the approach taken by strtol.

The salient point is that with from_chars, there are exactly two things that can possibly
ever go wrong, and they are completely describable by the single set of error codes provided
by POSIX <errno.h>. So, in order to bring the 1980's strtol into the twenty-first century,
all we need to fix is to make it return its error code directly to the caller rather than
indirectly, via the thread-local errno. And so, that's all the standard library did. The classic
POSIX <errno.h> values are still provided as macros via <cerrno>, but as of C++11,
they're also provided via a strongly typed enumeration in <system_error>, as shown in
the following code:

 namespace std {
   enum class errc {
     // implicitly, "0" means "no error"
     operation_not_permitted = EPERM,
     no_such_file_or_directory = ENOENT,
     no_such_process = ESRCH,
     // ...
     value_too_large = EOVERFLOW
   };
 } // namespace std

std::from_chars reports errors by returning a struct (struct from_chars_result)
containing a member variable of type enum std::errc, which will be either 0 for no error,
or one of the two possible error-indicating values.
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Now, what about fs::file_size? The set of possible errors encountered by file_size is
much much larger--in fact, when you think of the number of operating systems in existence,
and the number of different filesystems supported by each, and the fact that some
filesystems (such as NFS) are distributed over networks of various types, the set of possible
errors seems an awful lot like an open set. It might be possible to boil them all down onto the
seventy-eight standard sys::errc enumerators (one for each POSIX errno value except
EDQUOT, EMULTIHOP, and ESTALE), but that would lose a lot of information. Heck, at least
one of the missing POSIX enumerators (ESTALE) is a legitimate failure mode of
fs::file_size! And, of course, your underlying filesystem might want to report its own
filesystem-specific errors; for example, while there is a standard POSIX error code for name
too long, there is no POSIX error code for name contains disallowed character (for reasons we'll
see in the next major section of this chapter). A filesystem might want to report exactly that
error without worrying that fs::file_size was going to squash it down onto some fixed
enumeration type.

The essential issue here is that the errors reported by fs::file_size might not all come
from the same domain, and therefore, they cannot be represented by a single fixed-in-stone
type (for example, std::errc). C++ exception-handling solves this problem elegantly; it is
fine and natural for different levels of the program to throw different types of exceptions. If
the lowest level of a program throws myfs::DisallowedCharacterInName, the topmost
level can catch it--either by name, by base class, or by .... If we follow the general rule that
everything thrown in a program should derive from std::exception, then any catch
block will be able to use e.what() so that at least the user gets some vaguely human-
readable indication of the problem, no matter what the problem was.

The standard library reifies the idea of multiple error domains into the base class
std::error_category, as seen in the following code:

 namespace std {

 class error_category {
 public:
   virtual const char *name() const noexcept = 0;
   virtual std::string message(int err) const = 0;

   // other virtual methods not shown

   bool operator==(const std::error_category& rhs) const {
     return this == &rhs;
   }
 };

 } // namespace std
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error_category behaves a lot like memory_resource from Chapter 8, Allocators; it
defines a classically polymorphic interface, and certain kinds of libraries are expected to
subclass it. With memory_resource, we saw that some subclasses are global singletons,
and some aren't. With error_category, each subclass must be a global singleton, or it's not
going to work.

To make memory resources useful, the library gives us containers (see Chapter 4, The
Container Zoo). At the most basic level, a container is a pointer representing some allocated
memory, plus a handle to the memory resource that knows how to deallocate that pointer.
(Recall that a handle to a memory resource is called an allocator.)

To make the error_category subclasses useful, the library gives us std::error_code.
At the most basic level (which is the only level, in this case), an error_code is an int
representing an error enumerator plus a handle to the error_category that knows how to
interpret that enumerator. It looks like this:

    namespace std {

    class error_code {
      const std::error_category *m_cat;
      int m_err;
    public:
      const auto& category() const { return m_cat; }
      int value() const { return m_err; }
      std::string message() const { return m_cat->message(m_err); }
      explicit operator bool() const { return m_err != 0; }

      // other convenience methods not shown
    };

    } // namespace std

So, to create a finicky filesystem library subsystem, we could write the following:

    namespace FinickyFS {

    enum class Error : int {
      success = 0,
      forbidden_character = 1,
      forbidden_word = 2,
      too_many_characters = 3,
    };

    struct ErrorCategory : std::error_category
    {
      const char *name() const noexcept override {
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        return "finicky filesystem";
      }

      std::string message(int err) const override {
        switch (err) {
          case 0: return "Success";
          case 1: return "Invalid filename";
          case 2: return "Bad word in filename";
          case 3: return "Filename too long";
        }
        throw Unreachable();
      }

      static ErrorCategory& instance() {
        static ErrorCategory instance;
        return instance;
      }
    };

    std::error_code make_error_code(Error err) noexcept
   {
      return std::error_code(int(err), ErrorCategory::instance());
    }

    } // namespace FinickyFS

This preceding code defines a new error domain, the FinickyFS::Error domain, reified
as FinickyFS::ErrorCategory::instance(). It allows us to create objects of type
std::error_code via expressions such as
make_error_code(FinickyFS::Error::forbidden_word).

Notice that argument-dependent lookup (ADL) will find the correct
overload of make_error_code without any help from us.
make_error_code is a customization point in exactly the same way as
swap: just define a function with that name in your enum's namespace,
and it will work without any additional effort.

    // An error fits comfortably in a statically typed
    // and value-semantic std::error_code object...
    std::error_code ec =
      make_error_code(FinickyFS::Error::forbidden_word);

    // ...Yet its "what-string" remains just as
    // accessible as if it were a dynamically typed
    // exception!
    assert(ec.message() == "Bad word in filename");
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We now have a way to pass FinickyFS::Error codes losslessly through the system--by
wrapping them inside trivially copyable std::error_code objects, and getting the original
error back out at the topmost level. When I put it that way, it sounds almost like magic--like
exception handling without exceptions! But as we've just seen, it's very simple to
implement.

Error codes and error conditions
Notice that FinickyFS::Error is not implicitly convertible to std::error_code; in the
last example, we used the syntax
make_error_code(FinickyFS::Error::forbidden_word) to construct our initial
error_code object. We can make FinickyFS::Error more convenient for the
programmer if we tell <system_error> to enable implicit conversions from
FinickyFS::Error to std::error_code, as follows:

    namespace std {
    template<>
    struct is_error_code_enum<::FinickyFS::Error> : true_type {};
    } // namespace std

Be careful when reopening namespace std--remember that you must be outside any other
namespace when you do it! Otherwise, you'll be creating a nested namespace such as
namespace FinickyFS::std. In this particular case, if you get it wrong, the compiler will
helpfully error out when you try to specialize the non-existent
FinickyFS::std::is_error_code_enum. As long as you only ever reopen namespace
std in order to specialize templates (and as long as you don't mess up the template-
specialization syntax), you won't have to worry too much about anything quietly failing.

Once you've specialized std::is_error_code_enum for your enum type, the library takes
care of the rest, as seen in this code:

    class error_code {
      // ...
      template<
        class E,
        class = enable_if_t<is_error_code_enum_v<E>>
      >
      error_code(E err) noexcept {
        *this = make_error_code(err);
      }
    };
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The implicit conversion seen in the previous code enables convenient syntax such as direct
comparisons via ==, but because each std::error_code object carries its domain along
with it, comparisons are strongly typed. Value-equality for the error_code objects
depends not only on their integer value, but also the address of their associated error-category
singletons.

    std::error_code ec = FinickyFS::Error::forbidden_character;

      // Comparisons are strongly typed.
    assert(ec == FinickyFS::Error::forbidden_character);
    assert(ec != std::io_errc::stream);

Specializing is_error_code_enum<X> is helpful if you're often going to be assigning X to
variables of type std::error_code, or returning it from functions that return
std::error_code. In other words, it's useful if your type X really does represent the source
of an error--the throwing side of the equation, so to speak. But what about the catching side?
Suppose you notice that you've written this function, and several more like it:

    bool is_malformed_name(std::error_code ec) {
      return (
        ec == FinickyFS::Error::forbidden_character ||
        ec == FinickyFS::Error::forbidden_word ||
        ec == std::errc::illegal_byte_sequence);
    }

The preceding function defines a unary predicate over the entire universe of error codes; it
returns true for any error code associated with the concept of malformed names as far as
our FinickyFS library is concerned. We can just drop this function straight into our library
as FinickyFS::is_malformed_name()--and, in fact, that's the approach I personally
recommend--but the standard library also provides another possible approach. You can
define not an error_code, but an error_condition, as follows:

    namespace FinickyFS {

    enum class Condition : int {
      success = 0,
      malformed_name = 1,
    };

    struct ConditionCategory : std::error_category {
      const char *name() const noexcept override {
        return "finicky filesystem";
      }
      std::string message(int cond) const override {
        switch (cond) {
          case 0: return "Success";
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          case 1: return "Malformed name";
        }
        throw Unreachable();
      }
      bool equivalent(const std::error_code& ec, int cond) const
      noexcept override {
        switch (cond) {
          case 0: return !ec;
          case 1: return is_malformed_name(ec);
        }
        throw Unreachable();
      }
      static ConditionCategory& instance() {
        static ConditionCategory instance;
        return instance;
      }
    };
    std::error_condition make_error_condition(Condition cond) noexcept
    {
      return std::error_condition(int(cond),
      ConditionCategory::instance());
    }

    } // namespace FinickyFS

    namespace std {
    template<>
    struct is_error_condition_enum<::FinickyFS::Condition> : true_type
    {};
    } // namespace std

Once you've done this, you can get the effect of calling
FinickyFS::is_malformed_name(ec) by writing the comparison (ec ==
FinickyFS::Condition::malformed_name), like this:

    std::error_code ec = FinickyFS::Error::forbidden_word;

      // RHS is implicitly converted to error_code
    assert(ec == FinickyFS::Error::forbidden_word);

      // RHS is implicitly converted to error_condition
    assert(ec == FinickyFS::Condition::malformed_name);
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However, because we did not provide a function
make_error_code(FinickyFS::Condition), there will be no easy way to construct a
std::error_code} object holding one of these conditions. This is appropriate; condition
enums are for testing against on the catching side, not for converting to error_code on the
throwing side.

The standard library provides two code enum types (std::future_errc and
std::io_errc), and one condition enum type (std::errc). That's right--the POSIX error
enum std::errc actually enumerates conditions, not codes! This means that if you're trying
to stuff POSIX error codes into a std::error_code object, you're doing it wrong; they are
conditions, which means they're for testing against on the catching side, not for throwing.
Sadly, the standard library gets this wrong in at least two ways. First, as we've seen,
std::from_chars does throw a value of type std::errc (which is doubly inconvenient;
it would be more consistent to throw a std::error_code). Second, the function
std::make_error_code(std::errc) exists, cluttering up the semantic space, when
really only std::make_error_condition(std::errc) should (and does) exist.

Throwing errors with std::system_error
So far, we've considered std::error_code, a nifty non-throwing alternative to C++
exception-handling. But sometimes, you need to mix non-throwing and throwing libraries
at different levels of the system. The standard library has your back--for one-half of the
problem, anyway. std::system_error is a concrete exception type derived from
std::runtime_error, which has just enough storage for a single error_code. So, if you
are writing a library API which is throw-based, not error_code-based, and you receive an
error_code indicating failure from a lower level of the system, it is perfectly appropriate
to wrap that error_code in a system_error object, and throw it upward.

    // The lower level is error_code-based.
    uintmax_t file_size(const fs::path& p,
        std::error_code& ec) noexcept;

    // My level is throw-based.
    uintmax_t file_size(const fs::path& p)
    {
      std::error_code ec;
      uintmax_t size = file_size(p, ec);
      if (ec) {
        throw std::system_error(ec);
      }
      return size;
    }
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In the opposite case--where you've written your library API to be non-throwing, but you
make calls into lower levels that might throw--the standard library provides, basically, no
help. But you can write an error_code unwrapper fairly easily yourself:

    // The lower level is throw-based.
    uintmax_t file_size(const fs::path& p);

    // My level is error_code-based.
    uintmax_t file_size(const fs::path& p,
        std::error_code& ec) noexcept
    {
      uintmax_t size = -1;
      try {
        size = file_size(p);
      } catch (...) {
        ec = current_exception_to_error_code();
      }
      return size;
    }

The preceding code snippet calls current_exception_to_error_code(), which is a
non-standard function you can write yourself. I recommend something along these lines:

 namespace detail {

 enum Error : int {
    success = 0,
    bad_alloc_thrown = 1,
    unknown_exception_thrown = 2,
 };
 struct ErrorCategory : std::error_category {
    const char *name() const noexcept override;
    std::string message(int err) const override;
    static ErrorCategory& instance();
 };
 std::error_code make_error_code(Error err) noexcept {
    return std::error_code(int(err), ErrorCategory::instance());
 }

 } // namespace detail

 std::error_code current_exception_to_error_code()
 {
    try {
        throw;
    } catch (const std::system_error& e) {
        // also catches std::ios_base::failure
        // and fs::filesystem_error
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        return e.code();
    } catch (const std::future_error& e) {
        // catches the oddball
        return e.code();
    } catch (const std::bad_alloc&) {
        // bad_alloc is often of special interest
        return detail::bad_alloc_thrown;
    } catch (...) {
        return detail::unknown_exception_thrown;
    }
 }

This concludes our digression into the confusing world of <system_error>. We now
return you to your regularly scheduled <filesystem>, already in progress.

Filesystems and paths
In Chapter 9, Iostreams, we discussed the POSIX concept of file descriptors. A file descriptor
represents a source or sink of data which can be targeted by read and/or write; often, but
not always, it corresponds to a file on disk. (Recall that file descriptor number 1 refers to
stdout, which is usually connected to the human user's screen. File descriptors can also
refer to network sockets, devices such as /dev/random, and so on.)

Furthermore, POSIX file descriptors, <stdio.h>, and <iostream> are all concerned,
specifically, with the contents of a file on disk (or wherever)--the sequence of bytes that
makes up the contents of the file. A file in the filesystem sense has many more salient
attributes that are not exposed by the file-reading-and-writing APIs. We cannot use the
APIs of Chapter 9, Iostreams, to determine the ownership of a file, or its last-modified date;
nor can we determine the number of files in a given directory. The purpose of
<filesystem> is to allow our C++ programs to interact with these filesystem attributes in a
portable, cross-platform way.
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Let's begin again. What is a filesystem? A filesystem is an abstract mapping from paths to
files, by means of directory entries. Perhaps a diagram will help, if you take it with a large
grain of salt:

At the top of the preceding diagram, we have the somewhat abstract world of "names." We
have a mapping from those names (such as speech.txt) onto concrete structures that
POSIX calls inodes. The term "inode" is not used by the C++ standard--it uses the generic
term "file"--but I will try to use the term inode when I want to be precise. Each inode
contains a full set of attributes describing a single file on disk: its owner, its date of last
modification, its type, and so on. Most importantly, the inode also tells exactly how big the
file is, and gives a pointer to its actual contents (similarly to how a std::vector or
std::list holds a pointer to its contents). The exact representation of inodes and blocks
on disk depends on what kind of filesystem you're running; names of some common
filesystems include ext4 (common on Linux), HFS+ (on OS X), and NTFS (on Windows).

Notice that a few of the blocks in that diagram hold data that is just a tabular mapping of
names to inode numbers. This brings us full circle! A directory is just an inode with a certain
type, whose contents are a tabular mapping of names to inode numbers. Each filesystem has
one special well-known inode called its root directory.
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Suppose that the inode labeled "2" in our diagram is the root directory. Then we can
unambiguously identify the file containing "Now is the time..." by a path of names that
leads from the root directory down to that file. For example, /My Documents/speech.txt
is such a path: starting from the root directory, My Documents maps to inode 42, which is a
directory where speech.txt maps to inode 17, which is a normal file whose contents on
disk are "Now is the time...". We use slashes to compose these individual names into a
single path, and we put a single slash on the front to indicate that we're starting from the
root directory. (In Windows, each partition or drive has a separate root directory. So,
instead of writing just /My Documents/speech.txt, we might write c:/My
Documents/speech.txt to indicate that we're starting from drive C's root directory.)

Alternatively, "/alices-speech.txt" is a path leading straight from the root directory to
inode 17. We say that these two paths ("/My Documents/speech.txt" and "/alices-
speech.txt") are both hard-links for the same underlying inode, which is to say, the same
underlying file. Some filesystems (such as the FAT filesystem used by many USB sticks) do
not support having multiple hard links to the same file. When multiple hard links are
supported, the filesystem must count the number of references to each inode so that it
knows when it's safe to delete and free up an inode--in a procedure exactly analogous to the
shared_ptr reference-counting we saw in Chapter 6, Smart Pointers.

When we ask a library function such as open or fopen to "open a file," this is the process it's
going through deep down in the innards of the filesystem. It takes the filename you gave it
and treats it as a path--splits it up at the slashes, and descends into the directory structure of
the filesystem until it finally reaches the inode of the file you asked for (or until it hits a
dead end). Notice that once we have reached the inode, there is no longer any sense in
asking "What is the name of this file?", as it has at least as many names as there are hard-
links to it.

Representing paths in C++
Throughout Chapter 9, Iostreams, every function that expected a "filename" (that is, a path)
as a parameter was happy to take that path as a simple const char *. But in the
<filesystem> library, we're going to complicate that picture, all because of Windows.

All POSIX filesystems store names (like speech.txt) as simple raw byte strings. The only
rules in POSIX are that your names can't contain '\0', and your names can't contain '/'
(because that's the character we're going to split on). On POSIX, "\xC1.h" is a perfectly
valid filename, despite the fact that it is not valid UTF-8 and not valid ASCII, and the way
it'll display on your screen when you ls . is completely dependent on your current locale
and codepage. After all, it's just a string of three bytes, none of which are '/'.



Filesystem

[ 353 ]

On the other hand, Window's native file APIs, such as CreateFileW, always store names as
UTF-16. This means that, by definition, paths in Windows are always valid Unicode strings.
This is a major philosophical difference between POSIX and NTFS! Let me say it again,
slowly: In POSIX, file names are strings of bytes. In Windows, file names are strings of
Unicode characters.

If you follow the general principle from Chapter 9, Iostreams that everything in the world
should be encoded with UTF-8, then the difference between POSIX and Windows will be
manageable--maybe, even negligible. But if you are ever required to debug problems with
strangely named files on one or the other system, keep in mind: In POSIX, filenames are
strings of bytes. In Windows, filenames are strings of characters.

Since Windows APIs expect UTF-16 strings (std::u16string) and POSIX APIs expect
byte strings (std::string), neither representation is exactly appropriate for a cross-
platform library. So, <filesystem> invents a new type: fs::path. (Recall that we're using
our namespace alias throughout this chapter. That's std::filesystem::path in reality.)
fs::path looks something like this:

    class path {
    public:
      using value_type = std::conditional_t<
        IsWindows, wchar_t, char
      >;
      using string_type = std::basic_string<value_type>;

      const auto& native() const { return m_path; }
      operator string_type() const { return m_path; }
      auto c_str() const { return m_path.c_str(); }

      // many constructors and accessors omitted
    private:
      string_type m_path;
    };

Notice that fs::path::value_type is wchar_t in Windows, even though C++11's UTF-16
character type char16_t would be more appropriate. This is just an artifact of the library's
historical roots in Boost, which dates back to before C++11. In this chapter, whenever we
talk about wchar_t, you can assume we're talking about UTF-16, and vice versa.
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To write portable code, pay attention to the return type of any function you use to convert
an fs::path to a string. For example, notice that the return type of path.c_str() is not
the const char *--it's const value_type *!

    fs::path p("/foo/bar");

    const fs::path::value_type *a = p.c_str();
      // Portable, for whatever that's worth.

    const char *b = p.c_str();
      // OK on POSIX; compilation error on Windows.

    std::string s = p.u8string();
    const char *c = s.c_str();
      // OK on both POSIX and Windows.
      // Performs 16-to-8 conversion on Windows.

The preceding example, case c, is guaranteed to compile, but its behavior differs on the two
platforms: in POSIX platforms, it'll give you the raw byte-string you want, and in Windows,
it'll expensively convert path.native() from UTF-16 to UTF-8 (which is exactly what you
asked for--but your program might be faster if you found a way to avoid asking).

fs::path has a templated constructor that can construct a path from just about any
argument. The argument can be a sequence of any character type (char, wchar_t,
char16_t, or char32_t), and that sequence can be expressed as a pointer to a null-
terminated string, an iterator to a null-terminated string, a basic_string, a
basic_string_view, or an iterator-pair. As usual, I mention this huge variety of overloads
not because you'll want to use any of them beyond the basics, but so that you'll know how
to avoid them.

The standard also provides the free function fs::u8path("path"), which is just a
synonym for fs::path("path"), but might serve as a reminder that the string you're
passing in is supposed to be UTF-8-encoded. I recommend ignoring u8path.

This all might sound scarier than it is. Bear in mind that if you stick to ASCII filenames, you
won't need to worry about encoding issues; and if you remember to avoid the "native"
accessor methods, path.native() and path.c_str(), and avoid the implicit conversion
to fs::path::string_type, then you won't have to worry too much about portability.
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Operations on paths
Once we have a path object, we can query it for many useful combinations of its slash-
separated components. In the following code snippet, each identifier x (except path itself)
represents the return value of the member function path.x():

    assert(root_path == root_name / root_directory);
    assert(path == root_name / root_directory / relative_path);
    assert(path == root_path / relative_path);

    assert(path == parent_path / filename);
    assert(filename == stem + extension);

    assert(is_absolute == !is_relative);
    if (IsWindows) {
      assert(is_relative == (root_name.empty() ||
    root_directory.empty()));
    } else {
      assert(is_relative == (root_name.empty() &&
    root_directory.empty()));
    }

So, for example, given the path p = "c:/foo/hello.txt", we have p.root_name() ==
"c:", p.root_directory() == "/", p.relative_path() == "foo/hello.txt",
p.stem() == "hello", and p.extension() == ".txt". At least, that's what we'd have
in Windows! Notice that in Windows, an absolute path requires both a root name and a root
directory (neither "c:foo/hello.txt" nor "/foo/hello.txt" is an absolute path),
whereas, in POSIX, where root names don't exist, an absolute path requires only a root
directory ("/foo/hello.txt" is an absolute path, and "c:foo/hello.txt" is a relative
path that starts with the funny-looking directory name "c:foo").

In the last code snippet, we use operator/ to concatenate paths. fs::path supports both
operator/ and operator/= for this purpose, and they do almost exactly what you'd
expect--concatenate two pieces of a path with a slash in between them. If you want to
concatenate pieces of a path without adding that slash, use operator+=. Unfortunately, the
C++17 standard library is missing operator+ for paths, but it's easy to add as a free
function, as follows:

    static fs::path operator+(fs::path a, const fs::path& b)
    {
      a += b;
      return a;
    }
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Paths also support concatenation with and without slashes under the confusing member-
function names path.concat("foo") (without slash) and path.append("foo")(with
slash). Beware that this is exactly backwards from what you'd expect! Therefore, I strongly
advise never to use the named member functions; always use the operators (perhaps
including your custom-defined operator+ as described in the preceding code).

The last potentially confusing thing about fs::path is that it provides begin and end
methods, just like std::string. But unlike std::string, the unit of iteration is not the
single character--the unit of iteration is the name! This is seen in the following example:

    fs::path p = "/foo/bar/baz.txt";
    std::vector<fs::path> v(p.begin(), p.end());
    assert((v == std::vector<fs::path>{
      "/", "foo", "bar", "baz.txt"
    }));

You'll never have a reason to iterate over an absolute fs::path in real code. Iterating over
p.relative_path().parent_path()--where every iterated element is guaranteed to be a
directory name--might have some value in unusual circumstances.

Statting files with directory_entry
Beware! directory_entry is the most bleeding-edge part of the C++17
<filesystem> library. What I am about to describe is neither
implemented by Boost, nor by <experimental/filesystem>.

Retrieving a file's metadata from its inode is done by querying an object of type
fs::directory_entry. If you're familiar with the POSIX approach to retrieving metadata,
imagine that a fs::directory_entry contains a member of type fs::path and a
member of type std::optional<struct stat>. Calling entry.refresh() is, basically,
the same thing as calling the POSIX function stat(); and calling any accessor method,
such as entry.file_size(), will implicitly call stat() if and only if the optional
member is still disengaged. Merely constructing an instance of fs::directory_entry
won't query the filesystem; the library waits until you ask a specific question before it acts.
Asking a specific question, such as entry.file_size(), may cause the library to query
the filesystem, or (if the optional member is already engaged) it might just use the cached
value from the last time it queried.

    fs::path p = "/tmp/foo/bar.txt";
    fs::directory_entry entry(p);
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      // Here, we still have not touched the filesystem.

    while (!entry.exists()) {
       std::cout << entry.path() << " does not exist yet\n";
       std::this_thread::sleep_for(100ms);
       entry.refresh();
         // Without refresh(), this would loop forever.
    }
      // If the file is deleted right now, the following
      // line might print stale cached values, or it
      // might try to refresh the cache and throw.
    std::cout << entry.path() << " has size "
          << entry.file_size() << "\n";

An older way to accomplish the same goal is to use fs::status("path") or
fs::symlink_status("path") to retrieve an instance of the class fs::file_status,
and then to pull information out of the file_status object via cumbersome operations
such as status.type() == fs::file_type::directory. I recommend you not try to
use fs::file_status; prefer to use entry.is_directory() and so on. For the
masochistic, you can still retrieve a fs::file_status instance directly from a
directory_entry: entry.status() is the equivalent of fs::status(entry.path()),
and entry.symlink_status() is the equivalent of
fs::symlink_status(entry.path()), which, in turn, is a slightly faster equivalent of
fs::status(entry.is_symlink() ? fs::read_symlink(entry.path()) :

entry.path()).

Incidentally, the free function fs::equivalent(p, q) can tell you if two paths are both
hard-linked to the same inode; and entry.hard_link_count() can tell you the total
number of hard-links to this particular inode. (The only way to determine the names of those
hard-links is to walk the entire filesystem; and even then, your current user account might
not have the permission to stat those paths.)

Walking directories with directory_iterator
A fs::directory_iterator is just what it says on the tin. An object of this type lets you
walk the contents of a single directory, entry by entry:

    fs::path p = fs::current_path();
      // List the current directory.
    for (fs::directory_entry entry : fs::directory_iterator(p)) {
      std::cout << entry.path().string() << ": "
      << entry.file_size() << " bytes\n";
    }
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Incidentally, notice the use of entry.path().string() in the preceding code. This is
required, because operator<< acts extremely bizarrely on path objects--it always outputs
as if you'd written std::quoted(path.string()). If you want the path itself, with no
extra quotes, you always have to convert to std::string before outputting. (Similarly,
std::cin >> path won't work to get a path from the user, but that's less obnoxious, since
you should never use operator>> anyway. See Chapters 9, Iostreams, and Chapter 10,
Regular Expressions, for more information on lexing and parsing input from the user.)

Recursive directory walking
To recurse down a whole directory tree, in the style of Python's os.walk(), you can use
this recursive function modeled on the previous code snippet:

    template<class F>
    void walk_down(const fs::path& p, const F& callback)
    {
      for (auto entry : fs::directory_iterator(p)) {
        if (entry.is_directory()) {
          walk_down(entry.path(), callback);
        } else {
          callback(entry);
        }
      }
    }

Or, you can simply use a fs::recursive_directory_iterator:

    template<class F>
    void walk_down(const fs::path& p, const F& callback)
    {
      for (auto entry : fs::recursive_directory_iterator(p)) {
        callback(entry);
      }
    }

The constructor of fs::recursive_directory_iterator can take an extra argument of
type fs::directory_options, which modifies the exact nature of the recursion. For
example, you can pass fs::directory_options::follow_directory_symlink to
follow symlinks, although this is a good way to wind up in an infinite loop if a malicious
user creates a symlink pointing back to its own parent directory.
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Modifying the filesystem
Most of the <filesystem> header's facilities are concerned with examining the filesystem,
not modifying it. But there are several gems hidden in the rubble. Many of these functions
seem designed to make the effects of the classic POSIX command-line utilities available in
portable C++:

fs::copy_file(old_path, new_path) : Copy the file at old_path to a new
file (that is, a new inode) at new_path, as if by cp -n. Error if new_path already
exists.
fs::copy_file(old_path, new_path,

fs::copy_options::overwrite_existing): Copy old_path to new_path.
Overwrite new_path if possible. Error if new_path exists and is not a regular file,
or if it's the same as old_path.
fs::copy_file(old_path, new_path,

fs::copy_options::update_existing): Copy old_path to new_path.
Overwrite new_path if and only if it's older than the file at old_path.
fs::copy(old_path, new_path, fs::copy_options::recursive |

fs::copy_options::copy_symlinks): Copy an entire directory from
old_path to new_path as if by cp -R.
fs::create_directory(new_path): Create a directory as if by mkdir.
fs::create_directories(new_path): Create a directory as if by mkdir -p.
fs::create_directory(new_path, old_path) (notice the reversal of the
arguments!): Create a directory, but copy its attributes from those of the directory
at old_path.
fs::create_symlink(old_path, new_path): Create a symlink from
new_path to old_path.
fs::remove(path): Remove a file or an empty directory as if by rm.
fs::remove_all(path): Remove a file or directory as if by rm -r.
fs::rename(old_path, new_path): Rename a file or directory as if by mv.
fs::resize_file(path, new_size): Extend (with zeroes) or truncate a
regular file.
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Reporting disk usage
Speaking of classic command-line utilities, one final thing we might want to do with a
filesystem is ask how full it is. This is the domain of the command-line utility df -h or the
POSIX library function statvfs. In C++17, we can do it with fs::space("path"), which
returns (by value) a struct of type fs::space_info:

 struct space_info {
    uintmax_t capacity;
    uintmax_t free;
    uintmax_t available;
 };

Each of these fields is measured in bytes, and we should have available <= free <=
capacity. The distinction between available and free has to do with user limits: On
some filesystems, a portion of the free space might be reserved for the root user, and on
others, there might be per-user-account disk quotas.

Summary
Use namespace aliases to save typing, and to allow dropping in alternative
implementations
of a library namespace, such as Boost.

std::error_code provides a very neat way to pass integer error codes up the stack
without exception handling; consider using it if you work in a domain where exception
handling is frowned upon. (In which case, that is likely all you will be able to take away
from this particular chapter! The <filesystem> library provides both throwing and non-
throwing APIs; however, both APIs use the heap-allocating (and, potentially, throwing
fs::path as a vocabulary type. The only reason to use the non-throwing API is if it
eliminates a case of "using exceptions for control flow.)

std::error_condition provides only syntactic sugar for "catching" error codes; avoid it
like the plague.
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A path consists of a root_name, a root_directory, and a relative_path; the last of
these is made up of names separated by slashes. To POSIX, a name is a string of raw bytes; to
Windows, a name is a string of Unicode characters. The fs::path type attempts to use the
appropriate kind of string for each platform. To avoid portability problems, beware of
path.c_str() and implicit conversions to fs::path::string_type.

Directories store mappings from names to inodes (which the C++ standard just calls "files").
In C++, you can loop over an fs::directory_iterator to retrieve
fs::directory_entry objects; methods on the fs::directory_entry allow you to
query the corresponding inode. Restatting an inode is as simple as calling
entry.refresh().

<filesystem> provides a whole zoo of free functions for creating, copying, renaming,
removing, and resizing files and directories, and one last function to get the total capacity of
the filesystem.

Much of what was discussed in this chapter (the <filesystem> parts, at least) is bleeding-
edge C++17 that, as of press time, has not been implemented by any compiler vendor. Use
such new features with caution.
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