

Mastering MongoDB 4.x
Second Edition

Expert techniques to run high-volume and fault-tolerant
database solutions using MongoDB 4.x

Alex Giamas

BIRMINGHAM - MUMBAI

Mastering MongoDB 4.x
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Porous Godhaa
Content Development Editor: Ronnel Mathew
Technical Editor: Suwarna Patil
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tom Scaria
Production Coordinator: Deepika Naik

First published: November 2017
Second edition: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-787-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Alex Giamas is a consultant and a hands-on technical architect at the Department for
International Trade in the UK Government. His experience spans software architecture and
development using NoSQL and big data technologies. For more than 15 years, he has
contributed to Fortune 15 companies and has worked as a start-up CTO.

He is the author of Mastering MongoDB 3.x, published by Packt Publishing, which is based on
his use of MongoDB since 2009.

Alex has worked with a wide array of NoSQL and big data technologies, building scalable
and highly available distributed software systems in Python, Java, and Ruby. He is a
MongoDB Certified Developer, a Cloudera Certified Developer for Apache Hadoop and
Data Science Essentials.

Writing a book is harder than I thought, but more rewarding than I could have ever
imagined. I would like to thank my wife, Mary, for her love and constant support, day and
night, and for being my editor and sounding board, my muse and my anchor in life.

Many thanks to my parents for all the support and the amazing chances they've given me
over the years, without which I would never have been who I am today.

About the reviewers
Doug Bierer wrote his first program on a Digital Equipment Corporation PDP-8 in 1971.
Since that time, he's written buckets of code in lots of different programming languages,
including BASIC, C, Assembler, PL/I, FORTRAN, Prolog, FORTH, Java, PHP, Perl, and
Python. He did networking for 10 years. The largest network he worked on was based in
Brussels and had 35,000 nodes. Doug is certified in PHP 5.1, 5.3, 5.5, and 7.1, and Zend
Framework 1 and 2. He has authored a bunch of books and videos for O'Reilly/Packt
Publishing on PHP, security, and MongoDB. His most current authoring project is a book
called Learn MongoDB 4.0, scheduled to be published by Packt Publishing in September
2019. He founded unlikelysource(dot)com in April 2008.

Sumit Sengupta has worked on several RDBMS and NoSQL databases, such as Oracle,
SQL Server, Postgres, MongoDB, and Cassandra. A former employee of MongoDB, he has
designed, architected, and managed many distributed and big data solutions, both on-
premise and on AWS and Azure. Currently, he works on the Azure Data and AI Platform
for Microsoft, helping partners to create innovative solutions based on data.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: Basic MongoDB – Design Goals and
Architecture
Chapter 1: MongoDB – A Database for Modern Web 7

Technical requirements 7
The evolution of SQL and NoSQL 7

The evolution of MongoDB 9
Major feature set for versions 1.0 and 1.2 9
Version 2 9
Version 3 10
Version 4 10

MongoDB for SQL developers 12
MongoDB for NoSQL developers 13

MongoDB's key characteristics and use cases 14
Key characteristics 14
Use cases for MongoDB 15
MongoDB criticism 18

MongoDB configuration and best practices 19
Operational best practices 19
Schema design best practices 21
Best practices for write durability 22
Best practices for replication 23
Best practices for sharding 24
Best practices for security 24
Best practices for AWS 25

Reference documentation 25
MongoDB documentation 25
Packt references 26

Further reading 26
Summary 26

Chapter 2: Schema Design and Data Modeling 27
Relational schema design 27

MongoDB schema design 28
Read-write ratio 28

Data modeling 29
Data types 29

Comparing different data types 30
Date type 32

Table of Contents

[ii]

ObjectId 32
Modeling data for atomic operations 33

Write isolation 34
Read isolation and consistency 35

Modeling relationships 36
One-to-one 36
One-to-many and many-to-many 38

Modeling data for keyword searches 39
Connecting to MongoDB 40

Connecting using Ruby 40
Mongoid ODM 41
Inheritance with Mongoid models 43

Connecting using Python 44
PyMODM ODM 45
Inheritance with PyMODM models 46

Connecting using PHP 47
Doctrine ODM 49
Inheritance with Doctrine 50

Summary 51

Section 2: Section 2: Querying Effectively
Chapter 3: MongoDB CRUD Operations 54

CRUD using the shell 54
Scripting for the mongo shell 56

The differences between scripting for the mongo shell and using it directly 57
Batch inserts using the shell 58
Batch operations using the mongo shell 60

Administration 62
fsync 63
compact 64
currentOp and killOp 65
collMod 65
touch 66

MapReduce in the mongo shell 66
MapReduce concurrency 68
Incremental MapReduce 69
Troubleshooting MapReduce 71

Aggregation framework 72
SQL to aggregation 73
Aggregation versus MapReduce 73

Securing the shell 74
Authentication and authorization 75
Authorization with MongoDB 75
Security tips for MongoDB 76

Encrypting communication using TLS/SSL 76
Encrypting data 77
Limiting network exposure 78

Table of Contents

[iii]

Firewalls and VPNs 78
Auditing 78
Using secure configuration options 79

Authentication with MongoDB 79
Enterprise Edition 80

Kerberos authentication 80
LDAP authentication 81

Summary 81

Chapter 4: Advanced Querying 82
MongoDB CRUD operations 82

CRUD using the Ruby driver 82
Creating documents 83
Read 83
Chaining operations in find() 85
Nested operations 86
Update 87
Delete 88
Batch operations 89

CRUD in Mongoid 90
Read 90
Scoping queries 91
Create, update, and delete 91

CRUD using the Python driver 92
Creating and deleting 92
Finding documents 94
Updating documents 96

CRUD using PyMODM 97
Creating documents 97
Updating documents 98
Deleting documents 98
Querying documents 98

CRUD using the PHP driver 99
Creating and deleting 99
BulkWrite 103
Read 104
Updating documents 105

CRUD using Doctrine 105
Creating, updating, and deleting 105
Read 107
Best practices 109

Comparison operators 110
Update operators 110
Smart querying 111

Using regular expressions 111
Querying results and cursors 112
Storage considerations for the delete operation 114

Change streams 115
Introduction 115

Table of Contents

[iv]

Setup 117
Using change streams 117
Specification 119
Important notes 121
Production recommendations 121
Replica sets 121
Sharded clusters 121

Summary 122

Chapter 5: Multi-Document ACID Transactions 123
Background 123
ACID 124

Atomicity 124
Consistency 125
Isolation 126

Phantom reads 127
Non-repeatable reads 127
Dirty reads 128

Durability 128
When do we need ACID in MongoDB ? 129
Building a digital bank using MongoDB 129

Setting up our data 130
Transferring between accounts – part 1 131
Transferring between accounts – part 2 133
Transferring between accounts – part 3 134

E-commerce using MongoDB 137
The best practices and limitations of multi-document ACID transactions 145

Summary 146

Chapter 6: Aggregation 147
Why aggregation? 147
Aggregation operators 148

Aggregation stage operators 149
Expression operators 150

Expression Boolean operators 150
Expression comparison operators 150
Set expression and array operators 151
Expression date operators 152
Expression string operators 153
Expression arithmetic operators 154
Aggregation accumulators 154
Conditional expressions 155
Type conversion operators 155
Other operators 156

Text search 157
Variable 157
Literal 157
Parsing data type 157

Limitations 157

Table of Contents

[v]

Aggregation use case 158
Summary 170

Chapter 7: Indexing 172
Index internals 172

Index types 174
Single field indexes 174
Dropping indexes 176

Indexing embedded fields 176
Indexing embedded documents 177
Background indexes 177

Compound indexes 177
Sorting with compound indexes 178
Reusing compound indexes 178

Multikey indexes 179
Special types of indexes 183

Text indexes 183
Hashed indexes 184
Time to live indexes 184
Partial indexes 185
Sparse indexes 186
Unique indexes 187
Case-insensitive 188
Geospatial indexes 189
2d geospatial indexes 190
2dsphere geospatial indexes 190
geoHaystack indexes 190

Building and managing indexes 191
Forcing index usage 191

Hint and sparse indexes 193
Building indexes on replica sets 193

Managing indexes 194
Naming indexes 195
Special considerations 195

Using indexes efficiently 196
Measuring performance 196

Improving performance 197
Index intersection 198

Further reading 199
Summary 199

Section 3: Section 3: Administration and Data Management
Chapter 8: Monitoring, Backup, and Security 201

Monitoring 201
What should we monitor? 202

Page faults 202
Resident memory 202
Virtual and mapped memory 202
Working sets 203

Monitoring memory usage in WiredTiger 203

Table of Contents

[vi]

Tracking page faults 204
Tracking B-tree misses 204

I/O wait 205
Read and write queues 205
Lock percentage 205
Background flushes 205
Tracking free space 206
Monitoring replication 206
Oplog size 207

Working set calculations 207
Monitoring tools 208

Hosted tools 208
Open source tools 208

Backups 208
Backup options 209

Cloud-based solutions 209
Backups with filesystem snapshots 210
Making a backup of a sharded cluster 211
Making backups using mongodump 212
Backing up by copying raw files 212
Making backups using queuing 213

EC2 backup and restore 213
Incremental backups 213

Security 214
Authentication 215
Authorization 216

User roles 219
Database administration roles 219
Cluster administration roles 220
Backup and restore roles 220
Roles across all databases 221

Superuser 221
Network-level security 222
Auditing security 222
Special cases 222
Overview 223

Summary 224

Chapter 9: Storage Engines 225
Pluggable storage engines 225

WiredTiger 226
Document-level locking 226
Snapshots and checkpoints 226
Journaling 227
Data compression 227
Memory usage 228
readConcern 229
WiredTiger collection-level options 230

Table of Contents

[vii]

WiredTiger performance strategies 231
WiredTiger B-tree versus LSM indexes 232

Encrypted 232
In-memory 234
MMAPv1 235

MMAPv1 storage optimization 235
Mixed usage 236
Other storage engines 238

RocksDB 238
TokuMX 238

Locking in MongoDB 238
Lock reporting 241
Lock yield 241
Commonly used commands and locks 242
Commands requiring a database lock 242

Further reading 243
Summary 244

Chapter 10: MongoDB Tooling 245
Introduction 246

MongoDB Atlas 246
Creating a new cluster 247

Important notes 254
MongoDB Cloud Manager 254
MongoDB Ops Manager 255
MongoDB Charts 256
MongoDB Compass 257
MongoDB Connector for Business Intelligence (BI) 258

An introduction to Kubernetes 258
Enterprise Kubernetes Operator 259
MongoDB Mobile 261
MongoDB Stitch 263

QueryAnywhere 263
Rules 263

Functions 264
Triggers 265

Mobile Sync 266
Summary 267

Chapter 11: Harnessing Big Data with MongoDB 268
What is big data? 268

The big data landscape 269
Message queuing systems 271

Apache ActiveMQ 271
RabbitMQ 271
Apache Kafka 272

Data warehousing 273

Table of Contents

[viii]

Apache Hadoop 273
Apache Spark 274
Comparing Spark with Hadoop MapReduce 275

MongoDB as a data warehouse 276
A big data use case 277

Setting up Kafka 278
Setting up Hadoop 282

Steps for Hadoop setup 282
Using a Hadoop to MongoDB pipeline 285
Setting up Spark to MongoDB 285

Further reading 286
Summary 287

Section 4: Section 4: Scaling and High Availability
Chapter 12: Replication 289

Replication 289
Logical or physical replication 289
Different high availability types 290

An architectural overview 291
How do elections work? 292
What is the use case for a replica set? 295
Setting up a replica set 296

Converting a standalone server into a replica set 296
Creating a replica set 296
Read preference 299
Write concern 300

Custom write concerns 301
Priority settings for replica set members 302

Zero priority replica set members 303
Hidden replica set members 303
Delayed replica set members 304

Production considerations 305
Connecting to a replica set 305
Replica set administration 308

How to perform maintenance on replica sets 308
Re-syncing a member of a replica set 309
Changing the oplog's size 310
Reconfiguring a replica set when we have lost the majority of our servers 311
Chained replication 312

Cloud options for a replica set 312
mLab 313
MongoDB Atlas 313

Replica set limitations 314
Summary 314

Table of Contents

[ix]

Chapter 13: Sharding 315
Why do we use sharding? 316
Architectural overview 318

Development, continuous deployment, and staging environments 319
Planning ahead with sharding 320

Sharding setup 320
Choosing the shard key 321

Changing the shard key 321
Choosing the correct shard key 322

Range-based sharding 323
Hash-based sharding 324
Coming up with our own key 324
Location-based data 325

Sharding administration and monitoring 325
Balancing data – how to track and keep our data balanced 325
Chunk administration 329

Moving chunks 329
Changing the default chunk size 330
Jumbo chunks 331
Merging chunks 333
Adding and removing shards 334

Sharding limitations 337
Querying sharded data 338

The query router 338
Find 339
Sort/limit/skip 339
Update/remove 340

Querying using Ruby 341
Performance comparison with replica sets 341

Sharding recovery 342
mongos 342
mongod 342
Config server 342
A shard goes down 343
The entire cluster goes down 343

Further reading 343
Summary 344

Chapter 14: Fault Tolerance and High Availability 345
Application design 345

Schema-less doesn't mean schema design-less 346
Read performance optimization 346

Consolidating read querying 346
Defensive coding 348

Monitoring integrations 350
Operations 351

Table of Contents

[x]

Security 352
Enabling security by default 352
Isolating our servers 353
Checklists 354

Further reading 356
Summary 356

Other Books You May Enjoy 357

Index 360

Preface
MongoDB has grown to become the de facto NoSQL database with millions of users, from
small start-ups to Fortune 500 companies. Addressing the limitations of SQL schema-based
databases, MongoDB pioneered a shift of focus for DevOps and offered sharding and
replication that can be maintained by DevOps teams. This book is based on MongoDB 4.0
and covers topics ranging from database querying using the shell, built-in drivers, and
popular ODM mappers, to more advanced topics such as sharding, high availability, and
integration with big data sources.

You will get an overview of MongoDB and will learn how to play to its strengths, with
relevant use cases. After that, you will learn how to query MongoDB effectively and make
use of indexes as much as possible. The next part deals with the administration of
MongoDB installations, whether on-premises or on the cloud. We deal with database
internals in the following section, explaining storage systems and how they can affect
performance. The last section of this book deals with replication and MongoDB scaling,
along with integration with heterogeneous data sources. By the end this book, you will be
equipped with all the required industry skills and knowledge to become a certified
MongoDB developer and administrator.

Who this book is for
Mastering MongoDB 4.0 is a book for database developers, architects, and administrators
who want to learn how to use MongoDB more effectively and productively. If you have
experience with, and are interested in working with, NoSQL databases to build apps and
websites, then this book is for you.

What this book covers
Chapter 1, MongoDB – A Database for Modern Web, takes us on a journey through web, SQL,
and NoSQL technologies, from their inception to their current states.

Chapter 2, Schema Design and Data Modeling, teaches you schema design for relational
databases and MongoDB, and how we can achieve the same goal from a different
starting point.

Preface

[2]

Chapter 3, MongoDB CRUD Operations, provides a bird's-eye view of CRUD operations.

Chapter 4, Advanced Querying, covers advanced querying concepts using Ruby, Python,
and PHP, using both the official drivers and an ODM.

Chapter 5, Multi-Document ACID Transactions, explores transactions following ACID
characteristics, which is a new functionality introduced in MongoDB 4.0.

Chapter 6, Aggregation, dives deep into the aggregation framework. We also discuss when
and why we should use aggregation, as opposed to MapReduce and querying the database.

Chapter 7, Indexing, explores one of the most important properties of every database,
which is indexing.

Chapter 8, Monitoring, Backup, and Security, discusses the operational aspects of MongoDB.
Monitoring, backup, and security should not be an afterthought, but rather are necessary
processes that need to be taken care of before deploying MongoDB in a production
environment.

Chapter 9, Storage Engines, teaches you about the different storage engines in MongoDB.
We identify the pros and cons of each one, and the use cases for choosing each storage
engine.

Chapter 10, MongoDB Tooling, covers all the different tools, both on-premises and in the
cloud, that we can utilize in the MongoDB ecosystem.

Chapter 11, Harnessing Big Data with MongoDB, provides more detail on how MongoDB fits
into the wider big data landscape and ecosystem.

Chapter 12, Replication, discusses replica sets and how to administer them. Starting from an
architectural overview of replica sets and replica set internals around elections, we
dive deep into setting up and configuring a replica set.

Chapter 13, Sharding, explores sharding, one of the most interesting features of MongoDB.
We start with an architectural overview of sharding and move on to discuss how to design
a shard, and especially, how to choose the right shard key.

Chapter 14, Fault Tolerance and High Availability, tries to fit in the information that we didn't
manage to discuss in the previous chapters, and places emphasis on security and a series of
checklists that developers and DBAs should keep into mind.

Preface

[3]

To get the most out of this book
You will need the following software to be able to smoothly sail through the chapters:

MongoDB version 4+
Apache Kafka version 1
Apache Spark version 2+
Apache Hadoop version 2+

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Conventions used
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In a
sharded environment, each mongod applies its own locks, thus greatly improving
concurrency."

A block of code is set as follows:

db.account.find({ "balance" : { $type : 16 } });
db.account.find({ "balance" : { $type : "integer" } });

Any command-line input or output is written as follows:

> db.types.insert({"a":4})
WriteResult({ "nInserted" : 1 })

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The following screenshot shows the Zone configuration summary:"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Basic MongoDB –

Design Goals and Architecture
In this section, we will go through the history of databases and how we arrived at the need
for non-relational databases. We will also learn how to model our data so that storage and
retrieval from MongoDB can be as efficient as possible. Even though MongoDB is
schemaless, designing how data will be organized into documents can have a great effect in
terms of performance.

This section consists of the following chapters:

Chapter 1, MongoDB – A Database for Modern Web
Chapter 2, Schema Design and Data Modeling

1
MongoDB – A Database for

Modern Web
In this chapter, we will lay the foundations for understanding MongoDB, and how it claims
to be a database that's designed for the modern web. Learning in the first place is as
important as knowing how to learn. We will go through the references that have the most
up-to-date information about MongoDB, for both new and experienced users. We will
cover the following topics:

SQL and MongoDB's history and evolution
MongoDB from the perspective of SQL and other NoSQL technology users
MongoDB's common use cases and why they matter
MongoDB's configuration and best practices

Technical requirements
You will require MongoDB version 4+, Apache Kafka, Apache Spark and Apache Hadoop
installed to smoothly sail through the chapter. The codes that have been used for all the
chapters can be found
at: https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition.

The evolution of SQL and NoSQL
Structured Query Language (SQL) existed even before the WWW. Dr. E. F.
Codd originally published the paper, A Relational Model of Data for Large Shared Data Banks,
in June, 1970, in the Association of Computer Machinery (ACM) journal, Communications
of the ACM. SQL was initially developed at IBM by Chamberlin and Boyce, in 1974.
Relational Software (now Oracle Corporation) was the first to develop a commercially
available implementation of SQL, targeted at United States governmental agencies.

https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition

MongoDB – A Database for Modern Web Chapter 1

[8]

The first American National Standards Institute (ANSI) SQL standard came out in 1986.
Since then, there have been eight revisions, with the most recent being published in 2016
(SQL:2016).

SQL was not particularly popular at the start of the WWW. Static content could just be
hardcoded into the HTML page without much fuss. However, as the functionality of
websites grew, webmasters wanted to generate web page content driven by offline data
sources, in order to generate content that could change over time without redeploying code.

Common Gateway Interface (CGI) scripts, developing Perl or Unix shells, were driving
early database-driven websites in Web 1.0. With Web 2.0, the web evolved from directly
injecting SQL results into the browser to using two-tier and three-tier architectures that
separated views from the business and model logic, allowing for SQL queries to be
modular and isolated from the rest of the web application.

On the other hand, Not only SQL (NoSQL) is much more modern and supervened web
evolution, rising at the same time as Web 2.0 technologies. The term was first coined by
Carlo Strozzi in 1998, for his open source database that did not follow the SQL standard,
but was still relational.

This is not what we currently expect from a NoSQL database. Johan Oskarsson, a developer
at Last.fm at the time, reintroduced the term in early 2009, in order to group a set of
distributed, non-relational data stores that were being developed. Many of them were
based on Google's Bigtable and MapReduce papers, or Amazon's DynamoDB, a highly
available key-value based storage system.

NoSQL's foundations grew upon relaxed atomicity, consistency, isolation, and durability
(ACID) properties, which guarantee the performance, scalability, flexibility, and reduced
complexity. Most NoSQL databases have gone one way or another in providing as many of
the previously mentioned qualities as possible, even offering adjustable guarantees to the
developer. The following diagram describes the evolution of SQL and NoSQL:

MongoDB – A Database for Modern Web Chapter 1

[9]

The evolution of MongoDB
10gen started to develop a cloud computing stack in 2007 and soon realized that the most
important innovation was centered around the document-oriented database that they built
to power it, which was MongoDB. MongoDB was initially released on August 27, 2009.

Version 1 of MongoDB was pretty basic in terms of features, authorization, and ACID
guarantees but it made up for these shortcomings with performance and flexibility.

In the following sections, we will highlight the major features of MongoDB, along with the
version numbers with which they were introduced.

Major feature set for versions 1.0 and 1.2
The different features of versions 1.0 and 1.2 are as follows:

Document-based model
Global lock (process level)
Indexes on collections
CRUD operations on documents
No authentication (authentication was handled at the server level)
Master and slave replication
MapReduce (introduced in v1.2)
Stored JavaScript functions (introduced in v1.2)

Version 2
The different features of version 2.0 are as follows:

Background index creation (since v1.4)
Sharding (since v1.6)
More query operators (since v1.6)
Journaling (since v1.8)
Sparse and covered indexes (since v1.8)
Compact commands to reduce disk usage
Memory usage more efficient
Concurrency improvements
Index performance enhancements

MongoDB – A Database for Modern Web Chapter 1

[10]

Replica sets are now more configurable and data center aware
MapReduce improvements
Authentication (since 2.0, for sharding and most database commands)
Geospatial features introduced
Aggregation framework (since v2.2) and enhancements (since v2.6)
TTL collections (since v2.2)
Concurrency improvements, among which is DB-level locking (since v2.2)
Text searching (since v2.4) and integration (since v2.6)
Hashed indexes (since v2.4)
Security enhancements and role-based access (since v2.4)
V8 JavaScript engine instead of SpiderMonkey (since v2.4)
Query engine improvements (since v2.6)
Pluggable storage engine API
WiredTiger storage engine introduced, with document-level locking, while
previous storage engine (now called MMAPv1) supports collection-level locking

Version 3
The different features of version 3.0 are as follows:

Replication and sharding enhancements (since v3.2)
Document validation (since v3.2)
Aggregation framework enhanced operations (since v3.2)
Multiple storage engines (since v3.2, only in Enterprise Edition)
Query language and indexes collation (since v3.4)
Read-only database views (since v3.4)
Linearizable read concern (since v3.4)

Version 4
The different features of version 4.0 are as follows:

Multi-document ACID transactions
Change streams
MongoDB tools (Stitch, Mobile, Sync, and Kubernetes Operator)

MongoDB – A Database for Modern Web Chapter 1

[11]

The following diagram shows MongoDB's evolution:

As we can observe, version 1 was pretty basic, whereas version 2 introduced most of the
features present in the current version, such as sharding, usable and special indexes,
geospatial features, and memory and concurrency improvements.

On the way from version 2 to version 3, the aggregation framework was introduced, mainly
as a supplement to the ageing (and never up to par with dedicated frameworks, such as
Hadoop) MapReduce framework. Then, text search was added, and slowly but surely, the
framework was improving performance, stability, and security, to adapt to the increasing
enterprise load of customers using MongoDB.

With WiredTiger's introduction in version 3, locking became much less of an issue for
MongoDB, as it was brought down from the process (global lock) to the document level,
almost the most granular level possible.

Version 4 marked a major transition, bridging the SQL and NoSQL world with the
introduction of multi-document ACID transactions. This allowed for a wider range of
applications to use MongoDB, especially applications that require a strong real-time
consistency guarantee. Further, the introduction of change streams allowed for a faster time
to market for real-time applications using MongoDB. A series of tools have also been
introduced, to facilitate serverless, mobile, and Internet of Things (IoT) development.

In its current state, MongoDB is a database that can handle loads ranging from start up
MVPs and POCs to enterprise applications with hundreds of servers.

MongoDB – A Database for Modern Web Chapter 1

[12]

MongoDB for SQL developers
MongoDB was developed in the Web 2.0 era. By then, most developers had been using SQL
or object-relational mapping (ORM) tools from their language of choice to access RDBMS
data. As such, these developers needed an easy way to get acquainted with MongoDB from
their relational background.

Thankfully, there have been several attempts at making SQL to MongoDB cheat sheets that
explain the MongoDB terminology in SQL terms.

On a higher level, we have the following:

Databases and indexes (SQL databases)
Collections (SQL tables)
Documents (SQL rows)
Fields (SQL columns)
Embedded and linked documents (SQL joins)

Some more examples of common operations are shown in the following table:

SQL MongoDB
Database Database
Table Collection
Index Index
Row Document
Column Field
Joins Embed in document or link via DBRef
CREATE TABLE employee
(name VARCHAR(100))

db.createCollection("employee")

INSERT INTO employees
VALUES (Alex, 36)

db.employees.insert({name: "Alex", age: 36})

SELECT * FROM employees db.employees.find()

SELECT * FROM employees
LIMIT 1

db.employees.findOne()

SELECT DISTINCT name FROM
employees

db.employees.distinct("name")

UPDATE employees SET age
= 37 WHERE name = 'Alex'

db.employees.update({name: "Alex"}, {$set:
{age: 37}}, {multi: true})

DELETE FROM employees
WHERE name = 'Alex'

db.employees.remove({name: "Alex"})

MongoDB – A Database for Modern Web Chapter 1

[13]

CREATE INDEX ON employees
(name ASC)

db.employees.ensureIndex({name: 1})

Further examples of common operations can be seen at http:/ /s3. amazonaws. com/ info-
mongodb-com/sql_ to_ mongo. pdf.

MongoDB for NoSQL developers
As MongoDB has grown from being a niche database solution to the Swiss Army knife of
NoSQL technologies, more developers are coming to it from a NoSQL background, as well.

Putting the SQL to NoSQL differences aside, it is users from columnar-type databases that
face the most challenges. With Cassandra and HBase being the most popular column-
oriented database management systems, we will examine the differences and how a
developer can migrate a system to MongoDB. The different features of MongoDB for
NoSQL developers are as follows:

Flexibility: MongoDB's notion of documents that can contain sub-documents
nested in complex hierarchies is really expressive and flexible. This is similar to
the comparison between MongoDB and SQL, with the added benefit that
MongoDB can more easily map to plain old objects from any programming
language, allowing for easy deployment and maintenance.
Flexible query model: A user can selectively index some parts of each document;
query based on attribute values, regular expressions, or ranges; and have as
many properties per object as needed by the application layer. Primary and
secondary indexes, as well as special types of indexes (such as sparse ones), can
help greatly with query efficiency. Using a JavaScript shell with MapReduce
makes it really easy for most developers (and many data analysts) to quickly take
a look at data and get valuable insights.
Native aggregation: The aggregation framework provides an extract, transform,
load (ETL) pipeline for users to extract and transform data from MongoDB, and
either load it in a new format or export it from MongoDB to other data sources.
This can also help data analysts and scientists to get the slice of data they need in
performing data wrangling along the way.
Schema-less model: This is a result of MongoDB's design philosophy to give
applications the power and responsibility to interpret the different properties
found in a collection's documents. In contrast to Cassandra's or HBase's schema-
based approach, in MongoDB, a developer can store and process dynamically
generated attributes.

http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf
http://s3.amazonaws.com/info-mongodb-com/sql_to_mongo.pdf

MongoDB – A Database for Modern Web Chapter 1

[14]

MongoDB's key characteristics and use
cases
In this section, we will analyze MongoDB's characteristics as a database. Understanding the
features that MongoDB provides can help developers and architects to evaluate the
requirements at hand and how MongoDB can help to fulfill them. Also, we will go over
some common use cases from the experience of MongoDB, Inc. that have delivered the best
results for its users.

Key characteristics
MongoDB has grown to become a general purpose NoSQL database, offering the best of
both the RDBMS and NoSQL worlds. Some of the key characteristics are as follows:

It is a general purpose database: In contrast to other NoSQL databases that are
built for specific purposes (for example, graph databases), MongoDB can serve
heterogeneous loads and multiple purposes within an application. This became
even more true after version 4.0 introduced multi-document ACID transactions,
further expanding the use cases in which it can be effectively used.
Flexible schema design: Document-oriented approaches with non-defined
attributes that can be modified on the fly is a key contrast between MongoDB
and relational databases.
It is built with high availability, from the ground up: In our era of five nines in
availability, this has to be a given. Coupled with automatic failover upon
detection of a server failure, this can help to achieve high uptime.
Feature rich: Offering the full range of SQL equivalent operators, along with
features such as MapReduce, aggregation framework, Time to Live and capped
collections, and secondary indexing, MongoDB can fit many use cases, no matter
how diverse the requirements are.
Scalability and load balancing: It is built to scale, both vertically and (mainly)
horizontally. Using sharding, an architect can share a load between different
instances and achieve both read and write scalability. Data balancing happens
automatically (and transparently to the user) via the shard balancer.
Aggregation framework: Having an ETL framework built in the database means
that a developer can perform most of the ETL logic before the data leaves the
database, eliminating, in many cases, the need for complex data pipelines.

MongoDB – A Database for Modern Web Chapter 1

[15]

Native replication: Data will get replicated across a replica set without
complicated setup.
Security features: Both authentication and authorization are taken into account,
so that an architect can secure their MongoDB instances.
JSON (BSON and Binary JSON) objects for storing and transmitting
documents: JSON is widely used across the web for frontend and API
communication, and, as such, it is easier when the database is using the same
protocol.
MapReduce: Even though the MapReduce engine is not as advanced as it is in
dedicated frameworks, it is nonetheless a great tool for building data pipelines.
Querying and geospatial information in 2D and 3D: This may not be critical for
many applications, but if it is for your use case, then it is really convenient to be
able to use the same database for geospatial calculations and data storage.
Multi-document ACID transactions: Starting from version 4.0, MongoDB
supports ACID transactions across multiple documents.
Mature tooling: The tooling for MongoDB has evolved to support from DBaaS to
Sync, Mobile, and serverless (Stitch).

Use cases for MongoDB
Since MongoDB is a highly popular NoSQL database, there have been several use cases
where it has succeeded in supporting quality applications, with a great delivery time to the
market.

Many of its most successful use cases center around the following areas:

Integration of siloed data, providing a single view of them
IoT
Mobile applications
Real-time analytics
Personalization
Catalog management
Content management

MongoDB – A Database for Modern Web Chapter 1

[16]

All of these success stories share some common characteristics. We will try to break them
down in order of relative importance:

Schema flexibility is probably the most important one. Being able to store
documents inside of a collection that can have different properties can help
during both the development phase and in ingesting data from heterogeneous
sources that may or may not have the same properties. This is in contrast with an
RDBMS, where columns need to be predefined and having sparse data can be
penalized. In MongoDB, this is the norm, and it is a feature that most use cases
share. Having the ability to deeply nest attributes into documents and add arrays
of values into attributes while also being able to search and index these fields
helps application developers to exploit the schema-less nature of MongoDB.
Scaling and sharding are the most common patterns for MongoDB use cases.
Easily scaling using built-in sharding and using replica sets for data replication
and offloading primary servers from read load can help developers store data
effectively.
Many use cases also use MongoDB as a way of archiving data. Used as a pure
data store (and not having the need to define schemas), it is fairly easy to dump
data into MongoDB to be analyzed at a later date by business analysts, using
either the shell or some of the numerous BI tools that can easily integrate with
MongoDB. Breaking data down further, based on time caps or document counts,
can help serve these datasets from RAM, the use case in which MongoDB is most
effective.
Keeping datasets in RAM helps performance, and that's why it is commonly used
in practice. MongoDB uses MMAP storage (called MMAPv1) in most versions,
up to the most recent, which delegates data mapping to the underlying operating
system. This means that most GNU/Linux-based systems, working with
collections that can be stored in RAM, will dramatically increase performance.
This is less of an issue with the introduction of pluggable storage engines, such as
WiredTiger (there will be more on that in Chapter 8, Monitoring, Backup, and
Security).

MongoDB – A Database for Modern Web Chapter 1

[17]

Capped collections are also a feature used in many use cases. Capped collections
can restrict documents in a collection by count or by the overall size of the
collection. In the latter case, we need to have an estimate of the size per
document, in order to calculate how many documents will fit into our target size.
Capped collections are a quick and dirty solution to answering requests such as
give me the last hour's overview of the logs without the need for maintenance and
running async background jobs to clean our collection. Oftentimes, these may be
used to quickly build and operate a queuing system. Instead of deploying and
maintaining a dedicated queuing system, such as ActiveMQ, a developer can use
a collection to store messages, and then use the native tailable cursors provided
by MongoDB to iterate through the results as they pile up and feed an external
system.
Low operational overhead is also a common pattern in many use cases.
Developers working in agile teams can operate and maintain clusters of
MongoDB servers without the need for a dedicated DBA. MongoDB
Management Service (MMS) can greatly help in reducing administrative
overhead, whereas MongoDB Atlas, the hosted solution by MongoDB, Inc.,
means that developers do not need to deal with operational headaches.
In terms of business sectors using MongoDB, there is a huge variety coming from
almost all industries. Where there seems to be a greater penetration, however, is
in cases that have to deal with lots of data with a relatively low business value in
each single data point. Fields such as IoT can benefit the most by exploiting the
availability over consistency design, storing lots of data from sensors in a cost-
efficient way. Financial services, on the other hand, have absolutely stringent
consistency requirements, aligned with proper ACID characteristics that make
MongoDB more of a challenge to adapt. A financial transaction may be small in
size but big in impact, which means that we cannot afford to leave a single
message without proper processing.
Location-based data is also a field where MongoDB has thrived, with Foursquare
being one of the most prominent early clients. MongoDB offers quite a rich set of
features around two-dimensional and three-dimensional geolocation data,
offering features such as searching by distance, geofencing, and intersections
between geographical areas.
Overall, the rich feature set is the common pattern across different use cases. By
providing features that can be used in many different industries and
applications, MongoDB can be a unified solution for all business needs, offering
users the ability to minimize operational overhead and, at the same time, iterate
quickly in product development.

MongoDB – A Database for Modern Web Chapter 1

[18]

MongoDB criticism
MongoDB's criticism is associated with the following points:

MongoDB has had its fair share of criticism throughout the years. The web-
scale proposition has been met with skepticism by many developers. The counter
argument is that scale is not needed most of the time, and the focus should be on
other design considerations. While this may occasionally be true, it is a false
dichotomy, and in an ideal world, we would have both. MongoDB is as close as it
can get to combining scalability with features, ease of use, and time to market.
MongoDB's schema-less nature is also a big point of debate and argument.
Schema-less can be really beneficial in many use cases, as it allows for
heterogeneous data to be dumped into the database without complex cleansing
and without ending up with lots of empty columns or blocks of text stuffed into a
single column. On the other hand, this is a double-edged sword, as a developer
may end up with many documents in a collection that have loose semantics in
their fields, and it can become really hard to extract these semantics at the code
level. If our schema design is not optimal, we may end up with a data store,
rather than a database.
A lack of proper ACID guarantees is a recurring complaint from the relational
world. Indeed, if a developer needs access to more than one document at a time,
it is not easy to guarantee RDBMS properties, as there are no transactions.
Having no transactions, in the RDBMS sense, also means that complex writes will
need to have application-level logic to roll back. If you need to update three
documents in two collections to mark an application-level transaction complete,
and the third document does not get updated for whatever reason, the
application will need to undo the previous two writes, something that may not
exactly be trivial.
With the introduction of multi-document transactions in version 4.0, MongoDB
can cope with ACID transactions at the expense of speed. While this is not ideal,
and transactions are not meant to be used for every CRUD operation in
MongoDB, it does address the main source of criticism.
Defaults that favored setting up MongoDB but not operating it in a production
environment are disapproved. For years, the default write behavior was write
and forget; sending a write wouldn't wait for an acknowledgement before
attempting the next write, resulting in insane write speeds with poor behaviors
in cases of failure. Authentication is also an afterthought, leaving thousands of
MongoDB databases on the public internet prey to whoever wants to read the
stored data. Even though these were conscious design decisions, they are
decisions that have affected developers' perceptions of MongoDB.

MongoDB – A Database for Modern Web Chapter 1

[19]

MongoDB configuration and best practices
In this section, we will present some of the best practice around operations, schema design,
durability, replication, sharding, and security. Further information on when to implement
these best practices will be presented in later chapters.

Operational best practices
As a database, MongoDB is built with developers in mind, and it was developed during the
web era, so it does not require as much operational overhead as traditional RDBMS. That
being said, there are some best practices that need to be followed to be proactive and
achieve high availability goals.

In order of importance, the best practices are as follows:

Turn journaling on by default: Journaling uses a write-ahead log to be able to
recover if a MongoDB server gets shut down abruptly. With the MMAPv1
storage engine, journaling should always be on. With the WiredTiger storage
engine, journaling and checkpointing are used together, to ensure data
durability. In any case, it is a good practice to use journaling and fine-tune the
size of journals and the frequency of checkpoints, to avoid the risk of data loss. In
MMAPv1, the journal is flushed to the disk every 100 ms, by default. If
MongoDB is waiting for the journal before acknowledging the write operation,
the journal is flushed to the disk every 30 ms.
Your working set should fit in the memory: Again, especially when using
MMAPv1, the working set is best being less than the RAM of the underlying
machine or VM. MMAPv1 uses memory mapped files from the underlying
operating system, which can be a great benefit if there isn't much swap
happening between the RAM and disk. WiredTiger, on the other hand, is much
more efficient at using the memory, but still benefits greatly from the same
principles. The working set is maximum the datasize and plus the index size as
reported by db.stats().
Mind the location of your data files: Data files can be mounted anywhere by
using the --dbpath command-line option. It is really important to make sure
that data files are stored in partitions with sufficient disk space, preferably XFS,
or at least Ext4.

MongoDB – A Database for Modern Web Chapter 1

[20]

Keep yourself updated with versions: Even major numbered versions are the
stable ones. So, 3.2 is stable, whereas 3.3 is not. In this example, 3.3 is the
developmental version that will eventually materialize into the stable version 3.4.
It is a good practice to always update to the latest security updated version (4.0.2,
at the time of writing this book) and to consider updating as soon as the next
stable version comes out (4.2, in this example).
Use Mongo MMS to graphically monitor your service: The free MongoDB, Inc.
monitoring service is a great tool to get an overview of a MongoDB cluster,
notifications, and alerts and to be proactive about potential issues.
Scale up if your metrics show heavy use: Do not wait until it is too late.
Utilizing more than 65% in CPU or RAM, or starting to notice disk swapping,
should both be the threshold to start thinking about scaling, either vertically (by
using bigger machines) or horizontally (by sharding).
Be careful when sharding: Sharding is a strong commitment to your shard key.
If you make the wrong decision, it may be really difficult to go back, from
an operational perspective. When designing for sharding, architects need to take
deep considerations of the current workloads (reads/writes) and what the current
and expected data access patterns are.
Use an application driver maintained by the MongoDB team: These drivers are
supported and tend to get updated faster than drivers with no official support. If
MongoDB does not support the language that you are using yet, please open a
ticket in MongoDB's JIRA tracking system.
Schedule regular backups: No matter whether you are using standalone servers,
replica sets, or sharding, a regular backup policy should also be used as a second-
level guard against data loss. XFS is a great choice as a filesystem, as it can
perform snapshot backups.
Manual backups should be avoided: Regular, automated backups should be
used, when possible. If we need to resort to a manual backup, then we can use a
hidden member in a replica set to take the backup from. We have to make sure
that we are using db.fsyncwithlock at this member, to get the maximum
consistency at this node, along with having journaling turned on. If this volume
is on AWS, we can get away with taking an EBS snapshot straight away.
Enable database access control: Never, ever put a database into a production
system without access control. Access control should be implemented at a node
level, by a proper firewall that only allows access to specific application servers
to the database, and at a DB level, by using the built-in roles or defining custom
defined ones. This has to be initialized at start up time by using the --auth
command-line parameter and can be configured by using the admin collection.

MongoDB – A Database for Modern Web Chapter 1

[21]

Test your deployment using real data: Since MongoDB is a schema-less,
document-oriented database, you may have documents with varying fields. This
means that it is even more important than with an RDBMS to test using data that
resembles production data as closely as possible. A document with an extra field
of an unexpected value can make the difference between an application working
smoothly or crashing at runtime. Try to deploy a staging server using
production-level data, or at least fake your production data in staging, by using
an appropriate library, such as Faker for Ruby.

Schema design best practices
MongoDB is schema-less, and you have to design your collections and indexes to
accommodate for this fact:

Index early and often: Identify common query patterns, using MMS, Compass
GUI, or logs, and index for these early, using as many indexes as possible at the
beginning of a project.
Eliminate unnecessary indexes: A bit counter-intuitive to the preceding
suggestion, monitor your database for changing query patterns, and drop the
indexes that are not being used. An index will consume RAM and I/O, as it needs
to be stored and updated along with documents in the database. Using an
aggregation pipeline and $indexStats, a developer can identify the indexes
that are seldom being used and eliminate them.
Use a compound index, rather than index intersection: Querying with multiple
predicates (A and B, C or D and E, and so on) will work better with a single
compound index than with multiple simple indexes, most of the time. Also, a
compound index will have its data ordered by field, and we can use this to our
advantage when querying. An index on fields A, B, and C will be used in queries
for A, (A,B), (A,B,C), but not in querying for (B,C) or (C).
Low selectivity indexes: Indexing a field on gender, for example, will
statistically return half of our documents back, whereas an index on last name
will only return a handful of documents with the same last name.
Use regular expressions: Again, since indexes are ordered by value, searching
using a regular expression with leading wildcards (that is, /.*BASE/) won't be
able to use the index. Searching with trailing wildcards (that is, /DATA.*/) can
be efficient, as long as there are enough case-sensitive characters in the
expression.
Avoid negation in queries: Indexes are indexing values, not the absence of them.
Using NOT in queries can result in full table scans, instead of using the index.

MongoDB – A Database for Modern Web Chapter 1

[22]

Use partial indexes: If we need to index a subset of the documents in a collection,
partial indexes can help us to minimize the index set and improve performance.
A partial index will include a condition on the filter that we use in the desired
query.
Use document validation: Use document validation to monitor for new
attributes being inserted into your documents and decide what to do with them.
With document validation set to warn, we can keep a log of documents that were
inserted with arbitrary attributes that we did not expect during the design phase,
and decide whether this is a bug or a feature of our design.
Use MongoDB Compass: MongoDB's free visualization tool is great for getting a
quick overview of our data and how it grows over time.
Respect the maximum document size of 16 MB: The maximum document size
for MongoDB is 16 MB. This is a fairly generous limit, but it is one that should
not be violated under any circumstances. Allowing for documents to grow
unbounded should not be an option, and, as efficient as it may be to embed
documents, we should always keep in mind that this should be under control.
Use the appropriate storage engine: MongoDB has introduced several new
storage engines since version 3.2. The in-memory storage engine should be used
for real-time workloads, whereas the encrypted storage engine should be the
engine of choice when there are strict requirements around data security.

Best practices for write durability
Writing durability can be fine-tuned in MongoDB, and, according to our application design,
it should be as strict as possible, without affecting our performance goals.

Fine-tune the data and flush it to the disk interval in the WiredTiger storage engine, the
default is to flush data to the disk every 60 seconds after the last checkpoint, or after 2 GB of
data has been written. This can be changed by using the --
wiredTigerCheckpointDelaySecs command-line option.

In MMAPv1, data files are flushed to the disk every 60 seconds. This can be changed by
using the --syncDelay command-line option. We can also perform various tasks, such as
the following:

With WiredTiger, we can use the XFS filesystem for multi-disk consistent
snapshots
We can turn off atime and diratime in data volumes
You can make sure that you have enough swap space (usually double your
memory size)

MongoDB – A Database for Modern Web Chapter 1

[23]

You can use a NOOP scheduler if you are running in virtualization environments
We can raise file descriptor limits to the tens of thousands
We can disable transparent huge pages and enable standard 4-KVM pages
instead
Write safety should be journaled, at the very least
SSD read ahead default should be set to 16 blocks; HDD should be 32 blocks
We can turn NUMA off in BIOS
We can use RAID 10
You can synchronize the time between hosts by using NTP, especially in sharded
environments
Only use 64-bit builds for production; 32-bit builds are outdated and can only
support up to 2 GB of memory

Best practices for replication
Replica sets are MongoDB's mechanism to provide redundancy, high availability, and
higher read throughput, under the right conditions. In MongoDB, replication is easy to
configure and focus in operational terms:

Always use replica sets: Even if your dataset is small at the moment, and you
don't expect it to grow exponentially, you never know when that might happen.
Also, having a replica set of at least three servers helps to design for redundancy,
separating the workloads between real time and analytics (using the secondary)
and having data redundancy built from day one.
Use a replica set to your advantage: A replica set is not just for data replication.
We can (and should, in most cases) use the primary server for writes and
preference reads from one of the secondary to offload the primary server. This
can be done by setting read preferences for reads, along with the correct write
concern, to ensure that writes propagate as needed.
Use an odd number of replicas in a MongoDB replica set: If a server is down or
loses connectivity with the rest of them (network partitioning), the rest have to
vote as to which one will be elected as the primary server. If we have an odd
number of replica set members, we can guarantee that each subset of servers
knows if they belong to the majority or the minority of the replica set members. If
we can not have an odd number of replicas, we need to have one extra host set as
an arbiter, with the sole purpose of voting in the election process. Even a micro-
instance in EC2 could serve this purpose.

MongoDB – A Database for Modern Web Chapter 1

[24]

Best practices for sharding
Sharding is MongoDB's solution for horizontal scaling. In Chapter 8, Monitoring, Backup,
and Security, we will go over its usage in more detail, but the following are some best
practices, based on the underlying data architecture:

Think about query routing: Based on different shard keys and techniques, the
mongos query router may direct the query to some (or all) of the members of a
shard. It is important to take our queries into account when designing sharding,
so that we don't end up with our queries hitting all of our shards.
Use tag-aware sharding: Tags can provide more fine-grained distribution of data
across our shards. Using the right set of tags for each shard, we can ensure that
subsets of data get stored in a specific set of shards. This can be useful for data
proximity between application servers, MongoDB shards, and the users.

Best practices for security
Security is always a multi-layered approach, and these few recommendations do not form
an exhaustive list; they are just the bare basics that need to be done in any MongoDB
database:

The HTTP status interface should be disabled.
The RESTful API should be disabled.
The JSON API should be disabled.
Connect to MongoDB using SSL.
Audit the system activity.
Use a dedicated system user to access MongoDB with appropriate system-level
access.
Disable server-side scripting if it is not needed. This will affect MapReduce, built-
in db.group() commands, and $where operations. If these are not used in your
codebase, it is better to disable server-side scripting at startup by using the --
noscripting parameter.

MongoDB – A Database for Modern Web Chapter 1

[25]

Best practices for AWS
When we are using MongoDB, we can use our own servers in a data center, a MongoDB-
hosted solution such as MongoDB Atlas, or we can get instances from Amazon by using
EC2. EC2 instances are virtualized and share resources in a transparent way, with
collocated VMs in the same physical host. So, there are some more considerations to take
into account if you are going down that route, as follows:

Use EBS-optimized EC2 instances.
Get EBS volumes with provisioned I/O operations per second (IOPS) for
consistent performance.
Use EBS snapshotting for backup and restore.
Use different availability zones for high availability and different regions for
disaster recovery. Using different availability zones within each region that
Amazon provides guarantees that our data will be highly available. Different
regions should only be used for disaster recovery, in case a catastrophic event
ever takes out an entire region. A region might be EU-West-2 (for London),
whereas an availability zone is a subdivision within a region; currently, two
availability zones are available for London.
Deploy global; access local.
For truly global applications with users from different time zones, we should
have application servers in different regions access the data that is closest to
them, using the right read preference configuration in each server.

Reference documentation
Reading a book is great (and reading this book is even greater), but continuous learning is
the only way to keep up to date with MongoDB. In the following sections, we will highlight
the places that you should go for updates and development/operational references.

MongoDB documentation
The online documentation available at https:/ /docs. mongodb. com/ manual/ is the starting
point for every developer, new or seasoned.

The JIRA tracker is a great place to take a look at fixed bugs and the features that are
coming up next: https:/ /jira. mongodb. org/ browse/ SERVER/ .

https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://docs.mongodb.com/manual/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/
https://jira.mongodb.org/browse/SERVER/

MongoDB – A Database for Modern Web Chapter 1

[26]

Packt references
Some other great books on MongoDB are as follows:

MongoDB for Java Developers, by Francesco Marchioni
MongoDB Data Modeling, by Wilson da Rocha França
Any book by Kristina Chodorow

Further reading
The MongoDB user group (https:/ /groups. google. com/forum/ #!forum/ mongodb- user)
has a great archive of user questions about features and long-standing bugs. It is a place to
go when something doesn't work as expected.

Online forums (Stack Overflow and Reddit, among others) are always a source of
knowledge, with the caveat that something may have been posted a few years ago and may
not apply anymore. Always check before trying.

Finally, MongoDB University is a great place to keep your skills up to date and to learn
about the latest features and additions: https:/ / university. mongodb. com/ .

Summary
In this chapter, we started our journey through web, SQL, and NoSQL technologies, from
their inception to their current states. We identified how MongoDB has been shaping the
world of NoSQL databases over the years, and how it is positioned against other SQL and
NoSQL solutions.

We explored MongoDB's key characteristics and how MongoDB has been used in
production deployments. We identified the best practices for designing, deploying, and
operating MongoDB.

Initially, we identified how to learn by going through documentation and online resources
that can be used to stay up-to-date with the latest features and developments.

In the next chapter, we will go deeper into schema design and data modeling, looking at
how to connect to MongoDB by using both the official drivers and an Object Document
Mapper (ODM), a variation of object-relational mappers for NoSQL databases.

https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://groups.google.com/forum/#!forum/mongodb-user
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/
https://university.mongodb.com/

2
Schema Design and Data

Modeling
This chapter will focus on schema design for schema less databases such as MongoDB.
Although this may sound counter-intuitive, there are considerations that we should take
into account when we develop for MongoDB. We will learn about the schema
considerations and the data types supported by MongoDB. We will also learn about
preparing data for text searches in MongoDB by connecting Ruby, Python, and PHP.

In this chapter, we will cover the following topics:

Relational schema design
Data modeling
Modeling data for atomic operations
Modeling relationships
Connecting to MongoDB

Relational schema design
In relational databases, we design with the goal of avoiding anomalies and redundancy.
Anomalies can happen when we have the same information stored in multiple columns; we
update one of them but not the rest and so end up with conflicting information for the same
column of information. An anomaly can also happen when we cannot delete a row without
losing information that we need, possibly in other rows referenced by it. Data redundancy
can happen when our data is not in a normal form, but has duplicate data across different
tables. This can lead to data inconsistency and is difficult to maintain.

Schema Design and Data Modeling Chapter 2

[28]

In relational databases, we use normal forms to normalize our data. Starting from the basic
First Normal Form (1NF), onto the 2NF, 3NF, and BCNF, we model our data, taking
functional dependencies into account and, if we follow the rules, we can end up with many
more tables than domain model objects.

In practice, relational database modeling is often driven by the structure of the data that we
have. In web applications following some sort of Model-View-Controller (MVC) model
pattern, we will model our database according to our models, which are modeled after the
Unified Modeling Language (UML) diagram conventions. Abstractions such as the ORM
for Django or the Active Record for Rails help application developers abstract database
structure to object models. Ultimately, many times, we end up designing our database
based on the structure of the available data. Thus, we are designing around the answers
that we can have.

MongoDB schema design
In contrast to relational databases, in MongoDB we have to base our modeling on our
application-specific data access patterns. Finding out the questions that our users will have
is paramount to designing our entities. In contrast to an RDBMS, data duplication and
denormalization are used far more frequently and with solid reason.

The document model that MongoDB uses means that every document can hold
substantially more or less information than the next one, even within the same collection.
Coupled with rich and detailed queries being possible in MongoDB in the embedded
document level, this means that we are free to design our documents in any way that we
want. When we know our data access patterns, we can estimate which fields need to be
embedded and which can be split out to different collections.

Read-write ratio
The read to write ratio is often an important design consideration for MongoDB modeling.
When reading data, we want to avoid scatter/gather situations, where we have to hit
several shards with random I/O requests to get the data our application needs.

When writing data, on the other hand, we want to spread out writes to as many servers as
possible, to avoid overloading any single one of them. These goals appear to be conflicting
on the surface, but they can be combined once we know our access patterns, coupled with
application design considerations, such as using a replica set to read from secondary nodes.

Schema Design and Data Modeling Chapter 2

[29]

Data modeling
In this section, we will discuss the different data types MongoDB uses, how they map to
the data types that programming languages use, and how we can model data relationships
in MongoDB using Ruby, Python, and PHP.

Data types
MongoDB uses BSON, a binary-encoded serialization for JSON documents. BSON
extends the JSON data types, offering, for example, native data and binary data types.

BSON, compared to protocol buffers, allows for more flexible schemas that come at the cost
of space efficiency. In general, BSON is space-efficient, easy to traverse, and time-efficient
in encoding/decoding operations, as can be seen in the following table. (See the
MongoDB documentation at https:/ /docs. mongodb. com/ manual/ reference/ bson- types/
):

Type Number Alias Notes
Double 1 double

String 2 string

Object 3 object

Array 4 array

Binary data 5 binData

ObjectID 7 objectId

Boolean 8 bool

Date 9 date

Null 10 null

Regular expression 11 regex

JavaScript 13 javascript

JavaScript (with scope) 15 javascriptWithScope

32-bit integer 16 int

Timestamp 17 timestamp

64-bit integer 18 long

Decimal128 19 decimal New in version 3.4
Min key -1 minKey

Max key 127 maxKey

Undefined 6 undefined Deprecated
DBPointer 12 dbPointer Deprecated
Symbol 14 symbol Deprecated

https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/bson-types/

Schema Design and Data Modeling Chapter 2

[30]

In MongoDB, we can have documents with different value types for a given field and we
distinguish among them when querying using the $type operator.

For example, if we have a balance field in GBP with 32-bit integers and double data
types, if balance has pennies in it or not, we can easily query for all accounts that have a
rounded balance with any of the following queries shown in the example:

db.account.find({ "balance" : { $type : 16 } });
db.account.find({ "balance" : { $type : "integer" } });

We will compare the different data types in the following section.

Comparing different data types
Due to the nature of MongoDB, it's perfectly acceptable to have different data type objects
in the same field. This may happen by accident or on purpose (that is, null and actual
values in a field).

The sorting order of different types of data, from highest to lowest, is as follows:

Max key (internal type)1.
Regular expression2.
Timestamp3.
Date4.
Boolean5.
ObjectID6.
Binary data7.
Array8.
Object9.
Symbol, string10.
Numbers (int, long, double)11.
Null12.
Min key (internal type)13.

Non-existent fields get sorted as if they have null in the respective field. Comparing arrays
is a bit more complex than fields. An ascending order of comparison (or <) will compare the
smallest element of each array. A descending order of comparison (or >) will compare the
largest element of each array.

Schema Design and Data Modeling Chapter 2

[31]

For example, see the following scenario:

> db.types.find()
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3] }
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5] }

In ascending order, this is as follows:

> db.types.find().sort({a:1})
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3] }
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5] }

However, in descending order, it is as follows:

> db.types.find().sort({a:-1})
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5] }
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3] }

The same applies when comparing an array with a single number value, as illustrated in
the following example. Inserting a new document with an integer value of 4 is done as
follows:

> db.types.insert({"a":4})
WriteResult({ "nInserted" : 1 })

The following example shows the code snippet for a descending sort:

> db.types.find().sort({a:-1})
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5] }
{ "_id" : ObjectId("5908d73c55454e2de6519c4c"), "a" : 4 }
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3] }

And the following example is the code snippet for an ascending sort:

> db.types.find().sort({a:1})
{ "_id" : ObjectId("5908d58455454e2de6519c49"), "a" : [1, 2, 3] }
{ "_id" : ObjectId("5908d59d55454e2de6519c4a"), "a" : [2, 5] }
{ "_id" : ObjectId("5908d73c55454e2de6519c4c"), "a" : 4 }

In each case, we highlighted the values being compared in bold.

We will learn about the data type in the following section.

Schema Design and Data Modeling Chapter 2

[32]

Date type
Dates are stored as milliseconds with effect from January 01, 1970 (epoch time). They are
64-bit signed integers, allowing for a range of 135 million years before and after 1970. A
negative date value denotes a date before January 01, 1970. The BSON specification refers to
the date type as UTC DateTime.

Dates in MongoDB are stored in UTC. There isn't timestamp with a timezone data type
like in some relational databases. Applications that need to access and modify timestamps,
based on local time, should store the timezone offset together with the date and offset
dates on an application level.

In the MongoDB shell, this could be done using the following format with JavaScript:

var now = new Date();
db.page_views.save({date: now,
 offset: now.getTimezoneOffset()});

Then you need to apply the saved offset to reconstruct the original local time, as in the
following example:

var record = db.page_views.findOne();
var localNow = new Date(record.date.getTime() - (record.offset * 60000)
);

In the next section, we will cover ObjectId.

ObjectId
ObjectId is a special data type for MongoDB. Every document has an _id field from
cradle to grave. It is the primary key for each document in a collection and has to be
unique. If we omit this field in a create statement, it will be assigned automatically with
an ObjectId.

Messing with ObjectId is not advisable but we can use it (with caution!) for our purposes.

ObjectId has the following distinctions:

It has 12 bytes
It is ordered
Sorting by _id will sort by creation time for each document
Storing the creation time can be accessed by .getTimeStamp() in the shell

Schema Design and Data Modeling Chapter 2

[33]

The structure of an ObjectId has the following:

A 4-byte value representing the seconds since the Unix epoch
A 3-byte machine identifier
A 2-byte process ID
A 3-byte counter, starting with a random value

The following diagram shows the structure of an ObjectID:

By its structure, ObjectId will be unique for all purposes; however, since this is generated
on the client side, you should check the underlying library's source code to verify that
implementation is according to specification.

In the next section, we will learn about modeling data for atomic operations.

Modeling data for atomic operations
MongoDB is relaxing many of the typical Atomicity, Consistency, Isolation and
Durability (ACID) constraints found in RDBMS. In the absence of transactions, it can
sometimes be difficult to keep the state consistent across operations, especially in the event
of failures.

Luckily, some operations are atomic at the document level:

update()

findandmodify()

remove()

These are all atomic (all or nothing) for a single document.

This means that, if we embed information in the same document, we can make sure they
are always in sync.

Schema Design and Data Modeling Chapter 2

[34]

An example would be an inventory application, with a document per item in our inventory,
where we would need to total the available items left in stock how many have been placed
in a shopping cart in sync, and use this data to sum up the total available items.

With total_available = 5, available_now = 3, shopping_cart_count = 2, this
use case could look like the following: {available_now : 3, Shopping_cart_by:
["userA", "userB"] }

When someone places the item in their shopping cart, we can issue an atomic update,
adding their user ID in the shopping_cart_by field and, at the same time, decreasing the
available_now field by one.

This operation will be guaranteed to be atomic at the document level. If we need to update
multiple documents within the same collection, the update operation may complete
successfully without modifying all of the documents that we intended it to. This could
happen because the operation is not guaranteed to be atomic across multiple document
updates.

This pattern can help in some, but not all, cases. In many cases, we need multiple updates
to be applied on all or nothing across documents, or even collections.

A typical example would be a bank transfer between two accounts. We want to subtract x
GBP from user A, then add x to user B. If we fail to do either of the two steps, we would
return to the original state for both balances.

The details of this pattern are outside the scope of this book, but roughly, the idea is to
implement a hand-coded two phase commit protocol. This protocol should create a new
transaction entry for each transfer with every possible state in this transaction: such as
initial, pending, applied, done, cancelling, cancelled, and, based on the state that each
transaction is left at, applying the appropriate rollback function to it.

If you find yourself having to implement transactions in a database that was built to avoid
them, take a step back and rethink why you need to do that.

Write isolation
Sparingly, we could use $isolated to isolate writes to multiple documents from other
writers or readers to these documents. In the previous example, we could use $isolated
to update multiple documents and make sure that we update both balances before anyone
else gets the chance to double-spend, draining the source account of its funds.

Schema Design and Data Modeling Chapter 2

[35]

What this won't give us though, is atomicity, the all-or-nothing approach. So, if the update
only partially modifies both accounts, we still need to detect and unroll any modifications
made in the pending state.

$isolated uses an exclusive lock on the entire collection, no matter which storage engine
is used. This means a severe speed penalty when using it, especially for WiredTiger
document-level locking semantics.

$isolated does not work with sharded clusters, which may be an issue when we decide to
go from replica sets to sharded deployment.

Read isolation and consistency
MongoDB read operations would be characterized as read uncommitted in a traditional
RDBMS definition. What this means is that, by default, reads may get values that may not
finally persist to the disk in the event of, for example, data loss or a replica set rollback
operation.

In particular, when updating multiple documents with the default write behavior, lack of
isolation may result in the following:

Reads may miss documents that were updated during the update operations
Non-serializable operations
Read operations are not point-in-time

These can be resolved by using the $isolated operator with a heavy performance penalty.

Queries with cursors that don't use .snapshot() may also, in some cases, get inconsistent
results. This can happen if the query's resultant cursor fetches a document, which receives
an update while the query is still fetching results, and, because of insufficient padding,
ends up in a different physical location on the disk, ahead of the query's result cursor
position. .snapshot() is a solution for this edge case, with the following limitations:

It doesn't work with sharding
It doesn't work with sort() or hint() to force an index to be used
It still won't provide point-in-time read behavior

If our collection has mostly static data, we can use a unique index in the query field to
simulate snapshot() and still be able to apply sort() to it.

All in all, we need to apply safeguards at the application level to make sure that we won't
end up with unexpected results.

Schema Design and Data Modeling Chapter 2

[36]

Starting from version 3.4, MongoDB offers linearizable read concern. With linearizable read
concern from the primary member of a replica set and a majority write concern, we can
ensure that multiple threads can read and write a single document as if a single thread was
performing these operations one after the other. This is considered a linearizable schedule
in RDBMS, and MongoDB calls it the real-time order.

Modeling relationships
In the following sections, we will explain how we can translate relationships in RDBMS
theory into MongoDB's document-collection hierarchy. We will also examine how we can
model our data for text search in MongoDB.

One-to-one
Coming from the relational DB world, we identify objects by their relationships. A one-to-
one relationship could be a person with an address. Modeling it in a relational database
would most probably require two tables: a Person and an Address table with a foreign key
person_id in the Address table, as shown in the following diagram:

The perfect analogy in MongoDB would be two collections, Person and Address, as
shown in the following code:

> db.Person.findOne()
{
"_id" : ObjectId("590a530e3e37d79acac26a41"), "name" : "alex"
}
> db.Address.findOne()
{
"_id" : ObjectId("590a537f3e37d79acac26a42"),
"person_id" : ObjectId("590a530e3e37d79acac26a41"),
"address" : "N29DD"
}

Schema Design and Data Modeling Chapter 2

[37]

Now, we can use the same pattern as we do in a relational database to find Person from
address, as shown in the following example:

> db.Person.find({"_id":
db.Address.findOne({"address":"N29DD"}).person_id})
{
"_id" : ObjectId("590a530e3e37d79acac26a41"), "name" : "alex"
}

This pattern is well known and works in the relational world.

In MongoDB, we don't have to follow this pattern, as there are more suitable ways to model
these kinds of relationship.

One way in which we would typically model one-to-one or one-to-many relationships in
MongoDB would be through embedding. If the person has two addresses, then the same
example would then be shown in the following way:

{ "_id" : ObjectId("590a55863e37d79acac26a43"), "name" : "alex", "address"
: ["N29DD", "SW1E5ND"] }

Using an embedded array, we can have access to every address this user has. Embedding
querying is rich and flexible so that we can store more information in each document, as
shown in the following example:

{ "_id" : ObjectId("590a56743e37d79acac26a44"),
"name" : "alex",
"address" : [{ "description" : "home", "postcode" : "N29DD" },
{ "description" : "work", "postcode" : "SW1E5ND" }] }

The advantages of this approach are as follows:

No need for two queries across different collections
It can exploit atomic updates to make sure that updates in the document will be
all-or-nothing from the perspective of other readers of this document
It can embed attributes in multiple nest levels creating complex structures

The most notable disadvantage is that the maximum size of the document is 16 MB so this
approach cannot be used for an arbitrary, ever-growing number of attributes. Storing
hundreds of elements in embedded arrays will also degrade performance.

Schema Design and Data Modeling Chapter 2

[38]

One-to-many and many-to-many
When the number of elements in the many side of the relationship can grow unbounded, it's
better to use references. References can come in two forms:

From the one side of the relationship, store an array of many-sided elements, as1.
shown in the following example:

> db.Person.findOne()
{ "_id" : ObjectId("590a530e3e37d79acac26a41"), "name" : "alex",
addresses:
[ObjectID('590a56743e37d79acac26a44'),
ObjectID('590a56743e37d79acac26a46'),
ObjectID('590a56743e37d79acac26a54')] }

This way we can get the array of addresses from the one-side and then query2.
with in to get all the documents from the many-side, as shown in the following
example:

> person = db.Person.findOne({"name":"mary"})
> addresses = db.Addresses.find({_id: {$in: person.addresses} })

Turning this one-to-many to many-to-many is as easy as storing this array in both
ends of the relationship (that is, in the Person and Address collections).

From the many-side of the relationship, store a reference to the one-side, as 3.
shown in the following example:

> db.Address.find()
{ "_id" : ObjectId("590a55863e37d79acac26a44"), "person":
ObjectId("590a530e3e37d79acac26a41"), "address" : ["N29DD"] }
{ "_id" : ObjectId("590a55863e37d79acac26a46"), "person":
ObjectId("590a530e3e37d79acac26a41"), "address" : ["SW1E5ND"] }
{ "_id" : ObjectId("590a55863e37d79acac26a54"), "person":
ObjectId("590a530e3e37d79acac26a41"), "address" : ["N225QG"] }
> person = db.Person.findOne({"name":"alex"})
> addresses = db.Addresses.find({"person": person._id})

As we can see, with both designs we need to make two queries to the database to
fetch the information. The second approach has the advantage that it won't let
any document grow unbounded, so it can be used in cases where one-to-many is
one-to-millions.

Schema Design and Data Modeling Chapter 2

[39]

Modeling data for keyword searches
Searching for keywords in a document is a common operation for many applications. If this
is a core operation, it makes sense to use a specialized store for search, such as
Elasticsearch; however, MongoDB can be used efficiently until scale dictates moving to a
different solution.

The basic need for a keyword search is to be able to search the entire document for
keywords. For example, with a document in the products collection, as shown in the
following code:

{ name : "Macbook Pro late 2016 15in" ,
 manufacturer : "Apple" ,
 price: 2000 ,
 keywords : ["Macbook Pro late 2016 15in", "2000", "Apple", "macbook",
"laptop", "computer"]
 }

We can create a multi-key index in the keywords field, as shown in the following code:

> db.products.createIndex({ keywords: 1 })

Now we can search in the keywords field for any name, manufacturer, price, and also any
of the custom keywords that we set up. This is not an efficient or flexible approach, as we
need to keep keywords lists in sync, we can't use stemming, and we can't rank results (it's
more like filtering than searching). The only advantage of this method is that it is slightly
quicker to implement.

Since version 2.4, MongoDB has had a special text index type. This can be declared in one
or multiple fields and supports stemming, tokenization, exact phrase (" "), negation (-),
and weighting results.

Index declaration on three fields with custom weights is shown in the following example:

db.products.createIndex({
 name: "text",
 manufacturer: "text",
 price: "text"
 },
 {
 weights: { name: 10,
 manufacturer: 5,
 price: 1 },
 name: "ProductIndex"
 })

Schema Design and Data Modeling Chapter 2

[40]

In this example, name is 10 times more important than price but only two times from
manufacturer.

A text index can also be declared with a wildcard, matching all the fields that match the
pattern, as shown in the following example:

db.collection.createIndex({ "$**": "text" })

This can be useful when we have unstructured data and we may not know all the fields
that they will come with. We can drop the index by name, just like with any other index.

The greatest advantage though, other than all the features, is that all record keeping is done
by the database.

In the next section, we will learn how to connect to MongoDB.

Connecting to MongoDB
There are two ways to connect to MongoDB. The first is by using the driver for your
programming language. The second is by using an ODM layer to map your model objects
to MongoDB in a transparent way. In this section, we will cover both ways, using three of
the most popular languages for web application development: Ruby, Python, and PHP.

Connecting using Ruby
Ruby was one of the first languages to have support from MongoDB with an official driver.
The official MongoDB Ruby driver on GitHub is the recommended way to connect to a
MongoDB instance. Perform the following steps to connect MongoDB using Ruby:

Installation is as simple as adding it to the Gemfile, as shown in the following1.
example:

gem 'mongo', '~> 2.6'

You need to install Ruby, then install RVM from https:/ /rvm. io/ rvm/
install, and finally run gem install bundler for this.

https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install
https://rvm.io/rvm/install

Schema Design and Data Modeling Chapter 2

[41]

Then, in our class, we can connect to a database, as shown in the following2.
example:

require 'mongo'
client = Mongo::Client.new(['127.0.0.1:27017'], database: 'test')

This is the simplest example possible: connecting to a single database instance3.
called test in our localhost. In most use cases, we would at least have a
replica set to connect to, as shown in the following snippet:

client_host = ['server1_hostname:server1_ip,
server2_hostname:server2_ip']
 client_options = {
 database: 'YOUR_DATABASE_NAME',
 replica_set: 'REPLICA_SET_NAME',
 user: 'YOUR_USERNAME',
 password: 'YOUR_PASSWORD'
 }
client = Mongo::Client.new(client_host, client_options)

The client_host servers are seeding the client driver with servers to attempts4.
to connect. Once connected, the driver will determine the server that it has to
connect to according to the primary/secondary read or write configuration. The
replica_set attribute needs to match REPLICA_SET_NAME to be able to
connect.
user and password are optional, but highly recommended in any MongoDB5.
instance. It's good practice to enable authentication by default in the
mongod.conf file and we will learn more about this in Chapter 8, Monitoring,
Backup, and Security.
Connecting to a sharded cluster is similar to a replica set, with the only difference6.
being that, instead of supplying the server host/port, we need to connect to the
MongoDB process that serves as the MongoDB router.

Mongoid ODM
Using a low-level driver to connect to the MongoDB database is often not the most efficient
route. All the flexibility that a low-level driver provides is offset against longer
development times and code to glue our models with the database.

An ODM can be the answer to these problems. Just like ORMs, ODMs bridge the gap
between our models and the database. In Rails, the most widely-used MVC framework for
Ruby—Mongoid—can be used to model our data in a similar way to Active Record.

Schema Design and Data Modeling Chapter 2

[42]

Installing gem is similar to the Mongo Ruby driver, by adding a single file in the Gemfile, as
shown in the following code:

gem 'mongoid', '~> 7.0'

Depending on the version of Rails, we may need to add the following to application.rb
as well:

config.generators do |g|
g.orm :mongoid
end

Connecting to the database is done through a config file, mongoid.yml. Configuration
options are passed as key-value pairs with semantic indentation. Its structure is similar
to database.yml used for relational databases.

Some of the options that we can pass through the mongoid.yml file are shown in the
following table:

Option value Description
Database The database name.
Hosts Our database hosts.

Write/w The write concern (default is 1).

Auth_mech

Authentication mechanism. Valid options are:
:scram, :mongodb_cr, :mongodb_x509, and
:plain. The default option on 3.0 is :scram,
whereas the default on 2.4 and 2.6 is :plain.

Auth_source The authentication source for our authentication
mechanism.

Min_pool_size/max_pool_size Minimum and maximum pool size for connections.
SSL, ssl_cert, ssl_key,
ssl_key_pass_phrase, ssl_verify

A set of options regarding SSL connections to the
database.

Include_root_in_json Includes the root model name in JSON serialization.

Include_type_for_serialization
Includes the _type field when serializing MongoDB
objects.

Use_activesupport_time_zone Uses active support's time zone when converting
timestamps between server and client.

The next step is to modify our models to be stored in MongoDB. This is as simple as
including one line of code in the model declaration, as shown in the following example:

class Person
 include Mongoid::Document
 End

Schema Design and Data Modeling Chapter 2

[43]

We can also use the following code:

include Mongoid::Timestamps

We use it to generate created_at and updated_at fields in a similar way to Active
Record. Data fields do not need to be declared by type in our models, but it's good practice
to do so. The supported data types are as follows:

Array

BigDecimal

Boolean

Date

DateTime

Float

Hash

Integer

BSON::ObjectId

BSON::Binary

Range

Regexp

String

Symbol

Time

TimeWithZone

If the types of fields are not defined, fields will be cast to the object and stored in the
database. This is slightly faster, but doesn't support all types. If we try to use BigDecimal,
Date, DateTime, or Range, we will get back an error.

Inheritance with Mongoid models
The following code is an example of inheritance using the Mongoid models:

class Canvas
 include Mongoid::Document
 field :name, type: String
 embeds_many :shapes
end

Schema Design and Data Modeling Chapter 2

[44]

class Shape
 include Mongoid::Document
 field :x, type: Integer
 field :y, type: Integer
 embedded_in :canvas
end

class Circle < Shape
 field :radius, type: Float
end

class Rectangle < Shape
 field :width, type: Float
 field :height, type: Float
end

Now, we have a Canvas class with many Shape objects embedded in it. Mongoid will
automatically create a field, which is _type, to distinguish between parent and child node
fields. In scenarios where documents are inherited from their fields, relationships,
validations, and scopes get copied down into their child documents, but not vice-versa.

embeds_many and embedded_in pairs will create embedded sub-documents to store the
relationships. If we want to store these via referencing to ObjectId, we can do so by
substituting these with has_many and belongs_to.

Connecting using Python
A strong contender to Ruby and Rails is Python with Django. Similar to Mongoid, there is
MongoEngine and an official MongoDB low-level driver, PyMongo.

Installing PyMongo can be done using pip or easy_install, as shown in the following
code:

python -m pip install pymongo
python -m easy_install pymongo

Then, in our class, we can connect to a database, as shown in the following example:

>>> from pymongo import MongoClient
>>> client = MongoClient()

Schema Design and Data Modeling Chapter 2

[45]

Connecting to a replica set requires a set of seed servers for the client to find out what the
primary, secondary, or arbiter nodes in the set are, as indicated in the following example:

client =
pymongo.MongoClient('mongodb://user:passwd@node1:p1,node2:p2/?replicaSet=rs
name')

Using the connection string URL, we can pass a username and password and
the replicaSet name all in a single string. Some of the most interesting options for the
connection string URL are present in the next section.

Connecting to a shard requires the server host and IP for the MongoDB router, which is the
MongoDB process.

PyMODM ODM
Similar to Ruby's Mongoid, PyMODM is an ODM for Python that follows closely on
Django's built-in ORM. Installing pymodm can be done via pip, as shown in the following
code:

pip install pymodm

Then we need to edit settings.py and replace the database ENGINE with a dummy
database, as shown in the following code:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.dummy'
 }
}

Then we add our connection string anywhere in settings.py, as shown in the following
code:

from pymodm import connect
connect("mongodb://localhost:27017/myDatabase", alias="MyApplication")

Here, we have to use a connection string that has the following structure:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:port
N]]][/[database][?options]]

Schema Design and Data Modeling Chapter 2

[46]

Options have to be pairs of name=value with an & between each pair. Some interesting
pairs are shown in the following table:

Name Description
minPoolSize/maxPoolSize Minimum and maximum pool size for connections.
w Write concern option.
wtimeoutMS Timeout for write concern operations.
Journal Journal options.

readPreference
Read preference to be used for replica sets. Available
options are: primary, primaryPreferred,
secondary, secondaryPreferred, nearest.

maxStalenessSeconds
Specifies, in seconds, how stale (data lagging behind
master) a secondary can be before the client stops
using it for read operations.

SSL Using SSL to connect to the database.

authSource

Used in conjunction with username, this specifies
the database associated with the user's credentials.
When we use external authentication mechanisms,
this should be $external for LDAP or Kerberos.

authMechanism

Authentication mechanism can be used for
connections. Available options for MongoDB are:
SCRAM-SHA-1, MONGODB-CR, MONGODB-
X.509.
MongoDB enterprise (paid version) offers two more
options: GSSAPI (Kerberos), PLAIN (LDAP SASL)

Model classes need to inherit from MongoModel. The following code shows what a sample
class will look like:

from pymodm import MongoModel, fields
class User(MongoModel):
 email = fields.EmailField(primary_key=True)
 first_name = fields.CharField()
 last_name = fields.CharField()

This has a User class with first_name, last_name, and email fields, where email is the
primary field.

Schema Design and Data Modeling Chapter 2

[47]

Inheritance with PyMODM models
Handling one-to-one and one-to-many relationships in MongoDB can be done using
references or embedding. The following example shows both ways, which are references
for the model user and embedding for the comment model:

from pymodm import EmbeddedMongoModel, MongoModel, fields

class Comment(EmbeddedMongoModel):
 author = fields.ReferenceField(User)
 content = fields.CharField()

class Post(MongoModel):
 title = fields.CharField()
 author = fields.ReferenceField(User)
 revised_on = fields.DateTimeField()
 content = fields.CharField()
 comments = fields.EmbeddedDocumentListField(Comment)

Similar to Mongoid for Ruby, we can define relationships as being embedded or referenced,
depending on our design decision.

Connecting using PHP
The MongoDB PHP driver was rewritten from scratch two years ago to support the PHP 5,
PHP 7, and HHVM architectures. The current architecture is shown in the following
diagram:

Schema Design and Data Modeling Chapter 2

[48]

Currently, we have official drivers for all three architectures with full support for the
underlying functionality.

Installation is a two-step process. First, we need to install the MongoDB extension. This
extension is dependent on the version of PHP (or HHVM) that we have installed and can be
done using brew in macOS. The following example is with PHP 7.0:

brew install php70-mongodb

Then, use composer (a widely-used dependency manager for PHP) as shown in the
following example:

composer require mongodb/mongodb

Connecting to the database can be done by using the connection string URL or by passing
an array of options.

Using the connection string URL, we have the following code:

$client = new MongoDB\Client($uri = 'mongodb://127.0.0.1/', array
$uriOptions = [], array $driverOptions = [])

For example, to connect to a replica set using SSL authentication, we use the following
code:

$client = new
MongoDB\Client('mongodb://myUsername:myPassword@rs1.example.com,rs2.example
.com/?ssl=true&replicaSet=myReplicaSet&authSource=admin');

Or we can use the $uriOptions parameter to pass in parameters without using the
connection string URL, as shown in the following code:

$client = new MongoDB\Client(
 'mongodb://rs1.example.com,rs2.example.com/'
 [
 'username' => 'myUsername',
 'password' => 'myPassword',
 'ssl' => true,
 'replicaSet' => 'myReplicaSet',
 'authSource' => 'admin',
],
);

The set of $uriOptions and the connection string URL options available are analogous to
the ones used for Ruby and Python.

Schema Design and Data Modeling Chapter 2

[49]

Doctrine ODM
Laravel is one of the most widely-used MVC frameworks for PHP, similar in architecture to
Django and Rails from the Python and Ruby worlds respectively. We will follow through
configuring our models using Laravel, Doctrine, and MongoDB. This section assumes that
Doctrine is installed and working with Laravel 5.x.

Doctrine entities are Plain Old PHP Objects (POPO) that, unlike Eloquent, Laravel's
default ORM doesn't need to inherit from the Model class. Doctrine uses the Data Mapper
Pattern, whereas Eloquent uses Active Record. Skipping the get() and set() methods, a
simple class would be shown in the following way:

use Doctrine\ORM\Mapping AS ORM;
use Doctrine\Common\Collections\ArrayCollection;
/**
* @ORM\Entity
* @ORM\Table(name="scientist")
*/
class Scientist
{
 /**
 * @ORM\Id
 * @ORM\GeneratedValue
 * @ORM\Column(type="integer")
 */
 protected $id;
 /**
 * @ORM\Column(type="string")
 */
 protected $firstname;
 /**
 * @ORM\Column(type="string")
 */
 protected $lastname;
 /**
 * @ORM\OneToMany(targetEntity="Theory", mappedBy="scientist",
cascade={"persist"})
 * @var ArrayCollection|Theory[]
 */
 protected $theories;
 /**
 * @param $firstname
 * @param $lastname
 */
 public function __construct($firstname, $lastname)
 {
 $this->firstname = $firstname;

Schema Design and Data Modeling Chapter 2

[50]

 $this->lastname = $lastname;
 $this->theories = new ArrayCollection;
 }
...
 public function addTheory(Theory $theory)
 {
 if(!$this->theories->contains($theory)) {
 $theory->setScientist($this);
 $this->theories->add($theory);
 }
 }

This POPO-based model uses annotations to define field types that need to be persisted in
MongoDB. For example, @ORM\Column(type="string") defines a field in MongoDB with
the string types firstname and lastname as the attribute names, in the respective lines.

There is a whole set of annotations available here: https:/ /doctrine2. readthedocs. io/
en/latest/reference/ annotations- reference. html.

If we want to separate the POPO structure from annotations, we can also define them using
YAML or XML instead of inlining them with annotations in our POPO model classes.

Inheritance with Doctrine
Modeling one-to-one and one-to-many relationships can be done via annotations, YAML,
or XML. Using annotations, we can define multiple embedded sub-documents within our
document, as shown in the following example:

/** @Document */
class User
{
 // ...
 /** @EmbedMany(targetDocument="Phonenumber") */
 private $phonenumbers = array();
 // ...
}
/** @EmbeddedDocument */
class Phonenumber
{
 // ...
}

Here, a User document embeds many phonenumbers. @EmbedOne() will embed one sub-
document to be used for modeling one-to-one relationships.

https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html
https://doctrine2.readthedocs.io/en/latest/reference/annotations-reference.html

Schema Design and Data Modeling Chapter 2

[51]

Referencing is similar to embedding, as shown in the following example:

/** @Document */
class User
{
 // ...
 /**
 * @ReferenceMany(targetDocument="Account")
 */
 private $accounts = array();
 // ...
}
/** @Document */
class Account
{
 // ...
}

@ReferenceMany() and @ReferenceOne() are used to model one-to-many and one-to-
one relationships via referencing into a separate collection.

Summary
In this chapter, we learned about schema design for relational databases and MongoDB and
how we can achieve the same goal starting from a different starting point.

In MongoDB, we have to think about read and write ratios, the questions that our users will
have in the most common cases, and cardinality among relationships.

We learnt about atomic operations and how we can construct our queries so that we can
have ACID properties without the overhead of transactions.

We also learned about MongoDB data types, how they can be compared, and some special
data types, such as the ObjectId, which can be used both by the database and to our own
advantage.

Starting from modeling simple one-to-one relationships, we went through one-to-many and
also many-to-many relationship modeling, without the need for an intermediate table, as
we would do in a relational database, either using references or embedded documents.

We learned how to model data for keyword searches, one of the features that most
applications need to support in a web context.

Schema Design and Data Modeling Chapter 2

[52]

Finally, we explored different use cases for using MongoDB with three of the most popular
web programming languages. We saw examples using Ruby with the official driver and
Mongoid ODM. Then we explored how to connect using Python with the official driver and
PyMODM ODM, and, lastly, we worked through an example using PHP with the official
driver and Doctrine ODM.

With all these languages (and many others), there are both official drivers offering support
and full access functionality to the underlying database operations and also object data
modeling frameworks for ease of modeling our data and rapid development.

In the next chapter, we will dive deeper into the MongoDB shell and the operations we can
achieve using it. We will also master using the drivers for CRUD operations on our
documents.

2
Section 2: Querying Effectively

In this section, we will cover more advanced MongoDB operations. We will start with
CRUD operations, which are the most commonly used operations. Then, we will move on
to more advanced querying concepts, followed by multi-document ACID transactions,
which were introduced in version 4.0. The next topic to be covered is the aggregation
framework, which can help users process big data in a structured and efficient way. Finally,
we will learn how to index our data such that reads are way faster, but without impacting
write performance.

This section consists of the following chapters:

Chapter 3, MongoDB CRUD Operations
Chapter 4, Advanced Querying
Chapter 5, Multi-Document ACID Transactions
Chapter 6, Aggregation
Chapter 7, Indexing

3
MongoDB CRUD Operations

In this chapter, we will learn how to use the mongo shell for database administration
operations. Starting with simple create, read, update, and delete (CRUD) operations, we
will master scripting from the shell. We will also learn how to write MapReduce scripts
from the shell and contrast them to the aggregation framework, into which we will dive
deeper in Chapter 6, Aggregation. Finally, we will explore authentication and authorization
using the MongoDB community and its paid counterpart, the Enterprise Edition.

In this chapter we will cover the following topics:

CRUD using the shell
Administration
Aggregation framework
Securing the shell
Authentication with MongoDB

CRUD using the shell
The mongo shell is equivalent to the administration console used by relational databases.
Connecting to the mongo shell is as easy as typing the following code:

$ mongo

Type this on the command line for standalone servers or replica sets. Inside the shell, you
can view available databases simply by typing the following code:

$ db

Then, you can connect to a database by typing the following code:

> use <database_name>

MongoDB CRUD Operations Chapter 3

[55]

The mongo shell can be used to query and update data into our databases. Inserting this
document in the books collection can be done as follows:

> db.books.insert({title: 'mastering mongoDB', isbn: '101'})
WriteResult({ "nInserted" : 1 })

We can then find documents from a collection named books by typing the following:

> db.books.find()
{ "_id" : ObjectId("592033f6141daf984112d07c"), "title" : "mastering
mongoDB", "isbn" : "101" }

The result we get back from MongoDB informs us that the write succeeded and inserted
one new document in the database.

Deleting this document has a similar syntax and results in the following code:

> db.books.remove({isbn: '101'})
WriteResult({ "nRemoved" : 1 })

You can try to update this same document as shown in the following code block:

> db.books.update({isbn:'101'}, {price: 30})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
> db.books.find()
{ "_id" : ObjectId("592034c7141daf984112d07d"), "price" : 30 }

Here, we notice a couple of things:

The JSON-like formatted field in the update command is our query for searching
for documents to update
The WriteResult object notifies us that the query matched one document and
modified one document
Most importantly, the contents of this document were entirely replaced by the
contents of the second JSON-like formatted field but we have lost information
on title and isbn

By default, the update command in MongoDB will replace the contents of our document
with the document we specify in the second argument. If we want to update the document
and add new fields to it, we need to use the $set operator, as follows:

> db.books.update({isbn:'101'}, {$set: {price: 30}})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

MongoDB CRUD Operations Chapter 3

[56]

Now, our document matches what we would expect:

> db.books.find()
{ "_id" : ObjectId("592035f6141daf984112d07f"), "title" : "mastering
mongoDB", "isbn" : "101", "price" : 30 }

However, deleting a document can be done in several ways, the most simple way is
through its unique ObjectId:

> db.books.remove("592035f6141daf984112d07f")
WriteResult({ "nRemoved" : 1 })
> db.books.find()
>

You can see here that when there are no results, the mongo shell will not return anything
other than the shell prompt itself: >.

Scripting for the mongo shell
Administering the database using built-in commands is helpful, but it's not the main reason
for using the shell. The true power of the mongo shell comes from the fact that it is a
JavaScript shell.

We can declare and assign variables in the shell as follows:

> var title = 'MongoDB in a nutshell'
> title
MongoDB in a nutshell
> db.books.insert({title: title, isbn: 102})
WriteResult({ "nInserted" : 1 })
> db.books.find()
{ "_id" : ObjectId("59203874141daf984112d080"), "title" : "MongoDB in a
nutshell", "isbn" : 102 }

In the previous example, we declared a new title variable as MongoDB in a
nutshell and used the variable to insert a new document into our books collection, as
shown in the following code.

MongoDB CRUD Operations Chapter 3

[57]

As it's a JavaScript shell, we can use it for functions and scripts that generate complex
results from our database:

> queryBooksByIsbn = function(isbn) { return db.books.find({isbn: isbn})}

With this one-liner, we are creating a new function named queryBooksByIsbn that takes a
single argument, which is the isbn value. With the data that we have in our collection, we
can use our new function and fetch books by isbn, as shown in the following code:

> queryBooksByIsbn("101")
{ "_id" : ObjectId("592035f6141daf984112d07f"), "title" : "mastering
mongoDB", "isbn" : "101", "price" : 30 }

Using the shell, we can write and test these scripts. Once we are satisfied, we can store them
in the .js file and invoke them directly from the command line:

$ mongo <script_name>.js

Here are some useful notes about the default behavior of these scripts:

Write operations will use a default write concern of 1, which is global for
MongoDB as of the current version. As write concern of 1 will request an
acknowledgement that the write operation has propagated to the standalone
mongod server or the primary server in a replica set.
To get results from operations from a script back to standard output, we must
use either JavaScript's built-in print() function or the mongo-specific
printjson() function, which prints out results formatted in JSON.

The differences between scripting for the mongo shell
and using it directly
When writing scripts for the mongo shell, we cannot use the shell helpers. MongoDB's
commands, such as use <database_name>, show collections, and other helpers are
built into the shell and so are not available from the JavaScript context where our scripts
will get executed. Fortunately, there are equivalents to them that are available from the
JavaScript execution context, as shown in the following table:

Shell helpers JavaScript equivalents
show dbs, show databases db.adminCommand('listDatabases')

use <database_name> db = db.getSiblingDB('<database_name>')

show collections db.getCollectionNames()

MongoDB CRUD Operations Chapter 3

[58]

show users db.getUsers()

show roles db.getRoles({showBuiltinRoles: true})

show log <logname> db.adminCommand({ 'getLog' : '<logname>' })

show logs db.adminCommand({ 'getLog' : '*' })

it

cursor = db.collection.find()
if (cursor.hasNext()){
 cursor.next();
}

In the previous table, it is the iteration cursor that the mongo shell returns when we query
and get back too many results to show in one batch.

Using the mongo shell, we can script almost anything that we would from a client, meaning
that we have a really powerful tool for prototyping and getting quick insights into our data.

Batch inserts using the shell
When using the shell, there will be many times we want to insert a large number of
documents programmatically. The most straightforward implementation since we have a
JavaScript shell, is to iterate through a loop, generating each document along the way, and
performing a write operation in every iteration in the loop, as follows:

> authorMongoFactory = function() {for(loop=0;loop<1000;loop++)
{db.books.insert({name: "MongoDB factory book" + loop})}}
function () {for(loop=0;loop<1000;loop++) {db.books.insert({name: "MongoDB
factory book" + loop})}}

In this simple example, we create an authorMongoFactory() method for an author who
writes 1000 books on MongoDB with a slightly different name for each one:

> authorMongoFactory()

This will result in 1000 writes being issued to the database. While it is simple from a
development point of view, this method will put a strain on the database.

MongoDB CRUD Operations Chapter 3

[59]

Instead, using a bulk write, we can issue a single database insert command with the
1000 documents that we have prepared beforehand, as follows:

> fastAuthorMongoFactory = function() {
var bulk = db.books.initializeUnorderedBulkOp();
for(loop=0;loop<1000;loop++) {bulk.insert({name: "MongoDB factory book" +
loop})}
bulk.execute();
}

The end result is the same as before, with the 1000 documents being inserted with the
following structure in our books collection:

> db.books.find()
{ "_id" : ObjectId("59204251141daf984112d851"), "name" : "MongoDB factory
book0" }
{ "_id" : ObjectId("59204251141daf984112d852"), "name" : "MongoDB factory
book1" }
{ "_id" : ObjectId("59204251141daf984112d853"), "name" : "MongoDB factory
book2" }
…
{ "_id" : ObjectId("59204251141daf984112d853"), "name" : "MongoDB factory
book999" }

The difference from the user's perspective lies in the speed of execution and reduced strain
on the database.

In the preceding example, we used initializeUnorderedBulkOp() for the bulk
operation builder setup. The reason we did this is because we don't care about the order of
insertions being the same as the order in which we add them to our bulk variable with the
bulk.insert() command.

This makes sense when we can make sure that all operations are unrelated to each other or
idempotent.

If we care about having the same order of insertions, we can use
initializeOrderedBulkOp(); by changing the second line of our function, we get the
following code snippet:

var bulk = db.books.initializeOrderedBulkOp();

MongoDB CRUD Operations Chapter 3

[60]

Batch operations using the mongo shell
In the case of inserts, we can generally expect that the order of operations doesn't matter.

bulk, however, can be used with many more operations than just inserts. In the following
example, we have a single book with isbn : 101 and the name of Mastering MongoDB in
a bookOrders collection with the number of available copies to purchase in the available
field, with the 99 books available for purchase:

> db.bookOrders.find()
{ "_id" : ObjectId("59204793141daf984112dc3c"), "isbn" : 101, "name" :
"Mastering MongoDB", "available" : 99 }

With the following series of operations in a single bulk operation, we are adding one book
to the inventory and then ordering 100 books, for a final total of zero copies available:

> var bulk = db.bookOrders.initializeOrderedBulkOp();
> bulk.find({isbn: 101}).updateOne({$inc: {available : 1}});
> bulk.find({isbn: 101}).updateOne({$inc: {available : -100}});
> bulk.execute();

With the code, we will get the following output:

 Using initializeOrderedBulkOp(), we can make sure that we are adding one book
before ordering 100 so that we are never out of stock. On the contrary, if we were using
initializeUnorderedBulkOp(), we won't have such a guarantee and we might end up
with the 100-book order coming in before the addition of the new book, resulting in an
application error as we don't have that many books to fulfill the order.

MongoDB CRUD Operations Chapter 3

[61]

When executing through an ordered list of operations, MongoDB will split the operations
into batches of 1000 and group these by operation. For example, if we have 1002 inserts,
998 updates, 1004 deletes, and finally, 5 inserts, we will end up with the following:

[1000 inserts]
[2 inserts]
[998 updates]
[1000 deletes]
[4 deletes]
[5 inserts]

The previous code can be explained as follows:

This doesn't affect the series of operations, but it implicitly means that our operations will
leave the database in batches of 1000. This behavior is not guaranteed to stay in future
versions.

If we want to inspect the execution of a bulk.execute() command, we can issue
bulk.getOperations() right after we type execute().

Since version 3.2, MongoDB has offered an alternative command for bulk
writes, bulkWrite().

MongoDB CRUD Operations Chapter 3

[62]

bulkWrite arguments are the series of operations we want to execute. WriteConcern (the
default is again 1), and if the series of write operations should get applied in the order that
they appear in the array (they will be ordered by default):

> db.collection.bulkWrite(
 [<operation 1>, <operation 2>, ...],
 {
 writeConcern : <document>,
 ordered : <boolean>
 }
)

The following operations are the same ones supported by bulk:

insertOne

updateOne

updateMany

deleteOne

deleteMany

replaceOne

updateOne, deleteOne, and replaceOne have matching filters; if they match more than
one document, they will only operate on the first one. It's important to design these queries
so that they don't match more than one document, otherwise, the behavior will be
undefined.

Administration
Using MongoDB should, for the most part, be as transparent as possible to the developer.
Since there are no schemas, there is no need for migrations, and generally, developers find
themselves spending less time on administrative tasks in the database world.

That said, there are several tasks that an experienced MongoDB developer or architect can
perform to keep up the speed and performance of MongoDB.

Administration is generally performed in three different levels, ranging from more generic
to more specific: process, collection, and index.

At the process level, there is the shutDown command to shut down the MongoDB server.

MongoDB CRUD Operations Chapter 3

[63]

At the database level, we have the following commands:

dropDatabase

listCollections

copyDB or clone to clone a remote database locally
repairDatabase for when our database is not in a consistent state due to an
unclean shutdown

In comparison, at the collection level, the following commands are used:

drop: To drop a collection
create: To create a collection
renameCollection: To rename a collection
cloneCollection: To clone a remote collection to our local DB
cloneCollectionAsCapped: To clone a collection into a new capped collection
convertToCapped: To convert a collection to a capped one

At the index level, we can use the following commands:

createIndexes

listIndexes

dropIndexes

reIndex

We will also go through a few other commands that are more important from an
administration standpoint.

fsync
MongoDB normally writes all operations to the disk every 60 seconds. fsync will force data
to persist to the disk immediately and synchronously.

If we want to take a backup of our databases, we need to apply a lock as well. Locking will
block all writes and some reads while fsync is operating.

In almost all cases, it's better to use journaling and refer to our techniques for backup and
restore, which will be covered in Chapter 8, Monitoring, Backup, and Security, for maximum
availability and performance.

MongoDB CRUD Operations Chapter 3

[64]

compact
MongoDB documents take up a specified amount of space on a disk. If we perform an
update that increases the size of a document, this may end up being moved out of sequence
to the end of the storage block, creating a hole in storage, resulting in increased execution
times for this update, and possibly missing it from running queries. The compact operation
will defragment space and result in less space being used.

We can update a document by adding an extra 10 bytes, showing how it will be moved to
the end of the storage block, and creating an empty space in the physical storage:

compact can also take a paddingFactor argument as follows:

> db.runCommand ({ compact: '<collection>', paddingFactor: 2.0 })

paddingFactor is the preallocated space in each document that ranges from 1.0 (that is,
no padding, which is the default value) to 4.0 for calculating the padding of 300 bytes for
each 100 bytes of document space that is needed when we initially insert it.

Adding padding can help alleviate the problem of updates moving documents around, at
the expense of more disk space being needed for each document when created. By padding
each document, we are allocating more space for it that will prevent it from being moved to
the end of the storage block if our updated document can still fit in the preallocated storage
space.

MongoDB CRUD Operations Chapter 3

[65]

currentOp and killOp
db.currentOp() will show us the currently-running operation in the database and will
attempt to kill it. We need to run the use admin command before running killOp().
Needless to say, using killOp() against internal MongoDB operations is not
recommended or advised, as the database may end up in an undefined state. The
killOp() command can be used as follows:

> db.runCommand({ "killOp": 1, "op": <operationId> })

collMod
collMod is used to pass flags to a collection by modifying the underlying database's
behavior.

Since version 3.2, the most interesting set of flags that we can pass to a collection is
document validation.

Document validation can specify a set of rules to be applied to new updates and inserts into
a collection. This means that current documents will be checked if they get modified.

We can only apply validations to documents that are already valid if we set
validationLevel to moderate. By specifying validationAction, we can log
documents that are invalid by setting it to warn or prevent updates from happening
altogether by setting it to error.

For example, with the previous example of bookOrders we can set validator on
the isbn and name fields being present for every insert or update, as demonstrated in the
following code:

> db.runCommand({ collMod: "bookOrders",
"validator" : {
 "$and" : [
 {
 "isbn" : {
 "$exists" : true
 }
 },
 {
 "name" : {
 "$exists" : true
 }
 }
]

MongoDB CRUD Operations Chapter 3

[66]

 }
})

Here, we get back the following code:

{ "ok" : 1 }

Then, if we try to insert a new document with only the isbn field being present, we get an
error:

> db.bookOrders.insert({isbn: 102})
WriteResult({
"nInserted" : 0,
"writeError" : {
"code" : 121,
"errmsg" : "Document failed validation"
}
})
>

We get an error because our validation has failed. Managing validation from the shell is
really useful as we can write scripts to manage it, and also make sure that everything is in
place.

touch
The touch command will load data and/or index data from storage to memory. This is
typically useful if our script will subsequently use this data, speeding up the execution:

> db.runCommand({ touch: "bookOrders", data: true/false, index: true/false
})

This command should be used with caution in production systems, as loading data and
indexes into memory will displace existing data from it.

MapReduce in the mongo shell
One of the most interesting features that has been underappreciated and not widely
supported throughout MongoDB history, is the ability to write MapReduce natively using
the shell.

MongoDB CRUD Operations Chapter 3

[67]

MapReduce is a data processing method for getting aggregation results from large sets of
data. The main advantage of this is that it is inherently parallelizable as evidence by
frameworks such as Hadoop.

MapReduce is really useful when used to implement a data pipeline. Multiple MapReduce
commands can be chained to produce different results. An example of this is aggregating
data by using different reporting periods (such as hour, day, week, month, and year) where
we use the output of each more granular reporting period to produce a less granular report.

A simple example of MapReduce in our examples given that our input books collection is
as follows:

> db.books.find()
{ "_id" : ObjectId("592149c4aabac953a3a1e31e"), "isbn" : "101", "name" :
"Mastering MongoDB", "price" : 30 }
{ "_id" : ObjectId("59214bc1aabac954263b24e0"), "isbn" : "102", "name" :
"MongoDB in 7 years", "price" : 50 }
{ "_id" : ObjectId("59214bc1aabac954263b24e1"), "isbn" : "103", "name" :
"MongoDB for experts", "price" : 40 }

Our map and reduce functions are defined as follows:

> var mapper = function() {
 emit(this.id, 1);
 };

In this mapper, we simply output a key of id of each document with a value of 1:

> var reducer = function(id, count) {
 return Array.sum(count);
 };

In reducer, we sum across all values (where each one has a value of 1):

> db.books.mapReduce(mapper, reducer, { out:"books_count" });
{
"result" : "books_count",
"timeMillis" : 16613,
"counts" : {
"input" : 3,
"emit" : 3,
"reduce" : 1,
"output" : 1
},
"ok" : 1
}
> db.books_count.find()

MongoDB CRUD Operations Chapter 3

[68]

{ "_id" : null, "value" : 3 }
>

Our final output will be a document with no ID, since we didn't output any value for ID,
and a value of six, since there are six documents in the input dataset.

Using MapReduce, MongoDB will apply a map to each input document, emitting key-value
pairs at the end of the map phase. Then each reducer will get key-value pairs with the same
key as input, processing all multiple values. The reducer's output will be a single key-value
pair for each key.

Optionally, we can use a finalize function to further process the results of mapper and
reducer. MapReduce functions use JavaScript and run within the mongod process.
MapReduce can output inline as a single document, subject to the 16 MB document size
limit, or as multiple documents in an output collection. Input and output collections can be
sharded.

MapReduce concurrency
MapReduce operations will place several short-lived locks that should not affect operations.
However, at the end of the reduce phase, if we output the data to an existing collection,
then output actions such as merge, reduce, and replace will take an exclusive global
write lock for the whole server, blocking all other writes to the db instance. If we want to
avoid this, then we should invoke mapReduce in the following way:

> db.collection.mapReduce(
 mapper,
 reducer,
 {
 out: { merge/reduce: bookOrders, nonAtomic: true
}
 })

We can apply nonAtomic only to merge or reduce actions. replace will just replace the
contents of documents in bookOrders, which will not take much time anyway.

MongoDB CRUD Operations Chapter 3

[69]

With the merge action, the new result is merged with the existing result if the output
collection already exists. If an existing document has the same key as the new result, then it
will overwrite the existing document.

With the reduce action, the new result is processed together with the existing result if the
output collection already exists. If an existing document has the same key as the new result,
it will apply the reduce function to both the new and the existing documents, and will
overwrite the existing document with the result.

Although MapReduce has been present since the early versions of MongoDB, it hasn't
evolved as much as the rest of the database, resulting in its usage being less than that of
specialized MapReduce frameworks such as Hadoop, which we will learn more about in
Chapter 11, Harnessing Big Data with MongoDB.

Incremental MapReduce
Incremental MapReduce is a pattern where we use MapReduce to aggregate to previously
calculated values. An example of this could be counting non-distinct users in a collection
for different reporting periods (that is, by hour, day, or month) without the need to
recalculate the result every hour.

To set up our data for incremental MapReduce, we need to do the following:

Output our reduce data to a different collection
At the end of every hour, query only for the data that got into the collection in
the last hour
With the output of our reduce data, merge our results with the calculated results
from the previous hour

Continuing with the previous example, let's assume that we have a published field in
each of the documents with our input dataset, as shown in the following code:

> db.books.find()
{ "_id" : ObjectId("592149c4aabac953a3a1e31e"), "isbn" : "101", "name" :
"Mastering MongoDB", "price" : 30, "published" :
ISODate("2017-06-25T00:00:00Z") }
{ "_id" : ObjectId("59214bc1aabac954263b24e0"), "isbn" : "102", "name" :
"MongoDB in 7 years", "price" : 50, "published" :
ISODate("2017-06-26T00:00:00Z") }

MongoDB CRUD Operations Chapter 3

[70]

Using our previous example of counting books, we will get the following code:

var mapper = function() {
 emit(this.id, 1);
 };
var reducer = function(id, count) {
 return Array.sum(count);
 };
> db.books.mapReduce(mapper, reducer, { out: "books_count" })
{
"result" : "books_count",
"timeMillis" : 16700,
"counts" : {
"input" : 2,
"emit" : 2,
"reduce" : 1,
"output" : 1
},
"ok" : 1
}
> db.books_count.find()
{ "_id" : null, "value" : 2 }

Now we get a third book in our mongo_book collection with a document, as follows:

{ "_id" : ObjectId("59214bc1aabac954263b24e1"), "isbn" : "103", "name" :
"MongoDB for experts", "price" : 40, "published" :
ISODate("2017-07-01T00:00:00Z") }
> db.books.mapReduce(mapper, reducer, { query: { published: { $gte:
ISODate('2017-07-01 00:00:00') } }, out: { reduce: "books_count" } })
> db.books_count.find()
{ "_id" : null, "value" : 3 }

What happened in the preceding code is that by querying for documents in July, 2017, we
only got the new document out of the query and then used its value to reduce the value
with the already-calculated value of 2 in our books_count document, adding 1 to the final
sum of 3 documents.

This example, as contrived as it is, shows a powerful attribute of MapReduce: the ability to
re-reduce results to incrementally calculate aggregations over time.

MongoDB CRUD Operations Chapter 3

[71]

Troubleshooting MapReduce
Over the years, one of the major shortcomings of MapReduce frameworks has been the
inherent difficulty in troubleshooting, as opposed to simpler non-distributed patterns. Most
of the time, the most effective tool is debugging using log statements to verify that output
values match our expected values. In the mongo shell, which is a JavaScript shell, it is as
simple as providing the output using the console.log() function.

Diving deeper into MapReduce in MongoDB, we can debug both in the map and the reduce
phase by overloading the output values.

By debugging the mapper phase, we can overload the emit() function to test what the
output key values will be, as follows:

> var emit = function(key, value) {
 print("debugging mapper's emit");
 print("key: " + key + " value: " + tojson(value));
}

We can then call it manually on a single document to verify that we get back the key-value
pair that we expect:

> var myDoc = db.orders.findOne({ _id:
ObjectId("50a8240b927d5d8b5891743c") });
> mapper.apply(myDoc);

The reducer function is somewhat more complicated. A MapReduce reducer function
must meet the following criteria:

It must be idempotent
It must be commutative
The order of values coming from the mapper function should not matter for the
reducer's result
The reducer function must return the same type of result as the mapper
function

MongoDB CRUD Operations Chapter 3

[72]

We will dissect each of these following requirements to understand what they really mean:

It must be idempotent: MapReduce, by design, may call the reducer function
multiple times for the same key with multiple values from the mapper phase. It
also doesn't need to reduce single instances of a key as it's just added to the set.
The final value should be the same no matter the order of execution. This can be
verified by writing our own verifier function and forcing reducer to re-
reduce, or by executing reducer many times as shown in the following code
snippet:

reduce(key, [reduce(key, valuesArray)]) == reduce(key,
valuesArray)

It must be commutative: As multiple invocations of the reducer function may
happen for the same key, if it has multiple values, the following code should
hold:

reduce(key, [C, reduce(key, [A, B])]) == reduce(key, [C,
A, B])

The order of values coming from the mapper function should not matter for
the reducer's result: We can test that the order of values from mapper doesn't
change the output for reducer, by passing in documents to mapper in a
different order and verifying that we get the same results out:

reduce(key, [A, B]) == reduce(key, [B, A])

The reduce function must return the same type of result as the mapper
function: Hand-in-hand with the first requirement, the type of object that the
reduce function returns should be the same as the output of the mapper
function.

Aggregation framework
Since version 2.2, MongoDB has provided a better way to work with aggregation, one that
has been supported, adopted, and enhanced regularly ever since. The aggregation
framework is modeled after data processing pipelines.

MongoDB CRUD Operations Chapter 3

[73]

In data processing pipelines, there are three main operations: filters that operate like
queries, filtering documents, and document transformations that transform documents to
get them ready for the next stage.

SQL to aggregation
An aggregation pipeline can replace and augment querying operations in the shell. A
common pattern for development is as follows:

To verify that we have the correct data structures and get quick results using a
series of queries in the shell
To prototype pipeline results using the aggregation framework
To refine and refactor if/when needed, either by ETL processes to get data into a
dedicated data warehouse, or by more extensive usage of the application layer to
get the insights that we need

In the following table, we can see how SQL commands map to the aggregation framework
operators:

SQL Aggregation framework
WHERE/HAVING $match

GROUP BY $group

SELECT $project

ORDER BY $sort

LIMIT $limit

sum()/count() $sum

join $lookup

Aggregation versus MapReduce
In MongoDB, we can essentially get data out of our database by using three methods:
querying, the aggregation framework, and MapReduce. All three of them can be chained to
each other and many times it is useful to do so; however, it's important to understand when
we should use aggregation and when MapReduce may be a better alternative.

We can use both aggregation and MapReduce with sharded databases.

MongoDB CRUD Operations Chapter 3

[74]

Aggregation is based on the concept of a pipeline. As such, it's important to be able to
model our data from the input to the final output, in a series of transformations and
processing that can get us there. It's also mostly useful when our intermediate results can be
used on their own, or feed parallel pipelines. Our operations are limited by the operators
that we have available from MongoDB, so it's important to make sure that we can calculate
all the results we need by using the available commands.

MapReduce, on the other hand, can be used to construct pipelines by chaining the output of
one MapReduce job to the input of the next one via an intermediate collection, but this is
not its primary purpose.

MapReduce's most common use case is to periodically calculate aggregations for large
datasets. Having MongoDB's querying in place, we can incrementally calculate these
aggregations without the need to scan through the whole input table every time. In
addition, its power comes from its flexibility as we can define mappers and reducers in
JavaScript with the full flexibility of the language when calculating intermediate results.
Not having the operators that the aggregation framework provides us with, we have to
implement them on our own.

In many cases, the answer is not either/or. We can (and should) use the aggregation
framework to construct our ETL pipeline and resort to MapReduce for the parts that are not
yet supported sufficiently by it.

A complete use case with aggregation and MapReduce is provided in Chapter 6,
Aggregation.

Securing the shell
MongoDB is a database developed with the ease of development in mind. As such, security
at the database level was not baked in from the beginning and it was up to the developers
and administrators to secure the MongoDB host from accessing outside the application
server.

Unfortunately, this means that as far as back as 2015, there were 39,890 databases found
open to the internet, with no security access configured. Many of them were production
databases, one belonging to a French telecom operator and containing more than eight
million records from its customers.

Nowadays, there is no excuse for leaving any MongoDB server with the default
authentication off settings at any stage of development, from local server deployment to
production.

MongoDB CRUD Operations Chapter 3

[75]

Authentication and authorization
Authentication and authorization are closely connected and sometimes confused.
Authentication is about verifying the identity of a user to the database. An example of
authentication is Secure Sockets Layer (SSL), where the web server verifies its
identity—that it is who it claims to be—to the user.

Authorization is about determining what actions a user can take on a resource. In the next
sections, we will discuss authentication and authorization with these definitions in mind.

Authorization with MongoDB
MongoDB's most basic authorization relies on the username/password method. By default,
MongoDB will not start with authorization enabled. To enable it, we need to start our
server with the --auth parameter:

$ mongod --auth

To set up authorization, we need to start our server without authorization to set up a user.
Setting up an admin user is simple:

> use admin
> db.createUser(
 {
 user: <adminUser>,
 pwd: <password>,
 roles: [{ role: <adminRole>, db: "admin" }]
 }
)

Here, <adminUser> is the name of the user we want to create, <password> is the
password, and <adminRole> can be any of the following values ordered from the most
powerful to the least powerful, as shown in the following list:

root

dbAdminAnyDatabase

userAdminAnyDatabase

readWriteAnyDatabase

MongoDB CRUD Operations Chapter 3

[76]

readAnyDatabase

dbOwner

dbAdmin

userAdmin

readWrite

read

Of these roles, root is the superuser that allows access to everything. This is not
recommended to be used, except for special circumstances.

All the AnyDatabase roles provide access to all databases, of which dbAdminAnyDatabase
combines the userAdminAnyDatabase and readWriteAnyDatabase scopes being an
admin again in all databases.

The rest of the roles are defined in the database that we want them to apply, by changing
the roles subdocument of the preceding db.createUser(); for example, to create a
dbAdmin for our mongo_book database, we would use the following code:

> db.createUser(
 {
 user: <adminUser>,
 pwd: <password>,
 roles: [{ role: "dbAdmin", db: "mongo_book" }]
 }
)

Cluster administration has even more roles, which we will cover in more depth in Chapter
12, Replication.

Finally, when we restart our database with the --auth flag set, we can use either the
command line or the connection string (from any driver) to connect as admin and create
new users with predefined or custom-defined roles:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:port
N]]][/[database][?options]]

Security tips for MongoDB
Common software system security precautions apply with MongoDB. We will outline some
of them here and learn how to enable them.

MongoDB CRUD Operations Chapter 3

[77]

Encrypting communication using TLS/SSL
Communication between the mongod or mongos server and the client mongo shell or
applications should be encrypted. This is supported in most MongoDB distributions from
version 3.0 onward; however, we need to take care that we download the proper version
with SSL support.

After this, we need to get a signed certificate from a trusted certificate authority or sign our
own. Using self-signed certificates is fine for preproduction systems, but in production it
will mean that MongoDB servers won't be able to verify our identity, leaving us susceptible
to man-in-the-middle attacks; thus using a proper certificate is highly recommended.

To start our MongoDB server with SSL, we need the following code:

$ mongod --sslMode requireSSL --sslPEMKeyFile <pem> --sslCAFile <ca>

Here, <pem> is our .pem signed certificate file and <ca> is the .pem root certificate from the
certificate authority that contains the root certificate chain.

These options can also be defined in our configuration file, mongod.conf or mongos.conf,
in YAML file format, as follows:

net:
 ssl:
 mode: requireSSL
 PEMKeyFile: /etc/ssl/mongodb.pem
 CAFile: /etc/ssl/ca.pem
 disabledProtocols: TLS1_0,TLS1_1,TLS1_2

Here, we specified a PEMKeyFile, a CAFile, and also that we won't allow the server to
start with certificates that follow the TLS1_0, TLS1_1 or TLS1_2 versions. These are the
available versions for disabledProtocols at this time.

Encrypting data
Using WiredTiger is highly recommended for encrypting data at rest, as it supports it
natively from version 3.2.

For users of the Community Edition version, this can be achieved in the storage selection of
their choice; for example, in Amazon Web Services (AWS) using Elastic Block Store (EBS)
encrypted storage volumes.

MongoDB CRUD Operations Chapter 3

[78]

This feature is available only for MongoDB Enterprise Edition.

Limiting network exposure
The oldest security method to secure any server is to disallow it from accepting connections
from unknown sources. In MongoDB, this is done in a configuration file with a simple line
as follows:

net:
 bindIp: <string>

Here, <string> is a comma-separated list of IPs that the MongoDB server will accept
connections from.

Firewalls and VPNs
Together with limiting network exposure on the server side, we can use firewalls to prevent
access to our network from the outside internet. VPNs can also provide tunneled traffic
between our servers, but regardless, they shouldn't be used as our sole security mechanism.

Auditing
No matter how secure any system is, we need to keep a close eye on the system from an
auditing perspective to make sure that we detect possible breaches and stop them as soon
as possible.

This feature is available only for MongoDB Enterprise Edition.

For users of the Community Edition version, we have to set up auditing manually by
logging changes to documents and collections in the application layer, possibly in a
different database altogether. This will be addressed in the next chapter, which covers
advanced querying using client drivers.

MongoDB CRUD Operations Chapter 3

[79]

Using secure configuration options
It goes without saying that the same configuration options should be used. We must use
one of the following:

MapReduce
The mongo shell group operation or a group operation from our client driver
$where JavaScript server evaluation

If we don't, we should disable server-side scripting by using the --noscripting option on
the command line when we start our server.

The mongo shell group operation, as mentioned in the previous list, can be a tricky one as
many drivers may use MongoDB's group() command when we issue group commands in
the driver. However, given the limitations that group() has in terms of performance and
output documents, we should rethink our design to use the aggregation framework or
application-side aggregations.

The web interface also has to be disabled by not using any of the following commands:

net.http.enabled

net.http.JSONPEnabled

net.http.RESTInterfaceEnabled

On the contrary, wireObjectCheck needs to remain enabled as it is by default, and
ensures that all documents stored by the mongod instance are valid BSON.

Authentication with MongoDB
By default, MongoDB uses SCRAM-SHA-1 as the default challenge and response
authentication mechanism. This is an SHA-1 username/password-based mechanism for
authentication. All drivers and the mongo shell itself have built-in methods to support it.

The authentication protocol in MongoDB has changed since version 3.0. In
older versions, the less secure MONGODB-CR was used.

MongoDB CRUD Operations Chapter 3

[80]

Enterprise Edition
MongoDB's Enterprise Edition is a paid subscription product offering more features around
security and administration.

Kerberos authentication
MongoDB Enterprise Edition also offers Kerberos authentication. Kerberos, named after the
character Kerberos (or Cerberus) from Greek mythology—which is the ferocious three-
headed guard-dog of the god of the underworld, Hades—focuses on mutual authentication
between client and server, protecting against eavesdropping and replay attacks.

Kerberos is widely used in Windows systems through integration with Microsoft's Active
Directory. To install Kerberos, we need to start mongod without Kerberos set up, then
connect to the $external database (not the admin that we normally use for admin
authorization), and create a user with a Kerberos role and permissions:

use $external
db.createUser(
 {
 user: "mongo_book_user@packt.net",
 roles: [{ role: "read", db: "mongo_book" }]
 }
)

In the preceding example, we authorize the mongo_book_user@packt.net user to read
our mongo_book database, just like we would do with a user using our admin system.

After that, we need to start our server with Kerberos support by passing in the
authenticationMechanisms parameter, as follows:

--setParameter authenticationMechanisms=GSSAPI

Now we can connect from our server or command line, as follows:

$ mongo.exe --host <mongoserver> --authenticationMechanism=GSSAPI --
authenticationDatabase='$external' --username mongo_book_user@packt.net

MongoDB CRUD Operations Chapter 3

[81]

LDAP authentication
Similar to Kerberos authentication, we can also use Lightweight Directory Access Protocol
(LDAP) in MongoDB Enterprise Edition only. The user setup needs to be done in the
$external database and must match the name of the authentication LDAP name. The
name may need to pass through a transformation and this may cause a mismatch between
the LDAP name and the user entry in the $external database.

Setting up LDAP authentication is beyond the scope of this book, but the important thing to
consider is that any changes in the LDAP server may need changes in the MongoDB server,
which won't happen automatically.

Summary
In this chapter, we scratched the tip of the iceberg of CRUD operations. Starting from the
mongo shell, we learned how to insert, delete, read, and modify documents. We also
discussed the differences between one-off inserts and inserting in batches for performance.

Following that, we discussed administration tasks and how to perform them in the mongo
shell. MapReduce and its successor, aggregation framework, were also discussed in this
chapter, including how they compare, how to use them, and how we can translate SQL
queries to aggregation framework pipeline commands.

Finally, we discussed security and authentication with MongoDB. Securing our database is
of paramount importance; we will learn more about this in Chapter 8, Monitoring, Backup,
and Security.

In the next chapter, we will dive deeper into CRUD using three of the most popular
languages for web development: Ruby, Python, and PHP: Hypertext Preprocessor (PHP).

4
Advanced Querying

In the previous chapter, we learned how to use the mongo shell for scripting,
administration, and developing in a secure way. In this chapter, we will dive deeper into
using MongoDB with drivers and popular frameworks from Ruby, Python, and PHP:
Hypertext Preprocessor (PHP).

We will also show the best practices for using these languages and the variety of
comparison and update operators that MongoDB supports on a database level, which are
accessible through Ruby, Python, and PHP.

In this chapter we will learn the following topics:

MongoDB operations
CRUD using Ruby, Mongoid, Python, PyMODM, PHP and Doctrine
Comparison operators
Change streams

MongoDB CRUD operations
In this section, we will cover CRUD operations using Ruby, Python, and PHP with the
official MongoDB driver and some popular frameworks for each language, respectively.

CRUD using the Ruby driver
In Chapter 3, MongoDB CRUD Operations, we covered how to connect to MongoDB from
Ruby, Python, and PHP using the drivers and ODM. In this chapter, we will
explore create, read, update, and delete operations using the official drivers and the
most commonly used ODM frameworks.

Advanced Querying Chapter 4

[83]

Creating documents
Using the process described in Chapter 2, Schema Design and Data Modeling, we assume that
we have an @collection instance variable pointing to our books collection in a
mongo_book database in the 127.0.0.1:27017 default database:

@collection = Mongo::Client.new(['127.0.0.1:27017'], :database =>
'mongo_book').database[:books]

We insert a single document with our definition, as follows:

document = { isbn: '101', name: 'Mastering MongoDB', price: 30}

This can be performed with a single line of code as follows:

result = @collection.insert_one(document)

The resulting object is a Mongo::Operation::Result class with content that is similar to
what we had in the shell, as shown in the following code:

{"n"=>1, "ok"=>1.0}

Here, n is the number of affected documents; 1 means we inserted one object and ok means
1 (true).

Creating multiple documents in one step is similar to this. For two documents with isbn
102 and 103, and using insert_many instead of insert_one, we have the following code:

documents = [{ isbn: '102', name: 'MongoDB in 7 years', price: 50 },
 { isbn: '103', name: 'MongoDB for experts', price: 40 }]
result = @collection.insert_many(documents)

The resulting object is now a Mongo::BulkWrite::Result class, meaning that the
BulkWrite interface was used for improved performance.

The main difference is that we now have an attribute, inserted_ids,, which will return
ObjectId of the inserted objects from the BSON::ObjectId class.

Read
Finding documents work in the same way as creating them, that is, at the collection level:

@collection.find({ isbn: '101' })

Advanced Querying Chapter 4

[84]

Multiple search criteria can be chained and are equivalent to an AND operator in SQL:

@collection.find({ isbn: '101', name: 'Mastering MongoDB' })

The mongo-ruby-driver API provides several query options to enhance queries; the most
widely used query options are listed in the following table:

Option Description

allow_partial_results
This is for use with sharded clusters. If a shard is down, it
allows the query to return results from the shards that are up,
potentially getting only a portion of the results.

batch_size(Integer)
This can change the batch size that the cursor will fetch from
MongoDB. This is done on each GETMORE operation (for
example, by typing it on the mongo shell).

comment(String)
With this command we can add a comment in our query for
documentation reasons.

hint(Hash) We can force usage of an index using hint().

limit(Integer)
We can limit the result set to the number of documents
specified by Integer.

max_scan(Integer)

We can limit the number of documents that will be scanned.
This will return incomplete results and is useful if we are
performing operations where we want to guarantee that they
won't take a long time, such as when we connect to our
production database.

no_cursor_timeout
If we don't specify this parameter, MongoDB will close any
inactive cursor after 600 seconds. With this parameter our
cursor will never be closed.

projection(Hash)

We can use this parameter to fetch or exclude specific
attributes from our results. This will reduce data transfer over
the wire. An example of this can be
client[:books].find.projection(:price => 1).

read(Hash)

We can specify a read preference to be applied only for this
query:
client[:books].find.read(:mode =>

:secondary_preferred).

show_disk_loc(Boolean)
We should use this option if we want to find the actual
location of our results on a disk.

skip(Integer)
This can be used to skip the specified number of documents.
It's useful for the pagination of results.

Advanced Querying Chapter 4

[85]

snapshot
This can be used to execute our query in snapshot mode. This
is useful for when we want a more stringent consistency.

sort(Hash)
We can use this to sort our results, for example,
client[:books].find.sort(:name => -1).

On top of the query options, mongo-ruby-driver provides some helper functions that can
be chained at the method call level, as follows:

.count: The total count for the preceding query

.distinct(:field_name): To distinguish between the results of the preceding
query by :field_name

Find() returns a cursor containing the result set that we can iterate using .each in Ruby
like every other object:

result = @collection.find({ isbn: '101' })
result.each do |doc|
 puts doc.inspect
end

The output for our books collection is as follows:

{"_id"=>BSON::ObjectId('592149c4aabac953a3a1e31e'), "isbn"=>"101",
"name"=>"Mastering MongoDB", "price"=>30.0, "published"=>2017-06-25
00:00:00 UTC}

Chaining operations in find()
find(), by default, uses an AND operator to match multiple fields. If we want to use an OR
operator, our query needs to be as follows:

result = @collection.find('$or' => [{ isbn: '101' }, { isbn: '102' }]).to_a
puts result

The output of the preceding code is as follows:

{"_id"=>BSON::ObjectId('592149c4aabac953a3a1e31e'), "isbn"=>"101",
"name"=>"Mastering MongoDB", "price"=>30.0, "published"=>2017-06-25
00:00:00 UTC}{"_id"=>BSON::ObjectId('59214bc1aabac954263b24e0'),
"isbn"=>"102", "name"=>"MongoDB in 7 years", "price"=>50.0,
"published"=>2017-06-26 00:00:00 UTC}

Advanced Querying Chapter 4

[86]

We can also use $and instead of $or in the previous example:

result = @collection.find('$and' => [{ isbn: '101' }, { isbn: '102'
}]).to_a
puts result

This, of course, will return no results since no document can have both isbn 101 and 102.

An interesting and hard bug to find is if we define the same key multiple times, such as in
the following code:

result = @collection.find({ isbn: '101', isbn: '102' })
puts result

{"_id"=>BSON::ObjectId('59214bc1aabac954263b24e0'), "isbn"=>"102",
"name"=>"MongoDB in 7 years", "price"=>50.0, "published"=>2017-06-26
00:00:00 UTC}

In comparison, the opposite order will cause the document with isbn 101 to be returned:

result = @collection.find({ isbn: '102', isbn: '101' })
puts result

{"_id"=>BSON::ObjectId('592149c4aabac953a3a1e31e'), "isbn"=>"101",
"name"=>"Mastering MongoDB", "price"=>30.0, "published"=>2017-06-25
00:00:00 UTC}

This is because in Ruby hashes, by default, all duplicated keys except for
the last one are silently ignored. This may not happen in the simplistic
form shown in the preceding example, but it is prone to happen if we
create keys programmatically.

Nested operations
Accessing embedded documents in mongo-ruby-driver is as simple as using the dot
notation:

result = @collection.find({'meta.authors': 'alex giamas'}).to_a
puts result

"_id"=>BSON::ObjectId('593c24443c8ca55b969c4c54'), "isbn"=>"201",
"name"=>"Mastering MongoDB, 2nd Edition", "meta"=>{"authors"=>"alex
giamas"}}

Advanced Querying Chapter 4

[87]

We need to enclose the key name in quotes ('') to access the embedded
object just as we need it for operations starting with $, such as '$set'.

Update
Updating documents using mongo-ruby-driver is chained to finding them. Using our
example books collection, we can do the following:

@collection.update_one({ 'isbn': 101}, { '$set' => { name: 'Mastering
MongoDB, 2nd Edition' } })

This finds the document with isbn 101 and changes its name to Mastering MongoDB,
2nd Edition.

In a similar way to update_one, we can use update_many to update multiple documents
retrieved via the first parameter of the method.

If we don't use the $set operator, the contents of the document will be
replaced by the new document.

Assuming Ruby version >=2.2, keys can be either quoted or unquoted; however, keys that
start with $ need to be quoted as follows:

@collection.update({ isbn: '101'}, { "$set": { name: "Mastering MongoDB,
2nd edition" } })

The resulting object of an update will contain information about the operation, including
these methods:

ok?: A Boolean value that shows whether the operation was successful or not
matched_count: The number of documents matching the query
modified_count: The number of documents affected (updated)
upserted_count: The number of documents upserted if the operation includes
$set

upserted_id: The unique ObjectId of the upserted document if there is one

Advanced Querying Chapter 4

[88]

Updates that modify fields of a constant data size will be in place; this means that they won't
move the document from its physical location on the disk. This includes operations such as
$inc and $set on the Integer and Date fields.

Updates that can increase the size of a document may result in the document being moved
from its physical location on the disk to a new location at the end of the file. In this case,
queries may miss or return the document multiple times. To avoid this, we can use
$snapshot: true while querying.

Delete
Deleting documents work in a similar way to finding documents. We need to find
documents and then apply the delete operation.

For example, with our books collection used before, we can issue the following code:

@collection.find({ isbn: '101' }).delete_one

This will delete a single document. In our case, since isbn is unique for every document,
this is expected. If our find() clause had matched multiple documents, then delete_one
would have deleted just the first one that find() returned, which may or may not have
been what we wanted.

If we use delete_one with a query matching multiple documents, the
results may be unexpected.

If we want to delete all documents matching our find() query, we have to use
delete_many, as follows:

@collection.find({ price: { $gte: 30 }).delete_many

In the preceding example, we are deleting all books that have a price greater than or equal
to 30.

Advanced Querying Chapter 4

[89]

Batch operations
We can use the BulkWrite API for batch operations. In our previous insert many
documents example, this would be as follows:

@collection.bulk_write([{ insertMany: documents
 }],
 ordered: true)

The BulkWrite API can take the following parameters:

insertOne

updateOne

updateMany

replaceOne

deleteOne

deleteMany

One version of these commands will insert/update/replace/delete a single document
even if the filter that we specify matches more than one document. In this case, it's
important to have a filter that matches a single document to avoid unexpected behaviors.

It's also possible, and a perfectly valid use case, to include several operations in the first
argument of the bulk_write command. This allows us to issue commands in a sequence
when we have operations that depend on each other and we want to batch them in a logical
order according to our business logic. Any error will stop ordered:true batch writes and
we will need to manually roll back our operations. A notable exception is writeConcern
errors, for example, requesting a majority of our replica set members to acknowledge our
write. In this case, batch writes will go through and we can observe the errors in the
writeConcernErrors result field:

old_book = @collection.findOne(name: 'MongoDB for experts')
new_book = { isbn: 201, name: 'MongoDB for experts, 2nd Edition', price: 55
}
@collection.bulk_write([{deleteOne: old_book}, { insertOne: new_book
 }],
 ordered: true)

In the previous example, we made sure that we deleted the original book before adding the
new (and more expensive) edition of our MongoDB for experts book.

Advanced Querying Chapter 4

[90]

BulkWrite can batch up to 1,000 operations. If we have more than 1,000 underlying
operations in our commands, these will be split into chunks of thousands. It is good
practice to try to keep our write operations to a single batch if we can to avoid unexpected
behavior.

CRUD in Mongoid
In this section, we will use Mongoid to perform create, read, update, and delete
operations. All of this code is also available on GitHub at https:/ /github. com/ agiamas/
mastering-mongodb/ tree/ master/ chapter_ 4.

Read
Back in Chapter 2, Schema Design and Data Modeling, we described how to install, connect,
and set up models, including an inheritance to Mongoid. Here, we will go through the most
common use cases of CRUD.

Finding documents is done using a DSL similar to Active Record (AR). As with AR using a
relational database, Mongoid assigns a class to a MongoDB collection (table) and any object
instance to a document (row from a relational database):

Book.find('592149c4aabac953a3a1e31e')

This will find the document by ObjectId and return the document with isbn 101, as will
the query by a name attribute:

Book.where(name: 'Mastering MongoDB')

In a similar fashion to the dynamically generated AR queries by an attribute, we can use the
helper method:

Book.find_by(name: 'Mastering MongoDB')

This queries by attribute name, equivalent to the previous query.

We should enable QueryCache to avoid hitting the database for the same query multiple
times, as follows:

Mongoid::QueryCache.enabled = true

This can be added in any code block that we want to enable, or in the initializer for
Mongoid.

https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_4

Advanced Querying Chapter 4

[91]

Scoping queries
We can scope queries in Mongoid using class methods, as follows:

Class Book
...
 def self.premium
 where(price: {'$gt': 20'})
 end
End

Then we will use this query:

Book.premium

It will query for books with a price greater than 20.

Create, update, and delete
The Ruby interface for creating documents is similar to active record:

Book.where(isbn: 202, name: 'Mastering MongoDB, 3rd Edition').create

This will return an error if the creation fails.

We can use the bang version to force an exception to be raised if saving the document fails:

Book.where(isbn: 202, name: 'Mastering MongoDB, 3rd Edition').create!

The BulkWrite API is not supported as of Mongoid version 6.x. The workaround is to use
the mongo-ruby-driver API, which will not use the mongoid.yml configuration or custom
validations. Otherwise, you can use insert_many([array_of_documents]), which will
insert the documents one by one.

To update documents, we can use update or update_all. Using update will update only
the first document retrieved by the query part, whereas update_all will update all of
them:

Book.where(isbn: 202).update(name: 'Mastering MongoDB, THIRD Edition')
Book.where(price: { '$gt': 20 }).update_all(price_range: 'premium')

Deleting a document is similar to creating it, providing delete to skip callbacks, and
destroy if we want to execute any available callbacks in the affected document.

delete_all and destroy_all are convenient methods for multiple documents.

Advanced Querying Chapter 4

[92]

destroy_all should be avoided if possible, as it will load all documents
into the memory to execute callbacks and thus can be memory-intensive.

CRUD using the Python driver
PyMongo is the officially supported driver for Python by MongoDB. In this section, we will
use PyMongo to create, read, update, and delete documents in MongoDB.

Creating and deleting
The Python driver provides methods for CRUD just like Ruby and PHP. Following on from
Chapter 2, Schema Design and Data Modeling, and the books variable that points to our
books collection, we will write the following code block:

from pymongo import MongoClient
from pprint import pprint

>>> book = {
 'isbn': '301',
 'name': 'Python and MongoDB',
 'price': 60
}
>>> insert_result = books.insert_one(book)
>>> pprint(insert_result)

<pymongo.results.InsertOneResult object at 0x104bf3370>

>>> result = list(books.find())
>>> pprint(result)

[{u'_id': ObjectId('592149c4aabac953a3a1e31e'),
 u'isbn': u'101',
 u'name': u'Mastering MongoDB',
 u'price': 30.0,
 u'published': datetime.datetime(2017, 6, 25, 0, 0)},
{u'_id': ObjectId('59214bc1aabac954263b24e0'),
 u'isbn': u'102',
 u'name': u'MongoDB in 7 years',
 u'price': 50.0,
 u'published': datetime.datetime(2017, 6, 26, 0, 0)},
{u'_id': ObjectId('593c24443c8ca55b969c4c54'),
 u'isbn': u'201',

Advanced Querying Chapter 4

[93]

 u'meta': {u'authors': u'alex giamas'},
 u'name': u'Mastering MongoDB, 2nd Edition'},
{u'_id': ObjectId('594061a9aabac94b7c858d3d'),
 u'isbn': u'301',
 u'name': u'Python and MongoDB',
 u'price': 60}]

In the previous example, we used insert_one() to insert a single document, which we
can define using the Python dictionary notation; we can then query it for all documents in
the collection.

The resulting object for insert_one and insert_many has two fields of interest:

Acknowledged: A Boolean that is true if the insert has succeeded and false if it
hasn't, or if write concern is 0 (fire and forget write).
inserted_id for insert_one: The ObjectId of the written document and
inserted_ids for insert_many. The array of ObjectIds of the written
documents.

We used the pprint library to pretty-print the find() results. The built-in way to iterate
through the result set is by using the following code:

for document in results:
 print(document)

Deleting documents work in a similar to creating them. We can use delete_one to delete
the first instance or delete_many to delete all instances of the matched query:

>>> result = books.delete_many({ "isbn": "101" })
>>> print(result.deleted_count)
1

The deleted_count instance tells us how many documents were deleted; in our case, it is
1, even though we used the delete_many method.

To delete all documents from a collection, we can pass in the empty document {}.

To drop a collection, we can use drop():

>>> books.delete_many({})
>>> books.drop()

Advanced Querying Chapter 4

[94]

Finding documents
To find documents based on top-level attributes, we can simply use a dictionary:

>>> books.find({"name": "Mastering MongoDB"})

[{u'_id': ObjectId('592149c4aabac953a3a1e31e'),
 u'isbn': u'101',
 u'name': u'Mastering MongoDB',
 u'price': 30.0,
 u'published': datetime.datetime(2017, 6, 25, 0, 0)}]

To find documents in an embedded document, we can use the dot notation. In the
following example, we use meta.authors to access the authors embedded document
inside the meta document:

>>> result = list(books.find({"meta.authors": {"$regex": "aLEx",
"$options": "i"}}))
>>> pprint(result)

[{u'_id': ObjectId('593c24443c8ca55b969c4c54'),
 u'isbn': u'201',
 u'meta': {u'authors': u'alex giamas'},
 u'name': u'Mastering MongoDB, 2nd Edition'}]

In this example, we used a regular expression to match aLEx, which is case insensitive, in
every document that the string is mentioned in the meta.authors embedded document.
PyMongo uses this notation for regular expression queries, called the $regex notation in
MongoDB documentation. The second parameter is the options parameter for $regex,
which we will explain in detail in the Using regular expressions section later in this chapter.

Comparison operators are also supported, and a full list of these are given in the Comparison
operators section, which can be seen later in this chapter:

>>> result = list(books.find({ "price": { "$gt":40 } }))
>>> pprint(result)

[{u'_id': ObjectId('594061a9aabac94b7c858d3d'),
 u'isbn': u'301',
 u'name': u'Python and MongoDB',
 u'price': 60}]

Advanced Querying Chapter 4

[95]

Adding multiple dictionaries in our query results in a logical AND query:

>>> result = list(books.find({"name": "Mastering MongoDB", "isbn": "101"}))
>>> pprint(result)

[{u'_id': ObjectId('592149c4aabac953a3a1e31e'),
 u'isbn': u'101',
 u'name': u'Mastering MongoDB',
 u'price': 30.0,
 u'published': datetime.datetime(2017, 6, 25, 0, 0)}]

For books having both isbn=101 and name=Mastering MongoDB, to use logical operators
such as $or and $and, we have to use the following syntax:

>>> result = list(books.find({"$or": [{"isbn": "101"}, {"isbn": "102"}]}))
>>> pprint(result)

[{u'_id': ObjectId('592149c4aabac953a3a1e31e'),
 u'isbn': u'101',
 u'name': u'Mastering MongoDB',
 u'price': 30.0,
 u'published': datetime.datetime(2017, 6, 25, 0, 0)},
{u'_id': ObjectId('59214bc1aabac954263b24e0'),
 u'isbn': u'102',
 u'name': u'MongoDB in 7 years',
 u'price': 50.0,
 u'published': datetime.datetime(2017, 6, 26, 0, 0)}]

For books having an isbn of 101 or 102, if we want to combine AND and OR operators, we
have to use the $and operator, as follows:

>>> result = list(books.find({"$or": [{"$and": [{"name": "Mastering
MongoDB", "isbn": "101"}]}, {"$and": [{"name": "MongoDB in 7 years",
"isbn": "102"}]}]}))
>>> pprint(result)
[{u'_id': ObjectId('592149c4aabac953a3a1e31e'),
 u'isbn': u'101',
 u'name': u'Mastering MongoDB',
 u'price': 30.0,
 u'published': datetime.datetime(2017, 6, 25, 0, 0)},
{u'_id': ObjectId('59214bc1aabac954263b24e0'),
 u'isbn': u'102',
 u'name': u'MongoDB in 7 years',
 u'price': 50.0,
 u'published': datetime.datetime(2017, 6, 26, 0, 0)}]

Advanced Querying Chapter 4

[96]

For a result of OR between two queries, consider the following:

The first query is asking for documents that have isbn=101 AND
name=Mastering MongoDB

The second query is asking for documents that have isbn=102 AND
name=MongoDB in 7 years.
The result is the union of these two datasets

Updating documents
In the following code block, you can see an example of updating a single document using
the update_one helper method.

This operation matches one document in the search phase and modifies one document
based on the operation to be applied to the matched documents:

>>> result = books.update_one({"isbn": "101"}, {"$set": {"price": 100}})
>>> print(result.matched_count)
1
>>> print(result.modified_count)
1

In a similar way to inserting documents, when updating documents, we can use
update_one or update_many:

The first argument here is the filter document for matching the documents that
will be updated
The second argument is the operation to be applied to the matched documents
The third (optional) argument is to use upsert=false (the default) or true,
which is used to create a new document if it's not found

Another interesting argument is bypass_document_validation=false (the default) or
true, which is optional. This will ignore validations (if there are any) for the documents in
the collection.

The resulting object will have matched_count for the number of documents that matched
the filter query, and modified_count for the number of documents that were affected by
the update part of the query.

Advanced Querying Chapter 4

[97]

In our example, we are setting price=100 for the first book with isbn=101 through the
$set update operator. A list of all update operators is displayed in the Update operators
section later in this chapter.

If we don't use an update operator as the second argument, the contents of
the matched document will be entirely replaced by the new document.

CRUD using PyMODM
PyMODM is a core ODM that provides simple and extensible functionality. It is developed
and maintained by MongoDB's engineers who get fast updates and support for the latest
stable version of MongoDB available.

In Chapter 2, Schema Design and Data Modeling, we explored how to define different models
and connect to MongoDB. CRUD when using PyMODM, as with every ODM, is simpler
than when using low-level drivers.

Creating documents
A new user object, as defined in Chapter 2, Schema Design and Data Modeling, can be
created with a single line:

>>> user = User('alexgiamas@packt.com', 'Alex', 'Giamas').save()

In this example, we used positional arguments in the same order that they were defined in
the user model to assign values to the user model attributes.

We can also use keyword arguments or a mix of both, as follows:

>>> user = User(email='alexgiamas@packt.com', 'Alex',
last_name='Giamas').save()

Bulk saving can be done by passing in an array of users to bulk_create():

>>> users = [user1, user2,...,userN]
>>> User.bulk_create(users)

Advanced Querying Chapter 4

[98]

Updating documents
We can modify a document by directly accessing the attributes and calling save() again:

>>> user.first_name = 'Alexandros'
>>> user.save()

If we want to update one or more documents, we have to use raw() to filter out the
documents that will be affected and chain update() to set the new values:

>>> User.objects.raw({'first_name': {'$exists': True}})
 .update({'$set': {'updated_at': datetime.datetime.now()}})

In the preceding example, we search for all User documents that have a first name and set
a new field, updated_at, to the current timestamp. The result of the raw() method is
QuerySet, a class used in PyMODM to handle queries and work with documents in bulk.

Deleting documents
Deleting an API is similar to updating it – by using QuerySet to find the affected
documents and then chaining on a .delete() method to delete them:

>>> User.objects.raw({'first_name': {'$exists': True}}).delete()

The BulkWrite API is still not supported at the time of writing this book (December, 2018)
and the relevant ticket, PYMODM-43, is open. Methods such as bulk_create() will,
under the hood, issue multiple commands to the database.

Querying documents
Querying is done using QuerySet, as described before the update and delete operations.

Some convenience methods available include the following:

all()

count()

first()

exclude(*fields) to exclude some fields from the result
only(*fields) to include only some fields in the result (this can be chained for
a union of fields)
limit(limit)

Advanced Querying Chapter 4

[99]

order_by(ordering)

reverse() if we want to reverse the order_by() order
skip(number)

values() to return Python dict instances instead of model instances

By using raw(), we can use the same queries that we described in the previous PyMongo
section for querying and still exploit the flexibility and convenience methods provided by
the ODM layer.

CRUD using the PHP driver
In PHP, there is a new driver called mongo-php-library that should be used instead of
the deprecated MongoClient. The overall architecture was explained in Chapter 2, Schema
Design and Data Modeling. Here, we will cover more details of the API and how we can
perform CRUD operations using it.

Creating and deleting
The following command will insert a single $document that contains an array of two
key/value pairs, with the key names of isbn and name:

$document = array("isbn" => "401", "name" => "MongoDB and PHP");
$result = $collection->insertOne($document);
var_dump($result);

The output from the var_dump($result) command is shown as follows:

MongoDB\InsertOneResult Object
(
 [writeResult:MongoDB\InsertOneResult:private] =>
MongoDB\Driver\WriteResult Object
 (
 [nInserted] => 1
 [nMatched] => 0
 [nModified] => 0
 [nRemoved] => 0
 [nUpserted] => 0
 [upsertedIds] => Array
 (
)

 [writeErrors] => Array

Advanced Querying Chapter 4

[100]

 (
)

 [writeConcernError] =>
 [writeConcern] => MongoDB\Driver\WriteConcern Object
 (
)

)

 [insertedId:MongoDB\InsertOneResult:private] => MongoDB\BSON\ObjectID
Object
 (
 [oid] => 5941ac50aabac9d16f6da142
)

 [isAcknowledged:MongoDB\InsertOneResult:private] => 1
)

This rather lengthy output contains all the information that we may need. We can get the
ObjectId of the document inserted; the number of inserted, matched, modified,
removed, and upserted documents by fields prefixed with n; and information about
writeError or writeConcernError.

There are also convenience methods in the $result object if we want to get the
information:

$result->getInsertedCount(): To get the number of inserted objects
$result->getInsertedId(): To get the ObjectId of the inserted document

We can also use the ->insertMany() method to insert many documents at once, as
follows:

$documentAlpha = array("isbn" => "402", "name" => "MongoDB and PHP, 2nd
Edition");
$documentBeta = array("isbn" => "403", "name" => "MongoDB and PHP,
revisited");
$result = $collection->insertMany([$documentAlpha, $documentBeta]);

print_r($result);

The result can be seen as follows:

(
 [writeResult:MongoDB\InsertManyResult:private] =>
MongoDB\Driver\WriteResult Object
 (

Advanced Querying Chapter 4

[101]

 [nInserted] => 2
 [nMatched] => 0
 [nModified] => 0
 [nRemoved] => 0
 [nUpserted] => 0
 [upsertedIds] => Array
 (
)

 [writeErrors] => Array
 (
)

 [writeConcernError] =>
 [writeConcern] => MongoDB\Driver\WriteConcern Object
 (
)

)

 [insertedIds:MongoDB\InsertManyResult:private] => Array
 (
 [0] => MongoDB\BSON\ObjectID Object
 (
 [oid] => 5941ae85aabac9d1d16c63a2
)

 [1] => MongoDB\BSON\ObjectID Object
 (
 [oid] => 5941ae85aabac9d1d16c63a3
)

)

 [isAcknowledged:MongoDB\InsertManyResult:private] => 1
)

Again, $result->getInsertedCount() will return 2, whereas
$result->getInsertedIds() will return an array with the two newly-created
ObjectIds:

array(2) {
 [0]=>
 object(MongoDB\BSON\ObjectID)#13 (1) {
 ["oid"]=>
 string(24) "5941ae85aabac9d1d16c63a2"
 }
 [1]=>

Advanced Querying Chapter 4

[102]

 object(MongoDB\BSON\ObjectID)#14 (1) {
 ["oid"]=>
 string(24) "5941ae85aabac9d1d16c63a3"
 }
}

Deleting documents is a similar process to inserting documents, but uses the deleteOne()
and deleteMany() methods instead; an example of deleteMany() is shown as follows:

$deleteQuery = array("isbn" => "401");
$deleteResult = $collection->deleteMany($deleteQuery);
print($deleteResult->getDeletedCount());

The following code block shows the output:

MongoDB\DeleteResult Object
(
 [writeResult:MongoDB\DeleteResult:private] => MongoDB\Driver\WriteResult
Object
 (
 [nInserted] => 0
 [nMatched] => 0
 [nModified] => 0
 [nRemoved] => 2
 [nUpserted] => 0
 [upsertedIds] => Array
 (
)

 [writeErrors] => Array
 (
)

 [writeConcernError] =>
 [writeConcern] => MongoDB\Driver\WriteConcern Object
 (
)

)

 [isAcknowledged:MongoDB\DeleteResult:private] => 1
)
2

In this example, we used ->getDeletedCount() to get the number of affected documents,
which is printed in the last line of the output.

Advanced Querying Chapter 4

[103]

BulkWrite
The new PHP driver supports the BulkWrite interface to minimize network calls to
MongoDB:

$manager = new MongoDB\Driver\Manager('mongodb://localhost:27017');
$bulk = new MongoDB\Driver\BulkWrite(array("ordered" => true));
$bulk->insert(array("isbn" => "401", "name" => "MongoDB and PHP"));
$bulk->insert(array("isbn" => "402", "name" => "MongoDB and PHP, 2nd
Edition"));
$bulk->update(array("isbn" => "402"), array('$set' => array("price" =>
15)));
$bulk->insert(array("isbn" => "403", "name" => "MongoDB and PHP,
revisited"));

$result = $manager->executeBulkWrite('mongo_book.books', $bulk);
print_r($result);

The result can be seen as follows:

MongoDB\Driver\WriteResult Object
(
 [nInserted] => 3
 [nMatched] => 1
 [nModified] => 1
 [nRemoved] => 0
 [nUpserted] => 0
 [upsertedIds] => Array
 (
)

 [writeErrors] => Array
 (
)

 [writeConcernError] =>
 [writeConcern] => MongoDB\Driver\WriteConcern Object
 (
)

)

In the preceding example, we executed two inserts, one update, and a third insert in an
ordered fashion. The WriteResult object contains a total of three inserted documents and
one modified document.

Advanced Querying Chapter 4

[104]

The main difference compared to simple create/delete queries is that
executeBulkWrite() is a method of the MongoDB\Driver\Manager class, which we
instantiate on the first line.

Read
Querying an interface is similar to inserting and deleting, with the findOne() and find()
methods used to retrieve the first result or all results of a query:

$document = $collection->findOne(array("isbn" => "401"));
$cursor = $collection->find(array("name" => new
MongoDB\BSON\Regex("mongo", "i")));

In the second example, we are using a regular expression to search for a key name with the
value, mongo (which is case insensitive).

Embedded documents can be queried using the . notation, as with the other languages that
we examined earlier in this chapter:

$cursor = $collection->find(array('meta.price' => 50));

We do this to query for a price embedded document inside the meta key field.

Similarly to Ruby and Python, in PHP, we can query using comparison operators, as shown
in the following code:

$cursor = $collection->find(array('price' => array('$gte'=> 60)));

A complete list of comparison operators supported in the PHP driver is available at the end
of this chapter.

Querying with multiple key-value pairs is an implicit AND, whereas queries using $or, $in,
$nin, or AND ($and) combined with $or can be achieved with nested queries:

$cursor = $collection->find(array('$or' => array(
 array("price" => array('$gte'
=> 60)),
 array("price" => array('$lte'
=> 20))
)));

This finds documents that have price>=60 OR price<=20.

Advanced Querying Chapter 4

[105]

Updating documents
Updating documents has a similar interface with the ->updateOne() OR
->updateMany() method.

The first parameter is the query used to find documents and the second one will update our
documents.

We can use any of the update operators explained at the end of this chapter to update in
place, or specify a new document to completely replace the document in the query:

$result = $collection->updateOne(
 array("isbn" => "401"),
 array('$set' => array("price" => 39))
);

We can use single quotes or double quotes for key names, but if we have
special operators starting with $, we need to use single quotes. We can use
array("key" => "value") or ["key" => "value"]. We prefer the
more explicit array() notation in this book.

The ->getMatchedCount() and ->getModifiedCount() methods will return the
number of documents matched in the query part or the ones modified from the query. If the
new value is the same as the existing value of a document, it will not be counted as
modified.

CRUD using Doctrine
Following on from our Doctrine example in Chapter 2, Schema Design and Data Modeling,
we will work on these models for CRUD operations.

Creating, updating, and deleting
Creating documents is a two-step process. First, we create our document and set the
attribute values:

$book = new Book();
$book->setName('MongoDB with Doctrine');
$book->setPrice(45);

Advanced Querying Chapter 4

[106]

Following this, we ask Doctrine to save $book in the next flush() call:

$dm->persist($book);

We can force saving by manually calling flush(), as follows:

$dm->flush();

In this example, $dm is a DocumentManager object that we use to connect to our MongoDB
instance, as follows:

$dm = DocumentManager::create(new Connection(), $config);

Updating a document is as easy as assigning values to the attributes:

$book->price = 39;
$book->persist($book);

This will save our MongoDB with Doctrine book with the new price of 39.

Updating documents in place uses the QueryBuilder interface.

Doctrine provides several helper methods around atomic updates, listed as follows:

set($name, $value, $atomic = true)

setNewObj($newObj)

inc($name, $value)

unsetField($field)

push($field, $value)

pushAll($field, array $valueArray)

addToSet($field, $value)

addManyToSet($field, array $values)

popFirst($field)

popLast($field)

pull($field, $value)

pullAll($field, array $valueArray)

update will, by default, update the first document found by the query. If we want to
change multiple documents, we need to use ->updateMany():

$dm->createQueryBuilder('Book')
 ->updateMany()
 ->field('price')->set(69)

Advanced Querying Chapter 4

[107]

 ->field('name')->equals('MongoDB with Doctrine')
 ->getQuery()
 ->execute();

In the preceding example, we are setting the price of the book with name='MongoDB with
Doctrine' to be 69. The list of comparison operators in Doctrine is available in the
following Read section.

We can chain multiple comparison operators, resulting in an AND query and also multiple
helper methods, resulting in updates to several fields.

Deleting a document is similar to creating it, as demonstrated in the following code block:

$dm->remove($book);

Removing multiple documents is best done using the QueryBuilder interface, which we
will explore further in the following section:

$qb = $dm->createQueryBuilder('Book');
$qb->remove()
 ->field('price')->equals(50)
 ->getQuery()
 ->execute();

Read
Doctrine provides a QueryBuilder interface to build queries for MongoDB. Given that we
have defined our models as described in Chapter 2, Schema Design and Data Modeling, we
can do this to obtain an instance of a QueryBuilder interface named $db, get a default
find-all query, and execute it, as follows:

$qb = $dm->createQueryBuilder('Book');
$query = $qb->getQuery();
$books = $query->execute();

The $books variable now contains an iterable lazy data-loading cursor over our result set.

Using $qb->eagerCursor(true); over the QueryBuilder object will return an eager
cursor, fetching all data from MongoDB as soon as we start iterating our results.

Some helper methods for querying are listed here:

->getSingleResult(): This is equivalent to findOne().
->select('name'): This returns only the values for the 'key' attribute from
our books collection. ObjectId will always be returned.

Advanced Querying Chapter 4

[108]

->hint('book_name_idx'): This forces the query to use this index. We'll see
more about indexes in Chapter 7, Indexing.
->distinct('name'): This returns distinct results by name.
->limit(10): This returns the first 10 results.
->sort('name', 'desc'): This sorts by name (such as desc or asc).

Doctrine uses the concept of hydration when fetching documents from MongoDB.
Hydration defines the query's result schema. We can, for example, configure hydration to
return a collection of objects, a single scalar value, or an array of arrays representing
different records. Using an identity map, it will cache MongoDB results in memory and
consult this map before hitting the database. Disabling hydration can be done per query
by using ->hydration(false), or globally using the configuration as explained in
Chapter 2, Schema Design and Data Modeling.

We can also force Doctrine to refresh data in the identity map for a query from MongoDB
using ->refresh() on $qb.

The comparison operators that we can use with Doctrine are as follows:

where($javascript)

in($values)

notIn($values)

equals($value)

notEqual($value)

gt($value)

gte($value)

lt($value)

lte($value)

range($start, $end)

size($size)

exists($bool)

type($type)

all($values)

mod($mod)

addOr($expr)

addAnd($expr)

references($document)

Advanced Querying Chapter 4

[109]

includesReferenceTo($document)

Consider the following query as an example:

$qb = $dm->createQueryBuilder('Book')
 ->field('price')->lt(30);

This will return all books whose price is less than 30.

addAnd() may seem redundant since chaining multiple query expressions in Doctrine is
implicitly AND, but it is useful if we want to do AND ((A OR B), (C OR D)) where A,
B, C, and D are standalone expressions.

To nest multiple OR operators with an external AND query, and in other equally complex
cases, the nested ORs need to be evaluated as expressions using ->expr():

$expression = $qb->expr()->field('name')->equals('MongoDB with Doctrine')

$expression is a standalone expression that can be used with
$qb->addOr($expression) and similarly with addAnd().

Best practices
Some best practices for using Doctrine with MongoDB are as follows:

Don't use unnecessary cascading.
Don't use unnecessary life cycle events.
Don't use special characters such as non-ASCII ones in class, field, table, or
column names, as Doctrine is not Unicode-safe yet.
Initialize collection references in the model's constructor.
Constrain relationships between objects as much as possible. Avoid bidirectional
associations between models and eliminate the ones that are not needed. This
helps with performance, loose coupling, and produces simpler and more easily
maintainable code.

Advanced Querying Chapter 4

[110]

Comparison operators
The following is a list of all comparison operators that MongoDB supports:

Name Description
$eq Matches values that are equal to a specified value
$gt Matches values that are greater than a specified value
$gte Matches values that are greater than or equal to the specified value
$lt Matches values that are less than the specified value
$lte Matches values that are less than or equal to the specified value
$ne Matches all values that are not equal to the specified value
$in Matches any of the values specified in an array
$nin Matches none of the values specified in an array

Update operators
The following is a list of all update operators that MongoDB supports:

Name Description
$inc This increments the value of the field by the specified amount.
$mul This multiplies the value of the field by the specified amount.
$rename This renames a field.

$setOnInsert
This sets the value of a field if an update results in an insert of a document.
It has no effect on update operations and modifying existing documents.

$set This sets the value of a field in a document.
$unset This removes the specified field from a document.

$min
This only updates the field if the specified value is less than the existing
field value.

$max
This only updates the field if the specified value is greater than the existing
field value.

$currentDate
This sets the value of a field to the current date, either as a date or as a
timestamp.

Advanced Querying Chapter 4

[111]

Smart querying
There are several considerations when querying in MongoDB that we have to take into
account. Here are some best practices for using regular expressions, query results, cursors,
and when deleting documents.

Using regular expressions
MongoDB offers a rich interface for querying using regular expressions. In its simplest
form, we can use regular expressions in queries by modifying the query string:

> db.books.find({"name": /mongo/})

This is done to search for books in our books collection that contain the mongo name. It is
the equivalent of a SQL LIKE query.

MongoDB uses Perl Compatible Regular Expression (PCRE) version 8.39
with UTF-8 support.

We can also use some options when querying:

Option Description
i This option queries case insensitivity.

m

For patterns that include anchors (that is, ^ for the start and $ for the end), this
option matches at the beginning or end of each line for strings with multiline
values. Without this option, these anchors match at the beginning or end of the
string.
If the pattern contains no anchors, or if the string value has no newline characters
(for example, \n), the m option has no effect.

In our previous example, if we wanted to search for mongo, Mongo, MONGO, and any other
case-insensitive variation, we would need to use the i option, as follows:

> db.books.find({"name": /mongo/i})

Alternatively, we can use the $regex operator, which provides more flexibility.

The same queries using $regex will be written as follows:

> db.books.find({'name': { '$regex': /mongo/ } })
> db.books.find({'name': { '$regex': /mongo/i } })

Advanced Querying Chapter 4

[112]

By using the $regex operator, we can also use the following two options:

Option Description

x

Extended capability to ignore all whitespace characters in the $regex pattern,
unless they have escaped or are included in a character class.
Additionally, it ignores characters in between (and including) an unescaped
hash/pound (#, £) character and the next newline so that you may include
comments in complicated patterns. This only applies to data characters;
whitespace characters may never appear within special character sequences in a
pattern.
The x option does not affect the handling of the VT character.

s
This option allows the dot character (that is, .) to match all characters, including
newline characters.

Expanding matching documents using regex makes our queries slower to execute.

Indexes using regular expressions can only be used if our regular expression does queries
for the beginning of a string that is indexed; that is, regular expressions starting with ^ or
\A. If we want to query only using a starts with regular expression, we should avoid
writing lengthier regular expressions, even if they will match the same strings.

Take the following code block as an example:

> db.books.find({'name': { '$regex': /mongo/ } })
> db.books.find({'name': { '$regex': /^mongo.*/ } })

Both queries will match name values starting with mongo (case-sensitive), but the first one
will be faster as it will stop matching as soon as it hits the sixth character in every name
value.

Querying results and cursors
MongoDB's lack of support for transactions means that several semantics that we take for
granted in RDBMS work differently.

As explained previously, updates can modify the size of a document. Modifying the size
can result in MongoDB moving the document on the disk to a new slot toward the end of
the storage file.

When we have multiple threads querying and updating a single collection, we can end up
with a document appearing multiple times in the result set.

Advanced Querying Chapter 4

[113]

This will happen in the following scenario:

Thread A starts querying the collection and matches document A1.
Thread B updates document A1, increasing its size and forcing MongoDB to
move it to a different physical location toward the end of the storage file.
Thread A is still querying the collection. It reaches the end of the collection and
finds document A1 again with its new value, as shown in the following diagram:

This is rare, but it can happen in production; if we can't safeguard from such a case in the
application layer, we can use snapshot() to prevent it.

snapshot() is supported by official drivers and the shell by appending it into an operation
that returns a cursor:

> db.books.find().snapshot()

$snapshot cannot be used with sharded collections. $snapshot has to be applied before
the query returns the first document. Snapshot cannot be used together with the hint() or
sort() operators.

We can simulate the snapshot() behavior by querying using hint({id :1}), thus
forcing the query engine to use the id index just like the $snapshot operator.

If our query runs on a unique index of a field whose values won't get modified during the
duration of the query, we should use this query to get the same query behavior. Even then,
snapshot() cannot protect us from insertions or deletions happening in the middle of a
query. The $snapshot operator will traverse the built-in index that every collection has on
the id field, making it inherently slow. This should only be used as a last resort.

Advanced Querying Chapter 4

[114]

If we want to update, insert, or delete multiple documents without other threads
seeing the results of our operation while it's happening, we can use the $isolated
operator:

> db.books.remove({ price: { $gt: 30 }, $isolated: 1 })

In this example, threads querying the books collection will see either all books with a price
greater than 30 or no books at all. The isolated operator will acquire an exclusive write lock
in the collection for the whole duration of the query, no matter what the storage engine can
support, contributing to the contention in this collection.

Isolated operations are still not transactions; they don't provide atomicity ("all-or-
nothing"). So, if they fail midway, we need to manually roll back the operation to get our
database into a consistent state.

Again, this should be a last resort and only used in cases where it's mission-critical to avoid
multiple threads seeing inconsistent information at any time.

Storage considerations for the delete operation
Deleting documents in MongoDB does not reclaim the disk space used by it. If we have 10
GB of disk space used by MongoDB and we delete all documents, we will still be using 10
GB. What happens under the hood is that MongoDB will mark these documents as deleted
and may use the space to store new documents.

This results in our disk having space that is not used, but is not freed up for the operating
system. If we want to claim it back, we can use compact() to reclaim any unused space:

> db.books.compact()

Alternatively, we can start the mongod server with the --repair option.

A better option is to enable compression, which is available from version 3.0 and only with
the WiredTiger storage engine. We can use the snappy or zlib algorithms to compress our
document size. This will, again, not prevent storage holes, but if we are tight on disk space,
it is preferable to the heavy operational route of repair and compact.

Storage compression uses less disk space at the expense of CPU usage, but this trade-off is
mostly worth it.

Advanced Querying Chapter 4

[115]

Always take a backup before running operations that can result in a
catastrophic loss of data. Repair or compact will run in a single thread,
blocking the entire database from other operations. In production systems,
always perform these on the slave first; then switch the master-slave roles,
and compact the ex-master, now-slave instance.

Change streams
Change streams functionality was introduced in version 3.6 and augmented in version 4.0,
making it a safe and efficient way to listen for database changes.

Introduction
The fundamental problem that change streams solve is the need for applications to react
immediately to changes in the underlying data. Modern web applications need to be
reactive to data changes and refresh the page view without reloading the entire page. This
is one of the problems that frontend frameworks (such as Angular, React, and Vue.js) are
solving. When a user performs an action, the frontend framework will submit the request to
the server asynchronously and refresh the relevant fragment of the page based on the
response from the server.

Thinking of a multiuser web application, there are cases where a database change may have
occurred as a result of another user's action. For example, in a project management Kanban
board, user A may be viewing the Kanban board, while another user, B, may be changing
the status of a ticket from "To do" to "In progress".

User A's view needs to be updated with the change that user B has performed in real time,
without refreshing the page. There are already three approaches to this problem, as follows:

The most simple approach is to poll the database every X number of seconds and
determine if there has been a change. Usually this code will need to use some
kind of status, timestamp, or version number to avoid fetching the same change
multiple times. This is simple, yet inefficient, as it cannot scale with a great
number of users. Having thousands of users polling the database at the same
time will result in a high database-locking rate.

Advanced Querying Chapter 4

[116]

To overcome the problems imposed by the first approach, database-and
application-level triggers have been implemented. A database trigger relies on
the underlying database executing some code in response to a database change.
However, the main downside is again similar to the first approach in that the
more triggers that we add to a database, the slower our database will become. It
is also coupled to the database, instead of being a part of the application code
base.
Finally, we can use the database transaction or replication log to query for the
latest changes and react to them. This is the most efficient and scalable approach
of the three previously mentioned as it doesn't put a strain on the database. The
database writes to this log anyway, it is usually append only and our
background task serially reads entries as they come into the log. The downside of
this method is that it is the most complicated one to implement and one that can
lead to nasty bugs if it's not implemented properly.

Change streams provide a way to solve this problem that is developer-friendly and easy to
implement and maintain. It is based on the oplog, which is essentially MongoDB's
operations log, containing each and every operation happening server-wide across all
databases in the server. This way the developer does not have to deal with the server-wide
oplog or tailable cursors, which are often not exposed or easy to deal with from MongoDB
language-specific drivers. Also, the developer does not have to decipher and understand
any of the internal oplog data structures that are designed and built for MongoDB's benefit,
and not for an application developer.

Change streams have other advantages in which they are secure: users can only create
change streams on collections, databases, or deployments to those for which they have read
access.

Change streams are also idempotent by design. Even in the case that the application cannot
fetch the absolute latest change stream event notification ID, it can resume applying from
an earlier known one and it will eventually reach the same state.

Finally, change streams are resumable. Every change stream response document includes a
resume token. If the application gets out of sync with the database, it can send the latest
resume token back to the database and continue processing from there. This token needs to
be persisted in the application, as the MongoDB driver won't keep application failures and
restarts. It will only keep state and retry in case of transient network failures and MongoDB
replica set elections.

Advanced Querying Chapter 4

[117]

Setup
A change stream can be opened against a collection, a database, or an entire deployment
(such as a replica set or sharded cluster). A change stream will not react to changes in any
system collection or any collection in the admin, config, and local databases.

A change stream requires a WiredTiger storage engine and replica set
protocol version 1 (pv1). pv1 is the only supported version starting from
MongoDB 4.0. Change streams are compatible with deployments that use
encryption-at-rest.

Using change streams
To use a change stream, we need to connect to our replica set. A replica set is a prerequisite
to using change streams. As change streams internally use the oplog, it's not possible to
work without it. Change streams will also output documents that won't be rolled back in a
replica set setting, so they need to follow a majority read concern. Either way, it's a good
practice to develop and test locally using a replica set, as this is the recommended
deployment for production. As an example, we are going to use a signals collection
within our database named streams.

We will use the following sample Python code:

from pymongo import MongoClient

class MongoExamples:
 def __init__(self):
 self.client = MongoClient('localhost', 27017)
 db = self.client.streams
 self.signals = db.signals
 # a basic watch on signals collection
 def change_books(self):
 with self.client.watch() as stream:
 for change in stream:
 print(change)
def main():
 MongoExamples().change_books()
if __name__ == '__main__':
 main()

We can open one Terminal and run it using python change_streams.py.

Advanced Querying Chapter 4

[118]

Then, in another Terminal, we connect to our MongoDB replica set using the following
code:

> mongo
> use streams
> db.signals.insert({value: 114.3, signal:1})

Going back to our first Terminal window, we can now observe that the output is similar to
the following code block:

{'_id': {'_data':
'825BB7A25E0000000129295A1004A34408FB07864F8F960BF14453DFB98546645F69640064
5BB7A25EE10ED33145BCF7A70004'}, 'operationType': 'insert', 'clusterTime':
Timestamp(1538761310, 1), 'fullDocument': {'_id':
ObjectId('5bb7a25ee10ed33145bcf7a7'), 'value': 114.3, 'signal': 1.0}, 'ns':
{'db': 'streams', 'coll': 'signals'}, 'documentKey': {'_id':
ObjectId('5bb7a25ee10ed33145bcf7a7')}}

What has happened here is that we have opened a cursor watching the entire
streams database for changes. Every data update in our database will be logged and
outputted in the console.

For example, if we go back to the mongo shell, we can issue the following code:

> db.a_random_collection.insert({test: 'bar'})

The Python code output should then be similar to the following code:

{'_id': {'_data':
'825BB7A3770000000229295A10044AB37F707D104634B646CC5810A40EF246645F69640064
5BB7A377E10ED33145BCF7A80004'}, 'operationType': 'insert', 'clusterTime':
Timestamp(1538761591, 2), 'fullDocument': {'_id':
ObjectId('5bb7a377e10ed33145bcf7a8'), 'test': 'bar'}, 'ns': {'db':
'streams', 'coll': 'a_random_collection'}, 'documentKey': {'_id':
ObjectId('5bb7a377e10ed33145bcf7a8')}}

This means that we are getting notifications for each and every data update across all
collections in our database.

We can then change line 11 of our code to the following:

> with self.signals.watch() as stream:

This will result in only watching the signals collection, as should be the most common
use case.

Advanced Querying Chapter 4

[119]

PyMongo's watch command can take several parameters, as follows:

watch(pipeline=None, full_document='default', resume_after=None,
max_await_time_ms=None, batch_size=None, collation=None,
start_at_operation_time=None, session=None)

The most important parameters are as follows:

Pipeline: This is an optional parameter that we can use to define an
aggregation pipeline to be executed on each document that matches watch().
Because the change stream itself uses the aggregation pipeline, we can attach
events to it. The aggregation pipeline events we can use are as follows:

$match
$project
$addFields
$replaceRoot
$redact

Full_document: This is an optional parameter that we can use by setting it to
'updateLookup' to make change streams return both a delta describing the
changes to the document, and a copy of the entire document that was changed
from some time after the change occurred in the case of a partial update.
Start_at_operation_time: This is an optional parameter that we can use to
only watch for changes that occurred at, or after, the specified timestamp.
Session: This is an optional parameter in case our driver supports passing a
ClientSession object to watch for updates.

Change streams response documents have to be under 16 MB in size. This
is a global limit in MongoDB for BSON documents and the change stream
has to follow this rule.

Specification
The following document shows all of the possible fields that a change event response may
or may not include, depending on the actual change that happened:

{ _id : { <BSON Object> },
 "operationType" : "<operation>",
 "fullDocument" : { <document> },
 "ns" : {
 "db" : "<database>",
 "coll" : "<collection"

Advanced Querying Chapter 4

[120]

 },
 "documentKey" : { "_id" : <ObjectId> },
 "updateDescription" : {
 "updatedFields" : { <document> },
 "removedFields" : ["<field>", ...]
 }
 "clusterTime" : <Timestamp>,
 "txnNumber" : <NumberLong>,
 "lsid" : {
 "id" : <UUID>,
 "uid" : <BinData>
 }
}

The most important fields are as follows:

fullDocument

This is the new state of the document, which
can include the following:
• If it's a delete operation, this field is omitted as the
document no longer exists.
• If it's an insert or replace operation, this will be the new
value of the document.
• If it's an update operation and we have enabled
'updateLookup', then it will have the most recently
major-committed version of the document modified by the
update operation.

operationType
This is the type of operation; it can be either
of insert, delete, replace, update,
or invalidate.

documentKey
This is ObjectID of the document that was
affected by the operation.

updateDescription.updatedFields /
removedFields

This is a document or an array of keys
respectively, showing the data that was
updated or removed by the update or
remove operation.

txnNumber

This is the transaction number. It is only
applicable if the operation is part of a multi-
document ACID (atomicity, consistency,
isolation, durability) transaction.

lsid

This is the session identifier of the
transaction. It is only applicable if the
operation is part of a multi-document ACID
transaction.

Advanced Querying Chapter 4

[121]

Important notes
When using a sharded database, change streams need to be opened against a MongoDB
server. When using replica sets, a change stream can only be opened against a data-bearing
instance. Each change stream will open a new connection, as of 4.0.2. If we want to have
lots of change streams in parallel, we need to increase the connection pool (as per the
SERVER-32946 JIRA MongoDB ticket) to avoid severe performance degradation.

Production recommendations
Change streams are a fairly recent addition to the MongoDB database. As such, the
following recommendations for production deployments may change in later versions.
These are the guidelines as recommended by MongoDB and expert architects at the time of
writing this chapter.

Replica sets
A change stream will only process an event that has been written to the majority of
members processing data. It will pause if we lose the majority of data-storing servers, or if
we rely on arbiters to establish a majority.

Invalidating events, such as dropping or renaming a collection, will close the change
stream. We cannot resume a change stream after an invalidate event closes it.

As the change stream relies on the oplog size, we need to make sure that the oplog size is
large enough to hold events until they are processed by the application.

Sharded clusters
On top of the considerations for replica sets, there are a few more to keep in mind for
sharded clusters. They are as follows:

The change stream is executed against every shard in a cluster and will be as fast
as the slowest shard.
To avoid creating change stream events for orphaned documents, we need to use
the new feature of ACID compliant transactions if we have multi-document
updates under sharding.

While sharding an unsharded collection (that is, migrating from replica sets to
sharding), documentKey of the change stream notification document will include _id until
the change stream catches up to the first chunk migration.

Advanced Querying Chapter 4

[122]

Summary
In this chapter, we went through advanced querying concepts using Ruby, Python, and
PHP by both using the official drivers and an ODM.

Using Ruby and the Mongoid ODM, Python and the PyMODM ODM, and PHP and the
Doctrine ODM, we went through code samples exploring how to create, read, update,
and delete documents.

We also discussed batching operations for performance and best practices. We presented an
exhaustive list of comparison and update operators that MongoDB uses.

Finally, we discussed smart querying, how cursors in querying work, what our storage
performance considerations should be on delete, and how to use regular expressions.

In the next chapter, we will learn about the aggregation framework, using a complete use
case that involves processing transaction data from the Ethereum blockchain.

5
Multi-Document ACID

Transactions
MongoDB introduced multi-document atomicity, consistency, isolation, and durability
(ACID) transactions in version 4.0, which was released in July 2018. Transactions are an
integral part of relational databases. Every relational database management system
(RDBMS) from the very early days relied on transactions to achieve ACID. Getting these in
a non-relational database is a breakthrough that can fundamentally change the way
developers and database architects design software systems.

In the previous chapter, we learned how to query MongoDB using Ruby, Python, and
PHP drivers and frameworks. In this chapter, we will learn about the following topics:

Multi-document ACID transactions
Using transactions with Ruby and Python

Background
MongoDB is a non-relational database and provides few guarantees around ACID. Data
modeling in MongoDB is not focused around BCNF, 2NF, and 3NF normalization, but
rather, quite the opposite direction.

In MongoDB, many times, the best approach is to embed our data into subdocuments,
resulting in more self-contained documents than a single row of data in an RDBMS. This
means that a logical transaction can affect a single document many times. Single-document
transactions are ACID-compliant in MongoDB, meaning that multi-document ACID
transactions have not been essential for MongoDB development.

Multi-Document ACID Transactions Chapter 5

[124]

However, there are a few reasons why getting multi-document transactions is a good idea.
Over the years, MongoDB has grown from being a niche database to a multi-purpose
database that is used everywhere – from startups to major Fortune 500 companies. Across
many different use cases, there are inevitably a few corner cases where data modeling can't,
or shouldn't, fit data in subdocuments and arrays. Also, even when the best solution for a
data architect today is to embed data, they can't be sure this will always be the case. This
makes choosing the right database layer difficult.

RDBMS data modeling has been around for over 40 years and is a well-known and
understood data modeling process. Helping data architects work in a familiar way is
always an added bonus.

Before multi-document transactions were introduced, the only workaround was
implementing them in a customized way in the application layer. This was both time
consuming and prone to error. Implementing a 2-phase commit process in the application
layer could also be slower and lead to increased database locks.

In this chapter, we will focus on using the native MongoDB transactions, as it is now
strongly recommended by MongoDB Inc.

ACID
ACID stands for atomicity, consistency, isolation, and durability. In the following sections,
we will explain what each of these means for our database design and architecture.

Atomicity
Atomicity refers to the concept that transactions need to be atomic. Either it succeeds and
its results are visible to every subsequent user reading them, or it fails and every change is
rolled back to the point it was at before it started. Either all actions in a transaction occur, or
none at all.

A simple example to understand atomicity is by transferring money from account A to
account B. Money needs to be credited from account A and then debited into account B. If
the operation fails midway, then both accounts A and B need to be reverted to their state
before the operation started.

Multi-Document ACID Transactions Chapter 5

[125]

In MongoDB, operations in a single document are always atomic even if the operation
spans multiple subdocuments or arrays within the document.

Operations spanning multiple documents need to use MongoDB transactions to be made
atomic.

Consistency
Consistency refers to the database always being in a consistent state. Every database
operation may complete successfully, fail, or abort; however, in the end, our database must
be in a state where its data is consistent.

Database constraints must be respected at all times. Any future transaction must also be
able to view data updated by past transactions. The consistency model most commonly
used in practice for distributed data systems is eventual consistency.

Eventual consistency guarantees that once we stop updating our data, all future reads will
eventually read the latest committed write value. In distributed systems, this is the only
acceptable model in terms of performance, as data needs to be replicated over the network
across different servers.

In contrast, the least popular model of strong consistency guarantees that every future read
will always read the write value that was committed last. This implies that every update is
propagated and committed to every server before the next read comes in, which will cause
a huge strain on performance for these systems.

MongoDB falls somewhere in between eventual and strict consistency. In fact, MongoDB
adopts a causal consistency model. With causal consistency, any transaction execution
sequence is the same as if all causally-related read/write ops were executed in an order that
reflects their causality.

What this means in practice is that concurrent operations may be seen in different orders,
and reads correspond to the latest value written with regard to the writes that they are
causally dependent on.

Eventually, it's a trade-off between how many concurrent operations can happen at once
and the consistency of data being read by the application.

Multi-Document ACID Transactions Chapter 5

[126]

Isolation
Isolation refers to the visibility of transaction operations to other operations happening in
parallel.

An example of why isolation levels are essential is described in the following scenario:

Transaction A updates user 1's account balance from 50 to 100, but does not
commit the transaction.
Transaction B reads user 1's account balance as 100.
Transaction A is rolled back, reverting user 1's account balance to 50.
Transaction B thinks that user 1 has 100 pounds, whereas they only have 50.
Transaction B updates user 2's value, by adding 100 pounds. User 2 receives 100
pounds out of thin air from user 1, since user 1 only has 50 pounds in their
account. Our imaginary bank is in trouble.

Isolation typically has four levels, with the most to the least strict, as follows:

Serializable
Repeatable read
Read committed
Read uncommitted

The problems we can run into from the least to the most serious, and depending on the
isolation level, are as follows:

Phantom reads
Non-repeatable reads
Dirty reads
Lost updates

Losing data about an operational update is the worst thing that can happen in any
database, because this would render our database unusable and make it a store of data that
cannot be trusted. That's why, in every isolation level, even read uncommitted isolation will
not lose data.

However, the other three issues may also arise. We will briefly explain what these are in the
following sections.

Multi-Document ACID Transactions Chapter 5

[127]

Phantom reads
A phantom read occurs when, during the course of a transaction, another transaction
modifies its result set by adding or deleting rows that belong to its result set. An example of
this would be the following:

Transaction A queries for all users. 1,000 users are returned but the transaction
does not commit.
Transaction B adds another user; 1,001 users are now in our database.
Transaction A queries for all users for a second time. 1,001 users are now
returned. Transaction A now commits.

Under a strict serializable isolation level, transaction B should be blocked from adding the
new user until transaction A commits its transaction. This can, of course, cause huge
contention in the database and contention in the database and lead to performance
degradation, as every update operation needs to wait for reads to commit their
transactions. This is why, typically, serializable is rarely used in practice.

Non-repeatable reads
A non-repeatable read occurs when, during a transaction, a row is retrieved twice and the
row's values are different with every read operation.

Following the previous money transfer example, we can illustrate a non-repeatable read in
a similar way:

Transaction B reads user 1's account balance as 50.
Transaction A updates user 1's account balance from 50 to 100, and commits the
transaction.
Transaction B reads user 1's account balance again and gets the new value, 100,
and then commits the transaction.

The problem here is that transaction B has got a different value in the course of its
transaction because it was affected by transaction A's update. This is a problem because
transaction B is getting different values within its own transaction. However, in practice, it
solves the issue of transferring money between users when they don't exist.

This is why a read committed isolation level, which does not prevent non-repeatable reads
but does prevent dirty reads, is the most commonly-used isolation level in practice.

Multi-Document ACID Transactions Chapter 5

[128]

Dirty reads
The previous example, where we made money out of thin air and ended up transferring
100 pounds out of an account that only had 50 pounds in balance, is a classic example of
dirty reads.

A read uncommitted isolation level does not protect us from dirty reads and that is why it
is rarely used in production level systems.

The following is the isolation levels versus potential issues:

Isolation level Lost updates Dirty reads Non-repeatable reads Phantoms
Read uncommitted Don't occur May occur May occur May occur
Read committed Don't occur Don't occur May occur May occur
Repeatable read Don't occur Don't occur Don't occur May occur
Serializable Don't occur Don't occur Don't occur Don't occur

PostgreSQL uses a default (and configurable) isolation level of read committed. As
MongoDB is not inherently an RDBMS, using transactions for every operation makes the
situation is more complicated.

The equivalent isolation level in these terms is read uncommitted. This may look scary
based on the examples previously given, but on the other hand, in MongoDB, there is
(again, in general) no concept of transactions or rolling them back. Read uncommitted
refers to the fact that changes will be made visible before they are made durable. More
details on the made durable part are provided in the following section on durability.

Durability
Durability in relational database systems refers to the property that every transaction that
has successfully committed will survive in the face of failure. This usually refers to writing
the contents of the committed transaction in persistent storage (such as a hard disk or SDD).
RDBMSes are always following the durability concept by writing every committed
transaction to a transaction log or write-ahead log (WAL). MongoDB, using the WiredTiger
storage engine, is committing writes using WAL to its persistent storage-based journal
every 60 msec and is, for all practical purposes, durable. As durability is important, every
database system prefers relaxing other aspects of ACID first, and durability usually gets
relaxed last.

Multi-Document ACID Transactions Chapter 5

[129]

When do we need ACID in MongoDB ?
Existing atomicity guarantees, for single-document operations, that MongoDB can meet the
integrity needs for most real-world applications. However, there are some use cases that
have traditionally benefited from ACID transactions; modeling them in MongoDB could be
significantly more difficult than using the well-known ACID paradigm.

Unsurprisingly, many of these cases come from the financial industry. Dealing with money
and stringent regulation frameworks means that each and every operation needs to be
stored, sometimes in strict execution order, logged, verified, and be able to be audited if
requested. Building a digital bank requires interaction between multiple accounts that
could be represented as documents in MongoDB.

Managing high volumes of financial transactions, either by users or algorithms executing
high-frequency trading, also requires verifying each and every single one of them. These
transactions may span multiple documents, as they would again refer to multiple accounts.

The general pattern for using multi-document ACID transactions is when we can have an
unbounded number of entities, sometimes to the millions. In this case, modeling entities in
subdocuments and arrays cannot work, as the document would eventually outgrow the
built-in 16 MB document size limit present in MongoDB.

Building a digital bank using MongoDB
The most common use cases for multi-document ACID transactions come from the
financial sector. In this section, we will model a digital bank using transactions and go
through progressively more complicated examples of how we can use transactions for our
benefit.

The basic functionality that a bank must provide is accounts and transferring monetary
amounts between them. Before transactions were introduced, MongoDB developers had
two options. The first option – the MongoDB way of doing it – is to embed data in a
document, either as a subdocument or as an array of values. In the case of accounts, this
could result in a data structure like the following code block:

{accounts: [{account_id: 1, account_name: ‘alex’, balance: 100},
{account_id: 2, account_name: ‘bob’, balance: 50}]}

However, even in this simple format, it will quickly outgrow the fixed 16 MB document
limit in MongoDB. The advantage of this approach is that since we have to deal with a
single document, all operations will be atomic, resulting in strong consistency guarantees
when we transfer money from one account to another.

Multi-Document ACID Transactions Chapter 5

[130]

The only viable alternative, except for using a relational database, is to implement
guarantees in the application level that will simulate a transaction with the appropriate
code in place to undo parts, or the whole, of a transaction in case of an error. This can work,
but will result in a longer time to market and is more prone to error.

MongoDB's multi-document ACID transactions approach is similar to how we would work
with transactions in a relational database. Taking the most simple example from MongoDB
Inc.'s white paper, MongoDB Multi-Document ACID Transactions, published in June, 2018,
the generic transaction in MongoDB will look like the following code block:

s.start_transaction()
orders.insert_one(order, session=s)
stock.update_one(item, stockUpdate, session=s)
s.commit_transaction()

However, the same transaction in MySQL will be as follows:

db.start_transaction()
cursor.execute(orderInsert, orderData)
cursor.execute(stockUpdate, stockData)
db.commit()

That said, in modern web application frameworks, most of the time transactions are hidden
in the object-relational mapping (ORM) layer and not immediately visible to the
application developer. The framework ensures that web requests are wrapped in
transactions to the underlying database layer. This is not yet the case for ODM frameworks,
but you would expect that this could now change.

Setting up our data
We are going to use a sample init_data.json file with two accounts. Alex has 100 of the
hypnotons imaginary currency, whereas Mary has 50 of them:

{"collection": "accounts", "account_id": "1", "account_name": "Alex",
"account_balance":100}{"collection": "accounts", "account_id": "2",
"account_name": "Mary", "account_balance":50}

Using the following Python code, we can insert these values into our database as follows:

import json
class InitData:
 def __init__(self):
 self.client = MongoClient('localhost', 27017)
 self.db = self.client.mongo_bank
 self.accounts = self.db.accounts

Multi-Document ACID Transactions Chapter 5

[131]

 # drop data from accounts collection every time to start from a
clean slate
 self.accounts.drop()
 # load data from json and insert them into our database
 init_data = InitData.load_data(self)
 self.insert_data(init_data)
 @staticmethod
 def load_data(self):
 ret = []
 with open('init_data.json', 'r') as f:
 for line in f:
 ret.append(json.loads(line))
 return ret
 def insert_data(self, data):
 for document in data:
 collection_name = document['collection']
 account_id = document['account_id']
 account_name = document['account_name']
 account_balance = document['account_balance']
 self.db[collection_name].insert_one({'account_id': account_id,
'name': account_name, 'balance': account_balance})

This results in our mongo_bank database having the following documents in our accounts
collection:

> db.accounts.find()
{ "_id" : ObjectId("5bc1fa7ef8d89f2209d4afac"), "account_id" : "1", "name"
: "Alex", "balance" : 100 }
{ "_id" : ObjectId("5bc1fa7ef8d89f2209d4afad"), "account_id" : "2", "name"
: "Mary", "balance" : 50 }

Transferring between accounts – part 1
As a MongoDB developer, the most familiar approach to model a transaction is to
implement basic checks in the code. With our sample account documents, you may be
tempted to implement an account transfer as follows:

 def transfer(self, source_account, target_account, value):
 print(f'transferring {value} Hypnotons from {source_account} to
{target_account}')
 with self.client.start_session() as ses:
 ses.start_transaction()
 self.accounts.update_one({'account_id': source_account},
{'$inc': {'balance': value*(-1)} })
 self.accounts.update_one({'account_id': target_account},
{'$inc': {'balance': value} })

Multi-Document ACID Transactions Chapter 5

[132]

 updated_source_balance = self.accounts.find_one({'account_id':
source_account})['balance']
 updated_target_balance = self.accounts.find_one({'account_id':
target_account})['balance']
 if updated_source_balance < 0 or updated_target_balance < 0:
 ses.abort_transaction()
 else:
 ses.commit_transaction()

Calling this method in Python will transfer 300 hypnotons from account 1 to account 2:

>>> obj = InitData.new
>>> obj.transfer('1', '2', 300)

 This will result in the following:

> db.accounts.find()
{ "_id" : ObjectId("5bc1fe25f8d89f2337ae40cf"), "account_id" : "1", "name"
: "Alex", "balance" : -200 }
{ "_id" : ObjectId("5bc1fe26f8d89f2337ae40d0"), "account_id" : "2", "name"
: "Mary", "balance" : 350 }

The problem here isn't the checks on updated_source_balance and
updated_target_balance. Both of these values reflect the new values of -200 and 350,
respectively. The problem isn't the abort_transaction() operation either. Instead, the
problem is that we are not using the session.

The single most important thing to learn about transactions in MongoDB is that we need to
use the session object to wrap operations in a transaction; but, all the while, we can still
perform operations outside the transaction scope within a transaction code block.

What happened here is that we initiated a transaction session, as follows:

 with self.client.start_session() as ses:

And then completely ignored it by doing all of our updates in a non-transactional way.
Then we invoked abort_transaction, as follows:

 ses.abort_transaction()

The transaction to be aborted was essentially void and didn't have anything to roll back.

Multi-Document ACID Transactions Chapter 5

[133]

Transferring between accounts – part 2
The correct way to implement a transaction is to use the session object in each and every
operation that we want to either commit or roll back at the end of it, as you can see from the
following code:

 def tx_transfer_err(self, source_account, target_account, value):
 print(f'transferring {value} Hypnotons from {source_account} to
{target_account}')
 with self.client.start_session() as ses:
 ses.start_transaction()
 res = self.accounts.update_one({'account_id': source_account},
{'$inc': {'balance': value*(-1)} }, session=ses)
 res2 = self.accounts.update_one({'account_id': target_account},
{'$inc': {'balance': value} }, session=ses)
 error_tx = self.__validate_transfer(source_account,
target_account)

 if error_tx['status'] == True:
 print(f"cant transfer {value} Hypnotons from
{source_account} ({error_tx['s_bal']}) to {target_account}
({error_tx['t_bal']})")
 ses.abort_transaction()
 else:
 ses.commit_transaction()

The only difference now is that we are passing session=ses in both of our update
statements. In order to validate whether we have enough funds to actually make the
transfer, we wrote a helper method, __validate_transfer, with its arguments being the
source and target account IDs:

 def __validate_transfer(self, source_account, target_account):
 source_balance = self.accounts.find_one({'account_id':
source_account})['balance']
 target_balance = self.accounts.find_one({'account_id':
target_account})['balance']

 if source_balance < 0 or target_balance < 0:
 return {'status': True, 's_bal': source_balance, 't_bal':
target_balance}
 else:
 return {'status': False}

Unfortunately, this attempt will also fail. The reason is the same as before. When we are
inside a transaction, we make changes to the database that follow the ACID principles.
Changes inside a transaction are not visible to any queries outside of it, until they are
committed.

Multi-Document ACID Transactions Chapter 5

[134]

Transferring between accounts – part 3
The correct implementation to the transfer problem will look like the following code (the
full code sample is attached with the code bundle):

from pymongo import MongoClient
import json

class InitData:
 def __init__(self):
 self.client = MongoClient('localhost', 27017, w='majority')
 self.db = self.client.mongo_bank
 self.accounts = self.db.accounts

 # drop data from accounts collection every time to start from a
clean slate
 self.accounts.drop()

 init_data = InitData.load_data(self)
 self.insert_data(init_data)
 self.transfer('1', '2', 300)

 @staticmethod
 def load_data(self):
 ret = []
 with open('init_data.json', 'r') as f:
 for line in f:
 ret.append(json.loads(line))
 return ret

 def insert_data(self, data):
 for document in data:
 collection_name = document['collection']
 account_id = document['account_id']
 account_name = document['account_name']
 account_balance = document['account_balance']

 self.db[collection_name].insert_one({'account_id': account_id,
'name': account_name, 'balance': account_balance})

 # validating errors, using the tx session
 def tx_transfer_err_ses(self, source_account, target_account, value):
 print(f'transferring {value} Hypnotons from {source_account} to
{target_account}')
 with self.client.start_session() as ses:
 ses.start_transaction()
 res = self.accounts.update_one({'account_id': source_account},
{'$inc': {'balance': value * (-1)}}, session=ses)

Multi-Document ACID Transactions Chapter 5

[135]

 res2 = self.accounts.update_one({'account_id': target_account},
{'$inc': {'balance': value}}, session=ses)
 error_tx = self.__validate_transfer_ses(source_account,
target_account, ses)

 if error_tx['status'] == True:
 print(f"cant transfer {value} Hypnotons from
{source_account} ({error_tx['s_bal']}) to {target_account}
({error_tx['t_bal']})")
 ses.abort_transaction()
 else:
 ses.commit_transaction()

 # we are passing the session value so that we can view the updated
values
 def __validate_transfer_ses(self, source_account, target_account, ses):
 source_balance = self.accounts.find_one({'account_id':
source_account}, session=ses)['balance']
 target_balance = self.accounts.find_one({'account_id':
target_account}, session=ses)['balance']
 if source_balance < 0 or target_balance < 0:
 return {'status': True, 's_bal': source_balance, 't_bal':
target_balance}
 else:
 return {'status': False}

def main():
 InitData()

if __name__ == '__main__':
 main()

In this case, by passing the session object's ses value, we ensure that we can both make
changes in our database using update_one() and also view these changes using
find_one(), before doing either an abort_transaction() operation or a
commit_transaction() operation.

Transactions cannot perform data definition language (DDL) operations, so drop(),
create_collection(), and other operations that can affect MongoDB's DDL will fail
inside a transaction. This is why we are setting w='majority' in our MongoClient object,
to make sure that, when we drop a collection right before we start our transaction, this
change will be visible to the transaction.

Multi-Document ACID Transactions Chapter 5

[136]

Even if we explicitly take care not to create or remove collections during a
transaction, there are operations that will implicitly do so.
We need to make sure that the collection exists before we attempt to insert
or upsert (update and insert) a document.

In the end, using transactions if we need to rollback, we don't need to keep track of the
previous account balance values, as MongoDB will discard all of the changes that we made
inside the transaction scope.

Continuing with the same example using Ruby, we have the following code for part 3:

require 'mongo'

class MongoBank
 def initialize
 @client = Mongo::Client.new(['127.0.0.1:27017'], database:
:mongo_bank)
 db = @client.database
 @collection = db[:accounts]

 # drop any existing data
 @collection.drop

 @collection.insert_one('collection': 'accounts', 'account_id': '1',
'account_name': 'Alex', 'account_balance':100)
 @collection.insert_one('collection': 'accounts', 'account_id': '2',
'account_name': 'Mary', 'account_balance':50)

 transfer('1', '2', 30)
 transfer('1', '2', 300)
 end

 def transfer(source_account, target_account, value)
 puts "transferring #{value} Hypnotons from #{source_account} to
#{target_account}"
 session = @client.start_session

 session.start_transaction(read_concern: { level: :snapshot },
write_concern: { w: :majority })
 @collection.update_one({ account_id: source_account }, { '$inc' => {
account_balance: value*(-1)} }, session: session)
 @collection.update_one({ account_id: target_account }, { '$inc' => {
account_balance: value} }, session: session)

 source_account_balance = @collection.find({ account_id: source_account
}, session: session).first['account_balance']

Multi-Document ACID Transactions Chapter 5

[137]

 if source_account_balance < 0
 session.abort_transaction
 else
 session.commit_transaction
 end
 end

end

initialize class
MongoBank.new

Alongside all of the points raised in the example in Python, we find that we can also
customize read_concern and write_concern per transaction.

The available read_concern levels for multi-document ACID transactions are as follows:

majority: A majority of the servers in a replica set have acknowledged the data.
For this to work as expected in transactions, they must also use write_concern
to majority.
local: Only the local server has acknowledged the data.
snapshot: The default read_concern levels for transactions as of MongoDB 4.0.
If the transaction commits with majority as write_concern, all transaction
operations will have read from a snapshot of majority committed data, otherwise
no guarantee can be made.

Read concern for transactions is set in the transaction level or higher
(session or, finally, client). Setting read concern in individual operations is
not supported and is generally discouraged.

The available write_concern levels for multi-document ACID transactions are the same
as everywhere else in MongoDB, except for w:0 (no acknowledgement), which is not
supported at all.

E-commerce using MongoDB
For our second example, we are going to use a more complex use case on a transaction with
three different collections.

Multi-Document ACID Transactions Chapter 5

[138]

We are going to simulate a shopping cart and payment transaction process for an e-
commerce application using MongoDB. Using the sample code that we'll provide at the end
of this section, we will initially populate the database with the following data.

Our first collection is the users collection with one document per user:

> db.users.find()
{ "_id" : ObjectId("5bc22f35f8d89f2b9e01d0fd"), "user_id" : 1, "name" :
"alex" }
{ "_id" : ObjectId("5bc22f35f8d89f2b9e01d0fe"), "user_id" : 2, "name" :
"barbara" }

Then we have the carts collection with one document per cart, which is linked via the
user_id to our users:

> db.carts.find()
{ "_id" : ObjectId("5bc2f9de8e72b42f77a20ac8"), "cart_id" : 1, "user_id" :
1 }
{ "_id" : ObjectId("5bc2f9de8e72b42f77a20ac9"), "cart_id" : 2, "user_id" :
2 }

The payments collection holds any completed payment that has gone through, storing the
cart_id and the item_id to link to the cart that it belonged to and the item that has been
paid:

> db.payments.find()
{ "_id" : ObjectId("5bc2f9de8e72b42f77a20aca"), "cart_id" : 1, "name" :
"alex", "item_id" : 101, "status" : "paid" }

Finally, the inventories collection holds a count of the number of items (by item_id)
that we have currently available, along with their price and a short description:

> db.inventories.find()
{ "_id" : ObjectId("5bc2f9de8e72b42f77a20acb"), "item_id" : 101,
"description" : "bull bearing", "price" : 100, "quantity" : 5 }

In this example, we are going to demonstrate using MongoDB's schema validation
functionality. Using JSON schemata, we can define a set of validations that will be checked
against the database level every time a document is inserted or updated. This is a fairly new
feature as it was introduced in MongoDB 3.6. In our case, we are going to use it to make
sure that we always have a positive number of items in our inventory.

The validator object in the MongoDB shell format is as follows:

validator = { validator:
 { $jsonSchema:
 { bsonType: "object",

Multi-Document ACID Transactions Chapter 5

[139]

 required: ["quantity"],
 properties:
 { quantity:
 { bsonType: ["long"],
 minimum: 0,
 description: "we can’t have a negative number of items in our inventory"
 }
 }
 }
 }
}

JSON schemata can be used to implement many of the validations that we would usually
have in our models in Rails or Django. We can define these keywords as in the following
table:

Keyword Validates on
type Description

enum All The enum of allowed values in a field.
type All The enum of allowed types in a field.

minimum/maximum Numeric The minimum and maximum values for a
numeric field.

minLength/maxLength String The minimum and maximum length allowed for a
string field.

pattern String The regex pattern that the string field must match.

required Objects The document must contain all the strings defined
in the required property array.

minItems/maxItems Arrays The minimum and maximum length of items in
the array.

uniqueItems Arrays If set to true, all items in the array must have
unique values.

title N/A A descriptive title for the developer's use.
description N/A A description for the developer's use.

Using JSON schema, we can offload validations from our models to the database layer
and/or use MongoDB validations as an additional layer of security on top of web
application validations.

Multi-Document ACID Transactions Chapter 5

[140]

To use a JSON schema, we have to specify it at the time that we are creating our collection,
as follows:

> db.createCollection("inventories", validator)

Returning to our example, our code will simulate having an inventory of five bull bearings
and placing two orders; one by user Alex for two bull bearings, followed by a second order
by user Barbara for another four bull bearings.

As expected, the second order will not go through because we don't have enough ball
bearings in our inventory to fulfill it. We will see this in the following code:

from pymongo import MongoClient
from pymongo.errors import ConnectionFailure
from pymongo.errors import OperationFailure

class ECommerce:
 def __init__(self):
 self.client = MongoClient('localhost', 27017, w='majority')
 self.db = self.client.mongo_bank
 self.users = self.db['users']
 self.carts = self.db['carts']
 self.payments = self.db['payments']
 self.inventories = self.db['inventories']
 # delete any existing data
 self.db.drop_collection('carts')
 self.db.drop_collection('payments')
 self.db.inventories.remove()
 # insert new data
 self.insert_data()
 alex_order_cart_id = self.add_to_cart(1,101,2)
 barbara_order_cart_id = self.add_to_cart(2,101,4)
 self.place_order(alex_order_cart_id)
 self.place_order(barbara_order_cart_id)
 def insert_data(self):
 self.users.insert_one({'user_id': 1, 'name': 'alex' })
 self.users.insert_one({'user_id': 2, 'name': 'barbara'})
 self.carts.insert_one({'cart_id': 1, 'user_id': 1})
 self.db.carts.insert_one({'cart_id': 2, 'user_id': 2})
 self.db.payments.insert_one({'cart_id': 1, 'name': 'alex',
'item_id': 101, 'status': 'paid'})
 self.db.inventories.insert_one({'item_id': 101, 'description': 'bull
bearing', 'price': 100, 'quantity': 5.0})

 def add_to_cart(self, user, item, quantity):
 # find cart for user
 cart_id = self.carts.find_one({'user_id':user})['cart_id']
 self.carts.update_one({'cart_id': cart_id}, {'$inc': {'quantity':

Multi-Document ACID Transactions Chapter 5

[141]

quantity}, '$set': { 'item': item} })
 return cart_id

 def place_order(self, cart_id):
 while True:
 try:
 with self.client.start_session() as ses:
 ses.start_transaction()
 cart = self.carts.find_one({'cart_id': cart_id},
session=ses)
 item_id = cart['item']
 quantity = cart['quantity']
 # update payments
 self.db.payments.insert_one({'cart_id': cart_id,
'item_id': item_id, 'status': 'paid'}, session=ses)
 # remove item from cart
 self.db.carts.update_one({'cart_id': cart_id},
{'$inc': {'quantity': quantity * (-1)}}, session=ses)
 # update inventories
 self.db.inventories.update_one({'item_id': item_id},
{'$inc': {'quantity': quantity*(-1)}}, session=ses)
 ses.commit_transaction()
 break
 except (ConnectionFailure, OperationFailure) as exc:
 print("Transaction aborted. Caught exception during
transaction.")
 # If transient error, retry the whole transaction
 if exc.has_error_label("TransientTransactionError"):
 print("TransientTransactionError, retrying
transaction ...")
 continue
 elif str(exc) == 'Document failed validation':
 print("error validating document!")
 raise
 else:
 print("Unknown error during commit ...")
 raise
def main():
 ECommerce()
if __name__ == '__main__':
 main()

We will break down the preceding example into the interesting parts, as follows:

 def add_to_cart(self, user, item, quantity):
 # find cart for user
 cart_id = self.carts.find_one({'user_id':user})['cart_id']
 self.carts.update_one({'cart_id': cart_id}, {'$inc': {'quantity':

Multi-Document ACID Transactions Chapter 5

[142]

quantity}, '$set': { 'item': item} })
 return cart_id

The add_to_cart() method doesn't use transactions. The reason is that because we are
updating one document at a time, these are guaranteed to be atomic operations.

Then, in the place_order() method, we start the session, and then subsequently, a
transaction within this session. Similar to the previous use case, we need to make sure that
we add the session=ses parameter at the end of every operation that we want to be
executed in the transaction context:

 def place_order(self, cart_id):
 while True:
 try:
 with self.client.start_session() as ses:
 ses.start_transaction()
 …
 # update payments
 self.db.payments.insert_one({'cart_id': cart_id, 'item_id': item_id,
'status': 'paid'}, session=ses)
 # remove item from cart
 self.db.carts.update_one({'cart_id': cart_id}, {'$inc': {'quantity':
quantity * (-1)}}, session=ses)
 # update inventories
 self.db.inventories.update_one({'item_id': item_id}, {'$inc': {'quantity':
quantity*(-1)}}, session=ses)
 ses.commit_transaction()
 break
 except (ConnectionFailure, OperationFailure) as exc:
 print("Transaction aborted. Caught exception during transaction.")
 # If transient error, retry the whole transaction
 if exc.has_error_label("TransientTransactionError"):
 print("TransientTransactionError, retrying transaction ...")
 continue
 elif str(exc) == 'Document failed validation':
 print("error validating document!")
 raise
 else:
 print("Unknown error during commit ...")
 raise

In this method, we are using the retry able transaction pattern. We start by wrapping the
transaction context in a while True block, essentially making it loop forever. Then we
enclose our transaction in a try block that will listen for exceptions.

Multi-Document ACID Transactions Chapter 5

[143]

An exception of type transient transaction, which has
the TransientTransactionError error label, will result in continued execution in the
while True block, essentially retrying the transaction from the very beginning. On the
other hand, a failed validation or any other error will reraise the exception after logging it.

The session.commitTransaction() and
session.abortTransaction() operations will be retried once by
MongoDB, no matter if we retry the transaction or not.
We don't need to explicitly call abortTransaction() in this example, as
MongoDB will abort it in the face of exceptions.

In the end, our database looks like the following code block:

> db.payments.find()
{ "_id" : ObjectId("5bc307178e72b431c0de385f"), "cart_id" : 1, "name" :
"alex", "item_id" : 101, "status" : "paid" }
{ "_id" : ObjectId("5bc307178e72b431c0de3861"), "cart_id" : 1, "item_id" :
101, "status" : "paid" }

The payment that we just made does not have the name field, in contrast to the sample
payment that we inserted in our database before rolling our transactions:

> db.inventories.find()
{ "_id" : ObjectId("5bc303468e72b43118dda074"), "item_id" : 101,
"description" : "bull bearing", "price" : 100, "quantity" : 3 }

Our inventory has the correct number of bull bearings, three (five minus the two that Alex
ordered), as shown in the following code block:

> db.carts.find()
{ "_id" : ObjectId("5bc307178e72b431c0de385d"), "cart_id" : 1, "user_id" :
1, "item" : 101, "quantity" : 0 }
{ "_id" : ObjectId("5bc307178e72b431c0de385e"), "cart_id" : 2, "user_id" :
2, "item" : 101, "quantity" : 4 }

Our carts have the correct quantities. Alex's cart (cart_id=1) has zero items, whereas
Barbara's cart (cart_id=2) still has four, since we don't have enough bull bearings to fulfill
her order. Our payments collection does not have an entry for Barbara's order and the
inventory still has three bull bearings in place.

Our database state is consistent and saving lots of time by implementing the abort
transaction and reconciliation data logic in our application level.

Multi-Document ACID Transactions Chapter 5

[144]

Continuing with the same example in Ruby, we have the following code block:

require 'mongo'

class ECommerce
 def initialize
 @client = Mongo::Client.new(['127.0.0.1:27017'], database:
:mongo_bank)
 db = @client.database
 @users = db[:users]
 @carts = db[:carts]
 @payments = db[:payments]
 @inventories = db[:inventories]

 # drop any existing data
 @users.drop
 @carts.drop
 @payments.drop
 @inventories.delete_many

 # insert data
 @users.insert_one({ "user_id": 1, "name": "alex" })
 @users.insert_one({ "user_id": 2, "name": "barbara" })

 @carts.insert_one({ "cart_id": 1, "user_id": 1 })
 @carts.insert_one({ "cart_id": 2, "user_id": 2 })

 @payments.insert_one({"cart_id": 1, "name": "alex", "item_id": 101,
"status": "paid" })
 @inventories.insert_one({"item_id": 101, "description": "bull bearing",
"price": 100, "quantity": 5 })

 alex_order_cart_id = add_to_cart(1, 101, 2)
 barbara_order_cart_id = add_to_cart(2, 101, 4)

 place_order(alex_order_cart_id)
 place_order(barbara_order_cart_id)
 end

 def add_to_cart(user, item, quantity)
 session = @client.start_session
 session.start_transaction
 cart_id = @users.find({ "user_id": user}).first['user_id']
 @carts.update_one({"cart_id": cart_id}, {'$inc': { 'quantity': quantity
}, '$set': { 'item': item } }, session: session)
 session.commit_transaction
 cart_id
 end

Multi-Document ACID Transactions Chapter 5

[145]

 def place_order(cart_id)
 session = @client.start_session
 session.start_transaction
 cart = @carts.find({'cart_id': cart_id}, session: session).first
 item_id = cart['item']
 quantity = cart['quantity']
 @payments.insert_one({'cart_id': cart_id, 'item_id': item_id, 'status':
'paid'}, session: session)
 @carts.update_one({'cart_id': cart_id}, {'$inc': {'quantity': quantity *
(-1)}}, session: session)
 @inventories.update_one({'item_id': item_id}, {'$inc': {'quantity':
quantity*(-1)}}, session: session)
 quantity = @inventories.find({'item_id': item_id}, session:
session).first['quantity']
 if quantity < 0
 session.abort_transaction
 else
 session.commit_transaction
 end
 end
end

ECommerce.new

Similar to the Python code sample, we are passing the session: session parameter
along each operation to make sure that we are operating inside the transaction.

Here, we are not using the retry able transaction pattern. Regardless, MongoDB will retry
committing or aborting a transaction once before throwing an exception.

The best practices and limitations of multi-
document ACID transactions
There are currently some limitations and best practices when developing using MongoDB
transactions in version 4.0.3:

The transaction timeout is set to 60 seconds.
As a best practice, any transaction should not try to modify more than 1,000
documents. There is no limitation in reading documents during a transaction.

Multi-Document ACID Transactions Chapter 5

[146]

The oplog will record a single entry for a transaction, meaning that this is subject
to the 16 MB document size limit. This is not such a big problem with
transactions that update documents, as only the delta will be recorded in the
oplog. It can, however, be an issue when transactions insert new documents, in
which case the oplog will record the full contents of the new documents.
We should add application logic to cater for failing transactions. These could
include using retryable writes, or executing some business logic-driven action
when the error cannot be retried or we have exhausted our retries (usually, this
means a custom 500 error).
DDL operations such as modifying indexes, collections, or databases will get
queued up behind active transactions. Transactions trying to access the
namespace while a DDL operation is still pending will immediately abort.
Transactions only work in replica sets. Starting from MongoDB 4.2, transactions
will also be available for sharded clusters.
Use sparingly; maybe the most important point to consider when developing
using MongoDB transactions is that they are not meant as a replacement for good
schema design. They should only be used when there is no other way to model
our data without them.

Summary
In this chapter, we learned about textbook relational database theory on ACID in the
context of MongoDB.

Then, we focused on multi-document ACID transactions and applied them in two use cases
using Ruby and Python. We learned about when to use MongoDB transactions and when
not to use them, how to use them, their best practices, and their limitations.

In the next chapter, we will deal with one of the most commonly-used features of
MongoDB – aggregation.

6
Aggregation

In Chapter 5, Multi-Document ACID Transactions, we worked through two use cases of the
new transactions capability using code for Ruby and Python. In this chapter, we will dive
deeper into the aggregation framework, learning how it can be useful. We will also look at
the operators that are supported by MongoDB.

To learn this information, we will use aggregations to process transaction data from the
Ethereum blockchain. The complete source code is available at https:/ /github. com/
PacktPublishing/Mastering- MongoDB- 4. x-Second- Edition.

In this chapter, we will cover the following topics:

Why aggregation?
Different aggregation operators
Limitations

Why aggregation?
The aggregation framework was introduced by MongoDB in version 2.2 (which is version
2.1 in the development branch). It serves as an alternative to both the MapReduce
framework and querying the database directly.

Using the aggregation framework, we can perform GROUP BY operations in the server.
Thus, we can project only the fields that are needed in the result set. Using the $match and
$project operators, we can reduce the amount of data passed through the pipeline,
resulting in faster data processing.

Self-joins—that is, joining data within the same collection—can also be performed using the
aggregation framework, as we will see in our use case.

https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition

Aggregation Chapter 6

[148]

When comparing the aggregation framework to simply using the queries available via the
shell or various other drivers, it is important to remember that there is a use case for both.

For selection and projection queries, it's almost always better to use simple queries, as the
complexity of developing, testing, and deploying an aggregation framework operation
cannot easily outweigh the simplicity of using built-in commands. Finding documents with
(db.books.find({price: 50} {price: 1, name: 1})), or without (
db.books.find({price: 50})) projecting only some of the fields, is simple and fast
enough to not warrant the usage of the aggregation framework.

On the other hand, if we want to perform GROUP BY and self-join operations using
MongoDB, there might be a case for using the aggregation framework. The most important
limitation of the group() command in the MongoDB shell is that the resulting set has to fit
in a document, meaning that it can't be more than 16 MB in size. In addition, the result of
any group() command can't have more than 20,000 results. Finally, group() doesn't work
with sharded input collections, which means that when our data size grows we have to
rewrite our queries anyway.

In comparison to MapReduce, the aggregation framework is more limited in functionality
and flexibility. In the aggregation framework, we are limited by the available operators. On
the plus side, the API for the aggregation framework is simpler to understand and use than
MapReduce. In terms of performance, the aggregation framework was way faster than
MapReduce in earlier versions of MongoDB, but seems to be on a par with the most recent
versions after the improvement in performance by MapReduce.

Finally, there is always the option of using the database as data storage and performing
complex operations using the application. Sometimes this can be quick to develop, but
should be avoided as it will most likely incur memory, networking, and ultimately
performance costs down the road.

In the next section, we will describe the available operators before using them in a real use
case.

Aggregation operators
In this section, we will learn how to use aggregation operators. Aggregation operators are
divided into two categories. Within each stage, we use expression operators to compare
and process values. Between different stages, we use aggregation stage operators to define
the data that will get passed on from one stage to the next, as it is considered to be in the
same format.

Aggregation Chapter 6

[149]

Aggregation stage operators
An aggregation pipeline is composed of different stages. These stages are declared in an
array and executed sequentially, with the output of every stage being the input of the next
one.

The $out stage has to be the final stage in an aggregation pipeline, outputting data to an
output collection by replacing or adding to the existing documents:

$group: This is most commonly used to group by identifier expression and to
apply the accumulator expression. It outputs one document per distinct group.
$project: This is used for document transformation, and outputs one document
per input document.
$match: This is used for filtering documents from input based on criteria.
$lookup: This is used for filtering documents from input. Input can be
documents from another collection in the same database selected by an outer left
join.
$out: This outputs the documents in this pipeline stage to an output collection
by replacing or adding to the documents that already exist in the collection.
$limit: This limits the number of documents passed on to the next aggregation
phase based on predefined criteria.
$count: This returns a count of the number of documents at this stage of the
pipeline.
$skip: This skips a certain number of documents, preventing them from passing
on to the next stage of the pipeline.
$sort: This sorts the documents based on criteria.
$redact: As a combination of $project and $match, this will redact the
selected fields from each document and pass them on to the next stage of the
pipeline.
$unwind: This transforms an array of n elements to n documents, mapping each
document to one element of the array. The documents are then passed on to the
next stage of the pipeline.
$collStats: This returns statistics regarding the view or collection.
$indexStats: This returns statistics regarding the indexes of the collection.
$sample: This randomly selects a specified number of documents from the
input.

Aggregation Chapter 6

[150]

$facet: This combines multiple aggregation pipelines within a single stage.
$bucket: This splits documents into buckets based on predefined selection
criteria and bucket boundaries.
$bucketAuto: This splits documents into buckets based on predefined selection
criteria and attempts to evenly distribute documents among the buckets.
$sortByCount: This groups incoming documents based on the value of an
expression and computes the count of documents in each bucket.
$addFields: This adds new fields to documents and outputs the same number
of documents as input with the added fields.
$replaceRoot: This replaces all existing fields of the input document (including
the standard _id field) with the specified fields.
$geoNear: This returns an ordered list of documents based on the proximity to a
specified field. The output documents include a computed distance field.
$graphLookup: This recursively searches a collection and adds an array field
with the results of the search in each output document.

Expression operators
Within every stage, we can define one or more expression operators to apply our
intermediate calculations to. This section will focus on these expression operators.

Expression Boolean operators
Boolean operators are used to pass a true or false value to the next stage of our
aggregation pipeline.

We can choose to pass the originating integer, string, or any other type value along as
well.

We can use the $and, $or, and $not operators in the same way that we would use them in
any programming language.

Expression comparison operators
Comparison operators can be used in conjunction with Boolean operators to construct the
expressions that we need to evaluate as true/false for the output of our pipeline's stage.

Aggregation Chapter 6

[151]

The most commonly used operators are as follows:

$eq (equal)

$ne (not equal)

$gt (greater than)

$gte (greater than or equal)

$lt

$lte

All the aforementioned mentioned operators return a Boolean value of true or false.

The only operator that doesn't return a Boolean value is $cmp, which returns 0 if the two
arguments are equivalent, 1 if the first value is greater than the second and -1 if the second
value is greater than the first.

Set expression and array operators
As with most programming languages, set operations ignore duplicate entries and the
order of elements, treating them as sets. The order of results is unspecified and duplicates
will be deduplicated in the result set. Set expressions do not apply recursively to elements
of the set, but only to the top level. This means that if a set contains, for example, a nested
array, then this array may or may not contain duplicates.

The available set operators are as follows:

$setEquals: This is true if the two sets have the same distinct elements
$setIntersection: This returns the intersection of all input sets (that is, the
documents that appear in all of the input sets)
$setUnion: This returns the union of all input sets (that is, the documents that
appear in at least one of all of the input sets)
$setDifference: This returns the documents that appear in the first input set
but not the second
$setIsSubset: This is true if all documents in the first set appear in the second
one, even if the two sets are identical
$anyElementTrue: This is true if any of the elements in the set evaluate to
true

$allElementsTrue: This is true if all of the elements in the set evaluate to
true

Aggregation Chapter 6

[152]

The available array operators are as follows:

$arrayElemAt: This returns the element at the array index position.
$concatArrays: This returns a concatenated array.
$filter: This returns a subset of the array based on specified criteria.
$indexOfArray: This returns the index of the array that fulfills the search
criteria. If it does not, then -1.
$isArray: This returns true if the input is an array; otherwise, it returns false.
$range: This outputs an array containing a sequence of integers according to
user-defined inputs.
$reverseArray: This returns an array with the elements in reverse order.
$reduce: This reduces the elements of an array to a single value according to the
specified input.
$size: This returns the number of items in the array.
$slice: This returns a subset of the array.
$zip: This returns a merged array.
$in: This returns true if the specified value is in the array; otherwise, it
returns false.

Expression date operators
Date operators are used to extract date information from date fields when we want to
calculate statistics based on the day of the week/month/year using the pipeline:

$dayOfYear is used to get the day of the year within a range of 1 to 366 (for a
leap year)
$dayOfMonth is used to get the day of the month within a range of 1 to 31
$dayOfWeek is used to get the day of the week within a range of 1 to 7, with 1
being Sunday and 7 being Saturday (using English days of the week)
$isoDayOfWeek returns the weekday number in the ISO 8601 date format within
a range of 1 to 7, with 1 being Monday and 7 being Sunday
$week is the week number within a range of 0 to 53, with 0 being the partial
week at the beginning of each year to 53 for a year with a leap week

Aggregation Chapter 6

[153]

$isoWeek returns the week number in the ISO 8601 date format within a range
of 1 to 53, 1 being the first week of the year that contains a Thursday and 53 being
a leap week, if one exists in the year in question
$year, $month, $hour, $minute, $milliSecond return the relevant portion of
the date in zero-based numbering, except for $month, which returns a value
ranging from 1 through 12
$isoWeekYear returns the year in ISO 8601 date format according to the date
that the last week in ISO 8601 date format ends (for example, 2016/1/1 will still
return 2015)
$second returns 0 to 60 inclusive for leap seconds
$dateToString converts a date input to a string

Expression string operators
Like date operators, string operators are used when we want to transform our data from
one stage of the pipeline to the next one. Potential use cases include preprocessing text
fields to extract relevant information to be used in later stages of a pipeline:

$concat: This is used to concatenate strings.
$split: This is used to split strings based on delimiter. If the delimiter is not
found, then the original string is returned.
$strcasecmp: This is used in case-insensitive string comparisons. It will return 0
if the strings are equal and 1 if the first string is great; otherwise, it will return -1.
$toLower/$toUpper: These are used to convert a string to all lowercase or all
uppercase, respectively.
$indexOfBytes: This is used to return the byte occurrence of the first occurrence
of a substring in a string.
$strLenBytes: This is the number of bytes in the input string.
$substrBytes: This returns the specified bytes of the substring.

The equivalent methods for code points (a value in Unicode, regardless of the underlying
bytes in its representation) are as follows:

$indexOfCP

$strLenCP

$substrCP

Aggregation Chapter 6

[154]

Expression arithmetic operators
During each stage of the pipeline, we can apply one or more arithmetic operators to
perform intermediate calculations. These operators are shown in the following list:

$abs: This is the absolute value.
$add: This can add numbers or a number to a date to get a new date.
$ceil/$floor: These are the ceiling and floor functions, respectively.
$divide: This is used to divide by two inputs.
$exp: This raises the natural number e to the specified exponential power.
$pow: This raises a number to the specified exponential power.
$ln/$log/$log10: These are used to calculate the natural log, the log on a
custom base, or a log base ten, respectively.
$mod: This is the modular value.
$multiply: This is used to multiply by inputs.
$sqrt: This is the square root of the input.
$subtract: This is the result of subtracting the second value from the first. If
both arguments are dates, it returns the difference between them. If one
argument is a date (this argument has to be the first argument) and the other is a
number, it returns the resulting date.
$trunc: This is used to truncate the result.

Aggregation accumulators
Accumulators are probably the most widely used operators, as they allow us to sum,
average, get standard deviation statistics, and perform other operations in each member of
our group. The following is a list of the aggregation accumulators:

$sum: This is the sum of the numerical values. It ignores non-numerical values.
$avg: This is the average of the numerical values. It ignores non-numerical
values.
$first/$last: This is the first and last value that passes through the pipeline
stage. It is available in the group stage only.
$max/$min: These get the maximum and minimum value that passes through the
pipeline stage, respectively.
$push: This will add a new element at the end of an input array. It is available in
the group stage only.

Aggregation Chapter 6

[155]

$addToSet: This will add an element (only if it does not exist) to an array,
effectively treating it as a set. It is available in the group stage only.
$stdDevPop/$stdDevSamp: These are used to get the population/sample
standard deviation in the $project or $match stages.

These accumulators are available in the group or project pipeline phases except where
otherwise noted.

Conditional expressions
Expressions can be used to output different data to the next stage in our pipeline based on
Boolean truth tests:

$cond

The $cond phrase will evaluate an expression of the format if...then...else, and
depending on the result of the if statement, it will return the value of the then statement
or else branches. The input can be either three named parameters or three expressions in
an ordered list:

$ifNull

The $ifNull phrase will evaluate an expression and return the first expression if it is not
null or the second expression if the first expression is null. Null can be either a missing field
or a field with an undefined value:

$switch

Similar to a programming language's switch statement, $switch will execute a specified
expression when it evaluates to true, and breaks out of the control flow.

Type conversion operators
Introduced in MongoDB 4.0, type conversion operators allow us to convert a value to a
specified type. The generic syntax of the command is as follows:

{
 $convert:
 {
 input: <expression>,
 to: <type expression>,
 onError: <expression>, // Optional.
 onNull: <expression> // Optional.

Aggregation Chapter 6

[156]

 }
}

In this syntax, input and to (the only mandatory arguments) can be any valid expression.
In its simplest form, we could, for example, have the following:

$convert: { input: "true", to: "bool" }

This converts a string with the value true to the Boolean value true.

The onError phrase can again be any valid expression, and specifies the value that
MongoDB will return if it encounters an error during conversion, including unsupported
type conversions. Its default behavior is to throw an error and stop processing.

The onNull phrase can also be any valid expression, and specifies the value that MongoDB
will return if the input is null or missing. The default behavior is to return null.

MongoDB also provides some helper functions for the most common $convert operations.
These functions are as follows:

$toBool

$toDate

$toDecimal

$toDouble

$toInt

$toLong

$toObjectId

$toString

These are even simpler to use. We could rewrite the previous example as the following:

{ $toBool: "true" }

Other operators
There are some operators that are not as commonly used, but which can be useful in use-
case-specific cases. The most important of them are listed in the following sections.

Aggregation Chapter 6

[157]

Text search
 The $meta operator is used to access text search metadata.

Variable
The $map operator applies a sub-expression to each of the elements of an array and returns
the array of the resulting values. It accepts named parameters.

The $let operator defines variables for use within the scope of a subexpression and returns
the result of the subexpression. It accepts named parameters.

Literal
The $literal operator will return a value without parsing. It is used for values that the
aggregation pipeline may interpret as an expression. For example, you can apply a
$literal expression to a string that starts with $ to avoid parsing as a field path.

Parsing data type
The $type operator returns the BSON data type of the field.

Limitations
The aggregation pipeline can output results in the following three distinct ways:

Inline as a document containing the result set
In a collection
Returning a cursor to the result set

Inline results are subject to BSON maximum document size of 16 MB, meaning that we
should use this only if our final result is of a fixed size. An example of this would be
outputting ObjectId of the top five most ordered items from an e-commerce site.

A contrary example to this would be outputting the top 1,000 most ordered items, along
with the product information, including the description and other fields of variable size.

Aggregation Chapter 6

[158]

Outputting results into a collection is the preferred solution if we want to perform further
processing of the data. We can either output into a new collection or replace the contents of
an existing collection. The aggregation output results will only be visible once the
aggregation command succeeds; otherwise, it will not be visible at all.

The output collection cannot be a sharded or capped collection (as of
v3.4). If the aggregation output violates indexes (including the built-in
index on the unique ObjectId per document) or document validation
rules, the aggregation will fail.

Each pipeline stage can have documents exceeding the 16 MB limit as these are handled by
MongoDB internally. Each pipeline stage, however, can only use up to 100 MB of memory.
If we expect more data in our stages, we should set allowDiskUse: to true to allow
excess data to overflow to disk at the expense of performance.

The $graphLookup operator does not support datasets over 100 MB and will ignore any
setting on allowDiskUse.

Aggregation use case
In this rather lengthy section, we will use the aggregation framework to process data from
the Ethereum blockchain.

Using our Python code, we have extracted data from Ethereum and loaded it into our
MongoDB database. The relation of the blockchain to our database is shown in the
following diagram:

Our data resides in two collections: blocks and transactions.

Aggregation Chapter 6

[159]

A sample block document has the following fields:

Number of transactions
Number of contracted internal transactions
Block hash
Parent block hash
Mining difficulty
Gas used
Block height

The following code shows the output data from a block:

> db.blocks.findOne()
{
"_id" : ObjectId("595368fbcedea89d3f4fb0ca"),
"number_transactions" : 28,
"timestamp" : NumberLong("1498324744877"),
"gas_used" : 4694483,
"number_internal_transactions" : 4,
"block_hash" :
"0x89d235c4e2e4e4978440f3cc1966f1ffb343b9b5cfec9e5cebc331fb810bded3
",
"difficulty" : NumberLong("882071747513072"),
"block_height" : 3923788
}

A sample transaction document has the following fields:

Transaction hash
The block height it belongs to
From hash address
To hash address
Transaction value
Transaction fee

Aggregation Chapter 6

[160]

The following code shows the output data from a transaction:

> db.transactions.findOne()
{
"_id" : ObjectId("59535748cedea89997e8385a"),
"from" : "0x3c540be890df69eca5f0099bbedd5d667bd693f3",
"txfee" : 28594,
"timestamp" : ISODate("2017-06-06T11:23:10Z"),
"value" : 0,
"to" : "0x4b9e0d224dabcc96191cace2d367a8d8b75c9c81",
"txhash" :
"0xf205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca39e77
",
"block" : 3923794
}

Sample data for our database is available on GitHub at: https:/ / github. com/
PacktPublishing/Mastering- MongoDB- 4. x-Second- Edition.

As curious developers who are using this novel blockchain technology, we want to analyze
Ethereum transactions. We are especially keen to do the following:

Find the top ten addresses that transactions originate from
Find the top ten addresses that transactions end in
Find the average value per transaction, with statistics concerning the deviation
Find the average fee required per transaction, with statistics concerning the
deviation
Find the time of day that the network is more active according to the number or
value of transactions
Find the day of week that the network is more active according to the number or
value of transactions

We find the top ten addresses that transactions originate from. To calculate this metric, we
first count the number of occurrences with a 1 count for each one, group them by the value
of the from field, and output them into a new field called count.

After this, we sort by the value of the count field in descending (-1) order, and finally, we
limit the output to the first ten documents that pass through the pipeline. These
documents are the top ten addresses that we are looking for.

https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition
https://github.com/PacktPublishing/Mastering-MongoDB-4.x-Second-Edition

Aggregation Chapter 6

[161]

The following is some sample Python code:

 def top_ten_addresses_from(self):
 pipeline = [
 {"$group": {"_id": "$from", "count": {"$sum": 1}}},
 {"$sort": SON([("count", -1)])},
 {"$limit": 10},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

{u'count': 38, u'_id': u'miningpoolhub_1'}
{u'count': 31, u'_id': u'Ethermine'}
{u'count': 30, u'_id': u'0x3c540be890df69eca5f0099bbedd5d667bd693f3'}
{u'count': 27, u'_id': u'0xb42b20ddbeabdc2a288be7ff847ff94fb48d2579'}
{u'count': 25, u'_id': u'ethfans.org'}
{u'count': 16, u'_id': u'Bittrex'}
{u'count': 8, u'_id': u'0x009735c1f7d06faaf9db5223c795e2d35080e826'}
{u'count': 8, u'_id': u'Oraclize'}
{u'count': 7, u'_id': u'0x1151314c646ce4e0efd76d1af4760ae66a9fe30f'}
{u'count': 7, u'_id': u'0x4d3ef0e8b49999de8fa4d531f07186cc3abe3d6e'}

Now we find the top ten addresses that transactions end in. As we did with from, the
calculation for the to addresses is exactly the same, only grouping using the to field
instead of from, as shown in the following code:

 def top_ten_addresses_to(self):
 pipeline = [
 {"$group": {"_id": "$to", "count": {"$sum": 1}}},
 {"$sort": SON([("count", -1)])},
 {"$limit": 10},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

{u'count': 33, u'_id': u'0x6090a6e47849629b7245dfa1ca21d94cd15878ef'}
{u'count': 30, u'_id': u'0x4b9e0d224dabcc96191cace2d367a8d8b75c9c81'}
{u'count': 25, u'_id': u'0x69ea6b31ef305d6b99bb2d4c9d99456fa108b02a'}
{u'count': 23, u'_id': u'0xe94b04a0fed112f3664e45adb2b8915693dd5ff3'}
{u'count': 22, u'_id': u'0x8d12a197cb00d4747a1fe03395095ce2a5cc6819'}
{u'count': 18, u'_id': u'0x91337a300e0361bddb2e377dd4e88ccb7796663d'}
{u'count': 13, u'_id': u'0x1c3f580daeaac2f540c998c8ae3e4b18440f7c45'}

Aggregation Chapter 6

[162]

{u'count': 12, u'_id': u'0xeef274b28bd40b717f5fea9b806d1203daad0807'}
{u'count': 9, u'_id': u'0x96fc4553a00c117c5b0bed950dd625d1c16dc894'}
{u'count': 9, u'_id': u'0xd43d09ec1bc5e57c8f3d0c64020d403b04c7f783'}

Let's find the average value per transaction, with statistics concerning the standard
deviation. In this example, we are using the $avg and $stdDevPop operators of the values
of the value field to calculate the statistics for this field. Using a simple $group operation,
we output a single document with the ID of our choice (here, value) and the
averageValues, as shown in the following code:

 def average_value_per_transaction(self):
 pipeline = [
 {"$group": {"_id": "value", "averageValues": {"$avg": "$value"},
"stdDevValues": {"$stdDevPop": "$value"}}},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

{u'averageValues': 5.227238976440972, u'_id': u'value', u'stdDevValues':
38.90322689649576}

Let's find the average fee required per transaction, returning statistics concerning the
deviation. Average fees are similar to average values, replacing $value with $txfee, as
shown in the following code:

 def average_fee_per_transaction(self):
 pipeline = [
 {"$group": {"_id": "value", "averageFees": {"$avg": "$txfee"},
"stdDevValues": {"$stdDevPop": "$txfee"}}},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code snippet is as follows:

{u'_id': u'value', u'averageFees': 320842.0729166667, u'stdDevValues':
1798081.7305142984}

We find the time of day that the network is more active according to the number or value of
transactions at specific times.

Aggregation Chapter 6

[163]

To find out the most active hour for transactions, we use the $hour operator to extract the
hour field from the ISODate() field in which we stored our datetime values and called
timestamp, as shown in the following code:

 def active_hour_of_day_transactions(self):
 pipeline = [
 {"$group": {"_id": {"$hour": "$timestamp"}, "transactions":
{"$sum": 1}}},
 {"$sort": SON([("transactions", -1)])},
 {"$limit": 1},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output is as follows:

{u'_id': 11, u'transactions': 34}

The following code will calculate the sum of transaction values for the most active hour of
the day:

 def active_hour_of_day_values(self):
 pipeline = [
 {"$group": {"_id": {"$hour": "$timestamp"}, "transaction_values": {"$sum":
"$value"}}},
 {"$sort": SON([("transactions", -1)])},
 {"$limit": 1},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

{u'transaction_values': 33.17773841, u'_id': 20}

Let's find the day of the week that the network is more active according to the number of
transactions or value of transactions. As we did with the hour of the day, we use the
$dayOfWeek operator to extract the day of the week from ISODate() objects, as shown in
the following code. Days are numbered ranging from one for Sunday to seven for Saturday,
following the US convention:

 def active_day_of_week_transactions(self):
 pipeline = [
 {"$group": {"_id": {"$dayOfWeek": "$timestamp"}, "transactions":

Aggregation Chapter 6

[164]

{"$sum": 1}}},
 {"$sort": SON([("transactions", -1)])},
 {"$limit": 1},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

{u'_id': 3, u'transactions': 92}

The following code will calculate the sum of transaction values for the most active day of
the week:

 def active_day_of_week_values(self):
 pipeline = [
 {"$group": {"_id": {"$dayOfWeek": "$timestamp"},
"transaction_values": {"$sum": "$value"}}},
 {"$sort": SON([("transactions", -1)])},
 {"$limit": 1},
]

 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

 {u'transaction_values': 547.62439312, u'_id': 2}

The aggregations that we calculated can be described in the following diagram:

Aggregation Chapter 6

[165]

In terms of blocks, we would like to know the following:

Average number of transactions per block, for both the total overall transactions
and the total contracted internal transactions.
Average gas used per block.
Average gas used per transaction to a block. Is there a window of opportunity to
submit my smart contract in a block?
Average difficulty per block and how it deviates.
Average number of transactions per block, both in total and also in contracted
internal transactions.

Averaging over the number_transactions field, we can get the number of transactions
per block, as shown in the following code:

 def average_number_transactions_total_block(self):
 pipeline = [
 {"$group": {"_id": "average_transactions_per_block", "count":
{"$avg": "$number_transactions"}}},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

 {u'count': 39.458333333333336, u'_id': u'average_transactions_per_block'}

Whereas with the following code, we can get the average number of internal transactions
per block:

 def average_number_transactions_internal_block(self):
 pipeline = [
 {"$group": {"_id": "average_transactions_internal_per_block",
"count": {"$avg": "$number_internal_transactions"}}},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output of the preceding code is as follows:

{u'count': 8.0, u'_id': u'average_transactions_internal_per_block'}

Aggregation Chapter 6

[166]

 The average gas used per block can be acquired as follows:

def average_gas_block(self):
 pipeline = [
 {"$group": {"_id": "average_gas_used_per_block",
 "count": {"$avg": "$gas_used"}}},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output is as follows:

{u'count': 2563647.9166666665, u'_id': u'average_gas_used_per_block'}

The average difficulty per block and how it deviates can be acquired as follows:

 def average_difficulty_block(self):
 pipeline = [
 {"$group": {"_id": "average_difficulty_per_block",
 "count": {"$avg": "$difficulty"}, "stddev":
{"$stdDevPop": "$difficulty"}}},
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

The output is as follows:

{u'count': 881676386932100.0, u'_id': u'average_difficulty_per_block',
u'stddev': 446694674991.6385}

Our aggregations are described in the following schema:

Aggregation Chapter 6

[167]

Now that we have the basic statistics calculated, we want to up our game and find out more
information about our transactions. Through our sophisticated machine learning
algorithms, we have identified some of the transactions as either scams or initial coin
offering (ICO), or maybe both.

In these documents, we have marked these attributes in an array called tags, as follows:

{
 "_id" : ObjectId("59554977cedea8f696a416dd"),
 "to" : "0x4b9e0d224dabcc96191cace2d367a8d8b75c9c81",
 "txhash" :
"0xf205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca39e77",
 "from" : "0x3c540be890df69eca5f0099bbedd5d667bd693f3",
 "block" : 3923794,
 "txfee" : 28594,
 "timestamp" : ISODate("2017-06-10T09:59:35Z"),
 "tags" : [
 "scam",
 "ico"
],
 "value" : 0
 }

Now we want to get the transactions from June, 2017, remove the _id field, and produce
different documents according to the tags that we have identified. So in our example, we
would output two documents in our new collection, scam_ico_documents, for separate
processing.

The way to do this via the aggregation framework is shown in the following code:

def scam_or_ico_aggregation(self):
 pipeline = [
 {"$match": {"timestamp": {"$gte": datetime.datetime(2017,6,1), "$lte":
datetime.datetime(2017,7,1)}}},
 {"$project": {
 "to": 1,
 "txhash": 1,
 "from": 1,
 "block": 1,
 "txfee": 1,
 "tags": 1,
 "value": 1,
 "report_period": "June 2017",
 "_id": 0,
 }

 },

Aggregation Chapter 6

[168]

 {"$unwind": "$tags"},
 {"$out": "scam_ico_documents"}
]
 result = self.collection.aggregate(pipeline)
 for res in result:
 print(res)

Here, we have the following four distinct steps in our aggregation framework pipeline:

Using $match, we only extract documents that have a timestamp field value of1.
June 01, 2017.
Using $project, we add a new report_period field with a value of June2.
2017 and remove the _id field by setting its value to 0. We keep the rest of the
fields intact by using the value 1, as shown in the preceding code.
Using $unwind, we output one new document per tag in our $tags array.3.
Finally, using $out, we output all of our documents to a new4.
scam_ico_documents collection.

Since we used the $out operator, we will get no results in the command line. If we
comment out {"$out": "scam_ico_documents"}, we get documents that look like the
following:

{u'from': u'miningpoolhub_1', u'tags': u'scam', u'report_period': u'June
2017', u'value': 0.52415349, u'to':
u'0xdaf112bcbd38d231b1be4ae92a72a41aa2bb231d', u'txhash':
u'0xe11ea11df4190bf06cbdaf19ae88a707766b007b3d9f35270cde37ceccba9a5c',
u'txfee': 21.0, u'block': 3923785}

The final result in our database will look like this:

{
 "_id" : ObjectId("5955533be9ec57bdb074074e"),
 "to" : "0x4b9e0d224dabcc96191cace2d367a8d8b75c9c81",
 "txhash" :
"0xf205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca39e77",
 "from" : "0x3c540be890df69eca5f0099bbedd5d667bd693f3",
 "block" : 3923794,
 "txfee" : 28594,
 "tags" : "scam",
 "value" : 0,
 "report_period" : "June 2017"
 }

Aggregation Chapter 6

[169]

Now that we have documents that are clearly separated in the scam_ico_documents
collection, we can perform further analysis pretty easily. An example of this analysis would
be to append more information on some of these scammers. Luckily, our data scientists
have come up with some additional information that we have extracted into a new
collection scam_details, which looks like this:

{
 "_id" : ObjectId("5955510e14ae9238fe76d7f0"),
 "scam_address" : "0x3c540be890df69eca5f0099bbedd5d667bd693f3",
 Email_address": example@scammer.com"
 }

We can now create a new aggregation pipeline job to join our scam_ico_documents with
the scam_details collection and output these extended results in a new collection,
called scam_ico_documents_extended, like this:

def scam_add_information(self):
 client = MongoClient()
 db = client.mongo_book
 scam_collection = db.scam_ico_documents
 pipeline = [
 {"$lookup": {"from": "scam_details", "localField": "from", "foreignField":
"scam_address", "as": "scam_details"}},
 {"$match": {"scam_details": { "$ne": [] }}},
 {"$out": "scam_ico_documents_extended"}
]
 result = scam_collection.aggregate(pipeline)
 for res in result:
 print(res)

Here, we are using the following three-step aggregation pipeline:

Use the $lookup command to join data from the scam_details collection and1.
the scam_address field with data from our local collection
(scam_ico_documents) based on the value from the local collection attribute
from being equal to the value in the scam_details collection's scam_address
field. If these are equal, then the pipeline adds a new field to the document
called scam_details.
Next, we only match the documents that have a scam_details field—the ones2.
that matched with the lookup aggregation framework step.
Finally, we output these documents in a new collection called3.
scam_ico_documents_extended.

Aggregation Chapter 6

[170]

These documents will now look like this:

> db.scam_ico_documents_extended.findOne()
 {
 "_id" : ObjectId("5955533be9ec57bdb074074e"),
 "to" : "0x4b9e0d224dabcc96191cace2d367a8d8b75c9c81",
 "txhash" :
"0xf205991d937bcb60955733e760356070319d95131a2d9643e3c48f2dfca39e77",
 "from" : "0x3c540be890df69eca5f0099bbedd5d667bd693f3",
 "block" : 3923794,
 "txfee" : 28594,
 "tags" : "scam",
 "value" : 0,
 "report_period" : "June 2017",
 "scam_details_data" : [
 {
 "_id" : ObjectId("5955510e14ae9238fe76d7f0"),
 "scam_address" : "0x3c540be890df69eca5f0099bbedd5d667bd693f3",
 email_address": example@scammer.com"
 }]}

Using the aggregation framework, we have identified our data and can process it rapidly
and efficiently.

The previous steps can be summed up in the following diagram:

Aggregation Chapter 6

[171]

Summary
In this chapter, we dived deep into the aggregation framework. We discussed why and
when we should use aggregation as opposed to simply using MapReduce or querying the
database. We went through the vast array of options and functionalities for aggregation.

We discussed the aggregation stages and the various operators, such as Boolean operators,
comparison operators, set operators, array operators, date operators, string operators,
expression arithmetic operators, aggregation accumulators, conditional expressions, and
variables, and the literal parsing data type operators.

Using the Ethereum use case, we went through aggregation with working code and learned
how to approach an engineering problem to solve it.

Finally, we learned about the limitation that the aggregation framework currently has and
when to avoid it.

In the next chapter, we will move on to the topic of indexing and learn how to design and
implement performant indexes for our read and write workloads.

7
Indexing

This chapter will explore one of the most important properties of any database: indexing.
Similar to book indexes, database indexes allow for quicker data retrieval. In the RDBMS
world, indexes are widely used (and sometimes abused) to speed up data access. In
MongoDB, indexes play an integral part in schema and query design. MongoDB supports a
wide array of indexes that you will learn about in this chapter, including single field,
compound, multi-key, geospatial, hashed, partial, and many more. In addition to reviewing
the different types of indexes, we will show you how to build and manage indexes for
single-server deployments, as well as complex sharded environments.

In this chapter, we will cover the following topics:

Index internals
Types of indexes
Building and managing indexes
Efficient usage of indexes

Index internals
In most cases, indexes are variations of the B-tree data structure. Invented by Rudolf Bayer
and Ed McCreight in 1971, while they were working at Boeing research labs, the B-tree data
structure allows for searches, sequential access, inserts, and deletes to be performed in
logarithmic time. The logarithmic time property stands for both the average case
performance and the worst possible performance, and it is a great property when
applications cannot tolerate unexpected variations in performance behavior.

Indexing Chapter 7

[173]

To further illustrate how important the logarithmic time part is, we will show you the Big-
O complexity chart, which is from http:/ / bigocheatsheet. com/ :

In this diagram, you can see logarithmic time performance as a flat line, parallel to the x
axis of the diagram. As the number of elements increases, constant time (O(n)) algorithms
perform worse, whereas quadratic time algorithms (O(n^2)) go off the chart. For an
algorithm that we rely on to get our data back to us as quickly as possible, time
performance is of the utmost importance.

Another interesting property of a B-tree is that it is self-balancing, meaning that it will self-
adjust to always maintain these properties. Its precursor and closest relative is the binary
search tree, a data structure that only allows two children for each parent node.

http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/

Indexing Chapter 7

[174]

Schematically, a B-tree looks like the following diagram, which can also be seen at https:/ /
commons.wikimedia. org/ w/ index. php? curid= 11701365:

In the preceding diagram, we have a parent node with the values 7 and 16, pointing to
three child nodes.

If we search for the value 9, knowing that it's greater than 7 and smaller than 16, we'll be
directed to the middle child node that contains the value straight away.

Thanks to this structure, we are approximately halving our search space with every step,
ending in a log n time complexity. Compared to sequentially scanning through every
element, halving the number of elements with each and every step increases our gains
exponentially as the number of elements we have to search through increases.

Index types
MongoDB offers a vast array of index types for different needs. In the following sections,
we will identify the different types, and the needs that each one of them fulfills.

Single field indexes
The most common and simple type of index is the single field index. An example of a single
field and key index is the index on ObjectId (_id), which is generated by default in every
MongoDB collection. The ObjectId index is also unique, preventing a second document
from having the same ObjectId in a collection.

https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365
https://commons.wikimedia.org/w/index.php?curid=11701365

Indexing Chapter 7

[175]

An index on a single field, based on the mongo_book database that we used throughout the
previous chapters, is defined like this:

> db.books.createIndex({ price: 1 })

Here, we create an index on the field name in ascending order of index creation. For a
descending order, the same index would be created like this:

> db.books.createIndex({ price: -1 })

The ordering for index creation is important if we expect our queries to favor values on the
first documents stored in our index. However, due to the extremely efficient time
complexity that indexes have, this will not be a consideration for the most common use
cases.

An index can be used for exact match queries or range queries on a field value. In the
former case, the search can stop as soon as our pointer reaches the value after O(log n) time.

In range queries, due to the fact that we are storing values in order in our B-tree index, once
we find the border value of our range query in a node of our B-tree, we will know that all of
the values in its children will be part of our result set, allowing us to conclude our search.

An example of this is shown as follows:

Indexing Chapter 7

[176]

Dropping indexes
Dropping an index is as simple as creating it. We can reference the index by its name or by
the fields it is composed from:

> db.books.dropIndex({ price: -1 })

> db.books.dropIndex("price_index")

Indexing embedded fields
As a document database, MongoDB supports embedding fields and whole documents in
nested complex hierarchies inside of the same document. Naturally, it also allows us to
index these fields.

In our books collection example, we can have documents like the following:

{
"_id" : ObjectId("5969ccb614ae9238fe76d7f1"),
"name" : "MongoDB Indexing Cookbook",
"isbn" : "1001",
"available" : 999,
"meta_data" : {
"page_count" : 256,
"average_customer_review" : 4.8
}
}

Here, the meta_data field is a document itself,
with page_count and average_customer_review fields. Again, we can create an index
on page_count, as follows:

db.books.createIndex({ "meta_data.page_count": 1 })

This can answer queries on equality and range comparisons around the
meta_data.page_count field, as follows:

> db.books.find({"meta_data.page_count": { $gte: 200 } })
> db.books.find({"meta_data.page_count": 256 })

To access embedded fields, we use dot notation, and we need to include
quotes ("") around the field's name.

Indexing Chapter 7

[177]

Indexing embedded documents
We can also index the embedded document as a whole, similar to indexing embedded
fields:

> db.books.createIndex({ "meta_data": 1 })

Here, we are indexing the whole document, expecting queries against its entirety, like the
following:

> db.books.find({"meta_data": {"page_count":256,
"average_customer_review":4.8}})

The key difference is that when we index embedded fields, we can perform range queries
on them using the index, whereas when we index embedded documents, we can only
perform comparison queries using the index.

The db.books.find({"meta_data.average_customer_review": {
$gte: 4.8}, "meta_data.page_count": { $gte: 200 }

}) command will not use our meta_data index,
whereas db.books.find({"meta_data": {"page_count":256,
"average_customer_review":4.8}}) will use it.

Background indexes
Indexes can be created in the foreground, blocking all of the operations in the collection
until they are built, or they can be created in the background, allowing for concurrent
operations. Building an index in the background is done by passing in the background:
true parameter:

> db.books.createIndex({ price: 1 }, { background: true })

Background indexes have some limitations that we will revisit in the last section of this
chapter, Building and managing indexes.

Compound indexes
Compound indexes are a generalization of single-key indexes, allowing for multiple fields
to be included in the same index. They are useful when we expect our queries to span
multiple fields in our documents, and also for consolidating our indexes when we start to
have too many of them in our collection.

Indexing Chapter 7

[178]

 Compound indexes can have as many as 31 fields. They cannot have a
hashed index type.

A compound index is declared similarly to single indexes, by defining the fields that we
want to index and the order of indexing:

> db.books.createIndex({"name": 1, "isbn": 1})

Sorting with compound indexes
The order of indexing is useful for sorting results. In single field indexes, MongoDB can
traverse the index both ways, so it doesn't matter which order we define.

In multi-field indexes, however, ordering can determine whether we can use this index to
sort. In the preceding example, a query matching the sort direction of our index creation
will use our index as follows:

> db.books.find().sort({ "name": 1, "isbn": 1 })

It will also use a sort query with all of the sort fields reversed:

> db.books.find().sort({ "name": -1, "isbn": -1 })

In this query, since we negated both of the fields, MongoDB can use the same index,
traversing it from the end to the start.

The other two sorting orders are as follows:

> db.books.find().sort({ "name": -1, "isbn": 1 })
> db.books.find().sort({ "name": 1, "isbn": -1 })

They cannot be traversed using the index, as the sort order that we want is not present in
our index's B-tree data structure.

Reusing compound indexes
An important attribute of compound indexes is that they can be used for multiple queries
on prefixes of the fields indexed. This is useful when we want to consolidate indexes that
pile up in our collections over time.

Consider the compound (multi-field) index that we created previously:

> db.books.createIndex({"name": 1, "isbn": 1})

Indexing Chapter 7

[179]

This can be used for queries on name or {name, isbn}:

> db.books.find({"name":"MongoDB Indexing"})
> db.books.find({"isbn": "1001", "name":"MongoDB Indexing"})

The order of the fields in our query doesn't matter; MongoDB will rearrange the fields to
match our query.

However, the order of the fields in our index does matter. A query just for the isbn field
cannot use our index:

> db.books.find({"isbn": "1001"})

The underlying reason is that our fields' values are stored in the index as secondary,
tertiary, and so on; each one is embedded inside of the previous ones, just like a
matryoshka, the Russian nesting doll. This means that when we query on the first field of
our multi-field index, we can use the outermost doll to find our pattern, whereas when we
are searching for the first two fields, we can match the pattern on the outermost doll, and
then dive into the inner one.

This concept is called prefix indexing, and along with index intersection, it is the most
powerful tool for index consolidation, as you will see later in this chapter.

Multikey indexes
Indexing scalar (single) values was explained in the preceding sections. However, one of
the advantages that we get from using MongoDB is the ability to easily store vector values
in the form of arrays.

In the relational world, storing arrays is generally frowned upon, as it violates the normal
forms. In a document-oriented database such as MongoDB, it is frequently a part of our
design, as we can store and query easily on complex structures of data.

Indexing arrays of documents is achieved by using the multikey index. A multikey index
can store both arrays of scalar values and arrays of nested documents.

Creating a multikey index is the same as creating a regular index:

> db.books.createIndex({"tags":1})

Indexing Chapter 7

[180]

Assume that we have created a document in our books collection, using the following
command:

> db.books.insert({"name": "MongoDB Multikeys Cheatsheet", "isbn": "1002",
"available": 1, "meta_data": {"page_count":128,
"average_customer_review":3.9}, "tags": ["mongodb",
"index","cheatsheet","new"] })

Our new index will be a multikey index, allowing us to find documents with any of the tags
stored in our array:

> db.books.find({tags:"new"})
{
"_id" : ObjectId("5969f4bc14ae9238fe76d7f2"),
"name" : "MongoDB Multikeys Cheatsheet",
"isbn" : "1002",
"available" : 1,
"meta_data" : {
"page_count" : 128,
"average_customer_review" : 3.9
},
"tags" : [
"mongodb",
"index",
"cheatsheet",
"new"
]
}
>

We can also create compound indexes with a multikey index, but we can have, at the most,
one array in each and every index document. Given that in MongoDB we don't specify the
type of each field, this means that creating an index with two or more fields with an array
value will fail at creation time, and trying to insert a document with two or more fields as
arrays will fail at insertion time.

For example, a compound index on tags, analytics_data will fail to be created if we
have the following document in our database:

{
"_id" : ObjectId("5969f71314ae9238fe76d7f3"),
"name": "Mastering parallel arrays indexing",
"tags" : [
"A",
"B"
],
"analytics_data" : [

Indexing Chapter 7

[181]

"1001",
"1002"
]
}

> db.books.createIndex({tags:1, analytics_data:1})
{
"ok" : 0,
"errmsg" : "cannot index parallel arrays [analytics_data] [tags]",
"code" : 171,
"codeName" : "CannotIndexParallelArrays"
}

Consequently, if we first create the index on an empty collection and try to insert this
document, the insert will fail, with the following error:

>
db.books.find({isbn:"1001"}).hint("international_standard_book_number_index
").explain()
{
 "queryPlanner" : {
 "plannerVersion" : 1,
 "namespace" : "mongo_book.books",
 "indexFilterSet" : false,
 "parsedQuery" : {
 "isbn" : {
 "$eq" : "1001"
 }
 },
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "isbn" : 1
 },
 "indexName" :
"international_standard_book_numbe
r_index",
 "isMultiKey" : false,
 "multiKeyPaths" : {
 "isbn" : []
 },
 "isUnique" : false,
 "isSparse" : false,
 "isPartial" : false,
 "indexVersion" : 2,
 "direction" : "forward",

Indexing Chapter 7

[182]

 "indexBounds" : {
 "isbn" : [
 "[\"1001\", \"1001\"]"
]
 }
 }
 },
 "rejectedPlans" : []
 },
 "serverInfo" : {
 "host" : "PPMUMCPU0142",
 "port" : 27017,
 "version" : "3.4.7",
 "gitVersion" : "cf38c1b8a0a8dca4a11737581beafef4fe120bcd"
 },
 "ok" : 1

 Hashed indexes cannot be multikey indexes.

Another limitation that we will likely run into when trying to fine-tune our database is that
multikey indexes cannot entirely cover a query. Covering a query with the index means
that we can get our result data entirely from the index, without accessing the data in our
database at all. This can result in dramatically increased performance, as indexes are most
likely to be stored in RAM.

Querying for multiple values in multikey indexes will result in a two-step process, from the
index's perspective.

In the first step, index will be used to retrieve the first value of the array, and then a
sequential scan will run through the rest of the elements in the array; an example is as
follows:

> db.books.find({tags: ["mongodb", "index", "cheatsheet", "new"] })

This will first search for all entries in multikey index tags that have a mongodb value, and
will then sequentially scan through them to find the ones that also have the index,
cheatsheet, and new tags.

A multikey index cannot be used as a shard key. However, if the shard
key is a prefix index of a multikey index, it can be used. We will cover
more on this in Chapter 13, Sharding.

Indexing Chapter 7

[183]

Special types of indexes
Apart from the generic indexes, MongoDB supports indexes for special use cases. In this
section, we will identify and explore how to use them.

Text indexes
Text indexes are special indexes on string value fields, used to support text searches. This
book is based on version 3 of the text index functionality, available since version 3.2.

A text index can be specified similarly to a regular index, by replacing the index sort order
(-1, 1) with the word text, as follows:

> db.books.createIndex({"name": "text"})

A collection can have one text index, at the most. This text index can
support multiple fields, text or not. It cannot support other special types,
such as multikey or geospatial. Text indexes cannot be used for sorting
results, even if they are only a part of a compound index.

Since we only have one text index per collection, we need to choose the fields wisely.
Reconstructing this text index can take quite some time, and having only one of them per
collection makes maintenance quite tricky, as you will see toward the end of this chapter.

Luckily, this index can also be a compound index:

> db.books.createIndex({ "available": 1, "meta_data.page_count": 1,
"$**": "text" })

A compound index with text fields follows the same rules of sorting and prefix indexing
that we explained earlier in this chapter. We can use this index to query on available, or
the combination of available and meta_data.page_count, or sort them if the sort order
allows for traversing our index in any direction.

We can also blindly index each and every field in a document that contains strings as text:

> db.books.createIndex({ "$**": "text" })

This can result in unbounded index sizes, and should be avoided; however, it can be useful
if we have unstructured data (for example, coming straight from application logs wherein
we don't know which fields may be useful, and we want to be able to query as many of
them as possible).

Text indexes will apply stemming (removing common suffixes, such as plural s/es for
English language words) and remove stop words (a, an, the, and so on) from the index.

Indexing Chapter 7

[184]

Text indexing supports more than 20 languages, including Spanish,
Chinese, Urdu, Persian, and Arabic. Text indexes require special
configurations to correctly index in languages other than English.

Some interesting properties of text indexes are explained as follows:

Case-insensitivity and diacritic insensitivity: A text index is case- and diacritic-
insensitive. Version 3 of the text index (the one that comes with version 3.4)
supports common C, simple S, and the special T case folding, as described in
Unicode Character Database (UCD) 8.0 case folding. In addition to case-
insensitivity, version 3 of the text index supports diacritic insensitivity. This
expands insensitivity to characters with accents in both small and capital-letter
form. For example, e, è, é, ê, ë, and their capital letter counterparts, can all result
into being equal when comparing using a text index. In the previous versions of
the text index, these were treated as different strings.

Tokenization delimiters: Version 3 of the text index supports the tokenization
delimiters, defined as Dash, Hyphen, Pattern_Syntax, Quotation_Mark,
Terminal_Punctuation, and White_Space, as described in UCD 8.0 case
folding.

Hashed indexes
A hashed index contains hashed values of the indexed field:

> db.books.createIndex({ name: "hashed" })

This will create a hashed index on the name of each book of our books collection. A hashed
index is ideal for equality matches, but it cannot work with range queries. If we want to
perform a range of queries on fields, we can create a regular index (or a compound index
containing the field), and also a hashed index for equality matches. Hashed indexes are
used internally by MongoDB for hash-based sharding, as we will discuss in Chapter 13,
Sharding. Hashed indexes truncate floating point fields to integers. Floating points should
be avoided for hashed fields wherever possible.

Time to live indexes
Time to live (TTL) indexes are used to automatically delete documents after an expiration
time. Their syntax is as follows:

> db.books.createIndex({ "created_at_date": 1 }, { expireAfterSeconds:
86400 })

Indexing Chapter 7

[185]

The created_at_date field values have to be either a date or an array of dates (the earliest
one will be used). In this example, the documents will get deleted one day (86400 seconds)
after created_at_date.

If the field does not exist or the value is not a date, the document will not expire. In other
words, a TTL index silently fails, not returning any errors when it does.

Data gets removed by a background job that runs every 60 seconds. As a result, there is no
explicit accuracy guarantee as to how much longer documents will persist past their
expiration dates.

A TTL index is a regular single field index. It can be used for queries like a
regular index. A TTL index cannot be a compound index, operate on a
capped collection, or use the _id field. The _id field implicitly contains a
timestamp of the created time for the document, but is not a Date field. If
we want each document to expire at a different, custom date point, we
have to set {expireAfterSeconds: 0}, and set the TTL index Date
field manually to the date on which we want the document to expire.

Partial indexes
A partial index on a collection is an index that only applies to the documents that satisfy the
partialFilterExpression query.

We'll use our familiar books collection, as follows:

> db.books.createIndex(
 { price: 1, name: 1 },
 { partialFilterExpression: { price: { $gt: 30 } } }
)

Using this, we can have an index for just the books that have a price greater than 30. The
advantage of partial indexes is that they are more lightweight in creation and maintenance,
and use less storage.

The partialFilterExpression filter supports the following operators:

Equality expressions (that is, field: value, or using the $eq operator)
The $exists: true expression
The $gt, $gte, $lt, and $lte expressions
$type expressions
The $and operator, at the top level only

Indexing Chapter 7

[186]

Partial indexes will only be used if the query can be satisfied as a whole by the partial
index.

If our query matches or is more restrictive than the partialFilterExpression filter,
then the partial index will be used. If the results may not be contained in the partial index,
then the index will be totally ignored.

partialFilterExpression does not need to be a part of the sparse index fields. The
following index is a valid sparse index:

 > db.books.createIndex({ name: 1 },{ partialFilterExpression: { price: {
$gt: 30 } } })

To use this partial index, however, we need to query for both name and price equal to or
greater than 30.

Prefer partial indexes to sparse indexes. Sparse indexes offer a subset of
the functionality offered by partial indexes. Partial indexes were
introduced in MongoDB 3.2, so if you have sparse indexes from earlier
versions, it may be a good idea to upgrade them. The _id field cannot be
a part of a partial index. A shard key index cannot be a partial
index. partialFilterExpression cannot be combined with the sparse
option.

Sparse indexes
A sparse index is similar to a partial index, preceding it by several years (it has been
available since version 1.8).

A sparse index only indexes values that contain the following field:

> db.books.createIndex({ "price": 1 }, { sparse: true })

It will only create an index with the documents that contain a price field.

Some indexes are always sparse, due to their nature:

2d, 2dsphere (version 2)
geoHaystack

text

Indexing Chapter 7

[187]

A sparse and unique index will allow for multiple documents missing the index key. It will
not allow for documents with the same index field values. A sparse and compound index
with geospatial indexes (2d, 2dsphere, and geoHaystack) will index the document as
long as it has the geospatial field.

A sparse and compound index with the text field will index the document as long as it has
the text field. A sparse and compound index without any of the two preceding cases will
index the document as long as it has at least one of the fields.

Avoid creating new sparse indexes in the latest versions of MongoDB; use partial indexes
instead.

Unique indexes
A unique index is similar to an RDBMS unique index, forbidding duplicate values for the
indexed field. MongoDB creates a unique index by default on the _id field for every
inserted document:

> db.books.createIndex({ "name": 1 }, { unique: true })

This will create a unique index on a book's name. A unique index can also be a compound
embedded field or an embedded document index.

In a compound index, the uniqueness is enforced across the combination of values in all of
the fields of the index; for example, the following will not violate the unique index:

> db.books.createIndex({ "name": 1, "isbn": 1 }, { unique: true })
> db.books.insert({"name": "Mastering MongoDB", "isbn": "101"})
> db.books.insert({"name": "Mastering MongoDB", "isbn": "102"})

This is because even though the name is the same, our index is looking for the unique
combination of name and isbn, and the two entries differ in isbn.

Unique indexes do not work with hashed indexes. Unique indexes cannot be created if the
collection already contains duplicate values of the indexed field. A unique index will not
prevent the same document from having multiple values.

If a document is missing the indexed field, it will be inserted. If a second document is
missing the indexed field, it will not be inserted. This is because MongoDB will store the
missing field value as null, only allowing one document to be missing in the field.

Indexes that are a combination of unique and partial will only apply unique indexes after a
partial index has been applied. This means that there may be several documents with
duplicate values, if they are not a part of partial filtering.

Indexing Chapter 7

[188]

Case-insensitive
Case-sensitivity is a common problem with indexing. We may store our data in mixed caps
and need our index to ignore case when looking for our stored data. Until version 3.4, this
was dealt with at the application level by creating duplicate fields with all lowercase
characters and indexing all lowercase field to simulate a case-insensitive index.

Using the collation parameter, we can create case-insensitive indexes, and even
collections that behave as case-insensitive.

In general, collation allows users to specify language-specific rules for string
comparisons. A possible (but not the only) usage is for case-insensitive indexes and queries.

Using our familiar books collection, we can create a case-insensitive index on a name, as
follows:

> db.books.createIndex({ "name" : 1 },
 { collation: {
 locale : 'en',
 strength : 1
 }
 })

The strength parameter is one of the collation parameters: the defining parameter for
case-sensitivity comparisons. Strength levels follow the International Components for
Unicode (ICU) comparison levels. The values that it accepts are as follows:

Strength
Value Description

1a
Primary level of comparison. Comparison based on string values, ignoring
any other differences, such as case and diacritics.

2
Secondary level of comparison, which is the comparison based on the
primary level and if this is equal then compare diacritics (that is, accents).

3 (default) Tertiary level of comparison. Same as level 2, adding case and variants.

4
Quaternary level. Limited for specific use cases to consider the punctuation
when levels 1-3 ignore punctuation, or for processing Japanese text.

5 Identical level. Limited for specific use cases: a tie breaker.

Creating the index with collation is not enough to get back case-insensitive results. We
need to specify collation in our query, as well:

> db.books.find({ name: "Mastering MongoDB" }).collation({ locale: 'en',
strength: 1 })

Indexing Chapter 7

[189]

If we specify the same level of collation in our query as our index, then the index will be
used. We could specify a different level of collation, as follows:

> db.books.find({ name: "Mastering MongoDB" }).collation({ locale: 'en',
strength: 2 })

Here, we cannot use the index, as our index has collation level 1, and our query looks for
collation level 2.

If we don't use any collation in our queries, we will get results defaulting to level 3, that
is, case-sensitive.

Indexes in collections that were created using a different collation from the default will
automatically inherit this collation level.

Suppose that we create a collection with collation level 1, as follows:

> db.createCollection("case_sensitive_books", { collation: { locale:
'en_US', strength: 1 } })

The following index will also have collation name: 1:

> db.case_sensitive_books.createIndex({ name: 1 })

Default queries to this collection will be collation strength: 1, case-sensitive. If we want
to override this in our queries, we need to specify a different level of collation in our
queries, or ignore the strength part altogether. The following two queries will return case-
insensitive, default collation level results in our case_sensitive_books collection:

> db.case_sensitive_books.find({ name: "Mastering MongoDB" }).collation(
{ locale: 'en', strength: 3 }) // default collation strength value
> db.case_sensitive_books.find({ name: "Mastering MongoDB" }).collation(
{ locale: 'en' }) // no value for collation, will reset to global default
(3) instead of default for case_sensitive_books collection (1)

Collation is a pretty strong and relatively new concept in MongoDB, so we will keep
exploring it throughout the different chapters.

Geospatial indexes
Geospatial indexes were introduced early on in MongoDB, and the fact that Foursquare
was one of the earliest customers and success stories for MongoDB (then 10gen Inc.) is
probably no coincidence. There are three distinct types of geospatial indexes that we will
explore in this chapter, and they will be covered in the following sections.

Indexing Chapter 7

[190]

2d geospatial indexes
A 2d geospatial index stores geospatial data as points on a two-dimensional plane. It is
mostly kept for legacy reasons, for coordinate pairs created before MongoDB 2.2, and in
most cases, it should not be used with the latest versions.

2dsphere geospatial indexes
A 2dsphere geospatial index supports queries calculating geometries in an earth-like
plane. It is more accurate than the simplistic 2d index, and can support both GeoJSON
objects and coordinate pairs as input.

Its current version, since MongoDB 3.2, is version 3. It is a sparse index by default, only
indexing documents that have a 2dsphere field value. Assuming that we have a location
field in our books collection, tracking the home address of the main author of each book,
we could create an index on this field as follows:

> db.books.createIndex({ "location" : "2dsphere" })

The location field needs to be a GeoJSON object, like this one:

location : { type: "Point", coordinates: [51.5876, 0.1643] }

A 2dsphere index can also be a part of a compound index, as the first field or otherwise:

> db.books.createIndex({ name: 1, location : "2dsphere" })

geoHaystack indexes
geoHaystack indexes are useful when we need to search for geographical-based results in
a small area. Like searching for a needle in a haystack, with a geoHaystack index, we can
define buckets of geolocation points and get back all of the results that belong in this area.

We will create a geoHaystack index, as follows:

> db.books.createIndex({ "location" : "geoHaystack" ,
 "name": 1 } ,
 { bucketSize: 2 })

This will create buckets of documents within 2 units of latitude or longitude from each
document.

Here, with the preceding example location:

location : { type: "Point", coordinates: [51.5876, 0.1643] }

Indexing Chapter 7

[191]

Based on the bucketSize: 2, every document with the location [49.5876..53.5876,
-2.1643..2.1643] will belong in the same bucket as our location.

A document can appear in multiple buckets. If we want to use spherical
geometry, 2dsphere is a better solution. geoHaystack indexes are sparse, by default.

If we need to calculate the nearest document to our location and it is outside of our
bucketSize (that is, greater than 2 units of latitude/longitude, in our example), queries
will be inefficient, and possibly inaccurate. Use a 2dsphere index for such queries.

Building and managing indexes
Indexes can be built using the MongoDB shell or any of the available drivers. By default,
indexes are built in the foreground, blocking all other operations in the database. This is
faster, but is often undesirable, especially in production instances.

We can also build indexes in the background by adding the {background: true}
parameter in our index commands in the shell. Background indexes will only block the
current connection/thread. We can open a new connection (that is, using mongo in the
command line) to connect to the same database:

> db.books.createIndex({ name: 1 }, { background: true })

Background index building can take significantly more time than foreground index
building, especially if the indexes can't fit into the available RAM.

Index early and revisit indexes regularly for consolidation. Queries won't see partial index
results. Queries will start getting results from an index only after it is completely created.

Do not use the main application code to create indexes, as it can impose unpredictable
delays. Instead, get a list of indexes from the application, and mark these for creation
during maintenance windows.

Forcing index usage
We can force MongoDB to use an index by applying the hint() parameter:

> db.books.createIndex({ isbn: 1 }, { background: true })
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 8,
"numIndexesAfter" : 9,

Indexing Chapter 7

[192]

"ok" : 1
}

The output from createIndex notifies us that the index was created ("ok" : 1), no
collection was automatically created as a part of index creation
("createdCollectionAutomatically" : false), the number of indexes before this
index creation was 8, and now there are nine indexes for this collection, in total.

Now, if we try to search for a book by isbn, we can use the explain() command to see
the winningPlan sub-document, where we can find which query plan was used:

> db.books.find({isbn: "1001"}).explain()
…
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"isbn" : 1,
"name" : 1
},
"indexName" : "isbn_1_name_1",
...

This means that an index with isbn is 1 and name is 1 was used instead of our newly
created index. We can also view our index in the rejectedPlans sub-document of the
output, as follows:

…
"rejectedPlans" : [
{
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"isbn" : 1
},
"indexName" : "isbn_1",
...

This is, in fact, correct, as MongoDB is trying to reuse an index that is more specific than a
generic one.

We may not be sure though in cases where our isbn_1 index is performing better than the
isbn_1_name_1 one.

Indexing Chapter 7

[193]

We can force MongoDB to use our newly created index, as follows:

> db.books.find({isbn:
"1001"}).hint("international_standard_book_number_index")
.explain()
{
...
 "winningPlan" : {
 "stage" : "FETCH",
 "inputStage" : {
 "stage" : "IXSCAN",
 "keyPattern" : {
 "isbn" : 1
 },
...

Now, the winningPlan sub-document contains our index, isbn_1, and there are no
rejectedPlans elements. It's an empty array in the result set.

We cannot use hint() with the special type of text indexes.

Hint and sparse indexes
By design, sparse indexes do not include some documents in the index, based on the
presence/absence of a field. Queries that may include documents that are not present in the
index will not use a sparse index.

Using hint() with a sparse index may result in incorrect counts, since it is forcing
MongoDB to use an index that may not include all of the results that we want.

Older versions of 2dsphere, 2d, geoHaystack, and text indexes are sparse, by default.
hint() should be used with caution, and after careful consideration of its implications.

Building indexes on replica sets
In replica sets, if we issue a createIndex() command, secondaries will begin to create the
index after the primary server has finished creating it. Similarly, in sharded environments,
primaries will start to build indexes, and secondaries will start after the primary for each
shard that is finished.

Indexing Chapter 7

[194]

Recommended approaches to building indexes in replica sets are as follows:

Stop one secondary from the replica set
Restart it as a standalone server in a different port
Build the index from the shell as a standalone index
Restart the secondary in the replica set
Allow for the secondary to catch up with the primary

We need to have a large enough oplog size in the primary to make sure that the secondary
will be able to catch up once it's reconnected. The oplog size is defined in MB in the
configuration, and it defines how many operations will be kept in the log in the primary
server. If the oplog size can only hold up to the last 100 operations happening in the
primary, and 101 or more operations happen, this means that the secondary will not be able
to sync with the primary. This is a consequence of the primary not having enough memory
to keep track of its operations and inform the secondary of them. Building indexes in
replica sets is a manual process, involving several steps for each primary and secondary
server.

This approach can be repeated for each secondary server in the replica set. Then, for the
primary server, we can do either of these things:

Build the index in the background
Step down the primary by using rs.stepDown(), and repeat the preceding
process with the server as a secondary

Using approach number two, when the primary steps down, there will be a brief period
when our cluster won't be taking any writes. Our application shouldn't timeout during this
(usually less than) 30-60 second period.

Building an index in the background in the primary will build it in the background for the
secondaries too. This may impact writes in our servers during index creation, but on the
plus side, it has no manual steps. It is always a good idea to have a staging environment
that mirrors production, and dry run operations that affect the live cluster in staging, in
order to avoid surprises.

Managing indexes
In this section, you will learn how to give human-friendly names to your indexes, as well as
some special considerations and limitations that we have to keep in mind for indexing.

Indexing Chapter 7

[195]

Naming indexes
By default, index names are assigned by MongoDB automatically, based on the fields
indexed and the direction of the index (1, -1). If we want to assign our own name, we can
do so at creation time:

> db.books.createIndex({ isbn: 1 }, { name:
"international_standard_book_number_index" })

Now, we have a new index called international_standard_book_number_index,
instead of what MongoDB would have named it ("isbn_1").

We can view all of the indexes in our books collection by using
db.books.getIndexes(). A fully qualified index name has to be less
than or equal to 128 characters. That also includes database_name,
collection_name, and the dots separating them.

Special considerations
The following are a few limitations to keep in mind concerning indexing:

Index entries have to be less than 1,024 bytes. This is mostly an internal
consideration, but we can keep it in mind if we run into issues with indexing.
A collection can have up to 64 indexes.
A compound index can have up to 31 fields.
Special indexes cannot be combined in queries. This includes special query
operators that have to use special indexes, such as $text for text indexes and
$near for geospatial indexes. This is because MongoDB can use multiple indexes
to fulfill a query, but not in all cases. There will be more about this issue in
the Index intersection section.
Multikey and geospatial indexes cannot cover a query. This means that index
data alone will not be enough to fulfill the query, and the underlying documents
will need to be processed by MongoDB to get back the complete set of results.
Indexes have a unique constraint on fields. We cannot create multiple indexes on
the same fields, differing only in options. This is a limitation for sparse and
partial indexes, as we cannot create multiple variations of these indexes that
differ only in the filtering query.

Indexing Chapter 7

[196]

Using indexes efficiently
Creating indexes is a decision that should not be taken lightly. As easy as it is to create
indexes via the shell, it can create problems down the line if we end up with too many, or
inadequately efficient, indexes. In this section, you will learn how to measure the
performance of existing indexes, some tips for improving performance, and how we can
consolidate the number of indexes so that we have better-performing indexes.

Measuring performance
Learning how to use the explain() command will help you in both optimizing and
understanding the performance of an index. The explain() command, when used in
conjunction with a query, will return the query plan that MongoDB would use for this
query, instead of the actual results.

It is invoked by chaining it at the end of our query, as follows:

> db.books.find().explain()

It can take three options: queryPlanner (the default), executionStats, and
allPlansExecution.

Let's use the most verbose output, allPlansExecution:

> db.books.find().explain("allPlansExecution")

Here, we can get information for both the winning query plan and some partial information
about query plans that were considered during the planning phase, but were rejected
because the query planner considered them slower. The explain() command returns a
rather verbose output anyway, allowing for deep insights into how the query plan works to
return our results.

At first glance, we need to focus on whether the indexes that should be used are being used,
and if the number of scanned documents matches the number of returned documents as
much as possible.

For the first one, we can inspect the stage field and look for IXSCAN, which means that an
index was used. Then, in the sibling indexName field, we should see the name of our
expected index.

Indexing Chapter 7

[197]

For the second one, we need to compare keysExamined with the nReturned fields. We
ideally want our indexes to be as selective as possible with regard to our queries, meaning
that to return 100 documents, these would be the 100 documents that our index examines.

Of course, this is a trade-off as indexes increase in number and size in our collection. We
can have a limited number of indexes per collection, and we definitely have a limited
amount of RAM to fit these indexes, so we must balance the trade-off between having the
best available indexes, and these indexes not fitting into our memory and getting slowed
down.

Improving performance
Once we get comfortable with measuring the performance of the most common and
important queries for our users, we can start to try to improve them.

The general idea is that we need indexes when we expect (or already have) repeatable
queries that are starting to run slowly. Indexes do not come for free, as they impose a
performance penalty in creation and maintenance, but they are more than worth it for
frequent queries, and can reduce the lock percentage in our database, if designed correctly.

Recapping on our suggestions from the previous section, we want our indexes to do the
following:

Fit in the RAM
Ensure selectivity
Be used to sort our query results
Be used in our most common and important queries

Fitting in the RAM can be ensured by using getIndexes() in our collections and making
sure that we are not creating large indexes by inspecting the system level available RAM
and if swap is being used.

Selectivity, as mentioned previously, is ensured by comparing nReturned with
keysExamined in each IXSCAN phase of our queries. We want these two numbers to be as
close as possible.

Ensuring that our indexes are used to sort our query results is a combination of using
compound indexes (which will be used as a whole, and also for any prefix-based query)
and declaring the direction of our indexes to be in accordance with our most common
queries.

Indexing Chapter 7

[198]

Finally, aligning indexes with our query is a matter of application usage patterns, which
can uncover that queries are used most of the time, and then by using explain() on these
queries to identify the query plan that is being used each time.

Index intersection
Index intersection refers to the concept of using more than one index to fulfill a query. This
was added fairly recently, and is not perfect yet; however we can exploit it to consolidate
our indexes.

We can verify whether an index intersection happened in a query by
using explain() on the query and witnessing an AND_SORTED or
AND_HASH stage in the executed query plan.

Index intersection can happen when we use OR ($or) queries, by using a different index for
each OR clause. Index intersection can happen when we use AND queries, and we have either
complete indexes for each AND clause or index prefixes for some (or all) of the clauses.

For example, consider a query on our books collection, as follows:

> db.books.find({ "isbn":"101", "price": { $gt: 20 }})

Here, with two indexes (one on isbn and the other on price), MongoDB can use each
index to get the related results, and then intersect on the index results to get the result set.

With compound indexes, as you learned previously in this chapter, we can use index
prefixing to support queries that contain the first 1…n-1 fields of an n field compound
index.

What we cannot support with compound indexes are queries that are looking for fields in
the compound index, missing one or more of the previously defined fields.

The order matters in compound indexes.

To satisfy these queries, we can create indexes on the individual fields, which will then use
index intersection and fulfill our needs. The down side to this approach is that as the
number of fields (n) increases, the number of indexes that we have to create grows
exponentially, thus increasing our need for storage and memory.

Indexing Chapter 7

[199]

Index intersection will not work with sort(). We can't use one index for querying and a
different index for applying sort() to our results.

However, if we have an index that can fulfill a part for the whole of our query and the
sort() field, then this index will be used.

Further reading
You can refer to the following links for further references:

http://bigocheatsheet. com/

https:// commons. wikimedia. org/

https:// docs. mongodb. com/ manual/ core/ index- intersection/

Summary
In this chapter, you learned about the foundations of indexing and index internals. We then
explored how to use the different index types available in MongoDB, such as single field,
compound, and multikey, as well as some special types, such as text, hashed, TTL, partial,
parse, unique, case-insensitive, and geospatial.

In the next part of the chapter, you learned how to build and manage indexes using the
shell, which is a basic part of administration and database management, even for NoSQL
databases. Finally, we discussed how to improve our indexes, at a high level, and also how
we can use index intersection in practice, in order to consolidate the number of indexes.

In the next chapter, we will discuss how we can monitor our MongoDB cluster and keep
consistent backups. You will also learn how to handle security in MongoDB.

http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
http://bigocheatsheet.com/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://commons.wikimedia.org/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/
https://docs.mongodb.com/manual/core/index-intersection/

3
Section 3: Administration and

Data Management
In this section, we will cover operational concepts and how MongoDB interacts with the
data processing ecosystem. We will start by learning how MongoDB deals with monitoring,
backup, and security, followed by an overview of the different storage engines that are
available in MongoDB. In the MongoDB tooling chapter, we will learn about all the tools,
including Stitch and Atlas, that we can use to interact with MongoDB, followed by a
chapter that covers a use case about how we can process big data using MongoDB.

This section consists of the following chapters:

Chapter 8, Monitoring, Backup, and Security
Chapter 9, Storage Engines
Chapter 10, MongoDB Tooling
Chapter 11, Harnessing Big Data with MongoDB

8
Monitoring, Backup, and

Security
Monitoring, backup, and security should not be an afterthought, but a necessary process
before deploying MongoDB in a production environment. In addition, monitoring can (and
should) be used to troubleshoot and improve performance at the development stage.

In this chapter, we will discuss the operational aspects of MongoDB. Having a backup
strategy that produces correct and consistent backups, as well as making sure that our
backup strategy will work in the unfortunate case that a backup is needed, will be covered
in this chapter. Finally, we will discuss security for MongoDB for many different aspects,
such as authentication, authorization, network-level security, and how to audit our security
design.

This chapter will focus on the following three areas:

Monitoring
Backup
Security

Monitoring
When we are designing a software system, we undertake many explicit and implicit
assumptions. We always try to make the best decisions based on our knowledge, but there
may be some parameters that we have underestimated or didn't take into account.

Using monitoring, we can validate our assumptions and verify that our application
performs as intended and scales as expected. Good monitoring systems are also vital for
detecting software bugs and to help us detect early potential security incidents.

Monitoring, Backup, and Security Chapter 8

[202]

What should we monitor?
By far, the most important metric to monitor in MongoDB is memory usage. MongoDB
(and every database system, for what it's worth) uses system memory extensively to
increase performance. No matter whether we use MMAPv1 or WiredTiger storage engines,
the memory that's used is the first thing that we should keep our eyes on.

Understanding how computer memory works can help us to evaluate metrics from our
monitoring system. These are the most important concepts related to computer memory.

Page faults
RAM is fast, yet expensive. Hard disk drives, or solid state drives, are relatively cheaper
and slower, and also provide durability for our data in the case of system and power
failures. All of our data is stored on the disk, and when we perform a query, MongoDB will
try to fetch data from memory. If the data is not in the memory, then it will fetch the data
from the disk and copy it to the memory. This is a page fault event, because the data in the
memory is organized in pages.

As page faults happen, the memory gets filled up, and eventually, some pages need to be
cleared for more recent data to come into the memory. This is called a page eviction event.
We cannot completely avoid page faults unless we have a really static dataset, but we do
want to try to minimize page faults. This can be achieved by holding our working set in
memory.

Resident memory
The resident memory size is the total amount of memory that MongoDB owns in the RAM.
This is the base metric to monitor, and it should be less than 80% of the available memory.

Virtual and mapped memory
When MongoDB asks for a memory address, the operating system will return a virtual
address. This may or may not be an actual address in the RAM, depending on where the
data resides. MongoDB will use this virtual address to request the underlying data. When
we have journaling enabled (which should be almost always), MongoDB will keep another
address on record for the journaled data. The virtual memory refers to the size of all of the
data requested by MongoDB, including the journaling.

Monitoring, Backup, and Security Chapter 8

[203]

The mapped memory excludes journaling references.

What all of this means is that over time, our mapped memory will be roughly equal to our
working set, and the virtual memory will be around twice the amount of our mapped
memory.

Working sets
The working set is the data size that MongoDB uses. In the case of a transactional database,
this will end up being the data size that MongoDB holds, but there may be cases where
we have collections that are not used at all and will not contribute to our working set.

Monitoring memory usage in WiredTiger
Understanding the memory usage in MMAPv1 is relatively straightforward. MMAPv1 uses
the mmap() system call under the hood to pass on the responsibility of the memory page to
the underlying operating system. That is why when we use MMAPv1, the memory usage
will grow unbounded, as the operating system is trying to fit as much of our dataset into
the memory as possible.

With WiredTiger, on the other hand, we define the internal cache memory usage on
startup. By default, the internal cache will be, at a maximum, between half of our RAM,
which is in-between 1 GB or 256 MB.

On top of the internal cache, there is also memory that MongoDB can allocate for other
operations, like maintaining connections and data processing (in-memory sort, MapReduce,
aggregation, and more).

MongoDB processes will also use the underlying operating system's filesystem cache, just
like in MMAPv1. The data in the filesystem cache is compressed.

We can view the settings for the WiredTiger cache via the mongo shell, as follows:

> db.serverStatus().wiredTiger.cache

We can adjust its size by using the storage.wiredTiger.engineConfig.cacheSizeGB
parameter.

Monitoring, Backup, and Security Chapter 8

[204]

The generic recommendation is to leave the WiredTiger internal cache size at its default. If
our data has a high compression ratio, it may be worth reducing the internal cache size by
10% to 20% to free up more memory for the filesystem cache.

Tracking page faults
The number of page faults can remain fairly stable and not affect performance significantly.
However, once the number of page faults reaches a certain threshold, our system will be
quickly and severely degraded. This is even more evident for HDDs, but it affects solid-
state drives (SSDs) as well.

The way to ensure that we don't run into problems regarding page faults is to always have
a staging environment that is identical to our production in setup. This environment can be
used to stress test how many page faults our system can handle, without deteriorating
performance. Comparing the actual number of page faults in our production system with
the maximum number of page faults that we calculated from our staging system, we can
find out how much leeway we have left.

Another way to view page faults is via the shell, looking at the extra_info field of
the serverStatus output:

> db.adminCommand({"serverStatus" : 1})['extra_info']
{ "note" : "fields vary by platform", "page_faults" : 3465 }

As the note states, these fields may not be present in every platform.

Tracking B-tree misses
As you saw in the previous chapter, proper indexing is the best way to keep MongoDB
responsive and performant. B-tree misses refer to page faults that happen when we try to
access a B-tree index. Indexes are usually used frequently, and are relatively small
compared to our working set and the memory available, so they should be in the memory
at all times.

If we have an increasing number of B-tree misses or ratio of B-tree hits, or if there is a
decrease in the number of B-tree misses, it's a sign that our indexes have grown in size
and/or are not optimally designed. B-tree misses can also be monitored via MongoDB
Cloud Manager, or in the shell.

Monitoring, Backup, and Security Chapter 8

[205]

In the shell, we can use collection stats to locate it.

I/O wait
I/O wait refers to the time that the operating system waits for an I/O operation to complete.
It has a strongly positive correlation with page faults. If we see an I/O wait increasing over
time, it's a strong indication that page faults will follow, as well. We should aim to keep the
I/O wait at less than 60% to 70% for a healthy operational cluster. Aiming for a threshold
like this will buy us some time to upgrade in the case of a suddenly increased load.

Read and write queues
Another way to look at I/O wait and page faults is via read and write queues. When we
have page faults and I/O wait, requests will inevitably start to queue for either reads or
writes. Queues are the effect, rather than the root cause, so by the time the queues start
building up, we know we have a problem to solve.

Lock percentage
This is more of an issue with earlier versions of MongoDB, and less of an issue when using
the WiredTiger storage engine. The lock percentage shows the percentage of time that the
database is locked up, waiting for an operation that uses an exclusive lock to release it. It
should generally be low: 10% to 20%, at the most. Over 50% means it's a cause for concern.

Background flushes
MongoDB will flush data to the disk every minute, by default. The background flush refers
to the time it takes for the data to persist to the disk. It should not be more than 1 second for
every 1 minute period.

Modifying the flush interval may help with the background flush time; by writing to the
disk more frequently, there will be less data to write. This could, in some cases, make writes
faster.

Monitoring, Backup, and Security Chapter 8

[206]

The fact that the background flush time gets affected by the write load means that if our
background flush time starts to get too high, we should consider sharding our database to
increase the write capacity.

Tracking free space
A common issue when using MMAPv1 (less frequent with WiredTiger) is free disk space.
Like the memory, we need to track the disk space usage and be proactive, rather than
reactive, with it. Keep monitoring the disk space usage, with proper alerts when it reaches
40%, 60%, or 80% of the disk space, especially for datasets that grow quickly.

Disk space issues are often the ones that cause the most headaches for administrators,
DevOps, and developers, because of the time it takes to move data around.

The directoryperdb option can help with data sizing, as we can split
our storage into different physically mounted disks.

Monitoring replication
Replica sets use the operations log (oplog) to keep the synced state. Every operation gets
applied on the primary server, and then gets written in the primary server's oplog, which is
a capped collection. Secondaries read this oplog asynchronously and apply the operations
one by one.

If the primary server gets overloaded, then the secondaries won't be able to read and apply
the operations fast enough, generating replication lag. Replication lag is counted as the
time difference between the last operation applied on the primary and the last operation
applied on the secondary, as stored in the oplog capped collection.

For example, if the time is 4:30:00 PM and the secondary just applied an operation that was
applied on our primary server at 4:25:00 PM, this means that the secondary is lagging five
minutes behind our primary server.

In our production cluster, the replication lag should be close to (or equal to) zero.

Monitoring, Backup, and Security Chapter 8

[207]

Oplog size
Every member in a replica size will have a copy of the oplog in db.oplog.rs(). The
reason for this is that if the primary steps down, one of the secondaries will get elected, and
it needs to have an up-to-date version of the oplog for the new secondaries to track.

The oplog size is configurable, and we should set it to be as large as possible. The oplog size
doesn't affect the memory usage, and can make or break the database in cases of
operational issues.

The reason for this is that if the replication lag increases over time, we will eventually get to
the point where the secondaries will fall so behind that the primary server won't be able to
read from the primary's oplog, as the oldest entry in the primary's oplog will be later than
the latest entry that was applied in our secondary server.

In general, the oplog should be at least one to two days' worth of operations. The oplog
should be longer than the time it takes for the initial sync, for the same reason that was
detailed previously.

Working set calculations
The working set is the strongest indicator of our memory requirements. Ideally, we would
like to have our entire dataset in the memory, but most of the time, this is not feasible. The
next best thing is to have our working set in memory. The working set can be calculated
directly or indirectly.

Directly, we had the workingSet flag in serverStatus, which we can invoke from the
shell, as follows:

> db.adminCommand({"serverStatus" : 1, "workingSet" : 1})

Unfortunately, this was removed in version 3.0, so we will focus on the indirect method of
calculating a working set.

Indirectly, our working set is the size of data that we need to satisfy 95% or more of our
user's requests. To calculate this, we need to identify the queries that the users make and
which datasets they use from the logs. Adding 30% to 50% to it for index memory
requirements, we can arrive at the working set calculation.

Another indirect way of estimating the working size is through the number of page faults.
If we don't have page faults, then our working set fits in the memory. Through trial and
error, we can estimate the point at which the page faults start to happen and understand
how much more of a load our system can handle.

Monitoring, Backup, and Security Chapter 8

[208]

If we can't have the working set in memory, then we should have at least enough memory
so that the indexes can fit in memory. In the previous chapter, we described how we can
calculate index memory requirements, and how we can use this calculation to size our
RAM accordingly.

Monitoring tools
There are several options for monitoring. In this section, we will discuss how we can
monitor by using MongoDB's own tools or third-party tools.

Hosted tools
MongoDB, Inc.'s own tool, MongoDB Cloud Manager (formerly MongoDB Monitoring
Service), is a robust tool for monitoring all of the metrics that were described previously.
MongoDB Cloud Manager has a limited free tier and a 30 day trial period.

Another option for using MongoDB Cloud Manager is via MongoDB Atlas, MongoDB,
Inc.'s DBaaS offering. This also has a limited free tier, and is available in all three major
cloud providers (Amazon, Google, and Microsoft).

Open source tools
All major open source tools, like Nagios, Munin, Cacti, and others, provide plugin support
for MongoDB. Although it is beyond the scope of this book, operations and DevOps should
be familiar with both setting up and understanding the metrics that were described
previously in order to effectively troubleshoot MongoDB and preemptively resolve issues
before they grow out of proportion.

The mongotop and mongostat commands and scripts in the mongo shell can also be used
for ad hoc monitoring. One of the risks with such manual processes, however, is that any
failure of the scripts may jeopardize our database. If there are well-known and tested tools
for your monitoring needs, please avoid writing your own.

Backups
A quote from a well-known maxim is as follows:

"Hope for the best, plan for the worst."
 – John Jay (1813)

Monitoring, Backup, and Security Chapter 8

[209]

This should be our approach when designing our backup strategy for MongoDB. There are
several distinct failure events that can happen.

Backups should be the cornerstone of our disaster recovery strategy, in case something
happens. Some developers may rely on replication for disaster recovery, as it seems that
having three copies of our data is more than enough. We can always rebuild the cluster
from the other two copies, in case one of the copies is lost.

This is the case in the event of disks failing. Disk failure is one of the most common failures
in a production cluster, and will statistically happen once the disks start reaching their
mean time between failures (MTBF) time.

However, it is not the only failure event that can happen. Security incidents, or purely
human errors, are just as likely to happen, and should be a part of our plan, as well.
Catastrophic failures by means of losing all replica set members at once, from a fire, a flood,
an earthquake, or a disgruntled employee, are events that should not lead to production
data loss.

A useful interim option, in the middle ground between replication and
implementing proper backups, could be setting up a delayed replica set
member. This member can lag several hours or days behind the primary
server so that it will not be affected by malicious changes in the primary.
The important detail to take into account is that the oplog needs to be
configured so that it can hold several hours of delay. Also, this solution is
only an interim, as it doesn't take into account the full range of reasons
why we need disaster recovery, but can definitely help with a subset of
them.

This is called disaster recovery. Disaster recovery is a class of failures that require backups
to be taken not only regularly, but also by using a process that isolates them (both
geographically and in terms of access rules) from our production data.

Backup options
Depending on our deployment strategy, we can choose different options for backups.

Cloud-based solutions
The most straightforward solution arises if we are using a cloud DBaaS solution. In the
example of MongoDB, Inc.'s own MongoDB Atlas, we can manage backups from the GUI.

Monitoring, Backup, and Security Chapter 8

[210]

If we host MongoDB in our own servers, we can then use MongoDB, Inc.'s MongoDB
Cloud Manager. Cloud Manager is a SaaS that we can point to our own servers to monitor
and back up our data. It uses the same oplog that replication uses, and can back up both
replica sets and sharded clusters.

If we don't want to (or can't, for security reasons) point our servers to an external SaaS
service, we can use MongoDB Cloud Manager's functionality on-premises, using MongoDB
Ops Manager. To get MongoDB Ops Manager, we need to get a subscription to the
Enterprise Advanced edition of MongoDB for our cluster.

Backups with filesystem snapshots
The most common backup method in the past, and one that is still widely used, relies on
the underlying filesystem point-in-time snapshots functionality to back up our data.

EBS on EC2, and Logical Volume Manager (LVM) on Linux, support point-in-time
snapshots.

If we use WiredTiger with the latest version of MongoDB, we can have
volume-level backups, even if our data and journal files reside in different
volumes.

We can make a backup of a replica set as follows:

To make a backup of a replica set, we need to have a consistent state for our
database. This implies that we have all of our writes either committed to the disk
or in our journal files.
If we use WiredTiger storage, our snapshot will be consistent as of the latest
checkpoint, which is either 2 GB of data or the last minute backup.

Ensure that you store the snapshot in an offsite volume for disaster
recovery purposes. You need to have enabled journaling to use point-in-
time snapshots. It's a good practice to enable journaling regardless.

Monitoring, Backup, and Security Chapter 8

[211]

Making a backup of a sharded cluster
If we want to make a backup of an entire sharded cluster, we need to stop the balancer
before starting. The reason is that if there are chunks migrating between different shards at
the time that we take our snapshot, our database will be in an inconsistent state, having
either incomplete or duplicate data chunks that were in flight at the time we took our
snapshot.

Backups from an entire sharded cluster will be approximate-in-time. If we need point-in-
time precision, we need to stop all of the writes in our database, something that is generally
not possible for production systems.

First, we need to disable the balancer by connecting to our mongos through the mongo
shell:

> use config
> sh.stopBalancer()

Then, if we don't have journaling enabled in our secondaries, or if we have journal and data
files in different volumes, we need to lock our secondary mongo instances for all shards
and the config server replica set.

We also need to have a sufficient oplog size in these servers so that they
can catch up to the primaries once we unlock them; otherwise, we will
need to resync them from scratch.

Given that we don't need to lock our secondaries, the next step is to back up the config
server. In Linux (and using LVM), this would be similar to doing the following:

$ lvcreate --size 100M --snapshot --name snap-14082017 /dev/vg0/mongodb

Then, we need to repeat the same process for a single member from each replica set in each
shard.

Finally, we need to restart the balancer using the same mongo shell that we used to stop it:

> sh.setBalancerState(true)

Without going into too much detail here, it's evident that making a backup of a sharded
cluster is a complicated and time-consuming procedure. It needs prior planning and
extensive testing to make sure that it not only works with minimal disruption, but also that
our backups are usable and can be restored back to our cluster.

Monitoring, Backup, and Security Chapter 8

[212]

Making backups using mongodump
The mongodump tool is a command-line tool that can make a backup of the data in our
MongoDB cluster. As such, the downside is that all of the indexes need to be recreated on
restore, which may be a time-consuming operation.

The major downside that the mongodump tool has is that in order to write data to the disk, it
needs to bring data from the internal MongoDB storage to the memory first. This means
that in the case of production clusters running under strain, mongodump will invalidate the
data residing in the memory from the working set with the data that would not be residing
in the memory under regular operations. This degrades the performance of our cluster.

On the plus side, when we use mongodump, we can continue taking writes in our cluster,
and if we have a replica set, we can use the --oplog option to include the entries that occur
during the mongodump operation in its output oplog.

If we go with that option, we need to use --oplogReplay when we use the mongorestore
tool to restore our data back to the MongoDB cluster.

mongodump is a great tool for single-server deployments, but once we get to larger
deployments, we should consider using different (and better planned) approaches to back
up our data.

Backing up by copying raw files
If we don't want to use any of the preceding options that were outlined, our last resort is to
copy the raw files using cp/rsync, or something equivalent. This is generally not
recommended, for the following reasons:

We need to stop all of the writes before copying files
The backup size will be larger, since we need to copy indexes and any
underlying padding and fragmentation storage overhead
We cannot get point-in-time recovery by using this method for replica sets, and
copying data from sharded clusters in a consistent and predictable manner is
extremely difficult

Making a backup by copying raw files should be avoided, unless no other
option really exists.

Monitoring, Backup, and Security Chapter 8

[213]

Making backups using queuing
Another strategy that's used in practice is utilizing a queuing system, intercepting our
database and the frontend software system. Having something like an ActiveMQ queue
before the inserts/updates/deletes in our database means that we can safely send out data to
different sinks, which are MongoDB servers or log files in a separate repository. Like the
delayed replica set method, this method can be useful for a class of backup problems, but
can fail for some others.

This is a useful interim solution, but it should not be used as a permanent
one.

EC2 backup and restore
MongoDB Cloud Manager can automate making backups from EC2 volumes; and, since
our data is in the cloud, why not use the Cloud Manager anyway?

If we can't use it for some reason, we can write a script to make backup by implementing
the following steps:

Assuming that we have journaling enabled (and we really should) and we have1.
already mapped dbpath, containing data and journal files to a single EBS
volume, we first need to find the EBS block instances associated with the running
instance by using ec2-describe-instances.
The next step is to find the logical volumes that dbpath of our2.
MongoDB database is mapped to using lvdisplay.
Once we have identified the logical devices from the logical volumes, we can use3.
ec2-create-snapshot to create new snapshots. We need to include each and
every logical device that maps to our dbpath directory.

To verify that our backups work, we need to create new volumes based on the snapshots
and mount the new volumes there. Finally, the mongod process should be able to start
mounting the new data, and we should connect by using MongoDB to verify these.

Incremental backups
Making full backups every time may be viable for some deployments, but as the size
reaches a certain threshold, full backups take too much time and space.

Monitoring, Backup, and Security Chapter 8

[214]

At this point, we will want to make full backups every once in a while (maybe one per
month, for example) and incremental backups in-between (for example, nightly).

Both Ops Manager and Cloud Manager support incremental backups, and if we get to this
size, it may be a good idea to use a tool to make our backups instead of rolling out our own.

If we don't want to (or can't) use these tools, we have the option of restoring via the oplog,
as follows:

Make a full backup with any method that was described previously1.
Lock writes on the secondary server of our replica set2.
Note the latest entry in the oplog3.
Export the entries in the oplog after the latest entry in the oplog:4.

> mongodump --host <secondary> -d local -c oplog.rs -o /mnt/mongo-
oldway_backup
 --query '{ "ts" : { $gt : Timestamp(1467999203, 391) } }'

Unlock writes on the secondary server5.

To restore, we can use the oplog.rs file that we just exported, and use mongorestore
with the option --oplogReplay:

> mongorestore -h <primary> --port <port> --oplogReplay
<data_file_position>

This method requires locking writes, and may not work in future versions.

An even better solution is to use the Logical Volume Management (LVM) filesystem with
incremental backups, but this depends on the underlying LVM implementation, which we
may or may not be able to tweak.

Security
Security is a multifaceted goal in a MongoDB cluster. For the rest of this chapter, we will
examine different attack vectors and how we can protect against them. In addition to these
best practices, developers and administrators must always use common sense so that
security interferes only as much as is required for operational goals.

Monitoring, Backup, and Security Chapter 8

[215]

Authentication
Authentication refers to verifying the identity of a client. This prevents the impersonation
of someone in order to gain access to their data.

The simplest way to authenticate is by using a username and password pair. This can be
done via the shell in two ways, the first of which is as follows:

> db.auth(<username>, <password>)

Passing in a comma-separated username and password will assume the default values for
the rest of the fields:

> db.auth({
 user: <username>,
 pwd: <password>,
 mechanism: <authentication mechanism>,
 digestPassword: <boolean>
})

If we pass a document object, we can define more parameters than username/password.

The (authentication) mechanism parameter can take several different values, with the
default being SCRAM-SHA-1. The parameter value MONGODB-CR is used for backwards
compatibility with versions earlier than 3.0.

MONGODB-x.509 is used for TLS/SSL authentication. Users and internal replica set servers
can be authenticated by using SSL certificates, which are self-generated and signed, or
comes from a trusted third-party authority.

To configure x.509 for internal authentication of replica set members, we need to supply
one of the following parameters.

The following is for the configuration file:

security.clusterAuthMode / net.ssl.clusterFile

The following is used on the command line:

--clusterAuthMode and --sslClusterFile
> mongod --replSet <name> --sslMode requireSSL --clusterAuthMode x509 --
sslClusterFile <path to membership certificate and key PEM file> --
sslPEMKeyFile <path to SSL certificate and key PEM file> --sslCAFile <path
to root CA PEM file>

Monitoring, Backup, and Security Chapter 8

[216]

MongoDB Enterprise Edition, the paid offering from MongoDB, Inc., adds two more
options for authentication, as follows:

The first added option is Generic Security Service Application Program
Interface (GSSAPI) Kerberos. Kerberos is a mature and robust authentication
system that can be used for Windows-based Active Directory deployments,
among others.
The second added option is PLAIN (LDAP SASL). LDAP is just like Kerberos: a
mature and robust authentication mechanism. The main consideration when
using the PLAIN authentication mechanism is that the credentials are
transmitted in plain text over the wire. This means that we should secure the
path between the client and server via VPN or a TSL/SSL connection to avoid a
man in the middle stealing our credentials.

Authorization
After we have configured the authentication to verify that the users are who they claim
they are when connecting to our MongoDB server, we need to configure the rights that each
one of them will have in our database.

This is the authorization aspect of permissions. MongoDB uses role-based access control to
control permissions for different user classes.

Every role has permissions to perform some actions on a resource.

A resource can be a collection/collections or a database/databases.

The command's format is as follows:

{ db: <database>, collection: <collection> }

If we specify "" (an empty string) for either db or collection, it means any db or
collection. An example of this is as follows:

{ db: "mongo_books", collection: "" }

This would apply our action in every collection in the mongo_books database.

If the database is not the admin database, this will not include the system
collections. System collections, such as <db>.system.profile,
<db>.system.js, admin.system.users, and admin.system.roles,
need to be defined explicitly.

Monitoring, Backup, and Security Chapter 8

[217]

Similar to the preceding option, we can define the following:

{ db: "", collection: "" }

We define this to apply our rule to all of the collections across all of the databases, except
for system collections, of course.

We can also apply rules across an entire cluster, as follows:

{ resource: { cluster : true }, actions: ["addShard"] }

The preceding example grants privileges for the addShard action (adding a new shard to
our system) across the entire cluster. The cluster resource can only be used for actions that
affect the entire cluster, rather than a collection or database (for example, shutdown,
replSetReconfig, appendOplogNote, resync, closeAllDatabases, and addShard).

What follows is an extensive list of cluster-specific actions, and some of the most widely
used actions.

The list of the most widely used actions is as follows:

find

insert

remove

update

bypassDocumentValidation

viewRole/viewUser
createRole/dropRole
createUser/dropUser
inprog

killop

replSetGetConfig/replSetConfigure/replSetStateChange/resync
getShardMap/getShardVersion/listShards/moveChunk/removeShard/addS
hard

dropDatabase/dropIndex/fsync/repairDatabase/shutDown
serverStatus/top/validate

Monitoring, Backup, and Security Chapter 8

[218]

Cluster-specific actions are as follows:

unlock

authSchemaUpgrade

cleanupOrphaned

cpuProfiler

inprog

invalidateUserCache

killop

appendOplogNote

replSetConfigure

replSetGetConfig

replSetGetStatus

replSetHeartbeat

replSetStateChange

resync

addShard

flushRouterConfig

getShardMap

listShards

removeShard

shardingState

applicationMessage

closeAllDatabases

connPoolSync

fsync

getParameter

hostInfo

logRotate

setParameter

shutdown

touch

connPoolStats

cursorInfo

Monitoring, Backup, and Security Chapter 8

[219]

diagLogging

getCmdLineOpts

getLog

listDatabases

netstat

serverStatus

top

If this sounds too complicated, that's because it is! The flexibility that MongoDB allows for
configuring different actions on resources means that we need to study and understand the
extensive lists, as described previously.

Thankfully, some of the most common actions and resources are bundled in built-in roles.

We can use these built-in roles to establish the baseline of permissions that we will give to
our users, and then fine-grain these based on the extensive list.

User roles
There are two different generic user roles that we can specify, as follows:

read: A read-only role across non-system collections and the following system
collections: system.indexes, system.js, and system.namespaces collections
readWrite: A read and modify role across non-system collections and the
system.js collection

Database administration roles
There are three database-specific administration roles, as follows:

dbAdmin: The basic admin user role that can perform schema-related tasks,
indexing, and gathering statistics. A dbAdmin cannot perform user and role
management.
userAdmin: Create and modify roles and users. This is complementary to the
dbAdmin role.

Monitoring, Backup, and Security Chapter 8

[220]

A userAdmin can modify itself to become a superuser in the database, or,
if scoped to the admin database, the MongoDB cluster.

dbOwner: Combining readWrite, dbAdmin, and userAdmin roles, this is the
most powerful admin user role.

Cluster administration roles
The following are the cluster-wide administration roles that are available:

hostManager: Monitor and manage servers in a cluster.
clusterManager: Provides management and monitoring actions on the cluster.
A user with this role can access the config and local databases, which are used in
sharding and replication, respectively.
clusterMonitor: Read-only access for monitoring tools provided by MongoDB,
such as MongoDB Cloud Manager and the Ops Manager agent.
clusterAdmin: Provides the greatest cluster management access. This role
combines the privileges that are granted by the clusterManager,
clusterMonitor, and hostManager roles. Additionally, the role provides the
dropDatabase action.

Backup and restore roles
Role-based authorization roles can be defined in the backup and restore granularity level,
as well:

backup: Provides privileges that are needed to back up the data. This role
provides sufficient privileges to use the MongoDB Cloud Manager backup agent,
the Ops Manager backup agent, or mongodump.
restore: Provides the privileges that are needed to restore data with
mongorestore, without the --oplogReplay option or system.profile
collection data.

Monitoring, Backup, and Security Chapter 8

[221]

Roles across all databases
Similarly, the following is the set of available roles across all databases:

readAnyDatabase: Provides the same read-only permissions as read, except it
applies to all but the local and config databases in the cluster. The role also
provides the listDatabases action on the cluster as a whole.
readWriteAnyDatabase: Provides the same read and write permissions as
readWrite, except it applies to all but the local and config databases in the
cluster. The role also provides the listDatabases action on the cluster as a
whole.
userAdminAnyDatabase: Provides the same access to user administration
operations as userAdmin, except it applies to all but the local and config
databases in the cluster. Since the userAdminAnyDatabase role allows users to
grant any privilege to any user, including themselves, the role also indirectly
provides superuser access.
dbAdminAnyDatabase: Provides the same access to database administration
operations as dbAdmin, except it applies to all but the local and config databases
in the cluster. The role also provides the listDatabases action on the cluster as
a whole.

Superuser
Finally, the following are the superuser roles that are available:

root: Provides access to the operations and all of the resources of the
readWriteAnyDatabase, dbAdminAnyDatabase, userAdminAnyDatabase,
clusterAdmin, restore, and backup combined
__internal: Similar to the root user, any __internal user can perform any
action against any object across the server

Superuser roles should be avoided, as they can have potentially
destructive permissions across all of the databases on our server.

Monitoring, Backup, and Security Chapter 8

[222]

Network-level security
Apart from MongoDB-specific security measures, there are best practices that have been
established for network-level security:

Only allow communication between servers, and only open the ports that are
used for communicating between them.
Always use TLS/SSL for communication between servers. This prevents man-in-
the-middle attacks from impersonating a client.
Always use different sets of development, staging, and production environments
and security credentials. Ideally, create different accounts for each environment,
and enable two-factor authentication in both staging and production
environments.

Auditing security
No matter how much we plan our security measures, a second or third pair of eyes from
someone outside of our organization can give a different view of our security measures and
uncover problems that we may have underestimated or overlooked. Don't hesitate to
involve security experts and white hat hackers to do penetration testing in your servers.

Special cases
Medical or financial applications require added levels of security for data privacy reasons.

If we are building an application in the healthcare space, accessing users' personally
identifiable information, we may need to get HIPAA certified.

If we are building an application that interacts with payments and manages cardholder
information, we may need to become PCI/DSS compliant.

The specifics of each certification are outside the scope of this book, but it
is important to know that MongoDB has use cases in these fields that
fulfill the requirements, and, as such, it can be the right tool with proper
design beforehand.

Monitoring, Backup, and Security Chapter 8

[223]

Overview
Summing up the best practice recommendations involving security, we have the following:

Enforce authentication: Always enable authentication in production
environments.
Enable access control: First, create a system administrator, and then use that
administrator to create more limited users. Give as few permissions as are
needed for each user role.
Define fine-grained roles in access control: Do not give more permissions than
are needed for each user.
Encrypt communication between clients and servers: Always use TLS/SSL for
communication between clients and servers in production environments. Always
use TLS/SSL for communication between mongod and mongos or config servers,
as well.
Encrypt data at rest: MongoDB Enterprise Edition offers the functionality to
encrypt data when stored, using WiredTiger encryption at rest.

Alternatively, we can encrypt data using filesystem, device, or physical
encryption. In the cloud, we often get the option for encryption, as well
(for example, with EBS on Amazon EC2).

Limit network exposure: MongoDB servers should only be connected to the
application servers and any other servers that are needed for operations. Ports
other than the ones that we set up for MongoDB communications should not be
open to the outside world. If we want to debug MongoDB usage, it's important to
have a proxy server with controlled access set up to communicate with our
database.
Audit servers for unusual activity: MongoDB Enterprise Edition offers a utility
for auditing. By using it, we can output events to the console, a JSON file, a
BSON file, or the syslog. In any case, it's important to make sure that audit events
are stored in a partition that is not available to the system's users.
Use a dedicated operating system user to run MongoDB. Make sure that the
dedicated operating system user can access MongoDB, but doesn't have
unnecessary permissions.
Disable JavaScript server-side scripts if they are not needed.

Monitoring, Backup, and Security Chapter 8

[224]

MongoDB can use JavaScript for server-side scripts with the following
commands: mapReduce(), group(), and $where. If we don't need these commands, we
should disable server-side scripting by using the --noscripting option on the command
line.

Summary
In this chapter, you learned about three operational aspects of MongoDB: monitoring,
backup, and security.

We discussed the metrics that we should monitor in MongoDB, and how to monitor them.
Following that, we discussed how to make backups and ensure that we can use them to
restore our data. Finally, you learned about security with the authentication and
authorization concepts, as well as network-level security and how to audit it.

As important as it is to design, build, and extend our application as needed, it is equally
important to make sure that we have peace of mind during operations and are safeguarded
from unexpected events, such as human error and internal or external malicious users.

In the next chapter, you will learn about pluggable storage engines, a new concept that was
introduced in version 3.0 of MongoDB. Pluggable storage engines allow different use cases
to be served, especially in application domains that have specific and stringent
requirements concerning data handling and privacy.

9
Storage Engines

MongoDB introduced the concept of pluggable storage engines in version 3.0. After the
acquisition of WiredTiger, it introduced its storage engine as optional at first, and then as
the default storage engine for the current version of MongoDB. In this chapter, we will dive
deeply into the concept of storage engines, why they matter, and how we can choose the
best one according to our workload.

We will cover the following topics:

Pluggable storage engines
WiredTiger
Encrypted
In-memory
MMAPv1
Locking in MongoDB

Pluggable storage engines
With MongoDB breaking out from the web application paradigm into domains with
different requirements, storage has become an increasingly important consideration.

Using multiple storage engines can be seen as an alternative way to using different storage
solutions and databases in our infrastructure stack. This way, we can reduce operational
complexity and development time to market with the application layer being agnostic of
the underlying storage layer.

Storage Engines Chapter 9

[226]

MongoDB currently offers four different storage engines that we will examine in further
detail in the following sections.

WiredTiger
As of version 3.2, WiredTiger is the default storage engine, and also the best choice for most
workloads. By providing document-level locking, it overcomes one of the most significant
drawbacks earlier versions of MongoDB had—lock contention under high load.

We will explore some of WiredTiger's benefits in the following sections.

Document-level locking
Locking is so important that we will explain the performance implications that fine-grained
locking has in further detail at the end of this section. Having document-level locking as
opposed to MMAPv1 collection-level locking can make a huge difference in many real-
world use cases, and is one of the main reasons to choose WiredTiger over MMAPv1.

Snapshots and checkpoints
WiredTiger uses Multi-Version Concurrency Control (MVCC). MVCC is based upon the
concept that the database keeps multiple versions of an object so that readers will be able to
view consistent data that doesn't change during a read.

In a database, if we have multiple readers accessing data at the same time that writers are
modifying the data, we can end up with a case where readers view an inconsistent view of
this data. The simplest and easiest way to solve this problem is to block all readers until the
writers are done modifying data.

This will, of course, cause severe performance degradation. MVCC solves this problem by
providing a snapshot of the database for each reader. When the read starts, each reader is
guaranteed to view data as exactly it was at the point in time that the read started. Any
changes made by writers will only be seen by readers after the write has been completed,
or, in database terms, after the transaction is committed.

To achieve this goal, when a write is coming in, updated data will be kept in a separate
location on disk and MongoDB will mark the affected document as obsolete. MVCC is said
to provide point-in-time consistent views. This is equivalent to a read committed isolation
level in traditional RDBMS systems.

Storage Engines Chapter 9

[227]

For every operation, WiredTiger will snapshot our data at the exact moment that it happens
and provide a consistent view of application data to the application. When we write data,
WiredTiger will create a snapshot every 2 GB of journal data or 60 seconds, whichever
comes first. WiredTiger relies on its built-in journal to recover any data after the latest
checkpoint in case of failure.

We can disable journaling using WiredTiger, but if the server crashes, we
will lose any data after the last checkpoint is written.

Journaling
As explained in the Snapshots and checkpoints section, journaling is the cornerstone of
WiredTiger crash recovery protection.

WiredTiger compresses the journal using the snappy compression algorithm. We can use
the following setting to set a different compression algorithm:

storage.wiredTiger.engineConfig.journalCompressor

We can also disable journaling for WiredTiger by setting the following to false:

storage.journal.enabled

If we use a replica set, we may be able to recover our data from a
secondary that will get elected as a primary and start taking writes in the
event that our primary fails. It is recommended to always use journaling,
unless we understand and can take the risk of suffering through the
consequences of not using it.

Data compression
MongoDB uses the snappy compression algorithm by default to compress data and prefixes
for indexes. Index-prefixed compression means that identical index key prefixes are stored
only once per page of memory. Compression not only reduces our storage footprint, but
will increase I/O operations per second, as less data needs to be stored and moved to and
from disk. Using more aggressive compression can lead to performance gains if our
workload is I/O bound and not CPU bound.

Storage Engines Chapter 9

[228]

We can define .zlib compression instead of snappy or no compression by setting the
following parameter to false:

storage.wiredTiger.collectionConfig.blockCompressor

Data compression uses less storage at the expense of CPU. .zlib
compression achieves better compression at the expense of higher CPU
usage, as opposed to the default snappy compression algorithm.

We can disable index prefixes compression by setting the following parameter to false:

storage.wiredTiger.indexConfig.prefixCompression

We can also configure storage per-index during creation using the following parameter:

{ <storage-engine-name>: <options> }

Memory usage
WiredTiger is significantly different to MMAPv1 in how it uses RAM. MMAPv1 is
essentially using the underlying operating system's filesystem cache to page data from disk
to memory and vice versa.

WiredTiger, on the contrary, introduces the new concept of the WiredTiger internal cache.

The WiredTiger internal cache is, by default, the larger of the following:

50% of RAM minus 1 GB
256 MB

This means if our server has 8 GB RAM we will get the following:

max(3 GB , 256 MB) = WiredTiger will use 3 GB of RAM

And if our server has 2,512 MB RAM we will get the following:

max(256 MB, 256 MB) = WiredTiger will use 256 MB of RAM

Essentially, for any server that has less than 2,512 MB RAM, WiredTiger will use 256 MB for
its internal cache.

Storage Engines Chapter 9

[229]

We can change the size of the WiredTiger internal cache by setting the following:

storage.wiredTiger.engineConfig.cacheSizeGB

We can also do this from the command line using the following:

--wiredTigerCacheSizeGB

Apart from the WiredTiger internal cache that is uncompressed for higher performance,
MongoDB also uses the filesystem cache that is compressed, just like MMAPv1, and will
end up using all available memory in most cases.

The WiredTiger internal cache can provide similar performance to in-memory storage. As
such, it is important to grow it as much as possible.

We can achieve better performance when using WiredTiger with multi-core processors.
This is also a big win compared to MMAPv1, which does not scale as well.

We can, and should, use Docker or other containerization technologies to
isolate the mongod processes from each other and make sure that we know
how much memory each process can, and should, use in a production
environment. It is not recommended to increase the WiredTiger internal
cache above its default value. The filesystem cache should not be less than
20% of the total RAM.

readConcern
WiredTiger supports multiple readConcern levels. Just like writeConcern, which is
supported by every storage engine in MongoDB, with readConcern, we can customize
how many servers in a replica set must acknowledge the query results for the document to
be returned in the result set.

Available options for read concern are as follows:

local: Default option. Will return most recent data from the server. Data may, or
may not, have propagated to the other servers in a replica set, and we run the
risk of a rollback.
linearizable:

Only applicable for reads from the primary
Only applicable in queries that return a single result
Data returns satisfy two conditions:

majority, writeConcern

Storage Engines Chapter 9

[230]

Data was acknowledged before the start of the read
operation

In addition, if we have set writeConcernMajorityJournalDefault to true, we are
guaranteed that the data won't get rolled back.

If we have set writeConcernMajorityJournalDefault to false, MongoDB will not
wait for majority writes to be durable before acknowledging the write. In this case our
data may be rolled back in the event of a loss of a member from the replica set. Data
returned has already been propagated and acknowledged from majority of the servers
before read has started.

We need to use maxTimeMS when using linearizable and majority
read concern levels in case we can't establish majority writeConcern
to avoid blocking, forever waiting for the response. In this case, the
operation will return a timeout error.

MMAPv1 is the older storage engine and is considered, in many aspects, as being
deprecated, but many deployments are still using it.

local and linearizable read concerns are available for MMAPv1 as
well.

WiredTiger collection-level options
When we create a new collection, we can pass in options to WiredTiger like this:

> db.createCollection(
 "mongo_books",
 { storageEngine: { wiredTiger: { configString: "<key>=<value>" } } }
)

This helps to create our mongo_books collection with a key-value pair from the available
ones that WiredTiger exposes through its API. Some of the most widely used key-value
pairs are the following:

Key Value
block_allocation Best or first
allocation_size 512 bytes through to 4 KB; default 4 KB

Storage Engines Chapter 9

[231]

block_compressor
None, .lz4, .snappy, .zlib, .zstd, or custom compressor
identifier string depending on configuration

memory_page_max 512 bytes through to 10 TB; default 5 MB
os_cache_max Integer greater than zero; default zero

This is taken directly from the definition in the WiredTiger documents located at http:/ /
source.wiredtiger. com/ mongodb- 3. 4/ struct_ w_ t___ s_e_s_ s_i_ o_n.html:

int WT_SESSION::create()

Collection-level options allow for flexibility in configuring storage but should be used with
extreme care and after careful testing in development/staging environments.

Collection-level options will get propagated to secondaries if applied to a
primary in a replica set. block_compressor can also be configured from
the command line globally for the database using the --
wiredTigerCollectionBlockCompressor option.

WiredTiger performance strategies
As discussed earlier in this chapter, WiredTiger uses an internal cache to optimize
performance. On top of it, there is always the filesystem cache that the operating system
(and MMAPv1) uses to fetch data from disk.

By default, we have 50% of RAM dedicated to the filesystem cache and 50% to the
WiredTiger internal cache.

The filesystem cache will keep data compressed as it is stored on disk. The internal cache
will decompress it as follows:

Strategy 1: Allocate 80% or more to the internal cache. This has the goal of fitting
our working set in WiredTiger's internal cache.
Strategy 2: Allocate 80% or more to the filesystem cache. Our goal here is to
avoid using the internal cache as much as possible, and rely on the filesystem
cache for our needs.
Strategy 3: Use an SSD as the underlying storage for fast seek time and keep
defaults at 50-50% allocation.
Strategy 4: Enable compression in our storage layer through MongoDB's
configuration to save on storage, and potentially improve our performance by
having a smaller working set size.

http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html

Storage Engines Chapter 9

[232]

Our workload will dictate whether we need to deviate from the default Strategy 1 to any of
the rest. In general, we should use SSDs wherever possible, and with MongoDB's
configurable storage, we can even use SSDs for some of the nodes where we need the best
performance and keep HDDs for analytics workloads.

WiredTiger B-tree versus LSM indexes
B-tree is the most common data structure for indexes across different database systems.
WiredTiger offers the option to use a Log Structured Merge (LSM) tree instead of a B-tree
for indexing.

An LSM tree can provide better performance when we have a workload of random inserts
that would otherwise overflow our page cache and start paging in data from disk to keep
our index up to date.

LSM indexes can be selected from the command line like this:

> mongod --wiredTigerIndexConfigString "type=lsm,block_compressor=zlib"

The preceding command chooses lsm as type, and block_compressor is zlib for
indexes in this mongod instance.

Encrypted
The encrypted storage engine was added to support a series of special use cases, mostly
revolving around finance, retail, healthcare, education, and government.

We need to have encryption for the rest of our data if we have to comply to a set of
regulations, including the following:

PCI DSS for handling credit card information
HIPAA for healthcare applications
NIST for government
FISMA for government
STIG for government

This can be done in several ways, and cloud service providers, such as EC2, provide EBS
storage volumes with built-in encryption. Encrypted storage supports Intel's AES-NI
equipped CPUs for acceleration of the encryption/decryption process.

Storage Engines Chapter 9

[233]

The encryption algorithms supported are the following:

AES-256, CBC (default)
AES-256, GCM
FIPS, FIPS-140-2

Encryption is supported at page level for better performance. When a change is made in a
document, instead of re-encrypting/decrypting the entire underlying file, only the page that
is affected gets modified.

Encryption key management is a huge aspect of encrypted storage security. Most
specifications previously mentioned require key rotation at least once per year.

MongoDB's encrypted storage uses an internal database key per node. This key is wrapped
by an external (master) key that must be used to start the node's mongod process. By using
the underlying operating system's protection mechanisms such as mlock or VirtualLock,
MongoDB can guarantee that the external key will never be leaked from memory to disk by
page faults.

The external (master) key can be managed either by using the Key Management
Interoperability Protocol (KMIP) or by using local key management via a keyfile.

MongoDB can achieve key rotation by performing rolling restarts of the replica set
members. Using KMIP, MongoDB can rotate only the external key and not the underlying
database files. This delivers significant performance benefits.

Using KMIP is the recommended approach for encrypted data storage.
Encrypted storage is based on WiredTiger, so all its advantages can be
enjoyed using encryption as well. Encrypted storage is a part of MongoDB
Enterprise Edition, the paid offering by MongoDB.

Using MongoDB's encrypted storage gives the advantage of increased performance versus
encrypted storage volumes. MongoDB's encrypted storage has an overhead of around 15%
as compared to 25% or more for third-party encrypted storage solutions.

In most cases, if we need to use encrypted storage, we will know it well in advance from
the application design phase, and we can perform benchmarks against different solutions to
choose the one that best fits our use case.

Storage Engines Chapter 9

[234]

In-memory
MongoDB storage in-memory is a risky task with high rewards. Keeping data in-memory
can be up to 100,000 times faster than durable storage on disk.

Another advantage of using in-memory storage is that we can achieve predictable latency
when we write or read data. Some use cases dictate for latency that does not deviate from
normal, no matter what the operation is.

On the other hand, by keeping data in-memory we are open to power loss and application
failure where we can lose all of our data. Using a replica set can safeguard against some
classes of errors, but we will always be more exposed to data loss if we store in data as
opposed to storing on disk.

However, there are some use cases in which we may not care that much about losing older
data. For example, in the financial world we may have the following:

High-frequency trading/algorithmic trading, where higher latency in the case of
high traffic can lead to transactions not being fulfilled
In fraud detection systems, we are concerned about real-time detection being as
fast as possible and we can safely store only the cases that require further
investigation, or the definitely positive ones, to durable storage
Credit card authorizations, trade ordering reconciliation, and other high-traffic
systems that demand a real-time answer

In the web applications ecosystem we have the following:

In intrusion detection systems, such as fraud detection, we are concerned with
detecting intrusion as fast as possible without so much concern for false positive
cases.
In the case of the product search cache, losing data is not mission-critical, but
rather a small inconvenience from the customer's perspective.
For real-time personalized product recommendations, there is a low-risk
operation in terms of data loss. We can always rebuild the index even if we suffer
data loss.

A major disadvantage of an in-memory storage engine is that our dataset has to fit in-
memory. This means we must know and keep track of our data usage so we don't exceed
the memory of our server.

Overall, using the MongoDB in-memory storage engine may be useful in some edge use
cases, but lacking durability in a database system can be a blocking factor in its adoption.

Storage Engines Chapter 9

[235]

In-memory storage is part of MongoDB Enterprise Edition, the paid
offering by MongoDB.

MMAPv1
With the introduction of WiredTiger and its many benefits, such as document-level locking,
many MongoDB users are questioning whether it's worth discussing MMAPv1 anymore.

In reality, the only cases where we should consider using MMAPv1 instead of WiredTiger
would be the following:

Legacy systems: If we have a system that fits our needs, we may upgrade to
MongoDB 3.0+ and not transition to WiredTiger.
Version downgrade: Once we upgrade to MongoDB 3.0+ and convert our
storage to WiredTiger, we cannot downgrade to a version lower than 2.6.8. This
should be kept in mind if we want the flexibility to downgrade at a later time.

As shown previously, WiredTiger is a better choice than MMAPv1, and we should use it
whenever we get the chance. This book is oriented around WiredTiger, and assumes we
will be able to use the latest stable version of MongoDB (3.4 at the time of writing).

MMAPv1, as of version 3.4, only supports collection-level locking, as
opposed to the document-level locking supported by WiredTiger. This
can lead to a performance penalty in high contention database loads and
is one of the main reasons why we should use WiredTiger whenever
possible.

MMAPv1 storage optimization
MongoDB, by default, uses the power-of-two allocation strategy. When a document is
created it will get allocated a power of size two. That is, ceiling(document_size).

For example, if we create a document of 127 bytes, MongoDB will allocate 128 bytes (2^7),
while if we create a document of 129 bytes, MongoDB will allocate 256 bytes (2^8). This is
helpful when updating documents, as we can update them and not move the underlying
document on disk until it exceeds the space allocated.

Storage Engines Chapter 9

[236]

If a document is moved on disk (that is, adding a new subdocument or an element in an
array of the document that forces the size to exceed the allocated storage), a new power-of-
two allocation size will be used.

If the operation doesn't affect its size (that is, changing an integer value from one to two),
the document will remain stored in the same physical location on disk. This concept is
called padding. We can configure padding using the compact administration command as
well.

When we move documents on disk, we have non-contiguous blocks of data stored,
essentially holes in storage. We can prevent this from happening by setting
paddingFactor at collection level.

paddingFactor has a default value of 1.0 (no padding) and a maximum of 4.0
(expanding size by three times as much as the original document size). For example,
paddingFactor of 1.4 will allow the document to expand by 40% before getting moved
on to a new location on disk.

For example, with our favorite books collection, to get 40% more space, we would do the
following:

> db.runCommand ({ compact: 'books', paddingFactor: 1.4 })

We can also set padding in terms of bytes per document. This way we get x bytes padding
from the initial creation of each document in our collection:

> db.runCommand ({ compact: 'books', paddingBytes: 300 })

This will allow a document created at 200 bytes to grow to 500 bytes, while a document
created at 4,000 bytes will be allowed to grow to 4,300 bytes.

We can eliminate holes altogether by running a compact command with no parameters,
but this means that every update that increases document size will have to move
documents, essentially creating new holes in storage.

Mixed usage
When we have an application with MongoDB as the underlying database, we can set it up
to use different replica sets for different operations at application level, matching their
requirements.

Storage Engines Chapter 9

[237]

For example, in our financial application, we can use one connection pool for the fraud
detection module utilizing in-memory nodes, and a different one for the rest of our system,
shown as follows:

In addition, storage engine configuration in MongoDB is applied per node, which allows
for some interesting setups.

As shown in the preceding architectural diagram, we can use a mix of different storage
engines in different members of a replica set. In this case, we are using the in-memory
engine for optimal performance in the primary node, while one of the secondaries uses
WiredTiger to ensure data durability. We can use priority=1 in the in-memory secondary
node to make sure that, if the primary fails, the secondary will get elected right away. If we
don't do it, we risk having a failing primary server exactly when we have high load in the
system, and the secondary has not kept up with the primary's writes in-memory.

The mixed storage approach is widely used in the microservice architecture. By decoupling
service and database and using the appropriate database for each use case, we can easily
horizontally scale our infrastructure.

All storage engines support a common baseline functionality, such as the
following:

Querying
Indexing
Replication
Sharding
Ops and Cloud Manager support
Authentication and authorization semantics

Storage Engines Chapter 9

[238]

Other storage engines
Modular MongoDB architecture allows for third parties to develop their own storage
engines.

RocksDB
RocksDB is an embedded database for key-value data. It's a fork of LevelDB storing key-
value pairs in arbitrary byte arrays. It was started at Facebook in 2012, and now serves as
the backend for the interestingly named CockroachDB, the open source DB inspired by
Google Spanner.

MongoRocks is a project backed by Percona and Facebook aiming to bring RocksDB
backend to MongoDB. RocksDB can achieve higher performance than WiredTiger for some
workloads, and is worth investigating.

TokuMX
Another widely used storage engine is TokuMX by Percona. TokuMX was designed with
both MySQL and MongoDB in mind, but since 2016, Percona has focused its efforts on the
MySQL version, instead switching over to RocksDB for MongoDB storage support.

Locking in MongoDB
Document-level and collection-level locking is mentioned throughout this chapter and also
in several other chapters in this book. It is important to understand how locking works and
why it is important.

Database systems use the concept of locks to achieve ACID properties. When there are
multiple read or write requests coming in parallel, we need to lock our data so that all
readers and writers have consistent and predictable results.

MongoDB uses multi-granularity locking. The available granularity levels in descending
order are as follows:

Global
Database
Collection
Document

Storage Engines Chapter 9

[239]

The locks that MongoDB and other databases use are the following, in order of granularity:

IS: Intent shared
IX: Intent exclusive
S: Shared
X: Exclusive

If we use locking at a granularity level with S or X locks, then all higher levels need to be
locked with an intent lock of the same type.

Other rules for locks are as follows:

A single database can simultaneously be locked in IS and IX mode
An exclusive (X) lock cannot coexist with any other lock
A shared (S) lock can only coexist with IS locks

Reads and writes requesting locks are generally queued in first-in, first-out (FIFO)
order. The only optimization that MongoDB will actually do is reordering requests
according to the next request in queue to be serviced.

What this means is that if we have an IS(1) request coming up next and our current queue
has the following IS(1)->IS(2)->X(3)->S(4)->IS(5) as shown in the following screenshot:

Then MongoDB will reorder requests like this, IS(1)->IS(2)->S(4)->IS(5)->X(3) as shown in
the following screenshot:

If, during servicing, the IS(1) request, new IS, or S requests come in, let's say IS(6) and S(7),
in that order, they will still be added at the end of the queue and won't be considered until
the X(3) request is done with.

Storage Engines Chapter 9

[240]

Our new queue will now look like IS(2)->S(4)->IS(5)->X(3)->IS(6)->S(7):

This is done to prevent the starvation of the X(3) request that would end up getting pushed
back in the queue all the time because new IS and S requests come in. It is important to
understand the difference between intent locks and locks themselves. WiredTiger storage
engine will only use intent locks for global, database, and collection levels.

It uses intent locks at higher levels (that is, collection, database, global), when a new request
comes in and according to the compatibility matrix as follows:

MongoDB will first acquire intention locks in all ancestors before acquiring the lock on the
document itself. This way, when a new request comes in, it can quickly identify if it cannot
be serviced based on less granular locks.

WiredTiger will use S and X locks at the document level. The only exception to that is for
typically infrequent and/or short-lived operations involving multiple databases. These will
still require a global lock, similar to the behavior MongoDB had in pre 2.x versions.

Administrative operations, such as dropping a collection, still require an
exclusive database lock.

MMAPv1, as explained previously, uses collection-level locks. Operations that span a single
collection, but may or may not be spanning a single document, will still lock up the entire
collection. This is the main reason why WiredTiger is the preferred storage solution for all
new deployments.

Storage Engines Chapter 9

[241]

Lock reporting
We can inspect lock status using any of the following tools and commands:

db.serverStatus() through the locks document

db.currentOp() through the locks field

mongotop

mongostat

MongoDB Cloud Manager

MongoDB Ops Manager

Lock contention is a really important metric to keep track of, as it can bring our database to
its knees if it grows out of control.

If we want to terminate an operation, we have to use the db.killOp()
shell command.

Lock yield
A database with a database-level lock will not be really useful under stress, and will end
being locked up most of the time. A smart solution to that in the early versions of
MongoDB was getting operations to yield their locks on the basis of some heuristics.

update() commands affecting multiple documents would yield their X lock to improve
concurrency.

MMAPv1's predecessor in earlier versions of MongoDB would use these heuristics to
predict whether data was already in-memory before performing the requested operation. If
it wasn't, it would yield the lock until the underlying operating system pages data in-
memory, and then re-acquire the lock to continue with servicing the request.

The most notable exceptions to these are index scans, where the operation will not yield its
lock and will just block on waiting for the data to get loaded from disk.

Storage Engines Chapter 9

[242]

Since WiredTiger is only using intent locks at collection level and above, it doesn't really
need these heuristics, as intent locks don't block other readers and writers.

Commonly used commands and locks
The commonly used commands and locks are as follows:

Command Lock
find() S
it() (query
cursor)

S

insert() X
remove() X
update() X
mapreduce() Both S and X, depending on the case. Some MapReduce chunks can run in parallel.

index()
• Foreground indexing: Database lock.
• Background indexing: No lock, except for administrative commands that will return an error. Also, background
indexing will take considerably more time.

aggregate() S

Commands requiring a database lock
The following commands require a database lock. We should plan in advance before
issuing them in a production environment:

db.collection.createIndex() in the (default) foreground mode
reIndex

compact

db.repairDatabase()

db.createCollection() if creating a multiple GB capped collection
db.collection.validate()

db.copyDatabase(), which may lock more than one database

We also have some commands that lock the entire database for a really short period of time:

db.collection.dropIndex()

db.getLastError()

db.isMaster()

Any rs.status() command
db.serverStatus()

Storage Engines Chapter 9

[243]

db.auth()

db.addUser()

These commands shouldn't take more than a few milliseconds to operate and so we
shouldn't worry about it, unless we have automated scripts with these commands in place,
in which case we must take note to throttle how often they would occur.

In a sharded environment, each mongod applies its own locks, thus greatly
improving concurrency.

In replica sets, our primary server must take all write operations. For these to be replicated
correctly to the secondaries we must lock the local database that holds the oplog of
operations at the same time that we lock our primary document/collection/database. This is
usually a short-lived lock that, again, we shouldn't worry about.

Secondaries in replica sets will fetch write operations from the primary local database's
oplog, apply the appropriate X lock, and apply service reads once the X locks are done
with.

From the long preceding explanation, it's evident that locking should be avoided at all costs
in MongoDB. We should design our database so that we avoid as many X locks as possible,
and when we need to take X locks over one or multiple databases, do so in a maintenance
window with a backup plan in case operations take longer than expected.

Further reading
You can refer to the following links for further reference:

https:// docs. mongodb. com/ manual/ faq/concurrency/

https:// docs. mongodb. com/ manual/ core/ storage- engines/

https:// www. mongodb. com/ blog/ post/ building- applications- with- mongodbs-
pluggable- storage- engines- part-1

https:// www. mongodb. com/ blog/ post/ building- applications- with- mongodbs-
pluggable- storage- engines- part-2

https:// docs. mongodb. com/ manual/ core/ wiredtiger/

https:// docs. mongodb. com/ manual/ reference/ method/ db. collection.
createIndex/ #createindex- options

https:// docs. mongodb. com/ manual/ core/ mmapv1/

https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/storage-engines/
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-1
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://www.mongodb.com/blog/post/building-applications-with-mongodbs-pluggable-storage-engines-part-2?jmp=docs&_ga=2.154506616.1736193377.1502822527-355279797.1491859629
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/reference/method/db.collection.createIndex/#createindex-options
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/

Storage Engines Chapter 9

[244]

https:// docs. mongodb. com/ manual/ reference/ method/ db. createCollection/
#create- collection- storage- engine- options

http://source. wiredtiger. com/ mongodb- 3.4/struct_ w_t_ __s_e_ s_s_ i_o_n.
html

https:// webassets. mongodb. com/microservices_ white_ paper. pdf? _ga= 2.
158920114. 90404900. 1503061618- 355279797. 1491859629

https:// webassets. mongodb. com/storage_ engines_ adress_ wide_ range_ of_
use_cases. pdf? _ga= 2.125749506. 90404900. 1503061618- 355279797. 1491859629

https:// docs. mongodb. com/ manual/ reference/ method/ db. createCollection/
#create- collection- storage- engine- options

http://source. wiredtiger. com/ mongodb- 3.4/struct_ w_t_ __s_e_ s_s_ i_o_n.
html

https:// docs. mongodb. com/ manual/ reference/ read- concern/

https:// www. percona. com/ live/ 17/ sessions/ comparing- mongorocks-
wiredtiger- and- mmapv1- performance- and- efficiency

https:// www. percona. com/ blog/ 2016/ 06/ 01/embracing- mongorocks/

https:// www. percona. com/ software/ mongo- database/ percona- tokumx

https:// www. slideshare. net/ profyclub_ ru/4- understanding- and- tuning-
wired-tiger- the- new- high- performance- database- engine- in-mongodb-
henrik-ingo- mongodb

Summary
In this chapter, we learned about different storage engines in MongoDB. We identified the
pros and cons of each one and the use cases for choosing each storage engine.

We learned about using multiple storage engines, how we can use them, and the benefits. A
big part of this chapter was also dedicated to database locking, how it can happen, why it is
bad, and how we can avoid it.

We split our operations by the lock they need. This way, when we design and implement
our application, we can make sure that we have a design that locks our database as little as
possible.

In the next chapter, we will learn about MongoDB and how we can use it to ingest and
process big data.

https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/microservices_white_paper.pdf?_ga=2.158920114.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://webassets.mongodb.com/storage_engines_adress_wide_range_of_use_cases.pdf?_ga=2.125749506.90404900.1503061618-355279797.1491859629
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
https://docs.mongodb.com/manual/reference/method/db.createCollection/#create-collection-storage-engine-options
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
http://source.wiredtiger.com/mongodb-3.4/struct_w_t___s_e_s_s_i_o_n.html
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://docs.mongodb.com/manual/reference/read-concern/
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/live/17/sessions/comparing-mongorocks-wiredtiger-and-mmapv1-performance-and-efficiency
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/blog/2016/06/01/embracing-mongorocks/
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27
https://www.slideshare.net/profyclub_ru/4-understanding-and-tuning-wired-tiger-the-new-high-performance-database-engine-in-mongodb-henrik-ingo-mongodb/27

10
MongoDB Tooling

Features, stability, and great driver support are all important; however, there is another
area that is key to a software product succeeding, and that is the ecosystem built around it.
MongoDB (originally under the name 10gen Inc.) introduced the MMS more than 8 years
ago, in 2011, and it was seen as an innovation at the time. In this chapter, we will go
through the following suite of different tools that are available for MongoDB and explore
how they can improve productivity:

MongoDB Enterprise Kubernetes Operator
MongoDB Mobile
MongoDB Stitch
MongoDB Sync

MongoDB Tooling Chapter 10

[246]

Introduction
MongoDB Monitoring Service (MMS) is a mostly free Software as a Service (SaaS)
solution that can monitor and access the diagnostics of any database that is signed up to it.
When it was introduced, it greatly helped 10gen's engineers to troubleshoot any problems
that the customers had. Since then, tooling has been a centerpiece of MongoDB's evolution.

MongoDB Atlas
MongoDB Atlas is MongoDB's Database as a Service (DBaaS) offering. It is available as a
multi-cloud offering, supporting Amazon Web Service (AWS), Microsoft Azure, and
Google Cloud Platform.

Using DBaaS, patches and minor version upgrades are applied automatically, without any
downtime. Using the graphical user interface (GUI), a developer can deploy
geographically distributed database instances to avoid having any single point of failure.
For websites with significant traffic, this can also help by placing database servers closer to
the users who are accessing their data. This is a key part of MongoDB's strategy and
offering as they embrace having data close to the user.

Similar to most DBaaS offerings, Atlas allows users to scale a deployment using a GUI.
Every deployment lives on its own Virtual Private Cloud (VPC) and can leverage
MongoDB Enterprise Server features such as encryption key management, Lightweight
Directory Access Protocol (LDAP), and auditing features.

The live migration service can be used to migrate datasets from existing deployments on-
premises, in any of the three supported cloud providers or other DBaaS services, such
as mLab, Compose, and ObjectRocket, using the same GUI.

MongoDB Tooling Chapter 10

[247]

Creating a new cluster
Creating a new cluster using MongoDB Atlas is as simple as clicking and selecting through
configuration options. In the following screenshot, we can see all the options that are
available when creating a new cluster:

MongoDB Tooling Chapter 10

[248]

The following screenshot shows Zone configuration summary:

MongoDB Tooling Chapter 10

[249]

One of the game-changing settings in MongoDB Atlas is the ability to instantly provision
geographically distributed servers across different zones and date centers (for all three
major cloud providers) with the goal of having our data closest to our users. This can be
useful for performance and regulatory reasons (such as General Data Protection
Regulation (GDPR), for the European Union).

By enabling global writes, we can start configuring this setting. Using any of the two
templates—global performance or excellent global performance—an admin can create
server configurations that will be less than 120 or less than 80 milliseconds from any user
around the world. An administrator can also define their own custom assignments from
regions to data centers.

In Zone configuration summary, we can see an overview of how our settings will affect
performance. M30 is the shard-enabled MongoDB Atlas plan and this configuration is
creating (under the hood) a shard per zone. We can create more shards per zone but this is
not recommended at this time.

Enabling configure local reads in all zones will create local read-only replica set nodes in
every region other than the zone that is used to write data to. So, if we have three zones (A,
B, and C), we end up with writes for A going to A, but reads from A happening either from
a server in zone A, or B or C, depending on which server is geographically closer to the
user. The same goes for zones B and C.

This section is probably the most important for complex, multi-region deployments and
should be treated with extreme care.

MongoDB Tooling Chapter 10

[250]

The next section is configuring the servers that we want to use for our clusters:

MongoDB Tooling Chapter 10

[251]

This is similar to how we will select servers in EC2 or Microsoft Azure. The main point to
note is that we can select custom IOPS (the number of I/O operations per second)
performance, and that we should select the Auto-expand Storage option to avoid running
out of disk capacity. Together with this option, it's always useful to keep an eye on storage
allocation to avoid excessive charges at the end of a billing cycle.

In the next panel, we can configure backup and advanced options for our cluster. The
following screenshot shows Additional Settings for continuous backup:

MongoDB Tooling Chapter 10

[252]

The following screenshot shows the Advanced Settings option for enabling BI Connector:

MongoDB Tooling Chapter 10

[253]

The following screenshot shows More Configuration Options that are available:

MongoDB Tooling Chapter 10

[254]

Important notes
MongoDB has provided some useful tips for in MongoDB Atlas, including the following:

Use the latest version of MongoDB whenever possible.
Use the latest Transport Layer Security (TLS) version available, which is 1.3 at
the time of writing.
Encryption at rest cannot be used together with continuous backups. We need to
select cloud provider snapshots to be able to use this feature.
It's probably a good idea to disable server-side JavaScript, unless we know why
we need it, for example, when we have legacy MapReduce jobs in place.
Requiring indexes for all queries can be useful if we have a well-defined business
case and requirements for how we will use the database, and/or we expect our
dataset to be so large that querying without indexes is practically impossible.
Finally, we get to select the name of our cluster. This cannot be changed after
creation so it's important to agree with fellow team members before we click on
the Create Cluster button.

After a bit of waiting, our cluster will be operational, and we will be able to connect to it via
a plain old MongoDB URI.

MongoDB Cloud Manager
Formerly known as MongoDB Management Service (MMS) and before that as MongoDB
Monitoring Service (MMS), Cloud Manager is a managed SaaS for on-premises MongoDB
deployments.

Atlas as a DBaaS solution can provide an end-to-end solution for database management.
For many use cases this may not be feasible. In this case, it may make sense to use some of
the features in a pay-as-you-go fashion.

Cloud Manager has a limited free tier and several paid ones.

MongoDB Tooling Chapter 10

[255]

Here are some of the key features of Cloud Manager:

Automated backups
More than 100 database metrics and Key Performance Indicators (KPIs) that can
be used to track MongoDB's performance
Customized alerts that integrate with third-party systems such as PagerDuty,
email, and SMS
A unified operations view, either via directly querying its JSON API, or by
integrating it with popular performance tracking solutions such as New Relic
(https:/ / www. newrelic. com)

Premium plans also offer advice around performance and indexing. Cloud Manager's only
requirement is to install the required agents in our application.

MongoDB Ops Manager
Ops Manager is, in many ways, different to Cloud Manager. In contrast to Cloud Manager,
it is a downloadable executable for Windows Server, Red Hat Enterprise Linux (RHEL), or
Ubuntu.

Following on this, users need to install and manage the service within their own
infrastructure.

Aside from this difference, Ops Manager can also help achieve similar goals to Cloud
Manager:

Monitoring on more than 100 performance metrics
Automation on installing and upgrading clusters; plus index maintenance can be
achieved with zero downtime
For continuous, incremental backups with point-in-time recovery
Query optimization
Index suggestions

https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com
https://www.newrelic.com

MongoDB Tooling Chapter 10

[256]

A sample Ops Manager topology is as follows:

Aside from the Ops Manager and the MongoDB nodes, we also need snapshot storage if we
have enabled backups.

Ops Manager can be a better alternative to Cloud Manager if we want an on-premises
solution for security, or for other reasons. This is included as part of the MongoDB
Enterprise Server paid solution.

MongoDB Charts
MongoDB Charts is a tool to generate visualizations from MongoDB data. It enables non-
technical people to query a MongoDB database using a GUI and share the results with
colleagues.

MongoDB Tooling Chapter 10

[257]

MongoDB Charts can create a series of charts, including the following:

A column and bar chart reference
A line and area chart reference
Grid charts:

A heatmap reference
A scatter chart reference

A donut chart reference
Text charts: Number chart reference

Like Ops Manager, it's a standalone executable utilizing Docker that needs to be installed
and managed on-premises.

Use replica set secondaries for charts queries. Ideally, use a secondary,
hidden, non-electable node as an analytics node in replica sets.

MongoDB Compass
MongoDB Compass is similar to MongoDB Charts, with less functionality around charting,
but more heavily oriented towards running ad hoc queries and connecting to our database
without the need for a command-line interface.

Compass provides the ability to query MongoDB through a GUI and visually construct
queries. It can provide rich visualizations on result datasets, and help with constructing
aggregation queries through a point and click interface.

Compass also provides visualizations for most administrative queries around query and
index performance, so that it can be used to monitor and troubleshoot clusters from a
database administrator perspective. It exposes an API that can be used to import or develop
plugins.

A useful feature for non-technical users is the ability to download a read-only edition so
that we can limit access to non-destructive operations. There is also an isolated edition of
this tool that can be used to restrict connections to a single chosen server. These requests
will also be TLS-encrypted.

MongoDB Tooling Chapter 10

[258]

Compass is available for Windows, OSX, Red Hat, and Ubuntu as an executable download.
MongoDB Compass has a limited free edition, and the full feature set is available via a
MongoDB subscription package.

MongoDB Connector for Business Intelligence
(BI)
MongoDB Connector for BI is one of the most useful tools for non-developers. It is a part of
the MongoDB Enterprise Advanced subscription and enables integration with BI tools
using standard SQL queries.

It enables MongoDB integrations with enterprise tools such as Tableau, Qlik, Spotfire,
Cognos, MicroStrategy, and SAP BusinessObjects.

It is available as an executable download for Amazon Linux, Debian, OSX, Red Hat, SUSE,
Ubuntu, and Windows platforms, and can work with both on-premises databases and
MongoDB Atlas. Once installed and configured correctly, it can provide an Open Database
Connectivity (ODBC) Data Source Name (DSN) that most BI tools can use to connect to.

An introduction to Kubernetes
Kubernetes (https:/ /kubernetes. io) is an open source container-orchestration system for
automating deployment, scaling, and the management of containerized applications. In
layman's terms, we can use Kubernetes (often referred to as k8s) to manage applications
deployed via containers. Kubernetes was initially developed at Google and is
now maintained by the Cloud Native Computing Foundation (CNCF).

The most widely-used container technology is probably Docker. We can download and
install Docker on any PC and, through a few commands, install a Docker image that will be
isolated from our host system and contain our application code. Docker performs operating
system level virtualization, where all containers are run by the host's operating system
kernel. This results in containers being more lightweight than a full virtual machine (VM).

Multiple Docker containers can be orchestrated using Docker Swarm. This is similar to
Kubernetes and sometimes the two systems are directly compared with each other.

MongoDB provides tools that can help administrators deploy and manage MongoDB
clusters using Kubernetes.

https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io
https://kubernetes.io

MongoDB Tooling Chapter 10

[259]

Enterprise Kubernetes Operator
Starting from MongoDB 4.0, the MongoDB Enterprise Operator for Kubernetes enables a
user to deploy and manage MongoDB clusters directly from the Kubernetes API. This
circumvents the need to directly connect to Cloud Manager or Ops Manager, and simplifies
the deployment and management of Kubernetes clusters.

Cloud Manager is, in most aspects, the SaaS equivalent of Ops Manager.

Enterprise Kubernetes Operator can be installed using Helm, the package manager for
Kubernetes. First, we have to clone the GitHub repository from MongoDB: https:/ /
github.com/mongodb/ mongodb- enterprise- kubernetes. git.

After we change the directory to our local copy, we can issue the following command:

helm install helm_chart/ --name mongodb-enterprise

We will then have the local copy installed; the next step is to configure it.

By configuring our local installation, we need to apply a Kubernetes ConfigMap file. The
configuration settings that we need to copy from Ops Manager or Cloud Manager are as
follows:

Base URL: The URL of your Ops Manager or Cloud Manager. For Cloud
Manager, this will be http:/ /cloud. mongodb. com; for Ops Manager, this should
be similar to http://<MY_SERVER_NAME>:8080/.
Project ID: The ID of an Ops Manager project that the Enterprise Kubernetes
Operator will deploy into. This should be created within the Ops Manager or
Cloud Manager, and is a unique ID to organize a MongoDB cluster and provide a
security boundary for the project. It should be a 24-digit hexadecimal string.
User: An existing Ops Manager username. This is the email of a user in Ops
Manager that we want the Enterprise Kubernetes Operator to use when
connecting to Ops Manager.
Public API key: This is used by the Enterprise Kubernetes Operator to connect to
the Ops Manager REST API endpoint.

This is created by clicking on the username on the Ops Manager console and selecting
Account. On the next screen, we can click on Public API Access, and then click on
the Generate key button and provide a description. The next screen will display the public
API key that we need.

https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
https://github.com/mongodb/mongodb-enterprise-kubernetes.git
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com
http://cloud.mongodb.com

MongoDB Tooling Chapter 10

[260]

This is the only chance that we will ever have to view this API key, so we
need to write it down, otherwise, we will need to regenerate a new key.

Once we have these values, we can create the Kubernetes ConfigMap file with any name
we want, as long as it's a .yaml file. In our case, we will name it mongodb-project.yaml.

Its structure will be as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name:<<any sample name we choose(1)>>
 namespace: mongodb
data:
 projectId:<<Project ID from above>>
 baseUrl: <<BaseURI from above>>

Then we can apply this file to Kubernetes using the following command:

kubectl apply -f mongodb-project.yaml

The last step we need to take is to create the Kubernetes secret. This can be done using the
following command:

kubectl -n mongodb create secret generic <<any sample name for credentials
we choos>> --from-literal="user=<<User as above>>" --from-
literal="publicApiKey=<<our public api key as above>>"

We need to note down the credentials name as we will need it in the
subsequent steps.

Now we are ready to deploy our replica set using Kubernetes! We can create a replica-
set.yaml file with the following structure:

apiVersion: mongodb.com/v1
kind: MongoDbReplicaSet
metadata:
 name: <<any replica set name we choose>>
 namespace: mongodb
spec:
 members: 3
 version: 3.6.5
persistent: false

MongoDB Tooling Chapter 10

[261]

project: <<the name value (1) that we chose in metadata.name of ConfigMap
file above>>
credentials: <<the name of credentials secret that we chose above>>

We apply the new configuration using kubectl apply:

kubectl apply -f replica-set.yaml

We will be able to see our new replica set in Ops Manager.

To troubleshoot and identify issues in MongoDB using Kubernetes we can
use
kubectl logs to inspect logs, and kubectl exec to shell into one of the
containers that is running MongoDB.

MongoDB Mobile
MongoDB Mobile is the mobile version of the MongoDB database. It's aimed at
smartphones and IoT sensors via Embedded MongoDB. MongoDB Mobile has two core
parts:

A MongoDB database server that runs locally on the device, enabling offline
access to data. This database is a stripped-down version of the MongoDB Server
Community Edition, without any of the features that are not needed for Mobile
(for example, replication).
Native Java and Android SDKs to provide low-level access to the database and
interact with the local Mobile database and any MongoDB Stitch backend.

Mobile SDK has two modes of operation. In local mode, the SDK only allows access to the
local Mobile database, and cannot sync with any external source in Atlas. In remote mode,
the SDK can access both MongoDB Atlas and MongoDB Mobile databases and Sync
between them.

Here are some limitations of MongoDB Mobile over the server version:

No support for replication
No support for sharding
No database authentication; however, the MongoDB Mobile database only
accepts connections originating from the application
No SSL

MongoDB Tooling Chapter 10

[262]

No encryption at rest
No change streams support
No server-side JavaScript evaluation (this is for performance reasons)
No multi-document ACID transactions

To set up MongoDB Mobile, we need to download and install the MongoDB Stitch SDK
first. Then, creating and querying a local MongoDB database is as easy as a few lines of
code (this example is in Android):

Import packages:
// Base Stitch Packages
import com.mongodb.stitch.android.core.Stitch;
import com.mongodb.stitch.android.core.StitchAppClient;
// Packages needed to interact with MongoDB and Stitch
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoCollection;
// Necessary component for working with MongoDB Mobile
import
com.mongodb.stitch.android.services.mongodb.local.LocalMongoDbService;

Initialize the database as follows:

// Create the default Stitch Client
final StitchAppClient client =
 Stitch.initializeDefaultAppClient("<APP ID>");
// Create a Client for MongoDB Mobile (initializing MongoDB Mobile)
final MongoClient mobileClient =
 client.getServiceClient(LocalMongoDbService.clientFactory);

Next, get a reference to the database:

MongoCollection<Document> localCollection =
 mobileClient.getDatabase("my_db").getCollection("my_collection");

Insert document as follows:

localCollection.insertOne(document);

Then, find the first document by using first():

Document doc = localCollection.find().first();

MongoDB Mobile is most powerful when used in conjunction with MongoDB Stitch, which
we will explore in the next section.

MongoDB Tooling Chapter 10

[263]

MongoDB Stitch
MongoDB Stitch is MongoDB's serverless platform offering. It is based on four distinct
areas of functionality:

The first area is QueryAnywhere. QueryAnywhere allows client-side
applications to access MongoDB using its query language. We can define data
access rules on the Stitch server on a per collection basis to allow us to filter
results based on user data (userId).
The second area is Stitch functions. These are simple JavaScript functions that can
execute without a server inside the Stitch platform. By using Stitch functions, we
can implement application logic, expose APIs, and build integrations with third-
party services. This service is mostly similar to Amazon's AWS Lambda.
The third area is Stitch triggers. Similar to MongoDB server's change streams and
triggers as they are used in relational databases, Stitch triggers execute user-
defined functions in real time by responding to changes in database state.
Finally, there is Stitch Mobile Sync, which bridges the Stitch serverless offering
with Mobile MongoDB. By using it, we can develop a Mobile service with a local
MongoDB database residing in the smartphone, which is perfectly synced with
our MongoDB Atlas-powered database in the cloud.

This way, we can query data locally in the app with no lag, or even while being offline, and
rely on Stitch Mobile Sync to keep our data store up to date.

Stitch can be used on the web (JavaScript), Android, and macOS (Swift).

QueryAnywhere
QueryAnywhere allows querying MongoDB server data directly from a client application.
A key differentiation and functionality that allows us to do this securely is the ability to
define data access rules to filter results based on the content of a document or the logged-in
user.

Rules
MongoDB rules are a combination of a role, and the permissions assigned to that role. Roles
define a set of users that will have the same read/write access to a document. Roles in Stitch
can be defined with an apply-when rule.

MongoDB Tooling Chapter 10

[264]

This can be defined using the %% variable notation:

{
 "createdBy": "%%user.id"
}

Each role can have one or more permissions that define which fields they can read and/or
write in a document.

MongoDB Stitch also offers four templates that have predefined roles and permissions
around the most common use cases:

Users can only read and write their own data.
Users can read all data, but only write their own data.
Users can only read all data.
Users can read and write their own data. Users that belong to a sharing list can
read that data.

Authorization is applied before the rules. If a user is not authorized to
access a collection, their rules will not be evaluated at all.

Functions
Stitch functions can be used to execute server-side application logic. They are written in
JavaScript ES6+ and don't require server.

Here are some key limitations of functions:

They stop execution once they return
They can run for up to 60 seconds, using up to 256 MB of memory
They cannot import modules or use some of the core JavaScript functionality,
such as global object types, mathematical, number, string, array, and object APIs

Stitch functions can be imported via the CLI or from Stitch UI. For a simple function that
we have named multiply, we could add this code in the UI:

exports = function(a, b) {
 return a * b;
};

MongoDB Tooling Chapter 10

[265]

And then we could call it from another function, webhook, or trigger within Stitch:

context.functions.execute("multiply", a, b);

We can also trigger its execution within a Stitch JSON expression using %function:

{
 "%%true": {
 "%function": {
 "name": "multiply",
 "arguments": [3,4]
 }
 }
}

We can even call this function from our client application using Stitch SDK (JavaScript,
Android, or macOS):

const client = Stitch.defaultAppClient;
client.callFunction("multiply", [3, 4]).then(result => {
console.log(result) // Output: 12
});

Triggers
Triggers are building upon Stitch functions to execute when a database collection changes
for database triggers, or execute authentication logic when a user is modified using
authentication triggers.

Database triggers can execute on one or more of the INSERT, UPDATE, REPLACE,
and DELETE database operations.

These values all need to be case sensitive.

We need to define the linked function, which is the function that will execute once the
trigger fires. An interesting option for the UPDATE operation is fullDocument. When set to
true, this will include the full result of the operation. This is, as always, subject to the 16
MB document size limit, so updates to documents really close to the 16 MB limit may fail as
the result will exceed the limit.

MongoDB Tooling Chapter 10

[266]

Authentication triggers, on the other hand, allow us to execute custom code on
authentication events. These can be triggered on CREATE, LOGIN, and DELETE operation
types from the following providers:

oauth2-google

oauth2-facebook

custom-token

local-userpass

api-key

anon-user

Authentication operation types are case sensitive and need to be all
uppercase. Up to 50 triggers per second can be concurrently executed. If
we try to invoke more, they will get into a queue to be processed in a first-
in first-out (FIFO) fashion.

Triggers are quite similar to RDBMS trigger functionality, with the added bonus that they
are easy and flexible to manage via the Stitch trigger's GUI console.

Mobile Sync
One of the newest additions in MongoDB Stitch Mobile Sync can be used to sync data
seamlessly between MongoDB Mobile and the server's backend (at the moment of writing
this, it has to be hosted on MongoDB Atlas). Mobile Sync is also based on change streams to
listen to data changing between local and remote databases. As data changes in the local
Mobile database, we may run into conflicts between the local and remote state. This is why
we need to define some handlers to specify what should happen in that case. There are
three interfaces that we need to implement for our models:

ConflictHandler

ErrorListener

ChangeEventListener

ConflictHandler has a method that arguments documentId of the document that
conflicts the local and remote events, returns a resolution to the conflict as shown:

DocumentT resolveConflict(BsonValue documentId,
 ChangeEvent<DocumentT> localEvent,
 ChangeEvent<DocumentT> remoteEvent)

MongoDB Tooling Chapter 10

[267]

ErrorListener does not return anything and is called when an error happens for
documentId and non-network related exception:

void onError(BsonValue documentId,Exception error)

Finally, ChangeEventListener also does not return any values and is called when any
change event happens for the given documentId:

void onEvent(BsonValue documentId, ChangeEvent<DocumentT> event)

Summary
In this chapter, we went through different MongoDB tools and learned how to use them to
increase productivity. Starting from MongoDB Atlas, the hosted DBaaS solution, we
followed on with Cloud Manager and Ops Manager, and explored how they differ from
each other.

Then, we dived into MongoDB Charts and MongoDB Compass—the GUI-driven MongoDB
administration tools. We learned about MongoDB Connector for BI and how can it prove to
be useful for our purposes. Then we discussed Kubernetes, how it compares to Docker and
Docker Swarm, and how we can use Kubernetes with MongoDB Enterprise Operator. The
next section was dedicated to MongoDB Mobile and Stitch—two major enhancements in
MongoDB 4.0. We introduced practical examples of using Stitch's functionality, especially
around QueryAnywhere, triggers, and functions. Finally, we briefly introduced Mobile
Sync, one of the latest additions to MongoDB's arsenal, and looked at how it can be used to
sync our Mobile applications with a cloud-based database.

In the next chapter, we are going to switch gears and deal with how we can use big data
with MongoDB to ingest and process large streaming and batch datasets.

11
Harnessing Big Data with

MongoDB
MongoDB is often used in conjunction with big data pipelines because of its performance,
flexibility, and lack of rigorous data schemas. This chapter will explore the big data
landscape, and how MongoDB fits alongside message queuing, data warehousing, and
extract, transform, load pipelines.

The topics that we will discuss in this chapter are as follows:

What is big data?
Message queuing systems
Data warehousing
A big data use case using Kafka, Spark on top of HDFS, and MongoDB

What is big data?
In the last five years, the number of people accessing and using the internet has almost
doubled from a little under 2 billion to around 3.7 billion. Half of the global population are
now online.

With the number of internet users increasing, and with networks evolving, more data is
being added to existing datasets each year. In 2016, global internet traffic was 1.2 zettabytes
(which is 1.2 billion terabytes) and it is expected to grow to 3.3 zettabytes by 2021.

This enormous amount of data that is generated every year means that it is imperative that
databases and data stores in general can scale and process our data efficiently.

Harnessing Big Data with MongoDB Chapter 11

[269]

The term big data was first coined in the 1980's by John Mashey (http:/ /static. usenix.
org/event/usenix99/ invited_ talks/ mashey. pdf), and mostly came into play in the past
decade with the explosive growth of the internet. Big data typically refers to datasets that
are too large and complex to be processed by traditional data processing systems, and so
need some kind of specialized system architecture to be processed.

Big data's defining characteristics are as follows, in general:

Volume
Variety
Velocity
Veracity
Variability

Variety and variability refer to the fact that our data comes in different forms and our
datasets have internal inconsistencies. These need to be smoothed out by a data cleansing
and normalization system before we can actually process our data.

Veracity refers to the uncertainty of the quality of data. Data quality may vary, with perfect
data for some dates and missing datasets for others. This affects our data pipeline and how
much we can invest in our data platforms, since, even today, one out of three business
leaders don't completely trust the information they use to make business decisions.

Finally, velocity is probably the most important defining characteristic of big data (other
than the obvious volume attribute) and it refers to the fact that big datasets not only have
large volumes of data, but also grow at an accelerated pace. This makes traditional storage
using, for example, indexing a difficult task.

The big data landscape
Big data has evolved into a complex ecosystem affecting every sector of the economy.
Going from hype to unrealistic expectations and back to reality, we now have big data
systems implemented and deployed in most Fortune 1000 companies that deliver real
value.

http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
http://static.usenix.org/event/usenix99/invited_talks/mashey.pdf

Harnessing Big Data with MongoDB Chapter 11

[270]

If we segment the companies that participate in the big data landscape by industry, we
would probably come up with the following sections:

Infrastructure
Analytics
Applications-enterprise
Applications-industry
Cross-infrastructure analytics
Data sources and APIs
Data resources
Open source

From an engineering point of view, we are probably more concerned about the underlying
technologies than their applications in different industry sectors.

Depending on our business domain, we may have data coming in from different sources,
such as transactional databases, IoT sensors, application server logs, other websites via a
web service API, or just plain web page content extraction:

Harnessing Big Data with MongoDB Chapter 11

[271]

Message queuing systems
In most of the flows previously described, we have data being extracted, transformed,
loaded (ETL) into an enterprise data warehouse (EDW). To extract and transform this data,
we need a message queuing system to deal with spikes in traffic, endpoints being
temporarily unavailable, and other issues that may affect the availability and scalability of
this part of the system.

Message queues also provide decoupling between producers and consumers of messages.
This allows for better scalability by partitioning our messages into different topics/queues.

Finally, using message queues, we can have location-agnostic services that don't care where
the message producers sit, which provide interoperability between different systems.

In the message queuing world, the most popular systems in production at the time of
writing this book are RabbitMQ, ActiveMQ, and Kafka. We will provide a small overview
of them before we dive into our use case to bring all of them together.

Apache ActiveMQ
 Apache ActiveMQ is an open source message broker, written in Java, together with a full
Java Message Service (JMS) client.

It is the most mature implementation out of the three that we examine here, and has a long
history of successful production deployments. Commercial support is offered by many
companies, including Red Hat.

It is a fairly simple queuing system to set up and manage. It is based on the JMS client
protocol and is the tool of choice for Java EE systems.

RabbitMQ
RabbitMQ, on the other hand, is written in Erlang and is based on the Advanced Message
Queuing Protocol (AMQP) protocol. AMQP is significantly more powerful and
complicated than JMS, as it allows peer-to-peer messaging, request/reply, and
publish/subscribe models for one-to-one or one-to-many message consumption.

RabbitMQ has gained popularity in the past 5 years, and is now the most searched-for
queuing system.

Harnessing Big Data with MongoDB Chapter 11

[272]

RabbitMQ's architecture is outlined as follows:

Scaling in RabbitMQ systems is performed by creating a cluster of RabbitMQ servers.
Clusters share data and state, which are replicated, but message queues are distinct per
node. To achieve high availability we can also replicate queues in different nodes.

Apache Kafka
Kafka, on the other hand, is a queuing system that was first developed by LinkedIn for its
own internal purposes. It is written in Scala and is designed from the ground up for
horizontal scalability and the best performance possible.

Focusing on performance is a key differentiator for Apache Kafka, but it means that in
order to achieve performance, we need to sacrifice something. Messages in Kafka don't
hold unique IDs, but are addressed by their offset in the log. Apache Kafka consumers are
not tracked by the system; it is the responsibility of the application design to do so. Message
ordering is implemented at the partition level and it is the responsibility of the consumer to
identify if a message has been delivered already.

Harnessing Big Data with MongoDB Chapter 11

[273]

Semantics were introduced in version 0.11 and are part of the latest 1.0 release so that
messages can now be both strictly ordered within a partition and always arrive exactly once
for each consumer:

Data warehousing
Using a message queuing system is just the first step in our data pipeline design. At the
other end of message queuing, we would typically have a data warehouse to process the
vast amount of data that arrives. There are numerous options there, and it is not the main
focus of this book to go over these or compare them. However, we will skim through two of
the most widely-used options from the Apache Software Foundation: Apache Hadoop and
Apache Spark.

Apache Hadoop
The first, and probably still most widely used, framework for big data processing is Apache
Hadoop. Its foundation is the Hadoop Distributed File System (HDFS). Developed at
Yahoo! in the 2000s, it originally served as an open source alternative to Google File
System (GFS), a distributed filesystem that was serving Google's needs for distributed
storage of its search index.

Harnessing Big Data with MongoDB Chapter 11

[274]

Hadoop also implemented a MapReduce alternative to Google's proprietary system,
Hadoop MapReduce. Together with HDFS, they constitute a framework for distributed
storage and computations. Written in Java, with bindings for most programming languages
and many projects that provide abstracted and simple functionality, and sometimes based
on SQL querying, it is a system that can reliably be used to store and process terabytes, or
even petabytes, of data.

In later versions, Hadoop became more modularized by introducing Yet Another Resource
Negotiator (YARN), which provides the abstraction for applications to be developed on top
of Hadoop. This has enabled several applications to be deployed on top of Hadoop, such as
Storm, Tez, OpenMPI, Giraph, and, of course, Apache Spark, as we will see in the
following sections.

Hadoop MapReduce is a batch-oriented system, meaning that it relies on processing data in
batches, and is not designed for real-time use cases.

Apache Spark
Apache Spark is a cluster-computing framework from the University of California,
Berkeley's AMPLab. Spark is not a substitute for the complete Hadoop ecosystem, but
mostly for the MapReduce aspect of a Hadoop cluster. Whereas Hadoop MapReduce uses
on-disk batch operations to process data, Spark uses both in-memory and on-disk
operations. As expected, it is faster with datasets that fit in memory. This is why it is more
useful for real-time streaming applications, but it can also be used with ease for datasets
that don't fit in memory.

Apache Spark can run on top of HDFS using YARN or in standalone mode, as shown in the
following diagram:

Harnessing Big Data with MongoDB Chapter 11

[275]

This means that in some cases (such as the one that we will use in our following use case)
we can completely ditch Hadoop for Spark if our problem is really well defined and
constrained within Spark's capabilities.

Spark can be up to 100 times faster than Hadoop MapReduce for in-memory operations.
Spark offers user-friendly APIs for Scala (its native language), Java, Python, and Spark SQL
(a variation of the SQL92 specification). Both Spark and MapReduce are resilient to failure.
Spark uses RDDs that are distributed across the whole cluster.

As we can see from the overall Spark architecture, as follows, we can have several different
modules of Spark working together for different needs, from SQL querying to streaming
and machine learning libraries.

Comparing Spark with Hadoop MapReduce
The Hadoop MapReduce framework is more commonly compared to Apache Spark, a
newer technology that aims to solve problems in a similar problem space. Some of their
most important attributes are summarized in the following table:

Hadoop MapReduce Apache Spark
Written in Java Scala
Programming model MapReduce RDD
Client bindings Most high-level languages Java, Scala, Python

Ease of use Moderate, with high-level
abstractions (Pig, Hive, and so on) Good

Performance High throughput in batch High throughput in streaming
and batch mode

Uses Disk (I/O bound) Memory, degrading performance
if disk is needed

Typical node Medium Medium-large

Harnessing Big Data with MongoDB Chapter 11

[276]

As we can see from the preceding comparison, there are pros and cons for both
technologies. Spark arguably has better performance, especially in problems that use fewer
nodes. On the other hand, Hadoop is a mature framework with excellent tooling on top of it
to cover almost every use case.

MongoDB as a data warehouse
Apache Hadoop is often described as the 800 lb gorilla in the room of big data frameworks.
Apache Spark, on the other hand, is more like a 200 lb cheetah for its speed, agility, and
performance characteristics, which allow it to work well in a subset of the problems that
Hadoop aims to solve.

MongoDB, on the other hand, can be described as the MySQL equivalent in the NoSQL
world, because of its adoption and ease of use. MongoDB also offers an aggregation
framework, MapReduce capabilities, and horizontal scaling using sharding, which is
essentially data partitioning at the database level. So naturally, some people wonder why
we don't use MongoDB as our data warehouse to simplify our architecture.

This is a pretty compelling argument, and it may or may not be the case that it makes sense
to use MongoDB as a data warehouse. The advantages of such a decision are as follows:

Simpler architecture
Less need for message queues, reducing latency in our system

The disadvantages are as follows:

MongoDB's MapReduce framework is not a replacement for Hadoop's
MapReduce. Even though they both follow the same philosophy, Hadoop can
scale to accommodate larger workloads.
Scaling MongoDB's document storage using sharding will hit a wall at some
point. Whereas Yahoo! has reported using 42,000 servers in its largest Hadoop
cluster, the largest MongoDB commercial deployments stand at 5 billion
(Craigslist), compared to 600 nodes and petabytes of data for Baidu, the internet
giant dominating, among others, the Chinese internet search market.

Harnessing Big Data with MongoDB Chapter 11

[277]

There is more than an order of magnitude of difference in terms of scaling.

MongoDB is mainly designed around being a real-time querying database based on stored
data on disk, whereas MapReduce is designed around using batches, and Spark is designed
around using streams of data.

A big data use case
Putting all of this into action, we will develop a fully working system using a data source, a
Kafka message broker, an Apache Spark cluster on top of HDFS feeding a Hive table, and a
MongoDB database. Our Kafka message broker will ingest data from an API, streaming
market data for an XMR/BTC currency pair. This data will be passed on to an Apache Spark
algorithm on HDFS to calculate the price for the next ticker timestamp, based on the
following:

The corpus of historical prices already stored on HDFS
The streaming market data arriving from the API

This predicted price will then be stored in MongoDB using the MongoDB Connector for
Hadoop. MongoDB will also receive data straight from the Kafka message broker, storing it
in a special collection with the document expiration date set to one minute. This collection
will hold the latest orders, with the goal of being used by our system to buy or sell, using
the signal coming from the Spark ML system.

So, for example, if the price is currently 10 and we have a bid for 9.5, but we expect the
price to go down at the next market tick, then the system would wait. If we expect the price
to go up in the next market tick, then the system would increase the bid price to 10.01 to
match the price in the next ticker.

Similarly, if the price is 10 and we bid for 10.5, but expect the price to go down, we would
adjust our bid to 9.99 to make sure we don't overpay for it. But, if the price is expected to go
up, we would immediately buy to make a profit at the next market tick.

Harnessing Big Data with MongoDB Chapter 11

[278]

Schematically, our architecture looks like this:

The API is simulated by posting JSON messages to a Kafka topic named xmr_btc. On the
other end, we have a Kafka consumer importing real-time data to MongoDB.

We also have another Kafka consumer importing data to Hadoop to be picked up by our
algorithms, which send recommendation data (signals) to a Hive table. Finally, we export
data from the Hive table into MongoDB.

Setting up Kafka
The first step in setting up the environment for our big data use case is to establish a Kafka
node. Kafka is essentially a FIFO queue, so we will use the simplest single node (broker)
setup. Kafka organizes data using topics, producers, consumers, and brokers.

Harnessing Big Data with MongoDB Chapter 11

[279]

The important Kafka terminologies are as follows:

A broker is essentially a node.
A producer is a process that writes data to the message queue.
A consumer is a process that reads data from the message queue.
A topic is the specific queue that we write to and read data from.

A Kafka topic is further subdivided into a number of partitions. We can split data from a
particular topic into multiple brokers (nodes), both when we write to the topic and also
when we read our data at the other end of the queue.

After installing Kafka on our local machine, or any cloud provider of our choice (there are
excellent tutorials for EC2 to be found just a search away), we can create a topic using this
single command:

$ kafka-topics --create --zookeeper localhost:2181 --replication-factor 1
--partitions 1 --topic xmr-btc
Created topic "xmr-btc".

This will create a new topic called xmr-btc.

Deleting the topic is similar to creating one, by using this command:

$ kafka-topics --delete --zookeeper localhost:2181 --topic xmr-btc

We can then get a list of all topics by issuing the following command:

$ kafka-topics --list --zookeeper localhost:2181
xmr-btc

We can then create a command-line producer for our topic, just to test that we can send
messages to the queue, like this:

$ kafka-console-producer --broker-list localhost:9092 --topic xmr-btc

Data on every line will be sent as a string encoded message to our topic, and we can end the
process by sending a SIGINT signal (typically Ctrl + C).

Afterwards we can view the messages that are waiting in our queue by spinning up a
consumer:

$ kafka-console-consumer --zookeeper localhost:2181 --topic xmr-btc --from-
beginning

Harnessing Big Data with MongoDB Chapter 11

[280]

This consumer will read all messages in our xmr-btc topic, starting from the beginning of
history. This is useful for our test purposes, but we will change this configuration in real-
world applications.

You will keep seeing zookeeper, in addition to kafka, mentioned in the
commands. Apache Zookeeper comes together with Apache Kafka, and is
a centralized service that is used internally by Kafka for maintaining
configuration information, naming, providing distributed
synchronization, and providing group services.

Now we have set up our broker, we can use the code at https:/ / github. com/ agiamas/
mastering-mongodb/ tree/ master/ chapter_ 9 to start reading (consuming) and writing
(producing) messages to the queue. For our purposes, we are using the ruby-kafka gem,
developed by Zendesk.

For simplicity, we are using a single class to read from a file stored on disk and to write to
our Kafka queue.

Our produce method will be used to write messages to Kafka as follows:

def produce
 options = { converters: :numeric, headers: true }
 CSV.foreach('xmr_btc.csv', options) do |row|
 json_line = JSON.generate(row.to_hash)
 @kafka.deliver_message(json_line, topic: 'xmr-btc')
 end
end

Our consume method will read messages from Kafka as follows:

def consume
 consumer = @kafka.consumer(group_id: 'xmr-consumers')
 consumer.subscribe('xmr-btc', start_from_beginning: true)
 trap('TERM') { consumer.stop }
 consumer.each_message(automatically_mark_as_processed: false) do
|message|
 puts message.value
 if valid_json?(message.value)
 MongoExchangeClient.new.insert(message.value)
 consumer.mark_message_as_processed(message)
 end
 end
 consumer.stop
end

https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9
https://github.com/agiamas/mastering-mongodb/tree/master/chapter_9

Harnessing Big Data with MongoDB Chapter 11

[281]

Notice that we are using the consumer group API feature (added in Kafka
0.9) to get multiple consumers to access a single topic by assigning each
partition to a single consumer. In the event of a consumer failure, its
partitions will be reallocated to the remaining members of the group.

The next step is to write these messages to MongoDB, as follows:

First, we create our collection so that our documents expire after one minute.1.
Enter the following in the mongo shell:

> use exchange_data
> db.xmr_btc.createIndex({ "createdAt": 1 }, { expireAfterSeconds:
60 })
{
"createdCollectionAutomatically" : true,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}

This way, we create a new database called exchange_data with a new collection
called xmr_btc that has auto-expiration after one minute. For MongoDB to auto-
expire documents, we need to provide a field with a datetime value to compare
its value against the current server time. In our case, this is the createdAt field.

For our use case, we will use the low-level MongoDB Ruby driver. The code for2.
MongoExchangeClient is as follows:

class MongoExchangeClient
 def initialize
 @collection = Mongo::Client.new(['127.0.0.1:27017'], database:
:exchange_data).database[:xmr_btc]
 end
 def insert(document)
 document = JSON.parse(document)
 document['createdAt'] = Time.now
 @collection.insert_one(document)
 end
end

This client connects to our local database, sets the createdAt field for the TTL document
expiration, and saves the message to our collection.

Harnessing Big Data with MongoDB Chapter 11

[282]

With this setup, we can write messages to Kafka, read them at the other end of the queue,
and write them into our MongoDB collection.

Setting up Hadoop
We can install Hadoop and use a single node for the use case in this chapter using the
instructions from Apache Hadoop's website at https:/ /hadoop. apache. org/docs/ stable/
hadoop-project-dist/ hadoop- common/ SingleCluster. html.

After following these steps, we can browse the HDFS files in our local machine
at http://localhost:50070/explorer.html#/. Assuming that our signals data is
written in HDFS under the /user/<username>/signals directory, we will use the
MongoDB Connector for Hadoop to export and import it into MongoDB.

MongoDB Connector for Hadoop is the officially supported library, allowing MongoDB
data files or MongoDB backup files in BSON to be used as the source or destination for
Hadoop MapReduce tasks.

This means that we can also easily export to, and import data from, MongoDB when we are
using higher-level Hadoop ecosystem tools such as Pig (a procedural high-level language),
Hive (a SQL-like high-level language), and Spark (a cluster-computing framework).

Steps for Hadoop setup
The different steps to set up Hadoop are as follows:

Download the JAR from the Maven repository at http:/ /repo1. maven. org/1.
maven2/org/ mongodb/ mongo- hadoop/ mongo- hadoop- core/ 2. 0.2/.

Download mongo-java-driver from https:/ /oss. sonatype. org/ content/2.
repositories/ releases/ org/ mongodb/ mongodb- driver/ 3.5. 0/.

Create a directory (in our case, named mongo_lib) and copy these two JARs in3.
there with the following command:

export
HADOOP_CLASSPATH=$HADOOP_CLASSPATH:<path_to_directory>/mongo_lib/

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/mongo-hadoop-core/2.0.2/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongodb-driver/3.5.0/

Harnessing Big Data with MongoDB Chapter 11

[283]

Alternatively, we can copy these JARs under the share/hadoop/common/
directory. As these JARs will need to be available in every node, for clustered
deployment, it's easier to use Hadoop's DistributedCache to distribute the
JARs to all nodes.

The next step is to install Hive from https:/ /hive. apache. org/ downloads. html.4.
For this example, we used a MySQL server for Hive's metastore data. This can be
a local MySQL server for development, but it is recommended that you use a
remote server for production environments.

Once we have Hive set up, we just run the following command:5.

> hive

Then, we add the three JARs (mongo-hadoop-core, mongo-hadoop-driver,6.
and mongo-hadoop-hive) that we downloaded earlier:

hive> add jar /Users/dituser/code/hadoop-2.8.1/mongo-hadoop-
core-2.0.2.jar;
Added [/Users/dituser/code/hadoop-2.8.1/mongo-hadoop-
core-2.0.2.jar] to class path
Added resources: [/Users/dituser/code/hadoop-2.8.1/mongo-hadoop-
core-2.0.2.jar]
hive> add jar /Users/dituser/code/hadoop-2.8.1/mongodb-
driver-3.5.0.jar;
Added [/Users/dituser/code/hadoop-2.8.1/mongodb-driver-3.5.0.jar]
to class path
Added resources: [/Users/dituser/code/hadoop-2.8.1/mongodb-
driver-3.5.0.jar]
hive> add jar /Users/dituser/code/hadoop-2.8.1/mongo-hadoop-
hive-2.0.2.jar;
Added [/Users/dituser/code/hadoop-2.8.1/mongo-hadoop-
hive-2.0.2.jar] to class path
Added resources: [/Users/dituser/code/hadoop-2.8.1/mongo-hadoop-
hive-2.0.2.jar]
hive>

https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html
https://hive.apache.org/downloads.html

Harnessing Big Data with MongoDB Chapter 11

[284]

And then, assuming our data is in the table exchanges:

customerid int
pair String

time TIMESTAMP

recommendation int

We can also use Gradle or Maven to download the JARs in our local
project. If we only need MapReduce, then we just download the mongo-
hadoop-core JAR. For Pig, Hive, Streaming, and so on, we must
download the appropriate JARs from
http:/ / repo1. maven. org/ maven2/ org/ mongodb/ mongo- hadoop/ .
Some useful Hive commands include the following: show databases;
and
create table exchanges(customerid int, pair String, time
TIMESTAMP, recommendation int);

Now that we are all set, we can create a MongoDB collection backed by our local7.
Hive data:

hive> create external table exchanges_mongo (objectid STRING,
customerid INT,pair STRING,time STRING, recommendation INT) STORED
BY 'com.mongodb.hadoop.hive.MongoStorageHandler' WITH
SERDEPROPERTIES('mongo.columns.mapping'='{"objectid":"_id",
"customerid":"customerid","pair":"pair","time":"Timestamp",
"recommendation":"recommendation"}')
tblproperties('mongo.uri'='mongodb://localhost:27017/exchange_data.
xmr_btc');

Finally, we can copy all data from the exchanges Hive table into MongoDB as8.
follows:

hive> Insert into table exchanges_mongo select * from exchanges;

This way, we have established a pipeline between Hadoop and MongoDB using Hive,
without any external server.

http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/
http://repo1.maven.org/maven2/org/mongodb/mongo-hadoop/

Harnessing Big Data with MongoDB Chapter 11

[285]

Using a Hadoop to MongoDB pipeline
An alternative to using the MongoDB Connector for Hadoop is to use the programming
language of our choice to export data from Hadoop, and then write into MongoDB using
the low-level driver or an ODM, as described in previous chapters.

For example, in Ruby, there are a few options:

WebHDFS on GitHub, which uses the WebHDFS or the HttpFS Hadoop API to
fetch data from HDFS
System calls, using the Hadoop command-line tool and Ruby's system() call

Whereas in Python, we can use the following:

HdfsCLI, which uses the WebHDFS or the HttpFS Hadoop API
libhdfs, which uses a JNI-based native C wrapped around the HDFS Java client

All of these options require an intermediate server between our Hadoop infrastructure and
our MongoDB server, but, on the other hand, allow for more flexibility in the ETL process
of exporting/importing data.

Setting up Spark to MongoDB
MongoDB also offers a tool to directly query Spark clusters and export data to MongoDB.
Spark is a cluster computing framework that typically runs as a YARN module in Hadoop,
but can also run independently on top of other filesystems.

MongoDB Spark Connector can read and write to MongoDB collections from Spark using
Java, Scala, Python, and R. It can also use aggregation and run SQL queries on MongoDB
data after creating a temporary view for the dataset backed by Spark.

Using Scala, we can also use Spark Streaming, the Spark framework for data-streaming
applications built on top of Apache Spark.

Harnessing Big Data with MongoDB Chapter 11

[286]

Further reading
You can refer to the following references for further information:

https:// www. cisco. com/ c/ en/ us/solutions/ collateral/ service- provider/
visual-networking- index- vni/ vni- hyperconnectivity- wp. html

http://www. ibmbigdatahub. com/ infographic/ four- vs- big- data

https:// spreadstreet. io/ database/

http://mattturck. com/ wp- content/ uploads/ 2017/ 05/ Matt- Turck- FirstMark-
2017-Big- Data- Landscape. png

http://mattturck. com/ bigdata2017/

https:// dzone. com/ articles/ hadoop- t-etl

https:// www. cloudamqp. com/ blog/2014- 12- 03- what- is-message- queuing. html

https:// www. linkedin. com/ pulse/ jms- vs- amqp- eran- shaham

https:// www. cloudamqp. com/ blog/2017- 01- 09- apachekafka- vs- rabbitmq. html

https:// trends. google. com/ trends/ explore? date= all q=
ActiveMQ,RabbitMQ,ZeroMQ

https:// thenextweb. com/ insider/ 2017/ 03/ 06/ the-incredible- growth- of-
the-internet- over- the- past- five- years- explained- in-detail/ #.tnw_
ALaObAUG

https:// static. googleusercontent. com/ media/ research. google. com/ en//
archive/ mapreduce- osdi04. pdf

https:// en. wikipedia. org/ wiki/ Apache_ Hadoop#Architecture

https:// wiki. apache. org/ hadoop/ PoweredByYarn

https:// www. slideshare. net/ cloudera/ introduction- to- yarn- and-
mapreduce- 2? next_ slideshow= 1

https:// www. mongodb. com/ blog/ post/ mongodb- live- at-craigslist

https:// www. mongodb. com/ blog/ post/ mongodb- at-baidu- powering- 100- apps-
across-600- nodes- at- pb- scale

http://www. datamation. com/ data-center/ hadoop- vs. -spark- the- new- age- of-
big-data. html

https:// www. mongodb. com/ mongodb- data- warehouse- time- series- and- device-
history- data- medtronic- transcript

https:// www. mongodb. com/ blog/ post/ mongodb- debuts- in- gartner- s- magic-
quadrant- for- data- warehouse- and- data- management- solutions- for-
analytics

https:// www. infoworld. com/ article/ 3014440/ big-data/ five- things- you-
need-to- know- about- hadoop- v- apache- spark. html

https:// www. quora. com/ What- is-the- difference- between- Hadoop- and- Spark

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
https://spreadstreet.io/database/
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/wp-content/uploads/2017/05/Matt-Turck-FirstMark-2017-Big-Data-Landscape.png
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
http://mattturck.com/bigdata2017/
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://dzone.com/articles/hadoop-t-etl
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.cloudamqp.com/blog/2014-12-03-what-is-message-queuing.html
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.linkedin.com/pulse/jms-vs-amqp-eran-shaham
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://www.cloudamqp.com/blog/2017-01-09-apachekafka-vs-rabbitmq.html
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://trends.google.com/trends/explore?date=all&q=ActiveMQ,RabbitMQ,ZeroMQ
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://thenextweb.com/insider/2017/03/06/the-incredible-growth-of-the-internet-over-the-past-five-years-explained-in-detail/#.tnw_ALaObAUG
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://en.wikipedia.org/wiki/Apache_Hadoop#Architecture
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://wiki.apache.org/hadoop/PoweredByYarn
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.slideshare.net/cloudera/introduction-to-yarn-and-mapreduce-2?next_slideshow=1
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-live-at-craigslist
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
https://www.mongodb.com/blog/post/mongodb-at-baidu-powering-100-apps-across-600-nodes-at-pb-scale
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
http://www.datamation.com/data-center/hadoop-vs.-spark-the-new-age-of-big-data.html
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/mongodb-data-warehouse-time-series-and-device-history-data-medtronic-transcript
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.mongodb.com/blog/post/mongodb-debuts-in-gartner-s-magic-quadrant-for-data-warehouse-and-data-management-solutions-for-analytics
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.infoworld.com/article/3014440/big-data/five-things-you-need-to-know-about-hadoop-v-apache-spark.html
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark
https://www.quora.com/What-is-the-difference-between-Hadoop-and-Spark

Harnessing Big Data with MongoDB Chapter 11

[287]

https:// iamsoftwareengineer. wordpress. com/ 2015/ 12/15/ hadoop- vs- spark/ ?
iframe=true theme_ preview= true

https:// www. infoq. com/ articles/ apache- kafka

https:// stackoverflow. com/ questions/ 42151544/ is- there- any- reason- to-
use-rabbitmq- over- kafka

https:// medium. com/ @jaykreps/ exactly- once- support- in- apache- kafka-
55e1fdd0a35f

https:// www. slideshare. net/ sbaltagi/ apache- kafka- vs- rabbitmq- fit- for-
purpose- decision- tree

https:// techbeacon. com/ what- apache- kafka- why- it- so-popular- should- you-
use-it

https:// github. com/ zendesk/ ruby- kafka

http://zhongyaonan. com/ hadoop- tutorial/ setting- up-hadoop- 2-6-on- mac-
osx-yosemite. html

https:// github. com/ mtth/ hdfs

http://wesmckinney. com/ blog/ outlook- for- 2017/

http://wesmckinney. com/ blog/ python- hdfs- interfaces/

https:// acadgild. com/ blog/ how-to- export- data- from- hive- to- mongodb/

https:// sookocheff. com/ post/ kafka/ kafka- in- a-nutshell/

https:// www. codementor. io/ jadianes/ spark- mllib- logistic- regression-
du107neto

http://ondra- m.github. io/ ruby- spark/

https:// amodernstory. com/ 2015/ 03/ 29/installing- hive- on-mac/

https:// www. infoq. com/ articles/ apache- spark- introduction

https:// cs. stanford. edu/ ~matei/ papers/ 2010/ hotcloud_ spark. pdf

Summary
In this chapter, we learned about the big data landscape and how MongoDB compares
with, and fares against, message-queuing systems and data warehousing technologies.
Using a big data use case, we learned how to integrate MongoDB with Kafka and Hadoop
from a practical perspective.

In the next chapter, we will turn to replication and cluster operations, and discuss replica
sets, the internals of elections, and the setup and administration of our MongoDB cluster.

https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://iamsoftwareengineer.wordpress.com/2015/12/15/hadoop-vs-spark/?iframe=true&theme_preview=true
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://www.infoq.com/articles/apache-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://stackoverflow.com/questions/42151544/is-there-any-reason-to-use-rabbitmq-over-kafka
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://medium.com/@jaykreps/exactly-once-support-in-apache-kafka-55e1fdd0a35f
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://www.slideshare.net/sbaltagi/apache-kafka-vs-rabbitmq-fit-for-purpose-decision-tree
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://techbeacon.com/what-apache-kafka-why-it-so-popular-should-you-use-it
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
https://github.com/zendesk/ruby-kafka#producing-messages-to-kafka
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
http://zhongyaonan.com/hadoop-tutorial/setting-up-hadoop-2-6-on-mac-osx-yosemite.html
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
https://github.com/mtth/hdfs
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/outlook-for-2017/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://acadgild.com/blog/how-to-export-data-from-hive-to-mongodb/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
https://www.codementor.io/jadianes/spark-mllib-logistic-regression-du107neto
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
http://ondra-m.github.io/ruby-spark/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://amodernstory.com/2015/03/29/installing-hive-on-mac/
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://www.infoq.com/articles/apache-spark-introduction
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf
https://cs.stanford.edu/~matei/papers/2010/hotcloud_spark.pdf

4
Section 4: Scaling and High

Availability
In this section, we will start by covering replication and how we can use it to make sure that
we won't suffer any data losses. Sharding is the next topic, which helps us to achieve
horizontal scaling in MongoDB. Finally, we will learn best practices and tips for high
availability and fault tolerance when using MongoDB.

This section consists of the following chapters:

Chapter 12, Replication
Chapter 13, Sharding
Chapter 14, Fault Tolerance and High Availability

12
Replication

Replication has been one of the most useful features of MongoDB since the very early days.
In general, replication refers to the process of synchronizing data across different servers.
The benefits of replication include protection from data loss and high availability of data.
Replication also provides disaster recovery, an avoidance of downtime for maintenance,
scaling reads (since we can read from multiple servers), and scaling writes (only if we can
write to multiple servers).

In this chapter, we will cover the following topics:

An architectural overview, elections, and the use cases for replication
Setting up a replica set
Connecting to a replica set
Replica set administration
The best practices for deploying replica sets using cloud providers
Replica set limitations

Replication
There are different approaches to replication. The approach that MongoDB takes is logical
replication with a master-slave, which we will explain in more detail later in this chapter.

Logical or physical replication
With replication, we synchronize data across multiple servers, providing data availability
and redundancy. Even if we lose a server due to a hardware or software failure, by using
replication, we will have multiple copies that we can use to restore our data. Another
advantage of replication is that we can use one of the servers as a dedicated reporting, or
backup, server.

Replication Chapter 12

[290]

In logical replication, we have our master/primary server performing operations; the
slave/secondary server tails a queue of operations from the master and applies the same
operations in the same order. Using of MongoDB as an example, the operations log (oplog)
keeps track of operations that have happened on the primary server and applies them in
the exact same order on the secondary server.

Logical replication is useful for a wide array of applications, such as information sharing,
data analysis, and Online Analytical Processing (OLAP) reporting.

In physical replication, data gets copied on the physical level, at a lower level than database
operations. This means that we are not applying the operations, but copying the bytes that
were affected by these operations. It also means that we can gain better efficiency, since we
are using low-level structures to transfer data. We can also ensure that the state of the
database is exactly the same, since they are identical, byte for byte.

What is typically missing from physical replication is knowledge about the database
structure, which means that it is harder (if not impossible) to copy some collections from a
database and ignore others.

Physical replication is typically suited for more rare circumstances, like disaster recovery,
wherein a full and exact copy of everything (including data, indexes, the internal state of
the database in a journal, and redoing/undoing logs) is of crucial importance to bringing the
application back to the exact state it was in.

Different high availability types
In high availability, there are several configurations that we can use. Our primary server is
called the hot server, as it can process each and every request coming in. Our secondary
server can be in any of the following states:

Cold
Warm
Hot

A secondary cold server is a server that is there just in case the primary server goes offline,
without any expectation of it holding the data and state that the primary server had.

A secondary warm server receives periodic updates of data from the primary server, but
typically, it is not entirely up to date with the primary server. It can be used for some non-
real-time analytics reporting to offload the main server, but typically, it will not be able to
pick up the transactional load of the primary server if it goes down.

Replication Chapter 12

[291]

A secondary hot server always keeps an up-to-date copy of the data and state from the
primary server. It usually waits in a hot standby state, ready to take over when the primary
server goes down.

MongoDB has both the hot and warm server types of functionality, as we will explore in
the following sections.

Most database systems employ a similar notion of primary/secondary
servers, so conceptually, everything from MongoDB gets applied there,
too.

An architectural overview
MongoDB's replication is provided in the following diagram:

The primary server is the only one that can take writes at any time. The secondary servers
are in a hot standby state, ready to take over if the primary server fails. Once the primary
server fails, an election takes place regarding which secondary server will become primary.

We can also have arbiter nodes. Arbiter nodes do not hold any data, and their sole purpose
is to participate in the election process.

We must always have an odd number of nodes (including arbiters). Three, five, and seven
are all fine, so that in the event of the primary (or more servers) failing, we have a majority
of votes in the election process.

When the other members of a replica set don't hear from the primary for more than 10
seconds (configurable), an eligible secondary will start the election process to vote for a new
primary. The first secondary to hold the election and win the majority will become the new
primary. All remaining servers will now replicate from the new primary server, keeping
their roles as secondaries but syncing up from the new primary.

Replication Chapter 12

[292]

Starting with MongoDB 3.6, client drivers can retry write operations a
single time if they detect that the primary is down. A replica set can have
up to 50 members, but only up to seven of them can vote in the election
process.

The setup for our replica set after the new election will be as follows:

In the next section, we will discuss how elections work.

How do elections work?
All of the servers in a replica set maintain regular communication with every other member
via a heartbeat. The heartbeat is a small packet that's regularly sent to verify that all
members are operating normally.

Secondary members also communicate with the primary to get the latest updates from the
oplog and apply them to their own data.

The information here refers to the latest replication election protocol,
version 1, which was introduced in MongoDB v3.2.

Schematically, we can see how this works.

When the primary member goes down, all of the secondaries will miss a heartbeat or more.
They will be waiting up until the settings.electionTimeoutMillis time passes (the
default is 10 seconds), and then the secondaries will start one or more rounds of elections to
find the new primary.

Replication Chapter 12

[293]

For a server to be elected as primary from the secondaries, it must have two properties:

Belong in a group of voters that have 50% + 1 of the votes
Be the most up-to-date secondary in this group

In a simple example of three servers with one vote each, once we lose the primary, the other
two servers will each have one vote (so, in total, two-thirds), and as such, the one with the
most up-to-date oplog will be elected as primary.

Now, consider a more complex setup, as follows:

Seven servers (one primary, six secondaries)
One vote each

We lose the primary server, and the six remaining servers have network connectivity
issues, resulting in a network partition:

These partitions can be described as follows:

Partition North: Three servers (one vote each)
Partition South: Three servers (one vote each)

Neither partition has any knowledge of what happened to the rest of the servers. Now,
when they hold elections, no partition can establish a majority, as they have three out of
seven votes. No primary will get elected from either partition. This problem can be
overcome by having, for example, one server with three votes.

Replication Chapter 12

[294]

Now, our overall cluster setup looks as follows:

Server #1: one vote
Server #2: one vote
Server #3: one vote
Server #4: one vote
Server #5: one vote
Server #6: one vote
Server #7: three votes

After losing Server #1, our partitions now look as follows:

Partition North is as follows:

Server #2: One vote
Server #3: One vote
Server #4: One vote

Partition South is as follows:

Server #5: One vote
Server #6: One vote
Server #7: Three votes

Partition South has three servers, with a total of five out of nine votes. The secondary
among servers #5, #6, and #7 that is most up to date (according to its oplog entries) will be
elected as the primary.

Replication Chapter 12

[295]

What is the use case for a replica set?
MongoDB offers most of the advantages of using a replica set, some of which are listed as
follows:

Protection from data loss
High availability of data
Disaster recovery
Avoidance of downtime for maintenance
Scaling reads, since we can read from multiple servers
Helping to design for geographically dispersed services
Data privacy

The most notable item that's missing from the list is scaling writes. This is because, in
MongoDB, we can only have one primary, and only this primary can take writes from our
application server.

When we want to scale write performance, we typically design and implement sharding,
which will be the topic of the next chapter. Two interesting properties of the way that
MongoDB replication is implemented are geographically dispersed services and data
privacy.

It is not uncommon for our application servers to be located in multiple data centers across
the globe. Using replication, we can have a secondary server as close to the application
server as possible. What this means is that our reads will be fast, as if they were local, and
we will get a latency performance penalty just for our writes. This requires some planning
at the application level, of course, so that we can maintain two different pools of
connections to our database, which can be easily done by either using the official MongoDB
drivers or using higher-level ODMs.

The second interesting property of MongoDB's replication design is implementing data
privacy. When we have servers geographically dispersed across different data centers, we
can enable replication per database. By keeping a database out of the replication process,
we can make sure that our data stays confined in the data center that we need. We can also
set up different replication schemas per database in the same MongoDB server so that we
have multiple replication strategies according to our data privacy needs, excluding some
servers from our replica sets if they are not allowed by our data privacy regulations.

Replication Chapter 12

[296]

Setting up a replica set
In this section, we will go over the most common deployment procedures to set up a replica
set. These involve either converting a standalone server into a replica set or setting up a
replica set from scratch.

Converting a standalone server into a replica set
To convert a standalone server into a replica set, we first need to cleanly shut down the
mongo server:

> use admin
> db.shutdownServer()

Then, we start the server with the --replSet configuration option via the command
line (which we will do here), or by using a configuration file, as we will explain in the next
section:

First, we connect (via the mongo shell) to the new replica set enabled instance, as1.
follows:

> rs.initiate()

Now, we have the first server of our replica set. We can add the other servers2.
(which must have also been started with --replSet) by using the mongo shell,
as follows:

> rs.add("<hostname><:port>")

Double-check the replica set configuration by using rs.conf(). Verify
the replica set status by using rs.status().

Creating a replica set
Starting a MongoDB server as a part of a replica set is as easy as setting it in the
configuration via the command line:

> mongod --replSet "xmr_cluster"

Replication Chapter 12

[297]

This is fine for development purposes. For production environments, it's recommended
that we use a configuration file instead:

> mongod --config <path-to-config>

Here, the <path-to-config> can be as follows:

/etc/mongod.conf

This configuration file has to be in a YAML format.

YAML does not support tabs. Convert tabs to spaces by using your editor
of choice.

A simple configuration file sample is as follows:

systemLog:
 destination: file
 path: "/var/log/mongodb/mongod.log"
 logAppend: true
storage:
 journal:
 enabled: true
processManagement:
 fork: true
net:
 bindIp: 127.0.0.1
 port: 27017
replication:
 oplogSizeMB: <int>
 replSetName: <string>

Root-level options define the sections that leaf-level options apply to by nesting. Regarding
replication, the mandatory options are oplogSizeMB (the oplog size for the member, in
MB) and replSetName (the replica set name, such as xmr_cluster).

We can also set the following on the same level as replSetName:

secondaryIndexPrefetch: <string>

This is only available for the MMAPv1 storage engine, and it refers to the indexes on
secondaries that will get loaded into memory before applying operations from the oplog.

Replication Chapter 12

[298]

It defaults to all, and the available options are none and _id_only, in order to load no
indexes into memory and only load the default index that was created on _id fields:

enableMajorityReadConcern: <boolean>

This is the configuration setting for enabling the read preference of majority for this
member.

After we have started all of the replica set processes on different nodes, we log in to one of
the nodes using mongo from the command line with the appropriate host:port. Then, we
need to initiate the cluster from one member.

We can use configuration files, as follows:

> rs.initiate()

Or, we can pass in the configurations as a document parameter, as follows:

> rs.initiate({
 _id : "xmr_cluster",
 members: [{ _id : 0, host : "host:port" }]
})

We can verify that the cluster was initiated by using rs.conf() in the
shell.

Following that, we add each other member to our replica set by using the host:port that
we defined in our networking setup:

> rs.add("host2:port2")
> rs.add("host3:port3")

The minimum number of servers that we must use for an HA replica set is
3. We could replace one of the servers with an arbiter, but this is not
recommended. Once we have added all of the servers and have waited a
bit, we can check the status of our cluster by using rs.status(). By
default, the oplog will be 5% of the free disk space. If we want to define it
when we create our replica set, we can do so by passing the command-line
parameter --oplogSizeMB or replication.oplogSizeMB in our
configuration file. An oplog size cannot be more than 50 GB.

Replication Chapter 12

[299]

Read preference
By default, all writes and reads go/come from the primary server. Secondary servers
replicate data, but are not used for querying.

In some cases, it may be beneficial to change this and start to take reads from secondaries.

The MongoDB official drivers support five levels of read preference:

Read Preference Mode Description

primary
This is the default mode, where reads come from
the primary server of the replica set.

primaryPreferred
With this mode, applications will read from the primary, unless it
is unavailable, in which case reads will come from secondary
members.

secondary Reads come exclusively from secondary servers.

secondaryPreferred
With this mode, applications will read from secondary members,
unless they are unavailable, in which case reads will come from
the primary member.

nearest
Applications will read from the member of the replica set that is
nearest in terms of network latency, not taking into account the
member's type.

Using any read preference other than primary can be beneficial for asynchronous
operations that are not extremely time-sensitive. For example, reporting servers can take
reads from secondaries instead of the primary, as we may be fine with a small delay in our
aggregation data, with the benefit of incurring more read load on our primary server.

Geographically distributed applications will also benefit from reading from secondaries, as
these will have significantly lower latency. Although it's probably counter-intuitive, just
changing the read preference from primary to secondary will not significantly increase
the total read capacity of our cluster. This is because all of the members of our cluster are
taking the same write load from clients' writes, and replication for the primary and
secondaries, respectively.

More importantly, however, reading from a secondary may return stale data, which has to
be dealt with at the application level. Reading from different secondaries that may have
variable replication lag (compared to our primary writes) may result in reading documents
out of their insertion order (non-monotonic reads).

Replication Chapter 12

[300]

With all of the preceding caveats, it is still a good idea to test reading from secondaries if
our application design supports it. An additional configuration option that can help us to
avoid reading stale data is maxStalenessSeconds.

Based on a coarse estimation from each secondary as to how far behind the primary it is, we
can set this to a value of 90 (seconds) or more to avoid reading stale data. Given that
secondaries know how far behind they are from the primary (but don't accurately or
aggressively estimate it), this should be treated as an approximation, rather than something
we base our design o.

Write concern
By default, the write operations in MongoDB replica sets will be acknowledged once the
write has been acknowledged by the primary server. If we want to change this behavior, we
can do so in two different ways:

We can request a different write concern per operation, in cases where we want
to make sure that a write has propagated to multiple members of our replica set
before marking it as complete, as follows:

> db.mongo_books.insert(
 { name: "Mastering MongoDB", isbn: "1001" },
 { writeConcern: { w: 2, wtimeout: 5000 } }
)

In the preceding example, we are waiting for the write to be confirmed by two
servers (the primary, plus any one of the secondaries). We are also setting a
timeout of 5000 milliseconds to avoid our write from blocking in cases where the
network is slow or we just don't have enough servers to acknowledge the request.

We can also change the default write concern across the entire replica set, as
follows:

> cfg = rs.conf()
> cfg.settings.getLastErrorDefaults = { w: "majority", wtimeout:
5000 }
> rs.reconfig(cfg)

Here, we set the write concern to majority with a timeout of 5 seconds. The
write concern majority makes sure that our writes will propagate to at least
n/2+1 servers, where n is the number of our replica set members.

Replication Chapter 12

[301]

The write concern majority is useful if we have a read preference of
majority as well, as it ensures that every write with w:
"majority" will also be visible with the same read preference. If we set
w>1, it's useful to also set wtimeout: <milliseconds> with
it. wtimeout will return from our write operation once the timeout has
been reached, thus not blocking our client for an indefinite period of time.
It's recommended to set j: true, as well. j: true will wait for our write
operation to be written to the journal before acknowledging it. w>1, along
with j: true, will wait for the number of servers that we have specified
to write to the journal before acknowledgement.

Custom write concerns
We can also identify our replica set members with different tags (that is, reporting, East
Coast Servers, and HQ servers) and specify a custom write concern per operation, as
follows:

Use the usual procedure for connecting to the primary via the mongo shell, as1.
follows:

> conf = rs.conf()
> conf.members[0].tags = { "location": "UK", "use": "production",
"location_uk":"true" }
> conf.members[1].tags = { "location": "UK", "use": "reporting",
"location_uk":"true" }
> conf.members[2].tags = { "location": "Ireland", "use":
"production" }

We can now set a custom write concern, as follows:2.

> conf.settings = { getLastErrorModes: { UKWrites : {
"location_uk": 2} } }

After applying this, we use the reconfig command:3.

> rs.reconfig(conf)

Replication Chapter 12

[302]

We can now start by setting writeConcern in our writes, as follows:4.

> db.mongo_books.insert({<our insert object>}, { writeConcern: { w:
"UKWrites" } })

This means that our write will only be acknowledged if the UKWrites write
concern is satisfied, which, in turn, will be satisfied by at least two servers, with
the tag location_uk verifying it. Since we only have two servers located in the
UK, we can make sure that with this custom write concern, we have written our
data to all of our UK-based servers.

Priority settings for replica set members
MongoDB allows us to set different priority levels for each member. This allows for some
interesting applications and topologies to be implemented.

To change the priority after we have set up our cluster, we have to connect to our primary
using the mongo shell and get the configuration object (in this case, cfg):

> cfg = rs.conf()

Then, we can change the members sub-document priority attribute to the value of our
choice:

> cfg.members[0].priority = 0.778
> cfg.members[1].priority = 999.9999

The default priority is 1 for every member. The priority can be set from
0 (never become a primary) to 1000, in floating-point precision.

Higher priority members will be the first to call an election when the primary steps down,
and are also the most likely to win the election.

Custom priorities should be configured with consideration of the different
network partitions. Setting priorities the wrong way may lead to elections
not being able to elect a primary, thus stopping all writes to our MongoDB
replica set.

If we want to prevent a secondary from becoming a primary, we can set its priority to 0, as
we will explain in the following section.

Replication Chapter 12

[303]

Zero priority replica set members
In some cases (for example, if we have multiple data centers), we will want some of the
members to never be able to become a primary server.

In a scenario with multiple data center replications, we may have our primary data center
with one primary and one secondary based in the UK, and a secondary server located in
Russia. In this case, we don't want our Russia-based server to become primary, as it would
incur latency on our application servers based in the UK. In this case, we will set up our
Russia-based server with priority as 0.

Replica set members with priority as 0 also can't trigger elections. In all other aspects,
they are identical to every other member in the replica set. To change the priority of a
replica set member, we must first get the current replica set configuration by connecting
(via the mongo shell) to the primary server:

> cfg = rs.conf()

This will provide the config document that contains the configuration for every member in
our replica set. In the members sub-document, we can find the priority attribute, which
we have to set to 0:

> cfg.members[2].priority = 0

Finally, we need to reconfigure the replica set with the updated configuration:

rs.reconfig(cfg)

Make sure that you have the same version of MongoDB running in every
node, otherwise there may be unexpected behavior. Avoid reconfiguring
the replica set cluster during high volume periods. Reconfiguring a replica
set may force an election for a new primary, which will close all active
connections, and may lead to a downtime of 10-30 seconds. Try to identify
the lowest traffic time window to run maintenance operations like
reconfiguration, and always have a recovery plan in case something goes
wrong.

Hidden replica set members
Hidden replica set members are used for special tasks. They are invisible to clients, will not
show up in the db.isMaster() mongo shell command and similar administrative
commands, and, for all purposes, will not be taken into account by clients (that is, read
preference options).

Replication Chapter 12

[304]

They can vote for elections, but will never become a primary server. A hidden replica set
member will only sync up to the primary server, and doesn't take reads from the clients. As
such, it has the same write load as the primary server (for replication purposes), but no
read load on its own.

Due to the previously mentioned characteristics, reporting is the most common application
of a hidden member. We can connect directly to this member and use it as the data source
of truth for OLAP.

To set up a hidden replica set member, we follow a similar procedure to priority to 0.
After we have connected to our primary via the mongo shell, we get the configuration
object, identify the member in the members sub-document that corresponds to the member
we want to set as hidden, and subsequently set its priority to 0 and its hidden attribute
to true. Finally, we have to apply the new configuration by calling
rs.reconfig(config_object) with config_object that we used as a parameter:

> cfg = rs.conf()
> cfg.members[0].priority = 0
> cfg.members[0].hidden = true
> rs.reconfig(cfg)

A hidden replica set member can also be used for backup purposes. However, as you will
see in the next section, we may want to use other options, either at the physical level or to
replicate data at the logical level. In those cases, consider using a delayed replica set
instead.

Delayed replica set members
In many cases, we will want to have a node that holds a copy of our data at an earlier point
in time. This helps to recover from a big subset of human errors, like accidentally dropping
a collection, or an upgrade going horrendously wrong.

A delayed replica set member has to be priority = 0 and hidden = true. A delayed
replica set member can vote for elections, but will never be visible to clients (hidden =
true) and will never become a primary (priority = 0).

An example is as follows:

> cfg = rs.conf()
> cfg.members[0].priority = 0
> cfg.members[0].hidden = true
> cfg.members[0].slaveDelay = 7200
> rs.reconfig(cfg)

Replication Chapter 12

[305]

This will set the members[0] to a delay of 2 hours. Two important factors for deciding the
delta time period between the primary and delayed secondary server are as follows:

Enough oplog size in the primary
Enough time for the maintenance to finish before the delayed member starts
picking up data

The following table shows the delay of the replica set in hours:

Maintenance window, in hours Delay Oplog size on primary, in hours
0.5 [0.5,5) 5

Production considerations
Deploy each mongod instance on a separate physical host. If you are using VMs, make sure
that they map to different underlying physical hosts. Use the bind_ip option to make sure
that your server maps to a specific network interface and port address.

Use firewalls to block access to any other port and/or only allow access between application
servers and MongoDB servers. Even better, set up a VPN so that your servers communicate
with each other in a secure, encrypted fashion.

Connecting to a replica set
Connecting to a replica set is not fundamentally different from connecting to a single
server. In this section, we will show some examples that use the official mongo-ruby-
driver. We will use the following steps for the replica set, as follows:

First, we need to set our host and options objects:1.

client_host = ['hostname:port']
client_options = {
 database: 'signals',
 replica_set: 'xmr_btc'
}

In the preceding example, we are getting ready to connect to hostname:port, in
the database signals in replica_set xmr_btc.

Replication Chapter 12

[306]

Calling the initializer on Mongo::Client will now return a client object that2.
contains a connection to our replica set and database:

client = Mongo::Client.new(client_host, client_options)

The client object has the same options it has when connecting to a single server.

MongoDB uses auto-discovery after connecting to our client_host to
identify the other members of our replica set, regardless of whether they
are the primary or secondaries. The client object should be used as a
singleton, created once and reused across our code base.

Having a singleton client object is a rule that can be overridden in some cases.3.
We should create different client objects if we have different classes of
connections to our replica set.

An example would be having a client object for most operations, and then
another client object for operations that are fine with only reading from
secondaries:

client_reporting = client.with(:read => { :mode => :secondary })

This Ruby MongoDB client command will return a copy of the4.
MongoDB:Client object with a read preference secondary that can be used, for
example, for reporting purposes.

Some of the most useful options that we can use in our client_options initialization
object are as follows:

Option Description Type Default

replica_set
As used in our example: the replica set
name. String None

write

The write concern options as a hash object;
the available options are w, wtimeout, j,
and fsync.
That is, to specify writes to two servers,
with journaling, flushing to disk (fsync)
true, and a timeout of 1 second:
{ write: { w: 2, j: true,
wtimeout: 1000, fsync: true } }

Hash { w: 1 }

Replication Chapter 12

[307]

read

The read preference mode as a hash.
Available options are mode and tag_sets.
That is, to limit reads from secondary
servers that have tag UKWrites:
{ read:
 { mode: :secondary,
 tag_sets: ["UKWrites"]
 }
}

Hash { mode:
primary }

user The name of the user to authenticate with. String None

password
The password of the user to authenticate
with. String None

connect

Using :direct, we can force treat a replica
set member as a standalone server,
bypassing auto-discovery.
Other options include: :direct,
:replica_set, and :sharded.

Symbol None

heartbeat_frequency
How often replica set members will
communicate to check whether they are all
alive.

Float 10

database Database connection. String admin

Similar to connecting to a standalone server, there are also options for SSL and
authentication that are used in the same way.

We can also configure the connection pool by setting the following code:

min_pool_size(defaults to 1 connection),
max_pool_size(defaults to 5),
wait_queue_timeout(defaults to 1 in seconds).

The MongoDB driver will try to reuse existing connections, if available, or it will open a
new connection. Once the pool limit has been reached, the driver will block, waiting for a
connection to be released to use it.

Replication Chapter 12

[308]

Replica set administration
The administration of a replica set can be significantly more complex than what is needed
for single-server deployments. In this section, instead of trying to exhaustively cover all of
the different cases, we will focus on some of the most common administrative tasks that we
will have to perform, and how to do them.

How to perform maintenance on replica sets
If we have some maintenance tasks that we have to perform in every member in a replica
set, we always start with the secondaries. We perform maintenance by performing the
following steps:

First, we connect to one of the secondaries via the mongo shell. Then, we stop1.
that secondary:

> use admin
> db.shutdownServer()

Then, using the same user that was connected to the mongo shell in the previous2.
step, we restart the mongo server as a standalone server in a different port:

> mongod --port 95658 --dbpath <wherever our mongoDB data resides
in this host>

The next step is to connect to this mongod server (which is using dbpath):3.

> mongo --port 37017

At this point, we can safely perform all of the administrative tasks on our4.
standalone server without affecting our replica set operations. When we are
done, we shut down the standalone server in the same way that we did in the
first step.
We can then restart our server in the replica set by using the command line or the5.
configuration script that we normally use. The final step is to verify that
everything works fine by connecting to the replica set server and getting its
replica set status:

> rs.status()

Replication Chapter 12

[309]

The server should initially be in state: RECOVERING, and, once it has caught up with the
secondary, it should be back in state: SECONDARY, like it was before starting the
maintenance.

We will repeat the same process for every secondary server. In the end, we have to perform
maintenance on the primary. The only difference in the process for the primary is that we
will start by stepping down our primary server into a secondary server before every other
step:

> rs.stepDown(600)

By using the above argument, we prevent our secondary from being elected as a master for
10 minutes. This should be enough time to shut down the server and continue with our
maintenance, like we did with the secondaries.

Re-syncing a member of a replica set
Secondaries sync up with the primary by replaying the contents of the oplog. If our oplog is
not large enough, or if we encounter network issues (partitioning, an underperforming
network, or just an outage of the secondary server) for a period of time larger than the
oplog, then MongoDB cannot use the oplog to catch up to the primary anymore.

At this point, we have two options:

The more straightforward option is to delete our dbpath directory and restart
the mongod process. In this case, MongoDB will start an initial sync from scratch.
This option has the downside of putting a strain on our replica set, and our
network, as well.
The more complicated (from an operational standpoint) option is to copy data
files from another well-behaving member of the replica set. This goes back to the
contents of Chapter 8, Monitoring, Backup, and Security. The important thing to
keep in mind is that a simple file copy will probably not suffice, as data files will
have changed from the time that we started copying to the time that the copying
ended.

Thus, we need to be able to take a snapshot copy of the filesystem under our data
directory.

Replication Chapter 12

[310]

Another point of consideration is that by the time we start our secondary server with the
newly copied files, our MongoDB secondary server will try to sync up to the primary using
the oplog again. So, if our oplog has fallen so far behind the primary that it can't find the
entry on our primary server, this method will fail, too.

Keep a sufficiently sized oplog. Don't let data grow out of hand in any
replica set member. Design, test, and deploy sharding early on.

Changing the oplog's size
Hand in hand with the previous operational tip, we may need to rethink and resize our
oplog as our data grows. Operations become more complicated and time-consuming as our
data grows, and we need to adjust our oplog size to accommodate for it. The steps for
changing the oplog's size are as follows:

The first step is to restart our MongoDB secondary server as a standalone server,1.
an operation that was described in the How to perform maintenance on replica sets
section.
We then make a backup of our existing oplog:2.

> mongodump --db local --collection 'oplog.rs' --port 37017

We keep a copy of this data, just in case. We then connect to our standalone3.
database:

> use local
> db = db.getSiblingDB('local')
> db.temp.drop()

Up until now, we have connected to the local database and deleted the temp
collection, just in case it had any leftover documents.

The next step is to get the last entry of our current oplog and save it in the temp4.
collection:

> db.temp.save(db.oplog.rs.find({ }, { ts: 1, h: 1 }).sort(
{$natural : -1}).limit(1).next())

Replication Chapter 12

[311]

This entry will be used when we restart our secondary server, in order to track6.
where it has reached in the oplog replication:

> db = db.getSiblingDB('local')
> db.oplog.rs.drop()

Now, we delete our existing oplog, and in the next step, we will create a new7.
oplog of 4 GB in size:

> db.runCommand({ create: "oplog.rs", capped: true, size: (4 *
1024 * 1024 * 1024) })

The next step is to copy the one entry from our temp collection back to our oplog:8.

> db.oplog.rs.save(db.temp.findOne())

Finally, we cleanly shut down our server from the admin database, using the9.
db.shutdownServer() command, and we restart our secondary as a member of
the replica set.
We repeat this process for all secondary servers, and as a last step, we repeat the10.
procedure for our primary member, which is done after we step the primary
down by using the following command:

> rs.stepDown(600)

Reconfiguring a replica set when we have lost the
majority of our servers
This is only intended as an interim solution and a last resort when we are faced with
downtime and disrupted cluster operations. When we lose the majority of our servers and
we still have enough servers to start a replica set (maybe including some quickly spawned
arbiters), we can force a reconfiguration with only the surviving members.

First, we get the replica set configuration document:

> cfg = rs.conf()

Using printjson(cfg), we identify the members that are still operational. Let's say that
these are 1, 2, and 3:

> cfg.members = [cfg.members[1] , cfg.members[2] , cfg.members[3]]
> rs.reconfig(cfg, {force : true})

Replication Chapter 12

[312]

By using force : true, we are forcing this reconfiguration to happen. Of course, we need
to have at least three surviving members in our replica set for this to work.

It's important to remove the failing servers as soon as possible, by killing
the processes and/or taking them out of the network, avoid unintended
consequences; these servers may believe that they are still a part of a
cluster that doesn't acknowledge them anymore.

Chained replication
Replication in MongoDB usually happens from the primary to the secondaries. In some
cases, we may want to replicate from another secondary, instead of the primary. Chained
replication helps to alleviate the primary from read load, but at the same time, it increases
the average replication lag for the secondary that chooses to replicate from a secondary.
This makes sense, as replication has to go from the primary to the secondary (1), and then
from this server to another secondary (2).

Chained replication can be enabled (and disabled, respectively) with the following cfg
command:

> cfg.settings.chainingAllowed = true

In cases where printjson(cfg) doesn't reveal a settings sub-document, we need to create
an empty one first:

> cfg.settings = { }

If there is already a settings document, the preceding command will
result in deleting its settings, leading to potential data loss.

Cloud options for a replica set
We can set up and operate a replica set from our own servers, but we can reduce our
operational overhead by using a Database as a Service (DBaaS) provider to do so. The two
most widely used MongoDB cloud providers are mLab (formerly MongoLab) and
MongoDB Atlas, the native offering from MongoDB, Inc.

Replication Chapter 12

[313]

In this section, we will go over these options and how they fare in comparison to using our
own hardware and data centers.

mLab
mLab is one of the most popular cloud DBaaS providers for MongoDB. It has been offered
since 2011 and it is considered a stable and mature provider.

After signing up, we can easily deploy a replica set cluster in a set of cloud servers without
any operational overhead. Configuration options include AWS, Microsoft Azure, or Google
Cloud as the underlying server provider.

There are multiple sizing options for the latest MongoDB version. There was no support at
the time of writing this book for the MMAPv1 storage engine. There are multiple regions
for each provider (US, Europe, and Asia). Most notably, the regions that are missing are the
AWS China, AWS US Gov, and AWS Germany regions.

MongoDB Atlas
MongoDB Atlas is a newer offering from MongoDB, Inc., and was launched in summer
2016. Similar to mLab, it offers the deployment of single-server, replica set, or sharded
clusters, through a web interface.

It offers the latest MongoDB version. The only storage option is WiredTiger. There are
multiple regions for each provider (US, Europe, and Asia).

Most notably, the regions that are missing are the AWS China and AWS US Gov regions.

In both (and most of the other) providers, we can't have a cross-region
replica set. This is prohibitive if we want to deploy a truly global service,
serving users from multiple data centers around the globe, with our
MongoDB servers being as close to the application servers as possible.

The running costs for cloud-hosted services can be significantly higher than setting them up
in our own servers. What we gain in convenience and time to market may have to be paid
in operational costs.

Replication Chapter 12

[314]

Replica set limitations
A replica set is great when we understand why we need it and what it cannot do. The
different limitations for a replica set are as follows:

It will not scale horizontally; we need sharding for it
We will introduce replication issues if our network is flaky
We will make debugging issues more complex if we use secondaries for reads,
and these have fallen behind our primary server

On the flip side, as we explained in previous sections in this chapter, a replica set can be a
great choice for replication, data redundancy, conforming with data privacy, backups, and
even recovery from errors caused by humans, or otherwise.

Summary
In this chapter, we discussed replica sets and how to administer them. Starting with an
architectural overview of replica sets and replica set internals involving elections, we dove
into setting up and configuring a replica set.

You learned how to perform various administrative tasks with replica sets, and you learned
about the main options for outsourcing operations to a cloud DBaaS provider. Finally, we
identified some of the limitations that replica sets in MongoDB currently have.

In the next chapter, we will move on to one of the most interesting concepts in MongoDB
(which helps it to achieve horizontal scaling): sharding.

13
Sharding

Sharding is the ability to horizontally scale out our database by partitioning our datasets
across different servers—the shards. It has been a feature of MongoDB since version 1.6 was
released in August, 2010. Foursquare and Bitly are two of MongoDB's most famous early
customers, and have used the sharding feature from its inception all the way to its general
release.

In this chapter, we will learn the following topics:

How to design a sharding cluster and how to make the single most important
decision concerning its use—choosing the shard key
Different sharding techniques and how to monitor and administrate sharded
clusters
The mongos router and how it is used to route our queries across different shards
How we can recover from errors in our shard

Sharding Chapter 13

[316]

Why do we use sharding?
In database systems and computing systems in general, we have two ways to improve
performance. The first one is to simply replace our servers with more powerful ones,
keeping the same network topology and systems architecture. This is called vertical
scaling.

An advantage of vertical scaling is that it is simple, from an operational standpoint,
especially with cloud providers such as Amazon making it a matter of a few clicks to
replace an m2.medium with an m2.extralarge server instance. Another advantage is that
we don't need to make any code changes, and so there is little to no risk of something going
catastrophically wrong.

The main disadvantage of vertical scaling is that there is a limit to it; we can only get
servers that are as powerful as those that our cloud provider can give to us.

A related disadvantage is that getting more powerful servers generally comes with an
increase in cost that is not linear but exponential. So, even if our cloud provider offers more
powerful instances, we will hit the cost effectiveness barrier before we hit the limit of our
department's credit card.

The second way to improve performance is by using the same servers with the same
capacity and increase their number. This is called horizontal scaling.

Horizontal scaling offers the advantage of theoretically being able to scale exponentially
while remaining practical enough for real-world applications. The main disadvantage is
that it can be operationally more complex and requires code changes and the careful design
of the system upfront. Horizontal scaling is also more complex when it comes to the system
because it requires communication between the different servers over network links that
are not as reliable as inter-process communication on a single server. The following
diagram shows the difference between horizontal and vertical scaling:

Sharding Chapter 13

[317]

To understand scaling, it's important to understand the limitations of single-server systems.
A server is typically bound by one or more of the following characteristics:

CPU: A CPU-bound system is one that is limited by our CPU's speed. A task
such as the multiplication of matrices that can fit in RAM will be CPU bound
because there is a specific number of steps that have to be performed in the CPU
without any disk or memory access needed for the task to complete. In this case,
CPU usage is the metric that we need to keep track of.

I/O: Input-output bound systems are similarly limited by the speed of our
storage system (HDD or SSD). A task such as reading large files from a disk to
load into memory will be I/O bound as there is little to do in terms of CPU
processing; the great majority of the time is spent reading the files from the disk.
The important metrics to keep track of are all the metrics related to disk access,
the reads per second, and the writes per second, compared to the practical limit
of our storage system.

Memory and cache: Memory-bound and cache-bound systems are restricted by
the amount of available RAM memory and/or the cache size that we have
assigned to them. A task that multiplies matrices larger than our RAM size will
be memory bound, as it will need to page in/out data from the disk to perform
the multiplication. The important metric to keep track of is the memory used.
This may be misleading in MongoDB MMAPv1, as the storage engine will
allocate as much memory as possible through the filesystem cache.

Sharding Chapter 13

[318]

In the WiredTiger storage engine, on the other hand, if we don't allocate enough memory
for the core MongoDB process, out-of-memory errors may kill it, and this is something that
we want to avoid at all costs.

Monitoring memory usage has to be done both directly through the operating system and
indirectly by keeping a track of page in/out data. An increasing memory paging number is
often an indication that we are running short of memory and the operating system is using
virtual address space to keep up.

MongoDB, being a database system, is generally memory and I/O bound.
Investing in SSD and more memory for our nodes is almost always a good
investment. Most systems are a combination of one or more of the
preceding limitations. Once we add more memory, our system may
become CPU bound, as complex operations are almost always a
combination of CPU, I/O, and memory usage.

MongoDB's sharding is simple enough to set up and operate, and this has contributed to its
huge success over the years as it provides the advantages of horizontal scaling without
requiring a large commitment of engineering and operations resources.

That being said, it's really important to get sharding right from the beginning, as it is
extremely difficult from an operational standpoint to change the configuration once it has
been set up. Sharding should not be an afterthought, but rather a key architectural design
decision from an early point in the design process.

Architectural overview
A sharded cluster is comprised of the following elements:

Two or more shards. Each shard must be a replica set.
One or more query routers (mongos). A mongos provides an interface between
our application and the database.
A replica set of config servers. Config servers store metadata and configuration
settings for the entire cluster.

Sharding Chapter 13

[319]

The relationships between these elements is shown in the following diagram:

As of MongoDB 3.6, shards must be implemented as replica sets.

Development, continuous deployment, and
staging environments
In preproduction environments, it may be overkill to use the full set of servers. For
efficiency reasons, we may opt to use a more simplified architecture.

The simplest possible configuration that we can deploy for sharding is the following:

One mongos router
One sharded replica set with one MongoDB server and two arbiters
One replica set of config servers with one MongoDB server and two arbiters

This should be strictly used for development and testing as this architecture defies most of
the advantages that a replica set provides, such as high availability, scalability, and
replication of data.

Sharding Chapter 13

[320]

Staging is strongly recommended to mirror our production environment
in terms of its servers, configuration, and (if possible) dataset
requirements too, in order to avoid surprises at deployment time.

Planning ahead with sharding
As we will see in the next sections, sharding is complicated and expensive, operation wise.
It is important to plan ahead and make sure that we start the sharding process long before
we hit our system's limits.

Some rough guidelines on when you need to start sharding are as follows:

When you have a CPU utilization of less than 70% on average
When I/O (and especially write) capacity is less than 80%
When memory utilization is less than 70% on average

As sharding helps with write performance, it's important to keep an eye on our I/O write
capacity and the requirements of our application.

Don't wait until the last minute to start sharding in an already busy-up-to-
the-neck MongoDB system, as it can have unintended consequences.

Sharding setup
Sharding is performed at the collection level. We can have collections that we don't want or
need to shard for several reasons. We can leave these collections unsharded.

These collections will be stored in the primary shard. The primary shard is different for
each database in MongoDB. The primary shard is automatically selected by MongoDB
when we create a new database in a sharded environment. MongoDB will pick the shard
that has the least data stored at the moment of creation.

If we want to change the primary shard at any other point, we can issue the following
command:

> db.runCommand({ movePrimary : "mongo_books", to : "UK_based" })

With this, we move the database named mongo_books to the shard named UK_based.

Sharding Chapter 13

[321]

Choosing the shard key
Choosing our shard key is the most important decision we need to make: once we shard
our data and deploy our cluster, it becomes very difficult to change the shard key. First, we
will go through the process of changing the shard key.

Changing the shard key
There is no command or simple procedure to change the shard key in MongoDB. The only
way to change the shard key involves backing up and restoring all of our data, something
that may range from being extremely difficult to impossible in high-load production
environments.

The following are the steps that we need to go through in order to change the shard key:

Export all data from MongoDB1.
Drop the original sharded collection2.
Configure sharding with the new key3.
Presplit the new shard key range4.
Restore our data back into MongoDB5.

Of these steps, step 4 is the one that needs further explanation.

MongoDB uses chunks to split data in a sharded collection. If we bootstrap a MongoDB
sharded cluster from scratch, chunks will be calculated automatically by MongoDB.
MongoDB will then distribute the chunks across different shards to ensure that there are an
equal number of chunks in each shard.

The only time when we cannot really do this is when we want to load data into a newly
sharded collection.

The reasons for this are threefold:

MongoDB creates splits only after an insert operation.
Chunk migration will copy all of the data in that chunk from one shard to
another.
The floor(n/2) chunk migrations can happen at any given time, where n is the
number of shards we have. Even with three shards, this is only a floor(1.5)=1
chunk migration at a time.

Sharding Chapter 13

[322]

These three limitations mean that letting MongoDB figure it out on its own will definitely
take much longer, and may result in an eventual failure. This is why we want to presplit
our data and give MongoDB some guidance on where our chunks should go.

In our example of the mongo_books database and the books collection, this would be as
follows:

> db.runCommand({ split : "mongo_books.books", middle : { id : 50 } })

The middle command parameter will split our key space in documents that have id less
than or equal to 50 and documents that have id greater than 50. There is no need for a
document to exist in our collection with id that is equal to 50 as this will only serve as the
guidance value for our partitions.

In this example, we chose 50, as we assume that our keys follow a uniform distribution
(that is, there is the same count of keys for each value) in the range of values from 0 to 100.

We should aim to create at least 20-30 chunks to grant MongoDB
flexibility in potential migrations. We can also use bounds and find
instead of middle if we want to manually define the partition key, but
both parameters need data to exist in our collection before applying them.

Choosing the correct shard key
After the previous section, it's now self-evident that we need to take the choice of our shard
key into consideration as it is a decision that we have to stick with.

A great shard key has three characteristics:

High cardinality
Low frequency
Nonmonotonic changes in value

We will go over the definitions of these three properties first to understand what they
mean:

High cardinality: It means that the shard key must have as many distinct
values as possible. A Boolean can take only the values of true/false, and so it is
a bad shard key choice. A 64-bit long value field that can take any value from
−(2^63) to 2^63−1 is a good shard key choice, in terms of cardinality.

Sharding Chapter 13

[323]

Low frequency: It directly relates to the argument about high cardinality. A low-
frequency shard key will have a distribution of values as close to a perfectly
random/uniform distribution. Using the example of our 64-bit long value, it is of
little use to us if we have a field that can take values ranging from −(2^63) to
2^63−1 if we end up observing the values of zero and one all the time. In fact, it is
as bad as using a Boolean field, which can also take only two values. If we have a
shard key with high-frequency values, we will end up with chunks that are
indivisible. These chunks cannot be further divided and will grow in
size, negatively affecting the performance of the shard that contains them.
Nonmonotonically changing values: It mean that our shard key should not be,
for example, an integer that always increases with every new insert. If we choose
a monotonically increasing value as our shard key, this will result in all writes
ending up in the last of all of our shards, limiting our write performance.

If we want to use a monotonically changing value as the shard key, we
should consider using hash-based sharding.

In the next section, we will describe different sharding strategies, including their
advantages and disadvantages.

Range-based sharding
The default and most widely used sharding strategy is range-based sharding. This strategy
will split our collection's data into chunks, grouping documents with nearby values in the
same shard.

For our example database and collection, mongo_books and books respectively, we have
the following:

> sh.shardCollection("mongo_books.books", { id: 1 })

This creates a range-based shard key on id with an ascending direction. The direction of
our shard key will determine which documents will end up in the first shard and which
ones in the subsequent ones.

This is a good strategy if we plan to have range-based queries, as these will be directed to
the shard that holds the result set instead of having to query all shards.

Sharding Chapter 13

[324]

Hash-based sharding
If we don't have a shard key (or can't create one) that achieves the three goals mentioned
previously, we can use the alternative strategy of using hash-based sharding. In this case,
we are trading data distribution with query isolation.

Hash-based sharding will take the values of our shard key and hash them in a way that
guarantees close to uniform distribution. This way, we can be sure that our data will be
evenly distributed across the shards. The downside is that only exact match queries will get
routed to the exact shard that holds the value. Any range query will have to go out and
fetch data from all the shards.

For our example database and collection (mongo_books and books respectively), we have
the following:

> sh.shardCollection("mongo_books.books", { id: "hashed" })

Similar to the preceding example, we are now using the id field as our hashed shard key.

Suppose we use fields with float values for hash-based sharding. Then we
will end up with collisions if the precision of our floats is more than 2^53.
These fields should be avoided where possible.

Coming up with our own key
Range-based sharding does not need to be confined to a single key. In fact, in most cases,
we would like to combine multiple keys to achieve high cardinality and low frequency.

A common pattern is to combine a low-cardinality first part (but still with a number of
distinct values more than two times the number of shards that we have) with a high-
cardinality key as its second field. This achieves both read and write distribution from the
first part of the sharding key and then cardinality and read-locality from the second part.

On the other hand, if we don't have range queries, then we can get away with using hash-
based sharding on a primary key, as this will exactly target the shard and document that
we are going after.

To make things more complicated, these considerations may change depending on our
workload. A workload that consists almost exclusively (say 99.5%) of reads won't care
about write distribution. We can use the built-in _id field as our shard key, and this will
only add 0.5% load to the last shard. Our reads will still be distributed across shards.
Unfortunately, in most cases, this is not simple.

Sharding Chapter 13

[325]

Location-based data
Because of government regulations and the desire to have our data as close to our users as
possible, there is often a constraint and need to limit data in a specific data center. By
placing different shards at different data centers, we can satisfy this requirement.

Every shard is essentially a replica set. We can connect to it as we would
connect to a replica set for administrative and maintenance operations.
We can query one shard's data directly, but the results will only be a
subset of the full sharded result set.

Sharding administration and monitoring
Sharded MongoDB environments have some unique challenges and limitations compared
to single-server or replica set deployments. In this section, we will explore how MongoDB
balances our data across shards using chunks and how we can tweak them if we need to.
Together, we will explore some of sharding's design limitations.

Balancing data – how to track and keep our data
balanced
One of the advantages of sharding in MongoDB is that it is mostly transparent to the
application and requires minimal administration and operational effort.

One of the core tasks that MongoDB needs to perform continuously is balancing data
between shards. No matter whether we implement range-based or hash-based sharding,
MongoDB will need to calculate bounds for the hashed field to be able to figure out which
shard to direct every new document insert or update toward. As our data grows, these
bounds may need to get readjusted to avoid having a hot shard that ends up with the
majority of our data.

For the sake of this example, let's assume that there is a data type named extra_tiny_int
with integer values from [-12, 12). If we enable sharding on this extra_tiny_int field,
then the initial bounds of our data will be the whole range of values denoted by $minKey:
-12 and $maxKey: 11.

After we insert some initial data, MongoDB will generate chunks and recalculate the
bounds of each chunk to try and balance our data.

Sharding Chapter 13

[326]

By default, the initial number of chunks created by MongoDB is 2 ×
number of shards.

In our case of two shards and four initial chunks, the initial bounds will be calculated as
follows:

Chunk1: [-12..-6)

Chunk2: [-6..0)

Chunk3: [0..6)

Chunk4: [6,12) where '[' is inclusive and ')' is not inclusive

The following diagram illustrates the preceding explanation:

After we insert some data, our chunks will look as follows:

ShardA:
Chunk1: -12,-8,-7
Chunk2: -6

 ShardB:
Chunk3: 0, 2
Chunk4: 7,8,9,10,11,11,11,11

Sharding Chapter 13

[327]

The following diagram illustrates the preceding explanation:

In this case, we observe that chunk4 has more items than any other chunk. MongoDB will
first split chunk4 into two new chunks, attempting to keep the size of each chunk under a
certain threshold (64 MB, by default).

Now, instead of chunk4, we have chunk4A: 7,8,9,10 and chunk4B: 11,11,11,11.

The following diagram illustrates the preceding explanation:

The new bounds of this are as follows:

chunk4A: [6,11)
chunk4B: [11,12)

Note that chunk4B can only hold one value. This is now an indivisible chunk—a chunk that
cannot be broken down into smaller ones anymore—and will grow in size unbounded,
causing potential performance issues down the line.

This clarifies why we need to use a high-cardinality field as our shard key and why
something like a Boolean, which only has true/false values, is a bad choice for a shard
key.

Sharding Chapter 13

[328]

In our case, we now have two chunks in ShardA and three chunks in ShardB. Let's look at
the following table:

Number of chunks Migration threshold
≤19 2

20-79 4
≥80 8

We have not reached our migration threshold yet, since 3-2 = 1.

The migration threshold is calculated as the number of chunks in the shard with the highest
count of chunks and the number of chunks in the shard with the lowest count of chunks, as
follows:

Shard1 -> 85 chunks
Shard2 -> 86 chunks
Shard3 -> 92 chunks

In the preceding example, balancing will not occur until Shard3 (or Shard2) reaches 93
chunks because the migration threshold is 8 for ≥80 chunks and the difference between
Shard1 and Shard3 is still 7 chunks (92-85).

If we continue adding data in chunk4A, it will eventually be split into chunk4A1 and
chunk4A2.

Now we have four chunks in ShardB (chunk3, chunk4A1, chunk4A2, and chunk4B) and two
chunks in ShardA (chunk1 and chunk2).

The following diagram illustrates the relationships of the chunks to the shards:

Sharding Chapter 13

[329]

The MongoDB balancer will now migrate one chunk from ShardB to ShardA as 4-2 = 2,
reaching the migration threshold for fewer than 20 chunks. The balancer will adjust the
boundaries between the two shards in order to be able to query more effectively (targeted
queries). The following diagram illustrates the preceding explanation:

As you can see from the preceding diagram, MongoDB will try to split >64 MB chunks in
half in terms of size. The bounds between the two resulting chunks may be completely
uneven if our data distribution is uneven to begin with. MongoDB can split chunks into
smaller ones, but cannot merge them automatically. We need to manually merge chunks, a
delicate and operationally expensive procedure.

Chunk administration
Most of the time, we should leave chunk administration to MongoDB. We should manually
manage chunks at the start, upon receiving the initial load of data, when we change our
configuration from a replica set to sharding.

Moving chunks
To move a chunk manually, we need to issue the following command after connecting to
mongos and the admin database:

> db.runCommand({ moveChunk : 'mongo_books.books' ,
 find : {id: 50},
 to : 'shard1.packtdb.com' })

Using the preceding command, we move the chunk containing the document with id: 50
(this has to be the shard key) from the books collection of the mongo_books database to the
new shard named shard1.packtdb.com.

Sharding Chapter 13

[330]

We can also more explicitly define the bounds of the chunk that we want to move. Now the
syntax is as follows:

> db.runCommand({ moveChunk : 'mongo_books.books' ,
 bounds :[{ id : <minValue> } ,
 { id : <maxValue> }],
 to : 'shard1.packtdb.com' })

Here, minValue and maxValue are the values that we get from
db.printShardingStatus().

In the example used previously, for chunk2, minValue would be -6 and maxValue would
be 0.

Do not use find in hash-based sharding. Use bounds instead.

Changing the default chunk size
To change the default chunk size, we need to connect to a mongos router and,
consequently, to the config database.

Then we issue the following command to change our global chunksize to 16 MB:

> db.settings.save({ _id:"chunksize", value: 16 })

The main reasoning behind changing chunksize comes from cases where the default
chunksize of 64 MB can cause more I/O than our hardware can handle. In this case,
defining a smaller chunksize will result in more frequent but less data-intensive
migrations.

Changing the default chunk size has the following drawbacks:

Creating more splits by defining a smaller chunk size cannot be undone
automatically.
Increasing the chunk size will not force any chunk migration; instead, chunks
will grow through inserts and updates until they reach the new size.
Lowering the chunk size may take quite some time to complete.

Sharding Chapter 13

[331]

Automatic splitting to comply with the new chunk size if it is lower will only
happen upon an insert or update. We may have chunks that don't get any write
operations, and thus will not be changed in size.

The chunk size can be 1 to 1024 MB.

Jumbo chunks
In rare cases, we may end up with jumbo chunks, chunks that are larger than the chunk
size and cannot be split by MongoDB. We may also run into the same situation if the
number of documents in our chunk exceeds the maximum document limit.

These chunks will have the jumbo flag enabled. Ideally, MongoDB will keep track of
whether it can split the chunk, and, as soon as it can, it will get split; however, we may
decide that we want to manually trigger the split before MongoDB does.

The way to do this is as follows:

Connect via shell to your mongos router and run the following:1.

> sh.status(true)

Identify the chunk that has jumbo in its description using the following code:2.

databases:
…
mongo_books.books
...
chunks:
…
 shardB 2
 shardA 2
 { "id" : 7 } -->> { "id" : 9 } on : shardA Timestamp(2, 2)
jumbo

Invoke splitAt() or splitFind() manually to split the chunk on3.
the books collection of the mongo_books database at the id that is equal to 8
using the following code:

> sh.splitAt("mongo_books.books", { id: 8 })

The splitAt() function will split based on the split point we define. The
two new splits may or may not be balanced.

Sharding Chapter 13

[332]

Alternatively, if we want to leave it to MongoDB to find where to split our chunk,
we can use splitFind, as follows:

> sh.splitFind("mongo_books.books", {id: 7})

The splitFind phrase will try to find the chunk that the id:7 query belongs to
and automatically define the new bounds for the split chunks so that they are
roughly balanced.

In both cases, MongoDB will try to split the chunk, and if successful, it will
remove the jumbo flag from it.

If the preceding operation is unsuccessful, then, and only then, should we try4.
stopping the balancer first, while also verifying the output and waiting for any
pending migrations to finish first, as shown in the following code:

> sh.stopBalancer()
> sh.getBalancerState()
> use config
while(sh.isBalancerRunning()) {
 print("waiting...");
 sleep(1000);
}

This should return false

Wait for any waiting… messages to stop printing, and then find the jumbo5.
flagged chunk in the same way as before.
Then update the chunks collection in your config database of the mongos6.
router, like this:

> db.getSiblingDB("config").chunks.update(
 { ns: "mongo_books.books", min: { id: 7 }, jumbo: true },
 { $unset: { jumbo: "" } }
)

The preceding command is a regular update() command, with the first
argument being the find() part to find out which document to update and the
second argument being the operation to apply to it ($unset: jumbo flag).

After all this is done, we re-enable the balancer, as follows:7.

> sh.setBalancerState(true)

Sharding Chapter 13

[333]

Then, we connect to the admin database to flush the new configuration to all8.
nodes, as follows:

> db.adminCommand({ flushRouterConfig: 1 })

Always back up the config database before modifying any state
manually.

Merging chunks
As we have seen previously, usually MongoDB will adjust the bounds for each chunk in
our shard to make sure that our data is equally distributed. This may not work in some
cases—especially when we define the chunks manually—if our data distribution is
surprisingly unbalanced, or if we have many delete operations in our shard.

Having empty chunks will invoke unnecessary chunk migrations and give MongoDB a
false impression of which chunk needs to be migrated. As we have explained before, the
threshold for chunk migration is dependent on the number of chunks that each shard
holds. Having empty chunks may or may not trigger the balancer when it's needed.

Chunk merging can only happen when at least one of the chunks is empty, and only
between adjacent chunks.

To find empty chunks, we need to connect to the database that we want to inspect (in our
case, mongo_books) and use runCommand with dataSize set as follows:

> use mongo_books
> db.runCommand({
 "dataSize": "mongo_books.books",
 "keyPattern": { id: 1 },
 "min": { "id": -6 },
 "max": { "id": 0 }
})

The dataSize phrase follows the database_name.collection_name pattern, whereas
keyPattern is the shard key that we have defined for this collection.

The min and max values should be calculated by the chunks that we have in this collection.
In our case, we have entered chunkB's details from the example earlier in this chapter.

Sharding Chapter 13

[334]

If the bounds of our query (which, in our case, are the bounds of chunkB) return no
documents, the result will resemble the following:

{ "size" : 0, "numObjects" : 0, "millis" : 0, "ok" : 1 }

Now that we know that chunkB has no data, we can merge it with another chunk (in our
case, this could only be chunkA) like this:

> db.runCommand({ mergeChunks: "mongo_books.books",
 bounds: [{ "id": -12 },
 { id: 0 }]
 })

On a success, this will return MongoDB's default ok status message, as shown in the
following code:

{ "ok" : 1 }

We can then verify that we only have one chunk on ShardA by invoking
sh.status() again.

Adding and removing shards
Adding a new shard to our cluster is as easy as connecting to mongos, connecting to the
admin database, and invoking runCommand with the following:

> db.runCommand({
addShard: "mongo_books_replica_set/rs01.packtdb.com:27017", maxSize: 18000,
name: "packt_mongo_shard_UK"
})

This adds a new shard from the replica set named mongo_books_replica_set from the
rs01.packtdb.com host running on port 27017. We also define the maxSize of data for
this shard as 18000 MB (or we can set it to 0 to give it no limit) and the name of the new
shard as packt_mongo_shard_UK.

This operation will take quite some time to complete as chunks will have
to be rebalanced and migrated to the new shard.

Sharding Chapter 13

[335]

Removing a shard, on the other hand, requires more involvement since we have to make
sure that we won't lose any data on the way. We do this as follows:

First, we need to make sure that the balancer is enabled using1.
sh.getBalancerState(). Then, after identifying the shard we want to remove
using any one of the sh.status(), db.printShardingStatus(), or
listShards admin commands, we connect to the admin database and invoke
removeShard as follows:

> use admin
> db.runCommand({ removeShard: "packt_mongo_shard_UK" })

The output should contain the following:

...
 "msg" : "draining started successfully",
 "state" : "started",
...

Then, if we invoke the same command again, we get the following:2.

> db.runCommand({ removeShard: "packt_mongo_shard_UK" })
…
"msg" : "draining ongoing",
 "state" : "ongoing",
 "remaining" : {
 "chunks" : NumberLong(2),
 "dbs" : NumberLong(3)
 },
…

The remaining document in the result contains the number of chunks and dbs
that are still being transferred. In our case, it's 2 and 3 respectively.

All the commands need to be executed in the admin database.

An extra complication in removing a shard can arise if the shard we want to
remove serves as the primary shard for one or more of the databases that it
contains. The primary shard is allocated by MongoDB when we initiate sharding,
so when we remove the shard, we need to manually move these databases to a
new shard.

Sharding Chapter 13

[336]

We will know whether we need to perform this operation by looking at the3.
following section of the result from removeShard():

...
"note" : "you need to drop or movePrimary these databases",
 "dbsToMove" : [
 "mongo_books"
],
...

We need to drop or movePrimary our mongo_books database. The way to do this
is to first make sure that we are connected to the admin database.

We need to wait for all of the chunks to finish migrating before running
this command.

Make sure that the result contains the following before proceeding:4.

 ..."remaining" : {
 "chunks" : NumberLong(0) }...

Only after we have made sure that the chunks to be moved are down to zero can5.
we safely run the following command:

> db.runCommand({ movePrimary: "mongo_books", to:
"packt_mongo_shard_EU" })

This command will invoke a blocking operation, and, when it returns, it should6.
have the following result:

{ "primary" : "packt_mongo_shard_EU", "ok" : 1 }

Invoking the same removeShard() command after we are all done should7.
return the following result:

> db.runCommand({ removeShard: "packt_mongo_shard_UK" })

... "msg" : "removeshard completed successfully",
 "state" : "completed",
 "shard" : "packt_mongo_shard_UK"
 "ok" : 1
...

Sharding Chapter 13

[337]

Once we get to state as completed and ok as 1, it is safe to remove our8.
packt_mongo_shard_UK shard.

Removing a shard is naturally more complicated than adding one. We need to allow some
time, hope for the best, and plan for the worst when performing potentially destructive
operations on our live cluster.

Sharding limitations
Sharding comes with great flexibility. Unfortunately, there are a few limitations in the way
that we perform some of the operations.

We will highlight the most important ones in the following list:

The group() database command does not work. The group() command should
not be used anyway; use aggregate() and the aggregation framework instead,
or mapreduce().
The db.eval() command does not work and should be disabled in most cases
for security reasons.
The $isolated option for updates does not work. This is a functionality that is
missing in sharded environments. The $isolated option for update() provides
the guarantee that, if we update multiple documents at once, other readers and
writers will not see some of the documents updated with the new value, and the
others will still have the old value. The way this is implemented in unsharded
environments is by holding a global write lock and/or serializing operations to a
single thread to make sure that every request for the documents affected by
update() will not be accessed by other threads/operations. This implementation
means that it is not performant and does not support any concurrency, which
makes it prohibitive to allow the $isolated operator in a sharded environment.
The $snapshot operator for queries is not supported.
The $snapshot operator in the find() cursor prevents documents from
appearing more than once in the results, as a result of being moved to a different
location on the disk after an update. The $snapshot operator is operationally
expensive and often not a hard requirement. The way to substitute it is by using
an index for our queries on a field whose keys will not change for the duration of
the query.

Sharding Chapter 13

[338]

The indexes cannot cover our queries if our queries do not contain the shard key.
Results in sharded environments will come from the disk and not exclusively
from the index. The only exception is if we query only on the built-in _id field
and return only the _id field, in which case, MongoDB can still cover the query
using built-in indexes.
The update() and remove() operations work differently. All update() and
remove() operations in a sharded environment must include either the _id of
the documents that are to be affected or the shard key; otherwise, the mongos
router will have to do a full table scan across all collections, databases, and
shards, which would be operationally very expensive.
Unique indexes across shards need to contain the shard key as a prefix of the
index. In other words, to achieve uniqueness of documents across shards, we
need to follow the data distribution that MongoDB follows for the shards.
The shard key has to be up to 512 bytes in size. The shard key index has to be in
ascending order on the key field that gets sharded and optionally other fields as
well, or a hashed index on it.

The shard key value in a document is also immutable. If our shard key for our
User collection is email, then we cannot update the email value for any user after we set
it.

Querying sharded data
Querying our data using a MongoDB shard is different than a single-server deployment or
a replica set. Instead of connecting to the single server or the primary of the replica set, we
connect to the mongos router that decides which shard to ask for our data. In this section,
we will explore how the query router operates and use Ruby to illustrate how similar to a
replica set this is for the developer .

The query router
The query router, also known as the mongos process, acts as the interface and entry point to
our MongoDB cluster. Applications connect to it instead of connecting to the underlying
shards and replica sets; mongos executes queries, gathers results and passes them to our
application.

The mongos process doesn't hold any persistent state and is typically low on system
resources.

Sharding Chapter 13

[339]

The mongos process is typically hosted in the same instance as the
application server.

It acts as a proxy for requests. When a query comes in, mongos will examine and decide
which shards need to execute the query and establish a cursor in each one of them.

Find
If our query includes the shard key or a prefix of the shard key, mongos will perform a
targeted operation, only querying the shards that hold the keys that we are looking for.

For example, with a composite shard key of {_id, email, address} on our
User collection, we can have a targeted operation with any of the following queries:

> db.User.find({_id: 1})
> db.User.find({_id: 1, email: 'alex@packt.com'})
> db.User.find({_id: 1, email: 'janluc@packt.com', address: 'Linwood
Dunn'})

These queries consist of either a prefix (as is the case with the first two) or the complete
shard key.

On the other hand, a query on {email, address} or {address} will not be able to target
the right shards, resulting in a broadcast operation. A broadcast operation is any operation
that doesn't include the shard key or a prefix of the shard key, and they result in mongos
querying every shard and gathering results from them. They are also known as scatter-and-
gather operations or fan out queries.

This behavior is a direct result of the way indexes are organized, and is
similar to the behavior that we identified in the chapter about indexing.

Sort/limit/skip
If we want to sort our results, we have the following two options:

If we are using the shard key in our sort criteria, then mongos can determine the
order in which it has to query the shard or shards. This results in an efficient and,
again, targeted operation.

Sharding Chapter 13

[340]

If we are not using the shard key in our sort criteria, then, as is the case with a
query without any sort criteria, it's going to be a fan out query. To sort the results
when we are not using the shard key, the primary shard executes a distributed
merge sort locally before passing on the sorted result set to mongos.

A limit on the queries is enforced on each individual shard and then again at the mongos
level, as there may be results from multiple shards. A skip operator, on the other hand,
cannot be passed on to individual shards, and will be applied by mongos after retrieving all
the results locally.

If we combine the skip and limit operators, mongos will optimize the
query by passing both values to individual shards. This is particularly
useful in cases such as pagination. If we query without sort and the
results are coming from more than one shard, mongos will round robin
across shards for the results.

Update/remove
In document modifier operations, such as update and remove, we have a similar situation
to the one we saw with find. If we have the shard key in the find section of the modifier,
then mongos can direct the query to the relevant shard.

If we don't have the shard key in the find section, then it will again be a fanout operation.

The UpdateOne, replaceOne, and removeOne operations must have the
shard key or the _id value.

The following table sums up the operations that we can use with sharding:

Type of operation Query topology
Insert Must have the shard key
Update Can have the shard key
Query with shard key Targeted operation
Query without shard key Scatter-and-gather operation/fan out query
Indexed, sorted query with shard key Targeted operation
Indexed, sorted query without shard key Distributed sort merge

Sharding Chapter 13

[341]

Querying using Ruby
Connecting to a sharded cluster using Ruby is no different than connecting to a replica set.
Using the official Ruby driver, we have to configure the client object to define the set of
mongos servers, as shown in the following code:

client = Mongo::Client.new('mongodb://key:password@mongos-server1-
host:mongos-server1-port,mongos-server2-host:mongos-server2-
port/admin?ssl=true&authSource=admin')

The mongo-ruby-driver will then return a client object, which is no different than
connecting to a replica set from the Mongo Ruby client. We can then use the client object
as we did in previous chapters, with all the caveats around how sharding behaves
differently than a standalone server or a replica set with regards to querying and
performance.

Performance comparison with replica sets
Developers and architects are always looking out for ways to compare performance
between replica sets and sharded configurations.

The way MongoDB implements sharding is based on top of replica sets. Every shard in
production should be a replica set. The main difference in performance comes from fan out
queries. When we are querying without the shard key, MongoDB's execution time is
limited by the worst performing replica set. In addition, when using sorting without the
shard key, the primary server has to implement the distributed merge sort on the entire
dataset. This means that it has to collect all data from different shards, merge sort them,
and pass them as sorted to mongos. In both cases, network latency and limitations in
bandwidth can slow down operations, which they wouldn't do with a replica set.

On the flip side, by having three shards, we can distribute our working set requirements
across different nodes, thereby serving results from RAM instead of reaching out to the
underlying storage, HDD or SSD.

On the other hand, writes can be sped up significantly since we are no longer bound by a
single node's I/O capacity, and we can have writes in as many nodes as there are shards.
Summing up, in most cases, and especially for the cases where we are using the shard key,
both queries and modification operations will be significantly sped up by sharding.

Sharding Chapter 13

[342]

The shard key is the single most important decision in sharding, and
should reflect and apply to our most common application use cases.

Sharding recovery
In this section, we will explore different failure types and how we can recover in a sharded
environment. Failure in a distributed system can take multiple forms and shapes. In this
section we will cover all the possible cases, from the simplest case of a stateless component
like mongos failing to an entire shard going down.

mongos
The mongos process is a relatively lightweight process that holds no state. In the case that
the process fails, we can just restart it or spin up a new process in a different server. It's
recommended that mongos processes are located in the same server as our application, and
so it makes sense to connect from our application using the set of mongos servers that we
have colocated in our application servers to ensure a high availability of mongos processes.

mongod
A mongod process failing in a sharded environment is no different than it failing in a replica
set. If it is a secondary, the primary and the other secondary (assuming three-node replica
sets) will continue as usual.

If it is a mongod process acting as a primary, then an election round will start to elect a new
primary in this shard (which is really a replica set).

In both cases, we should actively monitor and try to repair the node as soon as possible, as
our availability can be impacted.

Config server
Starting from MongoDB 3.4, config servers are also configured as a replica set. A config
server failing is no different than a regular mongod process failing. We should monitor, log,
and repair the process.

Sharding Chapter 13

[343]

A shard goes down
Losing an entire shard is pretty rare, and in many cases can be attributed to network
partitioning rather than failing processes. When a shard goes down, all operations that
would go to this shard will fail. We can (and should) implement fault tolerance in our
application level, allowing our application to resume for the operations that can be
completed.

Choosing a shard key that can easily map on our operational side can also help; for
example, if our shard key is based on location, we may lose the EU shard, but will still be
able to write and read data regarding US-based customers through our US shard.

The entire cluster goes down
If we lose the entire cluster, we can't do anything other than get it back up and running as
soon as possible. It's important to have monitoring, and to put a proper process in place to
understand what needs to be done, when, and by whom, should this ever happen.

Recovering when the entire cluster goes down essentially involves restoring from backups
and setting up new shards, which is complicated and will take time. Dry testing this in a
staging environment is also advisable, as is investing in regular backups via MongoDB Ops
Manager or any other backup solution.

A member of each shard's replica set could be in a different location for
disaster-recovery purposes.

Further reading
The following sources are recommended for you to study sharding in depth:

Scaling MongoDB by Kristina Chodorow
MongoDB: The Definitive Guide by Kristina Chodorow and Michael Dirolf
https:// docs. mongodb. com/ manual/ sharding/

https:// www. mongodb. com/ blog/ post/ mongodb- 16-released

https:// github. com/ mongodb/ mongo/ blob/ r3.4. 2-rc0/ src/ mongo/ s/commands/
cluster_ shard_ collection_ cmd. cpp#L469

https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://www.mongodb.com/blog/post/mongodb-16-released
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469
https://github.com/mongodb/mongo/blob/r3.4.2-rc0/src/mongo/s/commands/cluster_shard_collection_cmd.cpp#L469

Sharding Chapter 13

[344]

https:// www. mongodb. com/ blog/ post/ sharding- pitfalls- part- iii-chunk-
balancing- and

http://plusnconsulting. com/ post/ mongodb- sharding- and- chunks/

https:// github. com/ mongodb/ mongo/ wiki/ Sharding- Internals

http://learnmongodbthehardway. com/ schema/ sharding

http://learnmongodbthehardway. com/ schema/ sharding/

https:// www. infoq. com/ news/ 2010/ 08/MongoDB- 1.6

http://www. pc- freak. net/ images/ horizontal- vs-vertical- scaling-
vertical- and- horizontal- scaling- explained- diagram. png

Summary
In this chapter, we explored sharding, one of the most interesting features of MongoDB. We
started with an architectural overview of sharding and moved on to how we can design a
shard and choose the right shard key.

We learned about monitoring, administration, and the limitations that come with sharding.
We also learned about mongos, the MongoDB sharding router that directs our queries to
the correct shard. Finally, we discussed recovery from common failure types in a MongoDB
sharded environment.

The next chapter on fault tolerance and high availability will offer some useful tips and
tricks that have not been covered in the 11 other chapters.

https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
https://www.mongodb.com/blog/post/sharding-pitfalls-part-iii-chunk-balancing-and
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
http://plusnconsulting.com/post/mongodb-sharding-and-chunks/
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
https://github.com/mongodb/mongo/wiki/Sharding-Internals
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
http://learnmongodbthehardway.com/schema/sharding/
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
https://www.infoq.com/news/2010/08/MongoDB-1.6
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png
http://www.pc-freak.net/images/horizontal-vs-vertical-scaling-vertical-and-horizontal-scaling-explained-diagram.png

14
Fault Tolerance and High

Availability
In this chapter, we will try to fit in the information that we didn't manage to discuss in the
previous chapters, and we will place emphasis on some other topics. Throughout the
previous 13 chapters, we have gone all the way from the basic concepts to effective
querying, to administration and data management, to scaling and high availability
concepts.

In this chapter, we will cover the following topics:

We will discuss how our application design should be accommodating and
proactive with regard to our database needs.
Day-to-day operations are another area that we will discuss, including tips and
best practices that can help us to avoid nasty surprises down the line.
In light of recent attempts by ransomware to infect and hold MongoDB servers
hostage, we will offer more tips on security.
Finally, we will try to sum up the advice that's been given in a series of checklists
that should be followed to ensure that the best practices are properly set up and
followed.

Application design
In this section, we will describe some useful tips for application design that we did not
cover or emphasize enough in the previous chapters.

Fault Tolerance and High Availability Chapter 14

[346]

Schema-less doesn't mean schema design-less
A big part of MongoDB's success can be attributed to the increased popularity of
ORM/ODMs. Especially with languages like JavaScript and the MEAN stack, the developer
can use JavaScript from the frontend (Angular/Express) to the backend (Node.js) to the
database (MongoDB). This is frequently coupled with an ODM that abstracts away the
internals of the database, mapping collections to Node.js models.

The major advantage is that developers don't need to fiddle with the database schema
design, as this is automatically provided by the ODM. The downside is that database
collections and schema designs are left up to the ODM, which does not have the business
domain knowledge of different fields and access patterns.

In the case of MongoDB and other NoSQL-based databases, this boils down to making
architectural decisions based not only on immediate needs, but also on what needs to be
done down the line. On an architectural level, this may mean that instead of a monolithic
approach, we can combine different database technologies for our diverse and evolving
needs by using a graph database for graph-related querying, a relational database for
hierarchical, unbounded data, and MongoDB for JSON retrieval, processing, and storage.

In fact, many of MongoDB's successful use cases come from the fact that it's not being used
as a one-size-fits-all solution, but only for the use cases that make sense.

Read performance optimization
In this section, we will discuss some tips for optimizing read performance. Read
performance is directly correlated to the number of queries and their complexity.
Performing fewer queries in a schema without complex nested data structures and arrays
will generally result in better read performance. However, many times, optimizing for read
performance can mean that the write performance will degrade. This is something to keep
in mind and continuously measure when we are making performance optimizations in
MongoDB.

Consolidating read querying
We should aim to have as few queries as possible. This can be achieved by embedding
information into sub-documents instead of having separate entities. This can lead to an
increased write load, as we have to keep the same data points in multiple documents and
maintain their values everywhere when they change in one place.

Fault Tolerance and High Availability Chapter 14

[347]

The design considerations here are as follows:

The read performance benefits from data duplication/denormalization.
The data integrity benefits from data references (DBRef or in-application code,
using an attribute as a foreign key).

We should denormalize, especially if our read/write ratio is too high (our data rarely
changes values, but it gets accessed several times in between) if our data can afford to be
inconsistent for brief periods of time, and, most importantly, if we absolutely need our
reads to be as fast as possible and are willing to pay the price in consistency/write
performance.

The most obvious candidates for fields that we should denormalize (embed) are dependent
fields. If we have an attribute or a document structure that we don't plan to query on its
own, but only as part of a contained attribute/document, then it makes sense to embed it,
rather than have it in a separate document/collection.

Using our MongoDB books example, a book can have a related data structure that refers to
a review from a reader of the book. If our most common use case is showing a book along
with its associated reviews, then we can embed reviews into the book document.

The downside to this design is that when we want to find all of the book reviews by a user,
this will be costly, as we will have to iterate all of the books for the associated reviews.
Denormalizing users and embedding their reviews can be a solution to this problem.

A counterexample is data that can grow unbounded. In our example, embedding reviews
along with heavy metadata can lead to an issue if we hit the 16 MB document size limit. A
solution is to distinguish between data structures that we expect to grow rapidly and those
that we don't, and to keep an eye on their sizes through monitoring processes that query
our live dataset at off-peak times and reporting on attributes that may pose a risk down the
line.

Don't embed data that can grow unbounded.

Fault Tolerance and High Availability Chapter 14

[348]

When we embed attributes, we have to decide whether we will use a sub-document or an
enclosing array.

When we have a unique identifier to access the sub-document, we should embed it as a
sub-document. If we don't know exactly how to access it or we need the flexibility to be
able to query for an attribute's values, then we should embed it in an array.

For example, with our books collection, if we decide to embed reviews into each book
document, we have the following two design options:

A book document with an array:

{
Isbn: '1001',
Title: 'Mastering MongoDB',
Reviews: [
{ 'user_id': 1, text: 'great book', rating: 5 },
{ 'user_id': 2, text: 'not so bad book', rating: 3 },
]
}

A book with an embedded document:

{
Isbn: '1001',
Title: 'Mastering MongoDB',
Reviews:
{ 'user_id': 1, text: 'great book', rating: 5 },
{ 'user_id': 2, text: 'not so bad book', rating: 3 },
}

The array structure has the advantage that we can directly query MongoDB for all of the
reviews with a rating greater than 4 through the embedded array reviews.

Using the embedded document structure, on the other hand, we can retrieve all of the
reviews the same way that we would using the array, but if we want to filter them, it has to
be done on the application side, rather than on the database side.

Defensive coding
More of a generic principle, defensive coding refers to a set of practices and software
designs that ensures the continuing functionality of a piece of software under unforeseen
circumstances.

Fault Tolerance and High Availability Chapter 14

[349]

It prioritizes code quality, readability, and predictability. Readability was best explained by
John F. Woods in his comp.lang.c++ post, on September 24, 1991:

"Always code as if the guy who ends up maintaining your code will be a violent
psychopath who knows where you live. Code for readability."

Our code should be readable and understandable by humans, as well as by machines. With
code quality metrics, as derived by static analysis tools, code reviews, and bugs
reported/resolved, we can estimate the quality of our code base and aim for a certain
threshold at each sprint, or when we are ready to release. Code predictability, on the other
hand, means we should always expect results in unexpected input and program states.

These principles apply to every software system. In the context of system programming
using MongoDB, there are some extra steps that we must take to ensure that code
predictability and, subsequently, quality are measured by the number of resulting bugs.

MongoDB limitations that will result in a loss of database functionality should be
monitored and evaluated on a periodic basis, as follows:

Document size limit: We should keep an eye on the collections in which we
expect to have documents growing the most, running a background script to
examine document sizes and alert us if we have documents approaching the
limit (16 MB), or if the average size has grown significantly since the last check.
Data integrity checks: If we are using denormalization for read optimization,
then it's a good practice to check for data integrity. Through a software bug or a
database error, we may end up with inconsistent duplicate data among
collections.
Schema checks: If we don't want to use the document validation feature of
MongoDB, but rather we want a lax document schema, it's still a good idea to
periodically run scripts to identify fields that are present in our documents, and
their frequencies. Then, along with relative access patterns, we can identify
whether these fields can be identified and consolidated. This is mostly useful if
we are ingesting data from another system wherein data input changes over
time, which may result in a wildly varying document structure on our end.
Data storage checks: This mostly applies when using MMAPv1, where
document padding optimization can help performance. By keeping an eye on
document size relative to its padding, we can make sure that our size-modifying
updates won't incur a move of the document in physical storage.

Fault Tolerance and High Availability Chapter 14

[350]

These are the basic checks that we should implement when defensively coding for our
MongoDB application. On top of this, we need to defensively code our application-level
code to make sure that when failures occur in MongoDB, our application will continue
operating—perhaps with degraded performance, but still operational.

An example of this is replica set failover and failback. When our replica set master fails,
there is a brief period to detect this failure and the new master is elected, promoted, and
operational. During this brief period, we should make sure that our application continues
to operate in read-only mode, instead of throwing 500 errors. In most cases, electing a new
primary is done in seconds, but in some cases we may end up in the minority end of a
network partition and unable to contact a master for a long period of time. Similarly, some
secondaries may end up in a recovering state (for example, if they fall way behind the
master in replication); our application should be able to pick a different secondary in this
case.

Designing for secondary access is one of the most useful examples of defensive coding. Our
application should weigh between fields that can only be accessed by the primary to ensure
data consistency and fields that are okay to be updated in near real-time, instead of in real
time, in which case we can read these from secondary servers. By keeping track of
replication lag for our secondaries by using automated scripts, we can have a view of our
cluster's load and how safe it is to enable this functionality.

Another defensive coding practice is to always perform writes with journaling on.
Journaling helps to recover from server crashes and power failures.

Finally, we should aim to use replica sets as early as possible. Other than the performance
and workload improvements, they help us to recover from server failures.

Monitoring integrations
All of this adds up to a greater adoption of monitoring tools and services. As much as we
can script some of them, integrating with cloud and on-premise monitoring tools can help
us to achieve more in a smaller amount of time.

Fault Tolerance and High Availability Chapter 14

[351]

The metrics that we keep a track of should do one of the following:

Detect failures: Failure detection is a reactive process, where we should have
clear protocols in place for what happens when each of the failure detection flags
goes off. For example, what should the recovery steps be if we lose a server, a
replica set, or a shard?
Prevent failures: Failure prevention, on the other hand, is a proactive process,
designed to help us catch problems before they become a potential source of
failure in the future. For example, CPU/storage/memory usage should be actively
monitored with yellow and red thresholds, and clear processes should be put in
place as to what we should do in the event that we reach either threshold.

Operations
When connecting to our production MongoDB servers, we want to make sure that our
operations are as lightweight as possible (and are certainly non-destructive) and do not
alter the database state in any sense.

The two useful utilities that we can chain to our queries are as follows:

> db.collection.find(query).maxTimeMS(999)

Our query will only take up to 999 ms, and will then return an exceeded time limit error:

> db.collection.find(query).maxScan(1000)

Our query will examine 1000 documents at the most, in order to find results and then
return (no error raised).

Whenever we can, we should bind our queries by time or document result size to avoid
running unexpectedly long queries that may affect our production database. A common
reason for accessing our production database is troubleshooting degraded cluster
performance. This can be investigated via cloud monitoring tools, as we described in
previous chapters.

The db.currentOp() command, through the MongoDB shell, will give us a list of all of
the current operations. We can then isolate the ones that have large .secs_running values
and identify them through the .query field.

Fault Tolerance and High Availability Chapter 14

[352]

If we want to kill an in-progress operation that takes a long time, we need to note the value
of the .opid field and pass it on db.killOp(<opid>).

Finally, it's important to recognize (from an operational standpoint) that everything may go
wrong. We must have a backup strategy in place that is implemented consistently. Most
importantly, we should practice restoring from backup to make sure that it works as
intended.

Security
After the recent waves of ransomware that were locking down unsecured MongoDB
servers, asking for ransom payments in cryptocurrency from the administrators to unlock
the MongoDB servers, many developers have become more security-conscious. Security is
one of the items on a checklist that we, as developers, may not prioritize highly enough,
due to the optimistic belief that it won't happen to us. The truth is, in the modern internet
landscape, everyone can be a target of automated or directed attacks, so security should
always be taken into account, from the early stages of the design to after production
deployment.

Enabling security by default
Every database (other than local development servers, perhaps) should be set up with the
following in the mongod.conf file:

auth = true

SSL should always be enabled, as we described in the relevant Chapter 8,
Monitoring, Backup, and Security.

REST and HTTP status interfaces should be disabled by adding the following lines
to mongod.conf:

nohttpinterface = true
rest = false

Fault Tolerance and High Availability Chapter 14

[353]

Access should be restricted to only communication between application servers and
MongoDB servers, and only in the interfaces that are required. Using bind_ip, we can
force MongoDB to listen to specific interfaces, instead of the default binding to every
interface-available behavior:

bind_ip = 10.10.0.10,10.10.0.20

Isolating our servers
We should secure our infrastructure perimeter with AWS VPC or the equivalent from the
cloud provider of our choice. As an extra layer of security, we should isolate our servers in
a cloud of their own, only allowing external connections to reach our application servers
and never allowing them to directly connect to our MongoDB servers:

Fault Tolerance and High Availability Chapter 14

[354]

We should invest in role-based authorization. Security lies not only in protecting against
data leaks caused by external actors, but also in making sure that internal actors have the
appropriate levels of access to our data. Using role-based authorization at the MongoDB
level, we can make sure that our users have the appropriate levels of access.

Consider Enterprise Edition for large deployments. Enterprise Edition offers some
convenient features concerning security, more integrations with well-known tools, and
should be evaluated for large deployments, with an eye for changing needs as we transition
from a single replica set to an enterprise-complex architecture.

Checklists
Operations require the completion of many tasks and complexity. A good practice is to
keep a set of checklists with all of the tasks that need to be performed and their order of
significance. This will ensure that we don't let something slip through. A deployment and
security checklist, for example, could be as follows:

Hardware:
Storage: How much disk space is needed per node? What is the
growth rate?
Storage technology: Do we need SSD versus HDD? What is the
throughput of our storage?
RAM: What is the expected working set? Can we fit it in the RAM?
If not, are we going to be okay with SSD instead of HDD? What is
the growth rate?
CPU: This usually isn't a concern for MongoDB, but it could be if
we planned to run CPU-intensive jobs in our cluster (for example,
aggregation or MapReduce).
Network: What are the network links between servers? This is
usually trivial if we are using a single data center, but it can get
complicated if we have multiple data centers and/or offsite servers
for disaster recovery.

Fault Tolerance and High Availability Chapter 14

[355]

Security:
Enable auth.
Enable SSL.
Disable REST/HTTP interfaces.
Isolate our servers (for example, VPC).
Authorization is enabled. With great power comes great
responsibility. Make sure that the powerful users are the ones that
you trust. Don't give potentially destructive powers to
inexperienced users.

A monitoring and operations checklist could be as follows:

Monitoring:
Usage of hardware (CPU, memory, storage, and network).
Health checks, using Pingdom or an equivalent service to make
sure that we get a notification when one of our servers fails.
Client performance monitoring: Integrating periodic mystery
shopper tests using service as a customer in a manual or
automated way, from an end-to-end perspective, in order to find
out if it behaves as expected. We don't want to learn about
application performance issues from our customers.
Use MongoDB Cloud Manager monitoring; it has a free tier, it can
provide useful metrics, and it is the tool that MongoDB engineers
can take a look at if we run into issues and need their help,
especially as a part of support contracts.

Disaster recovery:
Evaluate the risk: What is the risk, from a business perspective, of
losing MongoDB data? Can we recreate this dataset? If yes, how
costly is it in terms of time and effort?
Devise a plan: Have a plan for each failure scenario, with the exact
steps that we need to take in case something happens.
Test the plan: Having a dry run of every recovery strategy is as
important as having one. Many things can go wrong in disaster
recovery, and having an incomplete plan (or one that fails in each
purpose) is something that we shouldn't allow to happen under
any circumstance.

Fault Tolerance and High Availability Chapter 14

[356]

Have an alternative to the plan: No matter how well we devise a
plan and test it, anything can go wrong during planning, testing,
or execution. We need to have a backup plan for our plan, in case
we can't recover our data using plan A. This is also called plan B,
or the last resort plan. It doesn't have to be efficient, but it should
alleviate any business reputation risks.
Load test: We should make sure that we load test our application
end to end before deployment, with a realistic workload. This is
the only way to ensure that our application will behave as
expected.

Further reading
You can refer to the following links for further information:

http://mo. github. io/ 2017/ 01/ 22/mongo- db-tips- and- tricks. html

https:// studio3t. com/ whats- new/tips- for- sql- users- new- to- mongodb/

https:// www. hostreview. com/ blog/ 170327- top- 7-mongodb- performance- tips-
must-know

https:// groups. google. com/ forum/ #!msg/ comp. lang. c++/ rYCO5yn4lXw/
oITtSkZOtoUJ

Summary
In this chapter, we covered some topics that were not detailed in previous chapters. It is
important to apply the best practices according to our workload requirements. Read
performance is usually what we want to optimize for; that is why we discussed
consolidating queries and the denormalization of our data.

Operations are also important when we go from deployment to ensuring the continuous
performance and availability of our cluster. Security is something that we often don't think
about until it affects us. That's why we should invest the time beforehand to plan and make
sure that we have the measures in place to be sufficiently secure.

Finally, we introduced the concept of checklists to keep track of our tasks and to make sure
that we complete all of them before major operational events (deployment, cluster
upgrades, moving to sharding from replica sets, and so on).

http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
http://mo.github.io/2017/01/22/mongo-db-tips-and-tricks.html
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://studio3t.com/whats-new/tips-for-sql-users-new-to-mongodb/
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://www.hostreview.com/blog/170327-top-7-mongodb-performance-tips-must-know
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ
https://groups.google.com/forum/#!msg/comp.lang.c++/rYCO5yn4lXw/oITtSkZOtoUJ

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

MongoDB 4 Quick Start Guide
Doug Bierer

ISBN: 9781789343533

Get a standard MongoDB database up and running quickly
Perform simple CRUD operations on the database using the MongoDB command
shell
Set up a simple aggregation pipeline to return subsets of data grouped, sorted,
and filtered
Safeguard your data via replication and handle massive amounts of data via
sharding
Publish data from a web form to the database using a program language driver
Explore the basic CRUD operations performed using the PHP MongoDB driver

https://www.packtpub.com/big-data-and-business-intelligence/mongodb-4-quick-start-guide

Other Books You May Enjoy

[358]

MongoDB Administrator's Guide
Cyrus Dasadia

ISBN: 9781787126480

Install and deploy MongoDB in production
Manage and implement optimal indexes
Optimize monitoring in MongoDB
Fine-tune the performance of your queries
Debug and diagnose your database's performance
Optimize database backups and recovery and ensure high availability
Make your MongoDB instance scalable
Implement security and user authentication features in MongoDB
Master optimal cloud deployment strategies

https://www.packtpub.com/big-data-and-business-intelligence/mongodb-administrators-guide

Other Books You May Enjoy

[359]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Active Record (AR) 28, 90
administration
 about 62
 collection 62
 collMod command 65
 compact 64
 currentOp() command 65
 fsync 63
 index 62
 killOp() command 65
 process 62
 touch command 66
aggregation accumulators 154
aggregation framework
 about 72
 limitations 157
 SQL commands, used for mapping 73
 use case 158, 162, 163, 165, 167, 168, 170
 using 147
 versus MapReduce 73
aggregation operators
 about 148
 expression operators 150
 stage operators 149
aggregation stage operators
 $addFields 150
 $bucket 150
 $bucketAuto 150
 $collStats 149
 $count 149
 $facet 150
 $geoNear 150
 $graphLookup 150
 $group 149
 $indexStats 149

 $limit 149
 $lookup 149
 $match 149
 $out 149
 $project 149
 $redact 149
 $replaceRoot 150
 $sample 149
 $sort 149
 $sortByCount 150
 $unwind 149
 about 148
Amazon Web Services (AWS) 77
American National Standards Institute (ANSI) 8
Apache ActiveMQ 271
Apache Hadoop 273
Apache Spark 274
application design
 about 345
 defensive coding 348
 ODM 346
 read performance, optimizing 346
arbiter nodes 291
arithmetic operators 154
Association of Computer Machinery (ACM) 7
atomic operations
 data, modeling for 33
atomicity 124
Atomicity, Consistency, Isolation, Durability (ACID)
 about 8, 33, 120, 124, 238
 atomicity 124
 consistency 125
 durability 128
 in MongoDB 129
 isolation 126
authentication 215
authorization

[361]

 about 216
 backup and restore roles 220
 cluster administration roles 220
 database administration roles 219
 databases, roles 221
 superuser role 221
 user roles 219

B
B-tree data structure
 about 173
 reference 174
B-tree misses
 background flushes 205
 free space, tracking 206
 I/O wait 205
 lock percentage 205
 oplog size 207
 read queue 205
 replication, monitoring 206
 tracking 204
 write queue 205
background flush 205
backups
 about 209
 cloud-based solutions 209
 creating, with mongodump 212
 creation, by copying raw files 212
 creation, queuing used 213
 EC2 backup 213
 incremental backups 213
 of sharded cluster, creating 211
 options 209
 using, with file system snapshots 210
big data
 about 268, 269
 data warehousing 273
 Hadoop, to MongoDB pipeline 285
 Kafka, setting up 278
 landscape 269
 message queuing system 271
 MongoDB, using as data warehouse 276
 references 285
 Spark, to MongoDB 285
 use case 277

Bigtable 8
Boolean operators 150
BSON
 reference 29

C
change streams
 about 115, 116
 production recommendations 121
 replica sets 121
 setup 117
 shared clusters 121
 specification 119
 using 117, 118, 119
chunk administration
 about 329
 chunks, merging 333
 chunks, moving 329
 default chunk size, modifying 330
 jumbo chunks 331
 shards, adding 334
 shards, removing 334
Cloud Native Computing Foundation (CNCF) 258
cloud options
 for replica set 313
 mLab 313
 MongoDB Atlas 313
commit protocol 34
Common Gateway Interface (CGI) 8
comparison operators 150
comparison operators, MongoDB
 $eq 110
 $gt 110
 $gte 110
 $in 110
 $lt 110
 $lte 110
 $ne 110
 $nin 110
Compose 246
compound indexes
 about 177
 reusing 178
 used, for sorting 178
consistency 35, 125

[362]

CRUD (create, read, update, delete)
 about 54, 82
 Doctrine, using 105
 mongo shell, used 54, 55, 56
 Mongoid, using 90
 PHP driver, using 99
 PyMODM, using 97
 Python driver, using 92
 Ruby driver, using 82
CRUD, in Doctrine
 best practices 109
 comparison operators 108
 documents, creating 105
 documents, deleting 107
 documents, reading 107
 documents, updating 106
CRUD, in Mongoid
 documents, creating 91
 documents, deleting 91
 documents, reading 90
 documents, updating 91
 queries, scoping 91
CRUD, in PHP driver
 BulkWrite 103
 document, deleting 100
 documents, creating 99, 100
 documents, deleting 99, 102
 documents, reading 104
 documents, updating 105
CRUD, in PyMODM
 documents, creating 97
 documents, deleting 98
 documents, querying 98
 documents, updating 98
CRUD, in Python driver
 document, searching 96
 documents, creating 92
 documents, deleting 92, 93
 documents, searching 94, 95
 documents, updating 96
CRUD, in Ruby driver
 batch operations 89
 documents, creating 83
 documents, deleting 88
 documents, reading 83, 84

 documents, updating 87
 nested operations 86
 operations, chaining in find() 85, 86

D
data definition language (DDL) 135
Data Mapper Pattern 49
data modeling 29
data types, MongoDB
 about 29
 comparing 30, 31
 date 32
 ObjectId 32
data warehousing
 about 273
 Apache Hadoop, using 273
 Apache Spark, using 274
 Spark, comparison with Hadoop MapReduce

275

data
 modeling, for atomic operations 33
 modeling, for keyword searches 39
Database as a Service (DBaaS) 246, 312
date operators 152
defensive coding
 about 348
 integrations, monitoring 350
digital bank, with MongoDB
 about 129
 account transfer, implementing 131, 132, 133,

134, 136, 137
 data setup 130
dirty reads 128
disaster recovery 209
Django 28
Docker Swarm 258
Doctrine ODM 49
Doctrine
 using, for inheritance 50
 using, in CRUD 105
dropping indexes
 about 176
 background indexes 177
 embedded fields, indexing 176, 177
durability 128

[363]

Dynamo 8

E
e-commerce
 with MongoDB 137, 139, 142, 144
EC2
 restore 213
EDW 271
Elastic Block Store (EBS) 77
Elasticsearch 39
elections
 working 292, 293
Eloquent 49
encrypted storage engine 232
Enterprise Kubernetes Operator 259
expression operators
 about 150
 aggregation accumulators 154
 arithmetic operators 154
 array operators 151
 Boolean operators 150
 comparison operators 150
 conditional expressions 155
 date operators 152
 expression string operators 153
 operators 156
 parsing data type 157
 set expression operator 151
 text search 157
 type conversion operators 155
 variable 157
extract, transform, load (ETL) 13, 271, 285

F
fan out query 339
first in, first-out (FIFO) 239, 266, 278
First Normal Form (1NF) 28

G
General Data Protection Regulation (GDPR) 249
geospatial indexes
 2d geospatial indexes 190
 2dsphere geospatial indexes 190
 about 189
 geoHaystack indexes 190

Google File System (GFS) 273
graphical user interface (GUI) 246
GSSAPI 46

H
Hadoop Distributed File System (HDFS) 273
Hadoop MapReduce
 Spark, comparing 275
Hadoop
 reference 282
 setting up 282
Hive
 reference 283
horizontal scaling 316
hot server 290

I
I/O operations per second (IOPS) 25
incremental backups 213
index
 about 174
 building 191
 building, on replica sets 193
 case insensitive 188
 compound indexes 177
 geospatial indexes 189
 hashed index 184
 hint(), using with sparse index 193
 intersection 198
 limitations 195
 managing 191, 194
 multikey indexes 179
 names, assigning 195
 partial index 185
 performance, improving 197
 performance, measuring 196
 references 199
 single field indexes 174
 sparse index 186
 special types 183
 test index, properties 184
 text index 183
 time to live (TTL) indexes 184
 types 174
 unique index 187

[364]

 usage, forcing 191
 using 196
inheritance
 with Doctrine 50
 with Mongoid models 43
 with PyMODM models 47
initial coin offering (ICO) 167
International Components for Unicode (ICU) 188
Internet of Things (IoT) 11
isolation
 about 126
 dirty reads 128
 non-repeatable reads 127
 phantom reads 127

J
Java Message Service (JMS) 271
JIRA tracker
 reference 25

K
Kafka
 broker 279
 consumer 279
 producer 279
 setting up 278
 topic 279
Kerberos authentication 80
Key Management Interoperability Protocol (KMIP)

233

Key Performance Indicators (KPIs) 255
keyword searches
 data, modeling for 39
Kubernetes 258

L
Laravel 49
Lightweight Directory Access Protocol (LDAP)
 about 81, 246
 authentication 81
locking
 about 238, 240
 commands 242
 database lock, commands requisites 242
 lock reporting 241

 lock yield 241
 locks 242
logarithmic time 173
logarithmic time property 172
Logical Volume Management (LVM) 214
Logical Volume Manager (LVM) 210

M
m2.medium server instance
 replacing, with m2.extralarge server instance

316

many-to-many relationship 38
mapped memory
 monitoring 202
MapReduce
 about 8
 concurrency 68
 in mongo shell 67
 incremental MapReduce 69
 troubleshooting 71, 72
matryoshka 179
Maven
 reference 282
message queuing systems
 about 271
 Apache Kafka 272
 RabbitMQ 271
mLab 246, 313
MMAPv1
 about 10, 16, 235
 storage optimization 235
Mobile Sync 266
Model-View-Controller (MVC) 28
mongo shell
 administration 62, 63
 aggregation framework 72
 authentication 75
 authentication, with MongoDB 79
 authorization 75
 authorization, with MongoDB 75, 76
 Batch inserts, used 58, 59
 Batch operations, used 60, 61
 MapReduce 66
 scripting 56, 57
 securing 74

[365]

 security tips, for MongoDB 76
 used, in CRUD 54, 55, 56
 using 57
mongo-ruby-driver API
 query options 84
MongoDB 1.0
 features 9
MongoDB 2.0
 features 9, 10
MongoDB 3.0
 features 10
MongoDB 4.0
 features 10
MongoDB Atlas
 about 246
 cluster, creating 247, 249, 251, 254, 313
MongoDB Charts 256
MongoDB Cloud Manager
 about 254
 reference 259
MongoDB Compass 257
MongoDB Connector
 for Business Intelligence (BI) 258
MongoDB documentation
 reference 25
MongoDB Management Service (MMS) 17, 254
MongoDB Mobile 261
MongoDB Monitoring Service (MMS) 246, 254
MongoDB Ops Manager 255
MongoDB schema design
 about 28
 read-write ratio 28
MongoDB Stitch
 about 263
 functions 264
 QueryAnywhere 263
 roles, defining with apply-when rule 263
 triggers 265
MongoDB University
 reference 26
MongoDB user group
 reference 26
MONGODB-CR 46
MONGODB-X.509 46
MongoDB

 ACID 129
 auditing 78
 authentication 79
 best practices, for AWS 25
 best practices, for replication 23
 best practices, for security 24
 best practices, for sharding 24
 best practices, for write durability 22
 books references 26
 communication encrypting, TLS/SSL used 77
 comparison operators 110
 configuration 19
 connecting to 40
 connecting, PHP used 47, 48
 connecting, Python used 44
 connecting, Ruby used 40, 41
 criticism 18
 data types 29
 data, encrypting 77
 digital bank, building 129
 enterprise edition 80
 evolution 9, 11
 firewalls 78
 for NoSQL developers 13
 for SQL developers 12
 history 123
 Kerberos authentication 80
 key characteristics 14, 15
 limitations 349
 network exposure, limiting 78
 operational best practices 19, 20
 references 356
 schema design best practices 21, 22
 secure configuration options, used 79
 security tips 76
 smart querying 111
 storage considerations, on delete operation 114
 update operators 110
 use cases 15, 16, 17
 VPNs 78
MongoEngine 44
Mongoid models
 using, for inheritance 43
Mongoid ODM 41, 42
Mongoid

[366]

 using, in CRUD 90
mongos 342
monitoring system
 about 201
 usage, determining 202
monitoring tools
 about 208
 hosted tools 208
 open source tools 208
MTBF (mean time between failures) 209
multi-document ACID transactions
 best practices 145, 146
 limitations 145, 146
multikey indexes 179
multiversion concurrency control (MVCC) 226

N
network level security 222
New Relic
 reference 255
non-monotonic reads 299
non-repeatable reads 127
Not only SQL (NoSQL) 8

O
Object Document Mapper (ODM) 82, 346
object-relational mapping (ORM) 12, 130
ObjectRocket 246
one-to-many relationship 38
one-to-one relationship 36, 37
Online Analytical Processing (OLAP) 290
Open Database Connectivity (ODBC) Data Source

Name (DSN) 258
open source tools
 Munin 208
operations 351
operations log (oplog) 206, 290

P
padding 236
page eviction event 202
page fault event 202
page faults
 monitoring 202
 tracking 204

pen source tools
 Cacti 208
 Nagios 208
Perl Compatible Regular Expression (PCRE) 111
phantom reads 127
PHP driver
 using, in CRUD 99
PHP
 used, for connecting to MongoDB 47, 48
PLAIN (LDAP SASL) 46
Plain Old PHP Objects (POPO) 49
pluggable storage engines
 about 225
 encrypted storage engine 232
 in-memory 234
 mixed usage 236
 WiredTiger 226
prefix indexing 179
PyMODM ODM 45
PyMODM
 models, used for inheritance 47
 using, in CRUD 97
PyMongo 44
Python driver
 using, in CRUD 92
Python
 used, for connecting to MongoDB 44

Q
query router
 about 338
 find 339
 limiting 339
 removing 340
 skipping 340
 sorting 339
 updating 340

R
RabbitMQ 271
read isolation 35
read performance optimization
 read querying, consolidating 346, 348
Red Hat Enterprise Linux (RHEL) 255
relational database management system (RDBMS)

[367]

123

relational schema design 27
relationships
 many-to-many relationship 38
 modeling 36
 one-to-many relationship 38
 one-to-one relationship 36, 37
replica set
 administration 308
 chained replication 312
 cloud options 312
 connecting to 305, 307
 creating 296
 delayed replica set members 304
 hidden replica set members 303
 limitations 314
 maintenance, performing 308
 member, resyncing 309
 oplog size, modifying 310
 priority settings, for members 302
 production considerations 305
 read preferences 299
 reconfiguring 311
 setting up 296
 sharded data performance, comparing 341
 standalone server, converting 296
 use case 295
 write concern 300
 zero priority replica set members 303
replication lag 206
replication
 about 289
 architectural overview 291
 logical replication 290
 physical replication 290
resident memory
 monitoring 202
resilient distributed datasets (RDDs) 275
RocksDB 238
Ruby driver
 batch operations 89
 using, in CRUD 82
Ruby
 about 40
 used, for connecting to MongoDB 40, 41

 used, for querying 341

S
scatter-and-gather operation 339
SCRAM-SHA-1 46
secondary server states
 cold 290
 hot 291
 warm 290
Secure Sockets Layer (SSL) 75
security
 about 214, 352
 auditing 222
 authentication 215
 authorization 216, 219
 best practice recommendations 223
 checklists 354
 enabling, by default 352
 network level security 222
 servers, isolating 353
 special cases 222
server, characteristics
 CPU 317
 I/O 317
 memory and cache 317
set calculations
 working 207
shard key
 characteristics 322
 modifying 321
 selecting 321, 322
sharded cluster
 architectural overview 318
 continuous deployment 319
 development 319
 staging environments 319
sharded data
 performance, comparing with replica sets 341
 query router 338
 querying 338
 querying, with Ruby 341
sharding recovery
 about 342
 cluster, failure 343
 config server 342

 mongod process 342
 mongos 342
 shard failure 343
sharding
 administration 325
 advantages 316
 chunk administration 329
 data, balancing 325, 327, 329
 hash-based sharding 324
 limitations 337
 location-based data 325
 monitoring 325
 multiple keys, combining 324
 range-based sharding 323
 setting up 320
 shard key, modifying 321
 shard key, selecting 321, 322
 startup guidelines 320
 using 316
single field indexes
 about 174, 175
 dropping indexes 176
smart querying
 about 111
 cursors 112, 114
 regular expressions, using 111, 112
 results 112, 114
Software as a Service (SaaS) 246
solid-state drives (SSDs) 204
Spark
 comparing, with Hadoop MapReduce 275
sparse indexes 193
storage engines
 references 243
string operators 153
Structured Query Language (SQL) 7

T
TokuMX 238
Transport Layer Security (TLS) 254

U
Unicode Character Database (UCD) 184

Unified Modeling Language (UML) 28
update operators, MongoDB
 $currentDate 110
 $inc 110
 $max 110
 $min 110
 $mul 110
 $rename 110
 $set 110
 $setOnInsert 110
 $unset 110

V
vertical scaling 316
virtual memory
 monitoring 202
Virtual Private Cloud (VPC) 246

W
WiredTiger
 about 226
 B-tree, versus LSM indexes 232
 checkpoints 226
 collection level options 230
 data compression 227
 document-level locking 226
 journaling 227
 memory usage 228
 memory usage, monitoring 203
 performance strategies 231
 readConcern levels 229
 references 231
 snapshots 226
working set
 monitoring 203
write ahead log (WAL) 128
write concern
 custom write concern 301
write isolation 34

Y
Yet Another Resource Negotiator (YARN) 274

	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Basic MongoDB – Design Goals and Architecture
	Chapter 1: MongoDB – A Database for Modern Web
	Technical requirements
	The evolution of SQL and NoSQL
	The evolution of MongoDB
	Major feature set for versions 1.0 and 1.2
	Version 2
	Version 3
	Version 4

	MongoDB for SQL developers
	MongoDB for NoSQL developers

	MongoDB's key characteristics and use cases
	Key characteristics
	Use cases for MongoDB
	MongoDB criticism

	MongoDB configuration and best practices
	Operational best practices
	Schema design best practices
	Best practices for write durability
	Best practices for replication
	Best practices for sharding
	Best practices for security
	Best practices for AWS

	Reference documentation
	MongoDB documentation
	Packt references

	Further reading
	Summary

	Chapter 2: Schema Design and Data Modeling
	Relational schema design
	MongoDB schema design
	Read-write ratio

	Data modeling
	Data types
	Comparing different data types
	Date type
	ObjectId

	Modeling data for atomic operations
	Write isolation
	Read isolation and consistency

	Modeling relationships
	One-to-one
	One-to-many and many-to-many

	Modeling data for keyword searches
	Connecting to MongoDB
	Connecting using Ruby
	Mongoid ODM
	Inheritance with Mongoid models

	Connecting using Python
	PyMODM ODM
	Inheritance with PyMODM models

	Connecting using PHP
	Doctrine ODM
	Inheritance with Doctrine

	Summary

	Section 2: Querying Effectively
	Chapter 3: MongoDB CRUD Operations
	CRUD using the shell
	Scripting for the mongo shell
	The differences between scripting for the mongo shell and using it directly
	Batch inserts using the shell
	Batch operations using the mongo shell

	Administration
	fsync
	compact
	currentOp and killOp
	collMod
	touch

	MapReduce in the mongo shell
	MapReduce concurrency
	Incremental MapReduce
	Troubleshooting MapReduce

	Aggregation framework
	SQL to aggregation
	Aggregation versus MapReduce

	Securing the shell
	Authentication and authorization
	Authorization with MongoDB
	Security tips for MongoDB
	Encrypting communication using TLS/SSL
	Encrypting data
	Limiting network exposure
	Firewalls and VPNs
	Auditing
	Using secure configuration options

	Authentication with MongoDB
	Enterprise Edition
	Kerberos authentication
	LDAP authentication

	Summary

	Chapter 4: Advanced Querying
	MongoDB CRUD operations
	CRUD using the Ruby driver
	Creating documents
	Read
	Chaining operations in find()
	Nested operations
	Update
	Delete
	Batch operations

	CRUD in Mongoid
	Read
	Scoping queries
	Create, update, and delete

	CRUD using the Python driver
	Creating and deleting
	Finding documents
	Updating documents

	CRUD using PyMODM
	Creating documents
	Updating documents
	Deleting documents
	Querying documents

	CRUD using the PHP driver
	Creating and deleting
	BulkWrite
	Read
	Updating documents

	CRUD using Doctrine
	Creating, updating, and deleting
	Read
	Best practices

	Comparison operators
	Update operators
	Smart querying
	Using regular expressions
	Querying results and cursors
	Storage considerations for the delete operation

	Change streams
	Introduction
	Setup
	Using change streams
	Specification
	Important notes
	Production recommendations
	Replica sets
	Sharded clusters

	Summary

	Chapter 5: Multi-Document ACID Transactions
	Background
	ACID
	Atomicity
	Consistency
	Isolation
	Phantom reads
	Non-repeatable reads
	Dirty reads

	Durability
	When do we need ACID in MongoDB ?
	Building a digital bank using MongoDB
	Setting up our data
	Transferring between accounts – part 1
	Transferring between accounts – part 2
	Transferring between accounts – part 3

	E-commerce using MongoDB
	The best practices and limitations of multi-document ACID transactions

	Summary

	Chapter 6: Aggregation
	Why aggregation?
	Aggregation operators
	Aggregation stage operators
	Expression operators
	Expression Boolean operators
	Expression comparison operators
	Set expression and array operators
	Expression date operators
	Expression string operators
	Expression arithmetic operators
	Aggregation accumulators
	Conditional expressions
	Type conversion operators
	Other operators
	Text search
	Variable
	Literal
	Parsing data type

	Limitations
	Aggregation use case
	Summary

	Chapter 7: Indexing
	Index internals
	Index types
	Single field indexes
	Dropping indexes
	Indexing embedded fields
	Indexing embedded documents
	Background indexes

	Compound indexes
	Sorting with compound indexes
	Reusing compound indexes

	Multikey indexes
	Special types of indexes
	Text indexes
	Hashed indexes
	Time to live indexes
	Partial indexes
	Sparse indexes
	Unique indexes
	Case-insensitive
	Geospatial indexes
	2d geospatial indexes
	2dsphere geospatial indexes
	geoHaystack indexes

	Building and managing indexes
	Forcing index usage
	Hint and sparse indexes
	Building indexes on replica sets

	Managing indexes
	Naming indexes
	Special considerations

	Using indexes efficiently
	Measuring performance
	Improving performance
	Index intersection

	Further reading
	Summary

	Section 3: Administration and Data Management
	Chapter 8: Monitoring, Backup, and Security
	Monitoring
	What should we monitor?
	Page faults
	Resident memory
	Virtual and mapped memory
	Working sets

	Monitoring memory usage in WiredTiger
	Tracking page faults
	Tracking B-tree misses
	I/O wait
	Read and write queues
	Lock percentage
	Background flushes
	Tracking free space
	Monitoring replication
	Oplog size

	Working set calculations
	Monitoring tools
	Hosted tools
	Open source tools

	Backups
	Backup options
	Cloud-based solutions
	Backups with filesystem snapshots
	Making a backup of a sharded cluster
	Making backups using mongodump
	Backing up by copying raw files
	Making backups using queuing

	EC2 backup and restore
	Incremental backups

	Security
	Authentication
	Authorization
	User roles
	Database administration roles
	Cluster administration roles
	Backup and restore roles
	Roles across all databases
	Superuser

	Network-level security
	Auditing security
	Special cases
	Overview

	Summary

	Chapter 9: Storage Engines
	Pluggable storage engines
	WiredTiger
	Document-level locking
	Snapshots and checkpoints
	Journaling
	Data compression
	Memory usage
	readConcern
	WiredTiger collection-level options
	WiredTiger performance strategies
	WiredTiger B-tree versus LSM indexes

	Encrypted
	In-memory
	MMAPv1
	MMAPv1 storage optimization

	Mixed usage
	Other storage engines
	RocksDB
	TokuMX

	Locking in MongoDB
	Lock reporting
	Lock yield
	Commonly used commands and locks
	Commands requiring a database lock

	Further reading
	Summary

	Chapter 10: MongoDB Tooling
	Introduction
	MongoDB Atlas
	Creating a new cluster
	Important notes

	MongoDB Cloud Manager
	MongoDB Ops Manager
	MongoDB Charts
	MongoDB Compass
	MongoDB Connector for Business Intelligence (BI)

	An introduction to Kubernetes
	Enterprise Kubernetes Operator
	MongoDB Mobile
	MongoDB Stitch
	QueryAnywhere
	Rules

	Functions
	Triggers

	Mobile Sync

	Summary

	Chapter 11: Harnessing Big Data with MongoDB
	What is big data?
	The big data landscape
	Message queuing systems
	Apache ActiveMQ
	RabbitMQ
	Apache Kafka

	Data warehousing
	Apache Hadoop
	Apache Spark
	Comparing Spark with Hadoop MapReduce

	MongoDB as a data warehouse

	A big data use case
	Setting up Kafka
	Setting up Hadoop
	Steps for Hadoop setup

	Using a Hadoop to MongoDB pipeline
	Setting up Spark to MongoDB

	Further reading
	Summary

	Section 4: Scaling and High Availability
	Chapter 12: Replication
	Replication
	Logical or physical replication
	Different high availability types

	An architectural overview
	How do elections work?
	What is the use case for a replica set?
	Setting up a replica set
	Converting a standalone server into a replica set
	Creating a replica set
	Read preference
	Write concern
	Custom write concerns

	Priority settings for replica set members
	Zero priority replica set members
	Hidden replica set members
	Delayed replica set members

	Production considerations

	Connecting to a replica set
	Replica set administration
	How to perform maintenance on replica sets
	Re-syncing a member of a replica set
	Changing the oplog's size
	Reconfiguring a replica set when we have lost the majority of our servers
	Chained replication

	Cloud options for a replica set
	mLab
	MongoDB Atlas

	Replica set limitations
	Summary

	Chapter 13: Sharding
	Why do we use sharding?
	Architectural overview
	Development, continuous deployment, and staging environments
	Planning ahead with sharding

	Sharding setup
	Choosing the shard key
	Changing the shard key

	Choosing the correct shard key
	Range-based sharding
	Hash-based sharding
	Coming up with our own key
	Location-based data

	Sharding administration and monitoring
	Balancing data – how to track and keep our data balanced
	Chunk administration
	Moving chunks
	Changing the default chunk size
	Jumbo chunks
	Merging chunks
	Adding and removing shards

	Sharding limitations

	Querying sharded data
	The query router
	Find
	Sort/limit/skip
	Update/remove

	Querying using Ruby
	Performance comparison with replica sets

	Sharding recovery
	mongos
	mongod
	Config server
	A shard goes down
	The entire cluster goes down

	Further reading
	Summary

	Chapter 14: Fault Tolerance and High Availability
	Application design
	Schema-less doesn't mean schema design-less
	Read performance optimization
	Consolidating read querying

	Defensive coding
	Monitoring integrations

	Operations
	Security
	Enabling security by default
	Isolating our servers
	Checklists

	Further reading
	Summary

	Other Books You May Enjoy
	Index

