

Hands-On DevOps with Vagrant

Implement end-to-end DevOps and infrastructure
management using Vagrant

Alex Braunton

BIRMINGHAM - MUMBAI

Hands-On DevOps with Vagrant
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Dattatraya More
Technical Editor: Sayali Thanekar, Cymon Pereira, Nirbhaya Shaji
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jisha Chirayil
Production Coordinator: Jyoti Chauhan

First published: October 2018

Production reference: 2061118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-805-4

www.packtpub.com

http://www.packtpub.com

To my beautiful wife, Francesca,
and wonderful daughter, Florence;

without you both,
I would be nothing.

Thank you.

 – Alex Braunton

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Alex Braunton is a web developer focusing on the LAMP stack by day and a technical
tinkerer by night. He is passionate about all technological things and enjoys trying to build
robots and home automation systems with his Raspberry Pi collection. Currently, he is
focusing on sharpening his DevOps knowledge and experimenting with a range of
technologies, such as serverless, virtual reality, and GraphQL. He also has a growing bonsai
collection and constantly bores his wife and family about the art and history of bonsai.

I'd like to start by thanking my wife, Francesca. Without her support, this book would not
have been possible.
I'd like to thank the incredible team at Packt, who have guided me along every step of this
book and have been excellent - especially Rohit Rajkumar and Dattatraya More.
I'd like to thank Mitchell Hashimoto/HashiCorp for creating such a fantastic piece of
software, Vagrant. Your ideas and code have truly inspired me.

About the reviewer
Michał Wołonkiewicz started by participating in the home meteo station network
(involving an unbreakable DS1820 connected by a 1-Wire converter to an RS-232 interface
in an Optiplex G1, operating under the control of OpenBSD) before he even got his driving
license. He gained his first commercial experience as a systems engineer in both the public
and private sectors, he improved the infrastructure at an investment bank and taught
developers how to use it. He runs a consulting company with the goal of providing
expertise on IT, Telco, and security technologies. He can be reached
at michal@wolonkiewi.cz.

Special thanks to my family – my wife, Ada, and my son, Wojciech – thanks to whom I am
stronger and more persistent every day.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction 7
Getting started with Vagrant and DevOps 7

Understanding Vagrant 7
Vagrant features 8

Vagrantfile 8
Boxes 9
Networking 9
Provisioning 9
Plugins 9

Advantages of Vagrant 9
Development team 10
Operations team 10
Design team 10

What is VirtualBox? 10
What is DevOps? 11

Vagrant for DevOps 11
Current state of development within DevOps 11
Vagrant and DevOps 13
Using Vagrant as a day-to-day DevOps tool 13

Summary 14

Chapter 2: Installing VirtualBox and Vagrant 15
Installing VirtualBox and Vagrant on Windows 16

Prerequisites 16
System version 16
CPU architecture 17

Installing VirtualBox on Windows 10 17
Installing Vagrant on Windows 10 19

Installing VirtualBox and Vagrant on Linux 20
Prerequisites 20

System version 20
CPU architecture 21

Installing VirtualBox on Ubuntu 16.04 21
Installing Vagrant on Ubuntu 16.04 22

Installing VirtualBox and Vagrant on macOS 23
Prerequisites 23

System version 23
CPU architecture 24

Installing VirtualBox on Mac OS 10.11.3 24
Installing Vagrant on macOS 10.13.3 25

Table of Contents

[ii]

Summary 26

Chapter 3: Command Line-Interface - Vagrant Commands 27
Vagrant command overview 27
Vagrant commands in depth 29

A brief note on formatting commands 29
General Vagrant commands and sub-commands 29

The list-commands command 30
Options/flags 30

The help command 30
The version command 30

Options/flags 30
The global-status command 30

Options/flags 31
Vagrant's configuration commands and sub-commands 31

The login command 31
Options/flags 31

The package command 32
Options/flags 32

The snapshot command 32
sub-commands 32

The provider command 33
Options/flags 33

The plugin command 33
sub-commands 34

The cap command 34
Options/flags 35

Day-to-day Vagrant commands and sub-commands 35
The box command 35

sub-commands 35
The destroy command 36

Options/flags 36
The halt command 36

Options/flags 36
The init command 37

Options/flags 37
The port command 37

Options/flags 37
The provision command 38

Options/flags 38
The push command 38

Options/flags 38
The reload command 38

Options/flags 39
The resume command 39

Options/flags 39
The status command 39

Options/flags 40
The suspend command 40

Options/flags 40
The up command 40

Table of Contents

[iii]

Options/flags 40
The validate command 41

Options/flags 41
Application-specific Vagrant commands and sub-commands 41

The docker-exec command 41
Options / flags 42

The docker-logs command 42
Options/flags 42

The docker-run command 43
Options/flags 43

The rdp command 43
Options/flags 43

The rsync command 43
Options/flags 44

The rsync-auto command 44
Options/flags 44

The ssh command 44
Options/flags 44

The ssh-config command 45
Options/flags 45

The powershell command 45
Options /flags 45

A typical Vagrant workflow using commands 46
Troubleshooting 47
Summary 48

Chapter 4: Discovering Vagrant Boxes - Vagrant Cloud 49
Understanding Vagrant boxes 49

Vagrant box file anatomy 50
Box file 50
Box metadata 50
Box information 50

How to install a Vagrant box 50
Direct URL to box file 51
Shorthand/alias to box file 51
A file path or URL to a box in a specific catalog 52

How to delete a Vagrant box 52
Deleting a specific version of a box 52
Deleting all versions of a box 53

Box versioning 54
Vagrant Cloud 54

Understanding the Vagrant Cloud 54
Vagrant Cloud website 54
Installing a Vagrant box found on the Vagrant Cloud – Part 1, Search 55
Installing a Vagrant box found on the Vagrant Cloud – Part 2, Install 57

Uploading a Vagrant box to the Vagrant cloud 60
Creating a Vagrant box 61

Enterprise solutions for Vagrant boxes 67
Summary 68

Table of Contents

[iv]

Chapter 5: Configuring Vagrant Using a Vagrantfile 69
Understanding Vagrantfiles 69

Creating a Vagrantfile 70
Vagrantfile syntax 70

Vagrantfile options 71
Vagrant machine configuration (config.vm) 71
Vagrant SSH configuration (config.ssh) 74
Vagrant settings (config.vagrant) 75
Other Vagrantfile settings 76

WinRM settings (config.winrm) 76
WinSSH settings (config.ssh and config.winssh) 76

Troubleshooting a Vagrantfile 76
Summary 79

Chapter 6: Networking in Vagrant 80
Port-forwarding 80

Port-forwarding notes 86
Private networking 86

DHCP 87
Static IP 88

IPv6 90
Public networking 90

DHCP 91
Static IP 92
Network bridge 92

Summary 93

Chapter 7: Multi-Machine 94
An introduction to Vagrant multi-machine 94

Load balancing with Vagrant multi-machine 95
lb.sh 96
web.sh 97
Vagrant multi-machine shell provisioning 98
multi-machine SSH 100

Web server and database setup with Vagrant multi-machine 101
web.sh 102
db.sh 102
Nginx and PHP configuration 103
MySQL configuration 105

Summary 107

Chapter 8: Exploring Vagrant Plugins and Syncing Files 108
Understanding Vagrant plugins 108

The anatomy of a Vagrant plugin 108
Gem 109
bundler 109

Managing Vagrant plugins 109

Table of Contents

[v]

Vagrant plugin installation methods 109
Installing a Vagrant plugin from a local file 110
Installing a Vagrant plugin from a known gem source 110

Vagrant plugin commands and subcommands 111
Finding, installing, and using a Vagrant plugin 112

Installing a Vagrant plugin 112
Uninstalling a Vagrant plugin 116

Vagrant file-syncing 117
Setting up synced folders 117

Synced folders with basic usage 118
Synced folders with RSync 119
Synced folders with NFS 120

Summary 121

Chapter 9: Shell Scripts - Provisioning 122
Introduction to Vagrant provisioning 122
Understanding configuration management 123
Basic usage of Vagrant provisioning 123

Vagrant provisioning commands 124
Vagrant provisioning with a file 124

Single file 125
Directory 126

Vagrant Shell provisioner 127
Inline Scripts 128
External scripts 128
Script arguments 129

Script argument – string 129
Script argument – array 130

Summary 130

Chapter 10: Ansible - Using Ansible to Provision a Vagrant Box 131
Understanding Ansible 131
Installing Ansible 132

Installing Ansible on macOS High Sierra (version 10.13) 132
Provisioning Vagrant using Ansible 133

Provisioning Vagrant using Ansible on the host machine 134
Provisioning Vagrant using Ansible on the guest machine 137
Additional Ansible options 139

Provisioner – Ansible 140
Provisioner – Ansible local 140

Ansible Playbooks 141
Summary 142

Chapter 11: Chef - Using Chef to Provision a Vagrant Box 143
Understanding Chef 143
Chef Cookbook 144

Recipes 144

Table of Contents

[vi]

Templates 145
Attribute values 145
Extensions 145
File distributors 145

Chef Supermarket 145
Search 146

Provisioning Vagrant with Chef 149
Installing Chef on macOS 149
Using Chef Solo to provision a Vagrant machine 151
Using Chef Client to provision a Vagrant machine 154

Summary 155

Chapter 12: Docker - Using Docker with Vagrant 156
Understanding Docker 156

Key components of Docker 157
Containers 157
Images 157
Registry 158
Service 158

Using the Docker Hub to find Docker images 158
Basic usage – running a container 160

pull 161
run 161
stop 162
start 162
search 163

Using Docker to provision a Vagrant machine 164
Docker-specific configuration in Vagrant 166

Images 166
build_image 166

args 167
pull_images 167
run 168

image 168
cmd 169
args 169
auto_assign_name 169
deamonize 170
restart 170

post_install_provisioner 170
Summary 171

Chapter 13: Puppet - Using Puppet to Provision a Vagrant Box 172
Understanding Puppet 172

Resources 173
Manifest 173
Compile 173

Table of Contents

[vii]

Catalogs 174
Apply 174
Desired state 174

Puppet apply and Puppet agent 174
Puppet apply 174

Options 175
Puppet agent 177

Options 177
Puppet Manifest example and syntax 178

Syntax 179
Provisioning with Puppet 180

Provisioning with Puppet apply 180
Provisioning with Puppet agent 183

Summary 188

Chapter 14: Salt - Using Salt to Provision a Vagrant Box 189
Understanding Salt 189

Salt Master 190
Salt Minion 190
Modules 190

Execution 190
State 190
Grains 190
Renderer 191
Returners 191
Runners 191

Salt states 191
Syntax and example 192

Provisioning Vagrant with Salt 192
Salt options available within Vagrant 195

Install options 196
Minion options 196
Master options 197
Execute states 197
Execute runners 197
Output control 197

Vagrant cheat sheet 198
Testing a Vagrantfile 198
Saving a snapshot 198
Status 198
Boxes 199
Hardware specification 199
Code deployment 200
Multi-machine 200
General 200

Summary 201

Table of Contents

[viii]

Other Book You May Enjoy 202

Index 205

Preface
Vagrant is an open source tool that allows you to programatically create and manage
virtual environments. Vagrant's main focus is on creating development environments that
can be shared between teams all over the world. It removes the "works fine on my machine"
problem and allows anyone with the Vagrantfile configuration to create an exact copy of
the original machine.

Vagrant was created and is maintained by Mitchell Hashimoto and HashiCorp with a
continuous stream of support and updates. It's a piece of software that has been going from
strength to strength since its creation in 2010.

Who this book is for
In this book, we'll cover many aspects of Vagrant. The book can be used by beginners who
have very little or no experience with Vagrant. We'll cover how to install Vagrant and all of
the basic knowledge needed to get up and running.

This book can also be used by more advanced users who wish to better understand and
utilize Vagrant. We'll cover the available commands, networking, multi-machine, and
provisioning with configuration management tools such as Chef and Ansible.

Whatever level you are at, this book will teach you something new or help reinforce your
knowledge and offer tips and tricks.

What this book covers
Chapter 1, Introduction, acts as a great introduction to the world of Vagrant. It will help
create a foundation of knowledge to guide you through the book. You will learn what
Vagrant is, the benefits of Vagrant, what VirtualBox is, and what DevOps is. You'll also
learn how Vagrant fits into the DevOps landscape, how it can be used as a DevOps tool,
and take a look at other pieces of software.

Chapter 2, Installing VirtualBox and Vagrant, Windows, macOS, and Linux, gets your hands
dirty by teaching you how to install VirtualBox and Vagrant. We'll cover the three main
operating systems: Windows, macOS, and Linux. You'll learn how to navigate both
websites (https:/ /www. virtualbox. org and https:/ / www.vagrantup. com) to download,
install, and verify the software, once it has been installed.

https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.virtualbox.org
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com

Preface

[2]

Chapter 3, Command Line-Interface - Vagrant Commands, teaches you about the range of
useful commands that Vagrant provides. You'll learn about all of the available commands
and sub-commands. You'll also learn about the structure of Vagrant commands, how to use
the help command to get more information, and a brief description of what each one does.
You will feel confident in managing Vagrant via the command line by the end of this
chapter.

Chapter 4, Discovering Vagrant Boxes - Vagrant Cloud, covers all aspects of Vagrant boxes.
We will look at how to manage them: installation, deletion, and versioning. We will also
create a base box that has the minimum requirements for building a Vagrant environment.
In this chapter, we will also cover Vagrant Cloud and what it offers you. Vagrant Cloud is a
searchable index of Vagrant boxes that are ready to download. We'll cover a range of
things, such as how to use the the Vagrant Cloud website, how to search for a specific box,
and how to install that box.

Chapter 5, Configuring Vagrant Using a Vagrantfile, explores the Vagrantfile, which allows
you to easily customize your Vagrant machine. The Vagrantfile offers many different
configuration options, such as networking, folder syncing, the multi-machine option,
provisioning, and provider-specific settings. You'll also learn the syntax and formatting of a
Vagrantfile and how to validate it, once created.

Chapter 6, Networking in Vagrant, explains how networking in Vagrant is easily
configurable and can be used to create some powerful setups. There are three key
networking configuration options that you will learn about in this chapter: port forwarding,
public networking, and private networking. You'll learn how to use each one through
examples and view the benefits of each.

Chapter 7, Multi-Machine, looks at the multi-machine option, which allows you to create
multiple Vagrant machines and manage/configure them using a single Vagrantfile. You will
create a multi-machine environment that mimics a real-world scenario. You will create one
machine that runs a web server and another that runs a database. These machines will
communicate using a networking configuration. This will give you a solid foundation and
help you to start creating powerful environments using the multi-machine option.

Chapter 8, Exploring Vagrant Plugins and Syncing Files, gets into how, although Vagrant
offers many features, there may be a specific use case where you require some additional
functionality. In this chapter, you will learn all about Vagrant plugins. You will see how
easy it is to install and use Vagrant plugins. There are a range of commands and sub-
commands to learn about, too. In this chapter, you will also learn about syncing files with
Vagrant and the different configuration options available.

Preface

[3]

Chapter 9, Shell Scripts - Provisioning, deals with provisioning in Vagrant, which is another
powerful Vagrant feature, giving you the ability to easily provision your Vagrant machines.
This chapter acts as an introduction to provisioning and will teach you more about
configuration management tools, shell provisioning, and file provisioning. There are
multiple configuration options available when using these types of provisioning to learn
about, too.

Chapter 10, Ansible - Using Ansible to Provision a Vagrant Box, teaches you how to provision
a Vagrant environment using Ansible and Ansible playbooks. You will also briefly learn
how to install Ansible on your Vagrant machine, before learning how to use Ansible on the
host machine to provision the Vagrant box.

Chapter 11, Chef - Using Chef to Provision a Vagrant Box, teaches you how to provision a
Vagrant environment using Chef and Chef cookbooks. You will look at provisioning the
machine using the basic option, Chef Solo, and the advanced option, Chef Client.

Chapter 12, Docker - Using Docker with Vagrant, delves into how to provision a Vagrant
environment using Docker. We'll look at searching and pulling images from the Docker
Hub and then running them as containers. We'll also look at the different options Docker
accepts when we're using it as a Vagrant provisioner.

Chapter 13, Puppet - Using Puppet to Provision a Vagrant Box, explores how to provision a
Vagrant environment using Puppet. You will learn about the two main options available
with Vagrant: Puppet Apply and Puppet Agent. Using Puppet Agent, you will see how to
connect to a Puppet master and retrieve instructions from that.

Chapter 14, Salt - Using Salt to Provision a Vagrant Box, tackles how to provision a Vagrant
environment using Salt. You will also learn about Salt states, which allow us to dictate
which packages and services should be added into the provisioning.

To get the most out of this book
This book is aimed at both beginners and advanced users. It will teach you how to install
the required software. If you already have this software, please check the versions that you
have as there may be differences between the version that you have and the version that we
use in the book. You may need to upgrade your software. You will need:

VirtualBox version: 5.2.10
Vagrant version: 2.0.4
Ubuntu box (from Vagrant cloud) version: ubuntu/xenial64 20180510.0.0

Preface

[4]

It's worth reading through each chapter a few times so you don't miss anything. If you need
more information or clarification, the official Vagrant website documentation is fantastic.

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- DevOps- with- Vagrant. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it https:/ /www. packtpub. com/sites/ default/ files/ downloads/
9781789138054_ColorImages. pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/Hands-On-DevOps-with-Vagrant
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789138054_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This metadata is usually stored as a JSON document. The filename would
be metadata.json."

A block of code is set as follows:

Vagrant.configure("2") do |config|
 config.vm.box = "base"
 end

Any command-line input or output is written as follows:

config.vm.network "public_network", ip: "192.168.1.123"

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"There is a list of supported operating systems, but we need to click on the Latest Releases
on macOS section."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction

You are about to embark on an exciting journey focused on Vagrant and its role within
DevOps. Throughout these chapters, you will learn interesting and useful facts, as well as
tips and tricks, about Vagrant. Initially, we will focus on the basics of Vagrant and getting it
installed and running on your machine. We will then venture through its ins and outs, by
focusing on the important parts of Vagrant, such as its commands, networking, multi-
machine, Vagrantfiles, and using configuration management tools, such as Chef, Docker,
and Ansible. By the end of this book, you will have solid foundational knowledge about
Vagrant and the necessary skill set to start using it on a day-to-day basis as part of your
DevOps workflow.

In this chapter, we will create a solid foundation that will help you understand what
Vagrant is, what VirtualBox is, and how Vagrant ties into the DevOps landscape. We will
learn about the current state of development tools in DevOps and focus on how Vagrant
can be used by many different teams in an organisation—not just developers! By the end of
this chapter, you will have a good understanding of the basics of Vagrant, VirtualBox, and
DevOps.

Getting started with Vagrant and DevOps
In this section, you will be introduced to Vagrant and learn about its features, benefits, and
its role in the development tools used in the DevOps world.

Understanding Vagrant
Vagrant is very simple on the surface, but is actually incredibly complex under the hood. It
allows you to quickly and effortlessly create virtual environments (known as Vagrant
boxes) and customize them. Vagrant easily integrates with multiple providers, such as
VirtualBox, VMware, and Docker. These providers actually power the virtual
environments, but Vagrant provides a customizable API to that virtual machine.

Introduction Chapter 1

[8]

Vagrant has a large selection of commands, which can be used from the command
line/Terminal to manage virtual environments. These commands can quickly download
and set up an environment from the Vagrant cloud, which hosts many popular
environments, such as Ubuntu or PHP's Laravel.

Vagrant is an important piece of software that can be found in many programmers'
toolboxes. It is commonly used to tackle the well-known phrase, It works on my machine, by
allowing everyone to have a copy of the same environment.

Vagrant was created by Mitchell Hashimoto and released in March 2010. Vagrant is now
part of the HashiCorp company, which Mitchell Hashimoto cofounded in 2012 with Armon
Dadgar. Vagrant is an open source piece of software that has been built in the Ruby
language. It is currently being licensed under the MIT license. Vagrant can be run on
macOS, Windows, FreeBSD, and Linux.

Vagrant is essentially another layer in the virtualization stack. It acts as an easily
programmable interface to control virtual environments. Vagrant relies on a provider, such
as VirtualBox, to power these environments, but it can also configure providers so they
work in harmony – an example would be Vagrant controlling how much memory (RAM)
an environment has.

Vagrant features
Vagrant offers many features to help you build and configure virtual environments.
Vagrant features can be split into a few key areas—Vagrantfile, boxes, networking,
provisioning, and plugins. Vagrant can be managed in two key ways – the command line
and a Vagrantfile. The command-line approach is often used for admin tasks, such as
downloading/importing a new Vagrant box or deleting an old one.

Vagrantfile
A Vagrantfile is a configuration file that uses the Ruby programming language syntax. It is
easy to understand and can be quickly tested by making a change and then running the
vagrant up command to see whether the expected results happen. A Vagrantfile can easily
be shared and added into version control. It's lightweight and contains everything needed
for another user to replicate your virtual environment/application.

Introduction Chapter 1

[9]

Boxes
Vagrant boxes are packages that, similar to Vagrantfiles, can be shared and used to
replicate virtual environments. Vagrant boxes can be easily downloaded by running the
vagrant box add command. The Vagrant cloud offers an easily searchable catalogue of
boxes. The Vagrant cloud provides lots of information about a box, such as the creator, the
version, how many times its been downloaded, and a brief description.

Networking
Vagrant supports three main types of networking when creating virtual environments:
public networks, private networks, and port-forwarding. The simplest networking option is
port-forwarding, which allows you to access a specific port through the guest operating
system into the Vagrant machine. Public and private networking are more complex and
offer more configuration, but we will cover that in future chapters.

Provisioning
Provisioning in Vagrant offers you a way to configure the Vagrant machine even more. You
can install software and dependencies as the machine is being created. To provision a
Vagrant machine, you can use shell scripting, Docker, Chef, Ansible, and other
configuration-management software, such as Puppet.

Plugins
Vagrant plugins offer another way to customize and extend the functionality of Vagrant.
They allow you to interact with the low-level aspects of Vagrant and often provide new
commands to be used as part of the Vagrant command line.

Advantages of Vagrant
Vagrant allows you to easily package up a virtual environment that can be shared among
fellow developers. This packaged virtual environment is often referred to as a Vagrant box.
A box can be configured to mirror the production environment where your web application
or code will be running. This can help minimize any bugs or issues when your
application/code is deployed to the production environment.

The beauty of Vagrant's configuration (known as a Vagrantfile) is often small and can be
easily edited and tested. The syntax of a Vagrantfile is easy to understand and offers a
simple way to build a complex environment.

Introduction Chapter 1

[10]

Vagrant can be used by many different members of a team, including those on
the development team, the operations team, and the design team.

Development team
For a developer, Vagrant can allow them to package up their code/application into an
easily-sharable fully-fledged development environment. This can then be used by
developers using different operating systems, such as macOS, Linux, or Windows.

Operations team
The operations team can easily and quickly test deployment tools and scripts using
Vagrant. Vagrant supports many popular deployment tools in the operations/DevOps
world, such as Puppet, Docker, and Chef. Vagrant can be a cheaper and faster way to test
deployment scripts and infrastructure topologies. Everything can be done locally with
Vagrant or it can be used with a service such as Amazon Web Services.

Design team
Vagrant allows the development team and operations team to create virtual environments
running code, and applications ready for a designer to easily run this environment on their
machine and start making edits to the application. There is no configuration required and
feedback can be instant, from when a developer makes a change or a developer has to
update the Vagrantfile.

What is VirtualBox?
VirtualBox is one of the many providers that Vagrant supports. VirtualBox is a powerful
virtualization tool that allows you to create virtual environments on your existing operating
system. It allows you to fully customize a virtual machine's hardware, such as the RAM,
CPU, hard drive, audio, and graphics.

VirtualBox was initially released in January 2007 by the company Innotek GmbH, which
was later acquired by Sun Microsystems, which, in turn, was acquired by the Oracle
Corporation. Oracle is actively maintaining and releasing new versions of VirtualBox.

VirtualBox is built in x86 Assembly, C++, and C. It can run and supports many different
operating systems, such as Windows, Linux, Solaris, and OS X.

Introduction Chapter 1

[11]

What is DevOps?
DevOps is a popular term in the IT world at the moment. There are many different
opinions as to what DevOps actually is. In simple terms, DevOps is the mix of development
and operations. It is essentially creating a sort of "hybrid programmer" who knows about
operations and infrastructure, or a system admin who understands programming and can
develop applications.

DevOps is a mixture of methodologies, practices, philosophies, and software. DevOps
streamlines the whole project life cycle by creating a workflow that works for all
departments. There are no rules or laws in DevOps, but generally it's the process of
connecting the developers and the infrastructure team by enabling an easy way to develop
and ship code.

The beauty of DevOps is that any company can start following its ideas, methodologies,
and best practices. Large companies may have a whole DevOps department/team, whereas
smaller companies may just need one or two dedicated DevOps employees. In a start-up
scenario, where money must be carefully budgeted, one employee may take on the role of
developer and also DevOps.

Vagrant for DevOps
In this chapter, you will learn about the current state of development in DevOps, how
Vagrant fits into DevOps, and how to use Vagrant as a day-to-day DevOps tool. By the end
of this chapter, you will have a much better understanding of how Vagrant can be used for
development as part of the DevOps process.

Current state of development within DevOps
As mentioned previously, DevOps is a mixture of software development,
operations/system administration, and testing/quality assurance. DevOps is not a new
movement, but one that doesn't necessarily have a leader or a set of rules and standards to
follow. Every company has their own idea of what DevOps is and how it should be
implemented. Many follow similar paths or rough guidelines. Due to the lack of
governance with DevOps, the current state of development is varied.

Traditionally, development has always been separate to the operations and server team, but
in the last few years, we have seen many DevOps tools bridge that gap and make life easier
for both sides.

Introduction Chapter 1

[12]

In the past, when a web developer would build a web application, they would code it, built
it locally on their machine, and then FTP (file transfer) the files onto a live (production)
server to then run the code—if there were any issues or bugs, the developer would have to
make changes to the server environment and debug the code. There are many developers
who still use this workflow and it may be because of their environment or because they
have no choice in the matter.

Today, a modern web developer's workflow may look like this:

The developer writes their code locally but through a virtual1.
environment/machine with a tool such as Vagrant. This allows the developer to
set up an environment such as the production one.
The developer edits to their code and uses version-control (such as Git or2.
Subversion) to manage changes. The version-control is set up in a way that
allows the developer to keep test/new code separate from the production code.
A continuous integration (CI) tool (such as Jenkins or Travis CI) is used to create3.
a pipeline that often has three separate stages—development, staging, and
production. The CI tool can be used to run tests against the software, and run
scripts such as performing assets by combining and minifying them. The version-
control software can be linked into the CI tool, which often triggers these builds
and tests. When the developer pushes some new code to the staging
environment, tests can be run before it reaches the production environment.
Often, if the tests run and there are no issues, the code may be pushed directly4.
into the production branch in the version control. At this point, the CI tool may
trigger a new build, which would essentially restart the service that the code
applies to. This could be simple or complex, depending on the production
environment and software architecture.
At some stages during this process, there may be manual intervention by the QA5.
(quality assurance/testing) team or more senior developers who wish to check
the code before it goes to production.

Of course, this is just an example workflow and will differ between companies and
development teams. The modern workflow may seem much more complicated and tedious,
but this is for good measure. At each stage, you'll notice there are checks and tests run
before the code can reach a live production environment where real users may be
interacting with that code. This can be incredibly important when working with financial
software and other business-critical software. This modern workflow greatly reduces the
margin of error.

Introduction Chapter 1

[13]

Modern development in the DevOps world is focused on speed and automation. The focus
on speed is the ability to quickly build a feature or fix a bug and "push the code to
production" (a phrase you might have heard!). This means that single developers or a team
of developers have less of a barrier when working on the code. A developer
shouldn't worry about configuring servers or environments.

Automation is a big part of DevOps, and that effects the development part too. You can
imagine how slow a process it would be if a developer made changes to their code and then
had to wait for a member of the operations team to manually run tests and scripts against
their changes before letting them know the result.

Vagrant and DevOps
I believe that Vagrant is a key tool in a developer's toolbox in today's DevOps-focused
world. Vagrant is essentially a suite of tools that allows the developer to create code but
also connect with configuration management tools, such as Puppet, Chef, and Ansible, that
are used to automate workflows and environments on servers.

Vagrant's primary focus is on development and enables an easy way for every developer on
the team to use the same environment. Within a Vagrant environment, you can run version-
control that could link into the CI workflow, which allows you to run tests and move code
into different stages.

Using Vagrant as a day-to-day DevOps tool
Vagrant is a flexible tool that enhances day-to-day development by allowing you to easily
test out DevOps workflow ideas. It allows you to separate your software code and
infrastructure without having to know much about DevOps, infrastructure, servers, and
configuration-management tools.

As a day-to-day DevOps tool, Vagrant can be used for many things, including the
following:

Testing software code in different environments and operating systems
Testing different workflows using configuration-management tools, such as Chef
and Puppet
Working in the same environment as other developers in your team/company
Easily make changes to Vagrant and see the results instantly
Running multiple environments/virtual environments to test out networking,
file-sharing, and other multi-server use cases

Introduction Chapter 1

[14]

Summary
In this chapter, we learned that Vagrant is a very powerful and flexible tool for helping
create virtual environments that can mimic staging and development environments used
by your business or application. We looked at the current development state of DevOps,
how Vagrant fits into that, and how to use Vagrant as a day-to-day development tool.

In Chapter 2, Installing VirtualBox and Vagrant, we will install Vagrant and its provider,
VirtualBox. We will look at how to install these pieces of software on a Windows, Mac, and
Linux machine. You will also learn how to find out your system's version and its CPU
architecture.

2
Installing VirtualBox and

Vagrant
VirtualBox is a very important piece of software, which we refer to as a provider. Its job is
to do the heavy lifting in creating and maintaining virtual machines and environments.
Vagrant is essentially a wrapper around a provider (in our case, VirtualBox) and exposes a
powerful API that allows you to create and manage virtual machines through code and
configuration, such as the Vagrantfile.

Once VirtualBox is installed, we will have very little to do with it. It will sit in the
background and await commands from Vagrant to manage virtual machines.

In this chapter, we will start to get our hands dirty with Vagrant. We will look at the
following topics:

Finding the version of your OS
Finding your CPU architecture
Installing VirtualBox on Windows, Linux, and macOS
Installing Vagrant on Windows, Linux, and macOS
Running Vagrant via the command line/Terminal to see which version of
Vagrant you have

By the end of this chapter, you will have a fully working Vagrant and VirtualBox, ready to
start creating virtual environments.

Installing VirtualBox and Vagrant Chapter 2

[16]

Installing VirtualBox and Vagrant on
Windows
In this section, you will learn how to install VirtualBox and Vagrant onto a Windows
environment, how to find out what your CPU architecture is, and what version of the
Windows operating system you are running. We will use an Enterprise edition of Windows
10 64-bit as our example operating system and computer setup.

Prerequisites
Before we install VirtualBox and Vagrant, we need to learn some basic information about
your system. This is information required to help you select which package to download.

System version
Finding out which version of Windows you are running will help when choosing which
package installer to download. Each version of Windows is different, but we will be
covering how to do this using Windows 10.

There are two ways you can do this; the first is a fairly quick and simple way using the
Command Prompt in Windows:

Press the Windows key + the R key (or click Start and search for run)1.
This will open a prompt in this prompt, type winver2.
Press the Enter key and you should see a new About Windows screen pop up3.
with all of your OS information

The second way requires a bit more effort, but can be achieved through the Windows
graphical user interface:

Go into the Windows settings and click About1.
You can access the system settings by clicking on the cog in the taskbar or by2.
typing settings in the taskbar
In the About screen, you will see a section titled Windows specifications3.
In this section, the part we need to focus on is the Edit value4.
The value is Windows 10 Enterprise Evaluation5.

Installing VirtualBox and Vagrant Chapter 2

[17]

CPU architecture
A system's CPU architecture is generally 32-bit or 64-bit. When you download the
VirtualBox or Vagrant software package-installer, you will have to define which version
you require.

To find out the CPU architecture for a Windows 10 system, follow these steps:

Go into the Windows settings and click About1.
You can access the system settings by clicking on the cog in the taskbar or typing2.
settings in the taskbar
On the About screen, you will see a section titled Device specifications3.
In this section, the part we need to focus on is the System type value4.
The value is 64-bit operating system, x64-based processor5.

Installing VirtualBox on Windows 10
Before diving into this section, it's worth mentioning that version 1.8 and later of Vagrant
will automatically install VirtualBox onto your system to offer a smoother experience. You
can skip this section and move onto the next section, titled Installing Vagrant on Windows 10.
If you have any issues, please feel free to come back to this section and try to manually
install VirtualBox.

Before we install Vagrant, it's wise to install its provider, VirtualBox. To get started, you
will need to visit the official VirtualBox website, https:/ / www.virtualbox. org/. The best
way would be to use your system's internet browser, such as Internet Explorer.

Follow the steps for installation:

Click on the Downloads link found in the menu on the left side. We're going to1.
focus on the latest version (at the time of writing, this was version 5.2.10).
Underneath this section, you should see a list of four platform packages links.2.
Click on the Windows hosts options. You will be prompted to select a version,3.
such as x86 (32-bit CPU) or AMD64 (64-bit CPU). If this is the case, use the
information from About (CPU Architecture) and download the appropriate
package.
When you click on the package, your browser should start the download4.
automatically. Choose Run to start the installation immediately after the
download completes. You'll be presented with a welcome screen after the
installer starts.

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Installing VirtualBox and Vagrant Chapter 2

[18]

Click on the Next button to continue.5.
To keep things simple, we will stay with the default configuration. This is an6.
opportunity for you to make changes if you so require. This might be as simple
as changing the installation location. When you are ready, click on the Next
button to continue.
You should see another screen with customization options. For the sake of7.
simplicity, we will leave all options checked.
Click Next to continue.8.

At this stage, you will see a large red Warning message. Do not be alarmed, this is normal
behavior for the installation. The installer simply needs to temporarily disable and restart
the network services on your machine. This will affect anything you are currently doing
that requires an internet connection, such as downloading or streaming:

When you are ready, click Yes to continue to the next screen.1.
This is your final opportunity to make any changes before the VirtualBox2.
software is installed on your system. If you are happy to proceed, click on the
Install button to continue.
Depending on your User Access Control security settings, Windows may ask3.
you to confirm the installation. Click Yes to allow the software installer to
continue.
The installation will begin. If you need to cancel for any reason, simply click on4.
the Cancel button.
The installation should be complete. I would recommend leaving the Start5.
Oracle VM VirtualBox 5.2.10 after installation box checked as this will allow
you to see the VirtualBox software start. Click on the Finish button to continue.
You should see an Oracle VM VirtualBox shortcut on your desktop (if you left6.
that option ticked during the installation stage). You can open VirtualBox by
clicking on that shortcut, or you can use the search bar by typing virtualbox
and clicking on the result.

After completion, you'll be presented with the screen pertaining to the default installation.
Congratulations on completing this step. We will now finish off by installing Vagrant.

Installing VirtualBox and Vagrant Chapter 2

[19]

Installing Vagrant on Windows 10
It's time to install Vagrant. The following steps are for the installation of Vagrant:

Visit the official Vagrant website, https:/ /www. vagrantup. com/ . The best way1.
would be to use your system's internet browser, such as Firefox. We will stick
with the most current, up-to-date version of Vagrant.

Click on the Download 2.0.4 link or the Download link in the top navigation2.
menu. You should see the downloads page.
We can focus on the Windows section, but you will need to choose either the 32-3.
bit or 64-bit option, depending on your system. My system is a 64-bit one, so I
will be choosing that option. The download should start automatically.
Choose Run, which will download the software and start the installer4.
automatically.

Once the download has finished, the installer should start. You'll be presented with the
welcome screen of the installer:

Click on the Next button to continue.1.
Once you have read the terms and conditions, if you are happy and agree, then2.
tick the option. Click the Next button to continue.
You can change the installation destination if required. When you are happy,3.
click the Next button to continue to the next screen.
You have the option to make any changes before Vagrant is installed onto your4.
system. If you don't want to make any more changes, click on the Install button.
The Windows UAC will ask you whether you are happy to allow the installer to5.
continue. Click on the Yes button.
Vagrant will start the installation. If you need to cancel for any reason, click on6.
the Cancel button.
After the successful installation of Vagrant, click on the Finish button to close the7.
installer.
You must restart your system for Vagrant to be fully installed on your system.8.
Click on the Yes button to restart. This will disturb any work you currently have9.
on your system, so make sure you make any saves required.

https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/

Installing VirtualBox and Vagrant Chapter 2

[20]

To verify that Vagrant has been installed and that it is running, we will need to10.
use the Command Prompt. To access this, search for cmd using the search facility
on your system:

Run the vagrant -v command by typing it out and pressing Enter. You should11.
see an output similar to the preceding screenshot. My Vagrant version is 2.0.4.

Installing VirtualBox and Vagrant on Linux
In this section, you will learn how to install VirtualBox and Vagrant onto a Linux
environment. You will also learn how to find out what your CPU architecture is and what
version of the Linux operating system you are running. In this section, we will be using
Ubuntu 16.04 64-bit as our example operating system and computer setup.

Prerequisites
Before we install VirtualBox and Vagrant, we need to learn some basic information about
your system. This is information required to help you select which package to download.

System version
Finding out what version of Ubuntu you are running will help you choose which package
installer to download.

The easiest and quickest way to find out your Ubuntu version is to go into the Terminal
and run the cat /etc/*-release command.

Installing VirtualBox and Vagrant Chapter 2

[21]

You should now see some output on the screen. There are a few sections we can focus on
these are DISTRIB_DESCRIPTION, VERSION, and VERSION_ID. In my case, it is Ubuntu
version 16.04.

CPU architecture
A system's CPU architecture is generally 32-bit or 64-bit. When you download the
VirtualBox or Vagrant software package-installer, you will have to define which version
you require.

The easiest and quickest way to find out the CPU architecture for a Ubuntu system is to go
into the Terminal and run the uname -mrs command.

You should now see some output on the screen. What we are looking for is the last part; in
my case, it is showing x86_64.

This is showing that I have a 64-bit CPU architecture. If your system is a 32-bit one, you
would likely see either i686 or i386.

Installing VirtualBox on Ubuntu 16.04
Before we install Vagrant, it's wise to install its provider, which is VirtualBox:

Visit the official VirtualBox website, https:/ /www. virtualbox. org/ . The best1.
way would be to use your system's internet browser, such as Firefox.
Click on the Downloads option in the navigation menu on the left-hand side.2.
Underneath this section, you should see a list of four platform packages links.3.
Click on the Linux distributions options.
Select a version, such as x86 (32-bit CPU) or AMD64 (64-bit CPU). Use the4.
information from About (CPU Architecture) and download the appropriate
package. I will choose the Ubuntu 16.04 AMD64 version to match my system.
Click on the link and the download should start automatically. You may be
prompted by your system to Open with or Save File.
I will select the Open with Software Install (default) option as this will5.
download the package and start the installer automatically. When you have
chosen your option, click on the OK button.

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Installing VirtualBox and Vagrant Chapter 2

[22]

The Ubuntu installer should now open up. Click on the Install option to begin the software
installation. Depending on your system's security settings, you may be asked to enter your
password. If this is the case, enter your password and click on your Authenticate button to
continue. We can now check the installation:

VirtualBox should be installed on your system, unless any error messages appear1.
during installation. To confirm that VirtualBox has been installed, use the
Ubuntu search feature and enter virtualbox.
You should see it appear underneath the Applications section.2.
When you open VirtualBox, you'll be presented with a welcome screen. This is3.
the default installation screen.
If you have issues finding VirtualBox on your system, you can also run the4.
virtualbox command in Ubuntu's Terminal. If the software is found, it should
open VirtualBox.

After completion, you'll be presented with the screen pertaining to the default installation.
Congratulations on completing this step. We will now finish off by installing Vagrant.

Installing Vagrant on Ubuntu 16.04
It's time to install Vagrant:

Visit the official Vagrant website, https:/ /www. vagrantup. com/ . The best way1.
would be to use your system's internet browser, such as Firefox.
We will stick with the most current version of Vagrant. Click on the Download2.
2.0.4 link or the Download link in the top navigation menu. You should see the
downloads page.
As we are using Ubuntu, which is Debian-based, we will focus on that package.3.
Using our knowledge from earlier, we know to choose the 64-bit download
option.
When you click on the link, your system should prompt you to download the4.
software. I have selected the Open with Software Install (default) option as this
will download the software and automatically start the installer.
Click on the Install button to get started.5.
You will be asked to enter your password to start the installation. Enter your6.
password and click the Authenticate button.

https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/

Installing VirtualBox and Vagrant Chapter 2

[23]

When Vagrant has been installed, you should notice that the Install button has7.
now changed into a Remove button. If you wish to delete Vagrant, you can use
this option:

You can also run the vagrant -v command in the Ubuntu Terminal. If Vagrant has been
successfully installed, you should see some output. You can see that my system's version is
Vagrant 2.0.4.

Installing VirtualBox and Vagrant on macOS
In this section, you will learn how to install VirtualBox and Vagrant onto a macOS
environment. You will learn how to find out what your CPU architecture is and what
version of the Mac operating system you are running. In this section, we will be using
macOS High Sierra 10.13.3 64-bit as our example operating system and computer setup.

Prerequisites
Before we install VirtualBox and Vagrant, we need to learn some basic information about
your system. This is information required to help you select which package to download.

System version
Finding out what version of macOS you are running will help you choose which package
installer to download.

One of the easiest and quickest ways to find out system information for Mac is to run the
sw_vers command in the Terminal:

Installing VirtualBox and Vagrant Chapter 2

[24]

There are two key values here we can focus on: ProductName, which is Mac OS X; and
ProductVersion, which is 10.13.3.

CPU architecture
A system's CPU architecture is generally 32-bit or 64-bit. When you download the
VirtualBox or Vagrant software package-installer, you will have to define which version
you require.

We can run the sysctl hw.cpu64bit_capable command, which lets us know whether
our system is capable of running 64-bit software. In this screenshot of my system, you can
see the returned value is 1:

This means that I have a 64-bit-capable Mac system. If your value returns as empty or 0,
then your system only supports 32-bit.

Installing VirtualBox on Mac OS 10.11.3
Before diving into this section, it's worth mentioning that version 1.8 and later of Vagrant
will automatically install VirtualBox onto your system to offer a smoother experience. You
can skip this section and move onto the next section, titled Installing Vagrant on macOS. If
you have any issues, please feel free to come back to this section and try to manually install
VirtualBox.

Before we install Vagrant, it's wise to install its provider, which is VirtualBox:

Visit the official VirtualBox website, https:/ /www. virtualbox. org/ . The best1.
way would be to use your system's Internet Browser, such as Firefox.
Click on the Downloads link found in the navigation menu on the left-hand side.2.

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.virtualbox.org/

Installing VirtualBox and Vagrant Chapter 2

[25]

This should load the downloads page of the website. For this book, we will be3.
using VirtualBox version 5.2.10, so please navigate to that section of the page.
When presented with the screen, click on the OS X hosts link and this should
start the download automatically on your system.
Once the download has finished, click on the .dmg file to run the VirtualBox4.
installer package. Your Mac system will open and verify the installer. You will
see a temporary screen with a few different options. Follow step 1 by clicking
and opening the VirtualBox.pkg file.
The VirtualBox installer will run. Click the Continue button.5.
The system has verified that you can install this VirtualBox software. Click on the6.
Continue button to begin the installer process.
On this next screen, you have the option to change the install location. You may7.
do this as you wish, but for the sake of simplicity and consistency, we will leave
it as the default location. If you are happy to proceed, click on the Install button.
Your system may ask you to log in to allow the installer to continue. Please enter8.
your username (this may already be filled out) and your system password. Then
click the Install Software button to continue.
The installer will install the files and configurations that it requires. If there are9.
no issues during installation, you should see a The ivag
To verify and run VirtualBox, you can find it in your applications folder and10.
possibly on your desktop. When you open the installer, you should see the
VirtualBox default welcome screen.

Congratulations! You have successfully installed VirtualBox on your macOS system.

Installing Vagrant on macOS 10.13.3
It's time to install Vagrant:

Visit the official Vagrant website, https:/ /www. vagrantup. com/ . The best way1.
would be to use your system's internet browser, such as Firefox.
Click on Download 2.0.4 on the homepage or the Download link in the top-right2.
navigation menu. This will load the Vagrant download page.
The current version of Vagrant only supports the 64-bit version of macOS. We3.
will be using that one. Click on the link to start the download.
Once the download has finished, click on the .dmg file to open the Vagrant4.
installer. The Mac system will open and verify the Vagrant installer.

https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/
https://www.vagrantup.com/

Installing VirtualBox and Vagrant Chapter 2

[26]

Once the verification has completed, you will see a temporary splash screen.5.
Click on the vagrant.pkg icon to run the installer.
You should see the Introduction screen of the installer. Click on the Continue6.
button to start the process.
You have the option to change Vagrant's installation location.You may do this as7.
you wish, but for the sake of simplicity and consistency, we will leave it as the
default location. If you are happy to proceed, click on the Install button.
Your system may ask you to log in to allow the installer to continue. Please enter8.
your username (this may already be filled out) and your system password. Click
the Install Software button to continue.
The installation will begin. If the installation was successful, you should see the9.
The installation was successful screen.

You may now click on the Close button to close the installer. Vagrant has no graphical user
interface, so we can verify that is has been installed by running the vagrant -v command,
which should output which version of Vagrant that we are running:

As you can see from my Terminal output, the macOS system is running Vagrant version
2.0.4. Congratulations! You have successfully installed Vagrant onto your macOS system.

Summary
In this chapter, we've learned how to install Vagrant and its provider, VirtualBox, onto
Windows, Mac, and Linux machines. You now have the base environment to start using
Vagrant and creating virtual environments.

In Chapter 3, Command Line-Interface - Vagrant Commands, we will learn all about Vagrant's
commands and subcommands. These powerful commands offer us the full feature set of
Vagrant, from basic features, such as returning Vagrant's software version, to managing
boxes, such as importing and installing them from the Vagrant cloud.

3
Command Line-Interface -

Vagrant Commands
In this chapter, we will learn how to control Vagrant through its various commands and
sub-commands. Vagrant has no graphical user interface so we will be running the
commands through a Terminal/Command Prompt. By the end of this chapter, you will
have a strong fundamental knowledge of the Vagrant commands and their uses. We will
cover the following topics:

Vagrant commands, sub-commands, and flags
Formatting commands
General Vagrant commands and sub-commands
Vagrant's configuration commands and sub-commands
Day-to-day Vagrant commands and sub-commands
Application-specific Vagrant commands and sub-commands
Troubleshooting

Vagrant command overview
Vagrant is primarily a command-line only tool. By default, there is no graphical user
interface, although it is possible to find a few third-party ones online. Vagrant offers a
simple and powerful collection of over 25 commands and sub-commands.

To get started with Vagrant commands, open up your Command Prompt / Terminal and
run the vagrant --help command. You should now see a list of common commands,
these include box, destroy, and status.

To view the fill list of available and less-commonly-used commands, run vagrant list-
commands. You will now see a larger list of commands with a brief explanation about each
one.

Command Line-Interface - Vagrant Commands Chapter 3

[28]

To get more information on a specific command and to view its sub-commands, add the --
help flag at the end of the command you want to learn more about. An example
is vagrant box --help, which would return the following:

When a command has sub-commands available, you can also add the --help flag to that
sub-command to learn more. In this case, our command would be vagrant box add --
help, which would return:

As you can see in the screenshot, there is a wealth of information available about this sub-
command. Vagrant is very well-documented and anything that you cannot find via the
command-line/Terminal, you should be able to find on the Vagrant
website: https://www.vagrantup.com/.

https://www.vagrantup.com/

Command Line-Interface - Vagrant Commands Chapter 3

[29]

Vagrant commands in depth
In this section, you will learn about all of the available Vagrant commands and sub-
commands. We will explore the most common commands and what each one does. We will
look at errors with regards to commands and how to overcome them.

We will split the commands and sub-commands into the following four categories:

General
Configuration
Day-to-day
Application-specific

By the end of this section, you will have a good understanding of which commands and
sub-commands are available, what they do, and how you can use them on a daily basis.

A brief note on formatting commands
In this chapter, I will use certain keywords as placeholders. These placeholders are for you
to enter values into the commands and sub-commands. A typical placeholder will look like
this: [INSERT VALUE]. An example would be vagrant login --user [INSERT
VALUE], where [INSERT VALUE] would be something such as myusername and the final
command that you input would be vagrant login --user myusername. There is no
need for capital letters or square brackets.

When you see the [VMNAME] placeholder, this refers to a specific Vagrant machine name
that you want to run the command against on your system. The default Vagrant machine is
called default, so an example command would be vagrant resume default, which
would resume the machine from a suspended state.

General Vagrant commands and sub-commands
The general commands and sub-commands in Vagrant are not category-specific. They may
only get used once or serve an incredibly specific purpose.

Command Line-Interface - Vagrant Commands Chapter 3

[30]

The list-commands command
The list-commands command will list all available commands within the main vagrant
command scope. It will alphabetically list each command and give a brief description.

Options/flags
There is only one flag for this command, -h/--help, which will print the help screen for
this command.

An example is the vagrant list-commands --help command.

The help command
The help command will show you the correct syntax for a command and list a selection of
the most popular Vagrant commands.

The version command
The version command will return the version of Vagrant that is currently installed on
your system, the latest version available online, and supply a website URL to the
downloads page of the Vagrant website.

Options/flags
There is only one flag for this command, -h/--help, which will print the help screen for
this command.

An example is the vagrant version --help command.

The global-status command
The global-status command will return information about all of the Vagrant
environments associated with the current user. It will return the Vagrant environment ID,
name, provider, state, and directory. This command can be useful for giving you an
overview into what is happening on your system with the Vagrant environments.

Command Line-Interface - Vagrant Commands Chapter 3

[31]

Options/flags
There are two flags for this command:

-h/--help: Prints the help screen for this command
--prune: Prunes any invalid entries

An example is the vagrant global-status --help command.

Vagrant's configuration commands and sub-
commands
In this section, we will look at Vagrant's configuration commands and sub-commands.
These are often used to configure Vagrant, such as installing a package or taking a snapshot
of an environment.

The login command
The login command is used to log into your HashiCorp Vagrant Cloud account. Logging
into the Vagrant Cloud will allow you to access and download protected boxes and the
Vagrant Share service, which allows you to share your Vagrant environment with anyone.

Options/flags
There are six flags for this command:

-c/--check: Checks to see whether you are already logged in
-d/--description [INSERT VALUE]: Takes a parameter to set a description of
the token
-k/--logout: Logs you out if you are already logged in
-t/--token [INSERT VALUE]: Takes a parameter to set the Vagrant Cloud
token
-u/--username [INSERT VALUE]: Takes a parameter to specify your Vagrant
Cloud email or username
-h/--help: Prints the help screen for this command

An example is the vagrant login --check command.

Command Line-Interface - Vagrant Commands Chapter 3

[32]

The package command
The package commands allow you to create a Vagrant box out of a running Vagrant
environment.

Options/flags
There are five flags for this command:

--base [INSERT VALUE]: Takes a parameter of the name of a virtual machine
in VirtualBox to package as a base box. This flag only works if you are using the
VirtualBox provisioner.
--output [INSERT VALUE]: Takes a parameter to name the output file.
--include [INSERT VALUE, INSERT VALUE]: Takes comma-separated
parameters to include additional files in this packaging process.
--vagrantfile [INSERT VALUE]: Takes a parameter of the Vagrantfile you
wish to package into this box.
-h/--help: Prints the help screen for this command.

An example is the vagrant package --help command.

The snapshot command
The snapshot command allows you to manage snapshots of Vagrant environments. You
can save, delete, and restore snapshots. Only certain providers support snapshotting If your
provider does not, Vagrant will return a warning when this command is run.

sub-commands
There are six sub-commands available for the snapshot command:

vagrant snapshot delete [INSERT VALUE] [INSERT VALUE]: The first
parameter is the virtual machine name and the second parameter is the name of
the snapshot you wish to delete.
vagrant snapshot list [INSERT VALUE]: The parameter can optionally be
the Vagrant machine name. This command will list all available snapshots on
your system or all snapshots for a certain Vagrant machine if the parameter is
specified.

Command Line-Interface - Vagrant Commands Chapter 3

[33]

vagrant snapshot push: This can be used to create a new snapshot of a
running Vagrant environment. It will add this onto the Snapshot stack.
vagrant snapshot pop: This can be used as an opposite to the push command
to reverse a snapshot that has been pushed.
vagrant snapshot save [INSERT VALUE] [INSERT VALUE]: This saves a
snapshot of the current machine. It's similar to the push command, but it is
recommended that you do not mix this command with push or pop as it is
unsafe. The first parameter is the virtual machine name and the second
parameter is the snapshot name.
vagrant snapshot restore [INSERT VALUE] [INSERT VALUE]: This
restores a supplied snapshot. The first parameter is the virtual machine name
and the second is the name of the snapshot you wish to restore to.

The provider command
The provider command will return the provider for the current running machine, or it can
accept an environment ID.

Options/flags
There are three flags for this command:

--install: Attempts to install the provider
--usable: Checks whether the provider is usable
-h/--help: Prints the help screen for this command

An example is the vagrant provider --install command.

The plugin command
The plugin command allows you to manage Vagrant plugins. You can install, list, repair,
uninstall, and update plugins.

Command Line-Interface - Vagrant Commands Chapter 3

[34]

sub-commands
There are seven sub-commands available for the plugin command:

vagrant plugin expunge: Removes all user-installed plugins. This will
remove any data and dependencies associated with them. This is a useful
command if you wish to delete them all in one go.
vagrant plugin install [INSERT VALUE]: Installs a plugin by supplying
its name as the command's parameter. You can install a plugin from a known
Gem or from a local Gem file on your system.
vagrant plugin license [INSERT VALUE] [INSERT VALUE]: Installs a
proprietary Vagrant plugin license. The first parameter is the plugin name and
the second is the licence file.
vagrant plugin list: Lists all installed plugins on your system. It will list
plugin information, such as its version. This command is useful for finding out
which plugins and versions you have installed.
vagrant plugin repair: Attempts to repair any plugins where there has been
an issue and it is not working correctly. The issue could be during the installation
of a custom plugin or an error with the plugins.json file.
vagrant plugin uninstall [INSERT VALUE]: Deletes a plugin using a
supplied plugin name as the first parameter. This command supports multiple
parameters, with each one being a plugin name. You can delete one or multiple
plugins using this command.
vagrant plugin update [INSERT VALUE]: Updates a specific plugin if the
first parameter is supplied as the plugin's name. If no parameter is supplied, this
command will update all installed plugins.

The cap command
The cap command allows you to run or check the capabilities of a guest machine. These
capabilities are often guest-specific and are configured specifically, for example, in Vagrant
plugin development.

Command Line-Interface - Vagrant Commands Chapter 3

[35]

Options/flags
There are two flags for this command:

--check [INSERT VALUE] [INSERT VALUE]: Checks for a certain capability.
The first parameter is the capability name and the second parameter is the
capability arguments. This command will not run the capability.
-h/--help: Prints the help screen for this command.

An example is the vagrant cap --help command.

Day-to-day Vagrant commands and sub-
commands
Day-to-day Vagrant commands and sub-commands are the ones you will use the most.
These commands are generally used to manage your Vagrant boxes, such as creating,
starting, and stopping them.

The box command
The box command allows you to manage Vagrant boxes on your system. You can install,
update, remove, and prune boxes.

sub-commands
There are seven sub-commands available for the box command:

vagrant box add [INSERT VALUE]: Adds and downloads a Vagrant box to
your system. This box can then be used in your Vagrantfile to create a Vagrant
machine.
vagrant box list: Lists all installed boxes installed on your system.
vagrant box outdated: Checks whether the current Vagrant box is outdated.
You can add the --global flag, which will check all installed Vagrant boxes.
vagrant box prune: Removes old versions of installed boxes. It will ask for
confirmation if you are currently using an old version of a box it wants to delete.
vagrant box remove [INSERT VALUE]: Removes a Vagrant box by name as
the first parameter supplied.

Command Line-Interface - Vagrant Commands Chapter 3

[36]

vagrant box repackage [INSERT VALUE] [INSERT VALUE] [INSERT

VALUE]: Repackages a Vagrant box into a .box file using the name as the first
parameter, the provider as the second parameter, and the version as the third
parameter. You can get the parameter values using the vagrant box list
command. The box can then be distributed.
vagrant box update: Checks and updates the current box you are using. You
can supply the --box [INSERT VALUE] flag where the first parameter is the box
name that you wish to specifically update.

The destroy command
The destroy command will stop and delete a Vagrant machine.

Options/flags
There are three flags for this command:

-f/--force: Destroys the Vagrant machine without asking you for confirmation.
--parallel/--no-parallel: Enables or disables parallelism only if the
provider supports it. We are using VirtualBox as the provider in this book, and at
the time of writing it does not support parallel execution. Running this flag will
enable the force flag too.
-h/--help: Prints the help screen for this command.

An example is the vagrant destroy --force command.

The halt command
The halt command will stop/halt a running Vagrant machine.

Options/flags
There are two flags for this command:

--force [INSERT VALUE]: Forces the running machine to shut down. If your
machine has not saved, you may lose data when running this command it is like
switching off the computer's power source. You can specify a machine name or
ID using the optional parameter.

Command Line-Interface - Vagrant Commands Chapter 3

[37]

-h/--help: Prints the help screen for this command.

An example is the vagrant halt --force command.

The init command
The init command generates a new Vagrantfile, which is used to configure new Vagrant
environments.

Options/flags
There are six flags for this command:

--box-version [INSERT VALUE]: Adds a version of the box supplied as the
first parameter into the Vagrantfile
-f/--force: Overwrite an existing Vagrantfile if there is already one in the same
directory
-m/--minimal: Generates a minimal Vagrantfile that will remove anything not
required, such as comments
--output [INSERT VALUE]: Uses an output path specified by the first
parameter
--template [INSERT VALUE]: Uses a custom Vagrantfile template when its
path is supplied as the first parameter
-h/--help: Prints the help screen for this command

An example is the vagrant init --force command.

The port command
The port command returns port-mapping from the guest machine to the Vagrant
environment.

Options/flags
There are three flags for this command:

--guest [INSERT VALUE]: Outputs specific port information when the first
parameter supplied is the port available on the guest machine. It will return the
host-mapped port. This command can be useful for certain network-level
debugging or testing.

Command Line-Interface - Vagrant Commands Chapter 3

[38]

--machine-readable: Returns/displays a more machine-readable output.
-h/--help: Prints the help screen for this command.

An example is the vagrant port --machine-readable command.

The provision command
The provision command will provision a Vagrant machine from an available Vagrantfile.
If successful, you will have a running and fully-provisioned Vagrant environment.

Options/flags
There are two flags for this command:

--provision-with [INSERT VALUE]: Provisions the Vagrant machine with a
specified provisioner. You can use multiple provisioner types by suppling the
parameter as a comma-separated list.
-h/--help: Prints the help screen for this command.

An example is the vagrant provision --help command.

The push command
The push command will deploy code using a method that you have configured in the
Vagrantfile. You can use FTP/SFTP and Heroku as the deployment methods.

Options/flags
There is only one flag for this command, -h/--help, which will print the help screen for
this command.

An example is the vagrant push --help command.

The reload command
The reload command is used when you make a change to the Vagrantfile and wish to
apply that to the running machine. This command will stop, apply the new Vagrantfile, and
start up the environment.

Command Line-Interface - Vagrant Commands Chapter 3

[39]

Options/flags
There are three flags for this command:

--provision/--no-provision: Enables or disables provisioning during the
reload process.
--provision-with [INSERT VALUE]: Provisions the Vagrant machine with a
specified provisioner. You can use multiple provisioner types by suppling the
parameter as a comma-separated list.
-h/--help: Prints the help screen for this command.

An example is the vagrant reload --no-provision command.

The resume command
The resume command will start up a paused Vagrant environment. It can be used after the
vagrant halt command.

Options/flags
There are three flags for this command:

--provision/--no-provision: Enables or disables provisioning as the
machine resumes.
--provision-with [INSERT VALUE]: Only uses certain provisioners specified
in the first parameter. To use multiple, you can supply a comma-separated list.
The supplied value can be a provisioner by name or by type.
-h/--help: Prints the help screen for this command.

An example is the vagrant resume --no-provision command.

The status command
The status command will return the status of a Vagrant machine. It will return
information such as stopped or running.

Command Line-Interface - Vagrant Commands Chapter 3

[40]

Options/flags
There is only one flag for this command, -h/--help, which will print the help screen for
this command.

An example is the vagrant status --help command.

The suspend command
The suspend command is similar to the vagrant halt command, but instead of
completely stopping and shutting down the machine, it will save the state this uses extra
disk space on your guest machine, but when you start the machine back up again, it will
start quickly and from that exact point. There will be no lengthy boot-up process as if you
were starting it from cold.

Options/flags
There is only one flag for this command, -h/--help, which will print the help screen for
this command.

An example is the vagrant suspend --help command.

The up command
The up command will start up a Vagrant environment. During the start process, it will also
provision the machine, similarly to the vagrant provision command.

Options/flags
There are seven flags for this command:

--provision/--no-provision: Enables or disables provisioning when the
Vagrant machine is starting up.
--provision-with [INSERT VALUE]: Only uses certain provisioners specified
in the first parameter. To use multiple, you can use a comma-separated list. The
supplied value can be a provisioner by name or by type.
--destroy-on-error/--no-destroy-on-error: Destroys a machine if there
is a fatal error. This is the default behavior unless you use the --no-destroy-
on-error flag.

Command Line-Interface - Vagrant Commands Chapter 3

[41]

--parallel/--no-parallel: Enables or disables parallelism only if the
provider supports it. We are using VirtualBox as the provider in this book, and at
the time of writing it does not support parallel execution. If you run the
command, nothing will happen.
--provider [INSERT VALUE]: Uses a provider supplied as the first parameter.
--install-provider/--no-install-provider: Attempts to install the
provider if possible and it isn't installed.
-h/--help: Prints the help screen for this command.

An example is the vagrant up --no-parallel command.

The validate command
The validate command will validate a Vagrantfile and return any errors. It checks for
issues within the Vagrantfile, such as incorrect syntax.

Options/flags
There is only one flag for this command, -h/--help, which will print the help screen for
this command.

An example is the vagrant validate --help command.

Application-specific Vagrant commands and sub-
commands
Application-specific Vagrant commands and sub-commands that focus on an external
application or piece of software not directly related to Vagrant or VirtualBox. In this
section, we'll cover the Docker, RDP, RSync, SSH, and PowerShell commands and sub-
commands.

The docker-exec command
The docker-exec command is used to run commands directly into a running docker
container. This is done when using Docker as Vagrant's provider.

Command Line-Interface - Vagrant Commands Chapter 3

[42]

Options / flags
There are eight flags for this command:

--no-detach/--detach: Enables or disables the command running in the
background.
-i/--interactive: Keeps the standard input (STDIN) open even if not
attached.
--no-interactive: Doesn't keep the standard input (STDIN) open even if not
attached.
-t/--tty: Enables a pseudo-tty, called a pty.
--no-tty: Disables a pseudo-tty, called a pty.
-u [INSERT VALUE]/--user [INSERT VALUE]: Sends a user or UID as the
first parameter with the command.
--prefix/--no-prefix: Enables or disables a prefix output with the machine
name. This can be useful for differentiating between machines/containers.
-h/--help: Prints the help screen for this command.

An example is the vagrant docker-exec --no-tty command.

The docker-logs command
The docker-logs command will return the logs from a running container. This is done
when using Docker as Vagrant's provider.

Options/flags
There are three flags for this command:

--no-follow/--follow: Enables or disables streaming Docker log data into the
output.
--no-prefix/--prefix: Enables or disables a prefix output with the machine
name. This can be useful for differentiating between machines/containers.
-h/--help: Prints the help screen for this command.

An example is the vagrant docker-logs --no-follow command.

Command Line-Interface - Vagrant Commands Chapter 3

[43]

The docker-run command
The docker-run command is very similar to the vagrant docker-exec command in that it
allows you to run a command on a Docker container. It has fewer options and less
configurability compared to the docker-exec command. Again, this command is used
when using Docker as Vagrant's provider.

Options/flags
There are six flags for this command:

--no-detach/--detach: Enables or disables the command to run in the
background
-t/--tty: Enables a pseudo-tty, called a pty.
--no-tty: Disables a pseudo-tty, called a pty
-r/--rm: Removes the container after execution
--no-rm: Doesn't remove the container after execution
-h/--help: Prints the help screen for this command

An example is the vagrant docker-run --no-detach command.

The rdp command
The rdp command is used to create a client for a remote desktop with the Vagrant
environment. This can only be used with Vagrant environments that support the remote-
desktop protocol.

Options/flags
There is one flag for this command, -h/--help, which will print the help screen for this
command.

An example is the vagrant rdp --help command.

The rsync command
The rsync command will force a sync between any folders that have been configured to
use RSync as the sync option, to the remote machine. A sync will often only happen when
you manually start up or reload a Vagrant environment.

Command Line-Interface - Vagrant Commands Chapter 3

[44]

Options/flags
There is one flag for this command, -h/--help, which will print the help screen for this
command.

An example is the vagrant rsync --help command.

The rsync-auto command
How to run vagrant rsync-auto: The rsync-auto command is similar to the vagrant
rsync command in that is forces a sync between any configured RSync folders, but it will
now listen to all configured directories for any changes to files and RSync them
automatically.

Options/flags
There are three flags for this command:

--poll: Forces polling of the filesystem. This option does not have great
performance and can be slow.
--no-poll: Disables polling of the filesystem.
-h/--help: Prints the help screen for this command.

An example is the vagrant rsync-auto --no-poll command.

The ssh command
The ssh command will connect you to a remote Vagrant machine using the SSH
protocol/connection. This command gives you access to the machine's shell, which allows
you to run commands directly on the machine.

Options/flags
There are five flags for this command:

-c [INSERT VALUE]/--command [INSERT VALUE]: Runs a command directly
via SSH using the first parameter supplied.
-p/--plain: Connects in plain mode, leaving you to choose the authentication.
-t/--tty: Enables tty when you run an SSH command. This is the default
value.

Command Line-Interface - Vagrant Commands Chapter 3

[45]

--no-tty: Disables tty when you run an SSH command.
-h/--help: Prints the help screen for this command.

An example is the vagrant ssh --plain command.

The ssh-config command
The ssh-config command will generate a configuration that can be used in an SSH
configuration file, which can then be used to SSH into the Vagrant machine.

Options/flags
There are two flags for this command:

--host [INSERT VALUE]: Names the host used for the config when the first
parameter is supplied
-h/--help: Prints the help screen for this command

An example would be the vagrant ssh-config --host testname command.

The powershell command
The powershell command will open a PowerShell connection to a Vagrant machine. The
powershell command will only work with guest machines and Vagrant machines that
support it. For example, when trying to run this command on a guest machine, such a Mac,
the following error will be returned:

Your host does not support PowerShell. A remote PowerShell connection can
only be made from a windows host.

Options /flags
There are two flags for this command:

--c [INSERT VALUE] /--command [INSERT VALUE]: Runs a PowerShell
command supplied as the first parameter
-h/--help: Prints the help screen for this command

An example is the vagrant powershell --help command.

Command Line-Interface - Vagrant Commands Chapter 3

[46]

A typical Vagrant workflow using commands
In this section, you will see how a few Vagrant commands and sub-commands can create a
basic workflow:

Make sure you are in a new empty directory (this isn't necessary but helps keep1.
the project separate from your other files).
Run vagrant init ubuntu/xenial642.
https://vagrantcloud.com/ubunutu/xenial64.box. This will create a
default Vagrantfile, but the box will be set as Ubuntu 16.04.4 64-bit version. The
first parameter is the official box name and the second is the download URL for
it.
Run the vagrant validate command to make sure the Vagrantfile is error-free3.
and ready to go. There should not be any errors here as we are just using the
basic default Vagrantfile. You should see the Vagrantfile validated
successfully message returned.
Start up the Vagrant machine. To do this, run the vagrant up command. If you4.
do not have that Ubuntu box installed, Vagrant will download it during the
provisioning process. It may take some time depending on your internet speed.
During the boot process, you will see many things happen. Vagrant will5.
configure network connections, import the box, configure and start SSH services,
forward any ports between your machine and the guest Vagrant machine, and
mount any shared folders.
When the box is finished booting and Vagrant has finished configuring, you will6.
be able to log in via SSH and run commands directly in the Vagrant
environment. To do this, run the vagrant ssh command.
After a few seconds, you should see the Ubuntu Terminal and the message of the7.
day. The first line should say something similar to Welcome to Ubuntu
16.04.04 LTS. You can now run commands inside the Vagrant environment
such as installing Ubuntu packages.
Exit out of here and stop the Vagrant machine. Run the exit command inside8.
the Ubuntu Terminal.
You can check on the status of the Vagrant environment by running the vagrant9.
status command. This will return a list of Vagrant machines on your system.
You should see your machine still running, the name will likely be Default and
the status will be running (virtualbox), where VirtualBox is the provider we
have used to power the Vagrant machine.

Command Line-Interface - Vagrant Commands Chapter 3

[47]

Let's save a snapshot of the environment's current state. We can run the vagrant10.
snapshot save default first_snapshot command, which tells Vagrant to
save a snapshot using the machine with the name of default and it to call the
snapshot first_snapshot.
To confirm the snapshot has been saved, run the vagrant snapshot list11.
command, which should return first_snapshot. The command will only
return one snapshot at first as that is all we have saved, but eventually you will
see a list as you save more. You can then use a snapshot to restore the
environment to that save.
Stop the Vagrant machine by running the vagrant suspend command. This12.
will take a few minutes.

Congratulations! You have successfully created a Vagrant machine, installed Ubuntu, used
SSH, saved a snapshot of the Vagrant machine, and suspended it.

This is a fairly simple workflow as we have not done any work on the machine or installed
any additional features. In later chapters, we will look at how to customize the Vagrantfile
and change the provision process. We will also look at provisioning a Vagrant machine
using configuration-management tools, such as Chef and Ansible.

Troubleshooting
With such a large selection of Vagrant commands, sub-commands, parameters, and flags, it
is very easy to enter the command and get an error message.

Vagrant is very good at returning an error if you enter the wrong command. There can be a
few reasons a command might return an error:

You are trying to run a command when no Vagrant machines are running
You are trying to run a command against a Vagrant machine with a non-existent
or incorrect name/ID, or one that has been deleted
There is a typo in your command
You have the parameters in the wrong order
You have not specified any parameters when they are required
You have the flags in the wrong order
You have not specified any flags when they are required

Command Line-Interface - Vagrant Commands Chapter 3

[48]

You are running a provider-specific command when you are not actually using
that provider
You are running an OS-specific command when you are not actually using that
OS

Here are a few troubleshooting tips:

Read the error message slowly to see what you may have missed.
Run the vagrant [INSERT VALUE] --help command where [INSERT
VALUE] is the command you are trying to run. This will give you the syntax,
order, parameters, and flags for that command.
Make sure you haven't got any typos in your command string.
It can also be worth checking the Vagrantfile in case that is causing any issues or
interfering in some way. You can run the vagrant validate command to make
sure it's OK.
You can always visit the official Vagrant website to make sure that the version of
Vagrant you have has the command available/supports the command that you
are trying to run.
If you are completely stuck and cannot troubleshoot the issue, searching for the
specific error message can be incredibly useful. You will likely come across
someone who has the same problem, normally on a website such as Stack
Overflow or the GitHub issues section of the Vagrant project.
In the most extreme cases, you may need to uninstall Vagrant (and sometimes
VirtualBox) and then restart your machine. You will then need to reinstall
Vagrant (and possibly VirtualBox). A fresh install can sometimes be last option
but the right answer!

Summary
In this chapter, we covered Vagrant's commands and sub-commands. You should now
have a good understanding as to what each command does and in what scenarios to use it.
Feel free to flick back and use this chapter as a reference.

In Chapter 4, Discovering Vagrant Boxes - Vagrant Cloud, we will learn about Vagrant boxes
and the Vagrant Cloud. You will learn how to install a Vagrant box, manage it, create your
own Vagrant box, and search for other community- and company-created boxes on the
Vagrant Cloud platform.

4
Discovering Vagrant Boxes -

Vagrant Cloud
In this chapter, you will learn all about Vagrant boxes. You will learn what a box is, and
how to manage one via the Vagrant commands and sub-commands that we covered in the
previous chapter. We will also learn about the Vagrant Cloud, which is an online catalog of
public and private Vagrant boxes available for you to search and install on your system –
ready to use for your own Vagrant environment!

By the end of this chapter, you will have a solid foundational knowledge of Vagrant boxes
and the Vagrant Cloud. You will also learn about the following topics:

The anatomy of a Vagrant box
How to install Vagrant boxes
How to remove Vagrant boxes
Box versioning
What is the Vagrant Cloud?
How to create your own box (repackaged)
How to upload your custom box to the Vagrant Cloud
Enterprise solutions for Vagrant boxes

Understanding Vagrant boxes
A Vagrant box is a specific package format for containing Vagrant environments. A
Vagrant box file uses the .box file extension. A Vagrant box can be used with any platform
and system that Vagrant supports to create the same environment by following the steps in
the box file.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[50]

Vagrant box file anatomy
A Vagrant box file is made up of three components: box file, box metadata, and box
information. These components help package everything you need into one file. Various
parts of these components are used by Vagrant when using and installing a new box to
create the correct environment. Let's dive into the three components and see what each one
does.

Box file
The box contains different information depending on the provider. It is provider-specific
and could be in several different formats, such as ZIP, tar.gz, or TAR. This information is
not used by Vagrant but is instead passed on to the provider.

Box metadata
The box catalog metadata is generally used with the Vagrant cloud platform. It contains
information such as the box name, different versions, descriptions and different supported
providers, and any URLs to specific box files. This metadata is usually stored as a JSON
document. The filename would be metadata.json.

Box information
The box information is the extra details that you can add. These extra details are displayed
when a user runs the vagrant box list --box-info command. You can set
information for the author name/company and a URL. This file is a JSON document and the
filename would be info.json.

How to install a Vagrant box
In this section, you will learn how to install a Vagrant box. There are a number of ways that
Vagrant boxes can be installed:

A URL that points directly to the box file
A shorthand/alias for a public box name, such as debian/jessie64
A file path or URL to a box in a specific catalog

Often, the simplest option is to use shorthand as it does not require you to know the full
box URL or catalog URL.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[51]

When a Vagrant box supports multiple providers, you will be given the option to choose
which one you wish to install:

You can also use the --provider flag to specify which provider version of the box you
wish to install. Vagrant offers an easy-to-use option, such as the preceding screenshot, or
provides a much more comprehensive utility when using the command line.

Direct URL to box file
Using this option requires you to know the full URL to a box file and you must use the --
name flag so Vagrant has some reference to the box. This reference helps with updating and
versioning.

Here is an example of the command: vagrant box add --name "mybox"
http://www.example.com/boxname.box.

This command would install the boxname.box box, giving it the name mybox, and
downloading it from the www.example.com domain.

Shorthand/alias to box file
This method is fairly simple and straightforward if you know theshorthand/alias name for
the box.

Here is an example of the command: vagrant box add debian/jessie64.

This command will install the 64-bit Jessie version of the Debian OS. You can often find the
shorthand/alias box name by searching online via search engines or using the Vagrant
Cloud platform.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[52]

A file path or URL to a box in a specific catalog
This method is similar to the first method mentioned in the Direct URL to box file section,
where you can use a URL or file path to download and install a box file directly.

Here is an example of the command: vagrant box
add https://app.vagrantup.com/ubuntu/boxes/trusty64.

This command will install the 64-bit Trusty version of Ubuntu. You do not need to use the -
-name flag for this method as Vagrant will get this information from the box metadata and
box information files.

How to delete a Vagrant box
At some point, you may need to delete a Vagrant box from your system. There may be a
few reasons:

To free up system space
To remove a corrupt version
To remove an old version that is no longer required

Whatever your reason, in this section, you will learn how to delete Vagrant boxes. Before
deleting a box, it's worth getting the correct name/format in case you accidentally delete the
wrong box!

To list the available boxes on your system, run the vagrant box list -i command,
which will return the installed boxes on your system, their name, their provider, and the
latest version. Using the -i flag will supply an additional description that may help you
choose the correct box.

Deleting a specific version of a box
It is possible to delete a specific version of a Vagrant box without deleting the box entirely
from your system. You may do this to free up space from older box versions that you no
longer use on your system.

You can run the vagrant box prune --dry-run command to view a list of outdated box
version on your system. The output of this command will show you boxes that will be kept
(if you choose to run the prune command) and any boxes that will be removed.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[53]

Here is the example output of the preceding command:

If you wish to remove all outdated boxes from your system, run the vagrant box prune
command.

To delete a specific box version, you can run the vagrant box remove [BOXNAME] --
box-version [BOXVERSION] command, where the first parameter is the box name and
the second is the specific version. Here is the example output:

Deleting all versions of a box
To remove all versions of a Vagrant box, you can run the vagrant box remove
[BOXNAME] command, where the first parameter is the box name. When running this
command, your terminal will ask for confirmation before deleting the box.

Here is the example output:

If, for any reason, you just want to delete the box without confirmation, you can run the
vagrant box remove [BOXNAME] --force command, which uses the --force flag.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[54]

Box versioning
Vagrant boxes can have multiple versions that can be installed on your system. In the
previous section, we discussed how to prune outdated box versions and how to delete a
box by a specific version.

Vagrant Cloud
In this section, we will focus on the Vagrant Cloud. We will learn what it is, what it is used
for, how you can use it, and how you can search the Vagrant Cloud for Vagrant boxes to
install on your system.

Understanding the Vagrant Cloud
The Vagrant Cloud is HashiCorp's cloud platform that allows you to search, upload, and
download Vagrant boxes. It allows you to create accounts and offers three different account
tiers, which are a mix of free and paid.

Vagrant Cloud website
You can access the Vagrant Cloud website by visiting https:/ / app.vagrantup. com,
although it may redirect you to https:/ / app. vagrantup. com/ boxes/ search.

There are currently three different pricing tiers, which offer different features depending on
what you need. Here are the three tiers:

Free: This option provides unlimited public boxes
Personal: This option provides unlimited public boxes and an option of $5 per
month per private box
Organization: This options provides unlimited public boxes, an option of $25 per
month per private box, and the ability to share private boxes with teams

To choose the right tier, it really depends on your use case and what you wish to use the
Vagrant Cloud for. You can start with the free tier and always upgrade if you need to.

https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[55]

Installing a Vagrant box found on the Vagrant Cloud –
Part 1, Search
Let's use the search feature to find a box that we can install on our system. The search
feature is fairly simple, but does offer a few filters. You can access the search box at https:/
/app.vagrantup.com/ boxes/ search.

You should see a section similar to the following screenshot:

There are three different options available for searching the Vagrant Cloud:

The main text input area in which you can type pretty much anything – the box
name, operating system, architecture, and included software.
You can filter by Provider, such as virtualbox, vmare, and docker. If you have no
preference, you can choose the any option.
You can also sort the results by Downloads (number of total downloads),
Recently Created, and Recently Updated.

Let's search for a Laravel (this is a PHP framework) box that supports the VirtualBox
provider and let's sort it by Downloads:

https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search
https://app.vagrantup.com/boxes/search

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[56]

Let's click on the first result to get more information about that box:

There is a wealth of information found on this page, including the box version history. The
latest box version is listed by most recent so you should always see the latest one at the top.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[57]

The first section, titled How to use this box with Vagrant, gives a two basic examples about
installing and using this box on your system. The default tab shown is the Vagrantfile one,
which shows you three lines that can be added to your Vagrantfile. The second tab, titled
New, shows you how to install and run the box using commands in your terminal, you can
see that option here:

Let's look at version 6.0.0, which is the currently-released version. You can see when this
version was created (in our case, it was 20 days ago) and there is a GitHub URL available
where you can view the release information for that specific version.

In this section, you can also view which providers this version supports and the file size for
this box. In our case, we can see that three providers are supported for the 6.0.0 version:
hyperv, vmware_desktop, and virtualbox. We can see that the file size for hyperv is 1.26
GB, and for vmare_desktop and virtualbox the file size is 1.38 GB.

Installing a Vagrant box found on the Vagrant
Cloud – Part 2, Install
Now that we have found the Vagrant box we want, let's install it and use it on our system.
We will use the init command to create a new Vagrantfile and install the box.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[58]

First create a new empty directory, move into that directory, and run the vagrant init
laravel/homestead command, as described on the Vagrant Cloud website:

You should now see a new Vagrantfile in your current directory, run the ls command to
see:

Let's look inside the Vagrantfile. I've opened the Vagrantfile using the Atom text editor.
Let's focus on the first few lines (not the comments):

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[59]

You can see on line number 15 that the config.vm.box key has been set a value of
laravel/homestead. This is what the init command does, it creates/initializes a new
Vagrantfile and sets a specified value depending on the parameter of the command.

We can now start up the Vagrant box, which will install the laravel/homestead box. Run
the vagrant up command:

If you do not have the box installed on your system, it will first have to download the .box
file. The file is approximately 1.38 GB (according to the Vagrant Cloud website for the
current version we are trying to download, which is 6.0.0); it may take some time to
download depending on your internet connection/speed.

Once installed, you should see a green success message and the box will start to be
imported:

Once imported, Vagrant will continue the box initialization, which will configure
networking, SSH, and storage mounting. You can start experimenting with the box by
connecting via SSH by running the vagrant ssh command:

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[60]

Let's run a simple command against the Vagrant box to make sure everything is working.
Once you've run the ssh command, run the php -v command, which will output the PHP
version installed on the system. PHP should be installed as that is one of the requirements
of the Laravel framework. You should see an output similar to the following:

We can see that PHP is installed and the version is 7.2.4-1. If you wish to exit out of the
Vagrant box, simply run the exit command. You can view vagrant status to view the
status of the Vagrant box, the value should be virtualbox (running). You can stop the
command by running the vagrant halt command:

You can now check the status again by running the vagrant status command again:

You can see that the status has changed to poweroff (virtualbox).

Uploading a Vagrant box to the Vagrant
cloud
In this section, you will learn how to create your own Vagrant box and how to upload that
box to the Vagrant cloud. You will learn how to package up a base box to work with the
VirtualBox provider.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[61]

Before we continue, please create an account with the Vagrant Cloud platform. This can be
done at https://app. vagrantup. com/ account/ new or by visiting the Vagrant Cloud
website and clicking on the Create an Account link in the menu.

Creating a Vagrant box
Before we can upload anything to the Vagrant Cloud platform, we need to create a box.
Our Vagrant box will be a repackaged version of the ubuntu/xenial64 base box that can
be found on the Vagrant Cloud platform. To keep it simple, we will simply be repackaging
this box and uploading it using a different name.

First of all, you will need to make sure you have the ubuntu/xenial64 box installed on
your system. You can check this by running the vagrant box list command. You can
see that I have it installed on my system as it appears in the following screenshot:

If you do not have it installed, run the vagrant box add ubuntu/xenial64 command to
install the box on your system.

Let's run the box to make sure it's working correctly. Run the vagrant init
ubuntu/xenial64 command to generate a basic Vagrantfile and then run the vagrant up
command to get the box up and running.

Once up and running, you should be able to vagrant ssh into the machine. Everything
should be working, let's now exit out of the box and run the vagrant halt command to
stop the machine.

https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new
https://app.vagrantup.com/account/new

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[62]

Now it's time to set up the Vagrant box in the Vagrant Cloud dashboard. Log into your
account and click on the Dashboard button, you should see another button titled New
Vagrant Box. Click on that button and you should see the following screen:

The name is split into two parts: your username and the box name separated by a slash. My
box will be accessible via abraunton/alextest, but it would be better to use a more
descriptive name. You cannot use private mode unless you have a paid account. I would
recommend adding in a Short description when possible. Click on the Create box button to
continue when you are ready.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[63]

We now need to add a version in for this box. Let's start with 0.0.1 as this is the very first
iteration of our box. You can also add in a Description for this specific version:

Click on the Create version button when you are ready. We now need to add a provider to
our Vagrant box. You can do this by clicking the Add a provider button, within your new
version:

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[64]

You will now need to choose which provider this box file supports. We will be sticking
with VirtualBox in this example and selecting the Upload to Vagrant Cloud option as we
wish to directly upload the box file:

Before we can continue, we must package the box into a file. You can do this by running the
vagrant package --output alextest.box command in the same directory as the box
you wish to package:

This may take a few minutes, depending on the size of your machine. Once completed,
head back to the Vagrant Cloud page and click the Continue to upload button:

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[65]

Choose the file (it must be a .box file) and the upload should start automatically. This may
take some time, depending on your internet speed. When complete, the status should
change to Upload Complete.

Congratulations! You have successfully created and uploaded a Vagrant box onto the
Vagrant Cloud. You can see this by clicking on the Dashboard menu; this will now list any
boxes you have added:

You can see that under the My Vagrant Boxes section, my abraunton/alextest box has
appeared. It has the description that we added in and it also states that there are No
released versions. This means that the box is unavailable for download but we can change
that. Click into the box and you should see the following message:

Scroll down and you should see the 0.0.1 version of the box that we have uploaded. Click
on the Release... button to start the release process:

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[66]

You will now see a confirmation screen and will be required to click on the Release version
button to complete the process:

You should now see a green Successfully released message. Congratulations! You have
publicly released your first Vagrant box onto the Vagrant Cloud:

Now for the real test; let's check to make sure our box is available and that we can install
and run it on our system. Run the vagrant init abraunton/alextest --box-
version 0.0.1 command:

This will generate a Vagrantfile telling Vagrant to use the abraunton/alextest box and the
specific version of 0.0.1. Next, run the vagrant up command. This will install our box
from the Vagrant Cloud and create our environment:

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[67]

If your box is available and has a release, you should be able to successfully download it. If
all goes well, you should see this green message in your terminal:

The Vagrant box should now be up and running, let's vagrant ssh into the box and see
what we get. Upon SSHing in, you should see the Ubuntu welcome message. That's correct,
as we repackaged an Ubuntu box:

Congratulations! You have successfully installed and run your Vagrant box from the
Vagrant cloud. You may now stop the machine, remove the box, or experiment with it.
Have fun!

Enterprise solutions for Vagrant boxes
If you are looking for a more enterprise solution for hosting and managing your boxes,
there are services available to you.

These services offer products and features such as the following:

Box-hosting
Box versioning
Private box access and security
Local repositories for offline box access
Advanced/smart search

An example of this type of service is Artifactory, which is developed by JFrog. Artifactory
is a binary artifact-management tool. Artifactory allows you to host, manage, and version
Vagrant boxes in a secure manner. Their focus on security often appeals to enterprise
customers who may need to host sensitive data.

Discovering Vagrant Boxes - Vagrant Cloud Chapter 4

[68]

Artifactory offers a type of onsite hosting by using local repositories. It still allows you to
share access between employees and teams within your organization. These repositories
can be cloned to other Artifactory services if access needs to be shared outside local
networks.

Depending on your requirements and company rules, a solution such as this may be worth
looking into. The Vagrant Cloud is an excellent service to consider as well.

Summary
In this chapter, we covered many aspects of Vagrant boxes. We learned what a Vagrant box
is, what forms a box, how to install a box, how to delete a box, box versioning, and we
created our own (repackaged) box and uploaded it to the Vagrant Cloud. We then installed
that box from the Vagrant Cloud and tested it on our system.

In Chapter 5, Configuring Vagrant Using a Vagrantfile, we will focus on the Vagrantfile. We
have briefly mentioned this file but we have not used it to its full potential yet. The
Vagrantfile is used to configure Vagrant and offers a very powerful but easy-to-use syntax.
You will learn how to create a Vagrantfile, how to validate one, and the syntax it uses.

5
Configuring Vagrant Using a

Vagrantfile
In this chapter, we will focus on configuring Vagrant by using Vagrantfiles. We will focus
on the key aspects of a Vagrantfile, such as its structure and syntax. At the end of this
section, we will have covered the following topics:

Understanding Vagrantfiles
Creating a Vagrantfile
Vagrantfile structure and syntax
Troubleshooting a Vagrantfile

Understanding Vagrantfiles
A Vagrantfile is the main way of configuring a Vagrant environment. This file has no
extension as such; it is simply found on your system as Vagrantfile , not .Vagrantfile
or vagrantfile.Vagrantfile.

Using a Vagrantfile allows you to manage your Vagrant environment dependencies and
settings. It is a best practice to have one Vagrantfile per Vagrant project, and to include the
Vagrantfile in your source control.

One of the main benefits of using a Vagrantfile is the ability to share that file with any other
developer that has Vagrant installed. They will be able to simply run the vagrant up
command to pull in any dependencies, such as boxes, and to set up any configuration to get
the same Vagrant environment up and running as you.

Configuring Vagrant Using a Vagrantfile Chapter 5

[70]

Creating a Vagrantfile
Before we create our own Vagrantfile, let's first create and move into a new directory. In
this example, we will create a new directory called vagrantfiletest to keep things
simple! Run the following commands in the given order:

mkdir vagrantfiletest1.
cd vagrantfiletest2.
vagrant init3.

By using the vagrant init command, we have now initialized a new Vagrantfile in our
current vagrantfiletest directory, as shown in the following screenshot:

The default Vagrantfile has a basic structure to get you started. If you wish to create a very
minimal shell then you can run either the vagrant init --minimal or the vagrant
init -m command, either of which will generate a very basic Vagrantfile with no
comments or additional settings, as follows:

Vagrant.configure("2") do |config|
 config.vm.box = "base"
 end

Now let's move on to the next section and learn more about a Vagrantfile's syntax.

Vagrantfile syntax
A Vagrantfile uses the Ruby language syntax but no knowledge of Ruby is required. It is a
simple, expressive, and easy-to-understand language when using the Vagrantfile. In most
cases you will simply be setting a variable and a value, such as config.vm.box =
"ubuntu/trusty64" , which sets the box to ubuntu/trusty64, the 64-bit version of
Ubuntu 14.04.

Configuring Vagrant Using a Vagrantfile Chapter 5

[71]

A Vagrantfile configuration is contained within the configure block. The first line
is Vagrant.configure("2") do |config| and the last line is end. Within this block we
can define all sorts of values, such as the Vagrant box, networking, filesystems,
provisioning, and more.

Vagrantfile options
In this section, we will cover the various sections that are available to configure in a
Vagrantfile. You will learn how to configure the virtual machine directly, configure the
provider (VirtualBox), and configure how Vagrant will connect to your machine via SSH or
any other communicator.

Vagrant machine configuration (config.vm)
Using the config.vm namespace, we will look at configuring certain parts of the Vagrant
machine, such as box information and miscellaneous settings including synced folders,
provision, and providers. The configurable elements are as follows:

config.vm.boot_timeout is used to specify (in seconds) how long Vagrant
will wait for the machine to start up and become available for use. The default
time is 300 seconds.
config.vm.box is used to set a specific box for the machine. You can reference a
box already installed on your system or a shorthand syntax box name from the
Vagrant cloud, such as ubuntu/trusty64.
config.vm.box_check_update is used by Vagrant to check whether the box
you have selected or the box being used by the current machine is up to date. The
default setting is true but only certain box types can be checked for an update –
mainly Vagrant cloud boxes. If an update is found during the Vagrant startup
process, a yellow message will be displayed on the screen to the user.
config.vm.box_download_checksum is used to compare the checksum of a
box and a given checksum; if they do not match then it will throw an error.
Vagrant will only perform this check when a box needs to be downloaded. This
value requires the config.vm.box_download_checksum_type value to be set.

Configuring Vagrant Using a Vagrantfile Chapter 5

[72]

config.vm.box_download_checksum_type is the checksum hash type used
when comparing checksum values used by the
config.vm.box_download_checksum value. There are a few supported
options here, and they are md5, sha1, and sha256.
config.vm.box_download_client_cert is used to supply a path to a client
certificate that is used when downloading a box. There is no default value for this
setting.
config.vm.box_download_ca_cert is used to supply the path to a CA
certificate bundle that is used when downloading a box directly. The default
value for this uses the Mozilla CA certificate bundle.
config.vm.box_download_ca_path is used to supply a path to a directory
containing CA certificates when downloading a box directly. Similarly, the
default value used is the Mozilla CA certificate bundle.
config.vm.box_download_insecure is used to validate SSL certificates from
the server. If true is set then no validation will be done. If the box URL is HTTPS
then the SSL certificates will be verified.
config.vm.box_download_location_trusted is used to trust all redirects
when the value is set to true. The default process is for Vagrant to trust the
initial request, using any specified credentials.
config.vm.box_url is used to set a specific box URL. This is similar to
config.vm.box but it does not support the shorthand Vagrant cloud syntax for
box names; if config.vm.box has been set in the Vagrantfile, you do not need to
specify a value here. The value specified can be a single URL or multiple URLs
that will be tried in order. If you have already configured other settings such as
certificates, they will be applied to all URLs supplied. The Vagrantfile does also
support local files using the file:// abbreviation and scheme.
config.vm.box_version is used to specify what box version to use. This value
supports constraints separated by commas such as (greater than and equal to) >=
0.2 and < 2.0 (less than), where Vagrant would look for a box version that's
between 0.2 and less then 2.0 . Vagrant will try and get the latest box version
within these constraints. The default value used is >= 0, which signifies the latest
version available.
config.vm.communicator is used to set the communicator type that connects
to the guest box. The default value is ssh but it is recommended that Windows
guests use winrm.

Configuring Vagrant Using a Vagrantfile Chapter 5

[73]

config.vm.graceful_halt_timeout is used to set the time (in seconds) that
Vagrant will wait for the machine to halt. This applies when the vagrant halt
command is used, and the default value is 60 seconds.
config.vm.guest is used to set the guest OS that will be running within the
machine. Vagrant will attempt to auto-detect the correct OS used. This
information is required to perform certain OS-specific values such as network
configuration. The default value for this is :linux.
config.vm.hostname is used to set a hostname for a machine. The value should
be provided as a string, for example elite. The default value is nil, which
means that Vagrant will not manage the hostname. This hostname (if it's a
provider) will be set during boot.
config.vm.network is used to set the machine's network options. There are
quite a few options available for this setting, and they will be covered in a later
chapter. Some of the main options include forwarded_port,
private_network, and public_network. Each option has various sub-values
or sub-options that you can set.
config.vm.post_up_message is used to display a message to the user after the
vagrant up command is run. This is similar to a message of the day found on
servers or other pieces of software that you can log into.
config.vm.provider is a configuration block used to set provider-specific
values. Each provider supports different values but you can have multiple
configuration blocks that target different providers. As we are using VirtualBox
as our provider, we can set specific values such as memory, which sets the RAM,
cpus, which sets the CPU core count, and gui, which when set to true will
actually open the Vagrant machine in a GUI so you can interact with it.
config.vm.provision is used to specify a provisioner that can install and
configure software during the creation process. This is quite an advanced topic
and something we will cover in later chapters. Certain providers supported are
Chef, Ansible, Puppet, and a standard script.
config.vm.synced_folder is used to configure synced folders between your
host machine and the guest machine. This will allow you to create or edit a file
on your system (in the synced folder) and have that change made and become
visible in the Vagrant machine.
config.vm.usable_port_range is used to specify a port range that Vagrant
can use. The default value or port range is 220..2250. Vagrant will use these
values for any port collisions that happen.

Configuring Vagrant Using a Vagrantfile Chapter 5

[74]

Vagrant SSH configuration (config.ssh)
Using the config.ssh namespace we will look at configuring Vagrant so it connects to a
guest machine using SSH. Here, we will look at certain values such as SSH username,
password, ports, and keys, as follows:

config.ssh.username is used to set the username that Vagrant will use when
trying to connect via SSH. The default username is vagrant.
config.ssh.password is used to set the password that Vagrant will use when
trying to connect via SSH.
config.ssh.host is used to set the hostname or IP address used when SSHing
in. This value is often left blank by default as the provider can auto-detect the
correct value.
config.ssh.port is used to set the port used for SSHing into. The default value
used is 22.
config.ssh.guest_port is used to set the port number that SSH will run on
on the guest machine. Vagrant can use this along with config.ssh.port to
intelligently connect to the correct SSH port. This is often used if there is a
forwarded port.
config.ssh.private_key_path is used to set the path to a private key that
you want to use when connecting to a machine. The default value is an insecure
key that Vagrant and many public boxes use.
config.ssh.keys_only is used when you wish to use Vagrant-provided SSH
keys. The default setting is true.
config.ssh.verify_host_key is used to perform host-key validation. The
default value is false.
config.ssh.forward_agent is used to enable agent forwarding over SSH. The
default value is false.
config.ssh.forward_x11 is used to enable X11 forwarding over SSH. The
default value is false.
config.ssh.forward_env is used to supply an array of host environment
variables to the guest machine.
config.ssh.insert_key is used when true (as per the default setting) to
insert a new keypair to use with SSH, replacing the insecure, default Vagrant
keypair. When set to true, this value is also used with the
config.ssh.password option.
config.ssh.proxy_command is used to proxy a command-line command
through SSH via stdin.

Configuring Vagrant Using a Vagrantfile Chapter 5

[75]

config.ssh.pty is not recommended unless you really need to use it. This
option, when set to true, will use pty for provisioning. pty can break certain
parts of Vagrant so be wary when using it.
config.ssh.keep_alive will send keep alive packets via SSH every 5 seconds
to keep the connection alive when the value is set to true.
config.ssh.shell is used to set the shell you wish to use when running SSH
commands from Vagrant.
config.ssh.export_command_template is the template used when
generating environment variables in the active session.
config.ssh.sudo_command is used to set the command when running a sudo
command. The default value is sudo -E -H %c, where %c is replaced by the
command to run.
config.ssh.compression is used to send a compression setting when
connecting via SSH if the value is set to true. To disable this, set the value to
false.
config.ssh.dsa_authentication is used to send the DSA authentication
setting when connecting via SSH if the value is set to true. To disable this, set
the value to false.
config.ssh.extra_args is used to pass additional commands into the SSH
executable. It supports a single value or an array of values. This can be sent to
enable more advanced actions with SSH, such as reverse tunneling.

Vagrant settings (config.vagrant)
Using the config.vagrant namespace we will look at configuring Vagrant specifically.
There are not many options available within this namespace compared to the others we
have already looked at. The commands for the config.vagrant namespace are as follows:

config.vagrant.host is used to set the host machine that is running Vagrant.
The default value is :detect, which allows Vagrant to intelligently auto-detect
the host. Certain features Vagrant offers are host-specific and this value is only
recommended to be changed if auto-detection fails.
config.vagrant.sensitive is used to supply a list or array of items that will
not be displayed in Vagrant's output or logged output. These values are often
passwords or keys.

Configuring Vagrant Using a Vagrantfile Chapter 5

[76]

Other Vagrantfile settings
There are two other namespace settings that you can configure in the Vagrantfile. We will
not be focusing on these in detail in this book, but the following section will offer an
overview.

WinRM settings (config.winrm)
The config.winrm namespace is used to configure Vagrant when using a Windows guest
machine. To use these settings, you must set your config.vm.communicator setting to
winrm.

There are around 12 different configuration options available, which include
config.winrm.username, config.winrm.password, config.winrm.port, and
config.winrm.transport. Using the config.winrm namespace gives you much more
control over how Vagrant behaves when using a Windows guest machine.

WinSSH settings (config.ssh and config.winssh)
This uses the config.ssh namespace, similar to namespaces we discussed earlier. This
uses the WinSSH software, which is used for the Windows-native port of OpenSSH.
Vagrant's official documentation states that WinSSH is in the pre-release stage and is
therefore not yet production-ready.

There are around 17 different options available, which are a mixture of the config.ssh
and config.winssh namespace, these
include: config.ssh.username, config.ssh.password, config.winssh.forward_ag
ent, config.winssh.upload_directory , and
config.winssh.export_command_template.

Troubleshooting a Vagrantfile
A Vagrantfile can be quite a complex collection of configuration options. There are multiple
options, such as basic string values, configuration blocks, array values, and much more. It
can be quite common to write out a Vagrantfile, go to run vagrant up or a similar
command, and be faced with an error.

Configuring Vagrant Using a Vagrantfile Chapter 5

[77]

An example of a Vagrant error after running the vagrant up command is as follows:

Let's dissect the error in the preceding screenshot. The first clue is a reference to the line
number Vagrantfile:24; in other words, line 24 of the Vagrantfile. This error also gives
us the type of error: syntax error, unexpected tIDENTIFIER, expecting
keyword_end # accessing "localhost:8080" will access port on. This could
mean that a config block or loop has no end value set, or we have tried to set an incomplete
variable.

An easy way to check a Vagrantfile after making any changes and trying to run or
provision a Vagrant machine is by using the vagrant validate command. In the
following screenshot, you can see that we still get the same error and output from Vagrant
even with the vagrant validate command:

Configuring Vagrant Using a Vagrantfile Chapter 5

[78]

Now let's open up the Vagrantfile and take a closer look at line 24, as shown in the
following screenshot:

Looking at line 24, we can see the value # accessing "localhost:8080" will access
port 80 on mentioned in the error. Now, although this is a comment, we can see that the
localhost:8080 value is exposed because it is wrapped in double quotes ("). If we trace
back towards the beginning of the file, we should come across line 15, which looks a little
odd. Here, we can see the value is config.vm.box = "base but there is no closing double
quote.

Configuring Vagrant Using a Vagrantfile Chapter 5

[79]

So, let's add a double quote to the end of this line, save the file, and run the vagrant
validate command:

Great! As you can see in the preceding screenshot, we have successfully found the error
and fixed it.

Summary
In this chapter, we looked at how to configure Vagrant using the Vagrantfile. We also
looked at various parts of the Vagrantfile, such as how to create one, its supported
commands, options, and values, its syntax and layout, and how to troubleshoot it when
there is an issue. In the coming chapters, we will be using the Vagrantfile more to focus on
specific areas of Vagrant, such as provisioning.

In Chapter 6, Networking in Vagrant, we will look at networking in Vagrant. In it, we will
learn about the three main types of networking configurations: port-forwarding, public
networks, and private networks.

6
Networking in Vagrant

In this chapter, we will be focusing on networking in Vagrant. By the end of this chapter,
you will have a good understanding of the different networking options available in
Vagrant. You will be able to configure networking in Vagrant using simple methods, such
as port-forwarding, or set custom IP addresses using public and private networking.

Here are the three networking types present in Vagrant that you will learn about in this
chapter:

Port-forwarding
Private networking
Public networking

Port-forwarding
A powerful yet simple way to configure networking in Vagrant is to use port-forwarding.
This does not require any advanced knowledge or configuration on your part.

Port-forwarding is the action of linking a port on your host machine to a port on the guest
machine. It is as simple as that, but can be really powerful as it allows you to get up and
running quickly.

Networking in Vagrant Chapter 6

[81]

The following are the steps to configure port-forwarding:

Open up our Vagrantfile. We'll start with a very basic Vagrantfile by using the1.
ubuntu/xenial64 box and a basic shell provision script to install the nginx web
server:

Once you've saved the Vagrantfile, run the vagrant up command:2.

Networking in Vagrant Chapter 6

[82]

Once the box has completed installing nginx and is up and running, open your3.
web browser and try navigating to localhost:8080:

nginx should be available (possibly not on port 8080), but as you can see, we4.
cannot access it. This is because we have not yet set up port-forwarding. If we
access localhost from inside the Vagrant machine, we should be able to access it.

Networking in Vagrant Chapter 6

[83]

Run the vagrant ssh command. Once in the Vagrant machine, run the curl5.
localhost command. This should return the nginx default page in HTML code:

Let's set up port forwarding so we can access this page from the host machine6.
(outside Vagrant).

Networking in Vagrant Chapter 6

[84]

Exit out of the machine and open up your Vagrantfile again. In the following7.
code (you can see it on line 8 of the following screenshot) – config.vm.network
"forwarded_port", guest: 80, host: 8080:

Let's break down the line that we just added into the Vagrantfile. First of all, we
are calling the config.vm.network namespace to tell Vagrant that we want to
change the network settings. The first argument we are passing in is
forwarded_port, followed by two different port numbers. The first port is the
port number that we will be accessing inside the guest/Vagrant machine. In the
preceding example, we will be accessing port 80, which is generally the default
port for a website/web server. The final argument is the host port, which is the
port that we connect to from our host. In our example, it would be 8080, and via
URL we could access it at http://localhost:8080, which would connect to
Vagrant and access the machine's port 80.

Save the Vagranfile and run the vagrant reload --provision command.8.

Networking in Vagrant Chapter 6

[85]

This will restart the Vagrant machine and force provisioning to run again. You'll9.
see, at the bottom of the following screenshot, that it now includes our new port
in the default: Forwarding ports... section:

Once the Vagrant machine is finished provisioning and is up and running, try to10.
open localhost:8080 in your browser:

You should see the Welcome to nginx! default page. Congratulations! You have
successfully configured port-forwarding on your Vagrant box.

Networking in Vagrant Chapter 6

[86]

Port-forwarding notes
When using the port-forwarding option within the Vagrantfile, there are a few tips you can
use.

If you wish to forward multiple ports, simply create a new line and add the new guest/host
ports. This could get messy if you have lots of ports to manage. At this point, it may be
worth looking into the public and private networking options later in this chapter.

There are more options/parameters that you can use with this configuration:

auto_correct: Used for port-collision. If set to true, Vagrant will check to see
whether it collides with a port already being used. If one is found, Vagrant will
change the port number automatically.
guest_ip: The IP address of the guest that you wish to bind to the forwarded
port.
host_ip: The IP address of the host that you wish to bind to the forwarded port.
protocol: The protocol allowed through the forwarded port. You may supply
udp or tcp as options.
id: The rule name visible in VirtualBox. This would be formatted as
[protocol][guest], for example udp111.

These arguments are optional. However, you are required to specify the guest and host
port values.

Private networking
Private networking allows your Vagrant machine to be assigned and accessed via a private
address space IP address. An example of a private IP address would be one you may have
seen on your local area network, such as 192.168.1.2.

Using this method can enable less restriction when accessing your Vagrant machine
compared to port forwarding, since, by default, you can access any available port on that
local IP address.

To use private networking, there are two main options. You can allow the IP address to be
assigned by the Dynamic Host Configuration Protocol (DHCP) or you can choose one
manually by adding in a static IP address.

Networking in Vagrant Chapter 6

[87]

DHCP
Follow these step to use the DHCP option:

You must select dhcp as the value for the type parameter. Within your1.
Vagrantfile, add the following line to enable DHCP private networking:

config.vm.network "private_network", type: "dhcp"

When you save the Vagrantfile, you can run vagrant up --provision to see2.
the changes:

To find out the IP address of the newly-upped Vagrant machine, we must SSH3.
into the machine itself.
Run the vagrant ssh command. Once in the Vagrant machine, run the4.
ifconfig command (this networking command will depend on the operating
system). Here is an example output:

Networking in Vagrant Chapter 6

[88]

In the enp0s8 section, you can see there is a red underlined value starting with5.
inet addr:. This is the private IP address that our Vagrant machine is using.
The value is 172.28.128.3. Let's see whether we can now access the machine
via this IP address.
Open an internet browser on your host machine and type in the IP address that6.
was returned inside your Vagrant machine.

You should still have nginx running on port 80 inside the Vagrant
machine to see the results.

The following is an example of me navigating to that private IP address and7.
seeing the nginx web server default page that was served from inside the
Vagrant machine:

Static IP
To use the static IP option:

Enter a private address space IP address as the value for the ip parameter.1.
Within your Vagrantfile, add the following line to enable static IP private
networking:

config.vm.network "private_network", ip: "10.10.10.10"

Networking in Vagrant Chapter 6

[89]

When you save the Vagrantfile, run vagrant up --provision to force the2.
changes. To confirm that your changes have been made, enter
the 10.10.10.10 IP address into your internet browser on your host machine to
see whether you get the nginx homepage:

You can also vagrant ssh into the machine, run the ifconfig command (this3.
is OS-dependant), and look for that IP address in the returned values:

Networking in Vagrant Chapter 6

[90]

When using the (static IP) option with private networking, there is an optional4.
parameter you can supply. The auto_config parameter allows you to enable or
disable auto-configuration. If you wish to manually configure the network
interface, you can disable it using the false value:

config.vm.network "private_network", ip: "10.10.10.10",
auto_config: false

I've found that in certain circumstances, sometimes you have to disable
auto_config to get the static IP address to work.

IPv6
You can also specify an IPv6 address using a similar format in your Vagrantfile:

config.vm.network "private_network", ip: "fd12:3456:789a:1::1"

Using an IPv6 address is not supported by the DHCP option and must be supported by
your host machine/network adapter. It is worth mentioning that the default subnet for IPv6
is /64.

Public networking
Public networking in Vagrant can be quite a confusing concept. In essence, it is private
networking, but Vagrant will attempt to allow public access from outside your host
machine (if your provider and machine will allow it) instead of just allowing access from
inside the host machine.

By performing the following steps, you should be able to access your Vagrant machine via
an IP address from another device on your local network. Make sure that you have nginx
installed so you know when you have successfully connected via HTTP to the IP address. I
have been able to view the nginx default page using my smartphone on the same local
network. If you were to use the private_networking option, this would not work and
my smartphone would not be able to load a page or find the device, which would result in
a timeout.

There are two main ways to set up public networking: you can use DHCP or manually
assign a static IP address.

Networking in Vagrant Chapter 6

[91]

DHCP
The fastest and easiest way to get started with public networking is to allow DHCP to
assign an IP address to the Vagrant machine:

In your Vagrantfile, use config.vm.network "public_network" to get it1.
started.

There is no need to specify the type parameter like you would in the
private networking DHCP configuration.

Run the vagrant up --provision command to get the Vagrant machine up2.
and running. As we are using a public network, you will be prompted to select a
bridged network interface. Depending on your requirements and some possible
trial and error, choose one. I will select the first option, 1) en0: (Wi-Fi)
Airport:

To find out the IP address of the newly-upped Vagrant machine, we must SSH3.
into the machine itself. Run the vagrant ssh command. Once in the Vagrant
machine, run the ifconfig command (this networking command will depend
on the operating system).

There is an optional parameter that can be supplied when using DHCP. This is
the DHCP assigned default route. In certain cases, this option may be required.

An example of this parameter would be adding config.vm.network4.
"public_network", use_dhcp_assigned_default_route: true into your
Vagrantfile.

Networking in Vagrant Chapter 6

[92]

Static IP
Configuring a static IP address of your choice with public networking is fairly
straightforward. You must supply the ip parameter in the Vagrantfile and add in the IP
address you wish to use. Here is an example of the configuration in my Vagrantfile:

config.vm.network "public_network", ip: "192.168.1.123"

Save your Vagrantfile and run the vagrant up --provision command to get the
Vagrant machine up and running. As we are using a public network, you will be prompted
to select a bridged network interface. Depending on your requirements and some possible
trial and error then choose one. I will select the first option, 1) en0: (Wi-Fi) Airport:

Network bridge
As you've seen in the public network DHCP and static IP address, when you run the
vagrant up or vagrant up --provision command, you will be asked to select which
network bridge to use. To avoid this step, you can supply the default network bridge in the
Vagrantfile as an additional parameter: config.vm.network "public_network",
bridge: "en0: Wi-Fi (AirPort)".

Networking in Vagrant Chapter 6

[93]

Summary
In this chapter, we looked at how to configure and manage networking in Vagrant. We
focused on the three main types available: port-forwarding, private networking, and public
networking. You should now be able to configure Vagrant to match your networking
needs.

In Chapter 7, Multi-Machine, we'll look at Vagrant's multi-machine feature. This cool
feature allows us to configure and provision multiple Vagrant machines from one
Vagrantfile config. We'll create a real-world scenario of having multiple Vagrant
machines – one will act as a load balancer that distributes HTTP traffic between two
Vagrant boxes and a web server.

7
Multi-Machine

In this chapter, you will learn about Vagrant's multi-machine feature. We will walk through
various aspects of multi-machine, and by the end of this chapter you should have a good
understanding of the following topics:

An introduction to Vagrant multi-machine
Multi-machine configuration in the Vagrantfile
Connecting multi-machines via networking

An introduction to Vagrant multi-machine
Using Vagrant's multi-machine feature, you can easily manage multiple Vagrant machines
in one Vagrantfile. This can be useful if you wish to model your test environment in a
similar way to your production environment. You can easily separate servers such as web
servers, file servers, and database servers.

In this section, we will look at using multi-machine in the two following use cases:

In the first use case, we will look at managing three Vagrant machines. Here, we
will create a basic load balancing setup, where one machine will distribute traffic
between two machines that serve up a website.
In the second use case, we will be managing two Vagrant machines. We will
create a web-based machine that serves a website and another machine, which
runs a MySQL database. The web machine will communicate with the database
machine to display data on the web page.

Multi-Machine Chapter 7

[95]

Load balancing with Vagrant multi-machine
In this section, we are going to be using nginx to act as an HTTP load balancer that will
distribute traffic between two nginx web machines. We will be using the round robin
method of load balancing, which evenly distributes incoming traffic.

First, let's set up our Vagrantfile to contain the three machines before installing nginx with
the Ubuntu 16.04 64-bit OS.

To get started, let's create a minimal Vagrantfile by running the vagrant init -m
command. After that, let's edit the Vagrantfile and create three config areas as follows:

Vagrant.configure("2") do |config|
 # Configure load balancer machine
 config.vm.define "lb1" do |lb1|
 end
 # Configure first web machine
 config.vm.define "web1" do |web1|
 end
 # Configure second web machine
 config.vm.define "web2" do |web2|
 end
 end

Our Vagrantfile should now have the main |config| block, which encapsulates all of the
code and the three define blocks within that. Multi-machine is incredibly easy to set up in
Vagrant; all you have to do is define a new machine and then configure that machine
within the block.

When defining a new block you must give the new machine a name that will become its
reference during configuration. The first machine I have set up is named lb1, which simply
stands for load balancer 1. This convention can help when working with a large Vagrantfile
and multiple machines; it can also be useful when working on a team where multiple
developers are using and viewing a Vagrantfile.

To define a new machine, input the following two lines of code:

config.vm.define "lb1" do |lb1|
 end

This machine is now ready to configure! If we run vagrant up, nothing will happen
because the box has no values – there is no box, networking, provisioning, or file handling
defined.

Multi-Machine Chapter 7

[96]

Let's start configuring our load balancer machine by setting a box and an IP address. This
can be done by accessing the lb1 namespace within our config block, as follows:

config.vm.define "lb1" do |lb1|
 lb1.vm.box = "ubuntu/xenial64"
 lb1.vm.network "private_network", ip: "10.0.0.10"
 end

As you can see in the preceding example, we have set the lb1.vm.box and
lb1.vm.network values. Let's now do this for our two web machines, but let's set a
different IP address so we can access them separately and avoid conflicts, as follows:

 config.vm.define "web1" do |web1|
 web1.vm.box = "ubuntu/xenial64"
 web1.vm.network "private_network", ip: "10.0.0.11"
 end
 config.vm.define "web2" do |web2|
 web2.vm.box = "ubuntu/xenial64"
 web2.vm.network "private_network", ip: "10.0.0.12"
 end

We now have three Vagrant machines configured, but before we can launch and test them,
we need to provision them with nginx and configure nginx for our load balancing setup.

Let's create two shell scripts to provision our machines. (We will cover shell scripting in
more depth in later chapters; we are using it here to help demonstrate how it works within
a multi-machine environment.)

In the directory where your Vagrantfile is, create a lb.sh file and an web.sh file.

lb.sh
Let's focus on the lb.sh file first. Add the following lines as the file's contents:

#!/bin/bash
echo 'Starting Provision: lb1'
 sudo apt-get update
 sudo apt-get install -y nginx
 sudo service nginx stop
 sudo rm -rf /etc/nginx/sites-enabled/default
 sudo touch /etc/nginx/sites-enabled/default
 echo "upstream testapp {
 server 10.0.0.11;
 server 10.0.0.12;
 }
server {

Multi-Machine Chapter 7

[97]

 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;
 root /usr/share/nginx/html;
 index index.html index.htm;
 # Make site accessible from http://localhost/
 server_name localhost;
 location / {
 proxy_pass http://testapp;
 }
}" >> /etc/nginx/sites-enabled/default
 sudo service nginx start
 echo "Machine: lb1" > /var/www/html/index.html
 echo 'Provision lb1 complete'

There's quite a bit going on in the preceding snippet, so let's break it down.

In the first part, we are declaring the program location that should run this script
(bin/bash) after the shebang (#!).

In lines 2-7, we are updating Ubuntu, installing nginx, and deleting the default nginx
configuration file.

In lines 8-22, we are inserting a new config as the default nginx config, which essentially
setes up the load balancing and sets our available web servers as 10.0.0.11 and
10.0.0.12.

In lines 23-25, we are starting up the nginx service (which will read our new default config
file and apply those settings), setting up the default index HTML file, and finishing the
provision.

We echo out Starting Provision: lb1 and Provision lb1 complete at both the
beginning and end of the provision script. This is not necessary, but when you run the
vagrant up --provision command you will see these echoed into the terminal, which
can be useful when you are trying to understand what is happening and what stage of the
provision process you are at.

web.sh
Let's now create our web.sh bash script, which will handle the provisioning of our web
servers. This script is much simpler than the load balancer script we created earlier, as
follows:

#!/bin/bash
echo 'Starting Provision: web'$1
 sudo apt-get update

Multi-Machine Chapter 7

[98]

 sudo apt-get install -y nginx
 echo "<h1>Machine: web"$1 "</h1>" > /var/www/html/index.html
 echo 'Provision web'$1 'complete'

Again, in the preceding snippet, we are echoing out the progress at the beginning and end
of our provision progress. In lines 2-4 we are updating Ubuntu and installing nginx. In line
5 we are overwriting the default index HTML file with a basic title, which will help us
differentiate between the two web servers.

In this script you will notice the use of $1. This is a variable in bash and references the first
argument. Later on in this section you will learn how to pass an argument into the shell
script, as this will help us differentiate between web server 1 and web server 2.

Vagrant multi-machine shell provisioning
Now that we have our lb.sh and web.sh provisioning scripts set up, let's add them into
our Vagrantfile so we're ready to set up and test our load balancing app.

The following code block is a finished copy of our Vagrantfile:

Vagrant.configure("2") do |config|
 # Configure load balancer machine
 config.vm.define "lb1" do |lb1|
 lb1.vm.box = "ubuntu/xenial64"
 lb1.vm.network "private_network", ip: "10.0.0.10"
 lb1.vm.provision :shell do |shell|
 shell.path = "lb.sh"
 end
 end
 # Configure first web machine
 config.vm.define "web1" do |web1|
 web1.vm.box = "ubuntu/xenial64"
 web1.vm.network "private_network", ip: "10.0.0.11"
 web1.vm.provision :shell do |shell|
 shell.args = "1"
 shell.path = "web.sh"
 end
 end
 # Configure second web machine
 config.vm.define "web2" do |web2|
 web2.vm.box = "ubuntu/xenial64"
 web2.vm.network "private_network", ip: "10.0.0.12"
 web2.vm.provision :shell do |shell|
 shell.args = "2"
 shell.path = "web.sh"
 end

Multi-Machine Chapter 7

[99]

 end
end

We can provision a box by using the .vm.provision namespace. In the preceding
example, you can see that we are passing our arguments into web1 and web2 using the
shell.args value. These will then be accessible inside our web.sh script.

Now, save your Vagrantfile and run the vagrant up --provision command to start
running and provisioning the machines. You'll notice that the booting process takes much
longer as there are now three machines to manage instead of the usual one.

During the booting process you should notice our echo statements at different points of the
provisioning process, as shown in the following screenshots:

In the preceding screenshot, you'll see the lb1 provisioner has started. In the following screenshot you'll see
that the web2 provisioner has completed:

When the Vagrant machines have finished booting, we can move on and test out the load
balancer. To do this, we set the IP address for the load balancer to 10.0.0.10 and open it
in a browser. You should see one of the web server machines, as shown in the following
screenshot:

Now, if you refresh the page, the load balancer should send your request to the other web
server machine, as shown in the following screenshot:

Multi-Machine Chapter 7

[100]

If you keep refreshing the page, you will be bounced between the two web servers. You can
also go to one of the web machines directly be accessing them via their own IP addresses. If
you visit 10.0.0.11 in your web browser, for example, you will only see the web server 1
machine, as shown in the following screenshot:

Congratulations! You have successfully configured a multi-machine Vagrant environment
using a basic HTTP load balancing setup.

multi-machine SSH
Now that your machines are up and running, you may want to SSH into them to make and
test some changes. To do this, we can run the vagrant ssh command. This will give us an
error, as shown in the following screenshot:

Here, we must specify a machine name, otherwise the ssh command won't know which
machine we want to connect to. The names to supply are the ones we defined in the
Vagrantfile, for example, lb1, web1, or web2. Let's now SSH into the load balancing
machine by running the vagrant ssh lb1 command, as follows:

You can now manage each machine individually via SSH.

Multi-Machine Chapter 7

[101]

Let's complete the machine life cycle by halting and destroying the machines. We can halt
all three machines by running the vagrant halt command, as shown in the following
screenshot:

Next, if you wish to do so, you can destroy your machines to free up system memory. Run
the vagrant destroy -f command. In our example, we are using the -f flag to force the
machines' destruction; otherwise, we will be prompted for confirmation for each machine.
Run the following command:

As you can see in the preceding screenshot, the command tells Vagrant to loop through
each machine and destroy them.

Web server and database setup with Vagrant
multi-machine
In this section, we will use Vagrant's multi-machine feature to create a traditional web
server and database setup. We will install our web server (nginx and PHP) on one machine
and our database server (MySQL) on another.

This setup is simpler than the one in the previous section, but it should still help to
reinforce how to set up and manage Vagrant multi-machine.

First, let's create a new Vagrantfile in a new folder. We will create two machines to get
started, as follows:

Vagrant.configure("2") do |config|
 # Configure web server machine
 config.vm.define "web1" do |web1|
 web1.vm.box = "ubuntu/xenial64"
 web1.vm.network "private_network", ip: "10.0.0.50"
 web1.vm.provision :shell do |shell|

Multi-Machine Chapter 7

[102]

 shell.path = "web.sh"
 end
 end
 # Configure database server machine
 config.vm.define "db1" do |db1|
 db1.vm.box = "ubuntu/xenial64"
 db1.vm.network "private_network", ip: "10.0.0.51"
 db1.vm.provision :shell do |shell|
 shell.path = "db.sh"
 end
 end
end

Again, we will be using shell provisioning for these machines. We will be using the Ubuntu
16.04 box with private networking, and each machine will get its own private IP address.

web.sh
Let's now create our web server provision script to install nginx and PHP. Inside the
web.sh file, we input the following code:

#!/bin/bash
echo 'Starting Provision: web server'
 sudo apt-get update
 sudo apt-get install -y nginx
 touch /var/www/html/index.php
 sudo apt-get install -y php-fpm php-mysql
 echo 'Provision web server complete'

We will need to log into the machine to make some configuration changes manually, but
the preceding snippet will give us a good start.

db.sh
We can now create our database server provision script to install MySQL. Inside the db.sh
file, we input the following code:

#!/bin/bash
echo 'Starting Provision: database server'
 sudo apt-get update
 echo 'Provision database server complete'

Multi-Machine Chapter 7

[103]

This stage will also require some manual configuration, which we can do by logging into
the database machine.

Let's now start up our Vagrant machines by running the vagrant up --provision
command.

Nginx and PHP configuration
Let's now configure Nginx and PHP on our web server machine. Log into the machine by
running the vagrant ssh web1 command.

Once logged in, we need to finish configuring nginx. This can be done by editing the
default config file with the following command:

sudo nano /etc/nginx/sites-available/default

We now need to add PHP into this file to allow nginx to handle PHP files and code. The
first line we need to edit is the index file list, so find the following line:

index index.html index.htm index.nginx-debian.html;

Chanage it to this:

index index.php index.html index.htm index.nginx-debian.html;

The final change we need to perform is to add the PHP handling. This requires us to edit a
block inside the main server {} block. The following snippet is the code we need to edit:

 #location ~ \.php$ {
 # include snippets/fastcgi-php.conf;
 #
 # # With php7.0-cgi alone:
 # fastcgi_pass 127.0.0.1:9000;
 # # With php7.0-fpm:
 # fastcgi_pass unix:/run/php/php7.0-fpm.sock;
 #}

Change the preceding snippet to the following:

location ~ \.php$ {
 include snippets/fastcgi-php.conf;
 # With php7.0-fpm:
 fastcgi_pass unix:/run/php/php7.0-fpm.sock;
 }

Multi-Machine Chapter 7

[104]

Now save and close the file. If you want to, you can use the sudo nginx -t command to
test the code and syntax of the config file you have just edited. A successful message is as
follows:

Let's now restart nginx to apply the new settings; to do so, run the following command:

sudo systemctl reload nginx

To confirm PHP has been installed and is working, create a test.php file within the
/var/www/html/ directory. Within the test.php file, add the following lines:

<?php
phpinfo();
?>

Save the file and in your web browser on your host machine, open
http://10.0.0.50/test.php . You should now see the PHP info page, as shown in the
following screenshot:

While we're here, we should go back into the test.php file and edit its contents. So, we are
now going to create a basic PHP script that connects to our MySQL database and retrieves
some data. Edit the file to contain the following snippets:

<?php
$conn = new mysqli("10.0.0.51", "external", "password", "VagrantDatabase");
$result = $conn->query("SELECT VagrantText FROM VagrantTable WHERE

Multi-Machine Chapter 7

[105]

VagrantId = 1");
while($row = $result->fetch_assoc()) {
 echo $row['VagrantText'];
 }
?>

This is a very basic script to help get you started. This script is not secure
and does not necessarily follow the PHP best practices. It would not be
recommended to use this script in a production environment.

Before we can continue, we must set up the MySQL server on our other Vagrant machine;
otherwise, the PHP script will fail as there is no database available.

MySQL configuration
Let's finish our setup by installing and configuring the MySQL database. At the end of this
section, you should see the final working code, as well as your web server accessing the
database server via PHP.

It is not recommended to use this setup in a production environment. We
are not following security best practices but are instead setting things up
with basic configuration.

Follow these steps to configure the MySQL database:

First, let's SSH into the database machine by running the vagrant ssh db11.
command.
Now install MySQL by running the following command: run sudo apt-get2.
install mysql-server.

You'll now be asked to set a root password. This can be anything as we are not using this as
a production environment. You will then be asked to repeat and confirm the root password.

You can now log into MySQL via the terminal by running mysql -u root -p. Enter the
root password that you just set.

Multi-Machine Chapter 7

[106]

We must now create a basic MySQL user that has the correct privileges to access the
database outside of the localhost address and network. Without this, we would not be able
to access the database from the web1 machine, so run the following commands:

CREATE USER 'external'@'localhost' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON *.* TO 'external'@'localhost' WITH GRANT OPTION;
CREATE USER 'external'@'%' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON *.* TO 'external'@'%' WITH GRANT OPTION;
FLUSH PRIVILEGES;

We can now create a table and enter some test data, which will be accessed via PHP on the
web1 machine. Run the following commands to create a new database, a new table, and
insert some data:

CREATE DATABASE VagrantDatabase;
USE VagrantDatabase;
CREATE TABLE VagrantTable (VagrantId int, VagrantText varchar(255));
INSERT INTO VagrantTable (VagrantId, VagrantText) VALUES (1, "This text is
from MySQL");

You can now exit the MySQL CLI tool. We must now configure one last MySQL setting that
will allow connections from our web1 machine. We need to edit the mysqld.cnf config
file, which can be done by running the following command:

sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf

Look for the following line:

bind_address = 127.0.0.1

Change it to the following:

bind_address = 0.0.0.0

You can now save the file and run the following command. This will restart MySQL so it is
using the new configuration:

sudo service mysql restart

Multi-Machine Chapter 7

[107]

We can now exit the MySQL CLI and visit http://10.0.0.50/test.php to access our
database, as shown in the following screenshot:

Congratulations! You have successfully set up Vagrant multi-machine so it uses two
machines as a web server and database architecture.

Summary
In this chapter, we learned about Vagrant's multi-machine feature and created two use
cases: load balancing with three machines and a web server and database architecture with
two machines.

In Chapter 8, Exploring Vagrant Plugins and Syncing Files, we will learn about Vagrant
plugins and how to sync files between a host machine and a Vagrant guest machine.

8
Exploring Vagrant Plugins and

Syncing Files
In this chapter, we will cover powerful, additional functionality in Vagrant. We will learn
about Vagrant plugins and syncing files between the host machine and guest machine. By
the end of this chapter, you will have a good understanding of the following:

Understanding Vagrant plugins
Managing Vagrant plugins
Vagrant plugin commands and subcommands
Finding, installing, and using a Vagrant plugin
Vagrant file syncing
Syncing files – shared folders, Rsync, and NFS

Understanding Vagrant plugins
Vagrant provides many options and features, but when you require something that isn't
available, you can extend this functionality in the form of a plugin. Vagrant provides a
powerful and robust internal API that is easy to use and flexible to develop with. Vagrant
actually uses its own API for many core features.

The anatomy of a Vagrant plugin
There are multiple parts of a Vagrant plugin. Some parts are for development and others
are for the general use of the plugin. We'll focus on two core elements: gem and bundler.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[109]

Gem
A gem is a specific file written in Ruby that uses the .gem file extension. A gem is made up
of three parts: the code that includes the logic, tests, and utilities; documentation; and a
gemspec that includes information about the author and other metadata. The gem file is the
core part of the Vagrant plugin and is the code that is run when you use the plugin in your
Vagrant machine.

bundler
bundler is an application that Vagrant uses and interfaces with to manage the plugin and
plugin dependencies. It is often used in Ruby projects to manage gems and gem versioning.
You will often see bundler's output in the console when an installation of a vagrant plugin
fails. Because Vagrant plugins are written in Ruby and saved as a gem file, using bundler is
a great choice.

Managing Vagrant plugins
In this section, we will cover general plugin management, including installation and
uninstallation. The most useful command when managing a Vagrant plugin is the
list command. Run the following command to view what plugins you have installed on
your system:

vagrant plugin list

There is a chance that you do not have any plugins installed and you will see a No
plugins installed message. If you do have a plugin installed, then you will see a list
similar to the following:

Vagrant plugin installation methods
To start using a plugin with Vagrant, you must first install it on your system. There are
currently two ways to install a plugin: you can use a local file or a gem source. Let's explore
both options.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[110]

Installing a Vagrant plugin from a local file
Installing a plugin from a local source is fairly quick and easy. You may have a local file
because you have developed the plugin yourself or have been given this plugin code
privately by a friend or from your company.

The local file will use the .gem extension. To install the plugin, you must know the location
relative to the folder that you want it to be installed/used in. I'm going to install the plugin,
which is called testplugin.gem and can be found in my test-plugin folder within my
current Vagrant project directory. Here is an example of the command:

vagrant plugin install /test-plugin/testplugin.gem

Vagrant and the bundler will now attempt to locate and install the plugin. If it cannot be
found, you will receive the following error message:

If there is a problem with the plugin, such as a syntax error in the gem file, you will see a
message similar to this:

Installing a Vagrant plugin from a known gem source
The second way to install a plugin is from a known gem source. A known gem source is a
remote repository that the bundler system will attempt to locate and install a gem from.
The most popular gem source is RubyGems, which is a ruby gem-hosting service.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[111]

Let's install a new plugin via this method. Here is an example command to run:

vagrant plugin install vagrant-hostsupdater

You will learn more about installing plugins and managing plugins in the coming sections.

Vagrant plugin commands and subcommands
The plugin command within Vagrant offers a number of commands and subcommands.
We have covered these in Chapter 7, Multi-Machine, but we'll use this as a basic reference
and reminder.

You can view a list of plugin commands by running the vagrant plugin help
command. Let's dive a little deeper into each available plugin subcommand:

To remove all user-installed plugins and plugin data, run the vagrant plugin
expunge command.
To install a plugin, run the vagrant plugin install command. Additional
parameters are required and can be seen by running the vagrant plugin
install -h command.
To install a license for a proprietary vagrant plugin, run the vagrant plugin
license command. Additional parameters are required and can be seen by
running the vagrant plugin license -h command.
To view a list of vagrant plugins installed, run the vagrant plugin list
command.
To try to repair a broken plugin/issue during installation, run the vagrant
plugin repair command.
To uninstall a vagrant plugin, run the vagrant plugin uninstall command.
Additional parameters are required and can be seen by running the vagrant
plugin uninstall -h command.
To update a vagrant plugin, run the vagrant plugin update command.
Additional parameters are required and can be seen by running the vagrant
plugin update -h command.

In further sections, we will use these commands in more real-world scenarios and learn
how to interact with vagrant plugins.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[112]

Finding, installing, and using a Vagrant plugin
In this section, we will learn how to find, instal, and use a Vagrant plugin. This will give
you a good understanding of the Vagrant plugin ecosystem and some tips to find a good
plugin.

There is no official repository or website for listing Vagrant plugins (such as the Vagrant
cloud for Vagrant boxes), but there are a few websites you can use to help you find that
perfect plugin:

RubyGems (https:/ /rubygems. org/)
GitHub (https:/ / github. com/)
Search engines
Community-updated GitHub that lists popular plugins (https:/ / github. com/
hashicorp/ vagrant/ wiki/ Available- Vagrant- Plugins)

RubyGems and GitHub are both code-hosting-based websites and offer powerful search
facilities. I've found Google to be very useful when searching for plugins. Try using
different search terms to find a plugin that matches your requirements. An example would
be vagrant plugin dns or vagrant dns plugins if I were looking for a plugin to
manage or interact with DNS in Vagrant.

Installing a Vagrant plugin
Let's install a plugin from the RubyGems website. I've searched for vagrant and found one
called vagrant-hostsupdater, which is currently version 1.1.1.160 and has just over
500,000 downloads. Here is a screenshot of the plugin in the RubyGems search results:

This plugin will attempt to edit your /etc/hosts file by adding and removing hosts when
Vagrant machines are created and destroyed, respectively. This means that you can access
the Vagrant machine by a domain name such as machine.dev instead of 192.168.10.10.

We can install this plugin by running the following command:

vagrant plugin install vagrant-hostsupdater

https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://rubygems.org/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins
https://github.com/hashicorp/vagrant/wiki/Available-Vagrant-Plugins

Exploring Vagrant Plugins and Syncing Files Chapter 8

[113]

You should see an output similar to this:

We can verify that this has been installed by running the vagrant plugin
list command as shown here:

Let's now use and test our Vagrant plugin. This specific plugin is configured in the
Vagrantfile, so let's create a basic one to get started:

Run the vagrant init -m command.1.
Edit your Vagrantfile to include the following code:2.

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network :private_network, ip: "192.168.100.23"
 config.vm.hostname = "vagrant.dev"
 config.vm.provision "shell", inline: <<-SHELL
 sudo apt-get update
 sudo apt-get install -y nginx
 SHELL
end

We create a basic Vagrant machine to test our plugin. The main lines we are
concerned with are the config.vm.network and config.vm.hostname lines as
they are required by our plugin.

We have created a Ubuntu machine that uses a private static IP address, the
hostname of vagrant.dev, and a basic shell provisioner to update the system
and then install the nginx web server. This will allow us to quickly and easily see
that everything has worked as nginx has a default page available on port 80 once
it's been installed and is running.

Run the vagrant up --provision command to get the box up and running. 3.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[114]

You should now see a message from the [vagrant-hostsupdater] plugin,
which will attempt to enter the machine's IP address and host name into the
/etc/hosts file. The hosts file is an important system file and requires root
permission to edit. You will be asked for the root password for your host
machine:

To test that the plugin works, we can check the /etc/hosts file before we start4.
up the vagrant machine. Here is a basic example. If you have edited yours before,
you may see more entries:

Once you have entered your root password and the plugin successfully writes to5.
the /etc/hosts file, you should see this message as part of the vagrant
up process:

Exploring Vagrant Plugins and Syncing Files Chapter 8

[115]

Once the machine is up and running, check out the /etc/hosts file again to see6.
whether a new entry has been added. All new entries are added at the bottom of
the file. In the following screenshot, we can see that our entry is there, the IP
address is 192.168.100.23 and the hostname is vagrant.dev. The plugin has
also added in a comment using the # character:

Great! Let's now test the hostname and see what we get. While we are in the7.
terminal, we can run the curl vagrant.dev command, which will attempt to
load that URL and return the contents. We can see that the default nginx page
has been returned:

Exploring Vagrant Plugins and Syncing Files Chapter 8

[116]

Ping the hostname to see whether there is a live connection, packet loss, and8.
what sort of connection times we get. As the machine is local, the speed will be
very quick (less than 1 ms) and we will see the IP address returned, which in this
case is 192.168.100.23:

vagrant halt the machine. You'll see in the terminal that the plugin will now9.
kick into action and remove that entry from the /etc/hosts file. You'll need to
enter the root password again:

Uninstalling a Vagrant plugin
Let's now uninstall our vagrant-hostsupdater plugin. We can do this by running the
vagrant plugin uninstall vagrant-hostsupdater command. If you are unsure
what the plugin is called, you can run the vagrant plugin list command to view a list
of available plugins on your system. The plugin should now be removed, you should see
the Successfully uninstalled message:

Exploring Vagrant Plugins and Syncing Files Chapter 8

[117]

We can also verify the plugin has been removed by running the vagrant plugin list
command. We should see the No plugins installed message (as long as you do not
have any other plugins installed on your system):

Vagrant file-syncing
Syncing files is the way of sharing files between your host machine and the guest machine
running within Vagrant. It allows you to edit files on your host machine and see the
changes in your guest machine or vice versa.

Vagrant calls this synced folders and offers five ways to do this:

Basic syncing
SMB
VirtualBox
RSync
NFS

In this section, we will cover basic usage, RSync, and NFS.

Setting up synced folders
To get started, let's create a Vagrantfile by running the vagrant init -m command. We'll
start with basic usage-syncing, then look at RSync, and then finish with NFS.

We'll create a file on our host system, make some changes to the contents, and then view
that file within our Vagrant machine. We'll then edit the file on the Vagrant machine and
view its changes on the host machine. This will prove that the file can be edited both ways
via the host and the Vagrant machine.

We'll need to create and edit the config.vm.synced_folder setting within our
Vagrantfile.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[118]

Synced folders with basic usage
The basic usage of synced folders in Vagrant is easy to get set up. We can get started with
just a basic Vagrantfile:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.synced_folder ".", "/home/vagrant/files"
end

Let's focus on line 3. The synced_folder config takes two parameters. The first parameter
is the folder on your host machine and the second parameter is the folder within the
Vagrant machine.

In this example, we are setting the first parameter to ".", which is the immediate directory
that the Vagrantfile is in on our host machine. In the second parameter, we are setting the
folder to "/home/vagrant/files" on the Vagrant machine.

The default folder on the Vagrant machine is "/home/vagrant", but if
we try and set this as the second parameter, we will be unable to access
the Vagrant machine via SSH as an error will occur when that folder is
mounted on "/home/vagrant/.ssh/authorized_keys" as the SSH
keys cannot be uploaded and checked.

Let's now test our new folder-syncing configuration:

Run the vagrant up --provision command. You should see a similar output from the
Vagrant machine:

We can now SSH into the machine to see whether the files folder has been created (if not
already available). You can run the ls command to list files and folders within your current
directory. You should now see the files folder:

Exploring Vagrant Plugins and Syncing Files Chapter 8

[119]

Let's now create a file within the files folder:

Move into the folder by running the cd files command1.
Create a text file by running the touch test-file.txt command2.

Add some content by running the echo "Hello from Vagrant!" > test-3.
file.txt command

We can now exit out of the Vagrant machine by running the exit command. You can now
search for the file within the host machine's directory. You can do this by using the terminal
or a text editor. I will be using the Atom text editor.

In the following screenshot, we can see the file that we created in the directory and its
contents:

Congratulations! You have successfully configured synced folders and synced a file
between your host machine and vagrant machine.

Synced folders with RSync
When using RSync as a synced folder option in Vagrant, it's a slightly more complex setup.
RSync can be used when other options for file-syncing are not available, such as the
other option we have looked at, basic usage, or in the next section, which is the NFS option.

To start using RSync, our Vagrant file just needs an extra parameter on the
config.vm.synced_folders option:

config.vm.synced_folder ".", "/home/vagrant/files", type: "rsync"

Exploring Vagrant Plugins and Syncing Files Chapter 8

[120]

To use this option, both the host machine and Vagrant machine must have
rsync installed. Vagrant will attempt to install rsync on the Vagrant
machine if possible, if not, it will display an error.

There are additional parameters available to use with the RSync option. Please view the
official documentation for the most up-to-date list. These include the ability to exclude
certain files.

RSync traditionally does a one-time sync from the host to guest machine unless the
rsync_auto option is set to true in the Vagrantfile. This is the default value in Vagrant,
but can be changed by setting the rsync_auto option to false.

Synced folders with NFS
Using NFS as a solution to syncing folders between the host and Vagrant machine can often
offer performance benefits or better suit the environment you need.

Using NFS is very similar to the basic usage version of synced folders in Vagrant. Our
Vagrant file just needs an extra parameter on the config.vm.synced_folders option:

config.vm.synced_folder ".", "/home/vagrant/files", type: "nfs"

We have added the type option with the value of nfs. For this to work, the OS within the
Vagrant machine must support NFS.

The host machine must also support NFS by running the NFS server daemon, which is the
nfsd package. This comes pre-installed on macOS X, but you may be required to install it if
your host machine is running Linux.

Vagrant NFS-synced folders do not work on Windows hosts. If you
attempt to configure this in the Vagrantfile, Vagrant will just ignore it. If
you're using VirtualBox as a provider, you will also need to configure
private networking when using NFS. If you are using VMWare, you don't
need to worry.

Exploring Vagrant Plugins and Syncing Files Chapter 8

[121]

Summary
In this section, we learned about two of Vagrant's main features. We looked at plugins in
Vagrant and learned about what they are, how they work, and how to install/uninstall and
use them. We also looked at file-syncing within Vagrant to understand how we can sync
files between the host system and Vagrant machine using a number of different methods.

In Chapter 9, Shell Scripts - Provisioning, we will start part one of our provisioning series of
chapters. We will learn about provisioning within Vagrant and how to provision a Vagrant
machine using shell scripting. This will lead us into later chapters that focus on
provisioning with configuration-management tools such as Chef.

9
Shell Scripts - Provisioning

In this chapter, we are going to look at Vagrant provisioning. We will focus on basic
concepts and also on shell-script provisioning. By the end of this chapter, you will have a
good understanding of:

Vagrant provisioning
Understanding configuration management
Vagrant provisioning with a file
Vagrant shell provisioning
Vagrant inline scripts, external scripts, and script arguments

Introduction to Vagrant provisioning
The idea of provisioning within Vagrant is to create a script that prepares and installs
software onto the Vagrant machine. Provisioning can be done inline in the Vagrantfile
using a shell provisioner or external file. Provisioning happens during the vagrant up
process as the machine is being created.

When provisioning a Vagrant machine, there are a number of options:

Install software
Alter configurations
Operating-system-level changes
System settings

Shell Scripts - Provisioning Chapter 9

[123]

Understanding configuration management
In later chapters, we will learn more about using configuration-management tools with
Vagrant for provisioning. While talking about Vagrant provisioning, this will be a good
introduction to configuration management.

Configuration-management tools include Chef, Ansible, and Salt. We will be focusing on
these three tools. Configuration management is essentially another word for provisioning
and is used to set a machine to a desired state – this could be installing software or
configuring certain settings.

Configuration-management tools often have a special file type or syntax that is used. We
will be focusing on the following software:

Ansible (uses playbooks)
Chef (uses cookbooks)
Docker (uses images)
Puppet (uses manifests)
Salt (uses states)

Configuration management is often used when a more powerful and flexible option is
needed in your development and deployment process. A benefit of using configuration-
management tools is the separation of concerns. Essentially, you don't rely on Vagrant to
handle too much during the process in case you have any issues or you want the flexibility
of being able to change which configuration-management tool you use. This could be a
company decision due to budget or security.

Basic usage of Vagrant provisioning
To get started with provisioning our Vagrant machine, let's create a new Vagrantfile. We
can do this by running the vagrant init -m command.

Within our Vagrantfile, we can define a provisioning block by using the
config.vm.provision code and pass in a value to declare what type of provisioner we
will be using. In the following example, we will be using the shell type:

config.vm.provision "shell"

Using the shell provisioner, you can then define additional values inline:

config.vm.provision "shell", inline "sudo apt-get update -y"

Shell Scripts - Provisioning Chapter 9

[124]

Or use a configuration block, where we define our shell value within pipe characters:

config.vm.provision "shell" do |shell|
 shell.inline = "sudo apt-get update -y"
 end

Both options would, in this example, update the system packages. Using the configuration
block method is much easier to read, as each value can have its own line.

Vagrant provisioning commands
Once you've created your provisioner values, it's time to apply those changes to your
Vagrant machine. There are a few options:

When you run the vagrant up command for the first time, your machine will
read the Vagrantfile and run the provisioner script.
If you have a machine that has been halted or you want to force a provision, you
can run vagrant up --provision to enable provisioning.
You can also use the --no-provision flag to disable provisioning.
Within the provision the config block, you can set a key of run and a value of
always, which will force the provisioner script to run every time a machine is
started up. An example of this would be config.vm.provision "shell",
inline: "sudo apt-get update -y", run: "always".

The final option will only work if the --no-provision flag has not been set.

Vagrant provisioning with a file
The Vagrant file option gives you an easy way to copy a file from your host machine onto
the Vagrant machine during the startup process.

This can be a great way of uploading a configuration file that would otherwise need to be
created by the software or possibly required before the software can start working. An
example of this would be an .env file that holds environment variables, such as database-
connection details or special keys.

There are two options available – you can copy/upload a single file or an entire directory
from your host machine to the guest Vagrant machine.

Shell Scripts - Provisioning Chapter 9

[125]

When using this option, we set the provision option to file in our Vagrantfile, for
example:

config.vm.provision "file"

Single file
Uploading a file from the host machine to the guest machine is quick and easy. We just
need to set the provision type as file, the source as the file on our host, and the destination
as:

Vagrant.configure("2") do |config|
 config.vm.provision "file", source: "secret.env", destination:
"secret.env"
 end

This will copy our secret.env file into the home folder of our Vagrant guest machine.

If that secret.env file does not exist, Vagrant will throw an error during the startup
process:

If the file does exist, then you will see something similar to the following in your console
during the startup process:

And after running the vagrant ssh command and connecting to the guest machine, we
can run the ls command to list the files within the directory. We will now see the
secret.env file:

Shell Scripts - Provisioning Chapter 9

[126]

Directory
Another option is to upload a directory of files and folders from your host machine into
your guest machine. This can be useful if you require multiple assets, such as images or
configuration files, in a separate and managed way.

It's very similar to the file option when adding this option into our Vagrantfile:

Vagrant.configure("2") do |config|
 config.vm.provision "file", source: "secretfolder", destination:
"$HOME/newsecretfolder"
 end

We set our source value to be a folder within the current Vagrant directory. You can specify
an absolute path if the folder is located elsewhere on your host system.

The destination folder can use the $HOME variable to create the new folder in the home
folder of our guest machine. This folder can have the same name or a new name on the
guest machine. It depends on your requirements.

We can run the vagrant up --provision command to start up the Vagrant machine. We
will see the message again in the output during the process:

Once the machine is up-and-running, we can run the vagrant ssh command machine and
run the ls command. We will then see the folder in the home directory. If we run the ls
newsecretfolder/ command to view the contents of our new folder, we will see the
secret.env file:

Please note: When using this option compared to the synced folder
featured, any changes made on the host/local machine will not be
reflected on the guest machine.

Shell Scripts - Provisioning Chapter 9

[127]

Vagrant Shell provisioner
We've seen how to use a basic shell provisioner, but depending on your setup and required
environment, you may have quite a large, complex provisioner script. This script may
require arguments or environment variables, or may be linked to an external resource
hosted elsewhere.

In this section, we will look at the many options available when using shell as a Vagrant
provisioner. This is often used by beginners but can be very powerful and flexible,
especially if you do not want to set up configuration-management tools such as Chef and
Ansible.

When using the shell provisioner, there are optional configuration settings available:

args: These are arguments that you specify for use by the provisioning script.
This can be a string or an array of values.
env: This is a list of key-value pairs (hash) as environment variables to the script.
binary: Vagrant by default replaces Windows line endings with Unix line
endings, unless you change this value to true.
privileged: This allows you to change whether the script will be run by a
privileged user, such as sudo. The default value is true.
upload_path: This is the path on the guest machine that the script will be
uploaded to. The SSH user account must have access to write to that folder/file
location, otherwise this will fail.
keep_color: Vagrant currently outputs success messages in green and error
messages in red. If you change this value to false, this behavior will be stopped.
name: This can be used to identify the provisioner output if there are many
different provisioners running in the process.
powershell_args: These are arguments that can be passed to the provisioner if
you are using PowerShell on Windows.
powershell_elevated_interactive: This is used when trying to elevate a script in
interactive mode on Windows. You must enable auto-login on Windows and the
user must be logged in for this to work.
md5: The MD5 value (checksum) is used to verify downloaded shell files.
sha1: The SHA1 value (checksum) is used to verify downloaded shell files.
sensitive: If you specify values in the env option, it will mark these as sensitive
and not show them in the output.

We'll focus on inline scripts, external scrips, and script arguments.

Shell Scripts - Provisioning Chapter 9

[128]

Inline Scripts
We've briefly touched upon inline scripts, but there are more options available that can be
added into the configuration for provisioning.

You can run a script inline using the following syntax:

config.vm.provision "shell", inline: "sudo apt-get update -y && echo
updating finished"

Or you could create a variable outside the block and use that variable for a cleaner and
easier-to-read format:

$shellscript = <<-SCRIPT
 sudo apt-get update -y
 echo updating finished
 SCRIPT

config.vm.provision "shell", inline: $shellscript

You can experiment with both options and see what works best for you. You may find that,
when working on a development team, they already have a syntax you must follow when
creating and editing Vagrantfiles.

External scripts
Another option when using shell provisioning is to use external scripts. This can be a good
way to keep your script separate, which means it's easier to manage and helps keep your
Vagrantfile tidy.

To use an external script, we can use the following syntax:

config.vm.provision "shell", path: "[FILELOCATION]"

In the preceding example, the "[FILELOCATION]" placeholder could be one of two
different options:

A local script on your machine; an example value would be script.sh
A remote script hosted externally; an example value would be
https://example.com/dev/script.sh

Shell Scripts - Provisioning Chapter 9

[129]

One benefit of using a remote script is that anyone who is using that Vagrantfile to run a
specific machine configuration will always get the most up-to-date version. If you are on a
team of developers and a change is made to the provisioner script, all of the other
developers just need to run the vagrant up --provision command and will then be
using the same machine.

Script arguments
Another great feature of shell provisioning is the option of using arguments. These are
values that can be passed in as variables and can be easier to manage when data is
dynamic.

Script arguments can be passed in as a string or as an array. A string is useful when only
one argument is required and an array is useful when multiple arguments are required.

Script argument – string
The following is a syntax example when using a string script argument in your Vagrantfile:

config.vm.provision :shell do |shell|
 shell.inline = "echo $1"
 shell.args = "'this is a test'"
 end

When the vagrant up process hits the provisioning stage, we will see an output echoed onto
the screen with a value of this is a test:

Please note: You must remember to properly escape your string. In this
case, we are wrapping the string within single quotes. The system would
essentially see the 'this is a test' echo, which would not throw any errors.

Shell Scripts - Provisioning Chapter 9

[130]

Script argument – array
Here is the syntax example when using an array script argument in your Vagrantfile:

config.vm.provision :shell do |shell|
 shell.inline = "echo $1 $2"
 shell.args = ["this is", "a test"]
 end

Similarly to the string argument option, when this provisioner is started within the vagrant
up process, we will see an output echoed on the screen with a value of this is a test:

Please note: It's not necessary to quote the individual values in the array.
It is still recommended you escape any special characters to minimize any
errors.

Summary
In this chapter, we learned about Vagrant provisioning and configuration management. We
provisioned a Vagrant machine using the basic usage type, file type, and shell type using
inline and external scripts with arguments.

In Chapter 10, Ansible - Using Ansible to Provision a Vagrant Box, we will learn more about
the Ansible configuration-management tool, and use that to provision a Vagrant machine.
We will learn how to use Ansible and Ansible playbooks, including the syntax.

10
Ansible - Using Ansible to

Provision a Vagrant Box
In the second part in our provisioning series, we will be learning about Ansible and how to
use it to provision a Vagrant machine. The following are the topics we're going to cover in
this chapter:

Understanding Ansible
Installing Ansible on macOS
Provisioning Vagrant using Ansible on the host machine
Provisioning Vagrant using Ansible on the guest machine
Ansible Playbooks

By the end of this chapter, you will feel confident using Ansible to provision Vagrant
machines. You will have a good understanding of how Ansible works and will have links
to Vagrant, and will be able to use Ansible on both the host machine and Vagrant machine
by using Playbooks to configure exactly what you need.

Understanding Ansible
Ansible is an open source piece of software used to make IT automation simple and offers
automation for everyone. Ansible is a tool used for configuration management, software
provisioning, and application deployment. It's a powerful tool that offers many features.
These features include the following:

It can run locally on the host or guest machine
It has an extensive plugin ecosystem
It can orchestrate infrastructure using many cloud providers
It can be installed on many different operating systems
It has simple inventory management

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[132]

It has simple and powerful automation with Playbooks
Well-written and extensive documentation

Ansible offers a minimal approach to provisioning your software with an easy to learn
syntax and is built to be reliable and secure. We'll learn more about Ansible as we work
through this chapter by installing it, creating and testing Playbooks, and provisioning a
Vagrant machine.

Some more interesting facts about Ansible are that it is part of Red Hat, it is written in
Python and PowerShell, its first release was in February 2012, and there is a web-based
interface called Ansible Tower that can be used to make managing Ansible even easier.

Installing Ansible
In this first part, we will learn how to install Ansible on our host machine, which in this
instance is the macOS. Later in this chapter, we will learn how to install Ansible on Ubuntu,
which will be running inside our guest Vagrant machine.

Installing Ansible on macOS High Sierra (version
10.13)
Before we can start provisioning our Vagrant machine using Ansible, we first need to install
it on our host machine. We won't look at any advanced installations – just the basics to get
Ansible up and running on our machine. If you are using another operating system, then
please feel free to use the excellent Ansible docs available at https:/ /docs. ansible. com/ :

We first need to visit the Installation Guide page at https:/ /docs. ansible. com/1.
ansible/ latest/ installation_ guide/ intro_ installation. html.
There is a list of supported operating systems, but we need to click on the Latest2.
Releases on macOS section.
Here, we will see that the preferred option is to install Ansible via pip.3.
You can check to see whether you have pip installed by running pip -v:4.

https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[133]

If you do not have it installed, then you can run the sudo easy_install pip5.
command:

You'll need to enter your system password as the command requires sudo.

You can now install Ansible by running the sudo pip install ansible6.
command:

Again, you will need to enter your system password as the command requires sudo.

Finally, we can check that Ansible has been successfully installed by running the7.
ansible --version command:

You can see that I have the latest version installed: 2.6.3.

Congratulations – you have successfully installed Ansible! We can now start to configure
and provision our Vagrant machine.

Provisioning Vagrant using Ansible
In this section, we will look at two different ways of provisioning Vagrant with Ansible.
The first will involve running Ansible on our host (macOS) machine and the second will
involve running Ansible on our guest (Ubuntu) machine running inside Vagrant.

Please Note: We will be using the ubuntu/xenial64 box and the version
number is virtualbox, 20180510.0.0.

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[134]

Provisioning Vagrant using Ansible on the host
machine
Let's set up a basic Vagrant environment and provision it using Ansible from our host
machine. We'll learn how to configure Ansible in the Vagrantfile and install software into
our Vagrant guest machine running Ubuntu:

Let's create a new Vagrantfile in a new directory to start afresh. We can run the1.
vagrant init -m command to do this.
In our Vagrant file, we'll set the box as Ubuntu by adding in the config.vm.box2.
= "ubuntu/xenial64" line and also the networking line:

config.vm.network "private_network", ip: "10.10.10.10"

We can now create a provision block:3.

 config.vm.provision "shell", inline: "sudo apt-get update;
sudo ln -sf /usr/bin/python3 /usr/bin/python"
 config.vm.provision "ansible" do |ans| ans.playbook =
"vagrant_playbook.yml"
 end

Save the Vagrant file and exit your text editor.4.

If you now run the vagrant up --provision command, you will see an error during the
final provisioning stage:

This is because Ansible and Vagrant cannot find the playbook vagrant_playbook.yml. In
the same directory as your Vagrantfile, we will now create our playbook file.

Add in the following code (we'll go through this later so that you know exactly what it
does):

 -
 hosts: all
 sudo: true
 tasks:
 -
 apt: "name=nginx state=latest"
 name: "ensure nginx is at the latest version"

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[135]

 -
 name: "start nginx"
 service:
 name: nginx
 state: started

Please note: The Playbook file is very strict with regards to its formatting
and syntax. You may only use spaces and not tabs in the YAML file. If you
have any issues, try removing all spaces and adding natural indent spaces
(1 space for top level, 2 spaces for child, and so on). You can use a YAML
code/syntax validator tool online (This is the website/tool that I
used: http:/ / www. yamllint. com).
This markup will install the latest version of Nginx onto the Vagrant
machine. It will then start the Nginx service so that it will be up and
running, ready to use. You may need to run the vagrant destroy -f
command first if you already have a machine running.

Run the vagrant up --provision command to start the startup process and get Ansible
running. You'll see a lot of new coloured output at the provisioning stage, and this will be
Ansible installing and configuring Nginx.

The provisioner will start running ansible_local as we specified in the Vagrantfile:

It will then run the ansible-playbook handler:

http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/
http://www.yamllint.com/

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[136]

Finally, you will see an overview of what Ansible has done (or sometimes not done, which
results in a red failure). We can see here that the green ok=3 value means that 3 items have
been run successfully, and the yellow changed=1 value means that one item has been
changed successfully:

We should now be able to access our Vagrant machine using the IP address of
10.10.10.10 as we set the networking config in the Vagrantfile.

Open up your browser to that IP address and you should see the default Nginx welcome
screen:

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[137]

Congratulations! You have successfully installed Nginx using Ansible to provision Vagrant
from your host machine. We covered quite a lot here, but in the next section we will learn
more about playbooks.

Provisioning Vagrant using Ansible on the guest
machine
Now that we've successfully provisioned our Vagrant machine and installed the Nginx
service using the host method, we can learn how to provision Vagrant using Ansible on the
guest (Vagrant) machine.

This method is much simpler as it allows everything to be done within the guest machine.
You do not require any additional software on your host machine. Vagrant will
intelligently try and install Ansible on the guest machine if it cannot be found or accessed.

The following steps are similar to the previous steps, but we'll be adding some additional
configuration into our Vagrantfile:

Run the vagrant init -m command to create a new Vagrantfile (you may need1.
to clear our the current directory or use a new, empty directory if you have
followed the previous steps).
In our Vagrant file, we'll set the box to be Ubuntu by adding in2.
the config.vm.box = "ubuntu/xenial64" line and also the networking line:

 config.vm.network "private_network", ip: "10.10.10.10"

We can now create a provision block:3.

 config.vm.provision "ansible_local" do |ans|
 ans.playbook = "vagrant_playbook.yml"
 ans.install = true
 ans.install_mode = "pip"
 end

Save the Vagrantfile and run the vagrant up --provision command to get4.
the Vagrant machine up and running.

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[138]

We'll see a similar process here until Vagrant gets to the provisioning stage. Our guest
machine does not have Ansible installed, so it will start to install it. We can see the
ansible_local provisioner being used here:

Since we stated that the install mode would be pip in our Vagrantfile, the pip package
manager will now be installed onto our guest machine:

The Vagrant provisioner will now find and run the Ansible Playbook:

Ansible will now run within the guest machine to install the contents of the Playbook. We
can see in the following screenshot that Nginx was installed and started successfully, and
that we had no failed elements:

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[139]

We can now visit 10.10.10.10 in our web browser and see the Nginx default page. This
will confirm that Nginx has been installed successfully and that the service is running:

Let's now SSH into the Vagrant guest machine by running the vagrant ssh command.
Once connected, we can run the ansible --version command to confirm that Ansible
has been installed on our guest system:

We can see that the Ansible version that has been installed is 2.6.3. Within our Vagrantfile,
we have used some additional Ansible values, which we will learn more about in the next
section.

Additional Ansible options
Vagrant supports additional options when using Ansible and Ansible local as a
provisioner. These options allow you to add extra functionality and customization to the
provisioning process.

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[140]

Provisioner – Ansible
In this section, we'll look at what additional options can be used with the Ansible
provisioner:

ask_become_pass: When set to true (boolean), it will prompt for a password
when using the become sudo option in Ansible.
ask_sudo_pass: This is essentially ask_become_pass, but will be phased out in
future versions of Vagrant. It's used for backward compatibility.
ask_vault_pass : When set to true (boolean), it will force Ansible to prompt for
a vault password. Ansible Vault is used to keep sensitive data and passwords
encrypted so that you don't have to worry about them being visible in plain text
in a Playbook.
force_remote_user: This will require Vagrant to set the ansible_ssh_user
in the inventory. Ansible will use the config.ssh.username value from the
Vagrantfile instead of using the remote_user parameters in the Ansible
Playbook.
host_key_checking: This option will require Ansible to enable SSH host key
checking.
raw_ssh_args: This option can be used in order to apply a list of OpenSSH
client options. The value is typically an array of strings.

Please note: It's worth checking out the official Vagrant and Ansible
documentation for more in-depth explanations of these options and to
find out whether there is anything that you may require but are not quite
sure of the name or how it's applied.

Provisioner – Ansible local
In this section, we'll look at what additional options can be used with the Ansible local
Provisioner:

install: This option is enabled by default and will attempt to install Ansible on
the guest system if it cannot be found/run.
install_mode: This option allows you to choose how Ansible is to be installed
on the guest system. You can choose default, pip, or pip_args_only. The
default option will attempt to use the guest operating system's package manager.
The pip option will use the Python package manager. The pip_args_only
option works similarly to the pip option, but does not allow Vagrant to
automatically set pip options.

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[141]

pip_args: This option is used when the install_mode is set to use pip. It
allows you to pass pip arguments into the command line.
provisioning_path: This is a path to the directory where Ansible files are
stored. Commands such as ansible-playbook are run from this location.
tmp_path: This is an absolute path on the guest machine where files can be
stored temporarily by the Ansible local provisioner.

Please note: It's worth checking out the official Vagrant and Ansible
documentation for more in-depth explanations for these options and to
find out whether there is anything that you may require but are not quite
sure of the name or how it's applied.

Ansible Playbooks
An Ansible Playbook is a configuration file used by Ansible. You can think of it as a
Vagrantfile for Vagrant. It uses the YAML (Yet Another Markup Language) markup
language as the syntax and is easily readable:

 - hosts: all
 sudo: yes
 tasks:
 - name: ensure nginx is at the latest version
 apt: name=nginx state=latest
 - name: start nginx
 service:
 name: nginx
 state: started

Let's look at the example playbook we created in the previous section, shown here in the
above code block, and dissect it to get a better understanding of what it all means:

The first line is always three dashes to signify the beginning of the file.
We must then define which hosts this applies to. These can often be defined in
the Ansible inventory file by setting a value such as [db] and supplying an IP
address for that node.
We then set the sudo value to yes as we require sudo/root privileges to install
Nginx on the Vagrant guest machine.
We then move into the tasks section, which is what we want Ansible to do – the
provisioning stage. We'll separate each task with a name section. This describes
what we want the task to do, for example, start nginx.

Ansible - Using Ansible to Provision a Vagrant Box Chapter 10

[142]

Within a task, we can define the actions. In our first one called apt, we are calling
the package manager (apt-get) to install the latest version of the Nginx package.
We then move to our final task which makes sure the Nginx service has been
started.

I hope you can see from this example that Ansible Playbooks are very easy to read and
work down in a logical flow. You'll come across much more complex Playbooks and some
similar ones compared to this example, but always follow the indentation within each block
to get a better understanding of what each section does.

Summary
In this chapter, we learned how to provision Vagrant using Ansible on the host and guest
machine. We've also learned what Ansible is and about Ansible Playbooks. If you use
Ansible in your company, then I would recommend trying it with Vagrant to help with
your development workflow.

In Chapter 12, Docker - Using Docker with Vagrant, we will be continuing our series on
provisioning by learning about Chef and how to use that configuration management tool to
provision Vagrant. We will look at multiple Chef options (solo and client) and learn about
Chef cookbooks.

11
Chef - Using Chef to Provision

a Vagrant Box
In this chapter, we will continue our series on provisioning Vagrant by using popular
DevOps configuration management tools. We will be focusing on Chef and will cover the
following topics:

Understanding Chef
Chef Cookbook
Installing Chef on macOS
Using Chef Solo to provision a Vagrant machine
Using Chef Client to provision a Vagrant machine

At the end of this chapter, you will have a good understanding of what Chef is and the
components that make it work. You will feel confident in using Chef to provision a Vagrant
machine, whether that be on the host or on the Vagrant machine itself. You'll understand
how to create a Cookbook, which can be a very powerful and flexible tool, so that you can
manage your machine's state.

Understanding Chef
Chef is a popular configuration management tool used to configure and maintain servers. It
was created by the company named Chef and is written in Ruby and Erlang. It was initially
released in January 2009 and is offered in two different versions – free (open source) and
paid (enterprise).

Chef supports and integrates with many cloud platforms such as Amazon EC2, OpenStack,
Rackspace, and Microsoft Azure. Chef can be run in solo mode (no dependencies) or in
client/server mode, where the client communicates with the server and sends information
about the node that it's installed on.

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[144]

Chef uses Cookbooks and recipes as part of its configuration, which we will focus on in the
next section.

Chef Cookbook
Chef uses Cookbooks as a key element in its processes and they are used to describe the
desired state of your node/server.

A Chef Cookbook is an important part of configuring machines when using Chef. It
describes the desired state of the machine. This is similar to using Playbooks in Ansible.
The Chef Cookbook contains five key elements, which all have their own part to play:

Recipes
Templates
Attribute values
Extensions
File distributors

These elements are often pieces of metadata that work together to create an overview of the
machine. Let's dive deeper into these five elements to learn more about them.

When speaking about a node, we are referring to a machine – whether
physical or virtual. The node could be a computer, server, network device,
or another machine.

Recipes
A recipe is a key part of the Cookbook. It's used to detail what exactly should happen with
a node. It's similar to a Vagrantfile when setting the state for a Vagrant virtual machine.

The recipe is written in Ruby and must be added onto the node's run list, which will then
allow the node to run that recipe. A Cookbook can use one or more recipes or rely on
outside recipes, too.

A recipe's main aim is to manage resources. A resource could be a software package,
service, users, groups, files, directories, cron jobs, and more.

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[145]

Templates
Templates are a specific type of file that includes embedded Ruby. These files use the
.erb extension and can be used to create dynamic configuration files.

These files can access attribute values (which you will learn about in the next section). This
is like using variables in the files and not having to hard-code the settings. You could have
multiple templates referencing the same attribute and, when one changes, it will change the
value in all of the template files.

Attribute values
Attribute values in Chef are essentially settings. They are often displayed as key value
pairs. These settings can be used inside the Cookbook.

Attributes are set in the attributes subdirectory of the Cookbook and can then be
referenced in other parts of the Cookbook. Attributes can be set at the top (Cookbook) level
but can also be overwritten at the node level by any node-specific settings/attributes.

Extensions
These are simply extensions to Chef such as libraries and custom resources. These can also
be referred to as tools, which you can learn more about in the Chef Supermarket section.

File distributors
Static files are used to contain simple configurations. They are placed within the file's
subdirectory and are often moved onto the node by a recipe. These files are likely to not be
changed and can be thought of as simple, non-dynamic templates.

Chef Supermarket
If you are looking for a specific Cookbook/piece of software, then you can use the Chef
Supermarket. You can think of the Chef Supermarket like HashiCorp's Vagrant Cloud. It
hosts Cookbooks for you to view and download. The Supermarket is easy to use and offers
a simple, fast user interface. Their main feature is the easy-to-use search facility.

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[146]

Search
If you are looking for a specific Cookbook or just want to see what's available, then you can
use the powerful search function. It offers a full text search and a filter to help narrow down
the results. You can use the search by visiting the Chef Supermarket home page via the
following link: https:/ /supermarket. chef. io/:

In the preceding screenshot, you can see the Search feature. You can search for specific
software packages such as nginx, or something more general to see what is available, such
as web server.

There are two options when narrowing down your search. The first option is that you can
use the Advanced Options search option, which can be found underneath the search bar, to
the right:

In the preceding screenshot, you see the Advanced Options expanded menu, which allows
you to filter the search by Badges and/or Selected Supported Platforms. You can also use
the text search bar at the bottom to search for a specific platform if it's not available in the
list.

https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/
https://supermarket.chef.io/

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[147]

There is currently only one Badge option available, which is partner. This option searches
for Chef partner Cookbooks, which are Cookbooks that have been hand-picked by the Chef
engineering team or created by them. We'll look at the other filter option here:

To the left of the search bar, you can select the type you wish to search. There are currently
two options – Cookbooks and Tools. The default is Cookbooks, and this will search
through the available Cookbooks. The Tools option will search through the Chef tools that
are available. Tools are pieces of software that can be used alongside Chef – these are not
plugins as such, but add-ons:

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[148]

In the preceding screenshot, we are searching for nginx, which is the web server. You can
see that it has found 43 Cookbooks and you have the option to sort by Most Followed and
Recently Updated. You will see some important information such as the Cookbook version,
last update date/time, supported platform, code to install, and follower count.

You can click on the Cookbook name (in this case, nginx) to get more information about
the Cookbook:

In the preceding screenshot, you can see the Cookbook page. It includes more information,
which includes the Cookbook creator/maintainer(s) and gives a detailed readme file. There
are other bits of information such as dependencies, change log, installation
instructions/options, and more.

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[149]

Provisioning Vagrant with Chef
There are four different ways to use Chef to provision a Vagrant machine that Vagrant
supports. This means that Chef has the most options in Vagrant when it comes to
provisioning. The four options are as follows:

Chef Solo
Chef Zero
Chef Client
Chef Apply

In this chapter, we will be focusing on Chef Solo and Chef Client. This will give you a good
mixture of provisioning on the host machine and the Vagrant machine.

Installing Chef on macOS
Before we can begin using Chef, we will first need to install it. We'll learn how to install
Chef on the macOS operating system (the High Sierra 10.13 version).

We'll be installing the Chef DK (development kit), which includes all of the dependencies,
utilities, and the main Chef software. The list of installed software includes the following:

Chef client
OpenSSL
Embedded Ruby
RubyGems
Command-line utilites
Key value stores
Parsers
Utilities
Libraries
Community tools such as Kitchen and ChefSpec

Please Note: The Apple XCode software package is required before you
are able to install Chef.

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[150]

Let's now install and test Chef on our system:

Go to the Chef DK downloads page (the following is a link to the macOS1.
section: https:/ /downloads. chef. io/chefdk#mac_ os_x).
Find the version you are currently running on your system and click the orange2.
Download button, as follows:

Run the .dmg file installer. You'll need to first run the installer file. Click on the3.
.pkg file to run it.
The installer will run and you'll be prompted to move through the six steps.4.
Please follow these. We will not be changing any values during this installation:

https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x
https://downloads.chef.io/chefdk#mac_os_x

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[151]

Once complete, you should see the green tick success screen. Close this window5.
by clicking on the Close button. This will then allow you to move the installer
package into the trash.
To confirm that Chef has been installed, open a terminal window and run the6.
chef -v command, which should list the Chef version and other dependencies:

As you can see, there are many pieces of software running with Chef. There is the DK
version, the chef-client version, the kitchen version, and more. Knowing these versions can
come in handy if you have to debug any issues (with specific pieces of software) in the
future.

Congratulations! You now have Chef installed on your system. Let's now look at
provisioning a Vagrant machine using Chef.

Using Chef Solo to provision a Vagrant machine
Similar to previous chapters, we will stick with our example of installing the nginx web
server on our Vagrant machine. Although this is a simple example, it does allow us to use a
popular piece of software and configure networking, and is a simple way of seeing if it was
a success.

Using Chef Solo as a provisioner for Vagrant is a quick and easy way to get started with
Chef. It has no dependencies (apart from Chef itself) and can be used by beginners or
advanced users.

We'll first need to create our Vagrantfile by running the vagrant init -m command.

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[152]

Inside our Vagrantfile, let's specify the box and networking for the IP address. Let's also
specify our provisioner and configure chef-solo while we are inside the Vagrantfile. Your
finished file should look like the following:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "private_network", ip: "10.10.10.10"
 config.vm.provision "chef_solo" do |ch|
 ch.add_recipe "nginx"
 end
 end

We have set config.vm.provision to chef_solo and within this block we are setting the
add_recipe value to nginx. This means that we are telling Vagrant to specifically use the
nginx recipe. Vagrant will look inside the cookbooks folder, which is in the root of our
project (where the Vagrantfile is).

Before we can run the Vagrant machine, we need to do some Chef groundwork. Here, we
are going to create the nginx recipe. We'll use the official nginx Cookbook from the Chef
Supermarket, which can be found via the following link: https:/ / supermarket. chef. io/
cookbooks/nginx.

Be default, Vagrant will look for a cookbooks directory inside the project root (where the
Vagrantfile is located). Let's first create this folder on our host by running the mkdir
cookbooks command. Let's now move into this directory by running the cd cookbooks
command in our terminal.

To satisfy the supermarket command, we'll need a local git repository. Let's create a basic
repository and commit to get started. Run the following commands to achieve the
minimum requirements:

git init

touch null

git add -A

git commit -m 'null'

Let's install this recipe using the knife command-line utility that we installed earlier. On
the supermarket page, we can see two commands. Let's run the install command:

knife supermarket install nginx --cookbook-path .

This should install the nginx Cookbook (folder) into your Cookbooks directory. We can
confirm this by running the ls and ls cookbooks commands inside our project directory:

https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[153]

Let's now run the vagrant up --provision command (back in the root directory, not in
the Cookbooks directory) to start and provision the Vagrant machine. During the provision
stage, you should see the Running chef-solo... message, which means that the
provisioner has started. You will now see lots of green output, which is Chef starting up,
installing the dependencies, and running the nginx Cookbook. The nginx service (once
installed) should start running automatically:

If you now visit http://10.10.10.10 in your browser, you should see nginx's default
page:

http://10.10.10.10

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[154]

Congratulations! You have successfully installed nginx onto a Vagrant machine using the
Chef Solo provisioner.

This was a simple example of using Chef Solo with Vagrant. Please do not
be fooled into thinking this technique isn't powerful. You can experiment
with far more complicated Cookbooks.

Using Chef Client to provision a Vagrant machine
Although the Chef Client provisioner can be seen as the advanced option, it's actually much
simpler and quicker to set up than the Chef Solo provisioner, which we looked at in the
previous section.

The reason why the Chef Client provisioner is simpler and quicker is that it is just a client.
It's essentially a zombie which does not think for itself. It uses a Chef Server to get its
commands and Cookbook files. When managing a large infrastructure, using this Client-to-
Server method can be a much easier way than having to manage multiple nodes separately.

We won't cover how to set up a Chef Server in this book, as it's beyond its scope, but you
can learn more from the official Chef documentation website here: https:/ / docs. chef. io/
install_server.html.

There isn't much to cover in this section, since the Chef Server handles the main bulk of the
work, but there are some configuration settings we can add in the Vagrantfile. The
following is an example of the provision block (inside the Vagrantfile):

config.vm.provision "chef_client" do |ch|
 ch.chef_server_url = "https://www.examplechefserver.com"
 ch.validation_key_path = "cert.pem"
 end

We are using two new keys here: chef_server_url and validation_key_path – both of
which are required to connect the Vagrant machine (in this instance, the node) to the Chef
Server.

We must set the Chef Server's URL and the path to the validation key (a .pem file). This will
then register the Vagrant machine as a node, download the run list (recipes), and then
provision the machine.

https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html
https://docs.chef.io/install_server.html

Chef - Using Chef to Provision a Vagrant Box Chapter 11

[155]

Summary
In this chapter, we learned about provisioning a Vagrant machine with Chef. We did this
by using Chef Cookbooks to create a recipe which controls which software to install onto
the Vagrant machine using either Chef Solo or Chef Client.

In Chapter 12, Docker - Using Docker with Vagrant, we will learn how to use Docker to
provision a Vagrant machine. We will learn about Docker images, containers, and the
Docker hub. We will then explore the multiple Docker options that are available when
provisioning a Vagrant machine.

12
Docker - Using Docker with

Vagrant
In this chapter, we will learn how to provision a Vagrant machine using Docker. This is not
to be confused with the Docker provider, which is used to power and manage Vagrant
machines. We currently use the VirtualBox provider for this.

We'll dive deep into the Docker provisioner and see what is available within Vagrant when
using Docker. Specifically, you'll learn about the following topics:

Understanding Docker
Key components of Docker (Docker Hub, containers, and images)
How to find and pull in an image from the Docker Hub
Basic usage such as running a container
The Docker-specific configuration within Vagrant

By the end of this chapter, you should have a good understanding of what Docker is and
how it can be used as a provisioner with Vagrant.

Understanding Docker
You've probably heard of Docker—even if you've never used it. It's incredibly popular at
the moment and is being used/adopted by many companies. Docker is a tool that allows
you to manage your applications using a type of virtualization known as containerization.
Applications are bundled into containers and can be hosted in the cloud or using your own
hardware. There are various tools used to manage Docker containers such as Docker
Swarm and Kubernetes.

Docker was released in March 2015 by Solomon Hykes. Its current release is 18.06.1 and it is
written using the Go programming language. It can run on Windows, Linux, and macOS.

Docker - Using Docker with Vagrant Chapter 12

[157]

Docker belongs to the same virtualization family as Vagrant, VMWare, and VirtualBox. It
also belongs to the same provisioning and infrastructure family as Chef, Puppet, and
Ansible.

There are many benefits from using Docker over other virtualization software. It's mainly a
lightweight and faster alternative because it runs in a different way from traditional virtual
machines.

Docker uses the Docker Engine, which sits on top of the operating system and shares
components such as the host OS kernel, libraries, and binaries (which are read-only). This
means that containers can be started fast and are small in size. Traditional virtualization
uses a hypervisor that sits on top of the operating system; this in turn creates whole new
OSes with their own libraries and binaries. The advantage of this is that you can package
up a whole system, but this also means that it can be slow and large in terms of file size. Of
course, both alternatives have their benefits, depending on your requirements.

Key components of Docker
When talking about Docker, there are a few main components that you will hear
mentioned. Let's learn more about each one in the following subsections.

Containers
A container is portable, lightweight, and a package of software that has everything needed
to run an application. A container runs on the Docker Engine and shares the host operating
system's kernel between other containers. A container is basically a running instance of a
Docker image.

Images
A Docker image is a file that is made up of different layers. These layers include tools,
dependencies, and system libraries, which are then used to create a container. There are
often base images that available to use, such as the Ubuntu one. You can use multiple
images to separate your application, for example, having an image for your web server
(Nginx) and another for your database (MySQL).

Docker - Using Docker with Vagrant Chapter 12

[158]

Registry
Docker offers a hosted registry called Docker Hub. It allows you to browse, pull, and store
Docker images. You can think of it like the Vagrant Cloud, which offers hosting for Vagrant
boxes along with other features such as downloading and searching boxes. We'll learn more
about Docker Hub in the following section.

Service
In Docker, services can be thought of as groupings of specific application logic. Services are
often containers in production and help manage your Docker setup. There are specific tools
that are used to manage and orchestrate Docker, such as Docker Swarm and Kubernetes.
When you reach a certain scale or require more control, then these tools are useful.

Using the Docker Hub to find Docker images
Docker Hub is Docker's online, hosted registry for Docker images. It allows you to search,
pull, and store images in the cloud. It's similar to Hashicorp's Vagrant Cloud or the Chef
Supermarket. You can access the Hub by visiting its website at https:/ /hub. docker. com/ .

Docker Hub also offers some really interesting features, including the following:

Build and test your images
It links to Docker Cloud, which allows you to deploy your images to your hosts
Workflow/pipeline automation
A centralized resource for container discovery
User accounts
Public and private registries

Let's take a look at the Docker Hub and use the search facility to find an image:

Visit the website at https:/ /hub. docker. com/ .1.
Click on the Explore link in the top right menu.2.
You'll now see the Explore screen, which lists the top official repositories.3.

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Docker - Using Docker with Vagrant Chapter 12

[159]

In the top left, there is a search bar. Let's search for memcached and view the4.
results:

We can see that it found 1169 repositories, and the top one is the official
repository, with over 1 thousand stars and 10 million pulls.

You can now filter the search results by clicking on the drop-down that has the5.
All value selected:

Docker - Using Docker with Vagrant Chapter 12

[160]

Let's click the top result and learn more about the official memcached repository:6.

Here, you can see lots of information related to this image. There is a Short Description
and a Full Description. The Full Description has information regarding how to use the
image, licensing, and different versions that are available. To the right, you can see the
Docker Pull Command, which is docker pull memcached. This is the command that you
can run to pull an image down so that you can use it with your installation of Docker.

Basic usage – running a container
We won't delve too deeply into running Docker as a separate tool. Our focus in this chapter
is on using Docker to provision a Vagrant machine, which it does inside Vagrant during the
boot up process. We will learn a few basic Docker commands—mainly those that are used
during provisioning—to give you a better understanding of what is happening.

If you are unsure of what specific command you need or would like to learn more, then you
can run the docker command, which will list all available commands. This will show you
the usage, command options, management commands, and general commands.

Please note: you must have Docker installed to run these commands, or
you will get an error.

Docker - Using Docker with Vagrant Chapter 12

[161]

pull
To pull an image down from the Docker Hub, you can use the docker pull command. An
example of this command would be pulling down the nginx image by running the
following:

docker pull nginx

This will result in an output similar to the one shown in the following screenshot:

We can then check to make sure that this image is available by running the docker
images command:

run
To start a new container, you can use the docker run command. An example of this
command would be running the nginx image:

docker run nginx

This will start the Nginx container. You won't see anything on the screen apart from the
command:

Docker - Using Docker with Vagrant Chapter 12

[162]

If you open another tab in your Terminal and run the docker ps -a command, you will
see any active running containers. In the following screenshot, you'll see our Docker
container:

stop
To stop a Docker container, you can use the docker stop command. An example of this
command would be running the following:

docker stop sleepy_dijkstra

We have passed in the sleepy_dijkstra container name from the preceding example. We
have found the image name by running docker ps -a. If we now run the docker ps -
a command, we'll see that the status is Exited (0) 3 seconds ago. In the following
screenshot, you'll be able to see the two commands and their output:

start
This command is used to start a previously stopped Docker container. To do this, you can
use the docker start command. An example of this command would be running the
following:

docker start sleepy_dijkstra

Docker - Using Docker with Vagrant Chapter 12

[163]

We have passed in the sleepy_dijkstra container name from the preceding example. We
have found the image name by running docker ps -a. If we now run the docker ps -a
command, we'll see that the status is Up 4 seconds. In the following screenshot, you'll be
able to see the two commands and their output:

search
You can search the Docker Hub from the command line using the docker search
command. An example of this command would be searching for ubuntu by using the
following command:

docker search ubuntu

This will result in an output similar to the one shown in the following screenshot:

Similar to searching on the Docker Hub website, you will be presented with a list of search
results. These are ordered by the highest, starting at the top. You'll see the image name,
description, star count, and whether it's official. You can then pull an image down using the
docker pull [imagename] command.

Docker - Using Docker with Vagrant Chapter 12

[164]

Using Docker to provision a Vagrant
machine
Now that we've learned a bit about Docker, we can get to the fun part! In this section, we
will go through an example of using Docker to provision a Vagrant machine. One thing to
note is that Vagrant will attempt to install Docker so that you don't have to. Interestingly,
Docker is run within the Vagrant machine, not on your host machine. You'll see this as you
will be able to SSH into the Vagrant machine and run Docker commands.

Let's get started and provision our Vagrant machine using Docker:

To begin, run the vagrant init -m command to create a minimal Vagrantfile.1.
In our Vagrantfile, let's add in a provision block:2.

 Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "forwarded_port", guest: 80, host: 8081
 config.vm.provision "docker" do |doc|
 doc.run "nginx", args: "-p 80:80"
 end
 end

We've set a few default values to get started. We are using the
"ubuntu/xenial64" box and we specify that the networking should use a port
forwarder from the host (8081) to the guest (80).

In the provision block, we are setting docker to be our provisioner. We are using
the run option and passing in the "nginx" image. Alongside the run option, we
are passing in the args option and setting the value to "-p 80:80", which tells
Docker to publish the container's port to the host machine. This is why we are
setting the port forwarding to the guest port 80. Due to this, we can access the
Docker container:

Now, let's run the vagrant up command to get the machine started. During the3.
provisioning stage, you should see something similar to the following screenshot:

Docker - Using Docker with Vagrant Chapter 12

[165]

There are a few steps here. First, it runs the docker provisioner, and then installs
Docker onto the machine. Once installed, it will start the Docker containers (this is
what we specified by using the run option in the Vagrantfile) and you'll see the
container output as -- Container: nginx.

To test whether everything was successful, we can open a browser and visit the4.
following link: http://localhost:8081. This should connect us to the
container using Vagrant's port forwarding:

In the preceding screenshot, we can see Nginx's default welcome page. This is
great news and means everything is working as it should.

We can also SSH into the Vagrant machine and access Docker through the5.
Terminal. Run the vagrant ssh command to gain access.
Once in the machine, run the docker ps -a command to list any actively6.
running containers:

In the preceding screenshot, we can see the nginx container running.

Congratulations! You have successfully provisioned a Vagrant machine using Docker. It's a
fairly straightforward process, but can be very powerful. If you use Docker for other parts
of the application lifestyle, then you can now try using it for development.

Docker - Using Docker with Vagrant Chapter 12

[166]

Docker-specific configuration in Vagrant
When it comes to the Docker-specific options in the Vagrantfile, there are none that are
required. If do not enter any options, then Vagrant will simply attempt to install
Docker—unless you already have it installed.

Images
If you want Docker to use specific images, then you can pass in an array of image names. In
your Vagrantfile, an example would be as follows:

Vagrant.configure("2") do |config|
 config.vm.provision "docker", images: ["nginx"]
 end

This would attempt to pull down the nginx image. There are other options that can be
used to handle images: build_image and pull_images; we will cover these in the
following sections.

build_image
As well as running and pulling down images, you can actually build an image before it is
then used as part of provisioning and its process. The build is done on the Vagrant guest
machine and must be available for Docker to access. It runs the docker build command,
so all you have to do is pass in the location of the Dockerfile.

An example of using this in a Vagrantfile would be as follows:

Vagrant.configure("2") do |config|
 config.vm.provision "docker" do |dock|
 dock.build_image "/vagrant/provision"
 end
 end

Here, we are using the dock.build_image key inside the provision block to set the
directory (where our Dockerfile is located).

Docker - Using Docker with Vagrant Chapter 12

[167]

args
With the build_images key, there is an additional parameter called args. This allows you
to pass in arguments that will be run as part of the docker build command. The value
will be passed as a string.

To add in the --pull flag (which always attempts to pull in the latest version of the image)
into the build process, the Vagrantfile might look as follows:

Vagrant.configure("2") do |config|
 config.vm.provision "docker" do |dock|
 dock.build_image "/vagrant/provision", args: "--pull"
 end
 end

In order to pass in multiple parameters/flags, just add them into the string. There is no need
to use an array.

pull_images
Another way to handle images during provisioning is to use the pull_images option in
your Vagrantfile. This option will attempt to pull the images from the Docker registry and
use those.

An example Vagrantfile would be as follows:

Vagrant.configure("2") do |config|
 config.vm.provision "docker" do |dock|
 dock.pull_images "nginx"
 dock.pull_images "mysql"
 end
 end

This code attempts to pull down the nginx and mysql images. The pull_images option
can be used multiple times and will append them, while the images option can only be
used once.

Docker - Using Docker with Vagrant Chapter 12

[168]

run
The run option is used in the Vagrantfile to start and run specific Docker containers. This is
done during the vagrant up process. It runs the docker run command to achieve this.

Here's how it would be used in a Vagrantfile:

Vagrant.configure("2") do |config|
 config.vm.provision "docker" do |dock|
 dock.run "nginx"
 end
 end

In the preceding example, we are instructing the Docker provisioner to run the
nginx container. You can use the run option multiple times, but if you use the same image,
then you must define seperate names/identifiers for them. The following is an example of
using the nginx image twice with different names:

Vagrant.configure("2") do |config|
 config.vm.provision "docker" do |dock|
 dock.run "load-balancer", image: "nginx"
 dock.run "web-server", image: "nginx"
 end
 end

One can be identified as the load balancer and the other as the web server. You can choose
the names here, but I find that descriptive ones are usually the best and easiest to
understand.

image
This is actually the default value when using the run option, and it's the first parameter
you pass, for example, the image name. It can, however, be passed as an option, such as in
the preceding example, when you wish to run two of the same images.

An example within the provision block of your Vagrantfile would be as follows:

dock.run "lb1", image: "nginx"

In the preceding example, we are referencing the run option and also the image option.
The image we have chosen is nginx.

Docker - Using Docker with Vagrant Chapter 12

[169]

cmd
This cmd option allows you to pass in a command that will be run within the container. If
this value is omitted, then the container's default value will be used. This could be the cmd
value, which is supplied in the Dockerfile.

An example within the provision block of your Vagrantfile would be as follows:

dock.run "ubuntu", cmd: "echo $HOME"

In the preceding example, we are referencing the run option and the cmd option. The cmd
option will simply run that command within the container. It just accesses the $HOME
environment variable, which is the user's home path directory.

args
Using the args option allows you to pass in arguments to the docker run command. This
is similar to the additional args option that's used in the build_image section. This can be
useful if you require something more granular than the general command.

An example within the provision block of your Vagrantfile would be as follows:

dock.run "ubuntu", args: "--name ubuntumain"

In the preceding example, we are referencing the run command and the args option. The
args option will pass in the parameter to the docker run command when necessary. In
our example, it is passing the --name flag with a value of ubuntumain. This will be the
name of the container.

auto_assign_name
Using the auto_assign_name option allows you to automatically name the Docker
containers. It works by essentially passing the --name flag and a value. This is enabled by
default, and the value is true. One thing to note is that any slashes in the image name (for
example, base/archlinux) will be replaced with dashes so that the image will become
base-archlinux. The name is selected by the first argument of the run.

In the following example we are setting the run option value to nginx so that the container
will automatically be named to nginx. The only way to override this is to set the
auto_assign_name value to false, which we will do:

dock.run "nginx", auto_assign_name: false

Docker - Using Docker with Vagrant Chapter 12

[170]

deamonize
This option allows you to deamonize the containers. The default value for this option is
true. It passes the -d flag into the docker run command. If you do not want to deamonize
the containers, then you can set the value to false.

An example within the provision block of your Vagrantfile would be as follows:

dock.run "nginx", deamonize: false

In the preceding example, we are using the run option and the deamonize option. The
deamonize option is passing the false value to let Docker know that we do not want it to
run as a deamon, so the -d flag will not be passed to Docker.

restart
This option allows you to set the restart policy for the container. The default value is
always, but it also supports no, unless-stopped, and on-failure . This option can be
useful if you have a specific requirement and need control over the restart policy for one or
more of your containers.

An example within the provision block of your Vagrantfile would be as follows:

dock.run "nginx", restart: "no"

In the preceding example, we are using the run option and the restart option. The restart
option is passing the no value, which tells Docker not to restart when a container exits.

post_install_provisioner
Using the post_install_provisioner option offers you an easy way to run a
provisioner once the original provisioner has run. This sounds a little confusing, but it
essentially allows you to create a new provision block within the Docker one. You could
use Docker as your main provisioner and then, inside, use a shell provisioner which runs
when the Docker one has finished.

Docker - Using Docker with Vagrant Chapter 12

[171]

An example Vagrantfile would look like this:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "forwarded_port", guest: 80, host: 8081
 config.vm.provision "docker" do |dock|
 dock.post_install_provision "shell", inline:"touch
/vagrant/index.html && echo '<h1>Hello World!</h1>' > /vagrant/index.html"
 dock.run "nginx",
 args: "-p 80:80 -v '/vagrant:/usr/share/nginx/html'"
 end
end

The preceding code will run the nginx Docker image and then use the shell provisioner.
The shell provisioner will run a script inside the Vagrant machine that simply changes the
content in the default landing page of Nginx.

When you run the preceding example, you should be able to visit
http://localhost:8081 on your host machine (once the provisioning has completed)
and see a large Hello World! message.

Summary
In this chapter, we have learned about Docker and how it can be used to configure a
Vagrant machine. We have also learned how Docker works, how to use Docker Hub, and
the various Docker-specific Vagrantfile options that are available. You should now be able
to experiment with Docker as a provider.

In Chapter 13, Puppet – Using Puppet to Provision a Vagrant Box, you will learn how to use
Puppet to provision a Vagrant machine. We'll focus on the two main supported
types—Puppet Apply and Puppet Agent.

13
Puppet - Using Puppet to
Provision a Vagrant Box

In this chapter, we will continue with provisioning and learn how to provision a Vagrant
machine using the Puppet software. In this chapter, you will learn about the following
topics:

Understanding Puppet
What Puppet apply and Puppet agent are
What the Puppet manifest is
How to provision a Vagrant machine with Puppet

At the end of this chapter, you will have a good understanding of how Puppet works with
Vagrant to provision machines.

Understanding Puppet
Puppet is a configuration management tool that is used for deploying, configuring, and
managing nodes (servers).

Puppet was released by Luke Kanies in 2005. It was written in C++, and Clojure and runs on
Linux, Unix, and Windows. The current version is 5.5.3 and was released in July 2018.
Puppet as a software falls into the infrastructure as code category, which means that you
configure and make changes using code and configuration files. Puppet uses manifest files
to help configure nodes/servers (we'll learn more about this in a later section).

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[173]

Puppet uses a pull configuration (master and slave) architecture in which the nodes
(Puppet agent) poll the master server for configuration files and changes. There is a four-
step life cycle in this master/slave process:

The node sends facts about itself to the master server.1.
The master server uses these facts to compile a catalog as to how the node should2.
be configured. It then sends the catalog back to the node.
The node uses the catalog to configure itself to the desired state, as described in3.
the manifest file.
The node now sends a report to the master with any changes or errors. These4.
reports can then be seen in the Puppet dashboard.

Puppet also supports a multi-master architecture to reduce downtime and offer high
availability. When a master server falls over or faces any issues, another master server can
take its place. Puppet agents will then poll this new master server for any configuration
changes.

As part of the configuration process, there are multiple steps that Puppet takes to transform
code in configuration files and configure a node into a desired state.

Resources
Puppet configuration often starts with a resource. You can think of a resource as code that
describes the desired state of part of the node. This could be a specific package that needs to
be installed such as nginx.

Manifest
A Puppet program is know as a manifest. A manifest contains Puppet configuration code
and has the .pp file extension. These blocks of code are the resources that we spoke about
in the previous section.

Compile
The compile process is when the Puppet master takes the manifest files and compiles them
into a catalog. This catalog is then used by the nodes for provisioning and to reach the
desired state.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[174]

Catalogs
A Puppet catalog is a document that has been created by the master server. It is created by
compiling the Puppet manifest file. It can handle multiple manifest files, too. The catalog is
then used by the node to set the desired system state.

Apply
If a node/server has a catalog, then it must apply that configuration to itself. This is the
process of installing any necessary files, services, and software. It allows the node to reach
the desired state.

Desired state
When speaking about Puppet and provisioning, you will hear about the desired state. In
terms of Puppet, it simply means that the node/server has been completely provisioned and
is now in the correct state. The software and services have been installed and are running
correctly.

Puppet apply and Puppet agent
In this section, we will learn more about the two Puppet provisioning options available in
Vagrant—puppet apply and puppet agent. In the following section, we will use both of
these options to provision our own Vagrant machine.

Puppet apply
Using the Puppet apply option to provision a Vagrant machine allows you to use Puppet
without the need for a Puppet master. It works by calling the puppet apply command on
the guest machine. This can be useful for testing Puppet configurations if you do not have a
Puppet master or you just need to get up and running quickly.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[175]

Options
There are 14 different options available when using Puppet apply in Vagrant. These options
are to be applied in your Vagrantfile and can help give you more control over the Puppet
provisioner:

binary_path:

Type: string

Description: This is a path on the guest to the Puppet's bin directory.

facter:

Type: hash

Description: This is a hash of available facter variables (also know as facts).

hiera_config_path:

Type: string

Description: This is the path (on the host) to the hiera configuration.

manifest_file:

Type: string

Description: This is the name of the manifest file that Puppet will use. The
default is default.pp.

manifests_path:

Type: string

Description: This is the path to the directory where the manifest files are.
The default is manifests.

module_path:

Type: string/array of strings

Description: This can be a path or paths to the directory (on the host) that
contains any Puppet modules.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[176]

environment:

Type: string

Description: This is the name of the Puppet environment.

environment_path:

Type: string

Description: This is a path to the directory (on the host) which contains
environment files.

environment_variables:

Type: hash

Description: This is a set of environment variables (in a string of key/value
pairs) which are to be used before Puppet apply runs.

options:

Type: array of strings

Description: These are options that can be passed into the Puppet executable
when Puppet is running.

synced_folder_type:

Type: string

Description: This option allows you to specify what types of synced folder to
use. This will use the synced folder type by default.

synced_folder_args:

Type: array

Description: This is an array of arguments (values) that are passed to the
folder sync. You can send specific arguments depending on the type of
synced folder that you have chosen (see the preceding option).

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[177]

temp_dir:

Type: string

Description: This is the directory (on the guest machine) where any Puppet
run data will be stored, such as manifest files.

working_directory:

Type: string

Description: This is the working directory (on the guest machine) when
Puppet is running.

Puppet agent
When using the Puppet agent to provision a Vagrant machine, you will need a Puppet
master server to connect to. The master server will provide modules and manifests for the
node to use. This provisioner works by using the puppet agent command, which is
supplied by Puppet.

Options
There are seven different options available when using Puppet apply in Vagrant. These
options are to be applied in your Vagrantfile and can help give you more control over the
Puppet provisioner:

binary_path:

Type: string

Description: This is a path on the guest to the Puppet's bin directory.

client_cert_path:

Type: string

Description: This is the path to the client certificate for the node. The default
value is nothing, which means that no client certificate will be uploaded.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[178]

client_private_key_path:

Type: string

Description: This is the path to the client key for the node. The default value
is nothing, which means that no client key will be uploaded.

facter:

Type: hash

Description: This is a hash of available facter variables (also know as facts).

options:

Type: string/array

Description: These are options that can be passed to Puppet when the
puppet agent command is ran.

puppet_node:

Type: string

Description: This is the name that you wish to give the node. If no value is
set, then Vagrant will attempt to use the hostname (if set in the Vagrantfile)
or fall back to the name of the box used.

puppet_server:

Type: string

Description: This is the hostname of the Puppet server. If no value is set,
then the default value will be set to puppet.

Puppet Manifest example and syntax
A manifest is a Puppet program. It is made up of code that tells Puppet what to do, such as
executing commands, installing software, and running services. A manifest file or multiple
manifest files are one of the main part(s) of a module. A manifest file uses the .pp file
extension and can be found in the manifests folder.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[179]

There are various sections found in a manifest file, such as exec, package, service, and file.
Let's dive into the syntax of a manifest file.

Syntax
The manifest file is taken up with declaring resources which can be grouped into classes.
The manifest file uses a domain-specific language called Puppet, which is similar to YAML
or Ruby (when writing a Vagrantfile).

Here is an example manifest that installs and runs the nginx web server. Let's create a new
manifest and call it nginx.pp:

package { "nginx":
 ensure => installed
 }

 service { "nginx":
 require => Package["nginx"],
 ensure => running,
 enable => true
 }

There are a few things to note in the preceding example. Each resource (section) starts with
the category. We are using two categories – package and service. In a resource block, we
wrap the values within curly parentheses, {}, and we then reference the name (nginx) and
set the values we require.

There are a few keywords that we are using in the resource blocks – ensure, require, and
enable. These keywords help describe what should happen for the node to reach a desired
state. The ensure keyword is used to ensure that the package or service is doing what you
want it to, such as installing or running. The require keyword is used when a specific
resource relies on another resource. In the service resource, we are using the keyword
enable, which allows us to specify if a service is active or not. It can be useful if you need
to temporarily disable a service while testing.

You can add comments into the manifest file by using the hashtag/pound symbol. The
following is an example:

This comment wont be parsed by Puppet but it will be useful for other
developers/DevOps

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[180]

Provisioning with Puppet
Let's get to the exciting part! We will now use Puppet apply and Puppet agent to provision
a Vagrant machine. We'll look at both options and install the nginx web server. We'll
configure it using the Vagrantfile as a base but also add in Puppet-specific configuration
such as manifests.

Provisioning with Puppet apply
The Puppet apply provision option in Vagrant allows you to get up and running quickly
with Puppet. You do not require a separate Puppet master server when using this option.
Let's get started:

Create a new directory for this project and move into it.1.
Create a directory and call it manifests.2.
In the manifests folder, create a manifest file called nginx.pp. Inside this file,3.
we'll insert the following instructions:

 package { "nginx":
 ensure => installed
 }
 service { "nginx":
 require => Package["nginx"],
 ensure => running,
 enable => true
 }

Let's break down this manifest file. First of all, we are executing the apt-get
update command to update packages in Ubuntu. We then install the nginx
package, which is started as a service. We ensure that it's running and enabled.

Back to Vagrant. Let's run the vagrant init -m command to create a minimal4.
Vagrantfile.
Let's add some configuration into the Vagrantfile:5.

 Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "private_network", ip: "11.11.11.11"
 config.vm.provision "shell", :inline => <<-SHELL
 apt-get update
 apt-get install -y puppet
 SHELL
 config.vm.provision "puppet" do |pup|

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[181]

 pup.manifest_file = "nginx.pp"
 end
 end

Let's break the Vagrantfile down. We first set the box to use Ubuntu Xenial 64 Bit,
and then set the network to use a private network and a static IP address of
11.11.11.11. We need to install Puppet onto the guest machine, otherwise you
will receive this error:

To bypass this error, we are using the shell provisioner to first update the
packages and then install the Puppet software on our Ubuntu box. Once this has
completed, then the Puppet provisioner will begin. It will install and start running
nginx:

The preceding screenshot shows the shell provisioner. In the following
screenshot, you can see the Puppet provisioner:

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[182]

Once complete, visit http://11.11.11.11 in your browser, where you should6.
see nginx's default page:

We can also check that Puppet is running on the Vagrant machine by SSH-
ing in using the vagrant ssh command. Once in, run the puppet help
command. We should see output similar to what's shown in the following
screenshot:

Congratulations! You have successfully provisioned a Vagrant machine using Puppet
apply. You have created a Vagrantfile and a Puppet manifest file, installed nginx, and
tested that the service is running correctly.

This is a fairly simple example, but Puppet is actually a very flexible and powerful
provisioner. There is a lot you can do with Puppet and Vagrant. I would recommend that
you experiment and learn more by testing out some of the options that are available.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[183]

Provisioning with Puppet agent
The second option when using Puppet as a provisioner is Puppet agent. Although this
option has an added layer of complexity (the need for a Puppet master server), there is less
configuration needed locally when it comes to Vagrant. We will not create a manifest file or
any Puppet-related configuration on the host machine. It will all be handled by the Puppet
master server.

The Puppet agent merely acts as a client which receives its commands from the server. In
the following example, we are going to create a multi-machine setup that provisions
Puppet master and Puppet agent machines:

Let's first create a new directory and move into that. I'm going to call mine1.
vagrant-puppet-agent and use the following comments to create and move
it:

 mkdir vagrant-puppet-agent && cd vagrant-puppet-agent

In our new directory, we can create a Vagrantfile by running the vagrant init2.
-m command.
We now need to edit our Vagrantfile, which requires quite a bit of configuration.3.
Not all of this is required for using the puppet_server/Puppet agent provision
option, but we are also creating a Puppet master server:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 # Puppet master configuration
 config.vm.define "puppetmaster" do |pm|

 pm.vm.provider "virtualbox" do |v|
 v.memory = 2048
 v.cpus = 2
 end

 pm.vm.network "private_network", ip:
"10.10.10.11"

 pm.vm.provision "shell", :inline => <<-SHELL
 sudo echo "10.10.10.11
master.example.com" | sudo tee -a /etc/hosts
 sudo echo "10.10.10.12
node.example.com" | sudo tee -a /etc/hosts
 wget
https://apt.puppetlabs.com/puppetlabs-release-pc1-xenial.deb
 sudo dpkg -i puppetlabs-release-pc1-

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[184]

xenial.deb
 sudo apt-get update -y
 sudo apt-get install -y puppetserver
 sudo awk '{sub(/-Xms2g -Xmx2g -
XX:MaxPermSize=256m/,"-Xms512m -Xmx512m")}1'
/etc/default/puppetserver > tmp.txt && mv tmp.txt
/etc/default/puppetserver
 sudo echo "*" | sudo tee -a
/etc/puppetlabs/puppet/autosign.conf
 sudo echo "autosign = true" | sudo tee
-a /etc/puppetlabs/puppet/puppet.conf
 sudo echo
"certname=master.example.com" | sudo tee -a
/etc/puppetlabs/puppet/puppet.conf
 sudo echo "[agent]" | sudo tee -a
/etc/puppetlabs/puppet/puppet.conf
 sudo echo "certname=node.example.com"
| sudo tee -a /etc/puppetlabs/puppet/puppet.conf
 sudo echo "exec { 'apt-get update':
path => '/usr/bin' } package { "nginx": ensure => installed }
service { "nginx": require => Package["nginx"], ensure =>
running, enable => true }" | sudo tee -a
/etc/puppetlabs/code/environments/production/manifests/default.
pp
 sudo systemctl enable puppetserver
 sudo systemctl start puppetserver
 SHELL
 end

 # Puppet Node configuration
 config.vm.define "pnode" do |pn|

 pn.vm.network "private_network", ip:
"10.10.10.12"

 pn.vm.provision "shell", :inline => <<-SHELL
 sudo echo "10.10.10.11 master.example.com" |
sudo tee -a /etc/hosts
 sudo echo "10.10.10.12 node.example.com" |
sudo tee -a /etc/hosts
 apt-get update
 apt-get install -y puppet
 sudo puppet agent --enable
 sudo echo "autosign = true" | sudo tee -a
/etc/puppet/puppet.conf
 sudo echo "certname=master.example.com" | sudo
tee -a /etc/puppet/puppet.conf
 sudo echo "[agent]" | sudo tee -a

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[185]

/etc/puppet/puppet.conf
 sudo echo "certname=node.example.com" | sudo
tee -a /etc/puppet/puppet.conf
 SHELL

 pn.vm.provision "puppet_server" do |pup|
 pup.puppet_node = "nginxplease"
 pup.puppet_server = "master.example.com"
 pup.options = "--verbose --waitforcert 10"
 end

 end
 end

This is the largest Vagrantfile we've created so far, but it covers a lot of configuration and it
creats multiple Vagrant machines. Let's break it down:

We first set the box to use Ubuntu Xenial 64 Bit (this will apply to both machines1.
as it's outside their configuration blocks).
Secondly, we define a puppetmaster block, which is used to configure the2.
Puppet master machine. In this block, there is a large amount of custom
configuration. Some of these parts are used to help suppress errors and may not
always be needed. We need a powerful machine to meet the minimum
requirements, so we will set the RAM memory and CPU count. We then create a
shell provisioner, which installs the Puppet server software and makes various
configuration changes to multiple files.
Thirdly, we define a pnode configuration block, which is used to configure the3.
Puppet node/agent machine. We use the shell provisioner to install Puppet and
make some configuration changes to multiple files. We also set the provisioner to
use puppet_server, which is also known as Puppet agent. We set the node
name, server host, and some additional options, which are to be sent to the
command when Puppet is run.
Let's now run the vagrant up --provision command. This will take some4.
time as it must first configure the Puppet master machine and then the Puppet
agent machine.

During the up process, you will see lots of out-put – mainly green, but some red,
too. Don't worry too much about the red as it's not so much an error in our
scenario as another level of output. Green is the output from the Vagrant
machine, while red might be output from the Puppet master running within the
Vagrant machine.

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[186]

We'll first see the Puppet master provisioner begin. During this process, we'll5.
also see the output from our echo statement, which is adding two records into
the /etc/hosts file:

Nearing the end of provisioning the Puppet master, we will see more output
while we add additional information into the puppet.conf file. In red, we can
see the Puppet master's output as it starts the service:

We now start provisioning the second Vagrant machine, which is acting as our6.
client/node in this example and using the Vagrant provision option
for puppet_server. We'll see the node create and cache an SSL certificate:

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[187]

At the end of the node's provisioning, we will see it retrieving
pluginfacts and then applying configuration. It will create a YAML file
with the state and then it will use the catalog to reach a desired state. In the
following screenshot, we can see that this was achieved in a swift 7.14 seconds:

Now, let's check to make sure that our Puppet configuration has worked correctly and that
we now have a node in the desired state (running nginx). Visit http://10.10.10.12 in
your browser. You should see nginx's default page:

We can also SSH into the machines individually to see their state. Run the vagrant
status command to view each machine's status and their name (as we need this for the
SSH command):

Puppet - Using Puppet to Provision a Vagrant Box Chapter 13

[188]

Let's first SSH into the Puppet master by running the vagrant ssh puppetmaster
command. Once in, run the puppetserver --version command to confirm that
everything is running fine and to see what the current version is:

Let's now SSH into the Puppet node/agent by running the vagrant ssh pnode command.
Once in, run the puppet --version command to confirm that everything is running fine
and to see what the current version is:

If you wish to stop both machines, then run the vagrant halt command. By doing this,
you can delete the machine states and any associated files by running the vagrant
destroy command.

Congratulations! You have successfully provisioned a Vagrant machine using the Puppet
agent option. We have created a traditional Puppet setup of the server and client by using
the multi machine option in Vagrant, along with various provisioning and networking
options.

Summary
In this chapter, we have learned all about Puppet and how to use it as a provisioner for
Vagrant machines. We have also learned about the two supported provisioning methods of
Puppet apply and Puppet agent.

In Chapter 14, Salt - Using Salt to Provision a Vagrant Box, we will focus on another
provisioner supported by Vagrant. We’ll learn about Salt and how it can be used to
provision Vagrant machines. You’ll get a good understanding of Salt as well as Salt states.

14
Salt - Using Salt to Provision a

Vagrant Box
You've reached the final chapter of the book, and our provisioning miniseries. In this
chapter, we'll learn more about the Salt provisioner that can be used with Vagrant. At the
end of this chapter, you will have a good understanding of how to use Salt to provision
Vagrant and know more about Salt as a standalone piece of configuration-management
software. We'll learn about Salt and how it works.

Specifically, we'll cover the following topics:

Understanding Salt
Salt states
The syntax of Salt states
Provisioning a Vagrant machine with Salt
Vagrantfile options available when using Salt

Understanding Salt
Salt is another member of the provisioning and infrastructure as code family. It can be
compared directly to Chef, Ansible, and Puppet. It's written in the Python language and
was first released in March 2011.

Salt can sometimes be referred to as the SaltStack platform. This is due to the modular
approach in which the software has been designed and built. It's extensible, flexible
approach allows you to add and remove modules.

Salt has one main setup—the client and server. You can think of it as a Puppet Master and
Minion setup. Salt uses a server (Master) and client (Minion) for its configuration
management. The other setup option that Salt supports is called Masterless,

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[190]

Salt Master
A Salt Master is used to manage the infrastructure and the servers within it. It can run
remote execution commands onto Minion servers and manage their state. It also can
operate in a Master-tiered setup where commands can be passed down through lower
Master servers. The Salt Master manages Salt Minions and is used to capture grains sent
from the Minions. It can then use the grain data to decide how to manage that specific
Minion. It runs a daemon called salt-master.

Salt Minion
A Salt Minion is a server/machine often controlled by the Salt Master. A Minion can run in
a masterless setup too. A Salt Minion runs a daemon called salt-minion and its main
purpose is to run commands sent from the Master, report data back, and send information
about itself in the form of grains.

Modules
There are six different modules available in Salt. Each type of module offers a different
action or function. We'll learn more about each here.

Execution
You can think of execution modules as ad hoc commands. These commands are run on the
Minion (command line) machines/nodes. They are written using Python/Cython.

State
States are a core part of configuration management in Salt. A state is a file that configures
and describes what state a machine should be in. This is very similar to the Puppet
manifests that describe the desired state of the machine.

Grains
Grains are pieces of static information about the Minion. This information includes core
details about the Minion, such as operating system, model, memory, and other data that is
gathered and sent to the Master upon the initial connection. This can help the Master target
different groups of Minions, such as targeting a specific operating system.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[191]

Renderer
A renderer in Salt is used to transform data types described in SaLt State files (SLS) into
Python to be consumed and handled by Salt. A common example is an SLS file rendered
into a Jinja template and then parsed as a YAML document. There are a few different
combinations currently supported:

Jinja and YAML
Mako and YAML
Wempy and YAML
Jinja and JSON
Mako and JSON
Wempy and JSON

Returners
In Salt, a returner is used to handle and output from a command run on a Minion machine.
The output/results data is always sent back to the Master but using a returner allows you to
decide where that data goes. You can choose any service that can receive data, such as
Redis or MySQL. This data can be used for analysis or archiving. It can give you better
insights into what's happening on the Minions and which commands are performing best.

Runners
A Salt runner is very similar to an execution module. The one difference is that a runner is a
command run and is executed on the Master server. A runner can be as simple or as
complex as you like. They can be run using the salt-run command.

Salt states
Salt states are also known as state modules. They make up an important part of the state
system used within Salt. A Salt state is used to describe what packages should be installed
on the Minion and other options such as user accounts, running services, and folder
permissions. We'll look at the Salt state syntax now.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[192]

Syntax and example
A Salt state file can often be found in the roots directory. It employs the .sls file
extension and uses the Yet Another Markup Language (YAML) format for its contents.
There is a certain hierarchy within a salt state file and that can go quite deep, depending on
your requirements and configuration.

Let's break down an example Salt state file:

lampstack:
 pkg.installed:
 - pkgs:
 - mysql-server
 - php5
 - php-pear
 - php5-mysql

We first set a name for this section, in this example it's called lampstack. We then call
pkg.installed, which verifies that certain packages have been installed. We use the -
pkgs option and set the - mysql-server, - php5, - php-pear, and - php5-
mysql values.

Provisioning Vagrant with Salt
Let's get to the main part of this chapter: provisioning a Vagrant machine with Salt. We'll
look at the masterless configuration setup for this section. We'll learn how to install the
Nginx web server onto our Vagrant machine:

Create a new folder/directory for this example. I'm calling mine vagrant-salt.1.
Move into the new folder and run the vagrant init -m command to create a2.
new Vagrantfile.
We need to create some folders and files for Salt. Create a roots folder and a3.
minionfiles folder. Inside the roots folder, create a file called top.sls and
enter these contents:

 base:
 '*':
 - base

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[193]

Within the same folder (roots), create another file called base.sls and enter
these contents:

 nginx:
 pkg.installed:
 - name: nginx

The top file dictates what hosts to target. We can use the * icon here to indicate
that we will target all hosts. This is not always the best option, but in this instance
it will work fine. It also dictates what Salt file to use. The - base value translates
into the base.sls file that we created.

The base.sls file is very minimal. It dictates that the nginx package (pkg)
should be installed. Let's now move into the minionfile folder and create our
base Minion file. Create the minion.yml file and enter the following contents:

 master: localhost
 file_client: local

Here we are setting the master value as localhost (as we are using a Masterless
setup) and the file_client to local too. Save these files and return to the
roots folder where the Vagrantfile is.

Set up the Vagrantfile. Edit the file to include these contents:4.

 Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "private_network", ip: "10.10.10.20"
 config.vm.synced_folder "roots/", "/srv/salt"
 config.vm.provision :salt do |sa|
 sa.masterless = true
 sa.minion_config = "minionfiles/minion.yml"
 sa.run_highstate = true
 end
 end

The Vagrantfile is fairly compact, but there are many options available to
configure Salt. You'll learn more about these in the coming sections.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[194]

In this Vagrantfile, we first set the box to use Ubuntu Xenial 64 bit and we set a
private network IP address as 10.10.10.20. We then set up Vagrant's
synced_folder option to share our roots folder with Salt so it can access our
top.sls and base.sls files. In the next section, we set the provision block to use
salt and set some basic values. We set the Masterless option to true, and the
minion_config to use our recently created minion.yml file inside the
minionfiles folder. We also set the run_highstate option to true to suppress
any errors and run the files.

Save the Vagrantfile and run vagrant up --provision to start the Vagrant5.
machine.
During the vagrant up process, we will see some new output as defined by the6.
Vagrantfile and Salt options. We'll first see the folder syncing setup. In the
following screenshot, we can see Vagrant's /srv/salt folder linking
to /roots on the host machine:

We'll then see the Running provisioner: salt... section, which will show
any output from the Salt provisioner. We can see that Salt checks a number of
things such as whether salt-minion is installed or outputs that Salt
successfully configured and installed!.

Salt has been installed and the Salt state and minion files have been parsed and
executed:

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[195]

Once this is complete and the Vagrant machine is running, open a web browser
and visit the private network IP address we set in the Vagrantfile. Open
http://10.10.10.20 and you should see the default Nginx welcome page:

Congratulations! You have successfully provisioned a Vagrant machine using Salt. We have
used the sls files to dictate that the Nginx package should be installed. There are many
different options that you can experiment with here, especially using a Master and Minion
configuration setup.

Salt options available within Vagrant
As Salt is essentially built into Vagrant, there are many options available. There are
currently six different types of options available to manage in the Vagrantfile. These option
types are:

Install
Minion
Master
Execute states
Execute runners
Output control

Let's break these option groups down to see what specific options are available to
configure.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[196]

Install options
These are fairly generic options and are used to manage the installation of Salt. Here are the
options available:

install_master: If this option is set to true, it will install the salt-master
daemon
no_minion: If set to true, this options will not install the minion
install_syndic: Dictates whether to install salt-syndic
install_type: Dictates the installation channel when installing via package
manager, such as stable, daily, or testing
install_args: When using Git, you can specify additional args, such as branch
or tag
always_install: Dictates whether to install binaries, even if they are already
detected
bootstrap_script: This is the path to your custom boostrap sh script
bootstrap_options: Additional options to path to your custom bootstrap sh
script
version: This dictates the version of the Minion to be installed
python_version: This dictates the major Python version to be installed on the
Minion

Minion options
These are minion-specific options. These are only really used when the no_minion option
is set to true (the default value). Here are the options available:

minion_config: The path to a custom minion config file
minion_key: The path to your minion key
minion_id: A unique identifier for a minion
minion_pub: The path to your minion public key
grains_config: The path to a custom grains file
masterless: This will call state.highstate in local mode
minion_json_config: This is valid JSON used to configure the salt minion
salt_call_args: Additional arguments to pass to the salt-call command if
provisioning with Masterless

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[197]

Master options
These are master-specific options. These are only really used when the
install_master option is set to true. Here are the options available:

master_config: This is the path to the master config file
master_key: This is the path to your master key
master_pub: This is the path to your public key
seed_master: This is used to upload keys to the master
master_json_config: This is valid JSON used to configure the master minion
salt_args: Additional arguments to pass to the 'salt' command if provisioning
with Masterless

Execute states
There is only one option here to control state-execution during provisioning:

run_highstate: Executes state.highstate on vagrant up

Execute runners
These options control runner execution during provisioning. These are the options
available:

run_overstate: Dictates whether state.over is run during vagrant up
orchestrations: Dictates whether state.orchestrate is run during
vagrant up

Output control
These options are used to control the output of state execution:

colorize: This dictates whether the output is colorized
log_level: The level of output, the default value is debug
verbose: This dictates whether the output of salt commands are to be displayed

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[198]

Vagrant cheat sheet
Through this chapter, I have shown you various tips and tricks when using Vagrant. It's
always helpful to learn the correct way of doing something and, when comfortable, using
faster methods that you may have picked up along the way. In this section, we will
highlight some Vagrant shortcuts that I use and that I hope will help you.

Testing a Vagrantfile
When working with a Vagrantfile, large or small, it can be useful to test it as you write it. If
writing a complex Vagrantfile, it can be useful to test certain sections as you add them,
without writing the whole thing and getting errors.

Run the vagrant validate command to test your Vagrantfile without having to run
vagrant up or go through the whole process.

Saving a snapshot
You can quickly and easily save a snapshot of your Vagrant machine and roll back to that at
a later date/time. This can be useful for testing purposes, local versioning, and general
usage.

Run the vagrant snapshot save [options] [vm-name] [snapshot-save-
name] command. The final parameter is used to give the snapshot a name so you can revert
back to it.

Status
Vagrant offers two status commands. One to view the status of the machine in your current
working directory (if any), and one to view the status of all machines on your system.

Use the vagrant status or vagrant global-status commands.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[199]

Boxes
Boxes are a big part of the Vagrant ecosystem and can sometimes be a pain to manage. Here
are a few commands to help:

Use vagrant box list to view all installed boxes on your system
Use vagrant box outdated --global to check for updates on installed boxes
Use vagrant box prune to remove old box versions

Hardware specification
If you need a more powerful Vagrant machine, you can use provider-specific code in your
Vagrantfile to beef up the hardware spec. In the following example we will use the memory
value to set a higher memory (RAM) for the machine. We also set the cpus value to set a
higher processor count. Finally, we set the gui value so we can access the machine via a
graphical user interface:

config.vm.provider "virtualbox" do |vb|
 vb.memory = 4096
 vb.cpus = 2
 vb.gui = true
 end

This is VirtualBox-specific code.

Please note: You cannot specify a higher hardware specification than the
host machine.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[200]

Code deployment
You can deploy code from Vagrant by running the vagrant push command. You will need
to do some configuration first but this can be a good way of managing code and a machine
at the same time. You will need to specify a remote server (such as FTP) in your Vagrantfile
before running the command. Here is an example block:

config.push.define "ftp" do |push|
 push.host = "ftp.yourdeploymentexample.com"
 push.username = "yourftpusername"
 push.password = "yourftppassword"
 end

You can use FTP, SFTP (by setting the secure option to true in the FTP version), Heroku, or
execute commands that you have created for pushing code.

Multi-machine
Using Vagrant's multi-machine is a powerful and easy way to create an infrastructure. This
can be used for testing or to closely replicate your production environment. You can set up
multiple Vagrant machines in one Vagrantfile and then manage them separately.

Each machine gets its own block in the Vagrantfile so any options are specific to that one
machine. You can use different provisioners, hardware specs, and other options in each
block.

General
We've covered some specific parts, but it can be worth revisiting the basics when trying to
solve a problem or learn more about specific features.

You can run the vagrant help command to list all commands in the system, which shows
a description and usage. To get more information on a specific command, you can run
the vagant [command-name] -h command.

Salt - Using Salt to Provision a Vagrant Box Chapter 14

[201]

The official Vagrant website and documentation is well written, easy to understand, and
easy to use. I often refer to it when using something new or something I haven't used for a
while.

Error messages in Vagrant are generally helpful and describe the error in a fairly easy-to-
understand manner. If you have any issues, try to work through the error message. I often
use search engines to find out how to fix an error.

Summary
In this chapter, we learned how to provision a Vagrant machine using the Salt software. We
learned about the options available when configuring Salt with Vagrant, and looked at
what Salt states are and their syntax.

The end of this chapter marks the end of our provisioning miniseries and the end of this
book. I encourage you to keep exploring Vagrant and its many different features. We've
focused mainly on provisioning in this book, but you could also look at the provider option
in Vagrant. This allows you to manage which software actually powers the virtual machine.
We use VirtualBox in this book, but there are other options, such as VMWare and Docker. It
all depends on your environment and available software, but Vagrant can be flexible and
will often meet your requirements.

Other Book You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Security in DevOps
Tony Hsu

ISBN: 978-1-78899-550-4

Understand DevSecOps culture and organization
Learn security requirements, management, and metrics
Secure your architecture design by looking at threat modeling, coding tools and
practices
Handle most common security issues and explore black and white-box testing
tools and practices
Work with security monitoring toolkits and online fraud detection rules
Explore GDPR and PII handling case studies to understand the DevSecOps
lifecycle

https://www.packtpub.com/networking-and-servers/hands-security-devops

Other Book You May Enjoy

[203]

DevOps with Kubernetes
Hideto Saito, Hui-Chuan Chloe Lee, Cheng-Yang Wu

ISBN: 978-1-78839-664-6

Learn fundamental and advanced DevOps skills and tools
Get a comprehensive understanding for container
Learn how to move your application to container world
Learn how to manipulate your application by Kubernetes
Learn how to work with Kubernetes in popular public cloud
Improve time to market with Kubernetes and Continuous Delivery
Learn how to monitor, log, and troubleshoot your application with Kubernetes

https://www.packtpub.com/virtualization-and-cloud/devops-kubernetes

Other Book You May Enjoy

[204]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
anatomy, Vagrant plugins
 about 108
 bundler 109
 gem 109
Ansible Playbooks 141, 142
Ansible
 about 131
 installing 132
 installing, on macOS High Sierra (version 10.13)

132

 used, for Vagrant provisioning 133
 used, for Vagrant provisioning on guest machine

137, 139
 used, for Vagrant provisioning on host machine

134, 136
application-specific Vagrant commands and

subcommands
 ssh command 44
 about 41
 docker-exec command 41
 docker-logs command 42
 docker-run command 43
 powershell command 45
 rdp command 43
 rsync command 43
 rsync-auto command 44
 ssh-config command 45

B
box command
 subcommands 35
build_image, Docker-specific configuration
 args 167
bundler 109

C
cap command
 about 35
 options/flags 35
Chef Client
 used, for Vagrant provisioning 154
Chef cookbook
 about 144
 attribute values 145
 extensions 145
 file distributors 145
 recipes 144
 templates 145
Chef Server
 installation link 154
Chef Solo
 used, for Vagrant provisioning 151, 154
Chef Supermarket
 about 145
 search function 146, 147, 148
Chef
 about 143
 installing, on macOS 149, 151
 used, for Vagrant provisioning 149
components, Docker
 containers 157
 images 157
 registry 158
 service 158
components, Vagrant box file
 about 50
 catalog metadata 50
 information 50
config.ssh namespace
 config.ssh.compression 75
 config.ssh.dsa_authentication 75

[206]

 config.ssh.export_command_template 75
 config.ssh.extra_args 75
 config.ssh.forward_agent 74
 config.ssh.forward_env 74
 config.ssh.forward_x11 74
 config.ssh.guest_port 74
 config.ssh.host 74
 config.ssh.insert_key 74
 config.ssh.keep_alive 75
 config.ssh.keys_only 74
 config.ssh.password 74
 config.ssh.port 74
 config.ssh.private_key_path 74
 config.ssh.proxy_command 74
 config.ssh.pty 75
 config.ssh.shell 75
 config.ssh.sudo_command 75
 config.ssh.username 74
 config.ssh.verify_host_key 74
config.vagrant namespace
 config.vagrant.host 75
 config.vagrant.sensitive 75
config.vm namespace
 config.vm.boot_timeout 71
 config.vm.box 71
 config.vm.box_check_update 71
 config.vm.box_download_ca_cert 72
 config.vm.box_download_ca_path 72
 config.vm.box_download_checksum 71
 config.vm.box_download_checksum_type 72
 config.vm.box_download_client_cert 72
 config.vm.box_download_insecure 72
 config.vm.box_download_location_trusted 72
 config.vm.box_url 72
 config.vm.box_version 72
 config.vm.communicator 72
 config.vm.graceful_halt_timeout 73
 config.vm.guest 73
 config.vm.hostname 73
 config.vm.network 73
 config.vm.post_up_message 73
 config.vm.provider 73
 config.vm.provision 73
 config.vm.synced_folder 73
 config.vm.usable_port_range 73

configuration management 123
container
 executing 160

D
destroy command
 options/flag 36
DevOps
 about 7, 11, 13
 state of development 11, 13
 Vagrant, using 11
Docker Hub
 about 158
 docker pull command, using 161
 docker run command, using 161
 docker search command, using 163
 docker start command, using 162
 docker stop command, using 162
 used, for finding Docker images 158, 159, 160
Docker images
 finding, with Docker Hub 158, 159, 160
docker pull command
 used, for pulling image from Docker Hub 161
docker run command
 used, for starting container 161
docker search command
 used, for searching Docker Hub 163
docker start command
 used, for starting Docker container 162
docker-exec command
 about 41
 options/flags 42
docker-logs command
 about 42
 options/flags 42
docker-run command
 about 43
 options/flags 43
Docker-specific configuration
 build_image 166
 images 166
 in Vagrant 166
 post_install_provisioner option 170
 pull_images option 167
 run option 168

[207]

Docker
 about 156
 components 157
 used, for provisioning Vagrant machine 164, 165
Dynamic Host Configuration Protocol (DHCP) 86

F
features, Vagrant
 boxes 9
 networking 9
 plugins 9
 Vagrantfile 8

G
gem 109
global-status command
 about 30
 options/flags 31

H
halt command
 options/flags 36

I
init command
 options/flags 37

L
Linux
 Vagrant, installing 20
 VirtualBox, installing 20
list-commands command
 about 30
 options/flag 30
load balancing
 with Vagrant multi-machine 95, 96
login command
 about 31
 options/flags 31

M
macOS High Sierra (version 10.13)
 Ansible, installing 132
macOS

 Chef, installing 149, 151
 Vagrant, installing 23
 VirtualBox, installing 23
manifest, Puppet
 example 178
 syntax 178, 179
modules, Salt
 execution 190
 grains 190
 renderer 191
 returners 191
 runners 191
 state 190

N
NFS
 used, for synced folders 120
Nginx Cookbook
 reference link 152

P
package command
 about 32
 options/flags 32
plugin command
 subcommands 34
port command
 options/flags 37
port-forwarding
 about 80, 84
 notes 86
powershell command
 about 45
 options /flags 45
prerequisites, Vagrant
 CPU architecture 17
 system version 16
prerequisites, VirtualBox
 CPU architecture 17
 system version 16
pricing tiers, Vagrant Cloud
 free 54
 organization 54
 personal 54
private networking

[208]

 about 86
 DHCP option, using 87
 static IP option, using 88
provider 15
provider command
 about 33
 options/flags 33
provision command
 about 38
 options/flags 38
public networking
 about 90
 DHCP option 91
 network bridge 92
 static IP 92
Puppet agent
 about 174, 177
 options 177, 178
 used, for provisioning Vagrant machine 183,

186, 188
Puppet apply
 about 174
 options 175, 177
 used, for provisioning Vagrant machine 180, 182
Puppet
 about 172
 catalogue 174
 compile process 173
 desired state 174
 manifest 173
 resources 173
 used, for provisioning Vagrant machine 180
push command
 about 38
 options/flags 38

R
rdp command
 about 43
 options/flags 43
reload command
 options/flags 39
resume command
 options/flags 39
rsync command

 options/flags 44
rsync-auto command
 about 44
 options/flags 44
RSync
 used, for synced folders 119
RubyGems
 reference link 112
run option, Docker-specific configuration
 args 169
 auto_assign_name 169
 cmd 169
 deamonize 170
 image 168
 restart 170

S
Salt Master 190
Salt Minion 190
Salt options
 about 195
 execute runners 197
 execute states 197
 install options 196
 master options 197
 minion options 196
 output control 197
 within Vagrant 195
SaLt State files (SLS) 191
Salt states
 about 191
 example 192
 syntax 192
Salt
 about 189
 modules 190
 used, for Vagrant provisioning 192, 195
script arguments, Vagrant shell provisioner
 array, using 130
 string, using 129
sh-config command 45
shortcuts, Vagrant
 boxes 199
 code deployment 200
 general 200

[209]

 hardware specification 199
 multi-machine 200
 snapshot, saving 198
 status commands 198
 Vagrantfile, testing 198
snapshot command
 subcommands 32
ssh command
 about 44
 options/flags 44
ssh-config command
 options/flags 45
static IP option
 IPv6 address 90
status command
 options/flags 40
suspend command
 about 40
 options/flags 40
synced folders
 setting up 117
 usage 118, 119
 with NFS 120
 with RSync 119

T
teams, Vagrant
 design team 10
 development team 10
 operations team 10
troubleshooting
 Vagrantfile 76, 78, 79

U
Ubuntu 16.04
 Vagrant, installing 22
 VirtualBox, installing 21
up command
 options/flags 40

V
Vagrant box file
 anatomy 50
Vagrant boxes installation
 shorthand/alias, directing to file 51

 URL, directing to file 51
 URL, directing to file in catalog 52
Vagrant boxes
 about 49
 creating 61, 62, 63, 64, 66, 67
 deleting 52
 enterprise solutions 67, 68
 installing 50, 51
 specific version, deleting 52, 53
 uploading, to Vagrant cloud 60
 versioning 54
 versions, deleting 53
Vagrant Cloud
 about 54
 boxes installation, search feature used 55, 56,

57

 boxes, installing 57, 59, 60
Vagrant cloud
 boxes, uploading to 60
Vagrant Cloud
 reference link 54
Vagrant commands and subcommands
 about 35
 box command 35
 destroy command 36
 halt command 36
 init command 37
 port command 37
 provision command 38
 push command 38
 reload command 38
 resume command 39
 status command 39
 suspend command 40
 up command 40
 validate command 41
Vagrant commands
 about 29
 exploring 29
 formatting 29
 global-status command 30
 help command 30
 list-commands command 30
 overview 27
 version command 30

[210]

Vagrant configuration commands and
subcommands

 about 31
 cap command 34
 login command 31
 package command 32
 plugin command 33
 provider command 33
 snapshot command 32
Vagrant file
 synced folders, setting up 117
 syncing 117
Vagrant machine
 provisioning, with Docker 164, 165
 provisioning, with Puppet 180
 provisioning, with Puppet agent 183, 186, 188
 provisioning, with Puppet apply 180, 182
Vagrant multi-machine
 about 94
 db.sh file, used for creating web server provision

script 102
 lb.sh file, creating 96
 MySQL database, configuring 105, 106, 107
 Nginx, configuring on web server 103, 104
 PHP, configuring on web server 103, 104
 shell provisioning 98, 100
 ssh command, using 100, 101
 used, for creating database setup 101
 used, for creating web server 101
 used, for load balancing 95, 96
 web.sh file, creating 97
 web.sh file, used for creating web server

provision script 102
Vagrant plugins
 about 108
 anatomy 108
 commands 111
 installing 109, 112, 113, 115, 116
 installing, from known gem source 110
 installing, from local file 110
 managing 109
 reference 112
 searching 112
 subcommands 111
 uninstalling 116

 using 112
Vagrant provisioning
 about 9, 122
 Ansible options 139, 140
 commands 124
 usage 123
 with Ansible 133
 with Ansible, on guest machine 137, 139
 with Ansible, on host machine 134, 136
 with Chef 149
 with Chef Client 154
 with Chef Solo 151, 154
 with directory 126
 with file 124
 with Salt 192, 195
 with single file 125
Vagrant shell provisioner
 about 127
 external scripts 128
 inline scripts 128
 script arguments 129
Vagrant workflow
 commands, using 46
Vagrant, installing on Linux
 about 20
 CPU architecture 21
 prerequisites 20
 system version 20
Vagrant, installing on macOS
 about 23
 CPU architecture 24
 prerequisites 23
 system version 23
Vagrant, installing on Ubuntu 16.04 22
Vagrant
 about 7, 8, 13, 22
 advantages 9
 CPU architecture 17
 Docker-specific configuration 166
 features 8
 installing, on Windows 10 16, 19
 prerequisites 16
 reference link 19
 Salt options 195
 shortcuts 198

 system version 16
 troubleshooting 47
 used, for DevOps 11
 using 13
Vagrantfile settings
 WinRM settings (config.winrm) 76
 WinSSH settings (config.ssh+ config.winssh) 76
Vagrantfile, configuration options
 about 71
 with config.ssh namespace 74
 with config.vm namespace 71
 woth config.vagrant namespace 75
Vagrantfile, settings
 configuring 76
Vagrantfile
 about 8, 69
 creating 70
 syntax 70
 troubleshooting 76, 78, 79
validate command
 about 41
 options/flags 41
version command
 about 30
 options/flags 30
VirtualBox, installing on Linux

 about 20
 CPU architecture 21
 prerequisites 20
 system version 20
VirtualBox, installing on macOS
 about 23
 CPU architecture 24
 prerequisites 23
 system version 23
VirtualBox, installing on Ubuntu 16.04 21
VirtualBox
 about 10
 CPU architecture 17
 installing, on Windows 10 16, 17
 prerequisites 16
 reference link 17, 21
 system version 16

W
Windows 10
 Vagrant, installing 16, 19
 VirtualBox, installing 16, 17

Y
Yet Another Markup Language (YAML) 192

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction
	Getting started with Vagrant and DevOps
	Understanding Vagrant
	Vagrant features
	Vagrantfile
	Boxes
	Networking
	Provisioning
	Plugins

	Advantages of Vagrant
	Development team
	Operations team
	Design team

	What is VirtualBox?
	What is DevOps?

	Vagrant for DevOps
	Current state of development within DevOps
	Vagrant and DevOps
	Using Vagrant as a day-to-day DevOps tool

	Summary

	Chapter 2: Installing VirtualBox and Vagrant
	Installing VirtualBox and Vagrant on Windows
	Prerequisites
	System version
	CPU architecture

	Installing VirtualBox on Windows 10
	Installing Vagrant on Windows 10

	Installing VirtualBox and Vagrant on Linux
	Prerequisites
	System version
	CPU architecture

	Installing VirtualBox on Ubuntu 16.04
	Installing Vagrant on Ubuntu 16.04

	Installing VirtualBox and Vagrant on macOS
	Prerequisites
	System version
	CPU architecture

	Installing VirtualBox on Mac OS 10.11.3
	Installing Vagrant on macOS 10.13.3

	Summary

	Chapter 3: Command Line-Interface - Vagrant Commands
	Vagrant command overview
	Vagrant commands in depth
	A brief note on formatting commands
	General Vagrant commands and sub-commands
	The list-commands command
	Options/flags

	The help command
	The version command
	Options/flags

	The global-status command
	Options/flags

	Vagrant's configuration commands and sub-commands
	The login command
	Options/flags

	The package command
	Options/flags

	The snapshot command
	sub-commands

	The provider command
	Options/flags

	The plugin command
	sub-commands

	The cap command
	Options/flags

	Day-to-day Vagrant commands and sub-commands
	The box command
	sub-commands

	The destroy command
	Options/flags

	The halt command
	Options/flags

	The init command
	Options/flags

	The port command
	Options/flags

	The provision command
	Options/flags

	The push command
	Options/flags

	The reload command
	Options/flags

	The resume command
	Options/flags

	The status command
	Options/flags

	The suspend command
	Options/flags

	The up command
	Options/flags

	The validate command
	Options/flags

	Application-specific Vagrant commands and sub-commands
	The docker-exec command
	Options / flags

	The docker-logs command
	Options/flags

	The docker-run command
	Options/flags

	The rdp command
	Options/flags

	The rsync command
	Options/flags

	The rsync-auto command
	Options/flags

	The ssh command
	Options/flags

	The ssh-config command
	Options/flags

	The powershell command
	Options /flags

	A typical Vagrant workflow using commands

	Troubleshooting
	Summary

	Chapter 4: Discovering Vagrant Boxes - Vagrant Cloud
	Understanding Vagrant boxes
	Vagrant box file anatomy
	Box file
	Box metadata
	Box information

	How to install a Vagrant box
	Direct URL to box file
	Shorthand/alias to box file
	A file path or URL to a box in a specific catalog

	How to delete a Vagrant box
	Deleting a specific version of a box
	Deleting all versions of a box

	Box versioning

	Vagrant Cloud
	Understanding the Vagrant Cloud
	Vagrant Cloud website
	Installing a Vagrant box found on the Vagrant Cloud – Part 1, Search
	Installing a Vagrant box found on the Vagrant Cloud – Part 2, Install

	Uploading a Vagrant box to the Vagrant cloud
	Creating a Vagrant box

	Enterprise solutions for Vagrant boxes
	Summary

	Chapter 5: Configuring Vagrant Using a Vagrantfile
	Understanding Vagrantfiles
	Creating a Vagrantfile
	Vagrantfile syntax

	Vagrantfile options
	Vagrant machine configuration (config.vm)
	Vagrant SSH configuration (config.ssh)
	Vagrant settings (config.vagrant)
	Other Vagrantfile settings
	WinRM settings (config.winrm)
	WinSSH settings (config.ssh and config.winssh)

	Troubleshooting a Vagrantfile
	Summary

	Chapter 6: Networking in Vagrant
	Port-forwarding
	Port-forwarding notes

	Private networking
	DHCP
	Static IP
	IPv6

	Public networking
	DHCP
	Static IP
	Network bridge

	Summary

	Chapter 7: Multi-Machine
	An introduction to Vagrant multi-machine
	Load balancing with Vagrant multi-machine
	lb.sh
	web.sh
	Vagrant multi-machine shell provisioning
	multi-machine SSH

	Web server and database setup with Vagrant multi-machine
	web.sh
	db.sh
	Nginx and PHP configuration
	MySQL configuration

	Summary

	Chapter 8: Exploring Vagrant Plugins and Syncing Files
	Understanding Vagrant plugins
	The anatomy of a Vagrant plugin
	Gem
	bundler

	Managing Vagrant plugins
	Vagrant plugin installation methods
	Installing a Vagrant plugin from a local file
	Installing a Vagrant plugin from a known gem source

	Vagrant plugin commands and subcommands
	Finding, installing, and using a Vagrant plugin
	Installing a Vagrant plugin
	Uninstalling a Vagrant plugin

	Vagrant file-syncing
	Setting up synced folders
	Synced folders with basic usage
	Synced folders with RSync
	Synced folders with NFS

	Summary

	Chapter 9: Shell Scripts - Provisioning
	Introduction to Vagrant provisioning
	Understanding configuration management
	Basic usage of Vagrant provisioning
	Vagrant provisioning commands

	Vagrant provisioning with a file
	Single file
	Directory

	Vagrant Shell provisioner
	Inline Scripts
	External scripts
	Script arguments
	Script argument – string
	Script argument – array

	Summary

	Chapter 10: Ansible - Using Ansible to Provision a Vagrant Box
	Understanding Ansible
	Installing Ansible
	Installing Ansible on macOS High Sierra (version 10.13)

	Provisioning Vagrant using Ansible
	Provisioning Vagrant using Ansible on the host machine
	Provisioning Vagrant using Ansible on the guest machine
	Additional Ansible options
	Provisioner – Ansible
	Provisioner – Ansible local

	Ansible Playbooks
	Summary

	Chapter 11: Chef - Using Chef to Provision a Vagrant Box
	Understanding Chef
	Chef Cookbook
	Recipes
	Templates
	Attribute values
	Extensions
	File distributors

	Chef Supermarket
	Search

	Provisioning Vagrant with Chef
	Installing Chef on macOS
	Using Chef Solo to provision a Vagrant machine
	Using Chef Client to provision a Vagrant machine

	Summary

	Chapter 12: Docker - Using Docker with Vagrant
	Understanding Docker
	Key components of Docker
	Containers
	Images
	Registry
	Service

	Using the Docker Hub to find Docker images
	Basic usage – running a container
	pull
	run
	stop
	start
	search

	Using Docker to provision a Vagrant machine
	Docker-specific configuration in Vagrant
	Images
	build_image
	args

	pull_images
	run
	image
	cmd
	args
	auto_assign_name
	deamonize
	restart

	post_install_provisioner

	Summary

	Chapter 13: Puppet - Using Puppet to Provision a Vagrant Box
	Understanding Puppet
	Resources
	Manifest
	Compile
	Catalogs
	Apply
	Desired state

	Puppet apply and Puppet agent
	Puppet apply
	Options

	Puppet agent
	Options

	Puppet Manifest example and syntax
	Syntax

	Provisioning with Puppet
	Provisioning with Puppet apply
	Provisioning with Puppet agent

	Summary

	Chapter 14: Salt - Using Salt to Provision a Vagrant Box
	Understanding Salt
	Salt Master
	Salt Minion
	Modules
	Execution
	State
	Grains
	Renderer
	Returners
	Runners

	Salt states
	Syntax and example

	Provisioning Vagrant with Salt
	Salt options available within Vagrant
	Install options
	Minion options
	Master options
	Execute states
	Execute runners
	Output control

	Vagrant cheat sheet
	Testing a Vagrantfile
	Saving a snapshot
	Status
	Boxes
	Hardware specification
	Code deployment
	Multi-machine
	General

	Summary

	Other Book You May Enjoy
	Index

