
Tkinter GUI Application
 Development Cookbook

As one of the more versatile programming
languages, Python is well-known for its
batteries-included philosophy, which includes
a rich set of modules in its standard library;
Tkinter is the library included for building
desktop applications. Due to this, Tkinter is a
common choice for rapid GUI development,
and more complex applications can benefi t
from the full capabilities of this library. This
book covers all of your Tkinter and Python GUI
development problems and solutions.

Tkinter GUI Application Development
Cookbook starts with an overview of Tkinter
classes and at the same time provides recipes
for basic topics, such as layout patterns and
event handling. Next, we cover how to develop
common GUI patterns, such as entering and
saving data, navigating through menus and
dialogs, and performing long-running actions
in the background. You can then make your
apps leverage network resources effectively
and perform graphical operations on a canvas
and related tasks, such as detecting collisions
between items. Finally, this book covers how
to use themed widgets, an extension of Tk
widgets that have a more native look and feel.

By the end of the book, you will have an
in-depth knowledge of Tkinter classes, and will
know how to use them to build effi cient and
rich GUI applications.

Things you will learn:

• Add widgets and handle user events

• Lay out widgets within windows using
frames and the different geometry
managers

• Confi gure widgets so that they
have customized appearances and
behaviors

• Improve the navigation of your apps
with menus and dialogs

• Apply object-oriented programming
techniques to Tkinter applications

• Use threads to achieve
responsiveness and update the GUI

• Explore the capabilities of the Canvas
widget and the types of items that can
be added to it

• Extend Tkinter applications with the
TTK (themed Tkinter) module

www.packtpub.com

Tkin
ter G

U
I A

p
p

licatio
n

 D
evelo

p
m

en
t C

o
o

kb
o

o
k

A
lejan

d
ro

 R
o

d
as d

e P
az

A practical solution to your GUI development problems
with Python and Tkinter

Cookbook

Tkinter GUI Application
Development

Alejandro Rodas de Paz

Tkinter GUI Application
Development Cookbook

A practical solution to your GUI development problems with
Python and Tkinter

Alejandro Rodas de Paz

BIRMINGHAM - MUMBAI

Tkinter GUI Application Development
Cookbook
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Reshma Raman
Content Development Editor: Jason Pereira
Technical Editor: Prajakta Mhatre
Copy Editor: Dhanya Baburaj
Project Coordinator: Sheejal Shah
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Coordinator: Deepika Naik

First published: March 2018
Production reference: 1270318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-230-1

www.packtpub.com

http://www.packtpub.com

I dedicate my work to my aunt, Elena, and my cousins, Julia and Laura. This book would not
have been possible without their love and support.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Alejandro Rodas de Paz is a computer engineer from Seville, Spain. He has developed
several projects with Python, from web crawlers to artificial intelligence algorithms. He has
also used Tkinter for building an application for the lighting system of the city of Almere
(Netherlands).

Prior to this publication, Alejandro co-wrote Packt's title Python Game Development by
Example, and collaborated as a technical reviewer on the book Tkinter GUI Application
Development Hotshot.

I would like to thank the exceptional team at Packt Publishing for their assistance during
this journey, and words cannot express my gratitude to Jason and Prajakta for their
understanding and immense patience.

About the reviewers
Javier Becerra Elcinto received his PhD in image processing from the Université de
Bordeaux in 2006. In 2010 he started working as a self-employed developer working with
Python and C++, and in 2014 he cofounded Panoimagen S.L. There, he has continued to
develop software for industrial and precision agriculture applications. Javier lectures
regularly on scientific programming in private companies and several Spanish research
institutions.

Marcos Perez Gonzalez works in the treatment of multimedia document databases with
Python. Previously, he had been using it as glue between projects and technologies for more
than 10 years. At the beginning of his career, he used Python for embedding purposes and
multiplatform GUI programming.

He is a member of the Python Spain association and the Python Madrid meetup. Moreover,
he has been a member of the board of directors of the Spanish Association of Computer
Engineering.

He holds a master's degree in computer engineering from the University of Valladolid.

Bryson Tyrrell is a systems development engineer at Jamf in Minneapolis, Minnesota. In
addition to the responsibilities of his role, Bryson has spoken at various IT conferences
(including the Jamf Nation User Conference, Penn State MacAdmins, Mac Admins and
Developers UK, and Atlassian Summit) and maintains a number of open source tools for
the Mac admin community on his GitHub account.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Tkinter 6
Introduction 6
Structuring a Tkinter application 7

Getting ready 7
How to do it... 8
How it works... 9
There's more... 9

Working with buttons 10
How to do it... 10
How it works... 11
There's more... 11

Creating text entries 12
How to do it... 12
How it works... 13
There's more... 13
See also 14

Tracing text changes 14
How to do it... 14
How it works... 15
There's more... 16
See also 16

Validating a text entry 16
How to do it... 16
How it works... 17
There's more... 18
See also 19

Selecting numerical values 19
How to do it... 19
How it works... 20
There's more... 20
See also 20

Creating selections with radio buttons 21
How to do it... 21
How it works... 22
There's more... 22

Implementing switches with checkboxes 23
How to do it... 23

Table of Contents

[ii]

How it works... 24
There's more... 24
See also 24

Displaying a list of items 24
How to do it... 25
How it works... 26
There's more... 27
See also 27

Handling mouse and keyboard events 27
How to do it... 28
How it works... 29
There's more... 31
See also 31

Setting the main window's icon, title, and size 31
How to do it... 31
How it works... 32
There's more... 32

Chapter 2: Window Layout 33
Introduction 33
Grouping widgets with frames 34

Getting ready 34
How to do it… 34
How it works… 36
There's more… 36
See also 37

Using the Pack geometry manager 37
Getting ready 37
How to do it… 38
How it works… 39
There's more… 40
See also 40

Using the Grid geometry manager 40
Getting ready 41
How to do it… 41
How it works… 42
There's more… 43
See also 43

Using the Place geometry manager 43
Getting ready 44
How to do it… 44
How it works… 45
There's more… 46
See also 46

Grouping inputs with the LabelFrame widget 46

Table of Contents

[iii]

Getting ready 46
How to do it… 47
How it works… 48

Dynamically laying out widgets 48
Getting ready 49
How to do it… 49
How it works… 50

Creating horizontal and vertical scrollbars 51
Getting ready 51
How to do it… 52
How it works… 53
There's more… 55
See also 55

Chapter 3: Customizing Widgets 56
Introduction 56
Working with colors 57

Getting ready 57
How to do it... 58
How it works... 59
There's more... 60

Setting widget fonts 60
Getting ready 60
How to do it... 61
How it works... 62
There's more... 62
See also 63

Using the options database 63
Getting ready 63
How to do it... 64
How it works... 64
There's more... 66
See also 66

Changing the cursor icon 66
Getting ready 67
How to do it... 67
How it works... 68
There's more... 68

Introducing the Text widget 69
Getting ready 69
How to do it... 70
How it works... 71

Adding tags to the Text widget 72
Getting ready 72
How to do it... 73

Table of Contents

[iv]

How it works... 73
There's more... 74
See also 75

Chapter 4: Dialogs and Menus 76
Introduction 76
Showing alert dialogs 77

Getting ready 77
How to do it... 79
How it works... 80

Asking for user confirmation 80
Getting ready 81
How to do it... 81
How it works... 82

Choosing files and directories 82
Getting ready 83
How to do it... 84
How it works... 85
There's more... 86

Saving data into a file 86
Getting ready 87
How to do it... 87
How it works... 88
There's more... 88
See also 89

Creating a menu bar 89
Getting ready 89
How to do it... 90
How it works... 90

Using variables in menus 91
Getting ready 91
How to do it... 92
How it works... 93

Displaying context menus 93
Getting ready 94
How to do it... 94
How it works... 95
There's more... 96

Opening a secondary window 97
Getting ready 98
How to do it... 98
How it works... 99

Handling window deletion 99
Getting ready 100
How to do it... 100

Table of Contents

[v]

How it works... 101
There's more... 101

Passing variables between windows 102
Getting ready 102
How to do it... 102
How it works... 104

Chapter 5: Object-Oriented Programming and MVC 105
Introduction 105
Structuring our data with a class 106

Getting ready 106
How to do it... 106
How it works... 107
There's more... 108

Composing widgets to display information 109
Getting ready 109
How to do it... 110
How it works... 111

Reading records from a CSV file 112
Getting ready 112
How to do it... 113
How it works... 114

Persisting data into a SQLite database 114
Getting ready 115
How to do it... 116
How it works... 120
See also 121

Refactoring using the MVC pattern 121
Getting ready 122
How to do it... 122
How it works... 126
There's more... 127

Chapter 6: Asynchronous Programming 128
Introduction 128
Scheduling actions 129

Getting ready 129
How to do it... 130
How it works... 131
There's more... 132
See also 132

Running methods on threads 132
How to do it... 132
How it works... 133
There's more... 135

Table of Contents

[vi]

Thread methods - start, run, and join 135
Parameterizing the target method 135

Performing HTTP requests 136
Getting ready 136
How to do it... 137
How it works... 138
See also 139

Connecting threads with a progress bar 139
Getting ready 140
How to do it... 140
How it works... 141
See also 143

Canceling scheduled actions 143
Getting ready 143
How to do it... 144
How it works... 145
There's more... 145

Handling idle tasks 146
Getting ready 146
How to do it... 146
How it works... 147

Spawning separate processes 147
Getting ready 148
How to do it... 148
How it works... 149

Chapter 7: Canvas and Graphics 151
Introduction 151
Understanding the coordinate system 152

How to do it... 152
How it works... 153
There's more... 154

Drawing lines and arrows 154
Getting ready 154
How to do it... 155
How it works... 156

Writing text on a canvas 157
Getting ready 158
How to do it... 158
How it works... 159
There's more... 160

Placing the text by its upper-left corner 160
Setting line wrapping 161

Adding shapes to the canvas 161
Getting ready 162

Table of Contents

[vii]

How to do it... 162
How it works... 164
See also 166

Finding items by their position 166
Getting ready 166
How to do it... 167
How it works... 168

Moving canvas items 168
How to do it... 169
How it works... 170
There's more... 171
See also 172

Detecting collisions between items 172
Getting ready 172
How to do it... 173
How it works... 174
There's more... 175

Deleting items from a canvas 175
Getting ready 176
How to do it... 176
How it works... 178

Binding events to canvas items 178
Getting ready 178
How to do it... 179
How it works... 180
There's more... 181
See also 181

Rendering a canvas into a PostScript file 181
How to do it... 182
How it works... 182
There's more... 183

Chapter 8: Themed Widgets 184
Introduction 184
Replacing basic widget classes 185

Getting ready 185
How to do it... 186
How it works... 187
See also 188

Creating an editable drop-down with Combobox 188
Getting ready 188
How to do it... 189
How it works... 190
There's more... 191

Using the Treeview widget 191

Table of Contents

[viii]

Getting ready 192
How to do it... 192
How it works... 193
There's more... 195

Using tags in Treeview items 195
See also 196

Populating nested items in a Treeview 196
Getting ready 197
How to do it... 197
How it works... 199

Displaying tabbable panes with Notebook 201
Getting ready 201
How to do it... 201
How it works... 202
There's more... 203

Applying Ttk styling 204
How to do it... 204
How it works... 205

Creating a datepicker widget 205
Getting ready 206
How to do it... 206
How it works... 209
See also 213

Other Books You May Enjoy 214

Index 217

Preface
As one of the more versatile programming languages, Python is well known for its
batteries-included philosophy, which includes a rich set of modules in its standard library;
Tkinter is the library used to build desktop applications. Built over the Tk GUI toolkit,
Tkinter is a common choice for rapid GUI development, and complex applications can
benefit from the full capabilities of this library. This book covers all of your Tkinter and
Python GUI development problems and solutions.
Tkinter GUI Application Development Cookbook starts with an overview of Tkinter classes and
at the same time provides recipes for basic topics, such as layout patterns and event
handling. Next, this book covers how to develop common GUI patterns, such as entering
and saving data, navigating through menus and dialogs, and performing long-running
actions in the background. You can then make your apps leverage network resources
effectively and perform graphical operations on a canvas and related tasks such as detecting
collisions between items. Finally, this book covers using themed widgets, an extension of Tk
widgets that have a more native look and feel.
By the end of the book, you will have an in-depth knowledge of Tkinter classes and know
how to use them to build efficient and rich GUI applications.

Who this book is for
This book targets Python developers who are familiar with the basics of the
language—syntax, data structures, and OOP—wants to learn effective solutions to the
common challenges of GUI development, and desires to discover interesting capabilities
that Tkinter can offer to build complex applications.

You do not need previous experience with Tkinter or other GUI development libraries since
the first part of the book will teach the basics of the library through the introductory use
cases.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Tkinter, introduces the structure of a Tkinter program and
shows you how to perform the most common tasks, such as creating widgets and handling
user events.

Chapter 2, Window Layout, demonstrates how to place widgets using geometry managers
and improve the layout of large applications.

Chapter 3, Customizing Widgets, dives deeper into Tkinter's widget configuration and
appearance customization.

Chapter 4, Dialogs and Menus, teaches you how to improve the navigation of Tkinter apps
with menus and dialogs.

Chapter 5, Object-Oriented Programming and MVC, teaches you how to effectively apply
design patterns in your Tkinter applications.

Chapter 6, Asynchronous Programming, covers several recipes to execute long-running
actions without freezing the application—a recurring problem in GUI development.

Chapter 7, Canvas and Graphics, explores the Canvas widget and the types of items you can
add to the canvas and how to manipulate them.

Chapter 8, Themed Widgets, teaches you how to extend Tkinter applications with the Tk-
themed widget set.

To get the most out of this book
To get up and running, users will need to have the following technologies installed:

Python 3.x
Any operating system

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Tkinter- ​GUI- ​Application- ​Development- ​Cookbook. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​TkinterGUIApplicationDevelopmentCookbook_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The delete() method takes two arguments that indicate the range of the
characters that should be deleted."

http://www.packtpub.com/support
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentCookbook_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

from tkinter import *

root = Tk()
btn = Button(root, text="Click me!")
btn.config(command=lambda: print("Hello, Tkinter!"))
btn.pack(padx=120, pady=30)
root.title("My Tkinter app")
root.mainloop()

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def show_caption(self, event):
 caption = tk.Label(self, ...)
 caption.place(in_=event.widget, x=event.x, y=event.y)
 # ...

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The first will be labeled Choose file."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with Tkinter

In this chapter, we will cover the following recipes:

Structuring a Tkinter application
Working with buttons
Creating text entries
Tracing text changes
Validating a text entry
Selecting numerical values
Creating selections with radio buttons
Implementing switches with checkboxes
Displaying a list of items
Handling mouse and keyboard events
Setting the main window's icon, title, and size

Introduction
Thanks to its clear syntax and the wide ecosystem of libraries and tools, Python has become
a popular and general-purpose programming language. From web development to Natural
Language Processing (NLP), you can easily find an open source library that fits the need of
your application domain, and in the last instance, you can always use any of the modules
included in the Python standard library.

The standard library follows the "batteries-included" philosophy, which means that it
contains a large collection of utilities: regular expressions, mathematical functions,
networking, and so on. The standard Graphical User Interface (GUI) package of this
library is Tkinter, a thin object-oriented layer on top of Tcl/Tk.

Getting Started with Tkinter Chapter 1

[7]

Starting from Python 3, the Tkinter module was renamed to tkinter (with a lowercase t).
It also affects to the tkinter.ttk and tkinter.tix extensions. We will dive into the
tkinter.ttk module in the last chapter of this book, since the tkinter.tix module is
officially deprecated.

In this chapter, we will explore several patterns for some basic classes of the tkinter
module and some methods that are common to all widget subclasses.

Structuring a Tkinter application
One of the main advantages of making applications with Tkinter is that it is very easy to set
up a basic GUI with a script of a few lines. As the programs get more complex, it becomes
more difficult to separate logically each part, so an organized structure will help us to keep
our code clean.

Getting ready
We will take the following program as an example:

from tkinter import *

root = Tk()
btn = Button(root, text="Click me!")
btn.config(command=lambda: print("Hello, Tkinter!"))
btn.pack(padx=120, pady=30)
root.title("My Tkinter app")
root.mainloop()

It creates a main window with a button that prints Hello, Tkinter! in the console each
time it is clicked. The button is placed with a padding of 120px in the horizontal axis and
30px in the vertical axis. The last statement starts the main loop, which processes user
events and updates the GUI until the main window is destroyed:

Getting Started with Tkinter Chapter 1

[8]

You can execute the program and verify that it is working as expected. However, all our
variables are defined in the global namespace, and the more widgets you add, the more
difficult it becomes to reason about the parts where they are used.

Wildcard imports (from ... import *) are strongly discouraged in
production code because they pollute your global namespace—we only
used them here to illustrate an anti-pattern that can be commonly seen in
online examples.

These maintainability issues can be addressed with basic OOP techniques, which are
considered good practice in all types of Python programs.

How to do it...
To improve the modularity of our simple program, we will define a class that wraps our
global variables:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.btn = tk.Button(self, text="Click me!",
 command=self.say_hello)
 self.btn.pack(padx=120, pady=30)

 def say_hello(self):
 print("Hello, Tkinter!")

if __name__ == "__main__":
 app = App()
 app.title("My Tkinter app")
 app.mainloop()

Getting Started with Tkinter Chapter 1

[9]

Now, each variable is enclosed in a specific scope, including the command function, which is
moved as a separate method.

How it works...
First, we replaced the wildcard import with the import ... as syntax to have better
control over our global namespace.

Then, we defined our App class as a Tk subclass, which now is referenced via the tk
namespace. To properly initialize the base class, we will call the __init__ method of the
Tk class with the built-in super() function. This corresponds to the following lines:

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 # ...

Now, we have a reference to the App instance with the self variable, so we will add all the
Button widget as an attribute of our class.

Although it may look overkill for such a simple program, this refactoring will help us to
reason about each part, the button instantiation is separated from the callback that gets
executed when it is clicked, and the application bootstrapping is moved to the if
__name__ == "__main__" block, which is a common practice in executable Python
scripts.

We will follow this convention through all the code samples, so you can take this template
as the starting point of any larger application.

There's more...
We subclassed the Tk class in our example, but it is also common to subclass other widget
classes. We did this to reproduce the same statements that we had before we refactored the
code.

However, it may be more convenient to subclass Frame or Toplevel in larger programs,
such as those with multiple windows. This is because a Tkinter application should have
only one Tk instance, and the system creates one automatically if you instantiate a widget
before you create the Tk instance.

Getting Started with Tkinter Chapter 1

[10]

Keep in mind that this decision does not affect the structure of our App class since all widget
classes have a mainloop method that internally starts the Tk main loop.

Working with buttons
Button widgets represent a clickable item of your GUI applications. They typically use a text
or an image indicating the action that will be performed when clicked. Tkinter allows you
to easily configure this functionality with some standard options of the Button widget
class.

How to do it...
The following contains a button with an image that gets disabled when clicked and a list of
buttons with the different types of available reliefs:

import tkinter as tk

RELIEFS = [tk.SUNKEN, tk.RAISED, tk.GROOVE, tk.RIDGE, tk.FLAT]

class ButtonsApp(tk.Tk):
 def __init__(self):
 super().__init__()
 self.img = tk.PhotoImage(file="python.gif")
 self.btn = tk.Button(self, text="Button with image",
 image=self.img, compound=tk.LEFT,
 command=self.disable_btn)
 self.btns = [self.create_btn(r) for r in RELIEFS]
 self.btn.pack()
 for btn in self.btns:
 btn.pack(padx=10, pady=10, side=tk.LEFT)

 def create_btn(self, relief):
 return tk.Button(self, text=relief, relief=relief)

 def disable_btn(self):
 self.btn.config(state=tk.DISABLED)

if __name__ == "__main__":
 app = ButtonsApp()
 app.mainloop()

Getting Started with Tkinter Chapter 1

[11]

The purpose of this program is to show several configuration options that can be used when
creating a Button widget.

After executing the preceding code, you will get the following output:

How it works...
The most basic way of instantiation of Button is using the text option to set the button
label and the command option that references the function to be invoked when the button is
clicked.

In out example, we also added PhotoImage via the image option, which takes precedence
over the text string. The compound option serves to combine image and text in the same
button, determining the position where the image is placed. It accepts the following
constants as valid values: CENTER, BOTTOM, LEFT, RIGHT, and TOP.

The second row of buttons is created with a list comprehension, using the list of RELIEF
values. The label of each button corresponds to the name of the constant, so you can note
the difference in the appearance of each button.

There's more...
We used an attribute to keep a reference to our PhotoImage instance, even though we are
not using it outside our __init__ method. The reason is that images are cleared when they
are garbage collected, which will happen if we declare it as a local variable and the method
exists.

To avoid this, always remember to keep a reference to each PhotoImage object as long as
the window where it is shown is still alive.

Getting Started with Tkinter Chapter 1

[12]

Creating text entries
The Entry widget represents a text input displayed in a single line. Along with the Label
and Button classes, it is one of the most commonly used Tkinter classes.

How to do it...
This example shows how to create a login form with two entry instances for the username
and password fields. Each character of password is displayed as an asterisk to avoid
showing it in clear text:

import tkinter as tk

class LoginApp(tk.Tk):
 def __init__(self):
 super().__init__()
 self.username = tk.Entry(self)
 self.password = tk.Entry(self, show="*")
 self.login_btn = tk.Button(self, text="Log in",
 command=self.print_login)
 self.clear_btn = tk.Button(self, text="Clear",
 command=self.clear_form)
 self.username.pack()
 self.password.pack()
 self.login_btn.pack(fill=tk.BOTH)
 self.clear_btn.pack(fill=tk.BOTH)

 def print_login(self):
 print("Username: {}".format(self.username.get()))
 print("Password: {}".format(self.password.get()))

 def clear_form(self):
 self.username.delete(0, tk.END)
 self.password.delete(0, tk.END)
 self.username.focus_set()

if __name__ == "__main__":
 app = LoginApp()
 app.mainloop()

Getting Started with Tkinter Chapter 1

[13]

The Log in button prints the values in the console, whereas the Clear button removes the
content of both entries and returns the focus to the entry for username:

How it works...
The Entry widgets are instantiated using the parent window or frame as the first argument
and a set of optional keyword arguments to configure additional options. We did not
specify any options for the entry corresponding to the username field. To keep the
password secret, we specify the show argument with the string "*", which will display each
typed character as an asterisk.

With the get() method, we will retrieve the current text as a string. This is used in the
print_login method to show the entries' content in the standard output.

The delete() method takes two arguments that indicate the range of the characters that
should be deleted. Keep in mind that the indices start at the position 0, and they do not
include the character at the end of the range. If only one argument is passed, it deletes the
character at that position.

In the clear_form() method, we delete from index 0 to the constant END, which means
that the whole content is removed. Finally, we set the focus to the username entry.

There's more...
The content of an Entry widget can be modified programmatically with the insert()
method, which takes two arguments:

index: The position to insert the text; note that entry positions are 0-indexed
string: The text to insert

Getting Started with Tkinter Chapter 1

[14]

A common pattern to reset the content of an entry with a default value can be achieved with
a combination of delete() and insert():

entry.delete(0, tk.END)
entry.insert(0, "default value")

Another pattern is to append the text in the current position of the text cursor. Here, you
can use the INSERT constant instead of having to calculate the numerical index:

entry.insert(tk.INSERT, "cursor here")

Like the Button class, the Entry class also accepts the relief and state options to
modify its border style and state. Keep in mind that calls to delete() and insert() are
ignored when the state is "disabled" or "readonly".

See also
The Tracing text changes recipe
The Validating a text entry recipe

Tracing text changes
Tk variables allow your applications to get notified when an input changes its value. There
are four variable classes in Tkinter: BooleanVar, DoubleVar, IntVar, and StringVar.
Each one wraps the value of the corresponding Python type, which should match the type
of the input widget attached to the variable.

This feature is particularly useful if you want to automatically update certain parts of your
application based on the current state of some input widgets.

How to do it...
In the following example, we will associate a StringVar instance to our entry with the
textvariable option; this variable traces write operations with the
show_message() method as callback:

import tkinter as tk

class App(tk.Tk):

Getting Started with Tkinter Chapter 1

[15]

 def __init__(self):
 super().__init__()
 self.var = tk.StringVar()
 self.var.trace("w", self.show_message)
 self.entry = tk.Entry(self, textvariable=self.var)
 self.btn = tk.Button(self, text="Clear",
 command=lambda: self.var.set(""))
 self.label = tk.Label(self)
 self.entry.pack()
 self.btn.pack()
 self.label.pack()

 def show_message(self, *args):
 value = self.var.get()
 text = "Hello, {}!".format(value) if value else ""
 self.label.config(text=text)

if __name__ == "__main__":
 app = App()
 app.mainloop()

When you type something into the Entry widget, the label updates its text with a message
composed with the Tk variable value. For instance, if you type the word Phara, the label
will show Hello, Phara!. If the entry is empty, the label will not show any text. To show
you how to modify the variable's content programmatically, we added a button that clears
the entry when you click on it:

How it works...
The first lines of our application constructor instantiate StringVar and attach a callback to
the write mode. The valid mode values are as follows:

"w": Called when the variable is written
"r": Called when the variable is read
"u" (for unset): Called when the variable is deleted

Getting Started with Tkinter Chapter 1

[16]

When invoked, the callback function receives three arguments: the internal variable name,
an empty string (it is used in other types of Tk variables), and the mode that triggered the
operation. By declaring the method with *args, we make these arguments optional,
because we are not using any of these values within the callback.

The get() method of Tk wrappers returns the current value of the variable, and the set()
method updates its value. They also notify the corresponding observers, so both modifying
the entry's content through the GUI or clicking on the Clear button will trigger the call to
the show_message() method.

There's more...
Tk variables are optional for Entry widgets, but they are necessary for other widget classes
to work correctly, such as the Checkbutton and Radiobutton classes.

See also
The Creating selections with radio buttons recipe
The Implementing switches with checkboxes recipe

Validating a text entry
Typically, text inputs represent fields that follow certain validation rules, such as having a
maximum length or matching a specific format. Some applications allow typing any kind of
content into these fields and trigger the validation when the whole form is submitted.

Under some circumstances, we want to prevent users from typing invalid content into a text
field. We will take a look at how to implement this behavior using the validation options of
the Entry widget.

How to do it...
The following application shows how to validate an entry using regular expressions:

import re
import tkinter as tk

Getting Started with Tkinter Chapter 1

[17]

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.pattern = re.compile("^\w{0,10}$")
 self.label = tk.Label(self, text="Enter your username")
 vcmd = (self.register(self.validate_username), "%i", "%P")
 self.entry = tk.Entry(self, validate="key",
 validatecommand=vcmd,
 invalidcommand=self.print_error)
 self.label.pack()
 self.entry.pack(anchor=tk.W, padx=10, pady=10)

 def validate_username(self, index, username):
 print("Modification at index " + index)
 return self.pattern.match(username) is not None

 def print_error(self):
 print("Invalid username character")

if __name__ == "__main__":
 app = App()
 app.mainloop()

If you run this script and type a non-alphanumeric character in the Entry widget, it will
keep the same content and print the error message. This will also happen when you try to
type more than 10 valid characters since the regular expression also limits the content's
length.

How it works...
With the validate option set to "key", we will activate the entry validation that gets
triggered on any content modification. The value is "none" by default, which means that
there is no validation.

Other possible values are "focusin" and "focusout", which validate when the widget
gets or loses the focus, respectively, or simply "focus" to validate in both cases.
Alternatively, we can use the "all" value to validate in all situations.

The validatecommand function is called each time the validation is triggered, and it
should return true if the new content is valid, and false otherwise.

Getting Started with Tkinter Chapter 1

[18]

Since we need more information to determine whether the content is valid or not, we
create a Tcl wrapper around our Python function using the register method of the
Widget class. Then, you can add the percent substitution for each parameter that will be
passed to the Python function. Finally, we will group these values as a Python tuple. This
corresponds to the following line from our example:

vcmd = (self.register(self.validate_username), "%i", "%P")

In general, you can use any of the following substitutions:

%d: Type of action; 1 for insertion, 0 for deletion, and -1 otherwise
%i: Index of the string being inserted or deleted
%P: Value of the entry if the modification is allowed
%s: Value of the entry before the modification
%S: String content that is being inserted or deleted
%v: The type of validation currently set
%V: Type of validation that triggered the action
%W: The name of the Entry widget

The invalidcommand option takes a function that is invoked when validatecommand
returns false. The same percent substitutions can be applied to this option, but in our
example, we directly passed the print_error() method of our class.

There's more...
The Tcl/Tk documentation suggests not mixing the validatecommand and the
textvariable options since setting an invalid value to the Tk variable will turn off
validation. The same occurs if the validatecommand function do not return a Boolean
value.

In case you are not familiar with the re module, you can check out the detailed introduction
to regular expressions in the official Python documentation
at https://docs.python.org/3.6/howto/regex.html.

https://docs.python.org/3.6/howto/regex.html

Getting Started with Tkinter Chapter 1

[19]

See also
The Creating text entries recipe

Selecting numerical values
Previous recipes cover how to work with text inputs; we may want to enforce some inputs
to contain only numerical values. This is the use case for the Spinbox and Scale
classes—both widgets allow users to select a numerical value from a range or a list of valid
options, but there are several differences in the way they are displayed and configured.

How to do it...
This program has Spinbox and Scale for selecting an integer value from 0 to 5:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.spinbox = tk.Spinbox(self, from_=0, to=5)
 self.scale = tk.Scale(self, from_=0, to=5,
 orient=tk.HORIZONTAL)
 self.btn = tk.Button(self, text="Print values",
 command=self.print_values)
 self.spinbox.pack()
 self.scale.pack()
 self.btn.pack()

 def print_values(self):
 print("Spinbox: {}".format(self.spinbox.get()))
 print("Scale: {}".format(self.scale.get()))

if __name__ == "__main__":
 app = App()
 app.mainloop()

In the preceding code, for debugging purposes, we added a button that prints the value of
each widget when you click on it:

Getting Started with Tkinter Chapter 1

[20]

How it works...
Both classes accept the from_ and to options to indicate the range of valid values—the
trailing underscore is necessary because the from option was originally defined in Tcl/Tk,
but it is a reserved keyword in Python.

A handy functionality of the Scale class is the resolution option, which sets the
precision of the rounding. For instance, a resolution of 0.2 will allow the user to select the
values 0.0, 0.2, 0.4, and so on. The value of this option is 1 by default, so the widget rounds
all values to the nearest integer.

As usual, the value of each widget can be retrieved with the get() method. An important
difference is that Spinbox returns the number as a string, whereas Scale returns an integer
value or a float value if the rounding accepts decimal values.

There's more...
The Spinbox class has a similar configuration to the Entry widget, such as the
textvariable and validate options. You can apply all these patterns to spinboxes with
the main difference that it restricts to numerical values.

See also
The Tracing text changes recipe

Getting Started with Tkinter Chapter 1

[21]

Creating selections with radio buttons
With the Radiobutton widget, you can let the user select among several options. This
pattern works well for a relatively small number of mutually exclusive choices.

How to do it...
You can connect multiple Radiobutton instances using a Tkinter variable so that when you
click on a non-selected option, it will deselect whatever other option was previously
selected.

In the following program, we created three radio buttons for the Red, Green, and Blue
options. Each time you click on a radio button, it prints the lowercase name of the
corresponding color:

import tkinter as tk

COLORS = [("Red", "red"), ("Green", "green"), ("Blue", "blue")]

class ChoiceApp(tk.Tk):
 def __init__(self):
 super().__init__()
 self.var = tk.StringVar()
 self.var.set("red")
 self.buttons = [self.create_radio(c) for c in COLORS]
 for button in self.buttons:
 button.pack(anchor=tk.W, padx=10, pady=5)

 def create_radio(self, option):
 text, value = option
 return tk.Radiobutton(self, text=text, value=value,
 command=self.print_option,
 variable=self.var)

 def print_option(self):
 print(self.var.get())

if __name__ == "__main__":
 app = ChoiceApp()
 app.mainloop()

Getting Started with Tkinter Chapter 1

[22]

If you run this script, it will display the application with the Red radio button already
selected:

How it works...
To avoid repeating the code of the Radiobutton initialization, we defined a utility method
that is called from a list comprehension. We unpacked the values of each tuple of the
COLORS list and then passed these local variables as options to Radiobutton. Remember to
try to not repeat yourself whenever possible.

Since StringVar is shared among all the Radiobutton instances, they are automatically
connected, and we force the user to select only one choice.

There's more...
We set a default value of "red" in our program; however, what would happen if we omit
this line, and the value of StringVar does not match any of the radio button values? It will
match the default value of the tristatevalue option, which is the empty string. This
causes the widget to display in a special "tri-state" or indeterminate mode. Although this
option can be modified with the config() method, a better practice is to set a sensible
default value so the variable is initialized in a valid state.

Getting Started with Tkinter Chapter 1

[23]

Implementing switches with checkboxes
Choices between two alternatives are typically implemented with checkboxes and lists of
options where each choice is independent from the rest. As we will see in the next example,
these concepts can be implemented using the Checkbutton widget.

How to do it...
The following application shows how to create Checkbutton, which must be connected to
an IntVar variable to be able to inspect the button state:

import tkinter as tk

class SwitchApp(tk.Tk):
 def __init__(self):
 super().__init__()
 self.var = tk.IntVar()
 self.cb = tk.Checkbutton(self, text="Active?",
 variable=self.var,
 command=self.print_value)
 self.cb.pack()

 def print_value(self):
 print(self.var.get())

if __name__ == "__main__":
 app = SwitchApp()
 app.mainloop()

In the preceding code, we simply printed the value of the widget each time it is clicked:

Getting Started with Tkinter Chapter 1

[24]

How it works...
Like the Button widget, the Checkbutton also accepts the command and text options.

With the onvalue and offvalue options, we can specify the values used when the button
is on and off. We use an integer variable because these values are 1 and 0 by default,
respectively; however, you can also set them to any other integer values.

There's more...
With Checkbuttons, it is also possible to use other variable types:

var = tk.StringVar()
var.set("OFF")
checkbutton_active = tk.Checkbutton(master, text="Active?",
variable=self.var,
 onvalue="ON", offvalue="OFF",
 command=update_value)

The only restriction is to match onvalue and offvalue with the type of the Tkinter
variable; in this case, since "ON" and "OFF" are strings, the variable should be a
StringVar. Otherwise, the Tcl interpreter will raise an error when trying to set the
corresponding value of a different type.

See also
The Tracing text changes recipe
The Creating selections with radio buttons recipe

Displaying a list of items
The Listbox widget contains text items that can be selected by the user with the mouse or
keyboard. This selection can be individual or multiple, depending on the widget
configuration.

Getting Started with Tkinter Chapter 1

[25]

How to do it...
The following program creates a list selection with the days of the week. There is a button to
print the actual selection and a list of buttons to change the selection mode:

import tkinter as tk

DAYS = ["Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday", "Sunday"]
MODES = [tk.SINGLE, tk.BROWSE, tk.MULTIPLE, tk.EXTENDED]

class ListApp(tk.Tk):
 def __init__(self):
 super().__init__()
 self.list = tk.Listbox(self)
 self.list.insert(0, *DAYS)
 self.print_btn = tk.Button(self, text="Print selection",
 command=self.print_selection)
 self.btns = [self.create_btn(m) for m in MODES]

 self.list.pack()
 self.print_btn.pack(fill=tk.BOTH)
 for btn in self.btns:
 btn.pack(side=tk.LEFT)

 def create_btn(self, mode):
 cmd = lambda: self.list.config(selectmode=mode)
 return tk.Button(self, command=cmd,
 text=mode.capitalize())

 def print_selection(self):
 selection = self.list.curselection()
 print([self.list.get(i) for i in selection])

if __name__ == "__main__":
 app = ListApp()
 app.mainloop()

You can try out changing the mode of selection and printing the selected items:

Getting Started with Tkinter Chapter 1

[26]

How it works...
We create an empty Listbox object and add all the text items with the insert() method.
The 0 index indicates that the items should be added at the beginning of the list. In the
following code snippet, we unpacked the DAYS list, but individual items can be appended at
the end with the END constant:

self.list.insert(tk.END, "New item")

The current selection is retrieved using the curselection() method. It returns the indices
of the selected items to transform them to the corresponding text items we called the get()
method for each index in a comprehension list. Finally, the list is printed in the standard
output for debugging purposes.

In our example, the selectmode option can be changed programmatically to explore the
different behaviors, as follows:

SINGLE: Single choice
BROWSE: Single choice that can be moved with the up and down keys
MULTIPLE: Multiple choice
EXTENDED: Multiple choice with ranges that can be selected with the Shift and
Ctrl keys

Getting Started with Tkinter Chapter 1

[27]

There's more...
If the number of text items is large enough, it may be necessary to add a vertical scroll bar.
You can easily connect it using the yscrollcommand option. In our example, we can wrap
both widgets in a frame to keep the same layout. Remember to specify the fill option
when packing the scroll so that it fills the available space in the y axis:

def __init__(self):
 self.frame = tk.Frame(self)
 self.scroll = tk.Scrollbar(self.frame, orient=tk.VERTICAL)
 self.list = tk.Listbox(self.frame, yscrollcommand=self.scroll.set)
 self.scroll.config(command=self.list.yview)
 # ...
 self.frame.pack()
 self.list.pack(side=tk.LEFT)
 self.scroll.pack(side=tk.LEFT, fill=tk.Y)

Similarly, there is a xscrollcommand option for the horizontal axis.

See also
The Creating selections with radio buttons recipe

Handling mouse and keyboard events
Being able to react to events is one of the most basic but important topics in GUI application
development since it determines how users can interact with the program.

Pressing keys of the keyboard and clicking on items with the mouse are some common
types of events, which are automatically handled in some Tkinter classes. For instance, this
behavior is already implemented on the command option of the Button widget class, which
invokes the specified callback function.

Some events can get triggered without user interaction, such as changing the input focus
programmatically from one widget to another.

Getting Started with Tkinter Chapter 1

[28]

How to do it...
You can attach an event binding to a widget using the bind method. The following example
binds some mouse events to a Frame instance:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 frame = tk.Frame(self, bg="green",
 height=100, width=100)
 frame.bind("<Button-1>", self.print_event)
 frame.bind("<Double-Button-1>", self.print_event)
 frame.bind("<ButtonRelease-1>", self.print_event)
 frame.bind("<B1-Motion>", self.print_event)
 frame.bind("<Enter>", self.print_event)
 frame.bind("<Leave>", self.print_event)
 frame.pack(padx=50, pady=50)

 def print_event(self, event):
 position = "(x={}, y={})".format(event.x, event.y)
 print(event.type, "event", position)

if __name__ == "__main__":
 app = App()
 app.mainloop()

All events are handled by the print_event() method of our class, which prints the type of
event and the position of the mouse in the console. You can try it out by clicking on the
green frame with the mouse, and moving it around while it starts printing the event
messages.

The following example contains an Entry widget with a couple of bindings; one for the
event that gets triggered when the entry gets the focus, and another for all the key press
events:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 entry = tk.Entry(self)
 entry.bind("<FocusIn>", self.print_type)
 entry.bind("<Key>", self.print_key)
 entry.pack(padx=20, pady=20)

Getting Started with Tkinter Chapter 1

[29]

 def print_type(self, event):
 print(event.type)

 def print_key(self, event):
 args = event.keysym, event.keycode, event.char
 print("Symbol: {}, Code: {}, Char: {}".format(*args))

if __name__ == "__main__":
 app = App()
 app.mainloop()

The first message this program will output is the FocusIn event when you set the focus on
the Entry widget. If you try it out, you will see that it will also show the events of keys that
do not correspond to non-printable characters, such as arrow keys or the return key.

How it works...
The bind method is defined in the widget class and takes three arguments, an event
sequence, a callback function, and an optional add string:

widget.bind(sequence, callback, add='')

The sequence string uses the <modifier-type-detail> syntax.

In first place, modifiers are optional and allow you to specify additional combinations to the
general type of the event:

Shift: When the user presses the Shift key
Alt: When the user presses the Alt key
Control: When the user presses the Ctrl key
Lock: When the user presses the Shift lock
Double: When the event happens twice in quick succession
Triple: When the event happens thrice in quick succession

Event types determine the general type of event:

ButtonPress or Button: Event generated when a mouse button is pressed
ButtonRelease: Event generated when a mouse button is released
Enter: Event generated when you move the mouse over a widget
Leave: Event generated when the mouse pointer leaves a widget

Getting Started with Tkinter Chapter 1

[30]

FocusIn: Event generated when the widget gets the input focus
FocusOut: Event generated when the widget loses the input focus
KeyPress or Key: Event generated when a key is pressed
KeyRelease: Event generated when a key is released
Motion: Event generated when the mouse is moved

The detail is also optional and serves to indicate the mouse button or key:

For mouse events, 1 is the left button, 2 is the middle button, and 3 is the right
button.
For keyboard events, it is the key character. Special keys use the key symbol;
some common examples are return, Tab, Esc, up, down, right, left, Backspace, and
function keys (from F1 to F12).

The callback function takes an event parameter. For mouse events, it has the following
attributes:

x and y: Current mouse position in pixels
x_root and y_root: Same as x and y, but relative to the left-upper corner of the
screen
num: Mouse button number

For keyboard events, it contains these attributes:

char: Pressed character code as a string
keysym: Pressed key symbol
keycode: Pressed key code

In both cases, the event has the widget attribute, referencing the instance that generated the
event, and type, which specifies the event type.

We strongly recommend that you define methods for the callback
functions since you will also have the reference to the class instance, and
therefore you can easily access each of the widget attributes.

Finally, the add parameter can be '', to replace the callback function if there was a
previous binding, or '+' to add the callback and preserve the old ones.

Getting Started with Tkinter Chapter 1

[31]

There's more...
Apart from the event types described here, there are also other types that may be useful in
some scenarios, such as the <Destroy> event that is generated when a widget is destroyed
or the <Configure> event that is sent when the size or position of the widget changes.

You can check out the Tcl/Tk documentation for a complete list of event types at https:/ ​/
www.​tcl.​tk/​man/​tcl/ ​TkCmd/ ​bind. ​htm#M7.

See also
The Structuring a Tkinter application recipe

Setting the main window's icon, title, and
size
The Tk instance differs from normal widgets in the way that it is configured, so we will
explore some basic methods that allow us to customize how it is displayed.

How to do it...
This snippet creates a main window with a custom title and icon. It has 400px of width by
200px of height, with a separation of 10px in each axis to the upper-left corner of the screen:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("My Tkinter app")
 self.iconbitmap("python.ico")
 self.geometry("400x200+10+10")

if __name__ == "__main__":
 app = App()
 app.mainloop()

https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7
https://www.tcl.tk/man/tcl/TkCmd/bind.htm#M7

Getting Started with Tkinter Chapter 1

[32]

This program assumes that you have a valid ICO file called python.ico in the same
directory where the script is placed and executed.

How it works...
The methods title() and iconbitmap() of the Tk class are very self-descriptive—the
first one sets the window title, whereas the second one takes the path to the icon that is
associated to the window.

The geometry() method configures the size of the window with a string that follows the
following pattern:

{width}x{height}+{offset_x}+{offset_y}

In case you add more secondary windows to your application, these methods are also
available in the Toplevel class.

There's more...
If you want to make the application fullscreen, replace the call to the geometry() method
with self.state("zoomed").

2
Window Layout

In this chapter, we will cover the following recipes:

Grouping widgets with frames
Using the Pack geometry manager
Using the Grid geometry manager
Using the Place geometry manager
Grouping inputs with the FrameLabel widget
Dynamically laying out widgets
Creating horizontal and vertical scrollbars

Introduction
Widgets determine the actions that users can perform with our GUI application; however,
we should pay attention to their placement and the relationships we establish with that
arrangement. Effective layouts help users to identify the meaning and priority of each
graphical element so that they can quickly understand how to interact with our program.

Layout also determines the visual appearance that users expect to find consistently across
the whole application, such as always placing confirmation buttons at the bottom-right
corner of the screen. Although this information might be obvious to us as developers, end
users may feel overwhelmed if we do not guide them through the application by following
a natural order.

This chapter will dive into the different mechanisms that Tkinter offers to lay out and group
widgets and control other attributes, such as their size or spacing.

Window Layout Chapter 2

[34]

Grouping widgets with frames
A frame represents a rectangular region of a window, typically used in complex layouts to
contain other widgets. Since they have their own padding, border, and background, you
can remark that the group of widgets is related logically.

Another common pattern for frames is to encapsulate part of the application's functionality
so that you can create an abstraction that hides the implementation details of child widgets.

We will see an example that covers both scenarios by creating a component that inherits
from the Frame class and exposes certain information on the containing widgets.

Getting ready
We will build an application that contains two lists, where the first one has a list of items
and the second one is initially empty. Both lists are scrollable, and you can move items
between them with two central buttons that transfer the current selection:

How to do it…
We will define a Frame subclass to represent a scrollable list, and then create two instances
of this class. The two buttons will also be directly added to the main window:

import tkinter as tk

class ListFrame(tk.Frame):
 def __init__(self, master, items=[]):
 super().__init__(master)

Window Layout Chapter 2

[35]

 self.list = tk.Listbox(self)
 self.scroll = tk.Scrollbar(self, orient=tk.VERTICAL,
 command=self.list.yview)
 self.list.config(yscrollcommand=self.scroll.set)
 self.list.insert(0, *items)
 self.list.pack(side=tk.LEFT)
 self.scroll.pack(side=tk.LEFT, fill=tk.Y)

 def pop_selection(self):
 index = self.list.curselection()
 if index:
 value = self.list.get(index)
 self.list.delete(index)
 return value

 def insert_item(self, item):
 self.list.insert(tk.END, item)

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 months = ["January", "February", "March", "April",
 "May", "June", "July", "August", "September",
 "October", "November", "December"]
 self.frame_a = ListFrame(self, months)
 self.frame_b = ListFrame(self)
 self.btn_right = tk.Button(self, text=">",
 command=self.move_right)
 self.btn_left = tk.Button(self, text="<",
 command=self.move_left)

 self.frame_a.pack(side=tk.LEFT, padx=10, pady=10)
 self.frame_b.pack(side=tk.RIGHT, padx=10, pady=10)
 self.btn_right.pack(expand=True, ipadx=5)
 self.btn_left.pack(expand=True, ipadx=5)

 def move_right(self):
 self.move(self.frame_a, self.frame_b)

 def move_left(self):
 self.move(self.frame_b, self.frame_a)

 def move(self, frame_from, frame_to):
 value = frame_from.pop_selection()
 if value:
 frame_to.insert_item(value)

Window Layout Chapter 2

[36]

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works…
Our ListFrame class has only two methods to interact with the inner list:
pop_selection() and insert_item(). The first one returns and deletes the current
selection, or none if there is no item selected, whereas the second one inserts a new item at
the end of the list.

These methods are used in the parent class to transfer an item from one list to the other one:

def move(self, frame_from, frame_to):
 value = frame_from.pop_selection()
 if value:
 frame_to.insert_item(value)

We also took advantage of the parent frame containers to correctly pack them with the
appropriate padding:

...
self.frame_a.pack(side=tk.LEFT, padx=10, pady=10)
self.frame_b.pack(side=tk.RIGHT, padx=10, pady=10)

Thanks to these frames, our calls to the geometry manager are more isolated and organized
in our global layout.

There's more…
Another benefit of this approach is that it allows us to use different geometry managers in
each container widget, such as using grid() for the widgets within a frame and pack() to
lay out the frame in the main window.

However, remember that mixing these geometry managers within the same container is not
allowed in Tkinter and will make your application crash.

Window Layout Chapter 2

[37]

See also
The Using the Pack geometry manager recipe

Using the Pack geometry manager
In previous recipes, we have seen that creating a widget does not automatically display it
on the screen. We have called the pack() method on each widget to do so, which means
that we used the Pack geometry manager.

This is one of the three available geometry managers in Tkinter, and it is well suited for
simple layouts, such as when you want to place all the widgets on top of each other or side
by side.

Getting ready
Let's suppose that we want to achieve the following layout in our application:

It consists of three rows, where the last one has three widgets placed side by side. In this
scenario, the Pack geometry manager can easily add the widgets as expected, without the
need for additional frames.

Window Layout Chapter 2

[38]

How to do it…
We will use five Label widgets with different texts and background colors to help us
identify each rectangular region:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 label_a = tk.Label(self, text="Label A", bg="yellow")
 label_b = tk.Label(self, text="Label B", bg="orange")
 label_c = tk.Label(self, text="Label C", bg="red")
 label_d = tk.Label(self, text="Label D", bg="green")
 label_e = tk.Label(self, text="Label E", bg="blue")

 opts = { 'ipadx': 10, 'ipady': 10, 'fill': tk.BOTH }
 label_a.pack(side=tk.TOP, **opts)
 label_b.pack(side=tk.TOP, **opts)
 label_c.pack(side=tk.LEFT, **opts)
 label_d.pack(side=tk.LEFT, **opts)
 label_e.pack(side=tk.LEFT, **opts)

if __name__ == "__main__":
 app = App()
 app.mainloop()

We also added some options with the opts dictionary to make the size of each region clear:

Window Layout Chapter 2

[39]

How it works…
To have a better understanding of the Pack geometry manager, we will explain step by step
how it adds widgets to the parent container. Here, we pay special attention to the values of
the side option, which indicates, the relative position of the widget with respect to the next
one that will be packed.

First, we pack the two labels at the top of the screen. While the tk.TOP constant is the
default value of the side option, we set it explicitly to clearly differentiate it from the calls
where we used the tk.LEFT value:

Then, we pack the next three labels with the side option set to tk.LEFT, which causes
them to be placed side by side:

Window Layout Chapter 2

[40]

Specifying the side on label_e does not really matter, as long as it is the last widget we
add to the container.

Keep in mind that this is the reason why order is so important when working with the Pack
geometry manager. To prevent unexpected results in complex layouts, it is common to
group widgets with frames so that when you pack all the widgets within a frame, you do
not interfere with the arrangement of the other ones.

In these cases, we strongly recommend that you use the Grid geometry manager since it
allows you to directly set the position of each widget with one call to the geometry manager
and avoids the need for additional frames.

There's more…
Apart from tk.TOP and tk.LEFT, you can pass the tk.BOTTOM and tk.RIGHT constants to
the side option. They perform the opposite stacking, as their names suggest; however, it
may be counterintuitive since the natural order we follow is from top to bottom and from
left to right.

For instance, if we replace the tk.LEFT value with tk.RIGHT in our three last widgets, their
order from left to right would be label_e, label_d, and label_c.

See also
The Using the Grid geometry manager recipe
The Using the Place geometry manager recipe

Using the Grid geometry manager
The Grid geometry manager is considered the more versatile of the three geometry
managers. It directly reassembles the grid concept that is commonly used in user interface
design—a two-dimensional table divided into rows and columns, where each cell
represents the space available for a widget.

Window Layout Chapter 2

[41]

Getting ready
We will demonstrate how to use the Grid geometry manager to achieve the following
layout:

This can be represented as a 3 x 3 table, where the widgets in the second and third columns
span two rows and the widget at the bottom row spans three columns.

How to do it…
As we did in the preceding recipe, we will use five labels with different backgrounds to
illustrate the distribution of the cells:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 label_a = tk.Label(self, text="Label A", bg="yellow")
 label_b = tk.Label(self, text="Label B", bg="orange")
 label_c = tk.Label(self, text="Label C", bg="red")
 label_d = tk.Label(self, text="Label D", bg="green")
 label_e = tk.Label(self, text="Label E", bg="blue")

 opts = { 'ipadx': 10, 'ipady': 10 , 'sticky': 'nswe' }
 label_a.grid(row=0, column=0, **opts)
 label_b.grid(row=1, column=0, **opts)
 label_c.grid(row=0, column=1, rowspan=2, **opts)
 label_d.grid(row=0, column=2, rowspan=2, **opts)

Window Layout Chapter 2

[42]

 label_e.grid(row=2, column=0, columnspan=3, **opts)

if __name__ == "__main__":
 app = App()
 app.mainloop()

We also passed a dictionary of options to add some internal padding and expand the
widgets to all the available space in the cells.

How it works…
The placement of label_a and label_b is almost self-explanatory: they occupy the first
and second rows of the first column, respectively—remember that grid positions are zero-
indexed:

To expand label_c and label_d through multiple cells, we will set the rowspan option to
2, so they will span two cells, starting from the position indicated with the row and column
options. Finally, we will place label_e with the columnspan option to set it to 3.

It is important to remark that in contrast with the Pack geometry manager, it is possible to
change the order of the calls to grid() on each widget without modifying the final layout.

Window Layout Chapter 2

[43]

There's more…
The sticky option indicates the borders where the widget should stick, expressed in
cardinal directions: north, south, west and east. These values are represented by the Tkinter
constants tk.N, tk.S, tk.W, and tk.E, as well as the combined versions tk.NW, tk.NE,
tk.SW, and tk.SE.

For example, sticky=tk.N aligns the widget to the top border of the cell (north),
whereas sticky=tk.SE positions the widget in the bottom-right corner of the cell (south-
east).

Since these constants represent their corresponding lowercase letters, we shorthanded
the tk.N + tk.S + tk.W + tk.E expression with the "nswe" string. This means that the
widget should expand both horizontally and vertically—similar to the fill=tk.BOTH
option of the Pack geometry manager.

If no value is passed to the sticky option, the widget is centered within the cell.

See also
The Using the Pack geometry manager recipe
The Using the Place geometry manager recipe

Using the Place geometry manager
The Place geometry manager allows you to set the position and size of a widget in absolute
terms, or in relative terms to another one.

Of the three geometry managers, it is the least commonly used one. On the other hand, it
can fit some complex scenarios where you want to freely position a widget or overlap a
previously placed one.

Window Layout Chapter 2

[44]

Getting ready
To demonstrate how to work with the Place geometry manager, we will replicate the
following layout by mixing absolute and relative positions and sizes:

How to do it…
The labels that we will display have different backgrounds and are defined in the order
they are placed from left to right and top to bottom:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 label_a = tk.Label(self, text="Label A", bg="yellow")
 label_b = tk.Label(self, text="Label B", bg="orange")
 label_c = tk.Label(self, text="Label C", bg="red")
 label_d = tk.Label(self, text="Label D", bg="green")
 label_e = tk.Label(self, text="Label E", bg="blue")

 label_a.place(relwidth=0.25, relheight=0.25)
 label_b.place(x=100, anchor=tk.N,
 width=100, height=50)

Window Layout Chapter 2

[45]

 label_c.place(relx=0.5, rely=0.5, anchor=tk.CENTER,
 relwidth=0.5, relheight=0.5)
 label_d.place(in_=label_c, anchor=tk.N + tk.W,
 x=2, y=2, relx=0.5, rely=0.5,
 relwidth=0.5, relheight=0.5)
 label_e.place(x=200, y=200, anchor=tk.S + tk.E,
 relwidth=0.25, relheight=0.25)

if __name__ == "__main__":
 app = App()
 app.mainloop()

If you run the preceding program, you can see the overlapping between label_c and
label_d in the center of the screen, something that we have not achieved with other
geometry managers.

How it works…
The first label is placed with the relwidth and relheight options set to 0.25, which
means that its width and height are 25% of its parent container. By default, widgets are
placed at the x=0 and y=0 positions and aligned to north-west, that is, the top-left corner of
the screen.

The second label is placed at the absolute position—x=100—and aligned to the top border
with the anchor option set to the tk.N (north) constant. Here, we also specified an absolute
size with width and height.

The third label is centered on the window using the relative positioning and setting the
anchor to tk.CENTER. Remember that a value of 0.5 for relx and relwidth means half
of the parent's width and a value of 0.5 for rely, and relheight means half of the
parent's height.

The fourth label is placed on top of label_c by passing it as the in_ argument (note that
Tkinter suffixes it with an underscore because in is a reserved keyword). When using in_,
you might notice that the alignment is not geometrically exact. In our example, we had to
add an offset of 2 pixels in each direction to perfectly overlap the right-bottom corner of
label_c.

Finally, the fifth label uses absolute positioning and relative size. As you may have already
noticed, these dimensions can be easily switched since we assume a parent container of 200
x 200 pixels; however, only relative weights will work as expected if the main window is
resized. You can test this behavior by resizing the window.

Window Layout Chapter 2

[46]

There's more…
Another important advantage of the Place geometry manager is that it may be used in
conjunction with Pack or Grid.

For instance, imagine that you want to dynamically display a caption over a widget when
you right-click on it. You can represent this caption with a Label widget, which gets placed
in the relative position where you clicked on the widget:

def show_caption(self, event):
 caption = tk.Label(self, ...)
 caption.place(in_=event.widget, x=event.x, y=event.y)
 # ...

As general advice, we recommend that you use any of the other geometry managers as
much as possible in your Tkinter applications and leave this only for those specialized cases
where you need a custom positioning.

See also
The Using the Pack geometry manager recipe
The Using the Grid geometry manager recipe

Grouping inputs with the LabelFrame widget
The LabelFrame class can be used to group multiple input widgets, indicating the logical
entity with a label they represent. It is typically used in forms and is very similar to the
Frame widget.

Getting ready
We will build a form with a couple of LabelFrame instances, each one with their
corresponding child input widgets:

Window Layout Chapter 2

[47]

How to do it…
Since the purpose of this example is to show the final layout, we will add some widgets,
without keeping their references as attributes:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 group_1 = tk.LabelFrame(self, padx=15, pady=10,
 text="Personal Information")
 group_1.pack(padx=10, pady=5)

 tk.Label(group_1, text="First name").grid(row=0)
 tk.Label(group_1, text="Last name").grid(row=1)
 tk.Entry(group_1).grid(row=0, column=1, sticky=tk.W)
 tk.Entry(group_1).grid(row=1, column=1, sticky=tk.W)

 group_2 = tk.LabelFrame(self, padx=15, pady=10,
 text="Address")
 group_2.pack(padx=10, pady=5)

 tk.Label(group_2, text="Street").grid(row=0)
 tk.Label(group_2, text="City").grid(row=1)

Window Layout Chapter 2

[48]

 tk.Label(group_2, text="ZIP Code").grid(row=2)
 tk.Entry(group_2).grid(row=0, column=1, sticky=tk.W)
 tk.Entry(group_2).grid(row=1, column=1, sticky=tk.W)
 tk.Entry(group_2, width=8).grid(row=2, column=1,
 sticky=tk.W)

 self.btn_submit = tk.Button(self, text="Submit")
 self.btn_submit.pack(padx=10, pady=10, side=tk.RIGHT)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works…
The LabelFrame widget takes the labelwidget option to set the widget used as a label. If
it is not present, it displays the string passed as the text option. For instance, instead of
creating an instance with tk.LabelFrame(master, text="Info"), you can replace it
with the following statements:

label = tk.Label(master, text="Info", ...)
frame = tk.LabelFrame(master, labelwidget=label)
...
frame.pack()

This would allow you to do any kind of customization, such as adding an image. Note that
we did not use any geometry manager for the label since it is managed when you place the
frame.

Dynamically laying out widgets
The Grid geometry manager is easy to use both in simple and advanced layouts, and it is
also a powerful mechanism to combine with a list of widgets.

We will take a look at how we can reduce the number of lines and call the geometry
manager methods with just a few lines, thanks to list comprehensions and the zip and
enumerate built-in functions.

Window Layout Chapter 2

[49]

Getting ready
The application we will build contains four Entry widgets, each one with its corresponding
label that indicates the meaning of the input. We will also add a button to print all the
entries' values:

Instead of creating and assigning each widget to a separate attribute, we will work with lists
of widgets. Since we will track the index while iterating over these lists, we can easily
invoke the grid() method with the appropriate column option.

How to do it…
We will aggregate the lists of labels and entries with the zip function. The button will be
created and displayed individually, as it does not share any option with the rest of the
widgets:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 fields = ["First name", "Last name", "Phone", "Email"]
 labels = [tk.Label(self, text=f) for f in fields]
 entries = [tk.Entry(self) for _ in fields]
 self.widgets = list(zip(labels, entries))
 self.submit = tk.Button(self, text="Print info",
 command=self.print_info)

 for i, (label, entry) in enumerate(self.widgets):

Window Layout Chapter 2

[50]

 label.grid(row=i, column=0, padx=10, sticky=tk.W)
 entry.grid(row=i, column=1, padx=10, pady=5)
 self.submit.grid(row=len(fields), column=1, sticky=tk.E,
 padx=10, pady=10)

 def print_info(self):
 for label, entry in self.widgets:
 print("{} = {}".format(label.cget("text"), "=", entry.get()))

if __name__ == "__main__":
 app = App()
 app.mainloop()

You can enter different text on each input and click on the Print info button to verify that
each tuple contains the corresponding label and entry.

How it works…
Each list comprehension iterates over the strings of the fields list. While labels use each item
as the displayed text, entries only need the reference to the parent container—the
underscore is a common idiom that means the variable value is ignored.

Starting from Python 3, zip returns an iterator instead of a list, so we consume the
aggregation with the list function. As a result, the widgets attribute contains a list of tuples
that can be safely iterated multiple times:

fields = ["First name", "Last name", "Phone", "Email"]
labels = [tk.Label(self, text=f) for f in fields]
entries = [tk.Entry(self) for _ in fields]
self.widgets = list(zip(labels, entries))

Now, we have to call the geometry manager on each tuple of widgets. With the enumerate
function, we can track the index of each iteration and pass it as the row number:

for i, (label, entry) in enumerate(self.widgets):
 label.grid(row=i, column=0, padx=10, sticky=tk.W)
 entry.grid(row=i, column=1, padx=10, pady=5)

Note that we used the for i, (label, entry) in ... syntax because we must unpack
the tuple generated with enumerate, and then unpack each tuple of the widgets attribute.

Window Layout Chapter 2

[51]

Within the print_info() callback, we iterate over widgets to print each label text with its
corresponding entry value. To retrieve the labels' text, we used the cget() method, which
allows you to get the value of a widget option by its name.

Creating horizontal and vertical scrollbars
In Tkinter, geometry managers take all the necessary space to fit all the widgets in their
parent container. However, if the container has a fixed size or exceeds the screen's size,
there will be a region that will not be visible to users.

Scroll bar widgets are not automatically added in Tkinter, so you must create and lay them
out as any other type of widget. Another consideration is that only a few widget classes
have the configuration options that make it possible to connect them to a scrollbar.

To work around this, you will learn to take advantage of the flexibility of the Canvas
widget to make any container scrollable.

Getting ready
To demonstrate the combination of the Canvas and Scrollbar classes to create a resizable
and scrollable frame, we will build an application that dynamically changes its size by
loading an image.

When the Load image button is clicked, it removes itself and loads an image into the
Canvas that is larger than the scrollable region—for this example, we used a predefined
image, but you can modify this program to select any other GIF image with a file dialog:

Window Layout Chapter 2

[52]

This enables the horizontal and vertical scrollbars, which automatically adjust themselves if
the main window is resized:

How to do it…
When we will dive into the functionality of the Canvas widget in a separate chapter, this
application will introduce its standard scroll interface and the create_window() method.
Note that this script requires the file python.gif to be placed in the same directory:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.scroll_x = tk.Scrollbar(self, orient=tk.HORIZONTAL)
 self.scroll_y = tk.Scrollbar(self, orient=tk.VERTICAL)
 self.canvas = tk.Canvas(self, width=300, height=100,
 xscrollcommand=self.scroll_x.set,
 yscrollcommand=self.scroll_y.set)
 self.scroll_x.config(command=self.canvas.xview)

Window Layout Chapter 2

[53]

 self.scroll_y.config(command=self.canvas.yview)

 self.frame = tk.Frame(self.canvas)
 self.btn = tk.Button(self.frame, text="Load image",
 command=self.load_image)
 self.btn.pack()

 self.canvas.create_window((0, 0), window=self.frame,
 anchor=tk.NW)

 self.canvas.grid(row=0, column=0, sticky="nswe")
 self.scroll_x.grid(row=1, column=0, sticky="we")
 self.scroll_y.grid(row=0, column=1, sticky="ns")

 self.rowconfigure(0, weight=1)
 self.columnconfigure(0, weight=1)
 self.bind("<Configure>", self.resize)
 self.update_idletasks()
 self.minsize(self.winfo_width(), self.winfo_height())

 def resize(self, event):
 region = self.canvas.bbox(tk.ALL)
 self.canvas.configure(scrollregion=region)

 def load_image(self):
 self.btn.destroy()
 self.image = tk.PhotoImage(file="python.gif")
 tk.Label(self.frame, image=self.image).pack()

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works…
The first lines of our application create the scroll bars and connect them to
the Canvas object with the xscrollcommand and yscrollcommand options, which take a
reference to the set() method of scroll_x and scroll_y, respectively—this is the
method in charge of moving the scroll bar slider.

It is also necessary to configure the command option of each scroll bar once the Canvas is
defined:

self.scroll_x = tk.Scrollbar(self, orient=tk.HORIZONTAL)
self.scroll_y = tk.Scrollbar(self, orient=tk.VERTICAL)

Window Layout Chapter 2

[54]

self.canvas = tk.Canvas(self, width=300, height=100,
 xscrollcommand=self.scroll_x.set,
 yscrollcommand=self.scroll_y.set)
self.scroll_x.config(command=self.canvas.xview)
self.scroll_y.config(command=self.canvas.yview)

It is also possible to create the Canvas first and configure its options later, when the scroll
bars are instantiated.

The next step is to add the frame to our scrollable Canvas with the create_window()
method. The first argument it takes is the position to place the widget passed with the
window option. Since the x and y axes of the Canvas widget start in the top-left corner, we
placed the frame at the (0, 0) position and also aligned it to that corner with
anchor=tk.NW (north-west):

self.frame = tk.Frame(self.canvas)
...
self.canvas.create_window((0, 0), window=self.frame, anchor=tk.NW)

Then, we will make the first row and column resizable with the rowconfigure() and
columnconfigure() methods. The weight option indicates the relative weight to
distribute the extra space, but in our case, there are no more rows or columns to resize.

The binding to the <Configure> event will help us to properly reconfigure the canvas
when the main window gets resized. Handling this type of event follows the same
principles that we saw in the previous chapter to process mouse and keyboard events:

self.rowconfigure(0, weight=1)
self.columnconfigure(0, weight=1)
self.bind("<Configure>", self.resize)

Finally, we will set the minimum size of the main window with the current width and
height, which can be retrieved with the winfo_width() and winfo_height() methods.

In order to get the real size of a container, we have to force the geometry manager to draw
all the child widgets first by calling update_idletasks(). This method is available in all
widget classes, and forces Tkinter to process all pending idle events, such as redrawings
and geometry recalculations:

self.update_idletasks()
self.minsize(self.winfo_width(), self.winfo_height())

Window Layout Chapter 2

[55]

The resize method handles the window resize event and updates the scrollregion
option, which defines the area of the canvas that can be scrolled. To easily recalculate it,
you can use the bbox() method with the ALL constant. This returns the bounding box of
the whole Canvas widget:

def resize(self, event):
 region = self.canvas.bbox(tk.ALL)
 self.canvas.configure(scrollregion=region)

Tkinter will automatically trigger several <Configure> events when we start our
application, so there is no need to call self.resize() at the end of the __init__ method.

There's more…
Only a few widget classes support the standard scroll options: Listbox, Text, and Canvas
allow xscrollcommand and yscrollcommand, whereas the Entry widget only allows the
xscrollcommand. We have seen how to apply this pattern to a canvas since it can be used
as a generic solution, but you can follow a similar structure to make any of these widgets
scrollable and resizable.

Another detail to point out is that we did not call any geometry manager to draw the frame
because the create_window() method does this for us. To better organize our application
class, we could move all the functionalities that belong to the frame and its inner widgets to
a dedicated Frame subclass.

See also
The Handling mouse and keyboard events recipe
The Grouping widgets with frames recipe

3
Customizing Widgets

In this chapter, we will cover the following recipes:

Working with colors
Setting widget fonts
Using the options database
Changing the cursor icon
Introducing the Text widget
Adding tags to the Text widget

Introduction
By default, Tkinter widgets will display with a native look and feel. While this standard
appearance could be enough for quick prototyping, we might want to customize some
widget attributes, such as font, color, and background.

This customization does not affect only the widgets itself, but also its inner items. We will
dive into the Text widget, which along with the Canvas widget is one of the most versatile
Tkinter classes. The Text widget represents a multiline text area with formatted content,
with several methods that make it possible to format characters or lines and add event-
specific event bindings.

Customizing Widgets Chapter 3

[57]

Working with colors
In previous recipes, we have set the colors of a widget using color names, such as
white, blue, or yellow. These values are passed as strings to the foreground and
background options, which modify the widget's text and background colors.

Color names are internally mapped to RGB values (an additive model that represents a
color by its combination of red, green, and blue intensities), and this translation is based on
a table that is platform-dependent. Therefore, if you want to consistently display the same
color in different platforms, you can pass the RGB value to the widget options.

Getting ready
The following application shows how to dynamically change the foreground and
background options of a label that displays a fixed text:

Colors are specified in the RGB format and are selected by the user using a native color
picker dialog. The following screenshot shows how this dialog looks on Windows 10:

Customizing Widgets Chapter 3

[58]

How to do it...
As usual, we will trigger the widget configuration with standard buttons—one for each
option. The main difference with previous examples is that values can be directly chosen
using the askcolor dialog from the tkinter.colorchooser module:

from functools import partial

import tkinter as tk
from tkinter.colorchooser import askcolor

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Colors demo")
 text = "The quick brown fox jumps over the lazy dog"
 self.label = tk.Label(self, text=text)
 self.fg_btn = tk.Button(self, text="Set foreground color",
 command=partial(self.set_color, "fg"))
 self.bg_btn = tk.Button(self, text="Set background color",
 command=partial(self.set_color, "bg"))

Customizing Widgets Chapter 3

[59]

 self.label.pack(padx=20, pady=20)
 self.fg_btn.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
 self.bg_btn.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)

 def set_color(self, option):
 color = askcolor()[1]
 print("Chosen color:", color)
 self.label.config(**{option: color})

if __name__ == "__main__":
 app = App()
 app.mainloop()

If you want to check out the RGB value of a selected color, it is printed on the console when
the dialog is confirmed, or none is shown if it is closed without selecting a color.

How it works...
As you may have noticed, both buttons use a partial function as callback. This is a utility
from the functools module, which creates a new callable object that behaves like the
original function, but with some fixed arguments. For instance, consider this statement:

tk.Button(self, command=partial(self.set_color, "fg"), ...)

The preceding statement performs the same action as the following statement:

tk.Button(self, command=lambda: self.set_color("fg"), ...)

We did this in order to reuse our set_color() method at the same time we introduce the
functools module. These techniques are very useful in more complex scenarios, especially
when you want to compose multiple functions and it is very clear that some arguments are
already predefined.

A minor detail to keep in mind is that we shorthanded foreground and background with
fg and bg, respectively. These strings are unpacked with ** when configuring the widget
in this statement:

def set_color(self, option):
 color = askcolor()[1]
 print("Chosen color:", color)
 self.label.config(**{option: color}) # same as (fg=color)
 or (bg=color)

Customizing Widgets Chapter 3

[60]

askcolor returns a tuple with two items that represent the selected color—the first one is a
tuple of integers that represent the RGB values, and the second one is the hexadecimal code
as a string. Since the first representation cannot be directly passed to the widget options, we
used the hexadecimal format.

There's more...
In case you want to translate a color name to the RGB format, you can use the
winfo_rgb() method on a previously created widget. Since it returns a tuple of
integers from 0 to 65535 to represent a 16-bit RGB value, you can convert it to the more
common #RRGGBB hexadecimal representation by shifting 8 bits to the right:

rgb = widget.winfo_rgb("lightblue")
red, green, blue = [x>>8 for x in rgb]
print("#{:02x}{:02x}{:02x}".format(red, green, blue))

In the preceding code, we used {:02x} to format each integer into two hexadecimal
numbers.

Setting widget fonts
In Tkinter, it is possible to customize the font used in widgets that display text to the users,
such as buttons, labels, and entries. By default, the font is system-specific, but you can
change it using the font option.

Getting ready
The following application allows users to dynamically change the font family and size of a
label with static text. Try around different values to see the results of the font configuration:

Customizing Widgets Chapter 3

[61]

How to do it...
We will have two widgets to modify the font configuration: a drop-down option with font
family names and a spinbox to enter the font size:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Fonts demo")
 text = "The quick brown fox jumps over the lazy dog"
 self.label = tk.Label(self, text=text)

 self.family = tk.StringVar()
 self.family.trace("w", self.set_font)
 families = ("Times", "Courier", "Helvetica")
 self.option = tk.OptionMenu(self, self.family, *families)

 self.size = tk.StringVar()
 self.size.trace("w", self.set_font)
 self.spinbox = tk.Spinbox(self, from_=8, to=18,
 textvariable=self.size)

 self.family.set(families[0])
 self.size.set("10")
 self.label.pack(padx=20, pady=20)
 self.option.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
 self.spinbox.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)

 def set_font(self, *args):
 family = self.family.get()
 size = self.size.get()
 self.label.config(font=(family, size))

if __name__ == "__main__":
 app = App()
 app.mainloop()

Note that we have set some default values for the Tkinter variables connected to each input.

Customizing Widgets Chapter 3

[62]

How it works...
The FAMILIES tuple contains the three font families that Tk guarantees to support on all
platforms: Times (Times New Roman), Courier, and Helvetica. They can be switched
with the OptionMenu widget, which is connected to the self.family variable.

A similar approach is followed to set the font size with Spinbox. Both variables trigger the
method that changes the font label:

def set_font(self, *args):
 family = self.family.get()
 size = self.size.get()
 self.label.config(font=(family, size))

The tuple passed to the font option can also define one or more of the following font
styles: bold, roman, italic, underline, and strikethrough:

widget1.config(font=("Times", "20", "bold"))
widget2.config(font=("Helvetica", "16", "italic underline"))

You can retrieve the complete list of available font families for your platform with the
families() method from the tkinter.font module. Since you need to instantiate the
root window first, you can use the following script:

import tkinter as tk
from tkinter import font

root = tk.Tk()
print(font.families())

Tkinter will not throw any error if you use a font family that is not included in the list of
available families, but will try to match a similar font.

There's more...
The tkinter.font module includes a Font class, which can be reused over multiple
widgets. The main advantage of modifying a font instance is that it affects all the widgets
that share it with the font option.

Customizing Widgets Chapter 3

[63]

Working with the Font class is very similar to using font descriptors. For example, this
snippet creates a 18-pixel Courier bold font:

from tkinter import font
courier_18 = font.Font(family="Courier", size=18, weight=font.BOLD)

To retrieve or change an option value, you can use the cget and configure methods as
usual:

family = courier_18.cget("family")
courier_18.configure(underline=1)

See also
The Using the options database recipe

Using the options database
Tkinter defines a concept called options database, a mechanism used to customize the
appearance of the application without having to specify it for each widget. It allows you to
decouple some widget options from the individual widget configuration, providing
standardized defaults based on the widget hierarchy.

Getting ready
In this recipe, we will build an application with several widgets that have different styling,
which will be defined in the options database:

Customizing Widgets Chapter 3

[64]

How to do it...
In our example, we will add some options to the database through the
option_add() method, which is accessible from all widget classes:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Options demo")
 self.option_add("*font", "helvetica 10")
 self.option_add("*header.font", "helvetica 18 bold")
 self.option_add("*subtitle.font", "helvetica 14 italic")
 self.option_add("*Button.foreground", "blue")
 self.option_add("*Button.background", "white")
 self.option_add("*Button.activeBackground", "gray")
 self.option_add("*Button.activeForeground", "black")

 self.create_label(name="header", text="This is the header")
 self.create_label(name="subtitle", text="This is the subtitle")
 self.create_label(text="This is a paragraph")
 self.create_label(text="This is another paragraph")
 self.create_button(text="See more")

 def create_label(self, **options):
 tk.Label(self, **options).pack(padx=20, pady=5, anchor=tk.W)

 def create_button(self, **options):
 tk.Button(self, **options).pack(padx=5, pady=5, anchor=tk.E)

if __name__ == "__main__":
 app = App()
 app.mainloop()

As a result, instead of configuring the font, foreground and background with the rest of
the options, Tkinter will use the default values defined in the options database.

How it works...
Let's start by explaining each call to option_add. The first invocation adds an option that
sets the font attribute to all the widgets—the wildcard represents any application name:

self.option_add("*font", "helvetica 10")

Customizing Widgets Chapter 3

[65]

The next call restricts the match to an element with the header name—the more specific a
rule is, the highest precedence it has. This name is later specified when instantiating the
label with name="header":

self.option_add("*header.font", "helvetica 18 bold")

The same applies to self.option_add("*subtitle.font", "helvetica 14
italic"), so each option matches to a different named widget instance.

The next options use the Button class name instead of an instance name. This way, you can
refer to all widgets of a given class to provide some common defaults:

self.option_add("*Button.foreground", "blue")
self.option_add("*Button.background", "white")
self.option_add("*Button.activeBackground", "gray")
self.option_add("*Button.activeForeground", "black")

As we have mentioned earlier, the options database uses the widget hierarchy to determine
the options that apply to each instance, so if we have nested containers, they can also be
used to restrict the options that take precedence.

These configuration options are not applied to existing widgets, only to
the ones created after modifying the options database. Therefore, we
always recommend calling option_add() at the beginning of your
applications.

These are some examples where each one is more specific than the preceding one:

*Frame*background: Matches the background of all the widgets within a frame
*Frame.background: Matches the background of all the frames
*Frame.myButton.background: Matches the background of the widget
named myButton
*myFrame.myButton.background: Matches the background of the widget
named myButton inside the container named myFrame

Customizing Widgets Chapter 3

[66]

There's more...
Instead of adding the options programmatically, it is also possible to define them in a
separate text file using the following format:

*font: helvetica 10
*header.font: helvetica 18 bold
*subtitle.font: helvetica 14 italic
*Button.foreground: blue
*Button.background: white
*Button.activeBackground: gray
*Button.activeForeground: black

This file should be loaded into the application using the option_readfile() method, and
replaces all the calls to option_add(). In our example, let's suppose the file is called
my_options_file and it is placed in the same directory as our script:

def __init__(self):
 super().__init__()
 self.title("Options demo")
 self.option_readfile("my_options_file")
 # ...

If the file does not exist or its format is invalid, Tkinter will raise TclError.

See also
The Working with colors recipe
The Setting widget fonts recipe

Changing the cursor icon
Tkinter allows you to customize the cursor icon while hovering over a widget. This
behavior is sometimes enabled by default, like the Entry widget that displays an I-beam
pointer.

Customizing Widgets Chapter 3

[67]

Getting ready
The following application shows how to display a busy cursor while it is performing a long-
running operation, and a cursor with a question mark, typically used in help menus:

How to do it...
The mouse pointer icon can be changed using the cursor option. In our example, we used
the watch value to display the native busy cursor and question_arrow to display the
regular arrow with a question mark:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Cursors demo")
 self.resizable(0, 0)
 self.label = tk.Label(self, text="Click the button to start")
 self.btn_launch = tk.Button(self, text="Start!",
 command=self.perform_action)
 self.btn_help = tk.Button(self, text="Help",
 cursor="question_arrow")

 btn_opts = {"side": tk.LEFT, "expand":True, "fill": tk.X,
 "ipadx": 30, "padx": 20, "pady": 5}
 self.label.pack(pady=10)
 self.btn_launch.pack(**btn_opts)
 self.btn_help.pack(**btn_opts)

 def perform_action(self):
 self.config(cursor="watch")
 self.btn_launch.config(state=tk.DISABLED)
 self.btn_help.config(state=tk.DISABLED)
 self.label.config(text="Working...")
 self.after(3000, self.end_action)

Customizing Widgets Chapter 3

[68]

 def end_action(self):
 self.config(cursor="arrow")
 self.btn_launch.config(state=tk.NORMAL)
 self.btn_help.config(state=tk.NORMAL)
 self.label.config(text="Done!")

if __name__ == "__main__":
 app = App()
 app.mainloop()

You can check out a complete list of valid cursor values and the system-specific ones in the
official Tcl/Tk documentation at https:/ ​/​www. ​tcl.​tk/ ​man/ ​tcl/ ​TkCmd/ ​cursors. ​htm.

How it works...
If a widget does not specify the cursor option, it takes the value defined in the parent
container. Therefore, we can easily apply it to all widgets by setting it at the root window
level. This is done by invoking set_watch_cursor() within the perform_action()
method:

def perform_action(self):
 self.config(cursor="watch")
 # ...

The exception here is the Help button, which explicitly sets the cursor to question_arrow.
This option can be directly set while instantiating the widget as well:

self.btn_help = tk.Button(self, text="Help",
 cursor="question_arrow")

There's more...
Note that if you click on the Start! button and place the mouse over the Help button
before the scheduled method is invoked, the cursor will display as help instead of watch.
This happens because if the cursor option of a widget is set, it takes precedence over the
cursor defined in the parent container.

https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl/TkCmd/cursors.htm

Customizing Widgets Chapter 3

[69]

To avoid this, we can save the current cursor value and change it to watch, and restore it
later. The function that performs this operation can be called recursively in the child widget
by iterating over the winfo_children() list:

def perform_action(self):
 self.set_watch_cursor(self)
 # ...

def end_action(self):
 self.restore_cursor(self)
 # ...

def set_watch_cursor(self, widget):
 widget._old_cursor = widget.cget("cursor")
 widget.config(cursor="watch")
 for w in widget.winfo_children():
 self.set_watch_cursor(w)

def restore_cursor(self, widget):
 widget.config(cursor=widget._old_cursor)
 for w in widget.winfo_children():
 self.restore_cursor(w)

In the preceding code, we added the _old_cursor property to each widget, so if you
follow a similar approach, keep in mind that you cannot call restore_cursor() before
set_watch_cursor().

Introducing the Text widget
The Text widget offers an advanced functionality compared with other widget classes. It
displays multiple lines of editable text that can be indexed by lines and columns.
Additionally, you can refer to ranges of text using tags, which may define a customized
appearance and behavior.

Getting ready
The following application shows basic use of the Text widget, where you can dynamically
insert and remove text and retrieve the selected content:

Customizing Widgets Chapter 3

[70]

How to do it...
Apart from the Text widget, our application contains three buttons that call the methods to
clear the whole text content, insert the "Hello, world" string in the current cursor
position, and print the current selection made with the mouse or the keyboard:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Text demo")
 self.resizable(0, 0)
 self.text = tk.Text(self, width=50, height=10)
 self.btn_clear = tk.Button(self, text="Clear text",
 command=self.clear_text)
 self.btn_insert = tk.Button(self, text="Insert text",
 command=self.insert_text)
 self.btn_print = tk.Button(self, text="Print selection",
 command=self.print_selection)
 self.text.pack()
 self.btn_clear.pack(side=tk.LEFT, expand=True, pady=10)
 self.btn_insert.pack(side=tk.LEFT, expand=True, pady=10)
 self.btn_print.pack(side=tk.LEFT, expand=True, pady=10)

 def clear_text(self):
 self.text.delete("1.0", tk.END)

Customizing Widgets Chapter 3

[71]

 def insert_text(self):
 self.text.insert(tk.INSERT, "Hello, world")

 def print_selection(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 content = self.text.get(*selection)
 print(content)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
Our Text widget is initially empty, and it has a width of 50 characters and a height of 10
lines. Apart from allowing users to enter any type of text, we will dive into the methods
used by each button to have a better understanding of how to interact with this widget.

The delete(start, end) method removes the content from the start index to the end
index. If the second parameter is omitted, it only deletes the character at the start position.

In our example, we delete all the text by calling this method from the 1.0 index (column 0
of the first line) to the tk.END index, which refers to the last character:

def clear_text(self):
 self.text.delete("1.0", tk.END)

The insert(index, text) method inserts the given text at the index position. Here, we
call it with the INSERT index, which corresponds to the position of the insertion cursor:

def insert_text(self):
 self.text.insert(tk.INSERT, "Hello, world")

The tag_ranges(tag) method returns a tuple with the first and last indices of all the
ranges with a given tag. We used the special tk.SEL tag to refer to the current selection. If
there is no selection, this call would return an empty tuple. This is combined with the
get(start, end) method, which returns the text in a given range:

def print_selection(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 content = self.text.get(*selection)
 print(content)

Customizing Widgets Chapter 3

[72]

Since the SEL tag corresponds to only one range, we can safely unpack it to call the get
method.

Adding tags to the Text widget
In this recipe, you will learn how to configure the behavior of a tagged range of characters
within a Text widget.

All the concepts are the same as those that apply to regular widgets, such as event
sequences or configuration options, which have already been covered in previous recipes.
The main difference is that we need to work with the text indices to identify the tagged
content, instead of using object references.

Getting ready
To illustrate how to use the text tags, we will create a Text widget that simulates the
insertion of hyperlinks. When clicked, this link will open the selected URL with the default
browser.

For instance, if the user enters the following content, the python.org text can be tagged as a
hyperlink:

Customizing Widgets Chapter 3

[73]

How to do it...
For this application, we will define a tag named "link", which represents a clickable
hyperlink. This tag will be added to the current selection using a button, and the mouse
click will trigger the event to open the link in a browser:

import tkinter as tk
import webbrowser

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Text tags demo")
 self.text = tk.Text(self, width=50, height=10)
 self.btn_link = tk.Button(self, text="Add hyperlink",
 command=self.add_hyperlink)

 self.text.tag_config("link", foreground="blue", underline=1)
 self.text.tag_bind("link", "<Button-1>", self.open_link)
 self.text.tag_bind("link", "<Enter>",
 lambda _: self.text.config(cursor="hand2"))
 self.text.tag_bind("link", "<Leave>",
 lambda e: self.text.config(cursor=""))

 self.text.pack()
 self.btn_link.pack(expand=True)

 def add_hyperlink(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 self.text.tag_add("link", *selection)

 def open_link(self, event):
 position = "@{},{} + 1c".format(event.x, event.y)
 index = self.text.index(position)
 prevrange = self.text.tag_prevrange("link", index)
 url = self.text.get(*prevrange)
 webbrowser.open(url)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Customizing Widgets Chapter 3

[74]

How it works...
First, we will initialize the tag by configuring the color and underline style. We add event
bindings to open the clicked text with a browser and to change the cursor appearance while
placing the mouse over the tagged text:

def __init__(self):
 # ...
 self.text.tag_config("link", foreground="blue", underline=1)
 self.text.tag_bind("link", "<Button-1>", self.open_link)
 self.text.tag_bind("link", "<Enter>",
 lambda e: self.text.config(cursor="hand2"))
 self.text.tag_bind("link", "<Leave>",
 lambda e: self.text.config(cursor=""))

Within the open_link method, we transform the clicked position to the corresponding line
and column using the index method of the Text class:

position = "@{},{} + 1c".format(event.x, event.y)
index = self.text.index(position)
prevrange = self.text.tag_prevrange("link", index)

Note that the position corresponding to the clicked index is "@x,y", but we moved it to the
next character. We do this because tag_prevrange returns the preceding range to the
given index, so it will not return the current range if we click on the first character.

Finally, we will retrieve the text from the range and open it with the default browser using
the open function from the webbrowser module:

url = self.text.get(*prevrange)
webbrowser.open(url)

There's more...
Since the webbrowser.open function does not check whether the URL is valid, this
application can be improved by including a basic hyperlink validation. For instance, you
can use the urlparse function to verify that the URL has a network location:

from urllib.parse import urlparse

def validate_hyperlink(self, url):
 return urlparse(url).netloc

Customizing Widgets Chapter 3

[75]

Although this solution is not intended to handle some corner cases, it might serve as a first
approach to discarding most invalid URLs.

In general, you can use tags to create complex text-based programs, such as an IDE with
syntax highlighting. In fact, IDLE—bundled in the default Python implementation—is
based on Tkinter.

See also
The Changing the cursor icon recipe
The Introducing the Text widget recipe

4
Dialogs and Menus

In this chapter, we will cover the following recipes:

Showing alert dialogs
Asking for user confirmation
Choosing files and directories
Saving data into a file
Creating a menu bar
Using variables in menus
Displaying context menus
Opening a secondary window
Passing variables between windows
Handling window deletion

Introduction
Almost every nontrivial GUI application is composed of multiple views. In browsers, this is
achieved by navigating from one HTML page to another, and in desktop applications, it is
represented by multiple windows and dialogs that users can interact with.

So far, we have learned how to create only a root window, which is associated with the Tcl
interpreter. However, Tkinter allows us to create multiple top-level windows under the
same application, and it also includes specific modules with built-in dialogs.

Dialogs and Menus Chapter 4

[77]

Another way to structure how to navigate in your application is using menus, which are
usually displayed under the title bar in desktop applications. In Tkinter, these menus are
represented by a widget class; we will dive later into its methods and how to integrate it
with the rest of our application.

Showing alert dialogs
A common use case for dialogs is notifying users of events that occurred in our application,
such as that a record has been saved, or that it failed to open a file. We will now take a look
at some of the basic functions included in Tkinter to display informational dialogs.

Getting ready
Our program will have three buttons, where each one illustrates a different dialog with a
static title and message. This type of dialog boxes have only a button to confirm and close
the dialog:

Dialogs and Menus Chapter 4

[78]

When you run the preceding example, note that each dialog plays the corresponding sound
defined by your platform, and the button label is translated to your language:

Dialogs and Menus Chapter 4

[79]

How to do it...
The three dialogs mentioned in the preceding Getting ready section are opened with
the showinfo, showwarning, and showerror functions from the
tkinter.messagebox module:

import tkinter as tk
import tkinter.messagebox as mb

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 btn_info = tk.Button(self, text="Show Info",
 command=self.show_info)
 btn_warn = tk.Button(self, text="Show Warning",
 command=self.show_warning)
 btn_error = tk.Button(self, text="Show Error",
 command=self.show_error)

 opts = {'padx': 40, 'pady': 5, 'expand': True, 'fill': tk.BOTH}
 btn_info.pack(**opts)
 btn_warn.pack(**opts)
 btn_error.pack(**opts)

 def show_info(self):
 msg = "Your user preferences have been saved"
 mb.showinfo("Information", msg)

 def show_warning(self):
 msg = "Temporary files have not been correctly removed"
 mb.showwarning("Warning", msg)

 def show_error(self):
 msg = "The application has encountered an unknown error"
 mb.showerror("Error", msg)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Dialogs and Menus Chapter 4

[80]

How it works...
First, we imported the tkinter.messagebox module with the shorter alias mb. This
module was named tkMessageBox in Python 2, so this syntax also helps us to isolate
compatibility issues in a single statement.

Each dialog is commonly used depending on the type of information that is notified to the
users:

showinfo: The operation completed successfully
showwarning: The operation completed but something did not behave as
expected
showerror: The operation failed due to an error

These three functions receive two strings as input arguments: the first one is displayed on
the title bar, and the second one corresponds to the message shown by the dialog.

Dialog messages can also spawn across multiple lines by adding the new line character, \n.

Asking for user confirmation
Other types of dialogs included in Tkinter are those used to ask for user confirmation, such
as the ones shown when we want to save a file and are about to override an existing one
with the same name.

These dialogs differ from the preceding one because the values returned by the functions
will depend on the confirmation button clicked by the user. This way, we can interact with
the program to indicate whether to continue or cancel the action.

Dialogs and Menus Chapter 4

[81]

Getting ready
In this recipe, we will cover the remaining dialog functions defined in the
tkinter.messagebox module. Each button is labeled with the type of dialog that is
opened when clicked:

Since there are a few differences among these dialogs, you can try them out to see which
one may better fit your needs for each situation:

How to do it...
As we did in our preceding example, we will import tkinter.messagebox with the
import ... as syntax and call each function with title and message:

import tkinter as tk
import tkinter.messagebox as mb

Dialogs and Menus Chapter 4

[82]

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.create_button(mb.askyesno, "Ask Yes/No",
 "Returns True or False")
 self.create_button(mb.askquestion, "Ask a question",
 "Returns 'yes' or 'no'")
 self.create_button(mb.askokcancel, "Ask Ok/Cancel",
 "Returns True or False")
 self.create_button(mb.askretrycancel, "Ask Retry/Cancel",
 "Returns True or False")
 self.create_button(mb.askyesnocancel, "Ask Yes/No/Cancel",
 "Returns True, False or None")

 def create_button(self, dialog, title, message):
 command = lambda: print(dialog(title, message))
 btn = tk.Button(self, text=title, command=command)
 btn.pack(padx=40, pady=5, expand=True, fill=tk.BOTH)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
To avoid repeating the code for the button instantiation and the callback method, we
defined a create_button method to reuse it as many times as we need to add all the
buttons with their dialogs. The commands simply print the result of the dialog function
passed as a parameter so that we can see the values returned, depending on the button
clicked, to answer the dialog.

Choosing files and directories
File dialogs allow users to select one or multiple files from the filesystem. In Tkinter, these
functions are declared in the tkinter.filedialog module, which also includes dialogs
for choosing directories. It also lets you customize the behavior of a new dialog, such as
filtering the files by their extension or choosing the initial directory displayed by the dialog.

Dialogs and Menus Chapter 4

[83]

Getting ready
Our application will contain two buttons. The first will be labeled Choose file, and it will
display a dialog to select a file. By default, it will only show files with the .txt extension:

The second button will be Choose directory, and it will open a similar dialog to select a
directory:

Dialogs and Menus Chapter 4

[84]

Both buttons will print the full path to the selected file or directory, and will not perform
any action if the dialog is canceled.

How to do it...
The first button of our application will trigger a call to the askopenfilename function,
whereas the second one will call the askdirectory function:

import tkinter as tk
import tkinter.filedialog as fd

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 btn_file = tk.Button(self, text="Choose file",
 command=self.choose_file)
 btn_dir = tk.Button(self, text="Choose directory",
 command=self.choose_directory)
 btn_file.pack(padx=60, pady=10)
 btn_dir.pack(padx=60, pady=10)

 def choose_file(self):
 filetypes = (("Plain text files", "*.txt"),

Dialogs and Menus Chapter 4

[85]

 ("Images", "*.jpg *.gif *.png"),
 ("All files", "*"))
 filename = fd.askopenfilename(title="Open file",
 initialdir="/", filetypes=filetypes)
 if filename:
 print(filename)

 def choose_directory(self):
 directory = fd.askdirectory(title="Open directory",
 initialdir="/")
 if directory:
 print(directory)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Since these dialogs can be dismissed, we added conditional statements to check whether the
dialog function returns a non-empty string before printing it into the console. We would
need this validation in any application that must perform an action with this path, such as
reading or copying files, or changing permissions.

How it works...
We create the first dialog with the askopenfilename function, which returns a string that
represents the full path to the chosen file. It accepts the following optional arguments:

title: Title displayed in the dialog's title bar.
initialdir: Initial directory.
filetypes: Sequence of tuples of two strings. The first one is a label indicating
the type of the file in a human-readable format, whereas the second one is a
pattern to match the filename.
multiple: Boolean value to indicate whether users may select multiple files.
defaultextension: Extension added to the filename if it is not explicitly given.

In our example, we set the initial directory to the root folder and a custom title. In our tuple
of file types, we have the following three valid choices: text files saved with the .txt
extension; images with the .jpg, .gif, and .png extensions; and the wildcard ("*") to
match all files.

Dialogs and Menus Chapter 4

[86]

Note that these patterns do not necessarily match the format of the data contained in the file
since it is possible to rename a file with a different extension:

filetypes = (("Plain text files", "*.txt"),
 ("Images", "*.jpg *.gif *.png"),
 ("All files", "*"))
filename = fd.askopenfilename(title="Open file", initialdir="/",
 filetypes=filetypes)

The askdirectory function also takes the title and initialdir parameters, and a
mustexist Boolean option to indicate whether users have to pick an existing directory:

directory = fd.askdirectory(title="Open directory", initialdir="/")

There's more...
The tkinter.filedialog module includes some variations of these functions that allow
you to directly retrieve the file objects.

For instance, askopenfile returns the file object corresponding to the selected file, instead
of having to call open with the path returned by askopenfilename. We still have to check
whether the dialog has not been dismissed before calling the file methods:

import tkinter.filedialog as fd

filetypes = (("Plain text files", "*.txt"),)
my_file = fd.askopenfile(title="Open file", filetypes=filetypes)
if my_file:
 print(my_file.readlines())
 my_file.close()

Saving data into a file
Apart from selecting existing files and directories, it is also possible to create a new file
using Tkinter dialogs. They can be used to persist data generated by our application, letting
users choose the name and location of the new file.

Dialogs and Menus Chapter 4

[87]

Getting ready
We will use the Save file dialog to write the contents of a Text widget into a plain text file:

How to do it...
To open a dialog to save a file, we call the asksaveasfile function from the
tkinter.filedialog module. It internally creates a file object with the 'w' mode for
writing, or None if the dialog is dismissed:

import tkinter as tk
import tkinter.filedialog as fd

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.text = tk.Text(self, height=10, width=50)
 self.btn_save = tk.Button(self, text="Save",
 command=self.save_file)

Dialogs and Menus Chapter 4

[88]

 self.text.pack()
 self.btn_save.pack(pady=10, ipadx=5)

 def save_file(self):
 contents = self.text.get(1.0, tk.END)
 new_file = fd.asksaveasfile(title="Save file",
 defaultextension=".txt",
 filetypes=(("Text files",
 "*.txt"),))
 if new_file:
 new_file.write(contents)
 new_file.close()

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
The asksaveasfile function accepts the same optional parameters as the askopenfile
function, but also allows you to add the file extension by default with
the defaultextension option.

To prevent users from accidentally overriding previous files, this dialog automatically
warns you if you try to save a new file with the same name as an existing one.

With the file object, we can write the contents of the Text widget—always remember to
close the file to free the resources taken by the object:

contents = self.text.get(1.0, tk.END)
new_file.write(contents)
new_file.close()

There's more...
In the preceding recipe, we saw that there is a function equivalent to askopenfilename
that returns a file object instead of a string, named askopenfile.

To save files, there is also a asksaveasfilename function that returns the path of the
selected file. You can use this function if you want to modify the path or perform any
validation before opening the file for writing.

Dialogs and Menus Chapter 4

[89]

See also
The Choosing files and directories recipe

Creating a menu bar
Complex GUIs typically use menu bars to organize the actions and navigations that are
available in our application. This pattern is also used to group operations that are closely
related, such as the File menu included in most text editors.

Tkinter natively supports these menus, which are displayed with the look and feel of the
target desktop environment. Therefore, you do not have to simulate them with frames or
labels, because you would lose the cross-platform features that have already been built into
Tkinter.

Getting ready
We will start by adding a menu bar to a root window with a nested drop-down menu. On
Windows 10, this is displayed as follows:

Dialogs and Menus Chapter 4

[90]

How to do it...
Tkinter has a Menu widget class that can be used for many kinds of menus, including top
menu bars. As any other widget classes, menus are instantiated with the parent container as
the first argument and some optional configuration options:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 menu = tk.Menu(self)
 file_menu = tk.Menu(menu, tearoff=0)

 file_menu.add_command(label="New file")
 file_menu.add_command(label="Open")
 file_menu.add_separator()
 file_menu.add_command(label="Save")
 file_menu.add_command(label="Save as...")

 menu.add_cascade(label="File", menu=file_menu)
 menu.add_command(label="About")
 menu.add_command(label="Quit", command=self.destroy)
 self.config(menu=menu)

if __name__ == "__main__":
 app = App()
 app.mainloop()

If you run the preceding script, you can see that the File entry shows the secondary menu,
and you can close the application by clicking the Quit menu button.

How it works...
First, we instantiate each menu, indicating the parent container. The tearoff option, set to
1 by default, indicates that the menu can be detached by clicking on the dashed line of its
top border. This behavior is not applied to the top menu bar, but if we want to deactivate
this functionality, we have to set this option to 0:

 def __init__(self):
 super().__init__()
 menu = tk.Menu(self)
 file_menu = tk.Menu(menu, tearoff=0)

Dialogs and Menus Chapter 4

[91]

Menu entries are arranged in the same order that they are added, using the add_command,
add_separator, and add_cascade methods:

menu.add_cascade(label="File", menu=file_menu)
menu.add_command(label="About")
menu.add_command(label="Quit", command=self.destroy)

Usually, add_command is called with a command option, which is the callback invoked when
the entry is clicked. There are no arguments passed to the callback function, exactly as with
the command option of the Button widget.

For illustration purposes, we only added this option to the Quit entry to destroy the Tk
instance and close the application.

Finally, we attach the menu to the top-level window by calling self.config(menu=menu).
Note that each top-level window can only have a single menu bar configured.

Using variables in menus
Apart from calling commands and nesting submenus, it is also possible to connect Tkinter
variables to menu entries.

Getting ready
We will add a check button entry and three radio button entries to the Options submenu,
divided by a separator. There will be two underlying Tkinter variables to store the selected
values, so we can retrieve them easily from other methods of our application:

Dialogs and Menus Chapter 4

[92]

How to do it...
These types of entries are added with the add_checkbutton and add_radiobutton
methods of the Menu widget class. Like with regular radio buttons, all are connected to the
same Tkinter variable, but each one sets a different value:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.checked = tk.BooleanVar()
 self.checked.trace("w", self.mark_checked)
 self.radio = tk.StringVar()
 self.radio.set("1")
 self.radio.trace("w", self.mark_radio)
 menu = tk.Menu(self)
 submenu = tk.Menu(menu, tearoff=0)

 submenu.add_checkbutton(label="Checkbutton", onvalue=True,
 offvalue=False, variable=self.checked)
 submenu.add_separator()
 submenu.add_radiobutton(label="Radio 1", value="1",
 variable=self.radio)
 submenu.add_radiobutton(label="Radio 2", value="2",
 variable=self.radio)
 submenu.add_radiobutton(label="Radio 3", value="3",
 variable=self.radio)

 menu.add_cascade(label="Options", menu=submenu)
 menu.add_command(label="Quit", command=self.destroy)
 self.config(menu=menu)

 def mark_checked(self, *args):
 print(self.checked.get())

 def mark_radio(self, *args):
 print(self.radio.get())

if __name__ == "__main__":
 app = App()
 app.mainloop()

Additionally, we are tracing the variable changes so you can see the values printed on the
console when you run this application.

Dialogs and Menus Chapter 4

[93]

How it works...
To connect a Boolean variable to the Checkbutton entry, we first define BooleanVar and
then create the entry by calling add_checkbutton using the variable option.

Remember that the onvalue and offvalue options should match the type of the Tkinter
variable, as we do with regular RadioButton and CheckButton widgets:

self.checked = tk.BooleanVar()
self.checked.trace("w", self.mark_checked)
...
submenu.add_checkbutton(label="Checkbutton", onvalue=True,
 offvalue=False, variable=self.checked)

Radiobutton entries are created in a similar fashion using the add_radiobutton method,
and only a single value option to set to the Tkinter variable when the radio is clicked. Since
StringVar initially holds the empty string value, we set it to the first radio value so that it
will display as checked:

self.radio = tk.StringVar()
self.radio.set("1")
self.radio.trace("w", self.mark_radio)
...
submenu.add_radiobutton(label="Radio 1", value="1",
 variable=self.radio)
submenu.add_radiobutton(label="Radio 2", value="2",
 variable=self.radio)
submenu.add_radiobutton(label="Radio 3", value="3",
 variable=self.radio)

Both variables trace the changes with the mark_checked and mark_radio methods, which
simply print the variable values into the console.

Displaying context menus
Tkinter menus do not necessarily have to be located on the menu bar, but they can actually
be freely placed at any coordinate. These types of menus are called context menus, and they
are usually displayed when users right-click on an item.

Context menus are widely used in GUI applications; for instance, file browsers display
them to offer the available operations over the selected file, so it is intuitive for users to
know how to interact with them.

Dialogs and Menus Chapter 4

[94]

Getting ready
We will build a context menu for a Text widget to display some common actions of text
editors, such as Cut, Copy, Paste, and Delete:

How to do it...
Instead of configuring a menu instance with a top-level container as a top menu bar, you
can explicitly place it using its post method.

All the commands in the menu entries call a method that uses the text instance to retrieve
the current selection or the insertion position:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.menu = tk.Menu(self, tearoff=0)
 self.menu.add_command(label="Cut", command=self.cut_text)
 self.menu.add_command(label="Copy", command=self.copy_text)
 self.menu.add_command(label="Paste", command=self.paste_text)
 self.menu.add_command(label="Delete", command=self.delete_text)

 self.text = tk.Text(self, height=10, width=50)
 self.text.bind("<Button-3>", self.show_popup)
 self.text.pack()

 def show_popup(self, event):
 self.menu.post(event.x_root, event.y_root)

 def cut_text(self):

Dialogs and Menus Chapter 4

[95]

 self.copy_text()
 self.delete_text()

 def copy_text(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 self.clipboard_clear()
 self.clipboard_append(self.text.get(*selection))

 def paste_text(self):
 self.text.insert(tk.INSERT, self.clipboard_get())

 def delete_text(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 self.text.delete(*selection)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
We bind the right-click event to the show_popup handler for the text instance, which
displays the menu with its top-left corner over the clicked position. Each time this event is
triggered, the same menu instance is displayed again:

def show_popup(self, event):
 self.menu.post(event.x_root, event.y_root)

The following methods are available for all widget classes to interact with the clipboard:

clipboard_clear(): Clears the data from the clipboard
clipboard_append(string): Appends a string to the clipboard
clipboard_get(): Returns the data from the clipboard

The callback method for the copy action gets the current selection and adds it to the
clipboard:

 def copy_text(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 self.clipboard_clear()
 self.clipboard_append(self.text.get(*selection))

Dialogs and Menus Chapter 4

[96]

The paste action inserts the clipboard contents into the insertion cursor position, defined by
the INSERT index. We have to wrap this in a try...except block, since calling
clipboard_get raises a TclError if the clipboard is empty:

 def paste_text(self):
 try:
 self.text.insert(tk.INSERT, self.clipboard_get())
 except tk.TclError:
 pass

The delete action does not interact with the clipboard, but removes the contents of the
current selection:

 def delete_text(self):
 selection = self.text.tag_ranges(tk.SEL)
 if selection:
 self.text.delete(*selection)

Since the cut action is a combination of copy and delete, we reused these methods to
compose its callback function.

There's more...
The postcommand option allows you to reconfigure a menu each time it is displayed with
the post method. To illustrate how to use this option, we will disable the cut, copy, and
delete entries if there is no current selection in the Text widget and disable the paste entry if
there are no contents in the clipboard.

Like the rest of our callback functions, we pass a reference to a method of our class to add
this configuration option:

def __init__(self):
 super().__init__()
 self.menu = tk.Menu(self, tearoff=0,
 postcommand=self.enable_selection)

Then, we check whether the SEL range exists to determine whether the state of the entries
should be ACTIVE or DISABLED. This value is passed to the entryconfig method, which
takes the index of the entry to configure as its first argument, and the list of options to be
updated—remember that menu entries are 0 indexed:

def enable_selection(self):
 state_selection = tk.ACTIVE if self.text.tag_ranges(tk.SEL)
 else tk.DISABLED

Dialogs and Menus Chapter 4

[97]

 state_clipboard = tk.ACTIVE
 try:
 self.clipboard_get()
 except tk.TclError:
 state_clipboard = tk.DISABLED

 self.menu.entryconfig(0, state=state_selection) # Cut
 self.menu.entryconfig(1, state=state_selection) # Copy
 self.menu.entryconfig(2, state=state_clipboard) # Paste
 self.menu.entryconfig(3, state=state_selection) # Delete

For instance, all the entries should be grayed out if there is no selection or if there are no
contents on the clipboard:

With entryconfig, it is also possible to configure many other options, such as the label,
font, and background. Refer to https:/ ​/​www. ​tcl. ​tk/​man/ ​tcl8. ​6/ ​TkCmd/ ​menu. ​htm#M48 for a
complete reference of available entry options.

Opening a secondary window
The root Tk instance represents the main window of our GUI—when it is destroyed, the
application quits and the event mainloop finishes.

However, there is another Tkinter class to create additional top-level windows in our
application, called Toplevel. You can use this class to display any kind of window, from
custom dialogs to wizard forms.

https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48
https://www.tcl.tk/man/tcl8.6/TkCmd/menu.htm#M48

Dialogs and Menus Chapter 4

[98]

Getting ready
We will start by creating a simple window that is opened when a button of the main
window is clicked. It will contain a button that closes it and returns the focus to the main
window:

How to do it...
The Toplevel widget class creates a new top-level window, which acts as a parent
container like the Tk instance does. Unlike the Tk class, you can instantiate as many top-
level windows as you like:

import tkinter as tk

class Window(tk.Toplevel):
 def __init__(self, parent):
 super().__init__(parent)
 self.label = tk.Label(self, text="This is another window")
 self.button = tk.Button(self, text="Close",
 command=self.destroy)

 self.label.pack(padx=20, pady=20)
 self.button.pack(pady=5, ipadx=2, ipady=2)

class App(tk.Tk):
 def __init__(self):
 super().__init__()

Dialogs and Menus Chapter 4

[99]

 self.btn = tk.Button(self, text="Open new window",
 command=self.open_window)
 self.btn.pack(padx=50, pady=20)

 def open_window(self):
 window = Window(self)
 window.grab_set()

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
We define a Toplevel subclass to represent our custom window, whose relationship with
the parent window is defined in its __init__ method. Widgets are added to this window
as usual, since we are following the same conventions as when we subclass Tk:

class Window(tk.Toplevel):
 def __init__(self, parent):
 super().__init__(parent)

The window is opened by simply creating a new instance, but in order to make it receive all
the events, we have to call its grab_set method. This prevents users from interacting with
the main window until this one is closed:

def open_window(self):
 window = Window(self)
 window.grab_set()

Handling window deletion
Under some circumstances, you might want to perform an action before the user closes a
top-level window, for instance, to prevent you losing unsaved work. Tkinter allows you to
intercept this type of event to conditionally destroy the window.

Dialogs and Menus Chapter 4

[100]

Getting ready
We will reuse the App class from the preceding recipe, and we will modify the Window class
so that it shows a dialog to confirm closing the window:

How to do it...
In Tkinter, we can detect when a window is about to be closed by registering a handler
function for the WM_DELETE_WINDOW protocol. This can be triggered by clicking on the X
button of the title bar on most desktop environments:

import tkinter as tk
import tkinter.messagebox as mb

class Window(tk.Toplevel):
 def __init__(self, parent):
 super().__init__(parent)

Dialogs and Menus Chapter 4

[101]

 self.protocol("WM_DELETE_WINDOW", self.confirm_delete)

 self.label = tk.Label(self, text="This is another window")
 self.button = tk.Button(self, text="Close",
 command=self.destroy)

 self.label.pack(padx=20, pady=20)
 self.button.pack(pady=5, ipadx=2, ipady=2)

 def confirm_delete(self):
 message = "Are you sure you want to close this window?"
 if mb.askyesno(message=message, parent=self):
 self.destroy()

Our handler method displays a dialog to confirm window deletion. In more complex
programs, this logic is usually extended with additional validations.

How it works...
While the bind() method is used to register handlers for widget events, the protocol
method does the same for window manager protocols.

The WM_DELETE_WINDOW handler is called when a top-level window is about to be closed,
and, by default, Tk destroys the window for which it was received. Since we are overriding
this behavior by registering the confirm_delete handler, it needs to explicitly destroy the
window if the dialog is confirmed.

Another useful protocol is WM_TAKE_FOCUS, which is called when a window takes the
focus.

There's more...
Bear in mind that to keep the focus of the second window when the dialog is displayed, we
have to pass the reference to the top-level instance, the parent option, to the dialog
function:

if mb.askyesno(message=message, parent=self):
 self.destroy()

Otherwise, the dialog will take the root window as its parent, and you would see that it
pops over the second window. These quirks may confuse your users, so it is a good practice
to correctly set the parent of each top-level instance or dialog.

Dialogs and Menus Chapter 4

[102]

Passing variables between windows
Two different windows may need to share information during program execution. While
this data might be saved to disk and read from the window that consumes it, in some
circumstances it is more straightforward to handle it in memory and simply pass this
information as variables.

Getting ready
The main window will contain three radio buttons to select the type of user that we want to
create, and the secondary window will open the form to fill in the user data:

How to do it...
To hold the user data, we create namedtuple with fields that represent each user instance.
This function from the collections module receives the type name and a sequence of
field names, and returns a tuple subclass to create lightweight objects with the given fields:

import tkinter as tk
from collections import namedtuple

User = namedtuple("User", ["username", "password", "user_type"])

class UserForm(tk.Toplevel):
 def __init__(self, parent, user_type):
 super().__init__(parent)

Dialogs and Menus Chapter 4

[103]

 self.username = tk.StringVar()
 self.password = tk.StringVar()
 self.user_type = user_type

 label = tk.Label(self, text="Create a new " +
 user_type.lower())
 entry_name = tk.Entry(self, textvariable=self.username)
 entry_pass = tk.Entry(self, textvariable=self.password,
 show="*")
 btn = tk.Button(self, text="Submit", command=self.destroy)

 label.grid(row=0, columnspan=2)
 tk.Label(self, text="Username:").grid(row=1, column=0)
 tk.Label(self, text="Password:").grid(row=2, column=0)
 entry_name.grid(row=1, column=1)
 entry_pass.grid(row=2, column=1)
 btn.grid(row=3, columnspan=2)

 def open(self):
 self.grab_set()
 self.wait_window()
 username = self.username.get()
 password = self.password.get()
 return User(username, password, self.user_type)

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 user_types = ("Administrator", "Supervisor", "Regular user")
 self.user_type = tk.StringVar()
 self.user_type.set(user_types[0])

 label = tk.Label(self, text="Please, select the type of user")
 radios = [tk.Radiobutton(self, text=t, value=t, \
 variable=self.user_type) for t in user_types]
 btn = tk.Button(self, text="Create user",
 command=self.open_window)

 label.pack(padx=10, pady=10)
 for radio in radios:
 radio.pack(padx=10, anchor=tk.W)
 btn.pack(pady=10)

 def open_window(self):
 window = UserForm(self, self.user_type.get())
 user = window.open()
 print(user)

Dialogs and Menus Chapter 4

[104]

if __name__ == "__main__":
 app = App()
 app.mainloop()

When the execution flow returns to the main window, the user data is printed to the
console.

How it works...
Most of the code of this recipe have already been covered in other recipes, and the main
difference is contained in the open() method of the UserForm class, where we moved the
call to grab_set(). However, the wait_window() method is what actually stops the
execution and prevents us from returning the data before the form has been modified:

 def open(self):
 self.grab_set()
 self.wait_window()
 username = self.username.get()
 password = self.password.get()
 return User(username, password, self.user_type)

It is important to remark that wait_window() enters a local event loop, which finishes
when the window is destroyed. Although it is possible to pass the widget we want to wait
to be removed, we can omit it to implicitly refer to the instance that calls this method.

When the UserForm instance is destroyed, the execution of the open() method continues,
and it returns the User object that can now be used in the App class:

 def open_window(self):
 window = UserForm(self, self.user_type.get())
 user = window.open()
 print(user)

5
Object-Oriented Programming

and MVC
In this chapter, we will cover the following recipes:

Structuring our data with a class
Composing widgets to display information
Reading records from a CSV file
Persisting data into a SQLite database
Refactoring using the MVC pattern

Introduction
So far, all our applications held data in memory as local variables or attributes. However,
we also want to be able to persist information so that it is not lost when the program is
closed.

In this chapter, we will discuss how to represent and display this data using object-
oriented programming (OOP) principles and applying the Model-View-Controller (MVC)
pattern. In short, this pattern proposes three components into which we can divide our GUI:
a model that holds the application data, a view that displays this data, and a controller that
handles user events and connects the view with the model.

These concepts are related to how we manipulate and persist information, and in turn help
us to improve the organization of our programs. Most of these recipes are not specific to
Tkinter, and you can apply the same principles to other GUI libraries.

Object-Oriented Programming and MVC Chapter 5

[106]

Structuring our data with a class
We will take the example of a contact list application to illustrate how to model our data
using Python classes. Even though the user interface may offer lots of different
functionalities, we will need to define what attributes represent our domain model—in our
case, each individual contact.

Getting ready
Every contact will contain the following information:

A first and last name, which must not be empty
An email address, such as john.doe@acme.com
A phone number with the (123) 4567890 format

With this abstraction, we can start writing the code of our Contact class.

How to do it...
First, we define a couple of utility functions that we will reuse to validate the fields that are
mandatory or must follow a specific format:

def required(value, message):
 if not value:
 raise ValueError(message)
 return value

def matches(value, regex, message):
 if value and not regex.match(value):
 raise ValueError(message)
 return value

Then, we define our Contact class and its __init__ method. We set here all the
parameters to the corresponding fields. We also store the compiled regular expressions as
class attributes since we will use them for every instance to perform the field validations:

import re

class Contact(object):
 email_regex = re.compile(r"[^@]+@[^@]+\.[^@]+")
 phone_regex = re.compile(r"\([0-9]{3}\)\s[0-9]{7}")

Object-Oriented Programming and MVC Chapter 5

[107]

 def __init__(self, last_name, first_name, email, phone):
 self.last_name = last_name
 self.first_name = first_name
 self.email = email
 self.phone = phone

However, this definition is not enough to enforce the validations for each field. To do so, we
use the @property decorator, which allow us to wrap access to an internal attribute:

 @property
 def last_name(self):
 return self._last_name

 @last_name.setter
 def last_name(self, value):
 self._last_name = required(value, "Last name is required")

The same technique is applied for first_name since it is also mandatory. The email and
phone attributes follow a similar approach, using the matches function with the
corresponding regular expression:

 @property
 def email(self):
 return self._email

 @email.setter
 def email(self, value):
 self._email = matches(value, self.email_regex,
 "Invalid email format")

This script should be saved as chapter5_01.py, since we will import it later in future
recipes with this name.

How it works...
As we mentioned earlier, the property descriptor is a mechanism for triggering function
calls while accessing the attributes of an object.

In our example, they wrap access to the internal attributes with a leading underscore, like
so:

contact.first_name = "John" # Stores "John" in contact._first_name
print(contact.first_name) # Reads "John" from contact._first_name
contact.last_name = "" # ValueError raised by the required function

Object-Oriented Programming and MVC Chapter 5

[108]

The property descriptor is typically used with the @decorated syntax—remember to
always use the same name for the decorated functions:

 @property
 def last_name(self):
 # ...

 @last_name.setter
 def last_name(self, value):
 # ...

There's more...
You may find the complete implementation of our Contact class quite verbose and
repetitive. For each attribute, we will need to assign it in the __init__ method and write
its corresponding getter and setter methods.

Fortunately, we have several alternatives to reduce this amount of boilerplate code. The
namedtuple function from the standard library allows us to create lightweight tuple
subclasses with named fields:

from collections import namedtuple

Contact = namedtuple("Contact", ["last_name", "first_name",
 "email", "phone"])

However, we still need to add a workaround to implement the validation of the fields. To
address this common problem, we can use the attrs package available from the Python
Package Index.

As usual, you can install it using the following command line with pip:

$ pip install attrs

Once installed, you can replace all the properties with the attr.ib descriptor. It also lets
you specify a validator callback that takes the class instance, the attribute to be modified,
and the value to be set.

With some minor modifications, we can rewrite our Contact class, reducing the number of
lines of code by half:

import re
import attr

Object-Oriented Programming and MVC Chapter 5

[109]

def required(message):
 def func(self, attr, val):
 if not val: raise ValueError(message)
 return func

def match(pattern, message):
 regex = re.compile(pattern)
 def func(self, attr, val):
 if val and not regex.match(val):
 raise ValueError(message)
 return func

@attr.s
class Contact(object):
 last_name = attr.ib(validator=required("Last name is required"))
 first_name = attr.ib(validator=required("First name is required"))
 email = attr.ib(validator=match(r"[^@]+@[^@]+\.[^@]+",
 "Invalid email format"))
 phone = attr.ib(validator=match(r"\([0-9]{3}\)\s[0-9]{7}",
 "Invalid phone format"))

When adding an external dependency in your projects, note not only the productivity
benefits, but also other important aspects, such as documentation, support, and licensing.

You can find more information about the attrs package on its website at http:/ ​/​www.
attrs.​org/​en/​stable/ ​.

Composing widgets to display information
It is difficult to build large applications if all the code is contained in a single class. By
splitting the GUI code into specific classes, we can modularize the structure of our program
and create widgets with well-defined purposes.

Getting ready
Apart from importing the Tkinter package, we will import the Contact class from the
preceding recipe:

import tkinter as tk
import tkinter.messagebox as mb

from chapter5_01 import Contact

http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/
http://www.attrs.org/en/stable/

Object-Oriented Programming and MVC Chapter 5

[110]

Verify that the chapter5_01.py file is in the same directory; otherwise, this import-from
statement will raise ImportError.

How to do it...
We will create a scrollable list that will show all contacts. To represent each item in the list
as a string, we will display the contact's last and first names:

class ContactList(tk.Frame):
 def __init__(self, master, **kwargs):
 super().__init__(master)
 self.lb = tk.Listbox(self, **kwargs)
 scroll = tk.Scrollbar(self, command=self.lb.yview)

 self.lb.config(yscrollcommand=scroll.set)
 scroll.pack(side=tk.RIGHT, fill=tk.Y)
 self.lb.pack(side=tk.LEFT, fill=tk.BOTH, expand=1)

 def insert(self, contact, index=tk.END):
 text = "{}, {}".format(contact.last_name, contact.first_name)
 self.lb.insert(index, text)

 def delete(self, index):
 self.lb.delete(index, index)

 def update(self, contact, index):
 self.delete(index)
 self.insert(contact, index)

 def bind_doble_click(self, callback):
 handler = lambda _: callback(self.lb.curselection()[0])
 self.lb.bind("<Double-Button-1>", handler)

To display and allow us to edit the details of a contact, we will also create a specific form.
We will take the LabelFrame widget as a base class, with a Label and an Entry for each
field:

class ContactForm(tk.LabelFrame):
 fields = ("Last name", "First name", "Email", "Phone")

 def __init__(self, master, **kwargs):
 super().__init__(master, text="Contact",
 padx=10, pady=10, **kwargs)
 self.frame = tk.Frame(self)
 self.entries = list(map(self.create_field,

Object-Oriented Programming and MVC Chapter 5

[111]

 enumerate(self.fields)))
 self.frame.pack()

 def create_field(self, field):
 position, text = field
 label = tk.Label(self.frame, text=text)
 entry = tk.Entry(self.frame, width=25)
 label.grid(row=position, column=0, pady=5)
 entry.grid(row=position, column=1, pady=5)
 return entry

 def load_details(self, contact):
 values = (contact.last_name, contact.first_name,
 contact.email, contact.phone)
 for entry, value in zip(self.entries, values):
 entry.delete(0, tk.END)
 entry.insert(0, value)

 def get_details(self):
 values = [e.get() for e in self.entries]
 try:
 return Contact(*values)
 except ValueError as e:
 mb.showerror("Validation error", str(e), parent=self)

 def clear(self):
 for entry in self.entries:
 entry.delete(0, tk.END)

How it works...
An important detail of the ContactList class is that it exposes the possibility to attach a
callback to the double-click event. It also passes the clicked index as an argument to this
function. We do this because we want to hide the implementation details of the
underlying Listbox:

 def bind_doble_click(self, callback):
 handler = lambda _: callback(self.lb.curselection()[0])
 self.lb.bind("<Double-Button-1>", handler)

ContactForm also offers an abstraction to instantiate a new contact from the values input
in the entries:

 def get_details(self):
 values = [e.get() for e in self.entries]

Object-Oriented Programming and MVC Chapter 5

[112]

 try:
 return Contact(*values)
 except ValueError as e:
 mb.showerror("Validation error", str(e), parent=self)

Since we included field validations in our Contact class, instantiating a new contact might
raise a ValueError if an entry contains an invalid value. To notify the user of this, we show
an error dialog with the error message.

Reading records from a CSV file
As a first approach to loading read-only data into our application, we will use a comma-
separated values (CSV) file. This format tabulates data in plain text files, where each file
corresponds to the fields of a record, separated by commas, like so:

Gauford,Albertine,agauford0@acme.com,(614) 7171720
Greger,Bryce,bgreger1@acme.com,(616) 3543513
Wetherald,Rickey,rwetherald2@acme.com,(379) 3652495

This solution is easy to implement for simple scenarios, especially if the text fields do not
contain line breaks. We will use the csv module from the standard library, and once the
records are loaded into our application, we will populate the widgets developed in the
previous recipes.

Getting ready
We will assemble the custom widgets we created in the previous recipe. Once the records
are loaded from the CSV file, our application will look as shown in the following
screenshot:

Object-Oriented Programming and MVC Chapter 5

[113]

How to do it...
Apart from importing the Contact class, we will also import the ContactForm and
ContactList widgets:

import csv
import tkinter as tk

from chapter5_01 import Contact
from chapter5_02 import ContactForm, ContactList

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("CSV Contact list")
 self.list = ContactList(self, height=12)
 self.form = ContactForm(self)
 self.contacts = self.load_contacts()

 for contact in self.contacts:
 self.list.insert(contact)
 self.list.pack(side=tk.LEFT, padx=10, pady=10)
 self.form.pack(side=tk.LEFT, padx=10, pady=10)
 self.list.bind_doble_click(self.show_contact)

 def load_contacts(self):
 with open("contacts.csv", encoding="utf-8", newline="") as f:

Object-Oriented Programming and MVC Chapter 5

[114]

 return [Contact(*r) for r in csv.reader(f)]

 def show_contact(self, index):
 contact = self.contacts[index]
 self.form.load_details(contact)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
The load_contacts function is responsible for reading the CSV file and transforming all
the records into a list of Contact instances.

Each row read by csv.reader is returned as a tuple of strings, created by splitting the
corresponding line using the comma delimiter. Since this tuple uses the same order as the
parameters defined in the __init__ method of the Contact class, we can simply unpack it
with the * operator. This code can be summarized in a single line using a list
comprehension, as follows:

def load_contacts(self):
 with open("contacts.csv", encoding="utf-8", newline="") as f:
 return [Contact(*r) for r in csv.reader(f)]

There is no problem in returning the list within the with block, since the context manager
automatically closes the file when the method execution finishes.

Persisting data into a SQLite database
Since we want to be able to persist changes to the data through our application, we must
implement a solution that serves both for reading and writing operations.

We could write all the records to the same plain text file we read them from after every
modification, but this may be an ineffective solution when updating some records
individually.

Object-Oriented Programming and MVC Chapter 5

[115]

Since all the information is going to be stored locally, we can use a SQLite database to
persist our application data. The sqlite3 module is a part of the standard library, so you
do not need any additional dependencies to start using it.

This recipe does not pretend to be a comprehensive guide to SQLite, but a practical
introduction to integrate it into your Tkinter applications.

Getting ready
Before using the database in our application, we need to create and populate it with some
initial data. All our contacts are stored in the CSV file, so we will use a migration script to
read all the records and insert them into the database.

First, we create a connection to the contacts.db file, where our data will be stored. Then,
we create the contacts table with the last_name, first_name, email, and phone text
fields.

Since csv.reader returns an iterable of tuples whose fields follow the same order that we
have defined in our CREATE TABLE statement, we can pass it directly to the executemany
method. It will execute the INSERT statement for each tuple, replacing the question marks
with the actual values of each record:

import csv
import sqlite3

def main():
 with open("contacts.csv", encoding="utf-8", newline="") as f, \
 sqlite3.connect("contacts.db") as conn:
 conn.execute("""CREATE TABLE contacts (
 last_name text,
 first_name text,
 email text,
 phone text
)""")
 conn.executemany("INSERT INTO contacts VALUES (?,?,?,?)",
 csv.reader(f))

if __name__ == "__main__":
 main()

The with statement automatically commits the transaction and closes both the file and the
SQLite connection at the end of the execution.

Object-Oriented Programming and MVC Chapter 5

[116]

How to do it...
To add new contacts to our database, we will define a Toplevel subclass that
reuses ContactForm to instantiate a new contact:

class NewContact(tk.Toplevel):
 def __init__(self, parent):
 super().__init__(parent)
 self.contact = None
 self.form = ContactForm(self)
 self.btn_add = tk.Button(self, text="Confirm",
 command=self.confirm)
 self.form.pack(padx=10, pady=10)
 self.btn_add.pack(pady=10)

 def confirm(self):
 self.contact = self.form.get_details()
 if self.contact:
 self.destroy()

 def show(self):
 self.grab_set()
 self.wait_window()
 return self.contact

The following top-level window will be displayed on top of the main window and returns
the focus once the dialog is confirmed or closed:

Object-Oriented Programming and MVC Chapter 5

[117]

We will also extend our ContactForm class with two additional buttons—one for updating
the contact information, and another one for deleting the selected contact:

class UpdateContactForm(ContactForm):
 def __init__(self, master, **kwargs):
 super().__init__(master, **kwargs)
 self.btn_save = tk.Button(self, text="Save")
 self.btn_delete = tk.Button(self, text="Delete")

 self.btn_save.pack(side=tk.RIGHT, ipadx=5, padx=5, pady=5)
 self.btn_delete.pack(side=tk.RIGHT, ipadx=5, padx=5, pady=5)

 def bind_save(self, callback):
 self.btn_save.config(command=callback)

 def bind_delete(self, callback):
 self.btn_delete.config(command=callback)

The bind_save and bind_delete methods allow us to attach a callback to the
corresponding button's command.

To integrate all these changes, we will add the following code to our App class:

class App(tk.Tk):
 def __init__(self, conn):
 super().__init__()
 self.title("SQLite Contacts list")
 self.conn = conn
 self.selection = None
 self.list = ContactList(self, height=15)
 self.form = UpdateContactForm(self)
 self.btn_new = tk.Button(self, text="Add new contact",
 command=self.add_contact)
 self.contacts = self.load_contacts()

 for contact in self.contacts:
 self.list.insert(contact)
 self.list.pack(side=tk.LEFT, padx=10, pady=10)
 self.form.pack(padx=10, pady=10)
 self.btn_new.pack(side=tk.BOTTOM, pady=5)

 self.list.bind_doble_click(self.show_contact)
 self.form.bind_save(self.update_contact)
 self.form.bind_delete(self.delete_contact)

Object-Oriented Programming and MVC Chapter 5

[118]

We also need to modify the load_contacts method to create the contacts from a query
result:

 def load_contacts(self):
 contacts = []
 sql = """SELECT rowid, last_name, first_name, email, phone
 FROM contacts"""
 for row in self.conn.execute(sql):
 contact = Contact(*row[1:])
 contact.rowid = row[0]
 contacts.append(contact)
 return contacts

 def show_contact(self, index):
 self.selection = index
 contact = self.contacts[index]
 self.form.load_details(contact)

To add a contact to the list, we will instantiate a NewContact dialog and call its show
method to get the details of the new contact. If these values are valid, we will store them in
a tuple in the same order as they are specified in our INSERT statement:

 def to_values(self, c):
 return (c.last_name, c.first_name, c.email, c.phone)

 def add_contact(self):
 new_contact = NewContact(self)
 contact = new_contact.show()
 if not contact:
 return
 values = self.to_values(contact)
 with self.conn:
 cursor = self.conn.cursor()
 cursor.execute("INSERT INTO contacts VALUES (?,?,?,?)",
 values)
 contact.rowid = cursor.lastrowid
 self.contacts.append(contact)
 self.list.insert(contact)

Once a contact is selected, we can update its details by retrieving the current form values. If
they are valid, we execute an UPDATE statement to set the columns of the record with the
specified rowid.

Object-Oriented Programming and MVC Chapter 5

[119]

Since the fields of this statement are in the same order as the INSERT statement, we reuse
the to_values method to create a tuple from the contact instance—the only difference is
that we have to append the substitution parameter for rowid:

 def update_contact(self):
 if self.selection is None:
 return
 rowid = self.contacts[self.selection].rowid
 contact = self.form.get_details()
 if contact:
 values = self.to_values(contact)
 with self.conn:
 sql = """UPDATE contacts SET
 last_name = ?,
 first_name = ?,
 email = ?,
 phone = ?
 WHERE rowid = ?"""
 self.conn.execute(sql, values + (rowid,))
 contact.rowid = rowid
 self.contacts[self.selection] = contact
 self.list.update(contact, self.selection)

To delete the selected contact, we get its rowid to replace it in our DELETE statement. Once
the transaction is committed, the contact is removed from the GUI by clearing the form and
deleting it from the list. The selection attribute is also set to None to avoid performing
operations over an invalid selection:

 def delete_contact(self):
 if self.selection is None:
 return
 rowid = self.contacts[self.selection].rowid
 with self.conn:
 self.conn.execute("DELETE FROM contacts WHERE rowid = ?",
 (rowid,))
 self.form.clear()
 self.list.delete(self.selection)
 self.selection = None

Finally, we will wrap the code to initialize our application in a main function:

def main():
 with sqlite3.connect("contacts.db") as conn:
 app = App(conn)
 app.mainloop()

if __name__ == "__main__":

Object-Oriented Programming and MVC Chapter 5

[120]

 main()

With all these changes, our complete application will look as follows:

How it works...
This type of application is referred to using the CRUD acronym, which stands for Create,
Read, Update, and Delete, and is easily mapped into the SQL statements INSERT, SELECT,
UPDATE, and DELETE. We will now take a look at how to implement each operation using
the sqlite3.Connection class.

INSERT statements add new records to a table, specifying the column names with the
corresponding values. If you omit the column names, the column order will be used.

When you create a table in SQLite, it adds, by default, a column called rowid and
automatically assigns a unique value to identify each row. Since we usually need it for
subsequent operations, we retrieve it with the lastrowid attribute available in the Cursor
class:

sql = "INSERT INTO my_table (col1, col2, col3) VALUES (?, ?, ?)"
with connection:
 cursor = connection.cursor()

Object-Oriented Programming and MVC Chapter 5

[121]

 cursor.execute(sql, (value1, value2, value3))
 rowid = cursor.lastrowid

SELECT statements retrieve the values of one or more columns from the records of a
table. Optionally, we can add a WHERE clause to filter the records to be retrieved. This is
useful to efficiently implement searches and pagination, but we will omit this functionality
in our sample application:

sql = "SELECT rowid, col1, col2, col3 FROM my_table"
for row in connection.execute(sql):
 # do something with row

UPDATE statements modify the value of one or more columns from the records in a table.
Typically, we add a WHERE clause to update only the rows that match the given
criteria—here, we could use rowid if we want to update a specific record:

sql = "UPDATE my_table SET col1 = ?, col2 = ?, col3 = ?
WHERE rowid = ?"
with connection:
 connection.execute(sql, (value1, value2, value3, rowid))

Finally, DELETE statements remove one or more records from a table. It is even more
important to add the WHERE clause in these statements, because if we omit it, the statement
will delete all the rows in the table:

sql = "DELETE FROM my_table WHERE rowid = ?"
with connection:
 connection.execute(sql, (rowid,))

See also
The Composing widgets to display information recipe

Refactoring using the MVC pattern
Now that we have developed the complete functionality of our application, we can spot
some problems in our current design. For instance, the App class has several responsibilities,
from instantiating Tkinter widgets to executing SQL statements.

Object-Oriented Programming and MVC Chapter 5

[122]

Although it seems easy and straightforward to write methods that perform an operation
from end to end, this approach leads to code bases that are harder to maintain. We can
detect this flaw by anticipating possible architectural changes, such as replacing our
relational database with a REST backend accessed via HTTP.

Getting ready
Let's start by defining the MVC pattern and how it maps to the different parts of the
application we built in our previous recipe.

This pattern divides our application into three components that encapsulate a single
responsibility, forming the MVC triad:

The model represents the domain data and contains the business rules to interact
with it. In our example, it is the Contact class and the SQLite-specific code.
The view is a graphical representation of the model data. In our case, it is made
by the Tkinter widgets that compose the GUI.
The controller connects the view and the model by receiving user input and
updating the model data. This corresponds to our callbacks and event handlers
and the attributes needed.

We will refactor our application to achieve this separation of concerns. You will note that
the interactions between components require additional code, but they also help us to
define their boundaries.

How to do it...
Firstly, we extract all the pieces of code that interact with the database into a separate class.
This will allow us to hide the implementations details of our persistence layer, only
exposing the four necessary methods, get_contacts, add_contact, update_contact,
and delete_contact:

class ContactsRepository(object):
 def __init__(self, conn):
 self.conn = conn

 def to_values(self, c):
 return c.last_name, c.first_name, c.email, c.phone

 def get_contacts(self):
 sql = """SELECT rowid, last_name, first_name, email, phone

Object-Oriented Programming and MVC Chapter 5

[123]

 FROM contacts"""
 for row in self.conn.execute(sql):
 contact = Contact(*row[1:])
 contact.rowid = row[0]
 yield contact

 def add_contact(self, contact):
 sql = "INSERT INTO contacts VALUES (?, ?, ?, ?)"
 with self.conn:
 cursor = self.conn.cursor()
 cursor.execute(sql, self.to_values(contact))
 contact.rowid = cursor.lastrowid
 return contact

 def update_contact(self, contact):
 rowid = contact.rowid
 sql = """UPDATE contacts
 SET last_name = ?, first_name = ?, email = ?,
 phone = ?
 WHERE rowid = ?"""
 with self.conn:
 self.conn.execute(sql, self.to_values(contact) + (rowid,))
 return contact

 def delete_contact(self, contact):
 sql = "DELETE FROM contacts WHERE rowid = ?"
 with self.conn:
 self.conn.execute(sql, (contact.rowid,))

This, alongside the Contact class, will compose our model.

Now, our view will simply contain the sufficient code to display the GUI and the methods
to let the controller update it. We will also rename the class to ContactsView to better
express its purpose:

class ContactsView(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("SQLite Contacts list")
 self.list = ContactList(self, height=15)
 self.form = UpdateContactForm(self)
 self.btn_new = tk.Button(self, text="Add new contact")

 self.list.pack(side=tk.LEFT, padx=10, pady=10)
 self.form.pack(padx=10, pady=10)
 self.btn_new.pack(side=tk.BOTTOM, pady=5)

Object-Oriented Programming and MVC Chapter 5

[124]

 def set_ctrl(self, ctrl):
 self.btn_new.config(command=ctrl.create_contact)
 self.list.bind_doble_click(ctrl.select_contact)
 self.form.bind_save(ctrl.update_contact)
 self.form.bind_delete(ctrl.delete_contact)

 def add_contact(self, contact):
 self.list.insert(contact)

 def update_contact(self, contact, index):
 self.list.update(contact, index)

 def remove_contact(self, index):
 self.form.clear()
 self.list.delete(index)

 def get_details(self):
 return self.form.get_details()

 def load_details(self, contact):
 self.form.load_details(contact)

Note that user input is handled by the controller, so we added a set_ctrl method to
connect it to the Tkinter callbacks.

Our ContactsController class will now contain all code missing from our initial App
class, that is, the interactions between interface and persistence with the selection and
contacts attributes:

class ContactsController(object):
 def __init__(self, repo, view):
 self.repo = repo
 self.view = view
 self.selection = None
 self.contacts = list(repo.get_contacts())

 def create_contact(self):
 new_contact = NewContact(self.view).show()
 if new_contact:
 contact = self.repo.add_contact(new_contact)
 self.contacts.append(contact)
 self.view.add_contact(contact)

 def select_contact(self, index):
 self.selection = index
 contact = self.contacts[index]
 self.view.load_details(contact)

Object-Oriented Programming and MVC Chapter 5

[125]

 def update_contact(self):
 if not self.selection:
 return
 rowid = self.contacts[self.selection].rowid
 update_contact = self.view.get_details()
 update_contact.rowid = rowid

 contact = self.repo.update_contact(update_contact)
 self.contacts[self.selection] = contact
 self.view.update_contact(contact, self.selection)

 def delete_contact(self):
 if not self.selection:
 return
 contact = self.contacts[self.selection]
 self.repo.delete_contact(contact)
 self.view.remove_contact(self.selection)

 def start(self):
 for c in self.contacts:
 self.view.add_contact(c)
 self.view.mainloop()

We will create a __main__.py script that will allow us not only to Bootstrap our
application, but also to be able to launch it from a zipped file or with the name of the
containing directory:

Suppose that __main__.py is in the directory chapter5_05
$ python chapter5_05
Or if we compress the directory contents
$ python chapter5_05.zip

Object-Oriented Programming and MVC Chapter 5

[126]

How it works...
The original MVC implementation was introduced in the Smalltalk programming language,
and it is represented by the following diagram:

In the preceding diagram, we can see that the view passes user events to the controller,
which in turn updates the model. To propagate these changes to the view, the model
implements the observer pattern. This means that views subscribed to the model get
notified when an update occurs, so they can query the model state and change the
displayed data.

There is a variation of this design where there is no communication between the view and
the model. Instead, changes to the view are made by the controller after it updates the
model:

Object-Oriented Programming and MVC Chapter 5

[127]

This approach is known as passive model, and it is the most common approach for modern
MVC implementations—especially for web frameworks. We used this variation in our
example because it simplifies our ContactsRepository and does not require major
modifications to our ContactsController class.

There's more...
You might have noted that update and delete operations work thanks to the rowid field, for
instance, in the update_contact method from the ContactsController class:

 def update_contact(self):
 if not self.selection:
 return
 rowid = self.contacts[self.selection].rowid
 update_contact = self.view.get_details()
 update_contact.rowid = rowid

Since this is an implementation detail for our SQLite database, this should be hidden from
the rest of our components.

A solution would be to add another field to the Contact class with a name such as id or
contact_id—note that id is also a Python built-in function and some editors might
incorrectly highlight it.

Then, we can assume this field is part of our domain data as a unique identifier and leave
the implementation details of how it is generated to the model.

6
Asynchronous Programming

In this chapter, we will cover the following recipes:

Scheduling actions
Running methods on threads
Performing HTTP requests
Connecting threads with a progress bar
Canceling scheduled actions
Handling idle tasks
Spawning separate processes

Introduction
Like any other programming language, Python lets you divide a process execution into
multiple units that can be performed independently in time, called threads. When you
launch a Python program, it starts its execution in the main thread.

Tkinter's main loop must start from the main thread, which is responsible for handling all
the events and updates to the GUI. By default, our application code, such as callbacks and
event handlers, will also be executed in this thread.

However, if we launch a long running action in this thread, the main thread execution will
block until this operation is completed, and therefore the GUI will freeze and not respond to
user events.

In this chapter, we will cover several recipes to achieve responsiveness in our applications
while separate actions occur in the background, and also take a look at how to interact with
them.

Asynchronous Programming Chapter 6

[129]

Scheduling actions
A basic technique to prevent blocking the main thread in Tkinter is scheduling an action
that will be invoked after a timeout has elapsed.

In this recipe, we will take a look at how to implement this with Tkinter using the after()
method, which can be called from all Tkinter widget classes.

Getting ready
The following code shows a straightforward example of how a callback can block the main
loop.

This application consists of a single button that gets disabled when it is clicked, waits 5
seconds, and is enabled again. A trivial implementation would be the following one:

import time
import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.button = tk.Button(self, command=self.start_action,
 text="Wait 5 seconds")
 self.button.pack(padx=20, pady=20)

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 time.sleep(5)
 self.button.config(state=tk.NORMAL)

if __name__ == "__main__":
 app = App()
 app.mainloop()

If you run the preceding program, you will note that the Wait 5 seconds button is not
disabled at all, but clicking on it freezes the GUI for 5 seconds. We can directly note that in
the button styling, which looks active instead of disabled; also, the title bar will not respond
to mouse clicks until the 5 seconds have elapsed:

Asynchronous Programming Chapter 6

[130]

If we had included additional widgets, such as entries and scroll bars, this would also have
affected them.

We will now take a look at how to achieve the desired functionality by scheduling the
action instead of suspending the thread execution.

How to do it...
The after() method allows you to register a callback that is invoked after a delay
expressed in milliseconds within Tkinter's main loop. You can think of these registered
alarms as events that should be handled as soon as the system is idle.

Therefore, we will replace the call to time.sleep(5) with self.after(5000,
callback). We use the self instance because the after() method is also available in the
root Tk instance, and there will not be any difference in calling it from a child widget:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.button = tk.Button(self, command=self.start_action,
 text="Wait 5 seconds")
 self.button.pack(padx=50, pady=20)

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 self.after(5000, lambda: self.button.config(state=tk.NORMAL))

if __name__ == "__main__":
 app = App()
 app.mainloop()

Asynchronous Programming Chapter 6

[131]

With the preceding approach, the application is responsive before the scheduled action is
called. The appearance of the button will change to disabled, and we could also interact
with the title bar as usual:

How it works...
From the example mentioned in the preceding section, you might suppose the after()
method executes the callback exactly after the given duration of milliseconds is passed as a
delay.

However, what it does is request Tkinter to register an alarm that only guarantees that it
will not be executed earlier than the specified time; so, if the main thread is busy, there is no
upper limit to how long it will actually take.

We should also keep in mind that the method execution continues immediately after
scheduling the action. The following example illustrates this behavior:

print("First")
self.after(1000, lambda: print("Third"))
print("Second")

The preceding snippet will print "First", then "Second", and finally "Third" after 1
second each. During this time, the main thread will keep the GUI responsive, and users can
interact with the application as usual.

Usually, we would want to prevent the running of the same background action more than
once, so it's a good idea to disable the widget that triggered the execution.

Do not forget that any scheduled function will be executed on the main thread, so just
using after() is not enough to prevent freezing the GUI; it is also important to avoid
executing long running methods as callbacks.

In the next recipe, we will take a look at how we can leverage the execution of these
blocking actions in separate threads.

Asynchronous Programming Chapter 6

[132]

There's more...
The after() method returns an identifier of the scheduled alarm, which can be passed to
the after_cancel() method to cancel the execution of the callback.

We will see in another recipe how to implement the functionality of stopping a scheduled
callback using this method.

See also
The canceling scheduled actions recipe

Running methods on threads
Since the main thread should be responsible only for updating the GUI and handling
events, the rest of the background actions must be executed in separate threads.

Python's Standard Library includes the threading module to create and control multiple
threads using a high-level interface that will allow us to work with simple classes and
methods.

It is worth mentioning that CPython—the reference Python implementation—is inherently
limited by the GIL (Global Interpreter Lock), a mechanism that prevents multiple threads
from executing Python byte codes once and therefore, they cannot run in separate cores to
take full advantage of multiprocessor systems. This should be kept in mind if trying to use
the threading module to improve the performance of your application.

How to do it...
The following example combines the suspension of a thread with time.sleep() with an
action scheduled via after():

import time
import threading
import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()

Asynchronous Programming Chapter 6

[133]

 self.button = tk.Button(self, command=self.start_action,
 text="Wait 5 seconds")
 self.button.pack(padx=50, pady=20)

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 thread = threading.Thread(target=self.run_action)
 print(threading.main_thread().name)
 print(thread.name)
 thread.start()
 self.check_thread(thread)

 def check_thread(self, thread):
 if thread.is_alive():
 self.after(100, lambda: self.check_thread(thread))
 else:
 self.button.config(state=tk.NORMAL)

 def run_action(self):
 print("Starting long running action...")
 time.sleep(5)
 print("Long running action finished!")

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
To create a new Thread object, we can use the constructor with the target keyword
argument, which will be invoked on a separate thread when we call its start() method.

In the preceding section, we used a reference to the run_action method on the current
application instance:

 thread = threading.Thread(target=self.run_action)
 thread.start()

Then, we periodically polled the thread status using after(), which schedules the same
method again until the thread is finished:

 def check_thread(self, thread):
 if thread.is_alive():
 self.after(100, lambda: self.check_thread(thread))
 else:

Asynchronous Programming Chapter 6

[134]

 self.button.config(state=tk.NORMAL)

In the preceding code snippet, we set a delay of 100 milliseconds, because there is no need
to keep polling more frequently than that. Of course, this number may vary depending on
the nature of the threaded action.

This timeline can be represented by the following sequence diagram:

The rectangle on Thread-1 represents the time it is busy executing time.sleep(5).
Meanwhile, MainThread only checks the status periodically, and there is no operation long
enough to causes it to freeze the GUI.

Asynchronous Programming Chapter 6

[135]

There's more...
In this recipe, we had a brief introduction to the Thread class, but it is also important to
point out some details about instantiating and using threads in your Python programs.

Thread methods - start, run, and join
In our example, we called start() because we wanted to execute the method in a separate
thread and continue the execution of the current thread.

On the other hand, if we had invoked the join() method, the main thread would have
been blocked until the new thread is terminated. Therefore, it would have caused the same
"freezing" behavior that we wanted to avoid, even if we are using multiple threads.

Finally, the run() method is where the thread actually executes its callable target operation.
We will override it when we extend the Thread class, as in the next recipe.

As a rule of thumb, always remember to call start() from the main thread to avoid
blocking it.

Parameterizing the target method
When using the constructor of the Thread class, it's possible to specify the arguments of the
target method via the args parameter:

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 thread = threading.Thread(target=self.run_action, args=(5,))
 thread.start()
 self.check_thread(thread)

 def run_action(self, timeout):
 # ...

Note that the self parameter is passed automatically since we are using the current
instance to reference the target method. This might be handy in scenarios where the new
thread needs to access information from the caller instance.

Asynchronous Programming Chapter 6

[136]

Performing HTTP requests
Communicating your application with a remote server via HTTP is a common use case of
asynchronous programming. The client performs a request, which is transferred across the
network using the TCP/IP protocol; then, the server processes the information and sends the
response back to the client.

The time to perform this operation might vary from a few milliseconds to several seconds,
but in most cases it is safe to assume that this latency may be noticed by your users.

Getting ready
There are plenty of third-party web services on the internet that can be freely accessed for
prototyping purposes. However, we do not want to rely on an external service because its
API may change or it might even go offline.

For this recipe, we will implement our custom HTTP server, which generates a random
JSON response that will be printed on our separate GUI application:

import time
import json
import random
from http.server import HTTPServer, BaseHTTPRequestHandler

class RandomRequestHandler(BaseHTTPRequestHandler):
 def do_GET(self):
 # Simulate latency
 time.sleep(3)

 # Write response headers
 self.send_response(200)
 self.send_header('Content-type', 'application/json')
 self.end_headers()

 # Write response body
 body = json.dumps({'random': random.random()})
 self.wfile.write(bytes(body, "utf8"))

def main():
 """Starts the HTTP server on port 8080"""
 server_address = ('', 8080)
 httpd = HTTPServer(server_address, RandomRequestHandler)
 httpd.serve_forever()

Asynchronous Programming Chapter 6

[137]

if __name__ == "__main__":
 main()

To start this server, run the server.py script and leave the process running to accept
incoming HTTP requests on local port 8080.

How to do it...
Our client application consists of a simple label to display information to users and a button
to perform a new HTTP request to our local server:

import json
import threading
import urllib.request
import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("HTTP request example")
 self.label = tk.Label(self,
 text="Click 'Start' to get a random
 value")
 self.button = tk.Button(self, text="Start",
 command=self.start_action)
 self.label.pack(padx=60, pady=10)
 self.button.pack(pady=10)

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 thread = AsyncAction()
 thread.start()
 self.check_thread(thread)

 def check_thread(self, thread):
 if thread.is_alive():
 self.after(100, lambda: self.check_thread(thread))
 else:
 text = "Random value: {}".format(thread.result)
 self.label.config(text=text)
 self.button.config(state=tk.NORMAL)

class AsyncAction(threading.Thread):
 def run(self):
 self.result = None
 url = "http://localhost:8080"

Asynchronous Programming Chapter 6

[138]

 with urllib.request.urlopen(url) as f:
 obj = json.loads(f.read().decode("utf-8"))
 self.result = obj["random"]

if __name__ == "__main__":
 app = App()
 app.mainloop()

When the request is completed, the label shows the random value generated in the server,
as follows:

As usual, the button gets disabled while the asynchronous action is running to avoid
performing a new request before the preceding one has been processed.

How it works...
In this recipe, we extended the Thread class to implement the logic that must run in a
separate thread using a more object-oriented approach. This is done by overriding its run()
method, which will be responsible for performing the HTTP request to the local server:

class AsyncAction(threading.Thread):
 def run(self):
 # ...

There are lots of HTTP client libraries, but here we will simply use the urllib.request
module from the standard library. This module contains the urlopen() function, which
can take a URL string and return an HTTP response that can work as a context
manager—that is, it can be safely read and closed using the with statement.

The server returns a JSON document like the following one (you can check it by opening
the http://localhost:8080 URL in your browser):

{"random": 0.0915826359180778}

Asynchronous Programming Chapter 6

[139]

To decode the string to a object, we pass the response contents to the loads() function
from the json module. Thanks to this, we can access the random value like using a
dictionary, and store it in the result attribute, which is initialized to None to prevent the
main thread from reading a field that is not set in case an error occurs:

def run(self):
 self.result = None
 url = "http://localhost:8080"
 with urllib.request.urlopen(url) as f:
 obj = json.loads(f.read().decode("utf-8"))
 self.result = obj["random"]

Then, the GUI periodically polls the thread status, as we saw in the preceding recipe:

 def check_thread(self, thread):
 if thread.is_alive():
 self.after(100, lambda: self.check_thread(thread))
 else:
 text = "Random value: {}".format(thread.result)
 self.label.config(text=text)
 self.button.config(state=tk.NORMAL)

Here, the main difference is that once the thread is not alive, we can retrieve the value of
the result attribute because it has been set before finishing its execution.

See also
The Running methods on threads recipe

Connecting threads with a progress bar
Progress bars are useful indicators of the status of a background task, showing an
incrementally filled portion of the bar relative to the progress. They are frequently used in
long-running operations, so it is common to connect them with the threads that execute
these tasks to provide visual feedback to end users.

Asynchronous Programming Chapter 6

[140]

Getting ready
Our sample application will consist of a horizontal progress bar that will increment a fixed
amount of progress once the user clicks on the Start button:

How to do it...
To simulate the execution of a background task, the increment of the progress bar will be
generated from a different thread that will suspend its execution for 1 second between each
step.

The communication will be made using a synchronized queue that allow us to exchange
information in a thread-safe manner:

import time
import queue
import threading
import tkinter as tk
import tkinter.ttk as ttk
import tkinter.messagebox as mb

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Progressbar example")
 self.queue = queue.Queue()
 self.progressbar = ttk.Progressbar(self, length=300,
 orient=tk.HORIZONTAL)
 self.button = tk.Button(self, text="Start",
 command=self.start_action)

 self.progressbar.pack(padx=10, pady=10)
 self.button.pack(padx=10, pady=10)

 def start_action(self):

Asynchronous Programming Chapter 6

[141]

 self.button.config(state=tk.DISABLED)
 thread = AsyncAction(self.queue, 20)
 thread.start()
 self.poll_thread(thread)

 def poll_thread(self, thread):
 self.check_queue()
 if thread.is_alive():
 self.after(100, lambda: self.poll_thread(thread))
 else:
 self.button.config(state=tk.NORMAL)
 mb.showinfo("Done!", "Async action completed")

 def check_queue(self):
 while self.queue.qsize():
 try:
 step = self.queue.get(0)
 self.progressbar.step(step * 100)
 except queue.Empty:
 pass

class AsyncAction(threading.Thread):
 def __init__(self, queue, steps):
 super().__init__()
 self.queue = queue
 self.steps = steps

 def run(self):
 for _ in range(self.steps):
 time.sleep(1)
 self.queue.put(1 / self.steps)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
Progressbar is a themed widget included in the tkinter.ttk module. We will dive into
this module in Chapter 8, Themed Widgets, to explore the new widgets that it defines, but so
far we only need to use Progressbar as a regular widget.

Asynchronous Programming Chapter 6

[142]

We also need to import the queue module, which defines synchronized collections such as
Queue. Synchronicity is an important topic in multithreaded environments, because an
unexpected result might occur if shared resources are accessed at exactly the same
time—we define this unlikely but possible scenarios as a race condition.

With these additions, our App class contains these new statements:

...
import queue
import tkinter.ttk as ttk

class App(tk.Tk):
 def __init__(self):
 # ...
 self.queue = queue.Queue()
 self.progressbar = ttk.Progressbar(self, length=300,
 orient=tk.HORIZONTAL)

Like previous examples, the start_action() method starts a thread, passing the queue
and the number of steps that will simulate the long running task:

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 thread = AsyncAction(self.queue, 20)
 thread.start()
 self.poll_thread(thread)

Our AsyncAction subclass defines a custom constructor to receive these parameters, which
will later be used in the run() method:

class AsyncAction(threading.Thread):
 def __init__(self, queue, steps):
 super().__init__()
 self.queue = queue
 self.steps = steps

 def run(self):
 for _ in range(self.steps):
 time.sleep(1)
 self.queue.put(1 / self.steps)

The loop suspends the execution of the thread for 1 second and adds the increment to the
queue as many times as indicated in the steps attribute.

Asynchronous Programming Chapter 6

[143]

The item added to the queue is retrieved from the application instance by reading the queue
from check_queue():

 def check_queue(self):
 while self.queue.qsize():
 try:
 step = self.queue.get(0)
 self.progressbar.step(step * 100)
 except queue.Empty:
 pass

The following method is periodically called from poll_thread(), which polls the thread
status and schedules itself again with after() until the thread completes its execution:

 def poll_thread(self, thread):
 self.check_queue()
 if thread.is_alive():
 self.after(100, lambda: self.poll_thread(thread))
 else:
 self.button.config(state=tk.NORMAL)
 mb.showinfo("Done!", "Async action completed")

See also
The Running methods on threads recipe

Canceling scheduled actions
Tkinter's scheduling mechanism not only provides methods to delay callback executions,
but also to cancel them if they have not been executed yet. Consider an operation that may
take too much time to complete, so we want to let users to stop it by pressing a button or
closing the application.

Getting ready
We will take the example from the first recipe and add a Stop button to allow us to cancel
the scheduled action.

Asynchronous Programming Chapter 6

[144]

This button will be enabled only while the action is scheduled, which means that once you
click on the left button, the user can wait for 5 seconds, or click on the Stop button to
immediately enable it again:

How to do it...
The after_cancel() method cancels the execution of a scheduled action by taking the
identifier previously returned by calling after(). In this example, this value is stored in
the scheduled_id attribute:

import time
import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.button = tk.Button(self, command=self.start_action,
 text="Wait 5 seconds")
 self.cancel = tk.Button(self, command=self.cancel_action,
 text="Stop", state=tk.DISABLED)
 self.button.pack(padx=30, pady=20, side=tk.LEFT)
 self.cancel.pack(padx=30, pady=20, side=tk.LEFT)

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 self.cancel.config(state=tk.NORMAL)
 self.scheduled_id = self.after(5000, self.init_buttons)

 def init_buttons(self):
 self.button.config(state=tk.NORMAL)
 self.cancel.config(state=tk.DISABLED)

 def cancel_action(self):
 print("Canceling scheduled", self.scheduled_id)
 self.after_cancel(self.scheduled_id)
 self.init_buttons()

Asynchronous Programming Chapter 6

[145]

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
To unschedule a callback, we will first need the alarm identifier returned by after(). We
will store this identifier in the scheduled_id attribute, since we will need it in a separate
method:

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 self.cancel.config(state=tk.NORMAL)
 self.scheduled_id = self.after(5000, self.init_buttons)

Then, this field is passed to after_cancel() in the callback of the Stop button:

 def cancel_action(self):
 print("Canceling scheduled", self.scheduled_id)
 self.after_cancel(self.scheduled_id)
 self.init_buttons()

In our case, it is important to disable the Start button once it is clicked, because if
start_action() is called twice, scheduled_id would be overridden, and the Stop
button could only cancel the last scheduled action.

As a side note, after_cancel() has no effect if we call it with an alarm identifier that has
already been executed.

There's more...
In this section, we covered how to cancel a scheduled alarm, but if this callback was polling
the status of a background thread, you might wonder how to stop the thread as well.

Unfortunately, there is no official API to gracefully stop a Thread instance. If you have
defined a custom subclass, you might need to include a flag that is periodically checked
inside its run() method:

class MyAsyncAction(threading.Thread):
 def __init__(self):
 super().__init__()
 self.do_stop = False

Asynchronous Programming Chapter 6

[146]

 def run(self):
 # Start execution...
 if not self.do_stop:
 # Continue execution...

Then, this flag can be externally modified by setting thread.do_stop = True when
invoking after_cancel() also to stop the thread.

Obviously, this approach will heavily depend on the operations performed inside the
run() method—for instance, this mechanism is easier to implement if it consists of a loop,
because you can perform this check between each iteration.

Starting from Python 3.4, you can use the asyncio module, which includes classes and
functions to manage asynchronous operations, including cancellations. Even though this
module is outside the scope of this book, we recommend you explore it if you face more
complex scenarios.

Handling idle tasks
There are certain situations where an operation causes a small pause in the execution of the
program. It might not even take a second to complete, but it is still noticeable to your users
because it introduces a momentary pause in the GUI.

In this recipe, we will discuss how to deal with these scenarios without needing to process
the whole task in a separate thread.

Getting ready
We will take the example from the Scheduling actions recipe, but with a timeout of 1 second
instead of 5.

How to do it...
When we change the state of the button to DISABLED, the callback continues its execution,
so the state of the button is not actually changed until the system is idle, which means it has
to wait for time.sleep() to complete.

Asynchronous Programming Chapter 6

[147]

However, we can force Tkinter to update all the pending GUI updates to execute at a
specific moment, as shown in the following script:

import time
import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.button = tk.Button(self, command=self.start_action,
 text="Wait 1 second")
 self.button.pack(padx=30, pady=20)

 def start_action(self):
 self.button.config(state=tk.DISABLED)
 self.update_idletasks()
 time.sleep(1)
 self.button.config(state=tk.NORMAL)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
The key to the snippet mentioned in the preceding section is the call to
self.update_idletasks(). Thanks to this, the change to the button state is processed by
Tkinter before calling time.sleep(). So, during the second that the callback is suspended,
the button has the desired appearance, instead of ACTIVE, which is the state that Tkinter
sets for the button before invoking the callback.

We used time.sleep() to illustrate a situation where a statement takes long enough to
execute but is short enough to consider moving it to a new thread—in real-world scenarios,
it would be a more complex computing operation.

Spawning separate processes
Under some circumstances, it is not possible to implement the desired functionality for your
application just by using threads. For instance, you might want to call a separate program
that could be written in a different language.

Asynchronous Programming Chapter 6

[148]

In this case, we also need to use the subprocess module to invoke the target program from
our Python process.

Getting ready
The following example performs a ping to an indicated DNS or IP address:

How to do it...
As usual, we define a custom AsyncAction method, but, in this case, we call
subprocess.run() with the value set in the Entry widget.

This function starts a separate subprocess that, unlike threads, uses a separate memory
space. This means that in order to get the result of the ping command, we must pipe the
result printed to the standard output and read it in our Python program:

import threading
import subprocess
import tkinter as tk

class App(tk.Tk):
 def __init__(self):

Asynchronous Programming Chapter 6

[149]

 super().__init__()
 self.entry = tk.Entry(self)
 self.button = tk.Button(self, text="Ping!",
 command=self.do_ping)
 self.output = tk.Text(self, width=80, height=15)
 self.entry.grid(row=0, column=0, padx=5, pady=5)
 self.button.grid(row=0, column=1, padx=5, pady=5)
 self.output.grid(row=1, column=0, columnspan=2,
 padx=5, pady=5)

 def do_ping(self):
 self.button.config(state=tk.DISABLED)
 thread = AsyncAction(self.entry.get())
 thread.start()
 self.poll_thread(thread)

 def poll_thread(self, thread):
 if thread.is_alive():
 self.after(100, lambda: self.poll_thread(thread))
 else:
 self.button.config(state=tk.NORMAL)
 self.output.delete(1.0, tk.END)
 self.output.insert(tk.END, thread.result)

class AsyncAction(threading.Thread):
 def __init__(self, ip):
 super().__init__()
 self.ip = ip

 def run(self):
 self.result = subprocess.run(["ping", self.ip], shell=True,
 stdout=subprocess.PIPE).stdout

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
The run() function executes the subprocess specified in the array of arguments. By default,
the result contains only the return code of the process, so we also pass the stdout option
with the PIPE constant to indicate that the standard output stream should be piped.

Asynchronous Programming Chapter 6

[150]

We call this function with the keyword argument—shell—set to True to avoid opening a
new console for the ping subprocess:

 def run(self):
 self.result = subprocess.run(["ping", self.ip], shell=True,
 stdout=subprocess.PIPE).stdout

Finally, when the main thread verifies that this operation has finished, it prints the output
to the Text widget:

 def poll_thread(self, thread):
 if thread.is_alive():
 self.after(100, lambda: self.poll_thread(thread))
 else:
 self.button.config(state=tk.NORMAL)
 self.output.delete(1.0, tk.END)
 self.output.insert(tk.END, thread.result)

7
Canvas and Graphics

In this chapter, we will cover the following recipes:

Understanding the coordinate system
Drawing lines and arrows
Writing text on a canvas
Adding shapes to the canvas
Finding items by their position
Moving canvas items
Detecting collisions between items
Deleting items from a canvas
Binding events to canvas items
Rendering a canvas into a PostScript file

Introduction
In the first chapter, we covered several recipes for the standard Tkinter widget. However,
we skipped the Canvas widget because it offers plenty of graphical capabilities, and it
deserves a dedicated chapter by itself to dive into its common use cases.

A canvas is a rectangular area where you can not only display text and geometric shapes,
such as lines, rectangles, or ovals, but also nest other Tkinter widgets. These objects are
called canvas items, and each one has a unique identifier that allows us to manipulate them
before they are initially displayed on the canvas.

We will cover the methods of the Canvas class with interactive samples, which will help us
to identify frequent patterns that could be translated to the applications we want to build.

Canvas and Graphics Chapter 7

[152]

Understanding the coordinate system
To draw graphic items on a canvas, we will need to specify their position using a
coordinate system. Since a canvas is a two-dimensional space, points will be notated by
their coordinates on the horizontal and vertical axes—commonly labeled x and
y respectively.

With a simple application, we can easily illustrate how to locate these points in relation to
the origin of the coordinate system, placed in the upper-left corner of the canvas area.

How to do it...
The following program contains an empty canvas and a label that shows the location of the
cursor on the canvas; you can move the cursor to see what position it is placed in, giving
clear feedback on how the x and y coordinates increment or decrement, depending on the
direction you move the mouse pointer:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Basic canvas")

 self.canvas = tk.Canvas(self, bg="white")
 self.label = tk.Label(self)
 self.canvas.bind("<Motion>", self.mouse_motion)

 self.canvas.pack()
 self.label.pack()

 def mouse_motion(self, event):
 x, y = event.x, event.y
 text = "Mouse position: ({}, {})".format(x, y)
 self.label.config(text=text)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Canvas and Graphics Chapter 7

[153]

How it works...
The Canvas instance is created like any other Tkinter widget, that is, by first passing the
parent container and the additional configuration options as keyword arguments:

 def __init__(self):
 # ...
 self.canvas = tk.Canvas(self, bg="white")
 self.label = tk.Label(self)
 self.canvas.bind("<Motion>", self.mouse_motion)

The next screenshot shows a point composed of the perpendicular projections of each axis:

The x coordinate corresponds to the distance on the horizontal axis and
increments its value when you move the cursor from left to right
The y coordinate is the distance on the vertical axis and increments its value
when you move the cursor from up to down

Canvas and Graphics Chapter 7

[154]

As you might have noticed in the preceding screenshot, these coordinates directly map to
the x and y attributes of the event instance passed to the handler:

 def mouse_motion(self, event):
 x, y = event.x, event.y
 text = "Mouse position: ({}, {})".format(x, y)
 self.label.config(text=text)

This happens because these attributes are calculated in respect to the widget that the event
is bound to, in this case, the <Motion> sequence.

There's more...
The canvas surface can also display items with negative values in their coordinates.
Depending on the item size, they can be partially shown on the top or left borders of the
canvas.

In a similar way, if an item is placed at a point where any of its coordinates is greater than
the canvas size, it may partially fall outside the bottom or right borders.

Drawing lines and arrows
One of the most basic actions you can perform with a canvas is drawing segments from one
point to another. Although it is possible to directly draw polygons using other methods, the
create_line method of the Canvas class has enough options to understand the basics of
displaying items.

Getting ready
In this recipe, we will build an application that allows us to draw lines by clicking on the
canvas. Each line will be displayed by clicking first on the point that will determine the line
start, and a second time to set the line end.

Canvas and Graphics Chapter 7

[155]

We will be also able to specify some appearance options, such as color and width:

How to do it...
Our App class will be responsible for creating an empty canvas and handling mouse click
events.

The information on the line options will be retrieved from the LineForm class. The
approach of separating this component into a different class helps us to abstract its
implementation details and focus on how to work with the Canvas widget.

For the sake of brevity, we omit the implementation of the LineForm class in the following
snippet:

import tkinter as tk

class LineForm(tk.LabelFrame):
 # ...

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Basic canvas")

 self.line_start = None
 self.form = LineForm(self)

Canvas and Graphics Chapter 7

[156]

 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.bind("<Button-1>", self.draw)

 self.form.pack(side=tk.LEFT, padx=10, pady=10)
 self.canvas.pack(side=tk.LEFT)

 def draw(self, event):
 x, y = event.x, event.y
 if not self.line_start:
 self.line_start = (x, y)
 else:
 x_origin, y_origin = self.line_start
 self.line_start = None
 line = (x_origin, y_origin, x, y)
 arrow = self.form.get_arrow()
 color = self.form.get_color()
 width = self.form.get_width()
 self.canvas.create_line(*line, arrow=arrow,
 fill=color, width=width)

if __name__ == "__main__":
 app = App()
 app.mainloop()

You can find the complete code sample in the chapter7_02.py file.

How it works...
Since we want to handle the mouse clicks on the canvas, we will bind the draw() method
to this type of event. We will also define the line_start field

 to keep track of the start point of each new line:

 def __init__(self):
 # ...

 self.line_start = None
 self.form = LineForm(self)
 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.bind("<Button-1>", self.draw)

The draw() method contains the main logic of our application. The first click on each new
line serves to determine the origin and does not perform any drawing operation. These
coordinates are retrieved from the event object passed to the handler:

Canvas and Graphics Chapter 7

[157]

 def draw(self, event):
 x, y = event.x, event.y
 if not self.line_start:
 self.line_start = (x, y)
 else:
 # ...

If line_start already has a value, we retrieve the origin point and pass it with the
coordinates of the current event to draw the line:

 def draw(self, event):
 x, y = event.x, event.y
 if not self.line_start:
 # ...
 else:
 x_origin, y_origin = self.line_start
 self.line_start = None
 line = (x_origin, y_origin, x, y)
 self.canvas.create_line(*line)
 text = "Line drawn from ({}, {}) to ({}, {})".format(*line)

The canvas.create_line() method takes four arguments, where the first two are the
horizontal and vertical coordinates of the line start and the last two are the coordinates
corresponding to the line end.

Writing text on a canvas
In case we want to write some text on a canvas, we do not need to use an additional widget,
such as a Label. The Canvas class includes the create_text method to display a string
that can be manipulated the same as any other type of canvas item.

It is also possible to use the same formatting options that we can specify to add style to the
text of regular Tkinter widgets, such as color, font family, and size.

Canvas and Graphics Chapter 7

[158]

Getting ready
In this example, we will connect an Entry widget with the contents of a text canvas item.
While the input will have the standard appearance, the text on the canvas will have a
customized style:

How to do it...
The text item will be initially displayed using the canvas.create_text() method, with
some additional options to use a Consolas font and a blue color.

The dynamic behavior of the text item will be implemented using StringVar. By tracing
this Tkinter variable, we can modify the contents of the item:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Canvas text items")
 self.geometry("300x100")

 self.var = tk.StringVar()
 self.entry = tk.Entry(self, textvariable=self.var)
 self.canvas = tk.Canvas(self, bg="white")

 self.entry.pack(pady=5)
 self.canvas.pack()
 self.update()

 w, h = self.canvas.winfo_width(), self.canvas.winfo_height()
 options = { "font": "courier", "fill": "blue",
 "activefill": "red" }
 self.text_id = self.canvas.create_text((w/2, h/2), **options)

Canvas and Graphics Chapter 7

[159]

 self.var.trace("w", self.write_text)

 def write_text(self, *args):
 self.canvas.itemconfig(self.text_id, text=self.var.get())

if __name__ == "__main__":
 app = App()
 app.mainloop()

You can try out this program by typing some arbitrary text on the entry input and noticing
how it automatically updates the text on the canvas.

How it works...
First, we initialize the Entry instance with its StringVar variable and the Canvas widget:

 self.var = tk.StringVar()
 self.entry = tk.Entry(self, textvariable=self.var)
 self.canvas = tk.Canvas(self, bg="white")

Then, we place the widgets by calling the methods for the Pack geometry manager. Note
the importance of calling update() on the root window, because we want to force Tkinter
to process all the pending changes, in this case rendering the widgets before the __init__
method continues its execution:

 self.entry.pack(pady=5)
 self.canvas.pack()
 self.update()

We did this because the next step will be to calculate the canvas dimensions, and until the
geometry manager has displayed the widget, it will not have the real values of its width
and height.

After this, we can safely retrieve the canvas dimensions. Since we want to align the text item
with the center of the canvas, we divide the values of width and height by half.

These coordinates determine the position of the item, and together with the styling options,
are passed to the create_text() method. The text keyword argument is a common
option used here, but we will omit it because it will be dynamically set when StringVar
changes its value:

 w, h = self.canvas.winfo_width(), self.canvas.winfo_height()
 options = { "font": "courier", "fill": "blue",
 "activefill": "red" }

Canvas and Graphics Chapter 7

[160]

 self.text_id = self.canvas.create_text((w/2, h/2), **options)
 self.var.trace("w", self.write_text)

The identifier returned by create_text() is stored in the text_id field. It will be used on
the write_text() method to reference the item, which is invoked by the tracing
mechanism on write operations of the var instance.

To update the text option inside the write_text() handler, we call the
canvas.itemconfig() method with the item identifier as the first argument, and then the
configuration options.

In our case, we use the text_id field that we stored while initializing our App instance and
the contents of StringVar via its get() method:

 def write_text(self, *args):
 self.canvas.itemconfig(self.text_id, text=self.var.get())

We defined our write_text() method so that it can receive a variable number of
arguments even though we do not need them, because the trace() method of Tkinter
variables passes them to the callback functions.

There's more...
The canvas.create_text() method has many other options to customize the created
canvas items.

Placing the text by its upper-left corner
The anchor option allow us to control where to place the item relative to the position
passed as its first argument to canvas.create_text(). By default, this option value is
tk.CENTER, which means that the text widget is centered on these coordinates.

If you want to place the text on the upper-left corner of the canvas, you can do so by passing
the (0, 0) position and setting the anchor option to tk.NW, aligning the origin to the
north-west of the rectangular area the text is placed within:

 # ...
 options = { "font": "courier", "fill": "blue",
 "activefill": "red", "anchor": tk.NW }
 self.text_id = self.canvas.create_text((0, 0), **options)

Canvas and Graphics Chapter 7

[161]

The preceding code snippet will give us the following result:

Setting line wrapping
By default, the contents of a text item will be displayed in a single line. The width option
allows us to define a maximum line width, which wraps lines longer than that:

 # ...
 options = { "font": "courier", "fill": "blue",
 "activefill": "red", "width": 70 }
 self.text_id = self.canvas.create_text((w/2, h/2), **options)

Now, when we write Hello, world! on the entry, the part of the text that exceeds the line
width will be displayed in a new line:

Adding shapes to the canvas
In this recipe, we will cover three of the standard canvas items: rectangles, ovals, and arcs.
All of them are displayed within a bounding box, so the use of only two points is
necessary to set their position: the upper-left corner of the box and the lower-right corner.

Canvas and Graphics Chapter 7

[162]

Getting ready
The following application allows users to freely draw some items on the canvas by selecting
its type with three buttons—each one to select the corresponding shape.

Item's positions are determined by clicking first on the canvas to set the upper-left corner of
the box the item will be contained in, and then clicking to set the lower-left corner of this
box and draw the item with some predefined options:

How to do it...
Our application stores the currently chosen type of item, which is selected with one of the
three buttons placed on a frame below the canvas.

Clicking with the primary mouse button on the canvas triggers the handler that stores the
position of the first corner of the new item, and once it is clicked again, it reads the value of
the selected shape to conditionally draw the corresponding item:

import tkinter as tk
from functools import partial

Canvas and Graphics Chapter 7

[163]

class App(tk.Tk):
 shapes = ("rectangle", "oval", "arc")
 def __init__(self):
 super().__init__()
 self.title("Drawing standard items")

 self.start = None
 self.shape = None
 self.canvas = tk.Canvas(self, bg="white")
 frame = tk.Frame(self)
 for shape in self.shapes:
 btn = tk.Button(frame, text=shape.capitalize())
 btn.config(command=partial(self.set_selection, btn, shape))
 btn.pack(side=tk.LEFT, expand=True, fill=tk.BOTH)

 self.canvas.bind("<Button-1>", self.draw_item)
 self.canvas.pack()
 frame.pack(fill=tk.BOTH)

 def set_selection(self, widget, shape):
 for w in widget.master.winfo_children():
 w.config(relief=tk.RAISED)
 widget.config(relief=tk.SUNKEN)
 self.shape = shape

 def draw_item(self, event):
 x, y = event.x, event.y
 if not self.start:
 self.start = (x, y)
 else:
 x_origin, y_origin = self.start
 self.start = None
 bbox = (x_origin, y_origin, x, y)
 if self.shape == "rectangle":
 self.canvas.create_rectangle(*bbox, fill="blue",
 activefill="yellow")
 elif self.shape == "oval":
 self.canvas.create_oval(*bbox, fill="red",
 activefill="yellow")
 elif self.shape == "arc":
 self.canvas.create_arc(*bbox, fill="green",
 activefill="yellow")

if __name__ == "__main__":
 app = App()
 app.mainloop()

Canvas and Graphics Chapter 7

[164]

How it works...
To dynamically select the type of item drawn by clicking on the canvas, we will create a
button for each one of the shapes by iterating over the shapes tuple.

We define each callback command using the partial function from the functools
module. Thanks to this, we can freeze the Button instance and the current shape of the loop
as arguments to the callback of each button:

 for shape in self.shapes:
 btn = tk.Button(frame, text=shape.capitalize())
 btn.config(command=partial(self.set_selection, btn, shape))
 btn.pack(side=tk.LEFT, expand=True, fill=tk.BOTH)

The set_selection() callback marks the clicked button with the SUNKEN relief and stores
the selection in the shape field.

The other widget siblings are configured with the standard relief (RAISED) by navigating to
the parent, available in the master field of the current widget, and then retrieving all the
children widgets with the winfo_children() method:

 def set_selection(self, widget, shape):
 for w in widget.master.winfo_children():
 w.config(relief=tk.RAISED)
 widget.config(relief=tk.SUNKEN)
 self.shape = shape

The draw_item() handler stores the coordinates of the first click of each pair of events to
draw the item when the canvas is clicked again—exactly like we previously did in the
Drawing lines and arrows recipe.

Depending on the value of the shape field, one of the following methods is invoked to
display the corresponding item type:

canvas.create_rectangle(x0, y0, x1, y1, **options): Draws a
rectangle whose upper-left corner is placed at (x0, y0) and lower-right corner at
(x1, y1):

Canvas and Graphics Chapter 7

[165]

canvas.create_oval(x0, y0, x1, y1, **options): Draws an ellipse that
fits into the rectangle from (x0, y0) to (x1, y1):

canvas.create_arc(x0, y0, x1, y1, **options): Draws a quarter of the
ellipse that would fit into the rectangle from (x0, y0) to (x1, y1):

Canvas and Graphics Chapter 7

[166]

See also
The Drawing lines and arrows recipe

Finding items by their position
The Canvas class includes methods to retrieve item identifiers that are close to a canvas
coordinate.

This is very useful because it saves us from storing each reference to a canvas item and then
calculating their current position to detect which ones are within a specific area or closest to
a certain point.

Getting ready
The following application creates a canvas with four rectangles, and changes the color of the
one that is closest to the mouse pointer:

Canvas and Graphics Chapter 7

[167]

How to do it...
To find the closest item to the pointer, we pass the mouse event coordinates to the
canvas.find_closest() method, which retrieves the identifier of the item that is closest
to the given position.

Once there is at least one item in the canvas, we can safely assume that this method will
always return a valid item identifier:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Finding canvas items")

 self.current = None
 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.bind("<Motion>", self.mouse_motion)
 self.canvas.pack()

 self.update()
 w = self.canvas.winfo_width()
 h = self.canvas.winfo_height()
 positions = [(60, 60), (w-60, 60), (60, h-60), (w-60, h-60)]
 for x, y in positions:
 self.canvas.create_rectangle(x-10, y-10, x+10, y+10,
 fill="blue")

 def mouse_motion(self, event):
 self.canvas.itemconfig(self.current, fill="blue")
 self.current = self.canvas.find_closest(event.x, event.y)
 self.canvas.itemconfig(self.current, fill="yellow")

if __name__ == "__main__":
 app = App()
 app.mainloop()

Canvas and Graphics Chapter 7

[168]

How it works...
During application initialization, we create the canvas and define the current field to store
a reference to the current highlighted item. We also handle the "<Motion>" events on the
canvas with the mouse_motion() method:

 self.current = None
 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.bind("<Motion>", self.mouse_motion)
 self.canvas.pack()

Then, we create four items with a specific arrangement so that we can easily visualize the
item that is closest to the mouse pointer:

 self.update()
 w = self.canvas.winfo_width()
 h = self.canvas.winfo_height()
 positions = [(60, 60), (w-60, 60), (60, h-60), (w-60, h-60)]
 for x, y in positions:
 self.canvas.create_rectangle(x-10, y-10, x+10, y+10,
 fill="blue")

The mouse_motion() handler sets the color of the current item back to blue and saves the
item identifier of the new one, which is closer to the event coordinates. Finally, the fill
color of this item is set to yellow:

 def mouse_motion(self, event):
 self.canvas.itemconfig(self.current, fill="blue")
 self.current = self.canvas.find_closest(event.x, event.y)
 self.canvas.itemconfig(self.current, fill="yellow")

Initially, there are no errors when mouse_motion() is called for the first time and the
current field is still None, since it is also a valid input parameter to itemconfig(); it just
does not perform any action on the canvas.

Moving canvas items
Once placed, canvas items can be moved to a certain offset, without having to specify the
absolute coordinates.

When moving canvas items, it is usually relevant to calculate its current position, for
instance, to determine whether they are placed inside a concrete canvas area, and restrict
their movements so that they always stay within that area.

Canvas and Graphics Chapter 7

[169]

How to do it...
Our example will consist of a simple canvas with a rectangle item, which can be moved
horizontally and vertically using the arrow keys.

To prevent this item from moving outside of the screen, we will limit its movements inside
the canvas dimensions:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Moving canvas items")

 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.pack()
 self.update()
 self.width = self.canvas.winfo_width()
 self.height = self.canvas.winfo_height()

 self.item = self.canvas.create_rectangle(30, 30, 60, 60,
 fill="blue")
 self.pressed_keys = {}
 self.bind("<KeyPress>", self.key_press)
 self.bind("<KeyRelease>", self.key_release)
 self.process_movements()

 def key_press(self, event):
 self.pressed_keys[event.keysym] = True

 def key_release(self, event):
 self.pressed_keys.pop(event.keysym, None)

 def process_movements(self):
 off_x, off_y = 0, 0
 speed = 3
 if 'Right' in self.pressed_keys:
 off_x += speed
 if 'Left' in self.pressed_keys:
 off_x -= speed
 if 'Down' in self.pressed_keys:
 off_y += speed
 if 'Up' in self.pressed_keys:
 off_y -= speed

 x0, y0, x1, y1 = self.canvas.coords(self.item)

Canvas and Graphics Chapter 7

[170]

 pos_x = x0 + (x1 - x0) / 2 + off_x
 pos_y = y0 + (y1 - y0) / 2 + off_y
 if 0 <= pos_x <= self.width and 0 <= pos_y <= self.height:
 self.canvas.move(self.item, off_x, off_y)

 self.after(10, self.process_movements)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
To handle the arrow keyboard events, we bind the "<KeyPress>" and "<KeyRelease>"
sequences to the application instance. The currently pressed key symbols are stored in the
pressed_keys dictionary:

 def __init__(self):
 # ...
 self.pressed_keys = {}
 self.bind("<KeyPress>", self.key_press)
 self.bind("<KeyRelease>", self.key_release)

 def key_press(self, event):
 self.pressed_keys[event.keysym] = True

 def key_release(self, event):
 self.pressed_keys.pop(event.keysym, None)

This approach is preferred instead of separately binding the "<Up>", "<Down>",
"<Right>", and "<Left>" keys, because that would call each handler only when Tkinter
processes the input keyboard events, causing the item to "jump" from one position to the
next one rather than moving it smoothly on the horizontal and vertical axes.

The last sentence of the initialization of the App instance is the call to
process_movements(), which starts processing the movement of the canvas item.

This method calculates the offset in each axis that the item should be displaced. Depending
on the contents of the pressed_keys dictionary, the speed value is added or subtracted on
each component of the coordinates:

 def process_movements(self):
 off_x, off_y = 0, 0
 speed = 3

Canvas and Graphics Chapter 7

[171]

 if 'Right' in self.pressed_keys:
 off_x += speed
 if 'Left' in self.pressed_keys:
 off_x -= speed
 if 'Down' in self.pressed_keys:
 off_y += speed
 if 'Up' in self.pressed_keys:
 off_y -= speed

After this, we retrieve the current item position by calling canvas.coords() and
unpacking the couple of points that form the bounding box into four variables.

The center of the item is calculated by adding the x and y components of the upper-left
corner to half of its width and height. This result, plus the offset in each axis, corresponds to
the final position of the item after it is moved:

 x0, y0, x1, y1 = self.canvas.coords(self.item)
 pos_x = x0 + (x1 - x0) / 2 + off_x
 pos_y = y0 + (y1 - y0) / 2 + off_y

Then, we check whether this final item position is within the canvas area. To do so, we take
advantage of Python's support for chaining comparison operators:

 if 0 <= pos_x <= self.width and 0 <= pos_y <= self.height:
 self.canvas.move(self.item, off_x, off_y)

Finally, this method schedules itself with a delay of 10 milliseconds by calling
self.after(10, self.process_movements). Thus, we achieve the effect of having a
"custom mainloop" inside Tkinter's mainloop.

There's more...
You might wonder why we did not call after_idle() instead of after() to schedule the
process_movements() method.

It might look a valid approach since there are no other events to process, apart from
redrawing our canvas and handling keyboard inputs, so there is no need to add a delay
between calls to process_movements() if there are no pending GUI events.

However, using after_idle would cause the item to move at a pace that will depend on
the computer speed. This means that a fast system will call process_movements() more
times in the same interval of time than a slower one, and this difference will be noticeable in
the item speed.

Canvas and Graphics Chapter 7

[172]

By introducing a minimum fixed delay, we give a chance to machines with different
capabilities to behave in a similar manner.

See also
The Detecting collisions between items recipe

Detecting collisions between items
As a continuation of the preceding recipe, we can detect whether a rectangle item overlaps
with another one. In fact, this can be achieved, assuming that we are working with shapes
contained in rectangular boxes, using the find_overlapping() method from the Canvas
class.

Getting ready
This application extends the preceding one by adding four green rectangles to the canvas
and highlighting the one that is touched by a blue rectangle moved using the arrow keys:

Canvas and Graphics Chapter 7

[173]

How to do it...
Since this script has many similarities with the preceding one, we marked the parts of the
code that create the four rectangles and invoke the canvas.find_overlapping() method:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Detecting collisions between items")

 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.pack()
 self.update()
 self.width = w = self.canvas.winfo_width()
 self.height = h = self.canvas.winfo_height()

 pos = (w/2 - 15, h/2 - 15, w/2 + 15, h/2 + 15)
 self.item = self.canvas.create_rectangle(*pos, fill="blue")
 positions = [(60, 60), (w-60, 60), (60, h-60), (w-60, h-60)]
 for x, y in positions:
 self.canvas.create_rectangle(x-10, y-10, x+10, y+10,
 fill="green")
 self.pressed_keys = {}
 self.bind("<KeyPress>", self.key_press)
 self.bind("<KeyRelease>", self.key_release)
 self.process_movements()

 def key_press(self, event):
 self.pressed_keys[event.keysym] = True

 def key_release(self, event):
 self.pressed_keys.pop(event.keysym, None)

 def process_movements(self):
 all_items = self.canvas.find_all()
 for item in filter(lambda i: i is not self.item, all_items):
 self.canvas.itemconfig(item, fill="green")

 x0, y0, x1, y1 = self.canvas.coords(self.item)
 items = self.canvas.find_overlapping(x0, y0, x1, y1)
 for item in filter(lambda i: i is not self.item, items):
 self.canvas.itemconfig(item, fill="yellow")

 off_x, off_y = 0, 0
 speed = 3

Canvas and Graphics Chapter 7

[174]

 if 'Right' in self.pressed_keys:
 off_x += speed
 if 'Left' in self.pressed_keys:
 off_x -= speed
 if 'Down' in self.pressed_keys:
 off_y += speed
 if 'Up' in self.pressed_keys:
 off_y -= speed

 pos_x = x0 + (x1 - x0) / 2 + off_x
 pos_y = y0 + (y1 - y0) / 2 + off_y
 if 0 <= pos_x <= self.width and 0 <= pos_y <= self.height:
 self.canvas.move(self.item, off_x, off_y)

 self.after(10, self.process_movements)

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
The modification to the __init__ method is similar to the one in the Finding items by their
position recipe, so you can review it in case you have any doubts and skip directly to the
changes in the process_movements() method.

Before we calculate any overlap, the fill color of all the canvas items, except the one that can
be controlled by the user, is changed to green. These item's identifiers are retrieved by the
canvas.find_all() method:

 def process_movements(self):
 all_items = self.canvas.find_all()
 for item in filter(lambda i: i != self.item, all_items):
 self.canvas.itemconfig(item, fill="green")

Canvas and Graphics Chapter 7

[175]

Now that the item colors are reset, we call canvas.find_overlapping() to get all the
items that are currently colliding with the moving item. Again, the item controlled by the
user is excluded from the loop, and the color of the rest of the overlapping items (if any) is
changed to yellow:

 def process_movements(self):
 # ...

 x0, y0, x1, y1 = self.canvas.coords(self.item)
 items = self.canvas.find_overlapping(x0, y0, x1, y1)
 for item in filter(lambda i: i != self.item, items):
 self.canvas.itemconfig(item, fill="yellow")

The method continues its execution by moving the blue rectangle by the calculated offset,
and scheduling process_movements() itself again.

There's more...
If you want to detect when the moving item fully overlaps another one, instead of partially
doing it, replace the call to canvas.find_overlapping() to canvas.find_enclosed()
with the same parameters.

Deleting items from a canvas
Besides adding and modifying items on a canvas, it is also possible to delete them via the
delete() method of the Canvas class. Although the usage of this method is very
straightforward, there are a couple of useful patterns that we will see in the next example.

Keep in mind that the more items displayed on a canvas, the longer it will take to Tkinter to
redraw the widget. Therefore, it is convenient to remove unnecessary items if this could
cause a performance issue.

Canvas and Graphics Chapter 7

[176]

Getting ready
For this recipe, we will build an application that randomly displays several circles on a
canvas. Each circle removes itself once you click on it, and the window contains one button
to clear all the items and another button to start over again:

How to do it...
To irregularly place the items on the canvas, we will generate the coordinates using the
randint function from the random module. The item color will be randomly chosen as well
by calling choice with a predefined list of colors.

Once generated, items can be deleted either by triggering the on_click handler when
clicked or by pressing the Clear items button, which executes the clear_all callback.
These methods internally call canvas.delete() with the appropriate parameters:

import random
import tkinter as tk

class App(tk.Tk):
 colors = ("red", "yellow", "green", "blue", "orange")

Canvas and Graphics Chapter 7

[177]

 def __init__(self):
 super().__init__()
 self.title("Removing canvas items")

 self.canvas = tk.Canvas(self, bg="white")
 frame = tk.Frame(self)
 generate_btn = tk.Button(frame, text="Generate items",
 command=self.generate_items)
 clear_btn = tk.Button(frame, text="Clear items",
 command=self.clear_items)

 self.canvas.pack()
 frame.pack(fill=tk.BOTH)
 generate_btn.pack(side=tk.LEFT, expand=True, fill=tk.BOTH)
 clear_btn.pack(side=tk.LEFT, expand=True, fill=tk.BOTH)

 self.update()
 self.width = self.canvas.winfo_width()
 self.height = self.canvas.winfo_height()

 self.canvas.bind("<Button-1>", self.on_click)
 self.generate_items()

 def on_click(self, event):
 item = self.canvas.find_withtag(tk.CURRENT)
 self.canvas.delete(item)

 def generate_items(self):
 self.clear_items()
 for _ in range(10):
 x = random.randint(0, self.width)
 y = random.randint(0, self.height)
 color = random.choice(self.colors)
 self.canvas.create_oval(x, y, x + 20, y + 20, fill=color)

 def clear_items(self):
 self.canvas.delete(tk.ALL)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Canvas and Graphics Chapter 7

[178]

How it works...
The canvas.delete() method takes one argument, which can be an item identifier or a
tag, and removes the matching item or items, since the same tag can be used multiple times.

In the on_click() handler, we can see an example of how to remove an item by its
identifier:

 def on_click(self, event):
 item = self.canvas.find_withtag(tk.CURRENT)
 self.canvas.delete(item)

Note that if we click on an empty point, canvas.find_withtag(tk.CURRENT) will return
None, but it will not raise any error when passed to canvas.delete(). This happens
because the None parameter will not match any item identifier or tag and therefore, it is a
valid value even though it will not perform any action.

In the clear_items() callback, we can find another example of deleting items. Here,
instead of passing an item identifier, we used the ALL tag to match all the items and remove
them from the canvas:

 def clear_items(self):
 self.canvas.delete(tk.ALL)

As you may have noticed, the ALL tag works out of the box and does not need to be added
to every canvas item.

Binding events to canvas items
So far, we have seen how to bind events to widgets; however, it is also possible to do so for
canvas items. This helps us to write more specific and simpler event handlers, instead of
binding all the types of events we want to process on the Canvas instance and then
determining which action has to be applied according to the affected item.

Getting ready
The following application shows how to implement the drag and drop functionality on
canvas items. This is a common functionality that serves to illustrate how this approach can
simplify our programs.

Canvas and Graphics Chapter 7

[179]

How to do it...
We will create a couple of items that can be dragged and dropped with the mouse—a
rectangle and an oval. The different shapes help us to note how the click events are correctly
applied to the corresponding item, even though the items are placed overlapping each
other:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Drag and drop")

 self.dnd_item = None
 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.pack()

 self.canvas.create_rectangle(30, 30, 60, 60, fill="green",
 tags="draggable")
 self.canvas.create_oval(120, 120, 150, 150, fill="red",
 tags="draggable")
 self.canvas.tag_bind("draggable", "<ButtonPress-1>",
 self.button_press)
 self.canvas.tag_bind("draggable", "<Button1-Motion>",
 self.button_motion)

 def button_press(self, event):
 item = self.canvas.find_withtag(tk.CURRENT)
 self.dnd_item = (item, event.x, event.y)

 def button_motion(self, event):
 x, y = event.x, event.y
 item, x0, y0 = self.dnd_item
 self.canvas.move(item, x - x0, y - y0)
 self.dnd_item = (item, x, y)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Canvas and Graphics Chapter 7

[180]

How it works...
To bind events to items, we use the tag_bind() method from the Canvas class. This adds
the event binding to all the items that match the item specifier, in our example, the
"draggable" tag.

Even the method is named tag_bind(); it would be also valid to pass an item identifier
instead of a tag:

 self.canvas.tag_bind("draggable", "<ButtonPress-1>",
 self.button_press)
 self.canvas.tag_bind("draggable", "<Button1-Motion>",
 self.button_motion)

Keep in mind that this only affects existing tagged items, so if we add new items later on
with the "draggable" tag, they will not have these bindings attached.

The button_press() method is the handler invoked when an item is clicked. As usual, a
common pattern to retrieve the clicked item is to call
canvas.find_withtag(tk.CURRENT).

This item identifier and the x and y coordinates of the click event are stored in the
dnd_item field. These values will be used later to move the item in sync with the mouse
motion:

 def button_press(self, event):
 item = self.canvas.find_withtag(tk.CURRENT)
 self.dnd_item = (item, event.x, event.y)

The button_motion() method processes the mouse motion events while the primary
button is being held.

To set the distance that the item should be moved, we calculate the difference from the
current event position to the previously stored coordinates. These values are passed to the
canvas.move() method and saved again in the dnd_item field:

 def button_motion(self, event):
 x, y = event.x, event.y
 item, x0, y0 = self.dnd_item
 self.canvas.move(item, x - x0, y - y0)
 self.dnd_item = (item, x, y)

Canvas and Graphics Chapter 7

[181]

There are some variations of this drag and drop functionality that also implement a handler
for the <ButtonRelease-1> sequence, which unsets the currently dragged item.

However, this is not necessary because once this type of event occurs, the <Button1-
Motion> binding will not be triggered until an item is clicked again. This also saves us from
checking whether dnd_item is not None at the beginning of the button_motion()
handler.

There's more...
It is possible to improve this example by adding some basic validations, such as verifying
that users cannot drop an item outside of the canvas visible area.

To implement this, you can use the patterns we have covered in previous recipes to
calculate the canvas width and height and verify that the final position of the item is inside
a valid range by chaining the comparison operators. You can use the structure shown in the
following snippet as a template:

final_x, final_y = pos_x + off_x, pos_y + off_y
if 0 <= final_x <= canvas_width and 0 <= final_y <= canvas_height:
 canvas.move(item, off_x, off_y)

See also
The Moving canvas items recipe

Rendering a canvas into a PostScript file
The Canvas class natively supports saving its contents using the PostScript language via
its postscript() method. This stores the graphical representation of canvas items, such as
lines, rectangles, polygons, ovals, and arcs, however, it does not do so for embedded
widgets and images.

We will modify a previous recipe that dynamically generates this type of simple items to
add the functionality to save a representation of the canvas into a PostScript file.

Canvas and Graphics Chapter 7

[182]

How to do it...
We will take the code sample from the Drawing lines and arrows recipe to add a button to
print the canvas contents to a PostScript file:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Basic canvas")

 self.line_start = None
 self.form = LineForm(self)
 self.render_btn = tk.Button(self, text="Render canvas",
 command=self.render_canvas)
 self.canvas = tk.Canvas(self, bg="white")
 self.canvas.bind("<Button-1>", self.draw)

 self.form.grid(row=0, column=0, padx=10, pady=10)
 self.render_btn.grid(row=1, column=0)
 self.canvas.grid(row=0, column=1, rowspan=2)

 def draw(self, event):
 # ...

 def render_canvas(self):
 self.canvas.postscript(file="output.ps", colormode="color")

How it works...
The main addition to the original script is the Render canvas button with the
render_canvas() callback.

It calls the postscript() method on the canvas instance with the file and colormode
arguments. These options specify the path to the destination file that writes the PostScript
and the output color information, which could be "color" for full color output, "gray" to
translate to gray-scale equivalents, and "mono" to convert all colors to black or white:

 def render_canvas(self):
 self.canvas.postscript(file="output.ps", colormode="color")

Canvas and Graphics Chapter 7

[183]

You can check all the valid options that can be passed to the postscript() method on the
Tk/Tcl documentation at https:/ ​/ ​www. ​tcl. ​tk/​man/ ​tcl8. ​6/ ​TkCmd/ ​canvas. ​htm#M61. Bear in
mind that PostScript is a language primarily aimed to be printed, so most options refer to
page settings.

There's more...
Since PostScript files are not as popular as other file formats, you might want to convert the
generated file from PostScript to a more familiar format such as PDF.

To do so, you need a third-party software, such as Ghostscript, which is distributed under
GNU's Affero General Public License (AGPL). Ghostscript's interpreter and renderer
utilities can be invoked from your program to automatically convert the PostScript result to
PDF.

Download and install the latest version of the software
from https://www.ghostscript.com/download/gsdnld.html and add the bin and lib
folders of the installation into your operating system path.

Then, modify your Tkinter application to call the ps2pdf program as a subprocess and
remove the output.ps file when it finish its execution, as follows:

import os
import subprocess
import tkinter as tk

class App(tk.Tk):
 # ...

 def render_canvas(self):
 output_filename = "output.ps"
 self.canvas.postscript(file=output_filename, colormode="color")
 process = subprocess.run(["ps2pdf", output_filename, "output.pdf"],
 shell=True)
 os.remove(output_filename)

https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.tcl.tk/man/tcl8.6/TkCmd/canvas.htm#M61
https://www.ghostscript.com/download/gsdnld.html

8
Themed Widgets

In this chapter, we will cover the following recipes:

Replacing basic widget classes
Creating an editable drop-down with Combobox
Using the Treeview widget
Populating nested items in a Treeview
Displaying tabbable panes with Notebook
Applying Ttk styling
Creating a datepicker widget

Introduction
Tk-themed widgets are a separate collection of Tk widgets, which have a native look and
feel, and their style can be highly customized using a specific API.

These classes are defined in the tkinter.ttk module. Apart from defining new widgets
such as Treeview and Notebook, this module redefines the implementation of classic Tk
widgets such as Button, Label, and Frame.

In this chapter, we will cover not only how to change our application Tk widgets for
themed widgets, but also how to style them and use the new widget classes.

Themed Widgets Chapter 8

[185]

The themed Tk widget set was introduced in Tk 8.5, which should not be a problem since
Python 3.6 installers let you include version 8.6 of the Tcl/Tk interpreter.

However, you can verify it on any platform by running python -m tkinter from the
command line, which starts the following program that outputs the Tcl/Tk version:

Replacing basic widget classes
As a first approach to themed Tkinter classes, we will take a look at how to use the same
widgets (Buttons, Labels, Entries, and so on) from this different module, keeping the same
behavior in our application.

Although this will not give us the full potential of their styling capabilities, we can easily
appreciate the visual variations that bring the native look and feel of themed widgets.

Getting ready
In the following screenshot, you can note the differences between a GUI with themed
widgets and the same window using standard Tkinter widgets:

Themed Widgets Chapter 8

[186]

We will build the application shown in the first window, but we will also learn how to
easily switch between both styles.

Note that this is highly platform dependent. In this case, the themed variation corresponds
to how themed widgets look on Windows 10.

How to do it...
To start using themed widgets, all you need is to import the tkinter.ttk module and use
the widgets defined there in your Tkinter application as usual:

import tkinter as tk
import tkinter.ttk as ttk

class App(tk.Tk):
 greetings = ("Hello", "Ciao", "Hola")

 def __init__(self):
 super().__init__()
 self.title("Tk themed widgets")

 var = tk.StringVar()

Themed Widgets Chapter 8

[187]

 var.set(self.greetings[0])
 label_frame = ttk.LabelFrame(self, text="Choose a greeting")
 for greeting in self.greetings:
 radio = ttk.Radiobutton(label_frame, text=greeting,
 variable=var, value=greeting)
 radio.pack()

 frame = ttk.Frame(self)
 label = ttk.Label(frame, text="Enter your name")
 entry = ttk.Entry(frame)

 command = lambda: print("{}, {}!".format(var.get(),
 entry.get()))
 button = ttk.Button(frame, text="Greet", command=command)

 label.grid(row=0, column=0, padx=5, pady=5)
 entry.grid(row=0, column=1, padx=5, pady=5)
 button.grid(row=1, column=0, columnspan=2, pady=5)

 label_frame.pack(side=tk.LEFT, padx=10, pady=10)
 frame.pack(side=tk.LEFT, padx=10, pady=10)

if __name__ == "__main__":
 app = App()
 app.mainloop()

In case you want to run the same program with regular Tkinter widgets, replace all ttk.
occurrences with tk..

How it works...
A common way to start using themed widgets is to import the tkinter.ttk module using
the import ... as syntax. Thus, we can easily identify standard widgets with the tk
name and themed widget with the ttk name:

import tkinter as tk
import tkinter.ttk as ttk

As you might have noticed in the preceding code, replacing widgets from the tkinter
module with their equivalents from tkinter.ttk is as easy as changing the alias name:

import tkinter as tk
import tkinter.ttk as ttk

...

Themed Widgets Chapter 8

[188]

entry_1 = tk.Entry(root)
entry_2 = ttk.Entry(root)

In our example, we did so for the ttk.Frame, ttk.Label, ttk.Entry, ttk.LabelFrame,
and ttk.Radiobutton widgets. These classes accept almost the same basic options as their
standard Tkinter equivalents; indeed, they actually are their subclasses.

However, this translation is simple because we are not porting any styling options, such as
foreground or background. In themed widgets, these keywords are used separately
through the ttk.Style class, which we will cover in another recipe.

See also
The Applying Ttk styling recipe

Creating an editable drop-down with
Combobox
Drop-down lists are a succinct way of choosing a value by vertically displaying a list of
values only when needed. This is also common to let users input another option that is not
present in the list.

This functionality is combined in the ttk.Combobox class, which takes the native look and
feel of your platform drop-downs.

Getting ready
Our next application will consist of a simple drop-down entry with a couple of buttons to
confirm the selection or clear its contents.

Themed Widgets Chapter 8

[189]

If one of the predefined values is selected or the Submit button is clicked, the current
Combobox value is printed in the standard output, as follows:

How to do it...
Our application creates a ttk.Combobox instance during its initialization, passing a
predefined sequence of values that can be selected in the drop-down list:

import tkinter as tk
import tkinter.ttk as ttk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Ttk Combobox")
 colors = ("Purple", "Yellow", "Red", "Blue")

 self.label = ttk.Label(self, text="Please select a color")
 self.combo = ttk.Combobox(self, values=colors)
 btn_submit = ttk.Button(self, text="Submit",
 command=self.display_color)
 btn_clear = ttk.Button(self, text="Clear",
 command=self.clear_color)

 self.combo.bind("<<ComboboxSelected>>", self.display_color)

 self.label.pack(pady=10)
 self.combo.pack(side=tk.LEFT, padx=10, pady=5)
 btn_submit.pack(side=tk.TOP, padx=10, pady=5)

Themed Widgets Chapter 8

[190]

 btn_clear.pack(padx=10, pady=5)

 def display_color(self, *args):
 color = self.combo.get()
 print("Your selection is", color)

 def clear_color(self):
 self.combo.set("")

if __name__ == "__main__":
 app = App()
 app.mainloop()

How it works...
As usual, the ttk.Combobox widget is added to our application by passing the Tk instance
as the first parameter to its constructor. The values option specifies the list of selectable
choices that are displayed when the drop-down arrow is clicked.

We bind the "<<ComboboxSelected>>" virtual event that is generated when one of the
choices from the list of values is selected:

 self.label = ttk.Label(self, text="Please select a color")
 self.combo = ttk.Combobox(self, values=colors)
 btn_submit = ttk.Button(self, text="Submit",
 command=self.display_color)
 btn_clear = ttk.Button(self, text="Clear",
 command=self.clear_color)

 self.combo.bind("<<ComboboxSelected>>", self.display_color)

The same method is invoked when you click on the Submit button, so it receives a value
input by the user.

We defined that display_color() takes a variable list of arguments using the * syntax to
safely handle optional arguments. This happens because an event is passed to it when
invoked through event binding, but it does not receive any parameters when invoked from
the button callback.

Themed Widgets Chapter 8

[191]

Within this method, we retrieve the current Combobox value via its get() method and
print it in the standard output:

 def display_color(self, *args):
 color = self.combo.get()
 print("Your selection is", color)

Finally, clear_color() clears the contents of the Combobox by calling its set() method
with the empty string:

 def clear_color(self):
 self.combo.set("")

With these methods, we have explored how to interact with the current selection of a
Combobox instance.

There's more...
The ttk.Combobox class extends ttk.Entry, which in turn extends the Entry class from
the tkinter module.

This means that we could also use the methods that we have already covered from the
Entry class if needed:

 combobox.insert(0, "Add this at the beginning: ")

The preceding code is more straightforward than combobox.set("Add this at the
beginning: " + combobox.get()).

Using the Treeview widget
In this recipe, we will introduce the ttk.Treeview class, a versatile widget that lets us
display information in both tabular and hierarchical structures.

Each item added to the ttk.Treeview class is divided into one or more columns, where
the first one may contain text and an icon and serves to indicate whether the item can be
expanded and show more nested items. The rest of the columns contain the values that we
want to display for each row.

Themed Widgets Chapter 8

[192]

The first row of the ttk.Treeview class is composed of headings that identify each column
by its name and can be optionally hidden.

Getting ready
Using ttk.Treeview, we will tabulate the information of a list of contacts stored in a CSV
file, similar to what we previously did in Chapter 5, Object-Oriented Programming and MVC:

How to do it...
We will create a ttk.Treeview widget with three columns that hold the fields of each
contact: one for its last name, another one for its first name, and the last one for its email
address.

Contacts are loaded from a CSV file using the csv module, and then we add the binding for
the "<<TreeviewSelect>>" virtual element, which is generated when one or more items
are selected:

import csv
import tkinter as tk
import tkinter.ttk as ttk

class App(tk.Tk):
 def __init__(self, path):
 super().__init__()

Themed Widgets Chapter 8

[193]

 self.title("Ttk Treeview")

 columns = ("#1", "#2", "#3")
 self.tree = ttk.Treeview(self, show="headings", columns=columns)
 self.tree.heading("#1", text="Last name")
 self.tree.heading("#2", text="First name")
 self.tree.heading("#3", text="Email")
 ysb = ttk.Scrollbar(self, orient=tk.VERTICAL,
 command=self.tree.yview)
 self.tree.configure(yscroll=ysb.set)

 with open("contacts.csv", newline="") as f:
 for contact in csv.reader(f):
 self.tree.insert("", tk.END, values=contact)
 self.tree.bind("<<TreeviewSelect>>", self.print_selection)

 self.tree.grid(row=0, column=0)
 ysb.grid(row=0, column=1, sticky=tk.N + tk.S)
 self.rowconfigure(0, weight=1)
 self.columnconfigure(0, weight=1)

 def print_selection(self, event):
 for selection in self.tree.selection():
 item = self.tree.item(selection)
 last_name, first_name, email = item["values"][0:3]
 text = "Selection: {}, {} <{}>"
 print(text.format(last_name, first_name, email))

if __name__ == "__main__":
 app = App()
 app.mainloop()

If you run this program, each time you select a contact, its details will be printed in the
standard output as a way to illustrate how to retrieve the data of a selected row.

How it works...
To create a ttk.Treeview with multiple columns, we need to indicate the identifiers of
each one with the columns option. Then, we can configure the header text by calling the
heading() method.

We used identifiers #1, #2, and #3 since the first column, which contains the expandable
icon and text, is always generated with the #0 identifier.

Themed Widgets Chapter 8

[194]

Also we passed the "headings" value to the show option to indicate that we want to hide
the #0 column, because there will not be nested items.

The following values are valid for the show option:

"tree": Displays column #0
"headings": Displays the header row
"tree headings": Displays both column #0 and the header row—this is the
default value
"": Does not display column #0 or the header row

After this, we attached a vertical scroll bar to our ttk.Treeview widget:

 columns = ("#1", "#2", "#3")
 self.tree = ttk.Treeview(self, show="headings", columns=columns)
 self.tree.heading("#1", text="Last name")
 self.tree.heading("#2", text="First name")
 self.tree.heading("#3", text="Email")
 ysb = ttk.Scrollbar(self, orient=tk.VERTICAL,
command=self.tree.yview)
 self.tree.configure(yscroll=ysb.set)

To load the contacts into the table, we process the file with the reader() function from the
csv module, and the row read in each iteration is added to ttk.Treeview.

This is done by calling the insert() method, which receives the parent node and the
position to place the item.

Since all contacts are shown as top-level items, we pass an empty string as the first
parameter and the END constant to indicate that each new item is inserted at the last
position.

You can optionally provide some keyword arguments to the insert() method. Here, we
specified the values option, which takes the sequence of values that is displayed in each
column of the Treeview:

 with open("contacts.csv", newline="") as f:
 for contact in csv.reader(f):
 self.tree.insert("", tk.END, values=contact)
 self.tree.bind("<<TreeviewSelect>>", self.print_selection)

Themed Widgets Chapter 8

[195]

The <<TreeviewSelect>> event is the virtual event generated when the user selects one or
more items from the table. Within the print_selection() handler, we retrieve the
current selection by calling the selection() method, and for each result, we will perform
the following steps:

With the item() method, we get the dictionary of options and values of the1.
selected item
We retrieve the first three values from the item dictionary, which correspond to2.
the last name, first name, and email of the contact
The values are formatted and printed into the standard output:3.

 def print_selection(self, event):
 for selection in self.tree.selection():
 item = self.tree.item(selection)
 last_name, first_name, email = item["values"][0:3]
 text = "Selection: {}, {} <{}>"
 print(text.format(last_name, first_name, email))

There's more...
So far, we have covered some basic aspects of the ttk.Treeview class since we are using it
as a regular table. However, it is also possible to extend our existing application with more
advanced features.

Using tags in Treeview items
Tags are available for ttk.Treeview items, so it is possible to bind event sequences for
specific rows of our contacts table.

Let's suppose that we want to open a new window to write an email to a contact when we
double-click on it; however, this should only work for records where the email field is filled
in.

Themed Widgets Chapter 8

[196]

We can easily implement this by conditionally adding a tag to the items while inserting
them, and then calling tag_bind() on the widget instance with the "<Double-
Button-1>" sequence—here we simply refer to the implementation of the
send_email_to_contact() handler function by its name:

 columns = ("Last name", "First name", "Email")
 tree = ttk.Treeview(self, show="headings", columns=columns)

 for contact in csv.reader(f):
 email = contact[2]
 tags = ("dbl-click",) if email else ()
 self.tree.insert("", tk.END, values=contact, tags=tags)

 tree.tag_bind("dbl-click", "<Double-Button-1>", send_email_to_contact)

Similar to what happens when binding events to Canvas items, always remember to add
the tagged items to ttk.Treeview before calling tag_bind(), because the bindings are
only added to existing matching items.

See also
The Populating nested items in a Treeview recipe

Populating nested items in a Treeview
While ttk.Treeview can be used as a regular table, it may also contain hierarchical
structures. This is shown as a tree where items can be expanded to see more nodes of the
hierarchy.

This is useful to display the results of recursive calls and several levels of nested items. In
this recipe, we will take a look at a common scenario that fits with this kind of structure.

Themed Widgets Chapter 8

[197]

Getting ready
To illustrate how to recursively add items in a ttk.Treeview widget, we will create a basic
filesystem browser. Expandable nodes will represent folders, and once opened, they will
show the files and folders that they contain:

How to do it...
The tree will be initially populated by the populate_node() method, which lists the
entries in the current directory. If an entry is a directory, it also adds an empty child to
show it as an expandable node.

When a node that represents a directory is opened, it lazily loads the contents of the
directory by calling populate_node() again. This time, instead of adding the items as top-
level nodes, they are nested inside the opened node:

import os
import tkinter as tk
import tkinter.ttk as ttk

class App(tk.Tk):
 def __init__(self, path):
 super().__init__()

Themed Widgets Chapter 8

[198]

 self.title("Ttk Treeview")

 abspath = os.path.abspath(path)
 self.nodes = {}
 self.tree = ttk.Treeview(self)
 self.tree.heading("#0", text=abspath, anchor=tk.W)
 ysb = ttk.Scrollbar(self, orient=tk.VERTICAL,
 command=self.tree.yview)
 xsb = ttk.Scrollbar(self, orient=tk.HORIZONTAL,
 command=self.tree.xview)
 self.tree.configure(yscroll=ysb.set, xscroll=xsb.set)

 self.tree.grid(row=0, column=0, sticky=tk.N + tk.S + tk.E +
tk.W)
 ysb.grid(row=0, column=1, sticky=tk.N + tk.S)
 xsb.grid(row=1, column=0, sticky=tk.E + tk.W)
 self.rowconfigure(0, weight=1)
 self.columnconfigure(0, weight=1)

 self.tree.bind("<<TreeviewOpen>>", self.open_node)
 self.populate_node("", abspath)

 def populate_node(self, parent, abspath):
 for entry in os.listdir(abspath):
 entry_path = os.path.join(abspath, entry)
 node = self.tree.insert(parent, tk.END, text=entry, open=False)
 if os.path.isdir(entry_path):
 self.nodes[node] = entry_path
 self.tree.insert(node, tk.END)

 def open_node(self, event):
 item = self.tree.focus()
 abspath = self.nodes.pop(item, False)
 if abspath:
 children = self.tree.get_children(item)
 self.tree.delete(children)
 self.populate_node(item, abspath)

if __name__ == "__main__":
 app = App(path=".")
 app.mainloop()

When you run the preceding example, it will display the filesystem hierarchy from the
directory where the script is located, but you can explicitly set the directory you want via
the path argument of the App constructor.

Themed Widgets Chapter 8

[199]

How it works...
In this example, we will use the os module, which is part of the Python Standard Library
and provides a portable way of performing operating system calls.

The first use of the os module is the translation of the initial path of the tree to an absolute
path, as well as initializing the nodes dictionary, which will store the correspondence
between expandable items and the path of the directories they represent:

import os
import tkinter as tk
import tkinter.ttk as ttk

class App(tk.Tk):
 def __init__(self, path):
 # ...
 abspath = os.path.abspath(path)
 self.nodes = {}

For instance, os.path.abspath(".") will return the absolute version of the pathname
you run the script from. We prefer this approach to using relative paths, because this saves
us from any confusion when working with paths in our application.

Now, we initialize the ttk.Treeview instance with a vertical and horizontal scroll bar. The
text of the icon heading will be the absolute path we calculated earlier:

 self.tree = ttk.Treeview(self)
 self.tree.heading("#0", text=abspath, anchor=tk.W)
 ysb = ttk.Scrollbar(self, orient=tk.VERTICAL,
 command=self.tree.yview)
 xsb = ttk.Scrollbar(self, orient=tk.HORIZONTAL,
 command=self.tree.xview)
 self.tree.configure(yscroll=ysb.set, xscroll=xsb.set)

Then, we place the widgets using the Grid geometry manager and also make the
ttk.Treeview instance automatically resizable both horizontally and vertically.

After this, we bind the "<<TreeviewOpen>>" virtual event, which is generated when an
expandable item is opened to the open_node() handler and call populate_node() to load
the entries of the specified directory:

 self.tree.bind("<<TreeviewOpen>>", self.open_node)
 self.populate_node("", abspath)

Themed Widgets Chapter 8

[200]

Note that the first call to this method is made with the empty string as the parent directory,
which means that they do not have any parent and are displayed as top-level items.

Within the populate_node() method, we list the names of the directory entries by
invoking os.listdir(). For each entry name, we perform the following actions:

We calculate the absolute path of the entry. On UNIX-like systems, this is
achieved by concatenating the strings with a slash, but Windows uses
backslashes instead. Thanks to the os.path.join() method, we can safely join
the paths without worrying about platform-dependent details.
We insert the entry string as the last child of the indicated parent node. We
always set that nodes to be initially closed, because we want to lazy load the
nested items only when needed.
If the entry absolute path is a directory, we add the correspondence between the
node and the path in the nodes attribute and insert an empty child that allows
the item to be expanded:

 def populate_node(self, parent, abspath):
 for entry in os.listdir(abspath):
 entry_path = os.path.join(abspath, entry)
 node = self.tree.insert(parent, tk.END, text=entry, open=False)
 if os.path.isdir(entry_path):
 self.nodes[node] = entry_path
 self.tree.insert(node, tk.END)

When an expandable item is clicked, the open_node() handler retrieves the selected item
by calling the focus() method of the ttk.Treeview instance.

This item identifier is used to get the absolute path previously added to the nodes attribute.
To avoid raising KeyError if the node does not exist within the dictionary, we used its
pop() method, which returns the second parameter as a default value—in our case, False.

If the node exists, we clear the "fake" item of the expandable node. Calling
self.tree.get_children(item) returns the identifiers of the children for item, and
then they are deleted by invoking self.tree.delete(children).

Once the item is cleared, we add the "real" children entries by calling populate_node()
with item as their parent:

 def open_node(self, event):
 item = self.tree.focus()
 abspath = self.nodes.pop(item, False)
 if abspath:
 children = self.tree.get_children(item)

Themed Widgets Chapter 8

[201]

 self.tree.delete(children)
 self.populate_node(item, abspath)

Displaying tabbable panes with Notebook
The ttk.Notebook class is another of the new widget types introduced in the ttk module.
It allows you to add many views of your application in the same window area, letting you
choose the one that should be displayed by clicking on the tab associated to each view.

Tabbed panels are a good way to reuse the same portion of your GUI if the contents of
multiple regions do not need to be shown at the same time.

Getting ready
The following application shows some to-do lists divided into tabs by category—lists are
displayed with read-only data to simplify the example:

How to do it...
We instantiate the ttk.Notebook with a fixed size, and then loop over a dictionary with
some predefined data that will serve to create the tabs and add some labels to each region:

import tkinter as tk
import tkinter.ttk as ttk

class App(tk.Tk):

Themed Widgets Chapter 8

[202]

 def __init__(self):
 super().__init__()
 self.title("Ttk Notebook")

 todos = {
 "Home": ["Do the laundry", "Go grocery shopping"],
 "Work": ["Install Python", "Learn Tkinter", "Reply emails"],
 "Vacations": ["Relax!"]
 }

 self.notebook = ttk.Notebook(self, width=250, height=100)
 self.label = ttk.Label(self)
 for key, value in todos.items():
 frame = ttk.Frame(self.notebook)
 self.notebook.add(frame, text=key, underline=0,
 sticky=tk.NE + tk.SW)
 for text in value:
 ttk.Label(frame, text=text).pack(anchor=tk.W)

 self.notebook.pack()
 self.label.pack(anchor=tk.W)
 self.notebook.enable_traversal()
 self.notebook.bind("<<NotebookTabChanged>>", self.select_tab)

 def select_tab(self, event):
 tab_id = self.notebook.select()
 tab_name = self.notebook.tab(tab_id, "text")
 text = "Your current selection is: {}".format(tab_name)
 self.label.config(text=text)

if __name__ == "__main__":
 app = App()
 app.mainloop()

Every time you click on a tab, the label at the bottom of the window updates its contents,
showing the name of the current tab.

How it works...
Our ttk.Notebook widget is created with a specific width and height, as well as an
external padding.

Themed Widgets Chapter 8

[203]

Each key from the todos dictionary is used as the name of a tab, and the list of values is
added as labels to ttk.Frame, which represents the window region:

 self.notebook = ttk.Notebook(self, width=250, height=100,
padding=10)
 for key, value in todos.items():
 frame = ttk.Frame(self.notebook)
 self.notebook.add(frame, text=key,
 underline=0, sticky=tk.NE+tk.SW)
 for text in value:
 ttk.Label(frame, text=text).pack(anchor=tk.W)

After this, we call enable_traversal() on the ttk.Notebook widget. This allows users
to switch tabs back and forth between tab panels using Ctrl + Shift + Tab and Ctrl + Tab,
respectively.

It also enables switching into a specific tab by pressing Alt and the underlined character,
that is, Alt + H for the Home tab, Alt + W for the Work tab, and Alt + V for the Vacation tab.

The "<<NotebookTabChanged>>" virtual event is generated when the tab selection
changes, and we bind it to the select_tab() method. Note that this event is automatically
raised when Tkinter adds a tab to ttk.Notebook:

 self.notebook.pack()
 self.label.pack(anchor=tk.W)
 self.notebook.enable_traversal()
 self.notebook.bind("<<NotebookTabChanged>>", self.select_tab)

When we pack the items, it is not necessary to place the ttk.Notebook child windows
since it is internally done by the ttk.Notebook call to the geometry manager:

 def select_tab(self, event):
 tab_id = self.notebook.select()
 tab_name = self.notebook.tab(tab_id, "text")
 self.label.config(text=f"Your current selection is: {tab_name}")

There's more...
If you want to retrieve the current displayed child of the ttk.Notebook, you do not need
to use any extra data structures to map the tab index with the widget window.

Themed Widgets Chapter 8

[204]

Tkinter's nametowidget() method is available from all widget classes, so you can easily
get the widget object that corresponds to a widget name:

 def select_tab(self, event):
 tab_id = self.notebook.select()
 frame = self.nametowidget(tab_id)
 # Do something with the frame

Applying Ttk styling
As we mentioned in the first recipe of this chapter, themed widgets have a specific API to
customize their appearance. We cannot directly set options, such as the foreground color or
the internal padding, because these values are set via the ttk.Style class.

In this recipe, we will cover how to modify the widgets from the first recipe to add some
styling options.

How to do it...
To add some default settings, we will simply need a ttk.Style object, which offers the
following methods:

configure(style, opts): Changes the appearance opts for a widget style.
Here is where we set options such as the foreground color, padding, and relief.
map(style, query): Changes the dynamic appearance for a widget style. The
argument query is a keywords argument where each key is a styling option, and
values are lists of tuples of the (state, value) form, meaning that the value of
the option is determined by its current state.

For instance, we have marked the following examples of both situations:

import tkinter as tk
import tkinter.ttk as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.title("Tk themed widgets")

 style = ttk.Style(self)
 style.configure("TLabel", padding=10)

Themed Widgets Chapter 8

[205]

 style.map("TButton",
 foreground=[("pressed", "grey"), ("active", "white")],
 background=[("pressed", "white"), ("active", "grey")]
)
 # ...

Now, every ttk.Label is displayed with a padding of 10, and the ttk.Button has a
dynamic styling: gray foreground and white background when the state is pressed, and
white foreground and gray background if the state is active.

How it works...
Building ttk.Style for our applications is quite straightforward—we only need to create
an instance with our parent widget as its first parameter.

Then, we can set the default styling options for our themed widgets, using an uppercase T
plus the widget name: TButton for ttk.Button, TLabel for ttk.Label, and so on.
However, there are some exceptions, so it is recommended that you check on the Python
interpreter the classname by calling the winfo_class() method on the widget instance.

We can also add a prefix to identify a style that we do not want to use by default, but
explicitly set it to some specific widgets:

 style.configure("My.TLabel", padding=10)
 # ...
 label = ttk.Label(master, text="Some text", style="My.TLabel")

Creating a datepicker widget
If we want to let users input a date into our application, we might add a text entry that
forces them to write a string with a valid date format. Another solution would be adding
several numeric entries for the day, month, and year, but this would also require some
validations.

Unlike other GUI frameworks, Tkinter does not include a class for this purpose; however,
we can opt to apply our knowledge of themed widgets to build a Calendar widget.

Themed Widgets Chapter 8

[206]

Getting ready
In this recipe, we will explain a step-by-step implementation of a datepicker widget made
with Ttk widgets and features:

This is a refactored version of http:/ ​/ ​svn. ​python. ​org/​projects/ ​sandbox/ ​trunk/ ​ttk-
gsoc/​samples/​ttkcalendar. ​py and does not require any external packages.

How to do it...
Apart from the tkinter modules, we will also need the calendar and datetime modules
from the Standard Library. They will help us to model and interact with the data held by
the widget.

The widget header displays a couple of arrows to move the current month back and forth,
based on Ttk styling options. The main body of the widget consists of a ttk.Treeview
table, with a Canvas instance that highlights the selected date cell:

import calendar
import datetime
import tkinter as tk
import tkinter.ttk as ttk
import tkinter.font as tkfont
from itertools import zip_longest

class TtkCalendar(ttk.Frame):
 def __init__(self, master=None, **kw):
 now = datetime.datetime.now()

http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py

Themed Widgets Chapter 8

[207]

 fwday = kw.pop('firstweekday', calendar.MONDAY)
 year = kw.pop('year', now.year)
 month = kw.pop('month', now.month)
 sel_bg = kw.pop('selectbackground', '#ecffc4')
 sel_fg = kw.pop('selectforeground', '#05640e')

 super().__init__(master, **kw)

 self.selected = None
 self.date = datetime.date(year, month, 1)
 self.cal = calendar.TextCalendar(fwday)
 self.font = tkfont.Font(self)
 self.header = self.create_header()
 self.table = self.create_table()
 self.canvas = self.create_canvas(sel_bg, sel_fg)
 self.build_calendar()

 def create_header(self):
 left_arrow = {'children': [('Button.leftarrow', None)]}
 right_arrow = {'children': [('Button.rightarrow', None)]}
 style = ttk.Style(self)
 style.layout('L.TButton', [('Button.focus', left_arrow)])
 style.layout('R.TButton', [('Button.focus', right_arrow)])

 hframe = ttk.Frame(self)
 btn_left = ttk.Button(hframe, style='L.TButton',
 command=lambda: self.move_month(-1))
 btn_right = ttk.Button(hframe, style='R.TButton',
 command=lambda: self.move_month(1))
 label = ttk.Label(hframe, width=15, anchor='center')

 hframe.pack(pady=5, anchor=tk.CENTER)
 btn_left.grid(row=0, column=0)
 label.grid(row=0, column=1, padx=12)
 btn_right.grid(row=0, column=2)
 return label

 def move_month(self, offset):
 self.canvas.place_forget()
 month = self.date.month - 1 + offset
 year = self.date.year + month // 12
 month = month % 12 + 1
 self.date = datetime.date(year, month, 1)
 self.build_calendar()

 def create_table(self):
 cols = self.cal.formatweekheader(3).split()
 table = ttk.Treeview(self, show='', selectmode='none',

Themed Widgets Chapter 8

[208]

 height=7, columns=cols)
 table.bind('<Map>', self.minsize)
 table.pack(expand=1, fill=tk.BOTH)
 table.tag_configure('header', background='grey90')
 table.insert('', tk.END, values=cols, tag='header')
 for _ in range(6):
 table.insert('', tk.END)

 width = max(map(self.font.measure, cols))
 for col in cols:
 table.column(col, width=width, minwidth=width, anchor=tk.E)
 return table

 def minsize(self, e):
 width, height = self.master.geometry().split('x')
 height = height[:height.index('+')]
 self.master.minsize(width, height)

 def create_canvas(self, bg, fg):
 canvas = tk.Canvas(self.table, background=bg,
 borderwidth=0, highlightthickness=0)
 canvas.text = canvas.create_text(0, 0, fill=fg, anchor=tk.W)
 handler = lambda _: canvas.place_forget()
 canvas.bind('<ButtonPress-1>', handler)
 self.table.bind('<Configure>', handler)
 self.table.bind('<ButtonPress-1>', self.pressed)
 return canvas

 def build_calendar(self):
 year, month = self.date.year, self.date.month
 month_name = self.cal.formatmonthname(year, month, 0)
 month_weeks = self.cal.monthdayscalendar(year, month)

 self.header.config(text=month_name.title())
 items = self.table.get_children()[1:]
 for week, item in zip_longest(month_weeks, items):
 week = week if week else []
 fmt_week = ['%02d' % day if day else '' for day in week]
 self.table.item(item, values=fmt_week)

 def pressed(self, event):
 x, y, widget = event.x, event.y, event.widget
 item = widget.identify_row(y)
 column = widget.identify_column(x)
 items = self.table.get_children()[1:]

 if not column or not item in items:
 # clicked te header or outside the columns

Themed Widgets Chapter 8

[209]

 return

 index = int(column[1]) - 1
 values = widget.item(item)['values']
 text = values[index] if len(values) else None
 bbox = widget.bbox(item, column)
 if bbox and text:
 self.selected = '%02d' % text
 self.show_selection(bbox)

 def show_selection(self, bbox):
 canvas, text = self.canvas, self.selected
 x, y, width, height = bbox
 textw = self.font.measure(text)
 canvas.configure(width=width, height=height)
 canvas.coords(canvas.text, width - textw, height / 2 - 1)
 canvas.itemconfigure(canvas.text, text=text)
 canvas.place(x=x, y=y)

 @property
 def selection(self):
 if self.selected:
 year, month = self.date.year, self.date.month
 return datetime.date(year, month, int(self.selected))

def main():
 root = tk.Tk()
 root.title('Tkinter Calendar')
 ttkcal = TtkCalendar(firstweekday=calendar.SUNDAY)
 ttkcal.pack(expand=True, fill=tk.BOTH)
 root.mainloop()

if __name__ == '__main__':
 main()

How it works...
Our TtkCalendar class can be customized by passing some options as keyword
arguments. They are retrieved during its initialization, with some default values in case
they are not present; for example, if the current date is used for initial year and month of
our calendar:

 def __init__(self, master=None, **kw):
 now = datetime.datetime.now()
 fwday = kw.pop('firstweekday', calendar.MONDAY)

Themed Widgets Chapter 8

[210]

 year = kw.pop('year', now.year)
 month = kw.pop('month', now.month)
 sel_bg = kw.pop('selectbackground', '#ecffc4')
 sel_fg = kw.pop('selectforeground', '#05640e')

 super().__init__(master, **kw)

Then, we define some attributes to store date information:

selected: Holds the value of the selected date
date: The date that represents the current month displayed on the calendar
calendar: A Gregorian calendar with information on weeks and month names

The visual parts of the widget are internally instantiated in the create_header() and
create_table() methods, which we will cover later.

We also used a tkfont.Font instance to help us to measure the font size.

Once these attributes are initialized, the visual parts of the calendar are arranged by calling
the build_calendar() method:

 self.selected = None
 self.date = datetime.date(year, month, 1)
 self.cal = calendar.TextCalendar(fwday)
 self.font = tkfont.Font(self)
 self.header = self.create_header()
 self.table = self.create_table()
 self.canvas = self.create_canvas(sel_bg, sel_fg)
 self.build_calendar()

The create_header() method uses ttk.Style to display the arrows to move the month
back and forth. It returns the label that shows the name of the current month:

 def create_header(self):
 left_arrow = {'children': [('Button.leftarrow', None)]}
 right_arrow = {'children': [('Button.rightarrow', None)]}
 style = ttk.Style(self)
 style.layout('L.TButton', [('Button.focus', left_arrow)])
 style.layout('R.TButton', [('Button.focus', right_arrow)])

 hframe = ttk.Frame(self)
 lbtn = ttk.Button(hframe, style='L.TButton',
 command=lambda: self.move_month(-1))
 rbtn = ttk.Button(hframe, style='R.TButton',
 command=lambda: self.move_month(1))
 label = ttk.Label(hframe, width=15, anchor='center')

Themed Widgets Chapter 8

[211]

 # ...
 return label

The move_month() callback hides the current selection highlighted with the canvas field
and adds the specified offset to the current month to set the date attribute with the
previous or next month. Then, the calendar is redrawn again, showing the days of the new
month:

 def move_month(self, offset):
 self.canvas.place_forget()
 month = self.date.month - 1 + offset
 year = self.date.year + month // 12
 month = month % 12 + 1
 self.date = datetime.date(year, month, 1)
 self.build_calendar()

The calendar body is created within create_table() using a ttk.Treeview widget,
which displays each week of the current month in a row:

 def create_table(self):
 cols = self.cal.formatweekheader(3).split()
 table = ttk.Treeview(self, show='', selectmode='none',
 height=7, columns=cols)
 table.bind('<Map>', self.minsize)
 table.pack(expand=1, fill=tk.BOTH)
 table.tag_configure('header', background='grey90')
 table.insert('', tk.END, values=cols, tag='header')
 for _ in range(6):
 table.insert('', tk.END)

 width = max(map(self.font.measure, cols))
 for col in cols:
 table.column(col, width=width, minwidth=width, anchor=tk.E)
 return table

The canvas that highlights the selection is instantiated within the create_canvas()
method. Since it adjusts its size depending on the selected item dimensions, it also hides
itself if the window is resized:

 def create_canvas(self, bg, fg):
 canvas = tk.Canvas(self.table, background=bg,
 borderwidth=0, highlightthickness=0)
 canvas.text = canvas.create_text(0, 0, fill=fg, anchor=tk.W)
 handler = lambda _: canvas.place_forget()
 canvas.bind('<ButtonPress-1>', handler)
 self.table.bind('<Configure>', handler)
 self.table.bind('<ButtonPress-1>', self.pressed)

Themed Widgets Chapter 8

[212]

 return canvas

The calendar is built by iterating over the weeks and item positions of the ttk.Treeview
table. With the zip_longest() function from the itertools module, we iterate over the
collection that contains most items and leave the missing days with an empty string:

This behavior is important for the first and last week of each month, because this is where
we usually find these empty spots:

 def build_calendar(self):
 year, month = self.date.year, self.date.month
 month_name = self.cal.formatmonthname(year, month, 0)
 month_weeks = self.cal.monthdayscalendar(year, month)

 self.header.config(text=month_name.title())
 items = self.table.get_children()[1:]
 for week, item in zip_longest(month_weeks, items):
 week = week if week else []
 fmt_week = ['%02d' % day if day else '' for day in week]
 self.table.item(item, values=fmt_week)

When you click on a table item, the pressed() event handler sets the selection if the item
exists, and redisplays the canvas to highlight the selection:

 def pressed(self, event):
 x, y, widget = event.x, event.y, event.widget

Themed Widgets Chapter 8

[213]

 item = widget.identify_row(y)
 column = widget.identify_column(x)
 items = self.table.get_children()[1:]

 if not column or not item in items:
 # clicked te header or outside the columns
 return

 index = int(column[1]) - 1
 values = widget.item(item)['values']
 text = values[index] if len(values) else None
 bbox = widget.bbox(item, column)
 if bbox and text:
 self.selected = '%02d' % text
 self.show_selection(bbox)

The show_selection() method places the canvas on the bounding box that contains the
selection, measuring the text size so it fits on top of it:

 def show_selection(self, bbox):
 canvas, text = self.canvas, self.selected
 x, y, width, height = bbox
 textw = self.font.measure(text)
 canvas.configure(width=width, height=height)
 canvas.coords(canvas.text, width - textw, height / 2 - 1)
 canvas.itemconfigure(canvas.text, text=text)
 canvas.place(x=x, y=y)

Finally, the selection property makes it possible to get the selected date as a
datetime.date object. It is not directly used in our example, but it forms part of the API to
work with the TtkCalendar class:

 @property
 def selection(self):
 if self.selected:
 year, month = self.date.year, self.date.month
 return datetime.date(year, month, int(self.selected))

See also
The Using the Treeview widget recipe
The Applying Ttk styling recipe

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Tkinter GUI Application Development Blueprints - Second Edition
Bhaskar Chaudhary

ISBN: 978-1-78883-746-0

Get to know the basic concepts of GUI programming, such as Tkinter top-level
widgets, geometry management, event handling, using callbacks, custom styling,
and dialogs
Create apps that can be scaled in size or complexity without breaking down the
core
Write your own GUI framework for maximum code reuse
Build apps using both procedural and OOP styles, understanding the strengths
and limitations of both styles
Learn to structure and build large GUI applications based on Model-View-
Controller (MVC) architecture
Build multithreaded and database-driven apps
Create apps that leverage resources from the network
Implement mathematical concepts using Tkinter Canvas
Develop apps that can persist application data with object serialization and tools
such as configparser

https://www.packtpub.com/application-development/tkinter-gui-application-development-blueprints

Other Books You May Enjoy

[215]

Learn QT 5
Nicholas Sherriff

ISBN: 978-1-78847-885-4

Install and configure the Qt Framework and Qt Creator IDE
Create a new multi-project solution from scratch and control every aspect of it
with QMake
Implement a rich user interface with QML
Learn the fundamentals of QtTest and how to integrate unit testing
Build self-aware data entities that can serialize themselves to and from JSON
Manage data persistence with SQLite and CRUD operations
Reach out to the internet and consume an RSS feed
Produce application packages for distribution to other users

https://www.packtpub.com/web-development/learn-qt-5

Other Books You May Enjoy

[216]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
actions
 scheduling 129, 131
Affero General Public License (AGPL) 183
alert dialogs
 displaying 77, 80
arrows
 drawing 154, 156
attrs package
 reference 109

B
basic widget classes
 replacing 185, 187
buttons
 working with 10, 11

C
canvas items
 about 151
 events, binding 178, 181
canvas
 about 151
 items, deleting 175, 178
 items, moving 168, 171
 rendering, into PostScript file 181
 shapes, adding 161, 165
 text, writing 157, 160
checkboxes
 used, for implementing switches 23, 24
collisions, between items
 detecting 172, 175
colors
 working with 57, 59
Combobox

 used, for creating editable drop-down 188, 191
comma-separated values (CSV) file
 records, reading 112
context menus
 displaying 93, 96
coordinate system
 about 152
 working 153
cursor icon
 changing 66, 68

D
data
 persisting, into SQLite database 114, 119, 121
 saving, into file 86, 88
 structuring, with class 106, 108
datepicker widget
 creating 205, 209, 212, 213
directories
 selecting 82, 85

E
editable drop-down
 creating, with Combobox 188, 191
entry option
 reference 97
events
 binding, to canvas items 178, 181

F
file
 data, saving 86, 88
 selecting 82, 85
frames
 used, for grouping widgets 34, 36

[218]

G
Ghostscript
 reference 183
GIL (Global Interpreter Lock) 132
Graphical User Interface (GUI) 7
Grid geometry manager
 using 40, 42

H
horizontal scrollbars
 creating 51, 54
HTTP requests
 performing 136, 138

I
idle tasks
 handling 146, 147
inputs
 grouping, with LabelFrame widget 48
items
 deleting, from canvas 175, 178
 finding, by position 166, 168

L
LabelFrame widget
 used, for grouping inputs 48
 used, for grouping widgets 46
lines
 drawing 154, 156
list of items
 displaying 24, 27
logical
 grouping, with LabelFrame widget 46

M
main thread 128
main window
 icon, setting 31
 size, setting 31
 title, setting 31
menu bar
 creating 89, 90
menus

 variables, using 91, 93
methods
 executing, on threads 132, 135
Model-View-Controller (MVC) 105
mouse and keyboard events
 handling 27, 30
MVC pattern
 controller 122
 model 122
 used, for refactoring 121, 127
 view 122

N
Natural Language Processing (NLP) 6
nested items
 populating, in Treeview 196, 200
Notebook
 tabbable panes, displaying 201, 203
numerical values
 selecting 19, 20

O
object-oriented programming (OOP) 105
observer pattern 126
options database
 using 63, 66

P
Pack geometry manager
 using 37, 39, 40
passive model 127
Place geometry manager
 using 43, 45
PostScript file
 canvas, rendering 181
progress bar
 threads, connecting 139, 143
Python
 reference 18

R
race conditions 142
radio buttons
 used, for creating selections 21, 22

records
 reading, from CSV file 112
RGB value 57

S
scheduled actions
 canceling 143, 146
secondary window
 opening 97, 99
selections
 creating, with radio buttons 21, 22
separate processes
 spawning 147, 149
shapes
 adding, to canvas 162, 165
SQLite database
 data, persisting 114, 120
switches
 implementing, with checkboxes 23, 24

T
tabbable panes
 displaying, with Notebook 201, 203
tags
 adding, to Text widget 72, 74
 using, in Treeview widget 195
target method
 parameterizing 135
Tcl/Tk documentation
 reference 31, 68
Text widget
 about 69
 tags, adding 72, 74
 working 71
text
 changes, tracing 14, 16
 entries, creating 12, 13
 entry, validating 16, 18
 line wrapping, setting 161
 placing, by upper-left corner 160
 writing, on canvas 157, 160
thread methods

 join 135
 run 135
 start 135
threads
 about 128
 connecting, with progress bar 139, 142
 methods, executing 132, 134
tk-themed widgets 184
Tkinter application
 about 6
 structuring 7, 9
Treeview widget
 nested items, posting 196, 200
 tags, using 195
 using 191, 194
Ttk styling
 applying 204, 205

U
user confirmation
 seeking 80, 82

V
variables
 passing, between windows 102, 104
 using, in menus 91, 93
vertical scrollbar
 creating 51, 55

W
widget fonts
 setting 60, 62
widgets
 about 33
 composing, for information display 109, 111
 grouping, with frames 34, 36
 laying out dynamically 48, 50
window deletion
 handling 99, 101
windows
 variables, passing between 102, 104

	Cover
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Tkinter
	Introduction
	Structuring a Tkinter application
	Getting ready
	How to do it...
	How it works...
	There's more...

	Working with buttons
	How to do it...
	How it works...
	There's more...

	Creating text entries
	How to do it...
	How it works...
	There's more...
	See also

	Tracing text changes
	How to do it...
	How it works...
	There's more...
	See also

	Validating a text entry
	How to do it...
	How it works...
	There's more...
	See also

	Selecting numerical values
	How to do it...
	How it works...
	There's more...
	See also

	Creating selections with radio buttons
	How to do it...
	How it works...
	There's more...

	Implementing switches with checkboxes
	How to do it...
	How it works...
	There's more...
	See also

	Displaying a list of items
	How to do it...
	How it works...
	There's more...
	See also

	Handling mouse and keyboard events
	How to do it...
	How it works...
	There's more...
	See also

	Setting the main window's icon, title, and size
	How to do it...
	How it works...
	There's more...

	Chapter 2: Window Layout
	Introduction
	Grouping widgets with frames
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using the Pack geometry manager
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using the Grid geometry manager
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using the Place geometry manager
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Grouping inputs with the LabelFrame widget
	Getting ready
	How to do it…
	How it works…

	Dynamically laying out widgets
	Getting ready
	How to do it…
	How it works…

	Creating horizontal and vertical scrollbars
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 3: Customizing Widgets
	Introduction
	Working with colors
	Getting ready
	How to do it...
	How it works...
	There's more...

	Setting widget fonts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using the options database
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Changing the cursor icon
	Getting ready
	How to do it...
	How it works...
	There's more...

	Introducing the Text widget
	Getting ready
	How to do it...
	How it works...

	Adding tags to the Text widget
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Dialogs and Menus
	Introduction
	Showing alert dialogs
	Getting ready
	How to do it...
	How it works...

	Asking for user confirmation
	Getting ready
	How to do it...
	How it works...

	Choosing files and directories
	Getting ready
	How to do it...
	How it works...
	There's more...

	Saving data into a file
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a menu bar
	Getting ready
	How to do it...
	How it works...

	Using variables in menus
	Getting ready
	How to do it...
	How it works...

	Displaying context menus
	Getting ready
	How to do it...
	How it works...
	There's more...

	Opening a secondary window
	Getting ready
	How to do it...
	How it works...

	Handling window deletion
	Getting ready
	How to do it...
	How it works...
	There's more...

	Passing variables between windows
	Getting ready
	How to do it...
	How it works...

	Chapter 5: Object-Oriented Programming and MVC
	Introduction
	Structuring our data with a class
	Getting ready
	How to do it...
	How it works...
	There's more...

	Composing widgets to display information
	Getting ready
	How to do it...
	How it works...

	Reading records from a CSV file
	Getting ready
	How to do it...
	How it works...

	Persisting data into a SQLite database
	Getting ready
	How to do it...
	How it works...
	See also

	Refactoring using the MVC pattern
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 6: Asynchronous Programming
	Introduction
	Scheduling actions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Running methods on threads
	How to do it...
	How it works...
	There's more...
	Thread methods - start, run, and join
	Parameterizing the target method

	Performing HTTP requests
	Getting ready
	How to do it...
	How it works...
	See also

	Connecting threads with a progress bar
	Getting ready
	How to do it...
	How it works...
	See also

	Canceling scheduled actions
	Getting ready
	How to do it...
	How it works...
	There's more...

	Handling idle tasks
	Getting ready
	How to do it...
	How it works...

	Spawning separate processes
	Getting ready
	How to do it...
	How it works...

	Chapter 7: Canvas and Graphics
	Introduction
	Understanding the coordinate system
	How to do it...
	How it works...
	There's more...

	Drawing lines and arrows
	Getting ready
	How to do it...
	How it works...

	Writing text on a canvas
	Getting ready
	How to do it...
	How it works...
	There's more...
	Placing the text by its upper-left corner
	Setting line wrapping

	Adding shapes to the canvas
	Getting ready
	How to do it...
	How it works...
	See also

	Finding items by their position
	Getting ready
	How to do it...
	How it works...

	Moving canvas items
	How to do it...
	How it works...
	There's more...
	See also

	Detecting collisions between items
	Getting ready
	How to do it...
	How it works...
	There's more...

	Deleting items from a canvas
	Getting ready
	How to do it...
	How it works...

	Binding events to canvas items
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Rendering a canvas into a PostScript file
	How to do it...
	How it works...
	There's more...

	Chapter 8: Themed Widgets
	Introduction
	Replacing basic widget classes
	Getting ready
	How to do it...
	How it works...
	See also

	Creating an editable drop-down with Combobox
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the Treeview widget
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using tags in Treeview items

	See also

	Populating nested items in a Treeview
	Getting ready
	How to do it...
	How it works...

	Displaying tabbable panes with Notebook
	Getting ready
	How to do it...
	How it works...
	There's more...

	Applying Ttk styling
	How to do it...
	How it works...

	Creating a datepicker widget
	Getting ready
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Index

