

Mastering GUI Programming
with Python

Develop impressive cross-platform GUI applications
with PyQt

Alan D. Moore

BIRMINGHAM - MUMBAI

Mastering GUI Programming with Python
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar
Content Development Editor: Digvijay Bagul
Technical Editor: Abin Sebastian
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics Coordinator: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: May 2019

Production reference: 2100919

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-290-5

www.packtpub.com

http://www.packtpub.com

To my children—may you be inspired to create, be diligent to create well, and be bold enough
to share your creations confidently with the world.

– Alan D. Moore

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Alan D. Moore is a data analyst and software developer who has been solving problems
with Python since 2006. He's developed both open source and private code using
frameworks such as Django, Flask, Qt, and Tkinter, and contributes to various open source
Python and JavaScript projects. Alan is the author of Python GUI Programming with Tkinter.

Sincere thanks to my wife, Cara, for her patience and support; Caspian Moore for his
prodigal knowledge of OpenGL; Emeth Moore for his awesome "Fight Fighter" graphics
and unrivalled knowledge of memes; my friends and family who have been so graciously
excited about a book they mostly don't understand; and to the fine people of Packt for their
patience and flexibility. Most of all, thanks to God for leading me to this opportunity.

About the reviewer
Chankey Pathak is a data scientist from India. He's the author of a Python API for high-
frequency trading with Morgan Stanley. He has worked with Citadel, Sophos, and
Proofpoint in the past. He's also well-known in the Perl community for his contributions.
He is an open source contributor and loves Linux.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Deep Dive into PyQt
Chapter 1: Getting Started with PyQt 10

Technical requirements 10
Installing Qt Designer 11

Introducing Qt and PyQt 12
PyQt5 12
Working with Qt and PyQt 13

Understanding Qt's documentation 13
Core Qt modules 14

Creating Hello Qt – our first window 15
Creating a PyQt application template 17
Introducing Qt Designer 19

Using Qt Designer 19
Summary 21
Questions 21
Further reading 22

Chapter 2: Building Forms with QtWidgets 23
Technical requirements 23
Creating basic QtWidgets widgets 23

QWidget 24
QWidget as a top-level window 25

QLabel 26
QLineEdit 27
QPushButton and other buttons 27
QComboBox 29
QSpinBox 30
QDateTimeEdit 31
QTextEdit 34

Placing and arranging widgets 35
Layout classes 35

QHBoxLayout and QVBoxLayout 35
QGridLayout 36
QFormLayout 37

Controlling widget size 38
Container widgets 41

QTabWidget 41
QGroupBox 42

Table of Contents

[ii]

Validating widgets 44
Creating an IPv4 entry widget 44
Using QSpinBox for discrete values 46

Building a calendar application GUI 48
Building the GUI in code 49

Creating the widgets 49
Building the layout 50

Building the GUI in Qt Designer 52
First steps 52
Building the right panel 53
Building the event form 54
Previewing the form 55

Summary 55
Questions 55
Further reading 57

Chapter 3: Handling Events with Signals and Slots 58
Technical requirements 58
Signal and slot basics 59

Restrictions on signal and slot connections 60
Creating custom signals and slots 62

Sharing data between windows using custom signals 63
Overloading signals and slots 65

Automating our calendar form 67
Using our hand-coded form 67

Creating and connecting our callback methods 68
The populate _list () method 69
The populate _form () method 70
The save _event () method 71
The delete _event () method 72
The check _delete _btn () method 72

Building our new category pop-up form 73
Using Qt Designer .ui files 75

Connecting slots in Qt Designer 75
Converting .ui files to Python 76
Automatic signal and slot connections 78
Using .ui files without conversion 79

Summary 80
Questions 80
Further reading 82

Chapter 4: Building Applications with QMainWindow 83
Technical requirements 83
The QMainWindow class 84

Setting a central widget 85
Adding a status bar 85
Creating an application menu 86

Table of Contents

[iii]

Menus on macOS 88
Adding toolbars 88
Adding dock widgets 91
Other QMainWindow features 93

Standard dialog boxes 93
QMessageBox 94
QFileDialog 97
QFontDialog 99
Other dialog boxes 100

Saving settings with QSettings 102
Limitations of QSettings 103

Summary 104
Questions 104
Further reading 105

Chapter 5: Creating Data Interfaces with Model-View Classes 106
Technical requirements 106
Understanding model-view design 107
Models and views in PyQt 110
Building a CSV editor 112

Creating a table model 112
Implementing read capabilities 113
Adding headers and sorting 115
Implementing write capabilities 116

Using the model in a view 119
Summary 122
Questions 122
Further reading 123

Chapter 6: Styling Qt Applications 124
Technical requirements 124
Using fonts, images, and icons 125

Setting a font 126
Dealing with missing fonts 127

Adding images 129
Using icons 130
Using Qt resource files 131

Qt resource files and fonts 133
Configuring colors, style sheets, and styles 135

Customizing colors with palettes 135
Working with QBrush objects 137

Customizing the appearance with Qt Style Sheets (QSS) 138
The downside of QSS 141

Customizing the appearance with QStyle 142
Customizing Qt styles 143
Drawing widgets 145

Table of Contents

[iv]

Creating animations 146
Basic property animations 146
Animating colors 147
Using animation groups 150

Summary 151
Questions 151
Further reading 153

Section 2: Working with External Resources
Chapter 7: Working with Audio-Visual Using QtMultimedia 155

Technical requirements 155
Simple audio playback 156
Recording and playing audio 158

The initial setup 158
Implementing sound playback 158

Loading the media 160
Tracking the playback position 162
Looping the audio 163
Setting the volume 164

Implementing recording 165
Examining and configuring the recorder 167

Recording and playing video 169
Building the basic GUI 170
Video playback 171
Video recording 172

Summary 176
Questions 177
Further reading 178

Chapter 8: Networking with QtNetwork 179
Technical requirements 179
Low-level networking with sockets 180

Building a chat GUI 181
Building a UDP chat client 182

Connecting signals 186
Testing the chat 186

Building a TCP chat client 187
Working with data streams 188
Sending data over TCP 189
Connecting our backend and testing 191

HTTP communications with QNetworkAccessManager 192
Simple downloading 192
Posting data and files 194

Building the GUI 195
The POSTing backend 196
Testing the utility 199

Table of Contents

[v]

Summary 200
Questions 200
Further reading 201

Chapter 9: Exploring SQL with Qt SQL 202
Technical requirements 202
SQL basics 203

Creating tables 203
Inserting and updating data 205

Updating existing rows 206
Selecting data 207

Table joins 207
SQL subqueries 208

Learning more 210
Performing SQL queries with Qt 210

Building a form 210
Connecting and making simple queries 212

Getting information about the database 213
Making simple queries 214
Prepared queries 215

Using QSqlQueryModel 217
Finishing the GUI 219

Using model-view widgets without SQL 219
Delegates and data mapping 221

Data mapping 223
Filtering data 226
Using a custom delegate 227
Inserting custom rows in a table view 228

Summary 230
Questions 231
Further reading 232

Section 3: Unraveling Advanced Qt Implementations
Chapter 10: Multithreading with QTimer and QThread 234

Technical requirements 234
Delayed actions with QTimer 235

Single shot timers 236
Repeating timers 237
Getting information from timers 238
Limitations of timers 238

Multithreading with QThread 239
The SlowSearcher file search engine 240
A non-threaded searcher 242

Testing our non-threaded search application 243
Adding threads 244
An alternate method 245

Table of Contents

[vi]

Threading tips and caveats 246
High concurrency with QThreadPool and QRunner 248

The file hasher GUI 248
A hash runner 250
Creating the thread pool 253
Testing the script 255
Threading and the Python GIL 255

Summary 256
Questions 257
Further reading 259

Chapter 11: Creating Rich Text with QTextDocument 260
Technical requirements 260
Creating rich text using markup 261

HTML basics 261
Style sheet syntax 263
Semantic versus cosmetic tags 263

Structure and heading tags 264
Typography tags 265
Hyperlinks 266
Lists and tables 267
Fonts, colors, images, and styles 269

Document-wide styles 270
Images 271

Differences between Qt rich text and Web HTML 271
Manipulating rich text using QTextDocument 272

Creating the invoice application GUI 272
Building InvoiceView 275

The QTextDocument structure 276
Character formats 279
Adding basic content 279
Inserting a list 281
Inserting a table 282
Finishing and testing 284

Printing rich text 285
Updating the Invoice app for print support 285
Configuring the printer 286
Printing a page 287
Print previewing 288
Exporting to PDF 288

Summary 289
Questions 289
Further reading 291

Chapter 12: Creating 2D Graphics with QPainter 292
Technical requirements 292

Table of Contents

[vii]

Image editing with QPainter 293
The meme generator GUI 293

The editing form 293
The main GUI 298

Drawing with QImage 298
The QPainter object 299

Saving our image 302
Custom widgets with QPainter 303

Building a GraphWidget 304
Painting the widget 306

Using GraphWidget 311
Animating 2D graphics with QGraphicsScene 313

First steps 313
Making a scene 314
Creating the tanks 316
Creating the bullets 320

Collision detection 322
Finishing the game 323

Summary 325
Questions 325
Further reading 327

Chapter 13: Creating 3D Graphics with QtOpenGL 328
Technical requirements 328
The basics of OpenGL 329

The rendering pipeline and drawing basics 329
Programs and shaders 330

A simple vertex shader 331
A simple fragment shader 333

Embedding OpenGL drawings with QOpenGLWidget 334
First steps with OpenGLWidget 334
Creating a program 336

Accessing our variables 337
Configuring a projection matrix 338
Drawing our first shape 339
Creating a 3D object 343

Animating and controlling OpenGL drawings 346
Animating in OpenGL 346

Zooming in and out 347
Summary 349
Questions 349
Further reading 350

Chapter 14: Embedding Data Plots with QtCharts 351
Technical requirements 351
Making a simple chart 352

Table of Contents

[viii]

Setting up the GUI 352
Building a disk usage chart 353

Displaying real-time data 358
Building a CPU usage chart 358
Updating the chart data 360
Panning and zooming around the chart 361

Styling Qt charts 362
Building the memory chart 363
Chart styling 365
Styling axes 367
Styling the legend 368

Summary 369
Questions 370
Further reading 371

Chapter 15: PyQt Raspberry Pi 372
Technical requirements 372
Running PyQt5 on the Pi 373

Editing Python on the Pi 375
Running PyQt5 applications on the Pi 375

Controlling GPIO devices with PyQt 376
Connecting the LED circuit 376
Writing a driver library 379

PWM 380
Setting a color 381
Cleaning up 382

Creating the PyQt GUI 383
Controlling PyQt with GPIO devices 384

Connecting the sensor circuit 384
Creating the sensor interface 386
Displaying the readings 388
Adding a hardware button 390

Expanding the circuit 390
Implementing the button driver 391

Summary 394
Questions 394
Further reading 396

Chapter 16: Web Browsing with QtWebEngine 397
Technical requirements 397
Building a basic browser with QWebEngineView 398

Using the QWebEngineView widget 398
Allowing multiple windows and tabs 400

Adding a tab for pop-up windows 402
Advanced QtWebEngine usage 403

Sharing a profile 403

Table of Contents

[ix]

Viewing history 404
Web settings 406
Building a text search feature 407

Summary 411
Questions 412
Further reading 413

Chapter 17: Preparing Your Software for Distribution 414
Technical requirements 414
Structuring a project 415

Tic-tac-toe 415
The engine class 415
The board class 417
The main window class 419

Module-style structure 421
Structuring the module 421
Non-Python files 423
Documentation and metadata 425

The LICENSE file 425
The README file 426
The docs directory 430
The requirements.txt file 430
Other files 431

Distributing with setuptools 431
Writing the setuptools configuration 432

Basic metadata arguments 432
Packages and dependencies 434
Non-Python files 436
Executables 437

Source distributions 438
Creating a source distribution 438
Installing a source distribution 439

Built distributions 440
Types of built distributions 440
Creating a wheel distribution 441
Installing a built distribution 442

Compiling with PyInstaller 443
PyInstaller overview 443
Basic command-line usage 443
The .spec file 445
Preparing QTicTacToe for PyInstaller 447

Dealing with non-Python files 449
Further debugging 450

Summary 451
Questions 452
Further reading 452

Table of Contents

[x]

Appendix A: Answers to Questions 454
Chapter 1 454
Chapter 2 456
Chapter 3 458
Chapter 4 461
Chapter 5 464
Chapter 6 466
Chapter 7 469
Chapter 8 470
Chapter 9 472
Chapter 10 475
Chapter 11 478
Chapter 12 481
Chapter 13 484
Chapter 14 487
Chapter 15 489
Chapter 16 491
Chapter 17 493

Appendix B: Upgrading Raspbian 9 to Raspbian 10 496

Other Books You May Enjoy 497

Index 500

Preface
In an age when the term application developer nearly always implies web application
developer, the building of desktop GUI applications may seem in danger of becoming a
quaint and obscure art. Yet on every forum, mailing list, and chat service where
programming is discussed, I find young Python coders eager to dive into GUI toolkits so
that they can start building the kind of software that any average person can readily
identify as an application. The one GUI library consistently recommended to these learners,
the one that is arguably Python's most exciting and most complete toolkit, is PyQt.

Despite this popularity, there have been relatively few resources available for learning
PyQt. Those who wish to learn it must rely heavily on outdated books, C++ documentation,
scattered blogs, or snippets of code found in mailing lists or Stack Overflow posts. There is
an apparent need for a modern tutorial and reference on PyQt for the Python programmer,
and this book aims to fill that need.

My first book, Python GUI Programming with Tkinter, focused on the rudiments of
application development using Tkinter, covering core topics such as interface design, unit
testing, program architecture, and packaging. In this book, I wanted to go beyond the
basics, not just teaching you how to build data-driven business forms (which so many
toolkits can produce, and so many other books can teach you to write), but to explore the
more exciting and unique possibilities offered by PyQt: multimedia, animation, 3D
graphics, image manipulation, networking, multi-threading, and more. Of course, this book
doesn't shirk the business side of things either, with solid coverage of data entry forms,
SQL databases, and charting.

There are two kinds of authors who write technical books. The first is the absolute expert,
with infallible authority and encyclopedic knowledge of the topic at hand, who is able to
draw on a deep understanding to produce explanations that perfectly address the learner's
most pertinent needs.

The second kind of author is a mere mortal possessed of a reasonable familiarity with the
basics, a willingness to research what is not known, and most importantly, a dogged
determination to ensure that every statement asserted in print is the whole and correct
truth. This author must be prepared to stop mid-sentence in the flow of writing to test
claims in the interpreter or code editor; to spend hours reading documentation, mailing-list
threads, code comments, and IRC logs in the pursuit of a more correct understanding; and
to delete and rewrite large swathes of their work when a new fact reveals a fault in their
original assumptions.

Preface

[2]

When I was asked to write a book on PyQt5, I could make no claims to being the first sort of
author (nor can I now); while I had developed and maintained several PyQt applications
both at work and in the open source world, my understanding of PyQt rarely strayed
beyond the simple needs of my own code. So, I have aspired to be the second type,
committing myself to diligent study and the painstaking process of sifting and distilling the
tangled mass of available information into a text that might guide the aspiring GUI
programmer toward mastery of PyQt.

As a proud father of five children, some of whom have a budding (if not blooming) interest
in programming, I have worked these past six months to write a book that I could
confidently and conscientiously put before them, should they wish to learn these skills. I
hope, dear reader, that you sense in this text this parental enthusiasm for your growth and
progress as we tackle this subject together.

Who this book is for
This book is for the intermediate Python programmer who wants to dig deep into the PyQt
application framework and learn how to make powerful GUI applications. It is assumed
that the reader knows the basics of Python syntax, features, and idioms such as functions,
classes, and common standard library tools. It is also assumed the reader has an
environment in which they are comfortable writing and executing Python code.

This book does not assume any prior knowledge of GUI development, other GUI toolkits,
or other versions of PyQt.

What this book covers
Chapter 1, Getting Started with PyQt, introduces you to the Qt and PyQt libraries. You will
learn how to set up your system for writing PyQt applications and be introduced to Qt
Designer. You will also write the traditional Hello World application and develop a basic
template for PyQt apps.

Chapter 2, Building Forms with QtWidgets, shows you the basics of making a PyQt GUI.
You'll meet the most common input and display widgets, learn to arrange them using
layouts, and learn how to validate user input. You'll put these skills into action developing
a calendar GUI.

Preface

[3]

Chapter 3, Handling Events with Signals and Slots, focuses on PyQt's event handling and
object communication system. You'll learn how to use this system to make your application
respond to user input, and how to create custom signals and slots. You'll put these skills to
work by completing your calendar application.

Chapter 4, Building Applications with QMainWindow, introduces you to the QMainWindow
class, which forms the basis of our applications throughout the rest of the book. You'll also
explore PyQt's standard dialog classes and the QSettings module for saving your app's
configuration.

Chapter 5, Creating Data Interfaces with Model-View Classes, focuses on Qt's Model-View
classes. You'll learn the principles of model-view design, explore the model-view classes in
QtWidgets, and exercise your knowledge as we develop a CSV editor.

Chapter 6, Styling Qt Applications, explores the styling capabilities of PyQt widgets. You
will spice up your GUI applications with custom fonts, images, and icons. You'll learn to
customize colors using style objects and Qt style sheets. Finally, we'll learn how to do basic
animations of style properties.

Chapter 7, Working with Audio-Visual Using QtMultimedia, explores the multimedia features
of Qt. You will learn how to playback and record audio and video in a way that works
seamlessly across platforms.

Chapter 8, Networking with QtNetwork, is focused on simple network communications
using the QtNetwork library. You will learn to communicate over raw sockets,
both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), as well as
learning to transmit and receive files and data using HTTP.

Chapter 9, Exploring SQL with QtSQL, introduces you to the world of SQL database
programming. You will learn the basics of SQL and the SQLite database. You will then
learn how your PyQt applications can use the QtSQL library to access data using raw SQL
commands or Qt's SQL model-view classes.

Chapter 10, Multithreading with QTimer and QThread, addresses the world of multithreaded
and asynchronous programming. You will learn to use timers to delay tasks on the event
loop and learn how to push processes into a separate execution thread using QThread.
You'll also learn how to do high-concurrency programming using QThreadPool.

Preface

[4]

Chapter 11, Creating Rich Text with QTextDocument, explores rich text and document
preparation in Qt. You'll be introduced to Qt's rich text markup language, and learn how to
build documents programmatically using QTextDocument. You'll also learn how to use
Qt's printing libraries to enable document printing easily across platforms.

Chapter 12, Creating 2D Graphics with Qpainter, digs deep into two-dimensional graphics in
Qt. You'll learn how to load and edit images and to create custom widgets. You'll also learn
about drawing and animating with the Qt Graphics system, and create an arcade-style
game.

Chapter 13, Creating 3D Graphics with QtOpenGL, introduces you to 3D graphics with
OpenGL. You will learn the basics of modern OpenGL programming, and how to use PyQt
widgets to display and interact with OpenGL drawings.

Chapter 14, Embedding Data Plots with QtCharts, explores Qt's built-in charting capabilities.
You'll learn how to create both static and animated charts, and how to customize the colors,
fonts, and styles of your charts.

Chapter 15, PyQt Raspberry Pi, focuses on the use of PyQt on the Raspberry Pi computer.
You'll learn how to set up PyQt on Raspbian Linux, and how to combine the power of PyQt
with the Raspberry Pi's GPIO pins to create GUI applications that interact with real-world
circuitry.

Chapter 16, Web Browsing with QtWebEngine, looks at PyQt's Chromium-based web
browser module. You'll explore the capabilities of this module as you build your own
multi-tabbed web browser.

Chapter 17, Preparing your Software for Distribution, discusses various ways to prepare your
code for sharing and distribution. We'll look at optimal project layout, packaging your
source code for other Python users using setuptools, and building standalone
executables using PyInstaller.

Appendix A, Answers to Questions, contains answers or suggestions for the questions at the
end of each chapter.

Appendix B, Upgrading Raspbian 9 to Raspbian 10, explains how to upgrade a Raspberry Pi
device from Raspbian 9 to Raspbian 10, for readers who are trying to follow the book before
the official release of Raspbian 10.

Preface

[5]

To get the most out of this book
The reader is expected to have proficiency in the Python language, particularly Python 3.
You should understand, at least in a basic sense, how to work with classes and object-
oriented programming. You may find it helpful to have a passing familiarity with C++,
since most of the available Qt documentation is aimed at that language.

You should have a computer running Windows, macOS, or Linux on which Python 3.7 has
been installed, and on which you can install other software as needed. You should have a
code editor and command-line shell with which you are comfortable. Finally, you should
have access to the internet.

Each chapter of this book contains one or more example applications. Although these
examples are available for download, you are encouraged to follow along, creating these
applications by hand to see the intermediate stages as the applications come together.

Each chapter also contains a series of questions or a suggested project to cement your
knowledge of the topic, and a selection of resources for further study on the topic. You will
get the most out of each chapter if you engage your mind and creativity in solving these
problems and reading the provided materials.

The code included in this book is released under the open source MIT license, which allows
you to re-use the code as you see fit, provided you retain the included copyright notices.
You are encouraged to use, modify, improve, and re-publish these programs.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[6]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- GUI- Programming- with- Python/ tree/ master. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789612905_ColorImages

.pdf.

Code in action
Visit the following link to check out videos of the code being run: http:/ /bit. ly/ 2M3QVrl

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "HTML documents are built hierarchically, with the outermost tag usually being
<html>."

A block of code is set as follows:

<table border=2>
 <thead>
 <tr
bgcolor='grey'><th>System</th><th>Graphics</th><th>Sound</th></tr>
 </thead>

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789612905_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789612905_ColorImages.pdf
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl
http://bit.ly/2M3QVrl

Preface

[7]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<table border=2>
 <thead>
 <tr
bgcolor='grey'><th>System</th><th>Graphics</th><th>Sound</th></tr>
 </thead>

Any command-line input or output is written as follows:

$ python game_lobby.py
Font is Totally Nonexistent Font Family XYZ
Actual font used is Bitstream Vera Sans

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

http://www.packt.com/submit-errata

Preface

[8]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Deep Dive into PyQt

In this section, you will explore the core features of PyQt. By the end of this section, you
should be comfortable with the basic design workflow and coding idioms involved in
writing PyQt applications and feel confident in your ability to construct simple PyQt
interfaces.

The following chapters are in this section:

Chapter 1, Getting Started with PyQt
Chapter 2, Building Forms with QtWidgets
Chapter 3, Handling Events with Signals and Slots
Chapter 4, Building Applications with QMainWindow
Chapter 5, Creating Data Interfaces with Model-View Classes
Chapter 6, Styling Qt Applications

1
Getting Started with PyQt

Welcome, Python programmer!

Python is a great language for system administration, data analysis, web services, and
command-line programs; most likely you've already found Python useful in at least one of
those areas. However, there is something truly satisfying about building the kind of GUI-
driven application that an end user can readily identify as a program, and this skill should
be in the toolbox of any master software developer. In this book, you're going to learn how
you can use Python and the Qt framework to develop amazing applications—from simple
data-entry forms to powerful multimedia tools.

We'll start our tour of these powerful technologies with the following topics:

Introducing Qt and PyQt
Creating Hello Qt – our first window
Creating a PyQt application template
Introducing Qt Designer

Technical requirements
For this chapter, and most of the rest of the book, you're going to need the following:

A PC running Microsoft Windows, Apple macOS, or a 64-bit flavor of
GNU/Linux.
Python 3, available from http:/ /www. python. org. The code in this book requires
Python 3.7 or later.

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Getting Started with PyQt Chapter 1

[11]

PyQt 5.12, which you can install from the Python Package Index using this
command:

$ pip install --user PyQt5

Linux users may also wish to install PyQt5 from their distribution's package
repositories.
Qt Designer 4.9, a WYSIWYG GUI building tool available from https:/ /www. qt.
io. See the following section for installation instructions.
The example code from https:/ /github. com/ PacktPublishing/ Mastering- GUI-
Programming- with- Python/ tree/ master/ Chapter01.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5OUeg

Installing Qt Designer
On Windows or macOS, Qt Designer is part of the Qt Creator IDE from the Qt company.
This is a free IDE that you can use for coding, though, at the time of writing, it is mainly
aimed at C++ and support for Python is rudimentary. The Qt Designer component can be
used regardless of whether you do your coding in Qt Creator or not.

You can download an installer for Qt Creator from https:/ /download. qt. io/official_
releases/qtcreator/ 4. 9/ 4.9. 0/ .

Although the Qt company offers a similar standalone Qt installer for Linux, most Linux
users will prefer to use packages from their distribution's repositories. Some distributions
offer Qt Designer as a standalone application, while others include it in their Qt Creator
packages.

This table shows the package that will install Qt Designer in several major distributions:

Distribution Package name
Ubuntu, Debian, Mint qttools5-dev-tools

Fedora, CentOS, Red Hat, SUSE qt-creator

Arch, Manjaro, Antergos qt5-tools

https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter01
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
http://bit.ly/2M5OUeg
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/
https://download.qt.io/official_releases/qtcreator/4.9/4.9.0/

Getting Started with PyQt Chapter 1

[12]

Introducing Qt and PyQt
Qt is a cross-platform application framework that was created for use with C++. Available
in both commercial and open source licenses (General Public License (GPL) v3 and Lesser
General Public License (LGPL) v3, specifically), it is widely used by open source projects
such as KDE Plasma and Oracle VirtualBox, commercial software such as Adobe Photoshop
Elements and Autodesk Maya, and even embedded software in products from companies
such as LG and Panasonic. Qt is currently owned and maintained by the Qt company
(https://www.qt. io).

In this book, we're going to be working with the open source release of Qt 5.12. If you're
using Windows, macOS, or a major Linux distribution, you should not need to install Qt
explicitly; it will be installed automatically when you install PyQt5.

Qt is officially pronounced cute, though many people say, Q T.

PyQt5
PyQt is a Python library that allows the Qt framework to be used in Python code. It was
developed by Riverbank Computing under the GPL license, although commercial licenses
can be purchased for those wanting to develop proprietary applications. (Note that this is a
separate license from the Qt license.) It is currently supported on Windows, Linux, UNIX,
Android, macOS, and iOS.

PyQt's bindings are generated automatically by a tool called SIP, so, to a large extent,
working with PyQt is just like working with Qt itself, only in Python. In other words, the
classes, methods, and other objects are all identical in usage, apart from the language
syntax.

The Qt company has recently released Qt for Python (also known as
PySide2), their own Python Qt5 library, under the terms of the LGPL. Qt
for Python is functionally equivalent to PyQt5, and code can be ported
between them with very few changes. This book will cover PyQt5, but
what you learn can easily be applied to Qt for Python, should you need an
LGPL library.

https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io

Getting Started with PyQt Chapter 1

[13]

Working with Qt and PyQt
Qt is much more than a GUI library; it's an application framework. It contains dozens of
modules with thousands of classes. It has classes to wrap simple data types such as dates,
times, URLs, or color values. It has GUI components such as buttons, text entries, or dialog
boxes. It has interfaces for hardware such as cameras or mobile sensors. It has a networking
library, a threading library, and a database library. If anything, Qt is truly a second
standard library!

Qt is written in C++ and designed around the needs of C++ programmers; it works well
with Python, but Python programmers may find some of its concepts slightly foreign at
first.

For example, Qt objects usually expect to work with data wrapped in Qt classes. A method
that expects a color value won't accept a string or a tuple of RGB values; it wants a QColor
object. A method that returns a size won't return a (width, height) tuple; it will return a
QSize object. PyQt mitigates this somewhat by automatically converting some common
data types (for example, strings, lists, dates, and times) between Qt objects and Python
standard library types; however, there are many hundreds of Qt classes that have no analog
in the Python standard library.

Qt relies heavily on named constants called enums or flags to represent things such as
option settings or configuration values. For example, if you wanted to switch the state of a
window between minimized, floating, or maximized, you would need to pass the window
a constant that is found in the QtCore.Qt.WindowState enum.

Setting or retrieving values on Qt objects requires the use of accessor methods, sometimes
known as setter and getter methods, rather than direct access to the properties.

To the Python programmer, Qt can seem to have an almost maniacal obsession with
defining classes and constants, and you'll spend a lot of time early on searching the
documentation to locate the item you need to configure your objects. Don't despair! You'll
soon become acclimated to the Qt way of working.

Understanding Qt's documentation
Qt is such a vast and complex library that no print book could hope to document a
significant portion of it in any detail. For that reason, it's important to learn how to access
and understand the documentation available online. For Python programmers, this
presents a minor challenge.

Getting Started with PyQt Chapter 1

[14]

Qt itself is blessed with detailed and excellent documentation that documents all Qt
modules and classes, including example code and high-level tutorials on coding with Qt.
However, this documentation is all aimed at C++ development; all example code is in C++,
and there is no indication when a methodology or approach to a problem differs for
Python.

PyQt's documentation is considerably sparser. It only covers the Python-specific differences
and lacks the comprehensive class reference, example code, and tutorials that make Qt's
documentation great. It is an essential read for anyone working with PyQt, but it's by no
means complete.

With the release of Qt for Python, there is an effort underway to port Qt's C++
documentation to Python at https:/ /doc- snapshots. qt. io/ qtforpython/ . When finished,
this will also be a valuable resource for PyQt programmers. At the time of writing, though,
the effort is far from complete; in any case, there are minor differences between PyQt and
Qt for Python that may make this documentation as confusing as it is helpful.

If you have a rudimentary knowledge of C++ syntax, it's not too difficult to mentally
translate the Qt documentation to Python, though it can be confusing in many cases. One of
the aims of this book is to close the gap for those who aren't well-versed in C++.

Core Qt modules
For the first six chapters of this book, we'll be working primarily with three Qt modules:

QtCore, which contains low-level data wrapper classes, utility functions, and
non-GUI core functionality
QtGui, which contains GUI-specific data wrapper classes and utilities
QtWidgets, which defines GUI widgets, layouts, and other high-level GUI
components

Those three modules will be used in nearly any PyQt program we write. Later in the book,
we will explore other modules for graphics, networking, web rendering, multimedia, and
other advanced capabilities.

https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/
https://doc-snapshots.qt.io/qtforpython/

Getting Started with PyQt Chapter 1

[15]

Creating Hello Qt – our first window
Now that you've learned about Qt5 and PyQt5, it's time to dig in and do some coding.
Make sure everything is installed, open your favorite Python editor or IDE, and let's begin!

Create a hello_world.py file in your editor, and enter the following:

from PyQt5 import QtWidgets

We begin by importing the QtWidgets module. This module contains the bulk of the
widget classes in Qt, as well as some other important components for GUI creation. We
won't need QtGui or QtCore for such a simple application.

Next, we need to create a QApplication object, like this:

app = QtWidgets.QApplication([])

The QApplication object represents the state of our running application, and one must be
created before any other Qt widgets can be created. QApplication is supposed to be
passed a list of command-line arguments given to our script, but here we're just passing in
an empty list.

Now, let's create our first widget:

window = QtWidgets.QWidget(windowTitle='Hello Qt')

In GUI toolkit terms, a widget refers to the visible components of the GUI, such as buttons,
labels, text entries, or blank panels. The most generic widget in Qt is the QWidget object,
which is just a blank window or panel. As we create this widget, we're settings its
windowTitle to 'Hello Qt'. windowTitle is what is known as property. All Qt objects
and widgets have properties, which are used to configure different aspects of the widget. In
this case, windowTitle is the name of the program window and appears in the window
decorations, on the taskbar or dock, or wherever else your OS and desktop environment
choose to use it.

Unlike most Python libraries, Qt properties and methods are named using
camelCase rather than snake_case.

Getting Started with PyQt Chapter 1

[16]

The properties available for configuring a Qt object can be set by passing them as
constructor arguments or using the appropriate setter method. Typically, this is just set
plus the name of the property, so we could have written this:

window = QtWidgets.QWidget()
window.setWindowTitle('Hello Qt')

Properties can also be retrieved using the getter method, which is just the property name:

print(window.windowTitle())

Once a widget is created, we can make it appear by calling show(), as follows:

window.show()

Calling show() automatically makes window a top-level window of its own. In Chapter
2, Building Forms with Qt Widgets, you'll see how to place widgets inside other widgets, but,
for this program, we only need one top-level widget.

The last line is a call to app.exec(), like this:

app.exec()

app.exec() begins the QApplication object event loop. The event loop will run forever
until the application quits, processing our user interactions with the GUI. Note that
the app object never refers to window, nor window to the app object. These objects are
connected automatically in the background; you need only ensure that a QApplication
object exists before creating any QWidget objects.

Save the hello_world.py file and run the script from your editor, or from a command
line, like so:

python hello_world.py

When you run this, you should see a blank window whose title text is Hello Qt:

Getting Started with PyQt Chapter 1

[17]

This isn't a terribly exciting application, but it does show us the basic workflow of any PyQt
application:

Create a QApplication object1.
Create our main application window2.
Display our main application window3.
Call QApplication.exec() to start the event loop4.

If you're experimenting with PyQt in the Python Read-Eval-Print-
Loop (REPL), create the QApplication object by passing in a list with a
single empty string, like this: QtWidgets.QApplication(['']);
otherwise, Qt will crash. Also, you don't need to call
QApplication.exec() in the REPL, thanks to some special PyQt magic.

Creating a PyQt application template
hello_world.py demonstrated the bare minimum of code to get a Qt window on the
screen, but it's a bit too simplistic to serve as a model for more complex applications. In this
book, we're going to be creating many PyQt applications, so, to make things easier, we're
going to compose a basic application template. Future chapters will refer to this template,
so make sure to create it exactly as specified.

Open a new file called qt_template.py, and add in these imports:

import sys
from PyQt5 import QtWidgets as qtw
from PyQt5 import QtGui as qtg
from PyQt5 import QtCore as qtc

We'll start with importing sys, so that we can pass QApplication an actual list of script
arguments; then we'll import our three main Qt modules. To save some typing, while
avoiding star imports, we're going to alias them to abbreviated names. We'll be using these
aliases consistently throughout the book as well.

Getting Started with PyQt Chapter 1

[18]

Star imports (also called wildcard imports), such as from
PyQt5.QtWidgets import *, are convenient and often seen in tutorials,
but, in practice, they are best avoided. Doing this with a PyQt module will
fill your namespace with hundreds of classes, functions, and constants,
any of which you might accidentally overwrite with a variable name.
Avoiding star imports will also help you to learn which modules contain
which commonly used classes.

Next, we'll create a MainWindow class, as follows:

class MainWindow(qtw.QWidget):

 def __init__(self):
 """MainWindow constructor"""
 super().__init__()
 # Main UI code goes here

 # End main UI code
 self.show()

To make our MainWindow class, we subclass QWidget, then override the constructor
method. Whenever we use this template in future chapters, start adding your code between
the commented lines unless otherwise instructed.

Subclassing PyQt classes is a good way to approach GUI building. It allows us to customize
and expand on Qt's powerful widget classes without having to reinvent the wheel. In many
cases, subclassing is the only way to utilize certain classes or accomplish certain
customizations.

Our constructor ends with a call to self.show(), so our MainWindow will take care of
showing itself.

Always remember to call super().__init__() inside your child class's
constructor, especially with Qt classes. Failing to do so means the parent
class isn't properly set up and will undoubtedly cause very frustrating
bugs.

We'll finish our template with the main code execution:

if __name__ == '__main__':
 app = qtw.QApplication(sys.argv)
 mw = MainWindow()
 sys.exit(app.exec())

Getting Started with PyQt Chapter 1

[19]

In this code, we're going to create our QApplication object, make our MainWindow object,
and then call QApplication.exec(). Although not strictly necessary, it's best practice to
create the QApplication object at the global scope (outside of any function or class). This
ensures that all Qt objects get properly closed and cleaned up when the application quits.

Notice that we're passing sys.argv into QApplication(); Qt has several default
command-line arguments that can be used for debugging or to alter styles and themes.
These are processed by the QApplication constructor if you pass in sys.argv.

Also, note that we're calling app.exec() inside a call to sys.exit; this is a small touch
that causes the exit code of app.exec() to be passed to sys.exit(), so we pass
appropriate exit codes to the OS, if the underlying Qt instance crashes for some reason.

Finally, note that we've wrapped this block in this check:

if __name__ == '__main__':

If you've never seen this before, it's a common Python idiom that simply means: only run
this code if this script is called directly. By putting our main execution in this block, we
could conceivably import this file into another Python script and be able to reuse our
MainWindow class without running any of the code in this block.

If you run your template code, you should see a blank application window. In the
following chapters, we'll be filling that window with various widgets and functionality.

Introducing Qt Designer
Before we wrap up our introduction to Qt, let's look at a free tool offered by the Qt
company that can help us create PyQt applications—Qt Designer.

Qt Designer is a graphical WYSIWYG GUI designer for Qt. Using Qt Designer, you can
drag and drop GUI components into an application and configure them without having to
write any code at all. While it is certainly an optional tool, you may find it useful for
prototyping, or preferable to hand-coding a large and complex GUI. While most of the code
in this book will be hand-coded, we will be covering the use of Qt Designer with PyQt in
Chapter 2, Building Forms with Qt Widgets, and Chapter 3, Handling Events with Signals and
Slots.

Getting Started with PyQt Chapter 1

[20]

Using Qt Designer
Let's take a moment to get familiar with how to launch and use Qt Designer:

Launch Qt Creator1.
Select File | New File or Project2.
Under Files and Classes, select Qt3.
Choose Qt Designer Form4.
Under Choose a Template Form, select Widget, then click Next5.
Give your form a name and click Next6.
Click Finish7.

You should see something that looks like this:

Getting Started with PyQt Chapter 1

[21]

If you installed Qt Designer as a standalone application on Linux, launch
it with the designer command or select it from your program's menu.
You shouldn't need the previous steps.

Take a few minutes to test out Qt Designer:

Drag some widgets from the left pane onto your base widget
Resize the widgets if you wish, or select one and examine its properties in the
lower-right pane
When you've made several changes, select Tools | Form Editor | Preview, or hit
Alt + Shift + R, to preview your GUI

In Chapter 2, Building Forms with Qt Widgets, we'll go into detail on how to use Qt Designer
to build a GUI interface; for now, you can find out more information about Qt Designer
from the manual at https:/ /doc. qt. io/ qt- 5/qtdesigner- manual. html.

Summary
In this chapter, you learned about the Qt application framework and the PyQt Python
bindings for Qt. We wrote a Hello World application and created a template for building
larger Qt applications. Finally, we installed and took our first look at Qt Designer, the GUI
editor.

In Chapter 2, Building Forms with Qt Widgets, we'll get familiar with some of the basic Qt
widgets and learn how to resize and arrange them in a user interface. You'll then apply that
knowledge by designing a calendar application in both code and Qt Designer.

Questions
Try these questions to test your knowledge from this chapter:

Qt is written in C++, a language that is very different from Python. What are1.
some of the major differences between the two languages? How might these
differences come across as we use Qt in Python?
GUIs are composed of widgets. Open some GUI applications on your computer2.
and try to identify as many widgets as you can.

https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html

Getting Started with PyQt Chapter 1

[22]

The following program crashes. Figure out why, and fix it so that it shows a3.
window:

 from PyQt5.QtWidgets import *

 app = QWidget()
 app.show()
 QApplication().exec()

The QWidget class has a property called statusTip. Which of these are most4.
likely to be the names of the accessor methods for this property?

getStatusTip() and setStatusTip()a.
statusTip() and setStatusTip()b.
get_statusTip() and change_statusTip()c.

QDate is a class for wrapping a calendar date. In which of the three main Qt5.
modules would you expect to find it?
QFont is a class that defines a screen font. In which of the three main Qt modules6.
would you expect to find it?
Can you recreate hello_world.py using Qt Designer? Make sure to set the7.
windowTitle.

Further reading
Check out these resources for more information on Qt, PyQt, and Qt Designer:

The PyQt manual at http:/ / pyqt.sourceforge. net/Docs/ PyQt5/ is a handy
resource for understanding PyQt's distinct aspects
The Qt module list at https:/ / doc.qt. io/qt- 5/qtmodules. html gives a good
rundown of the available modules in Qt
The QApplication documentation at https:/ /doc. qt. io/qt- 5/qapplication.
html#QApplication lists all the command-line switches parsed by the
QApplication object
The QWidget documentation at https:/ /doc. qt.io/ qt- 5/qwidget. html shows
the properties and methods available in the QWidget object
The Qt Designer manual at https:/ /doc. qt. io/qt- 5/qtdesigner- manual. html
will help you explore the full capabilities of Qt Designer
If you want to understand more about C++, check out these offerings from
Packt https:/ / www. packtpub. com/ tech/ C-plus- plus

http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://pyqt.sourceforge.net/Docs/PyQt5/
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qtmodules.html
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qapplication.html#QApplication
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus
https://www.packtpub.com/tech/C-plus-plus

2
Building Forms with QtWidgets

One of the first steps in application development is prototyping your app's GUI. With a
wide range of ready-to-use widgets, PyQt makes this very easy. Best of all, we can move
our prototype code directly into an actual application when we're done.

In this chapter, we're going to get familiar with basic form design over the following topics:

Creating basic QtWidgets widgets
Placing and arranging widgets
Validating widgets
Building a calendar application GUI

Technical requirements
To complete this chapter, you'll need everything from Chapter 1, Getting Started with PyQt,
plus the example code from https:/ /github. com/ PacktPublishing/ Mastering- GUI-
Programming-with- Python/ tree/ master/ Chapter02.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M2R26r

Creating basic QtWidgets widgets
The QtWidgets module contains dozens of widgets, some simple and standard, others
complex and unique. In this section, we're going to go through eight of the most common
widgets and their basic usage.

Before starting this section, make a copy of your application template from Chapter 1,
Getting Started with PyQt, and save it to a file called widget_demo.py. As we go through
the examples, you can add them into your MainWindow.__init__() method to see how
the objects work.

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter02
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r
http://bit.ly/2M2R26r

Building Forms with QtWidgets Chapter 2

[24]

QWidget
QWidget is the parent class of all other widgets, so any properties and methods it has will
also be available in any other widget. By itself, a QWidget object can be useful as a
container for other widgets, a filler to fill blank areas, or as a base class for top-level
windows.

Creating a widget is as simple as this:

 # inside MainWindow.__init__()
 subwidget = qtw.QWidget(self)

Notice we've passed self as an argument. If we're creating a widget to be placed on or
used inside another widget class, as we are here, it's a good idea to pass a reference to the
parent widget as the first argument. Specifying a parent widget will ensure that the child
widget is destroyed and cleaned up when the parent is, and limit its visibility to inside the
parent widget.

As you learned in Chapter 1, Getting Started with PyQt, PyQt also allows us to specify
values for any of the widget's properties.

For example, we can use the toolTip property to set the tooltip text (which will pop up
when the widget has hovered with the mouse) for this widget:

 subwidget = qtw.QWidget(self, toolTip='This is my widget')

Read the C++ documentation for QWidget (found at https:/ /doc. qt.io/ qt- 5/qwidget.
html) and note the class's properties. Note that each property has a specified data type. In
this case, toolTip requires QString. We can use a regular Unicode string whenever
QString is required because PyQt translates it for us. For more esoteric data types, such
as QSize or QColor, we would need to create the appropriate object. Be aware that these
conversions are happening in the background, however, as Qt is not forgiving about data
types.

For example, this code results in an error:

 subwidget = qtw.QWidget(self, toolTip=b'This is my widget')

This would result in TypeError because PyQt won't convert a bytes object into QString.
Because of this, make sure you check the data type required by a widget's properties or
method calls and use a compatible type.

https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html
https://doc.qt.io/qt-5/qwidget.html

Building Forms with QtWidgets Chapter 2

[25]

QWidget as a top-level window
When a QWidget is created without a parent and its show() method is called, it becomes a
top-level window. When we use it as a top-level window, such as we do with our
MainWindow instance, there are some window-specific properties we can set. Some of these
are shown in the following table:

Property Argument type Description
windowTitle string The title of the window.
windowIcon QIcon The icon for the window.
modal Boolean Whether the window is modal.
cursor Qt.CursorShape The cursor used when this widget has hovered.
windowFlags Qt.WindowFlags How the OS should treat the window (dialog, tooltip, popup).

The argument type for cursor is an example of an enum. An enum is simply a list of
named values, and Qt defines enum anywhere that a property is limited to a set of
descriptive values. The argument for windowFlags is an example of a flag. Flags are like
enums, except that they can be combined (using the pipe operator, |) so that multiple flags
can be passed.

In this case, both the enum and flag are part of the Qt namespace, found in the QtCore
module. So, for example, to set the cursor to an arrow cursor when the widget is hovered
over, you'd need to find the right constant in Qt that refers to the arrow cursor and set the
widget's cursor property to that value. To set flags on the window indicating to the OS
that it's a sheet and popup window, you'd need to find the constants in Qt that represent
those window flags, combine them with the pipe, and pass it as the value for
windowFlags.

Creating such a QWidget window might look like this:

window = qtw.QWidget(cursor=qtc.Qt.ArrowCursor)
window.setWindowFlags(qtc.Qt.Sheet|qtc.Qt.Popup)

We'll encounter many more flags and enums as we learn to configure Qt widgets
throughout the rest of this book.

Building Forms with QtWidgets Chapter 2

[26]

QLabel
QLabel is a QWidget object configured to display simple text and images.

Creating one looks like this:

 label = qtw.QLabel('Hello Widgets!', self)

Notice this time that the parent widget is specified as the second argument, while the first
argument is the text of the label.

Some commonly used QLabel properties are shown here:

Property Argument Description
text string Text to display on the label.
margin integer Space (in pixels) around the text.
indent integer Space (in pixels) to indent the text.
wordWrap Boolean Whether to wrap long lines.
textFormat Qt.TextFormat Force plaintext or rich text, or auto-detect.
pixmap QPixmap An image to display instead of the text.

The label's text is stored in its text property so it can be accessed or changed using the
related accessor methods, like this:

 label.setText("Hi There, Widgets!")
 print(label.text())

QLabel can display plaintext, rich text, or an image. Rich text in Qt uses an HTML-like
syntax; by default, the label will automatically detect whether your string contains any
formatting tags and display the appropriate type of text accordingly. For example, if we
wanted to make our label boldface and add a margin around the text, we could do so like
this:

 label = qtw.QLabel('Hello Widgets!', self, margin=10)

We will learn more about using images, rich text, and fonts in Chapter 6, Styling Qt
Applications, and Chapter 11, Creating Rich Text with QTextDocument.

Building Forms with QtWidgets Chapter 2

[27]

QLineEdit
The QLineEdit class is a single-line text-entry widget that you might commonly use in a
data-entry or login form. QLineEdit can be called with no arguments, with only a parent
widget, or with a default string value as the first argument, like so:

 line_edit = qtw.QLineEdit('default value', self)

There are also a number of properties we can pass in:

Property Arguments Description
text string The contents of the box.
readOnly Boolean Whether the field can be edited.
clearButtonEnabled Boolean Whether a clear button is added.
placeholderText string Text that will appear when the field is empty.

maxLength integer The maximum number of characters that can be
entered.

echoMode QLineEdit.EchoMode Switches the way text is displayed as its entered
(such as for password entry).

Let's add some properties to our line edit widget:

 line_edit = qtw.QLineEdit(
 'default value',
 self,
 placeholderText='Type here',
 clearButtonEnabled=True,
 maxLength=20
)

This will populate the widget with a default text of 'default value'. It will display a
placeholder string of 'Type here' when the field is empty or a small X button that clears
the field when it has text in it. It also limits the number of characters that can be typed to
20.

QPushButton and other buttons
QPushButton is a simple, clickable button widget. Like QLabel and QLineEdit, it can be
called with a first argument that specifies the text on the button, like so:

 button = qtw.QPushButton("Push Me", self)

Building Forms with QtWidgets Chapter 2

[28]

Some of the more useful properties we can set on QPushButton include the following:

Property Arguments Description
checkable Boolean Whether the button stays on when pressed.
checked Boolean For checkable buttons, whether the button is checked.
icon QIcon An icon image to display on the button.
shortcut QKeySequence A keyboard shortcut that will activate the button.

The checkable and checked properties allow us to use this button as a toggle button that
reflects an on/off state, rather than just a click button that performs an action. All of these
properties come from the QPushButton class's parent class, QAbstractButton. This is also
the parent class of several other button classes, listed here:

Class Description
QCheckBox A checkbox can be Boolean for on/off or tristate for on/partially on/off.
QRadioButton Like checkbox, but only one button among those with the same parent can be checked.
QToolButton Special button for use on toolbar widgets.

Though each has some unique features, for the core functionality, these buttons are the
same in terms of how we create and configure them.

Let's make our button checkable, check it by default, and give it a shortcut:

 button = qtw.QPushButton(
 "Push Me",
 self,
 checkable=True,
 checked=True,
 shortcut=qtg.QKeySequence('Ctrl+p')
)

Note that the shortcut option requires us to pass in a QKeySequence, which is part of the
QtGui module. This is a good example of how property arguments often need to be
wrapped in some kind of utility class. QKeySequence encapsulates a key combination, in
this case, the Ctrl key (or command key, on macOS) and P.

Key sequences can be specified as a string, such as the preceding example,
or by using enum values from the QtCOre.Qt module. For example, we
could write the preceding as QKeySequence(qtc.Qt.CTRL +
qtc.Qt.Key_P).

Building Forms with QtWidgets Chapter 2

[29]

QComboBox
A combobox, also known as a dropdown or select widget, is a widget that presents a list of
options when clicked on, one of which must be selected. QCombobox can optionally allow
text input for custom answers by setting its editable property to True.

Let's create a QCombobox object like so:

 combobox = qtw.QComboBox(self)

Right now, our combobox has no items in its menu. QCombobox doesn't provide a way to
initialize the widget with options in the constructor; instead, we have to create the widget,
then use the addItem() or insertItem() method to populate its menu with options, like
so:

 combobox.addItem('Lemon', 1)
 combobox.addItem('Peach', 'Ohh I like Peaches!')
 combobox.addItem('Strawberry', qtw.QWidget)
 combobox.insertItem(1, 'Radish', 2)

The addItem() method takes a string for the label and a data value. As you can see, this
value can be anything—an integer, a string, a Python class. This value can be retrieved for
the currently selected item using the QCombobox object's currentData() method. It's
typically a good idea—though not required—to make all the item values be of the same
type.

addItem() will always append items to the end of the menu; to insert them earlier, use the
insertItem() method. It works exactly the same, except that it takes an index (integer
value) for the first argument. The item will be inserted at that index in the list. If we want to
save time and don't need a data property for our items, we can also use addItems() or
insertItems() to pass in a list of options.

Some other important properties for QComboBox include the following:

Property Arguments Description
currentData (anything) The data object of the currently selected item.
currentIndex integer The index of the currently selected item.
currentText string The text of the currently selected item.
editable Boolean Whether combobox allows text entry.
insertPolicy QComboBox.InsertPolicy Where entered items should be inserted in the list.

Building Forms with QtWidgets Chapter 2

[30]

The data type for currentData is QVariant, a special Qt class that acts
as a container for any kind of data. These are more useful in C++, as they
provide a workaround for static typing in situations where multiple data
types might be useful. PyQt automatically converts QVariant objects to
the most appropriate Python type, so we rarely need to work directly with
this type.

Let's update our combobox so that we can add items to the top of the dropdown:

 combobox = qtw.QComboBox(
 self,
 editable=True,
 insertPolicy=qtw.QComboBox.InsertAtTop
)

Now this combobox will allow any text to be typed in; the text will be added to the top of
the list box. The data property for the new items will be None, so this is really only
appropriate if we are working with the visible strings only.

QSpinBox
In general, a spinbox is a text entry with arrow buttons designed to spin through a set of
incremental values. QSpinbox is built specifically to handle either integers or discrete
values (such as a combobox).

Some useful QSpinBox properties include the following:

Property Arguments Description
value integer The current spinbox value, as an integer.
cleanText string The current spinbox value, as a string (excludes the prefix and suffix).
maximum integer The maximum integer value of the box.
minimum integer The minimum value of the box.
prefix string A string to prepend to the displayed value.
suffix string A string to append to the displayed value.
singleStep integer How much to increment or decrement the value when the arrows are used.

wrapping Boolean Whether to wrap from one end of the range to the other when the arrows are
used.

Building Forms with QtWidgets Chapter 2

[31]

Let's create a QSpinBox object in our script, like this:

 spinbox = qtw.QSpinBox(
 self,
 value=12,
 maximum=100,
 minimum=10,
 prefix='$',
 suffix=' + Tax',
 singleStep=5
)

This spinbox starts with a value of 12 and will allow entry of integers from 10 to 100,
displayed in the $<value> + Tax format. Note that the non-integer portion of the box is
not editable. Also note that, while the increment and decrement arrows move by 5, nothing
prevents us from entering a value that is not a multiple of 5.

QSpinBox will automatically ignore keystrokes that are not numeric, or that would put the
value outside the acceptable range. If a value is typed that is too low, it will be auto-
corrected to a valid value when the focus moves from the spinbox; for example, if you
typed 9 into the preceding box and clicked out of it, it would be auto-corrected to 90.

QDoubleSpinBox is identical to QSpinBox, but designed for a decimal or
floating-point numbers.

To use QSpinBox for discrete text values instead of integers, you need to subclass it and
override its validation methods. We'll do that later in the Validating widgets section.

QDateTimeEdit
A close relative of the spinbox is QDateTimeEdit, designed for entering date-time values.
By default, it appears as a spinbox that allows the user to tab through each field in the date-
time value and increment/decrement it using the arrows. The widget can also be configured
to use a calendar popup.

Building Forms with QtWidgets Chapter 2

[32]

The more useful properties include the following:

Property Arguments Description
date QDate or datetime.date The date value.
time QTime or datetime.time The time value.

dateTime
QDateTime or
datetime.datetime

The combined date-time value.

maximumDate, minimumDate QDate or datetime.date The maximum and minimum
date enterable.

maximumTime, minimumTime QTime or datetime.time The maximum and minimum
time enterable.

maximumDateTime,
minimumDateTime

QDateTime or
datetime.datetime

The maximum and minimum
date-time enterable.

calendarPopup Boolean
Whether to display the
calendar popup or behave like
a spinbox.

displayFormat string How the date-time should be
formatted.

Let's create our date-time box like this:

 datetimebox = qtw.QDateTimeEdit(
 self,
 date=qtc.QDate.currentDate(),
 time=qtc.QTime(12, 30),
 calendarPopup=True,
 maximumDate=qtc.QDate(2030, 1, 1),
 maximumTime=qtc.QTime(17, 0),
 displayFormat='yyyy-MM-dd HH:mm'
)

This date-time widget will be created with the following attributes:

It will be set to 12:30 on the current date
It will show the calendar popup when focused
It will disallow dates after January 1st, 2030
It will disallow times after 17:00 (5 PM) on the maximum date
It will display date-times in the year-month-day hour-minutes format

Building Forms with QtWidgets Chapter 2

[33]

Note that maximumTime and minimumTime only impact the maximumDate and
minimumDate values, respectively. So, even though we've specified a maximum time of
17:00, nothing prevents you from entering 18:00 as long as it's before January 1st, 2030. The
same concept applies to minimum dates and times.

The display format for the date-time is set using a string that contains specific substitution
codes for each item. Some of the more common codes are listed here:

Code Meaning
d Day of the month.
M Month number.
yy Two-digit year.
yyyy Four-digit year.
h Hour.
m Minute.
s Second.
A AM/PM, if used, hour will switch to 12-hour time.

Day, month, hour, minute, and second all default to omitting the leading zero. To get a
leading zero, just double up the letter (for example, dd for a day with a leading zero). A
complete list of the codes can be found at https:/ /doc. qt. io/qt- 5/qdatetime. html.

Note that all times, dates, and date-times can accept objects from the Python standard
library's datetime module as well as the Qt types. So, our box could just as well have been
created like this:

 import datetime
 datetimebox = qtw.QDateTimeEdit(
 self,
 date=datetime.date.today(),
 time=datetime.time(12, 30),
 calendarPopup=True,
 maximumDate=datetime.date(2020, 1, 1),
 minimumTime=datetime.time(8, 0),
 maximumTime=datetime.time(17, 0),
 displayFormat='yyyy-MM-dd HH:mm'
)

Which one you choose to use is a matter of personal preference or situational requirements.
For instance, if you are working with other Python modules, the datetime standard library
objects are going to be more compatible. If you just need to set a default value for a widget,
QDateTime may be more convenient, since you likely already have QtCore imported.

https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html

Building Forms with QtWidgets Chapter 2

[34]

If you need more control over the date and time entry, or just want to split
these up, Qt has the QTimeEdit and QDateEdit widgets. They're just like
this widget, except they only handle time and date, respectively.

QTextEdit
While QLineEdit exists for single-line strings, QTextEdit provides us with the capability
to enter multi-line text. QTextEdit is much more than just a simple plaintext entry, though;
it's a full-blown WYSIWYG editor that can be configured to support rich text and images.

Some of the more useful properties of QTextEdit are shown here:

Property Arguments Description
plainText string The contents of the box, in plaintext.
html string The contents of the box, as rich text.
acceptRichText Boolean Whether the box allows rich text.

lineWrapColumnOrWidth integer The pixel or column at which the text
will be wrapped.

lineWrapMode QTextEdit.LineWrapMode Whether the line wrap uses columns or
pixels.

overwriteMode Boolean Whether overwrite is activated; False
means insert mode.

placeholderText string Text to display when the field is empty.
readOnly Boolean Whether the field is read-only.

Let's create a text edit like this:

 textedit = qtw.QTextEdit(
 self,
 acceptRichText=False,
 lineWrapMode=qtw.QTextEdit.FixedColumnWidth,
 lineWrapColumnOrWidth=25,
 placeholderText='Enter your text here'
)

This will create a plaintext editor that only allows 25 characters to be typed per line, with
the phrase 'Enter your text here' displayed when it's empty.

We'll dig in deeper to the QTextEdit and rich text documents in Chapter 11, Creating Rich
Text with QTextDocument.

Building Forms with QtWidgets Chapter 2

[35]

Placing and arranging widgets
So far, we've created a lot of widgets, but if you run the program you won't see any of
them. Although our widgets all belong to the parent window, they haven't been placed on
it yet. In this section, we'll learn how to arrange our widgets in the application window and
set them to an appropriate size.

Layout classes
A layout object defines how child widgets are arranged on a parent widget. Qt offers a
variety of layout classes, each of which has a layout strategy appropriate for different
situations.

The workflow for using layout classes goes like this:

Create a layout object from an appropriate layout class1.
Assign the layout object to the parent widget's layout property using the2.
setLayout() method
Add widgets to the layout using the layout's addWidget() method3.

You can also add layouts to a layout using the addLayout() method to create more
complex arrangements of widgets. Let's take a tour of a few of the basic layout classes
offered by Qt.

QHBoxLayout and QVBoxLayout
QHBoxLayout and QVBoxLayout are both derived from QBoxLayout, a very basic layout
engine that simply divides the parent into horizontal or vertical boxes and places widgets
sequentially as they're added. QHBoxLayout is oriented horizontally, and widgets are
placed from left to right as added. QVBoxLayout is oriented vertically, and widgets are
placed from top to bottom as added.

Let's try QVBoxLayout on our MainWindow widget:

 layout = qtw.QVBoxLayout()
 self.setLayout(layout)

Building Forms with QtWidgets Chapter 2

[36]

Once the layout object exists, we can start adding our widgets to it using the addWidget()
method:

 layout.addWidget(label)
 layout.addWidget(line_edit)

As you can see, if you run the program, the widgets are added one per line. If we wanted to
add several widgets to a single line, we could nest a layout inside our layout, like this:

 sublayout = qtw.QHBoxLayout()
 layout.addLayout(sublayout)

 sublayout.addWidget(button)
 sublayout.addWidget(combobox)

Here, we've added a horizontal layout to the next cell of our main vertical layout and then
inserted three more widgets to the sub-layout. These three widgets display side by side in a
single line of the main layout. Most application layouts can be accomplished by simply
nesting box layouts in this manner.

QGridLayout
Nested box layouts cover a lot of ground, but in some situations, you might like to arrange
widgets in uniform rows and columns. This is where QGridLayout comes in handy. As the
name suggests, it allows you to place widgets in a table-like structure.

Create a grid layout object like this:

 grid_layout = qtw.QGridLayout()
 layout.addLayout(grid_layout)

Adding widgets to QGridLayout is similar to the method for the QBoxLayout classes, but
also requires passing coordinates:

 grid_layout.addWidget(spinbox, 0, 0)
 grid_layout.addWidget(datetimebox, 0, 1)
 grid_layout.addWidget(textedit, 1, 0, 2, 2)

Here are the arguments for QGridLayout.addWidget(), in order:

The widget to add1.
The row number (vertical coordinate), starting from 02.
The column number (horizontal coordinate), starting from 03.

Building Forms with QtWidgets Chapter 2

[37]

The row span, or how many rows the widget will encompass (optional)4.
The column span, or how many columns the widget will encompass (optional)5.

Thus, our spinbox widget is placed at row 0, column 0, which is the top left; our
datetimebox at row 0, column 1, which is the top right; and our textedit at row 1,
column 0, and it spans two rows and two columns.

Keep in mind that the grid layout keeps consistent widths on all columns and consistent
heights on all rows. Thus, if you place a very wide widget in row 2, column 1, all widgets
in all rows that happen to be in column 1 will be stretched accordingly. If you want each
cell to stretch independently, use nested box layouts instead.

QFormLayout
When creating data-entry forms, it's common to have labels next to the input widgets they
label. Qt provides a convenient two-column grid layout for this situation
called QFormLayout.

Let's add a form layout to our GUI:

 form_layout = qtw.QFormLayout()
 layout.addLayout(form_layout)

Adding widgets can be easily done with the addRow() method:

 form_layout.addRow('Item 1', qtw.QLineEdit(self))
 form_layout.addRow('Item 2', qtw.QLineEdit(self))
 form_layout.addRow(qtw.QLabel('This is a label-only row'))

This convenience method takes a string and a widget and automatically creates the QLabel
widget for the string. If passed only a single widget (such as a QLabel), the widget spans
both columns. This can be useful for headings or section labels.

QFormLayout is not just a mere convenience over QGridLayout, it also automatically
provides idiomatic behavior when used across different platforms. For example, when used
on Windows, the labels are left-justified; when used on macOS, the labels are right-justified,
keeping with the design guidelines of the platform. Additionally, when viewed on a
narrow screen (such as a mobile device), the layout automatically collapses to a single
column with the labels above the input. It's definitely worthwhile to use this layout any
time you have a two-column form.

Building Forms with QtWidgets Chapter 2

[38]

Controlling widget size
If you run our demo as it currently is and expand it to fill your screen, you'll notice that
each cell of the main layout gets evenly stretched to fill the screen, as shown here:

This isn't ideal. The label at the top really doesn't need to be expanded, and there is a lot of
wasted space at the bottom. Presumably, if a user were to expand this window, they'd do
so to get more space in input widgets like our QTextEdit. We need to give the GUI some
guidance on how to size our widgets, and how to resize them in the event that the window
is expanded or shrunk from its default size.

Controlling the size of widgets can be a bit perplexing in any toolkit, but Qt's approach can
be especially confusing, so let's take it one step at a time.

Building Forms with QtWidgets Chapter 2

[39]

We can simply set a fixed size for any widget using its setFixedSize() method, like this:

 # Fix at 150 pixels wide by 40 pixels high
 label.setFixedSize(150, 40)

setFixedSize accepts only pixel values, and a widget set to a fixed size cannot be altered
from those pixel sizes under any circumstances. The problem with sizing a widget this way
is that it doesn't account for the possibility of different fonts, different text sizes, or changes
to the size or layout of the application window, which might result in the widget being too
small for its contents, or needlessly large. We can make it slightly more flexible by
setting minimumSize and maximumSize, like this:

 # setting minimum and maximum sizes
 line_edit.setMinimumSize(150, 15)
 line_edit.setMaximumSize(500, 50)

If you run this code and resize the window, you'll notice line_edit has a bit more
flexibility as the window expands and contracts. Note, however, that the widget won't
shrink below its minimumSize, but it won't necessarily use its maximumSize, even if the
room is available.

So, this is still far from ideal. Rather than concern ourselves with how many pixels each
widget consumes, we'd prefer it be sized sensibly and fluidly with respect to its contents
and role within the interface. Qt does just this using the concepts of size hints and size
polices.

A size hint is a suggested size for a widget and is returned by the widget's sizeHint()
method. This size may be based on a variety of dynamic factors; for example, the QLabel
widget's sizeHint() value depends on the length and wrap of the text it contains. Because
it's a method and not a property, setting a custom sizeHint() for a widget requires you to
subclass the widget and reimplement the method. Fortunately, this isn't something we
often need to do.

A size policy defines how the widget responds to a resizing request with respect to its size
hint. This is set as the sizePolicy property of a widget. Size policies are defined in the
QtWidgets.QSizePolicy.Policy enum, and set separately for the horizontal and
vertical dimensions of a widget using the setSizePolicy accessor method. The available
policies are listed here:

Policy Description
Fixed Never grow or shrink.
Minimum Don't get smaller than sizeHint. Expanding isn't useful.
Maximum Don't get larger than sizeHint, shrink if necessary.

Building Forms with QtWidgets Chapter 2

[40]

Policy Description

Preferred Try to be sizeHint, but shrink if necessary. Expanding isn't useful. This is the
default.

Expanding Try to be sizeHint, shrink if necessary, but expand if at all possible.
MinimumExpanding Don't get smaller than sizeHint, but expand if at all possible.
Ignored Forget sizeHint altogether, just take up as much space as possible.

So, for example, if we'd like the spinbox to stay at a fixed width so the widget next to it can
expand, we would do this:

spinbox.setSizePolicy(qtw.QSizePolicy.Fixed,qtw.QSizePolicy.Preferred)

Or, if we'd like our textedit widget to fill as much of the screen as possible, but never
shrink below its sizeHint() value, we should set its policies like this:

 textedit.setSizePolicy(
 qtw.QSizePolicy.MinimumExpanding,
 qtw.QSizePolicy.MinimumExpanding
)

Sizing widgets can be somewhat unpredictable when you have deeply-nested layouts;
sometimes it's handy to be able to override sizeHint(). In Python, a quick way to do this
is with Lambda functions, like this:

 textedit.sizeHint = lambda : qtc.QSize(500, 500)

Note that sizeHint() must return a QtCore.QSize object, not just an integer tuple.

A final way to control the size of widgets when using a box layout is to set a stretch factor
when adding the widget to the layout. Stretch is an optional second parameter of
addWidget() that defines the comparative stretch of each widget.

This example shows the use of the stretch factor:

 stretch_layout = qtw.QHBoxLayout()
 layout.addLayout(stretch_layout)
 stretch_layout.addWidget(qtw.QLineEdit('Short'), 1)
 stretch_layout.addWidget(qtw.QLineEdit('Long'), 2)

stretch only works with the QHBoxLayout and QVBoxLayout classes.

Building Forms with QtWidgets Chapter 2

[41]

In this example, we've added a line edit with a stretch factor of 1, and a second with a
stretch factor of 2. When you run this, you'll find that the second line edit is about twice the
length of the first.

Keep in mind that stretch doesn't override the size hint or size policies, so depending on
those factors the stretch ratios may not be exactly as specified.

Container widgets
We have seen that we can use QWidget as a container for other widgets. Qt also provides
us with some special widgets that are specifically designed to contain other widgets. We'll
look at two of these: QTabWidget and QGroupBox.

QTabWidget
QTabWidget, sometimes known as a notebook widget in other toolkits, allows us to have
multiple pages selectable by tabs. They're very useful for breaking complex interfaces into
smaller chunks that are easier for users to take in.

The workflow for using QTabWidget is as follows:

Create the QTabWidget object1.
Build a UI page on a QWidget or other widget class2.
Add the page to the tab widget using the QTabWidget.addTab() method3.

Let's try that; first, create the tab widget:

 tab_widget = qtw.QTabWidget()
 layout.addWidget(tab_widget)

Next, let's move the grid_layout we built under the Placing and arranging
widgets section to a container widget:

 container = qtw.QWidget(self)
 grid_layout = qtw.QGridLayout()
 # comment out this line:
 #layout.addLayout(grid_layout)
 container.setLayout(grid_layout)

Finally, let's add our container widget to a new tab:

 tab_widget.addTab(container, 'Tab the first')

Building Forms with QtWidgets Chapter 2

[42]

The second argument to addTab() is the title text that will appear on the tab. Subsequent
tabs can be added with more calls to addTab(), like this:

 tab_widget.addTab(subwidget, 'Tab the second')

The insertTab() method can also be used to add new tabs somewhere other than the end.

QTabWidget has a few properties we can customize, listed here:

Property Arguments Description

movable Boolean Whether the tabs can be reordered. The default
is False.

tabBarAutoHide Boolean Whether the tab bar is hidden or shown when
there is only one tab.

tabPosition QTabWidget.TabPosition Which side of the widget the tabs appear on.
The default is North (top).

tabShape QTabWidget.TabShape The shape of the tabs. It can be rounded or
triangular.

tabsClosable Boolean Whether to display a close button on the tabs.

useScrollButtons Boolean Whether to use scroll buttons when there are
many tabs or to expand.

Let's amend our QTabWidget to have movable, triangular tabs on the left side of the
widget:

 tab_widget = qtw.QTabWidget(
 movable=True,
 tabPosition=qtw.QTabWidget.West,
 tabShape=qtw.QTabWidget.Triangular
)

QStackedWidget is similar to the tab widget, except that it contains no
built-in mechanism for switching pages. You may find it useful if you
want to build your own tab-switching mechanism.

QGroupBox
QGroupBox provides a panel that is labeled and (depending on the platform style)
bordered. It's useful for grouping related input together on a form. We create the
QGroupBox just as we would create a QWidget container, except that it can have a border
and a title for the box, for example:

 groupbox = qtw.QGroupBox('Buttons')

Building Forms with QtWidgets Chapter 2

[43]

 groupbox.setLayout(qtw.QHBoxLayout())
 groupbox.layout().addWidget(qtw.QPushButton('OK'))
 groupbox.layout().addWidget(qtw.QPushButton('Cancel'))
 layout.addWidget(groupbox)

Here, we create a group box with the Buttons title. We gave it a horizontal layout and
added two button widgets.

Notice in this example, instead of giving the layout a handle of its own as
we've been doing, we create an anonymous QHBoxLayout and then use
the widget's layout() accessor method to retrieve a reference to it for
adding widgets. You may prefer this approach in certain situations.

The group box is fairly simple, but it does have a few interesting properties:

Property Argument Description
title string The title text.

checkable Boolean Whether the groupbox has a checkbox to enable/disable its
contents.

checked Boolean Whether a checkable groupbox is checked (enabled).
alignment QtCore.Qt.Alignment The alignment of the title text.
flat Boolean Whether the box is flat or has a frame.

The checkable and checked properties are very useful for situations where you want a
user to be able to disable entire sections of a form (for example, to disable the billing
address part of an order form if it's the same as shipping address).

Let's reconfigure our groupbox, like so:

 groupbox = qtw.QGroupBox(
 'Buttons',
 checkable=True,
 checked=True,
 alignment=qtc.Qt.AlignHCenter,
 flat=True
)

Notice that now the buttons can be disabled with a simple checkbox toggle, and the frame
has a different look.

If you just want a bordered widget without a label or checkbox
capabilities, the QFrame class might be a better alternative.

Building Forms with QtWidgets Chapter 2

[44]

Validating widgets
Although Qt provides a wide range of ready-made input widgets for things such as dates
and numbers, we may find sometimes that we need a widget with very specific constraints
on its input values. Such input constraints can be created using the QValidator class.

The workflow is like this:

Create a custom validator class by subclassing QtGui.QValidator1.
Override the validate() method with our validation logic2.
Assign an instance of our custom class to a widget's validator property3.

Once assigned to an editable widget, the validate() method will be called every time the
user updates the value of the widget (for example, every keystroke in QLineEdit) and will
determine whether the input is accepted.

Creating an IPv4 entry widget
To demonstrate widget validation, let's create a widget that validates Internet Protocol
version 4 (IPv4) addresses. An IPv4 address must be in the format of 4 integers, each
between 0 and 255, with a dot between each number.

Let's start by creating our validator class. Add this class just before the MainWindow class:

class IPv4Validator(qtg.QValidator):
 """Enforce entry of IPv4 Addresses"""

Next, we need to override this class's validate() method. validate() receives two
pieces of information: a string that contains the proposed input and the index at which the
input occurred. It will have to return a value that indicates whether the input is
Acceptable, Intermediate, or Invalid. If the input is acceptable or intermediate, it will
be accepted. If it's invalid, it will be rejected.

The value used to indicate the input state is either QtValidator.Acceptable,
QtValidator.Intermediate, or QtValidator.Invalid.

In the Qt documentation, we're told that the validator class should only return the state
constant. In PyQt, however, you actually need to return a tuple that contains the state, the
string, and the position. This doesn't seem to be well-documented, unfortunately, and the
error if you should forget this is not intuitive at all.

Building Forms with QtWidgets Chapter 2

[45]

Let's start building our IPv4 validation logic as follows:

Split the string on the dot character:1.

 def validate(self, string, index):
 octets = string.split('.')

If there are more than 4 segments, the value is invalid:2.

 if len(octets) > 4:
 state = qtg.QValidator.Invalid

If any populated segment is not a digit string, the value is invalid:3.

 elif not all([x.isdigit() for x in octets if x != '']):
 state = qtg.QValidator.Invalid

If not every populated segment can be converted into an integer between 0 and4.
255, the value is invalid:

 elif not all([0 <= int(x) <= 255 for x in octets if x != '']):
 state = qtg.QValidator.Invalid

If we've made it this far into the checks, the value is either intermediate or valid.5.
If there are fewer than four segments, it's intermediate:

 elif len(octets) < 4:
 state = qtg.QValidator.Intermediate

If there are any empty segments, the value is intermediate:6.

 elif any([x == '' for x in octets]):
 state = qtg.QValidator.Intermediate

If the value has passed all these tests, it's acceptable. We can return our tuple:7.

 else:
 state = qtg.QValidator.Acceptable
 return (state, string, index)

To use this validator, we just need to create an instance of it and assign it to a widget:

 # set the default text to a valid value
 line_edit.setText('0.0.0.0')
 line_edit.setValidator(IPv4Validator())

If you run the demo now, you'll see that the line edit now constrains you to a valid IPv4
address.

Building Forms with QtWidgets Chapter 2

[46]

Using QSpinBox for discrete values
As you learned earlier under the Creating basic QtWidgets widgets section, QSpinBox can be
used for discrete lists of string values, much like a combobox. QSpinBox has a built-in
validate() method that works just like the QValidator class' method to constrain input
to the widget. To make a spinbox use discrete string lists, we need to subclass QSpinBox
and override validate() and two other methods, valueFromText() and
textFromValue().

Let's create a custom spinbox class that can be used to choose items from a list; just before
the MainWindow class, enter this:

class ChoiceSpinBox(qtw.QSpinBox):
 """A spinbox for selecting choices."""

 def __init__(self, choices, *args, **kwargs):
 self.choices = choices
 super().__init__(
 *args,
 maximum=len(self.choices) - 1,
 minimum=0,
 **kwargs
)

We're subclassing qtw.QSpinBox and overriding the constructor so that we can pass in a
list or tuple of choices, storing it as self.choices. Then we call the QSpinBox constructor;
note that we set the maximum and minimum so that they can't be set outside the bounds of
our choices. We're also passing along any extra positional or keyword arguments so that we
can take advantage of all the other QSpinBox property settings.

Next, let's reimplement valueFromText(), as follows:

 def valueFromText(self, text):
 return self.choices.index(text)

The purpose of this method is to be able to return an integer index value given a string that
matches one of the displayed choices. We're simply returning the list index of whatever
string is passed in.

Building Forms with QtWidgets Chapter 2

[47]

Next, we need to reimplement the complimentary method, textFromValue():

 def textFromValue(self, value):
 try:
 return self.choices[value]
 except IndexError:
 return '!Error!'

The purpose of this method is to translate an integer index value into the text of the
matching choice. In this case, we're just returning the string at the given index. If somehow
the widget gets passed a value out of range, we're returning !Error! as a string. Since this
method is used to determine what is displayed in the box when a particular value is set,
this would clearly show an error condition if somehow the value were out of range.

Finally, we need to take care of validate(). Just as we did with our QValidator class, we
need to create a method that takes the proposed input and edit index and returns a tuple
that contains the validation state, string value, and index.

We'll code it like this:

 def validate(self, string, index):
 if string in self.choices:
 state = qtg.QValidator.Acceptable
 elif any([v.startswith(string) for v in self.choices]):
 state = qtg.QValidator.Intermediate
 else:
 state = qtg.QValidator.Invalid
 return (state, string, index)

In our method, we're returning Acceptable if the input string is found in self.choices,
Intermediate if any choice starts with the input string (this includes a blank string), or
Invalid in any other case.

With this class created, we can create one of our widgets in our MainWindow class:

 ratingbox = ChoiceSpinBox(
 ['bad', 'average', 'good', 'awesome'],
 self
)
 sublayout.addWidget(ratingbox)

An important difference between a QComboBox object and a
QSpinBox object with text options is that the spinbox items lack a data
property. Only the text or index can be returned. It's best used for things
such as months, days of the week, or other sequential lists that translate
meaningfully into integer values.

Building Forms with QtWidgets Chapter 2

[48]

Building a calendar application GUI
It's time to put what we've learned into action and actually build a simple, functional GUI.
Our goal is to build a simple calendar application that looks like this:

Our interface won't be functional yet; for now, we'll just focus on getting the components
created and laid out as shown in the screenshot. We'll do this two ways: once using code
only, and a second time using Qt Designer.

Either of these methods is valid and work fine, though as you'll see, each has advantages
and disadvantages.

Building Forms with QtWidgets Chapter 2

[49]

Building the GUI in code
Create a new file called calendar_form.py by copying the application template from
Chapter 1, Getting Started with PyQt.

Then we'll configure our main window; in the MainWindow constructor, begin with this
code:

 self.setWindowTitle("My Calendar App")
 self.resize(800, 600)

This code will set our window title to something appropriate and set a fixed size for our
window of 800 x 600. Note that this is just the initial size, and the user will be able to resize
the form if they wish to.

Creating the widgets
Now, let's create all of our widgets:

 self.calendar = qtw.QCalendarWidget()
 self.event_list = qtw.QListWidget()
 self.event_title = qtw.QLineEdit()
 self.event_category = qtw.QComboBox()
 self.event_time = qtw.QTimeEdit(qtc.QTime(8, 0))
 self.allday_check = qtw.QCheckBox('All Day')
 self.event_detail = qtw.QTextEdit()
 self.add_button = qtw.QPushButton('Add/Update')
 self.del_button = qtw.QPushButton('Delete')

These are all of the widgets we will be using in our GUI. Most of these we have covered
already, but there are two new ones: QCalendarWidget and QListWidget.

QCalendarWidget is exactly what you'd expect it to be: a fully interactive calendar that can
be used to view and select dates. Although it has a number of properties that can be
configured, for our needs the default configuration is fine. We'll be using it to allow the
user to select the date to be viewed and edited.

QListWidget is for displaying, selecting, and editing items in a list. We're going to use it to
show a list of events saved on a particular day.

Building Forms with QtWidgets Chapter 2

[50]

Before we move on, we need to configure our event_category combo box with some
items to select. Here's the plan for this box:

Have it read Select category… as a placeholder when nothing is selected
Include an option called New… which might perhaps allow the user to enter a
new category
Include some common categories by default, such as Work, Meeting,
and Doctor

To do this, add the following:

 # Add event categories
 self.event_category.addItems(
 ['Select category…', 'New…', 'Work',
 'Meeting', 'Doctor', 'Family']
)
 # disable the first category item
 self.event_category.model().item(0).setEnabled(False)

QComboBox doesn't really have placeholder text, so we're using a trick here to simulate it.
We've added our combo box items using the addItems() method as usual. Next, we
retrieve its data model using the model() method, which returns a QStandardItemModel
instance. The data model holds a list of all the items in the combo box. We can use the
model's item() method to access the actual data item at a given index (in this case 0) and
use its setEnabled() method to disable it.

In short, we've simulated placeholder text by disabling the first entry in the combo box.

We'll learn more about widget data models in Chapter 5, Creating Data
Interfaces with Model-View Classes.

Building the layout
Our form is going to require some nested layouts to get everything into position. Let's
break down our proposed design and determine how to create this layout:

The application is divided into a calendar on the left and a form on the right. This
suggests using QHBoxLayout for the main layout.
The form on the right is a vertical stack of components, suggesting we use
QVBoxLayout to arrange things on the right.

Building Forms with QtWidgets Chapter 2

[51]

The event form at the bottom right can be laid out roughly in a grid so we could
use QGridLayout there.

We'll begin by creating the main layout and adding in the calendar:

 main_layout = qtw.QHBoxLayout()
 self.setLayout(main_layout)
 main_layout.addWidget(self.calendar)

We want the calendar widget to fill any extra space in the layout, so we'll set its size policy
accordingly:

 self.calendar.setSizePolicy(
 qtw.QSizePolicy.Expanding,
 qtw.QSizePolicy.Expanding
)

Now, let's create the vertical layout on the right, and add the label and event list:

 right_layout = qtw.QVBoxLayout()
 main_layout.addLayout(right_layout)
 right_layout.addWidget(qtw.QLabel('Events on Date'))
 right_layout.addWidget(self.event_list)

In the event that there's more vertical space, we'd like the event list to fill all the available
space. So, let's set its size policy as follows:

 self.event_list.setSizePolicy(
 qtw.QSizePolicy.Expanding,
 qtw.QSizePolicy.Expanding
)

The next part of our GUI is the event form and its label. We could use another label here,
but the design suggests that these form fields are grouped together under this heading so
QGroupBox would be more appropriate.

So, let's create a group box with QGridLayout to hold our event form:

 event_form = qtw.QGroupBox('Event')
 right_layout.addWidget(event_form)
 event_form_layout = qtw.QGridLayout()
 event_form.setLayout(event_form_layout)

Finally, we need to add in our remaining widgets into the grid layout:

 event_form_layout.addWidget(self.event_title, 1, 1, 1, 3)
 event_form_layout.addWidget(self.event_category, 2, 1)
 event_form_layout.addWidget(self.event_time, 2, 2,)

Building Forms with QtWidgets Chapter 2

[52]

 event_form_layout.addWidget(self.allday_check, 2, 3)
 event_form_layout.addWidget(self.event_detail, 3, 1, 1, 3)
 event_form_layout.addWidget(self.add_button, 4, 2)
 event_form_layout.addWidget(self.del_button, 4, 3)

We're dividing our grid into three columns, and using the optional column-span argument
to put our title and detail fields across all three columns.

And now we're done! At this point, you can run the script and see your completed form. It
doesn't do anything yet, of course, but that is a topic for our Chapter 3, Handling Events
with Signals and Slots.

Building the GUI in Qt Designer
Let's try building the same GUI, but this time we'll build it using Qt Designer.

First steps
To begin, launch Qt Designer as described in Chapter 1, Getting Started with PyQt, then
create a new form based on a widget, like this:

Building Forms with QtWidgets Chapter 2

[53]

Now, click on the Widget and we'll configure its properties using the Properties panel on
the right:

Change the object name to MainWindow1.
Under Geometry, change the Width to 800 and Height to 6002.
Change the window title to My Calendar App3.

Next, we'll start adding in the widgets. Scroll through the widget box on the left to find the
Calendar Widget, then drag it onto the main window. Select the calendar and edit its
properties:

Change the name to calendar1.
Change the horizontal and vertical size policies to Expanding2.

To set up our main layout, right-click the main window (not on the calendar) and select
Layout | Lay Out Horizontally. This will add a QHBoxLayout to the main window widget.
Note that you can't do this until at least one widget is on the main window, which is why
we added the calendar widget first.

Building the right panel
Now, we'll add the vertical layout for the right side of the form. Drag a Vertical Layout to
the right of the calendar widget. Then drag a Label Widget into the vertical layout. Make
sure the label is listed hierarchically as a child of the vertical layout, not a sibling:

If you are having trouble dragging the widget onto the unexpanded
layout, you can also drag it into the hierarchy in the Object Inspector
panel.

Building Forms with QtWidgets Chapter 2

[54]

Double-click the text on the label and change it to say Events on Date.

Next, drag a List Widget onto the vertical layout so that it appears under the label. Rename
it event_list and check its properties to make sure its size policies are set to Expanding.

Building the event form
Find the Group Box in the widget box and drag it under the list widget. Double-click the
text and change it to Event.

Drag a Line Edit onto the group box, making sure it shows up as a child of the group box in
the Object Inspector. Change the object name to event_title.

Now, right-click the group box and select Lay out, then select Lay out in a Grid. This will
create a grid layout in the group box.

Drag a Combo Box onto the next line. Drag a Time Edit to the right of it, then a Check Box
to the right of that. Name them event_category, event_time, and allday_check,
respectively. Double-click the checkbox text and change it to All Day.

To add options to the combo box, right-click the box and select Edit Items. This will open a
dialog where we can type in our items, so click the + button to add Select
Category… like the first one, then New…, then a few random categories (such as Work,
Doctor, Meeting).

Unfortunately, we can't disable the first item using Qt Designer. We'll
have to handle that when we use our form in an application, which we'll
discuss in Chapter 3, Handling Events with Signals and Slots.

Notice that adding those three widgets pushed the line edit over to the right. We need to fix
the column span on that widget. Click the line edit, grab the handle on the right edge, and
drag it right until it expands to the width of the group box.

Now, grab a Text Edit and drag it under the other widgets. Notice that it's squashed into
the first column, so just as with the line edit, drag it right until it fills the whole width.
Rename the text edit to event_detail.

Finally, drag two Push Button widgets to the bottom of the form. Make sure to drag them
to the second and third columns, leaving the first column empty. Rename
them add_button and del_button, changing the text to Add/Update and Delete,
respectively.

Building Forms with QtWidgets Chapter 2

[55]

Previewing the form
Save the form as calendar_form.ui, then press Ctrl + R to preview it. You should see a
fully functional form, just as shown in the original screenshot. To actually use this file, we'll
have to transpile it to Python code and import it into an actual script. We'll cover this
in Chapter 3, Handling Events with Signals and Slots, after we've made some additional
modifications to the form.

Summary
In this chapter, we covered a selection of the most popular widget classes in Qt. You
learned how to create them, customize them, and add them to a form. We discussed
various ways to control widget sizes and practiced building a simple application form in
both Python code and the Qt Designer WYSIWYG application.

In the next chapter, we'll learn how to make this form actually do something as we explore
Qt's core communication and event-handling system. Keep your calendar form handy, as
we'll modify it some more and make a functional application from it.

Questions
Try these questions to test your knowledge from this chapter:

How would you create a QWidget that is fullscreen, has no window frame, and1.
uses the hourglass cursor?
You're asked to design a data-entry form for a computer inventory database.2.
Choose the best widget to use for each of the following fields:

Computer make: One of eight brands that your company purchases
Processor Speed: The CPU speed in GHz
Memory amount: The amount of RAM, in whole MB
Host Name: The computer's hostname
Video make: Whether the video hardware is Nvidia, AMD, or Intel
OEM License: Whether the computer uses an Original Equipment
Manufacturer (OEM) license

Building Forms with QtWidgets Chapter 2

[56]

The data entry form includes an inventory number field that requires3.
the XX-999-9999X format where X is an uppercase letter from A to Z, excluding O
and I, and 9 is a number from 0 to 9. Can you create a validator class to validate
this input?
Check out the following calculator form—what layouts may have been used to4.
create it?

Referring to the preceding calculator form, how would you make the button grid5.
take up any extra space when the form is resized?
The topmost widget in the calculator form is a QLCDNumber widget. Can you find6.
the Qt documentation on this widget? What unique properties does it have?
When might you use it?
Starting with your template code, build the calculator form in code.7.
Build the calculator form in Qt Designer.8.

Building Forms with QtWidgets Chapter 2

[57]

Further reading
Check out the following resources for more information on the topics covered in this
chapter:

The QWidget properties documentation lists all the properties for QWidget,
which are inherited by all its child classes, at https:/ /doc. qt.io/ qt-5/ qwidget.
html#properties

The Qt namespace documentation lists many of the global enums used in Qt
at https:/ /doc. qt. io/ qt- 5/qt.html#WindowState- enum

The Qt layout management tutorial provides detailed information on layouts and
sizing at https:/ / doc. qt. io/ qt- 5/layout. html

The QDateTime documentation provides more information about working with
dates and times in Qt at https:/ /doc. qt. io/qt- 5/qdatetime. html

More information about QCalendarWidget can be found at https:/ /doc. qt. io/
qt-5/qcalendarwidget. html

https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qwidget.html#properties
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/qt.html#WindowState-enum
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/layout.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qdatetime.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html
https://doc.qt.io/qt-5/qcalendarwidget.html

3
Handling Events with Signals

and Slots
Composing widgets into a nice-looking form is a good first step for designing an
application, but for a GUI to be of any use, it needs to be connected to code that actually
does something. In order to do this in PyQt, we need to learn about one of Qt's most vital
features, signals and slots.

In this chapter, we'll cover the following topics:

Signal and slot basics
Creating custom signals and slots
Automating our calendar form

Technical requirements
Along with the basic requirements listed in Chapter 1, Getting Started with PyQt, you will
need your calendar-form code and Qt Designer files from Chapter 2, Building
Comprehensive Forms with QtWidgets. You may also wish to download the example code
from our GitHub repository at https:/ / github. com/ PacktPublishing/ Mastering- GUI-
Programming-with- Python/ tree/ master/ Chapter03.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5OFQo

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter03
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo
http://bit.ly/2M5OFQo

Handling Events with Signals and Slots Chapter 3

[59]

Signal and slot basics
A signal is a special property of an object that can be emitted in response to a type of event.
An event may be something such as a user action, a timeout, or the completion of an
asynchronous method call.

Slots are object methods that can receive a signal and act in response to it. We connect
signals to slots in order to configure our application's response to an event.

All classes descended from QObject (which accounts for most classes in Qt, including all
QWidget classes) can send and receive signals. Each different class has its own set of signals
and slots appropriate for the function of that class.

For example, QPushButton has a clicked signal that is emitted whenever the button is
clicked by a user. The QWidget class has a close() slot that causes it to close if it's a top-
level window. We could connect the two like this:

self.quitbutton = qtw.QPushButton('Quit')
self.quitbutton.clicked.connect(self.close)
self.layout().addWidget(self.quitbutton)

If you copy this code into our application template and run it, you'll find that clicking the
Quit button closes the window and ends the program. The syntax for connecting a signal to
a slot in PyQt5 is object1.signalName.connect(object2.slotName).

You can also make connections when creating an object by passing a slot to a signal as a
keyword argument. For example, the previous code could be rewritten as follows:

self.quitbutton = qtw.QPushButton('Quit', clicked=self.close)
self.layout().addWidget(self.quitbutton)

C++ and older versions of PyQt use a very different syntax for signals and
slots, which uses SIGNAL() and SLOT() wrapper functions. These don't
exist in PyQt5, so bear this in mind if you're following an older tutorial or
non-Python documentation.

Signals can also carry data with them that slots can receive. For example, QLineEdit has a
textChanged signal that sends the text entered into the widget along with the signal. The
line edit also has a setText() slot that accepts a string argument. We could connect those
like this:

self.entry1 = qtw.QLineEdit()
self.entry2 = qtw.QLineEdit()
self.layout().addWidget(self.entry1)

Handling Events with Signals and Slots Chapter 3

[60]

self.layout().addWidget(self.entry2)
self.entry1.textChanged.connect(self.entry2.setText)

In this example, we've connected the textChanged signal of entry1 to the setText() slot
of entry2. That means whenever the text is changed in entry1, it will signal entry2 with
the text entered; entry2 will set its own text to the received string, causing it to mirror
whatever is entered in entry1.

In PyQt5, a slot doesn't have to be an official Qt slot method; it can be any Python callable,
such as a custom method or a built-in function. For example, let's connect the entry2
widget's textChanged to good old print():

self.entry2.textChanged.connect(print)

Now, you'll see that every change to entry2 is printed to the console. The textChanged
signal basically calls print() every time it fires, passing in the text carried with the signal.

Signals can even be connected to other signals, for example:

self.entry1.editingFinished.connect(lambda: print('editing finished'))
self.entry2.returnPressed.connect(self.entry1.editingFinished)

We've connected the entry2 widget's returnPressed signal (which is emitted whenever
the user presses return/Enter while focused on the widget) to the entry1 widget's
editingFinished signal, which in turn is connected to a lambda function that prints a
message. When you connect a signal to another signal, the event and data are passed from
one signal to the next. The net result is that triggering returnPressed on entry2 causes
editingFinished to be emitted by entry1, which in turn runs the lambda function.

Restrictions on signal and slot connections
While PyQt offers amazing flexibility by allowing us to connect signals to any Python
callable, there are a few rules and limitations that you need to keep in mind. C++, unlike
Python, is a statically typed language, which means that variables and function arguments
must be given a type (string, integer, float, or one of many other types) and any value
stored in the variable or passed to that function must have a matching type. This is called
type safety.

Native Qt signals and slots are type-safe. Suppose, for instance, we tried to connect a line
edit's textChanged signal to the button's clicked signal, like this:

self.entry1.textChanged.connect(self.quitbutton.clicked)

Handling Events with Signals and Slots Chapter 3

[61]

This won't work, because textChanged emits a string, and clicked emits (and therefore
expects to receive) a Boolean. If you run this, you'll get an error such as this:

QObject::connect: Incompatible sender/receiver arguments
 QLineEdit::textChanged(QString) --> QPushButton::clicked(bool)
Traceback (most recent call last):
 File "signal_slots_demo.py", line 57, in <module>
 mw = MainWindow()
 File "signal_slots_demo.py", line 32, in __init__
 self.entry1.textChanged.connect(self.quitbutton.clicked)
TypeError: connect() failed between textChanged(QString) and clicked()

Slots can have multiple implementations, each with its own signature,
allowing the same slot to take different argument types. This is called an
overloaded slot. As long as our signal signature matches any of the
overloaded slots, we can make the connection and Qt will work out which
one we're connecting to.

When connecting to a slot that is a Python function, we don't have to be worried about
argument types because Python is dynamically typed (though it's up to us to make sure
our Python code does the right thing with whatever object is passed to it). As with any call
to a Python function, however, we do need to make sure we pass in enough arguments to
satisfy the function signature.

For example, let's add a method to our MainWindow class, as follows:

def needs_args(self, arg1, arg2, arg3):
 pass

This instance method needs three arguments (self is automatically passed). Let's try to
connect a button's clicked signal to it:

self.badbutton = qtw.QPushButton("Bad")
self.layout().addWidget(self.badbutton)
self.badbutton.clicked.connect(self.needs_args)

This code doesn't object to the connection itself, but when you click the button, the program
crashes with this error:

TypeError: needs_args() missing 2 required positional arguments: 'arg2' and
'arg3'
Aborted (core dumped)

Handling Events with Signals and Slots Chapter 3

[62]

Since the clicked signal only sends one argument, the function call is incomplete and it
throws an exception. This can be solved by making arg2 and arg3 into keyword
arguments (by adding default values), or by creating a wrapper function that populates
them with values some other way.

Incidentally, the inverse situation—where the slot takes fewer arguments than the signal
sends—is not a problem. Qt just drops the extra data from the signal.

So, for example, there is no problem connecting clicked to a method with no arguments,
like this:

 # inside __init__()
 self.goodbutton = qtw.QPushButton("Good")
 self.layout().addWidget(self.goodbutton)
 self.goodbutton.clicked.connect(self.no_args)
 # ...

 def no_args(self):
 print('I need no arguments')

Creating custom signals and slots
Setting callbacks for button clicks and text changes is a common and very obvious use for
signals and slots, but it is really only the beginning. At its core, the signals and slots
mechanism can be seen as a way for any two objects in an application to communicate
while remaining loosely coupled.

Loose coupling refers to keeping the amount of information two objects
need to know about each other to a minimum. It's an essential trait to
preserve when designing large, complex applications because it isolates
code and prevents inadvertent breakage. The opposite is tight coupling,
where one object's code depends heavily on the internal structures of
another.

In order to take full advantage of this functionality, we'll need to learn how to create our
own custom signals and slots.

Handling Events with Signals and Slots Chapter 3

[63]

Sharing data between windows using custom
signals
Suppose you have a program that pops up a form window. When the user finishes filling in
the form and submits it, we need to get the entered data back to the main application class
for processing. There are a few ways we could approach this; for instance, the main
application could watch for click events on the pop-up window's Submit button, then grab
the data from its fields before destroying the dialog. But that approach requires the main
form to know all about the pop-up dialog's widgets, and any refactor of the popup would
risk breaking code in the main application window.

Let's try a different approach using signals and slots. Open a fresh copy of our application
template from Chapter 1, Getting Started with PyQt, and start a new class called
FormWindow, like this:

class FormWindow(qtw.QWidget):

 submitted = qtc.pyqtSignal(str)

The first thing we've defined in this class is a custom signal called submitted. To define a
custom signal, we need to call the QtCore.pyqtSignal() function. The arguments to
pyqtSignal() are the data types our signal will be carrying, in this case, str. We can use
Python type objects here, or strings naming a C++ data type ('QString', for example).

Now let's build the form by defining the __init__() method as follows:

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QVBoxLayout())

 self.edit = qtw.QLineEdit()
 self.submit = qtw.QPushButton('Submit', clicked=self.onSubmit)

 self.layout().addWidget(self.edit)
 self.layout().addWidget(self.submit)

Here, we're defining a QLineEdit for data entry and a QPushButton for submitting the
form. The button-click signal is bound to a method called onSubmit, which we'll define
next:

 def onSubmit(self):
 self.submitted.emit(self.edit.text())
 self.close()

Handling Events with Signals and Slots Chapter 3

[64]

In this method, we call the submitted signal's emit() method, passing in the contents of
QLineEdit. This means that any connected slots will be called with the string retrieved
from self.edit.text().

After emitting the signal, we close the FormWindow.

Down in our MainWindow constructor, let's build an application that uses it:

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QVBoxLayout())

 self.label = qtw.QLabel('Click "change" to change this text.')
 self.change = qtw.QPushButton("Change", clicked=self.onChange)
 self.layout().addWidget(self.label)
 self.layout().addWidget(self.change)
 self.show()

Here, we've created a QLabel and a QPushButton and added them to a vertical layout.
When clicked, the button calls a method called onChange().

The onChange() method looks like this:

 def onChange(self):
 self.formwindow = FormWindow()
 self.formwindow.submitted.connect(self.label.setText)
 self.formwindow.show()

This method creates an instance of our FormWindow. It then binds our custom signal,
FormWindow.submitted, to the setText slot of the label; setText takes a single string
for an argument, and our signal sends a single string.

If you run this application, you'll see that when you submit the pop-up form window, the
text in the label does indeed change.

The beauty of this design is that FormWindow doesn't need to know anything whatsoever
about MainWindow, and MainWindow only needs to know that FormWindow has a
submitted signal that emits the entered string. We could easily modify the structure and
internals of either class, without causing issues for the other, as long as the same signal
emits the same piece of data.

Handling Events with Signals and Slots Chapter 3

[65]

QtCore also contains a pyqtSlot() function, which we can use as a decorator to indicate
that a Python function or method is intended as a slot.

For example, we can decorate our MainWindow.onChange() method to declare it as a slot:

 @qtc.pyqtSlot()
 def onChange(self):
 # ...

This is purely optional, since we can use any Python callable as a slot, though it does give
us the ability to enforce type safety. For instance, if we wanted to require that onChange()
should always receive a string, we could decorate it like this:

 @qtc.pyqtSlot(str)
 def onChange(self):
 # ...

If you do this and run the program, you'll see that our attempt to connect a clicked signal
would fail:

Traceback (most recent call last):
 File "form_window.py", line 47, in <module>
 mw = MainWindow()
 File "form_window.py", line 31, in __init__
 self.change = qtw.QPushButton("Change", clicked=self.onChange)
TypeError: decorated slot has no signature compatible with clicked(bool)

Apart from imposing type safety, declaring a method as a slot reduces its memory usage
and provides a small improvement in speed. So, while it's entirely optional, it may be
worth doing for methods that will only ever be used as slots.

Overloading signals and slots
Just as C++ signals and slots can be overloaded to accept different argument signatures, we
can overload our custom PyQt signals and slots. For instance, suppose that, if a valid
integer string is entered into our pop-up window, we'd like to emit it as both a string and
an integer.

To do this, we first have to redefine our signal:

 submitted = qtc.pyqtSignal([str], [int, str])

Handling Events with Signals and Slots Chapter 3

[66]

Instead of just passing in a single variable type, we're passing in two lists of variable types.
Each list represents the argument list of a signal signature. So, we've registered two signals
here: one that sends out a string only, and one that sends out an integer and a string.

In FormWindow.onSubmit(), we can now examine the text in the line edit and send out
the signal with the appropriate signature:

 def onSubmit(self):
 if self.edit.text().isdigit():
 text = self.edit.text()
 self.submitted[int, str].emit(int(text), text)
 else:
 self.submitted[str].emit(self.edit.text())
 self.close()

Here, we test the text in self.edit to see whether it's a valid number string. If it is, we
convert it to int and emit the submitted signal with the integer and string version of the
text. The syntax for selecting a signature is to follow the signal name with square brackets
containing a list of the argument types.

Back in the main window, we'll define two new methods to handle these signals:

 @qtc.pyqtSlot(str)
 def onSubmittedStr(self, string):
 self.label.setText(string)

 @qtc.pyqtSlot(int, str)
 def onSubmittedIntStr(self, integer, string):
 text = f'The string {string} becomes the number {integer}'
 self.label.setText(text)

We've created two slots—one that accepts a string and another that accepts an integer and a
string. We can now connect the two signals in FormWindow to the appropriate slot like so:

 def onChange(self):
 self.formwindow = FormWindow()
 self.formwindow.submitted[str].connect(self.onSubmittedStr)
 self.formwindow.submitted[int, str].connect(self.onSubmittedIntStr)

Run the script, and you'll find now that entering a string of digits will print a different
message than an alphanumeric string.

Handling Events with Signals and Slots Chapter 3

[67]

Automating our calendar form
To see how signal and slot usage works in an actual application, let's take the calendar form
that we built in Chapter 2, Building Forms with QtWidgets, and turn it into a working
calendar application. To do this, we're going to need to make the following changes:

The app needs a way to store events that we enter.
The All Day checkbox should disable the time entry when checked.
Selecting a day on the calendar should populate the event list with the events for
that day.
Selecting an event in the event list should populate the form with the event's
details.
Clicking Add/Update should update the saved event details if an event was
selected, or add a new event if one was not.
Clicking Delete should remove the selected event.
If no event is selected, Delete should be disabled.
Selecting New… as a category should open a dialog allowing us to enter a new
category. If we choose to enter one, it should be selected.

We'll first go through this using our hand-coded form, then talk about how to approach the
same issue using Qt Designer files.

Using our hand-coded form
To get started, copy your calendar_form.py file from Chapter 2, Building Forms with
QtWidgets, into a new file called calendar_app.py and open it in your editor. We're going
to start editing our MainWindow class and flesh it out into a complete application.

To handle storing the events, we'll just create a dict property in MainWindow, like so:

class MainWindow(qtw.QWidget):

 events = {}

Handling Events with Signals and Slots Chapter 3

[68]

We're not going to bother persisting data to disk, though you can certainly add such a
feature if you wish. Each item in dict will use a date object as its key and contain a list of
dict objects holding the details of all the events on that date. The layout of the data will
look something like this:

 events = {
 QDate: {
 'title': "String title of event",
 'category': "String category of event",
 'time': QTime() or None if "all day",
 'detail': "String details of event"
 }
 }

Next, let's dig into the form automation. The easiest change to make is disabling the time
entry when the All Day checkbox is clicked since this automation only requires dealing
with built-in signals and slots.

In the __init__() method, we'll add this code:

 self.allday_check.toggled.connect(self.event_time.setDisabled)

The QCheckBox.toggled signal is emitted whenever the checkbox is toggled on or off, and
sends out a Boolean indicating whether the checkbox is (post-change) unchecked (False)
or checked (True). This connects nicely to setDisabled, which will disable the widget on
True or enable it on False.

Creating and connecting our callback methods
The rest of our required automation doesn't map to built-in Qt slots, so before we can
connect any more signals, we'll need to create some methods that will be used to implement
the slots. We'll create all these as methods of the MainWindow class.

Before we start with the callbacks, we'll create a utility method to clear out the form, which
several of the callback methods will need. It looks like this:

 def clear_form(self):
 self.event_title.clear()
 self.event_category.setCurrentIndex(0)
 self.event_time.setTime(qtc.QTime(8, 0))
 self.allday_check.setChecked(False)
 self.event_detail.setPlainText('')

Handling Events with Signals and Slots Chapter 3

[69]

Essentially, this method goes through the fields in our form and sets them all to default
values. Unfortunately, this requires a different method call for each widget, so we just have
to spell it all out.

Now let's go through the callback methods.

The populate _list () method
The first actual callback method is populate_list(), which looks like this:

 def populate_list(self):
 self.event_list.clear()
 self.clear_form()
 date = self.calendar.selectedDate()
 for event in self.events.get(date, []):
 time = (
 event['time'].toString('hh:mm')
 if event['time']
 else 'All Day'
)
 self.event_list.addItem(f"{time}: {event['title']}")

This will be called whenever the calendar selection is changed, and its job is to repopulate
the event_list widget with the events from that day. It starts by clearing the list and the
form. It then retrieves the selected date from the calendar widget using its
selectedDate() method.

Then, we cycle through the list of events for the selected date's self.events dictionary,
building a string containing the time and event title and adding it to the event_list
widget. Note that our event time is a QTime object, so to use it as a string we need to
convert it using its toString() method.

See the QTime documentation at https:/ /doc. qt. io/qt- 5/qtime. html
for details on how to format time values as strings.

To connect this method, back in __init__(), we add this code:

 self.calendar.selectionChanged.connect(self.populate_list)

The selectionChanged signal is emitted whenever a new day is selected on the calendar.
It does not send any data with the signal, so our callback does not expect any.

https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html
https://doc.qt.io/qt-5/qtime.html

Handling Events with Signals and Slots Chapter 3

[70]

The populate _form () method
The next callback is populate_form(), which will be called when an event is selected and
populate the event details form. It begins like this:

 def populate_form(self):
 self.clear_form()
 date = self.calendar.selectedDate()
 event_number = self.event_list.currentRow()
 if event_number == -1:
 return

Here, we start by clearing the form, then retrieving the selected date from the calendar, and
the selected event from the event list. When no event is selected,
QListWidget.currentRow() returns a value of -1; in that case, we'll just return, leaving
the form blank.

The remainder of the method looks like this:

 event_data = self.events.get(date)[event_number]

 self.event_category.setCurrentText(event_data['category'])
 if event_data['time'] is None:
 self.allday_check.setChecked(True)
 else:
 self.event_time.setTime(event_data['time'])
 self.event_title.setText(event_data['title'])
 self.event_detail.setPlainText(event_data['detail'])

Since the items on the list widget are displayed in the same order that they're stored in the
events dictionary, we can use the row number of the selected item to retrieve an event
from the selected date's list.

Once the data is retrieved, we just need to set each widget to the saved value.

Back in __init__(), we'll connect the slot like so:

 self.event_list.itemSelectionChanged.connect(
 self.populate_form
)

QListWidget emits itemSelectionChanged whenever a new item is selected. It doesn't
send any data with it, so again, our callback expects none.

Handling Events with Signals and Slots Chapter 3

[71]

The save _event () method
The save_event() callback will be called whenever the Add/Update button is pushed. It
starts like this:

 def save_event(self):
 event = {
 'category': self.event_category.currentText(),
 'time': (
 None
 if self.allday_check.isChecked()
 else self.event_time.time()
),
 'title': self.event_title.text(),
 'detail': self.event_detail.toPlainText()
 }

In this code, we are now calling the accessor methods to retrieve the values from the
widgets and assign them to the appropriate keys of the event's dictionary.

Next, we'll retrieve the current event list for the selected date and determine whether this is
an addition or an update:

 date = self.calendar.selectedDate()
 event_list = self.events.get(date, [])
 event_number = self.event_list.currentRow()

 if event_number == -1:
 event_list.append(event)
 else:
 event_list[event_number] = event

Remember that QListWidget.currentRow() returns -1 if no items are selected. In which
case, we want to append our new event to the list. Otherwise, we replace the selected event
with our new event dictionary:

 event_list.sort(key=lambda x: x['time'] or qtc.QTime(0, 0))
 self.events[date] = event_list
 self.populate_list()

To finish this method, we're going to sort the list using the time value. Remember that we're
using None for an all-day event, so those will be sorted first by replacing them in the sort
with a QTime of 0:00.

Handling Events with Signals and Slots Chapter 3

[72]

After sorting, we replace the event list for the current date with our newly sorted list and
repopulate the QListWidget with the new list.

We'll connect the add_button widget's clicked event by adding this code to
__init__():

 self.add_button.clicked.connect(self.save_event)

The delete _event () method
The delete_event method will be called whenever the Delete button is clicked, and it
looks like this:

 def delete_event(self):
 date = self.calendar.selectedDate()
 row = self.event_list.currentRow()
 del(self.events[date][row])
 self.event_list.setCurrentRow(-1)
 self.clear_form()
 self.populate_list()

Once again, we retrieve the current date and currently selected row and use them to locate
the event in self.events that we want to delete. After deleting the item from the list, we
set the list widget to no selection by setting currentRow to -1. Then, we clear the form and
populate the list widget.

Note that we don't bother checking to see whether the currently selected row is -1, because
we plan to disable the delete button when no row is selected.

This callback is pretty simple to connect to the del_button back in __init__():

 self.del_button.clicked.connect(self.delete_event)

The check _delete _btn () method
Our last callback is the simplest of all, and it looks like this:

 def check_delete_btn(self):
 self.del_button.setDisabled(
 self.event_list.currentRow() == -1)

This method simply checks whether there is no event currently selected in the event list
widget, and it enables or disables the delete button accordingly.

Handling Events with Signals and Slots Chapter 3

[73]

Back in __init__(), let's connect to this callback:

 self.event_list.itemSelectionChanged.connect(
 self.check_delete_btn)
 self.check_delete_btn()

We're connecting this callback to the itemSelectionChanged signal. Note that we've
already connected that signal to another slot as well. Signals can be connected to any
number of slots without a problem. We also call the method directly, so that the
del_button will start out disabled.

Building our new category pop-up form
The last feature we want in our application is the ability to add new categories to our
combo box. The basic workflow we need to implement is this:

When a user changes the event category, check whether they selected New…1.
If so, open a form in a new window that lets them type in a category2.
When the form is submitted, emit the name of the new category3.
When that signal is emitted, add a new category to the combo box and select it4.
If the user opts not to enter a new category, default the combo box to Select5.
Category…

Let's start by implementing our pop-up form. This will be just like the form example we
went through earlier in this chapter, and it looks like this:

class CategoryWindow(qtw.QWidget):

 submitted = qtc.pyqtSignal(str)

 def __init__(self):
 super().__init__(None, modal=True)
 self.setLayout(qtw.QVBoxLayout())
 self.layout().addWidget(
 qtw.QLabel('Please enter a new catgory name:'))
 self.category_entry = qtw.QLineEdit()
 self.layout().addWidget(self.category_entry)
 self.submit_btn = qtw.QPushButton(
 'Submit',
 clicked=self.onSubmit)
 self.layout().addWidget(self.submit_btn)
 self.cancel_btn = qtw.QPushButton(
 'Cancel',
 clicked=self.close

Handling Events with Signals and Slots Chapter 3

[74]

)
 self.layout().addWidget(self.cancel_btn)
 self.show()

 @qtc.pyqtSlot()
 def onSubmit(self):
 if self.category_entry.text():
 self.submitted.emit(self.category_entry.text())
 self.close()

This class is the same as our FormWindow class with the addition of a label and a
Cancel button. The cancel_btn widget will call the window's close() method when
clicked, causing the window to close without emitting any signals.

Back in MainWindow, let's implement a method to add a new category to the combo box:

 def add_category(self, category):
 self.event_category.addItem(category)
 self.event_category.setCurrentText(category)

This method is pretty simple; it just receives a category text, adds it to the end of the combo
box, and sets the combo box selection to the new category.

Now we need to write a method that will create an instance of our pop-up form whenever
New… is selected:

 def on_category_change(self, text):
 if text == 'New…':
 dialog = CategoryWindow()
 dialog.submitted.connect(self.add_category)
 self.event_category.setCurrentIndex(0)

This method takes the text value to which the category has been changed and checks to
see whether it's New…. If it is, we create our CategoryWindow object and connect its
submitted signal to our add_category() method. Then, we set the current index to 0,
which is our Select Category… option.

Now, when CategoryWindow is shown, the user will either click Cancel, in which case the
window will close and the combo box will be set to Select Category… where
on_category_change() left it, or the user will enter a category and click Submit, in
which case CategoryWindow will emit a submitted signal with the new category.
The add_category() method will receive that new category, add it, and set the combo box
to it.

Our calendar app is now complete; fire it up and give it a try!

Handling Events with Signals and Slots Chapter 3

[75]

Using Qt Designer .ui files
Now let's back up and go through that same process using the Qt Designer files we created
in Chapter 2, Building Forms with QtWidgets. This will require a rather different approach,
but the end product will be the same.

To work through this section, you'll need both your calendar_form.ui file from Chapter
2, Building Forms with QtWidgets and a second .ui file for the category window. You can
build this form on your own as practice, or use the one included with the example code for
this chapter. If you choose to build your own, make sure to name each object just as we did
in the code in the last section.

Connecting slots in Qt Designer
Qt Designer has a limited capability to connect signals and slots to our GUI. For Python
developers, its mainly only useful for connecting built-in Qt signals to built-in Qt slots
between widgets in the same window. Connecting signals to Python callables or custom
PyQt signals isn't really possible.

In the calendar GUI, we do have one example of a native Qt signal-slot connection—the
allday_check widget is connected to the event_time widget. Let's look at how to
connect these in Qt Designer:

Open the calendar_form.ui file in Qt Designer1.
At the lower-right side of the screen, find the Signal/Slot Editor panel2.
Click the + icon to add a new connection3.
Under Sender, open the pop-up menu and select allday_check4.
Under Signal, choose toggled(bool)5.
For Receiver, choose event_time6.
Finally, for Slot, choose setDisabled(bool)7.

Handling Events with Signals and Slots Chapter 3

[76]

The resulting entry should look like this:

If you're building your own category_window.ui file, make sure you also connect the
cancel button's clicked signal to the category window's closed slot.

Converting .ui files to Python
If you were to open your calendar_form.ui file in a text editor, you'd see that it is neither
Python nor C++, but rather an XML representation of the GUI you've designed. PyQt offers
us a few choices for how to use the .ui file in a Python application.

The first approach is to convert the XML into Python using the pyuic5 tool included with
PyQt. Open a command-line window in the directory where your .ui files are and run the
following command:

$ pyuic5 calendar_form.ui

This will generate a file called calendar_form.py. If you open this file in your code editor,
you'll see that it contains a single class definition for a Ui_MainWindow class, as follows:

class Ui_MainWindow(object):
 def setupUi(self, MainWindow):
 MainWindow.setObjectName("MainWindow")
 MainWindow.resize(799, 600)
 # ... etc

Notice that this class is not a subclass of QWidget or even QObject. By itself, this class will
not display the window we built. Instead, this class will build the GUI we designed inside
another widget, which we must create with code.

Handling Events with Signals and Slots Chapter 3

[77]

To do that, we'll import the class into another script, create a QWidget to serve as a
container, and call the setupUi() method with our widget container as an argument.

Don't be tempted to edit or add code to the generated Python file. If you
ever want to update your GUI using Qt Designer, you'll lose all your edits
when you generate the new file. Treat the generated code as if it were a
third-party library.

Start by copying the PyQt app template from Chapter 1, Getting Started with PyQt, into the
directory with calendar_form.py and call it calendar_app.py.

At the top of the file, import the Ui_MainWindow class like this:

from calendar_form import Ui_MainWindow

There are a few ways we can use this class, but the cleanest is to use multiple inheritances
by adding it as a second parent class for MainWindow.

Update the MainWindow class definition like so:

class MainWindow(qtw.QWidget, Ui_MainWindow):

Note that our window's base class (the first parent class) remains QWidget. This base class
needs to match the base class we chose when we initially designed the form (see Chapter 2,
Building Forms with QtWidgets).

Now, inside the constructor, we can call setupUi, like this:

 def __init__(self):
 super().__init__()
 self.setupUi(self)

If you run the application at this point, you'll see that the calendar GUI is all there,
including our connection between allday_check and event_time. You can then add the
remaining connections and modifications into the MainWindow constructor, like so:

 # disable the first category item
 self.event_category.model().item(0).setEnabled(False)
 # Populate the event list when the calendar is clicked
 self.calendar.selectionChanged.connect(self.populate_list)
 # Populate the event form when an item is selected
 self.event_list.itemSelectionChanged.connect(
 self.populate_form)
 # Save event when save is hit
 self.add_button.clicked.connect(self.save_event)
 # connect delete button

Handling Events with Signals and Slots Chapter 3

[78]

 self.del_button.clicked.connect(self.delete_event)
 # Enable 'delete' only when an event is selected
 self.event_list.itemSelectionChanged.connect(
 self.check_delete_btn)
 self.check_delete_btn()
 # check for selection of "new…" for category
 self.event_category.currentTextChanged.connect(
 self.on_category_change)

The callback methods for this class are identical to the ones we defined in our code-only
example. Go ahead and copy those into the MainWindow class.

Another way to use the Ui_ class created by pyuic5 is to instantiate it as a property of our
container widget. We'll try this with our category window; add this class to the top of the
file:

class CategoryWindow(qtw.QWidget):

 submitted = qtc.pyqtSignal(str)

 def __init__(self):
 super().__init__()
 self.ui = Ui_CategoryWindow()
 self.ui.setupUi(self)
 self.show()

After creating the Ui_CategoryWindow object as a property of CategoryWindow, we then
call its setupUi() method to build the GUI on CategoryWindow. However, all our
references to the widgets are now under the self.ui namespace. So, for
example, category_entry is not self.category_entry but
self.ui.category_entry. While this approach is slightly more verbose, it may help to
avoid name collisions if you're building a particularly complex class.

Automatic signal and slot connections
Take another look at the Ui_ class generated by pyuic5 and notice the last line of code in
setupUi:

 QtCore.QMetaObject.connectSlotsByName(MainWindow)

connectSlotsByName() is a method that will automatically connect signals and slots by
matching up signals to methods named in the on_object_name_signal() format, where
object_name matches the objectName property of a PyQt object and signal is the name
of one of its built-in signals.

Handling Events with Signals and Slots Chapter 3

[79]

For example, in our CategoryWindow, we would like to create a callback that runs when
submit_btn is clicked (if you made your own .ui file, make sure you named your submit
button submit_btn). That will happen automatically if we name the callback
on_submit_btn_clicked().

The code looks like this:

 @qtc.pyqtSlot()
 def on_submit_btn_clicked(self):
 if self.ui.category_entry.text():
 self.submitted.emit(self.ui.category_entry.text())
 self.close()

If we get the names to match up, we don't have to explicitly call connect() anywhere; the
callback will be wired up automatically.

You can use connectSlotsByName() with hand-coded GUIs as well; you
just need to explicitly set each widget's objectName property so that the
method has something to match the name against. Variable names alone
won't work.

Using .ui files without conversion
If you don't mind a little conversion overhead during runtime, you can actually avoid the
step of manually converting your .ui files by converting them on the fly inside your
program using PyQt's uic library (on which pyuic5 is based).

Let's try this with our MainWindow GUI. Start by commenting out your import of
Ui_MainWindow and importing uic, like so:

#from calendar_form import Ui_MainWindow
from PyQt5 import uic

Then, before your MainWindow class definition, call uic.loadUiType(), as follows:

MW_Ui, MW_Base = uic.loadUiType('calendar_form.ui')

loadUiType() takes a path to the .ui file and returns a tuple containing the generated UI
class and the Qt base class on which it is based (in this case, QWidget).

Handling Events with Signals and Slots Chapter 3

[80]

We can then use these as the parent classes for our MainWindow class, like so:

class MainWindow(MW_Base, MW_Ui):

The downside of this approach is the additional conversion time, but with the added
benefit of a simpler build and fewer files to maintain. This is a good approach to take
during early development, when you may be iterating on your GUI design frequently.

Summary
In this chapter, you learned about Qt's inter-object communication feature, signals and
slots. You learned how to use them to automate form behavior, to connect functionality to
user events, and to communicate between different windows in an application.

In the next chapter, we're going to learn about QMainWindow, a class that simplifies
building common application components. You'll learn how to quickly create menus,
toolbars, and dialog, as well as how to save settings.

Questions
Try these questions to test your knowledge of this chapter:

Look at the following table and determine which of the connections could1.
actually be made, and which would result in an error. You may need to look up
the signatures of these signals and slots in the documentation:

Signal Slot
1 QPushButton.clicked QLineEdit.clear

2 QComboBox.currentIndexChanged QListWidget.scrollToItem

3 QLineEdit.returnPressed QCalendarWidget.setGridVisible

4 QLineEdit.textChanged QTextEdit.scrollToAnchor

The emit() method does not exist on a signal object until the signal has been2.
bound (that is, connected to a slot). Rewrite the CategoryWindow.onSubmit()
method from our first calendar_app.py file to protect against the possibility of
submitted being unbound.

Handling Events with Signals and Slots Chapter 3

[81]

You find an object in the Qt documentation with a slot that requires a QString as3.
an argument. Can you connect your custom signal that sends Python's str?
You find an object in the Qt documentation with a slot that requires a QVariant4.
as an argument. What built-in Python types could you send to this slot?
You're trying to create a dialog window that takes time and emits it when the5.
user has finished editing the value. You're trying to use automatic slot
connections, but your code isn't doing anything. Determine what is missing:

 class TimeForm(qtw.QWidget):

 submitted = qtc.pyqtSignal(qtc.QTime)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QHBoxLayout())
 self.time_inp = qtw.QTimeEdit(self)
 self.layout().addWidget(self.time_inp)

 def on_time_inp_editingFinished(self):
 self.submitted.emit(self.time_inp.time())
 self.destroy()

You've created a .ui file in Qt Designer for a calculator application, and you're6.
trying to get it working in code, but it's not working. What are you doing wrong
in the following source code?

 from calculator_form import Ui_Calculator

 class Calculator(qtw.QWidget):
 def __init__(self):
 self.ui = Ui_Calculator(self)
 self.ui.setupGUI(self.ui)
 self.show()

Handling Events with Signals and Slots Chapter 3

[82]

You're trying to create a new button class that emits an integer value when7.
clicked; unfortunately, nothing happens when you click the button. Look at the
following code and try to make it work:

 class IntegerValueButton(qtw.QPushButton):

 clicked = qtc.pyqtSignal(int)

 def __init__(self, value, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.value = value
 self.clicked.connect(
 lambda: self.clicked.emit(self.value))

Further reading
Check out these resources for more information:

PyQt's documentation on signal and slot support can be found here at http:/ /
pyqt.sourceforge. net/ Docs/ PyQt5/ signals_ slots. html

PyQt's documentation on using Qt Designer can be found here at http:/ /pyqt.
sourceforge. net/ Docs/ PyQt5/ designer. html

http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/signals_slots.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html
http://pyqt.sourceforge.net/Docs/PyQt5/designer.html

4
Building Applications with

QMainWindow
Basic Qt widgets can take us a long way when building simple forms, but full applications
include features such as menus, toolbars, dialog boxes, and other functionality that can be
tedious and tricky to build from scratch. Fortunately, PyQt provides us with ready-made
classes for these standard components to make building applications relatively painless.

In this chapter, we'll explore the following topics:

The QMainWindow class
Standard dialog boxes
Saving settings with QSettings

Technical requirements
This chapter will require the same setup as shown in Chapter 1, Getting Started with PyQt.
You may also wish to reference the code found in our GitHub repository at https:/ /
github.com/PacktPublishing/ Mastering- GUI-Programming- with- Python/ tree/ master/
Chapter04.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5OGnq

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter04
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq
http://bit.ly/2M5OGnq

Building Applications with QMainWindow Chapter 4

[84]

The QMainWindow class
Up until now, we've been using the humble QWidget as the base class for our top-level
window. This works well for simple forms, but it lacks many of the features that we might
expect from an application's main window, such as menu bars or toolbars. Qt provides the
QMainWindow class to address this need.

Make a copy of the application template from Chapter 1, Getting Started with PyQt, and let's
make a small but crucial change:

class MainWindow(qtw.QMainWindow):

Instead of inheriting from QWidget, we'll inherit from QMainWindow. As you'll see, this will
change the way we have to code our GUI, but it will also add a number of nice features to
our main window.

To explore these new features, let's build a simple plain text editor. The following
screenshot shows what our completed editor will look like, along with labels showing the
main components of the QMainWindow class:

Save your updated template, copy it to a new file called text_editor.py, and open the
new file in your code editor. Let's begin!

Building Applications with QMainWindow Chapter 4

[85]

Setting a central widget
QMainWindow is divided into several sections, the most important of which is the central
widget. This is a single widget that represents the main business part of the interface.

We set this by passing a reference to any widget to the
QMainWindow.setCentralWidget() method, like this:

 self.textedit = qtw.QTextEdit()
 self.setCentralWidget(self.textedit)

There can be only one central widget, so in a more complex application (such as a data
entry app, for instance) it will more likely be a QWidget object on which you've arranged a
more complex GUI; for our simple text editor, a single QTextEdit widget will suffice.
Notice that we do not set a layout on the QMainWindow; doing so would break the preset
arrangement of components.

Adding a status bar
A status bar is a strip across the bottom of the application window designed for displaying
short text messages and informational widgets. In Qt, a status bar is a QStatusBar object
that we can assign to the main window's statusBar property.

We could create one like this:

 status_bar = qtw.QStatusBar()
 self.setStatusBar(status_bar)
 status_bar.showMessage('Welcome to text_editor.py')

However, there's no need to go to so much trouble; the QMainWindow object's
statusBar() method automatically creates a new status bar if there isn't one, or returns
the existing one if there is.

So, we can reduce all that code to this:

 self.statusBar().showMessage('Welcome to text_editor.py')

The showMessage() method does exactly what it says, displaying the given string in the
status bar. This is by far the most common use of the status bar; however, QStatusBar
objects can also contain other widgets.

Building Applications with QMainWindow Chapter 4

[86]

For example, we can add a widget that keeps track of our character count:

 charcount_label = qtw.QLabel("chars: 0")
 self.textedit.textChanged.connect(
 lambda: charcount_label.setText(
 "chars: " +
 str(len(self.textedit.toPlainText()))
)
)
 self.statusBar().addPermanentWidget(charcount_label)

This QLabel is updated with the number of characters entered whenever our text changes.

Note that we've added it directly to the status bar, without referencing a layout
object; QStatusBar has its own methods for adding or inserting widgets that come in two
flavors: regular and permanent. In regular mode, widgets can be covered up if the status
bar is sent a long message to display. In permanent mode, they will remain visible. In this
case, we used the addPermanentWidget() method to add charcount_label in
permanent mode so it won't be covered up by a long text message.

The methods for adding a widget in regular mode are addWidget() and
insertWidget(); for permanent mode, use addPermanentWidget()
and insertPermanentWidget().

Creating an application menu
The application menu is a crucial feature for most applications, offering access to all the
application's functionality in hierarchically organized drop-down menus.

We can create on easily using the QMainWindow.menuBar() method:

 menubar = self.menuBar()

The menuBar() method returns a QMenuBar object, and as with statusBar(), this method
will give us the window's existing menu if it exists, or simply create a new one if it doesn't.

By default, the menu is blank, but we can add submenus using the menu bar's addMenu()
method, like so:

 file_menu = menubar.addMenu('File')
 edit_menu = menubar.addMenu('Edit')
 help_menu = menubar.addMenu('Help')

Building Applications with QMainWindow Chapter 4

[87]

addMenu() returns a QMenu object, which represents a drop-down submenu. The string
passed into the method will be used to label the menu in the main menu bar.

Certain platforms, such as macOS, will not display empty submenus. See
the Menus on macOS section for more information on building menus in
macOS.

To populate these menus with items, we need to create some actions. Actions are simply
objects of the QAction class that represent things our program can do. To be useful, a
QAction object needs at least a name and a callback; they can optionally define a keyboard
shortcut and icon for the action.

One way to create actions is to call a QMenu object's addAction() method, like so:

 open_action = file_menu.addAction('Open')
 save_action = file_menu.addAction('Save')

We've created two actions called Open and Save. Neither of them actually does anything,
because we haven't assigned callback methods, but if you run your application script, you'll
see that the file menu does indeed have two items listed, Open and Save.

To create items that actually do something, we can pass in a second argument containing a
Python callable or Qt slot:

 quit_action = file_menu.addAction('Quit', self.destroy)
 edit_menu.addAction('Undo', self.textedit.undo)

For cases where we want more control, it's possible to create a QAction object explicitly
and add it to the menu, like so:

 redo_action = qtw.QAction('Redo', self)
 redo_action.triggered.connect(self.textedit.redo)
 edit_menu.addAction(redo_action)

QAction objects have a triggered signal that must be connected to a callable or slot for
the action to have any effect. This is handled automatically when we use the addAction()
method of creating actions, but it must be done manually when creating QAction objects
explicitly.

Although not technically required, it's very important to pass in a parent
widget when creating a QAction object explicitly. Failing to do so will
result in the item not showing up, even when you add it to the menu.

Building Applications with QMainWindow Chapter 4

[88]

Menus on macOS
QMenuBar wraps the OS's native menu system by default. On macOS, the native menu
system has a few peculiarities that you need to be aware of:

macOS uses a global menu, meaning the menu bar is not part of the application
window but is attached to the bar at the top of the desktop. By default, your main
window's menu bar will be used as the global menu. If you have an application
with multiple main windows and you want them all to use the same menu bar,
do not use QMainWindow.menuBar() to create the menu bar. Instead, create a
QMenuBar object explicitly and assign it to the main window objects you create
using the setMenuBar() method.
macOS also has a number of default submenus and menu items. To access these
items, simply use the same when adding a submenu. When adding a submenu
see the Further reading section for more details on macOS menus.
As mentioned previously, macOS will not display an empty submenu on the
global menu.

If you find these issues too problematic for your application, you can always instruct Qt not
to use the native menu system, like so:

 self.menuBar().setNativeMenuBar(False)

This will place the menu bar in the application window as it is on other platforms and
remove the platform-specific issues. However, be aware that this approach breaks the
workflow typical to macOS software and users may find it jarring.

More information about Qt menus on macOS can be found at https:/ /
doc.qt. io/ qt- 5/ macos- issues. html#menu- bar.

Adding toolbars
A toolbar is a long row of buttons often used for editing commands or similar actions.
Unlike main menus, toolbars are not hierarchical and the buttons are typically only labeled
with an icon.

QMainWindow allows us to add multiple toolbars to our application using the
addToolBar() method, like so:

 toolbar = self.addToolBar('File')

https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar
https://doc.qt.io/qt-5/macos-issues.html#menu-bar

Building Applications with QMainWindow Chapter 4

[89]

The addToolBar() method creates and returns a QToolBar object. The string passed into
the method becomes the toolbar's title.

We can add QAction objects much like we can to a QMenu object:

 toolbar.addAction(open_action)
 toolbar.addAction("Save")

Just as with a menu, we can add QAction objects or just the information to build an action
(title, callback, and other).

Run the application; it should look something like this:

Note that the title of the toolbar is not displayed on it. However, if you right-click the
toolbar area, you'll see a pop-up menu containing all the toolbar titles with checkboxes that
allow you to show or hide any of the application's toolbars.

By default, toolbars can be torn from the application and left floating or docked to any of
the four edges of the application. This can be disabled by setting the movable and
floatable properties to False:

 toolbar.setMovable(False)
 toolbar.setFloatable(False)

You can also restrict the sides of the window to which the bar can be docked by setting its
allowedAreas property to a combination of flags from the QtCore.Qt.QToolBarAreas
enum.

For example, let's restrict our toolbar to the top and bottom areas only:

 toolbar.setAllowedAreas(
 qtc.Qt.TopToolBarArea |
 qtc.Qt.BottomToolBarArea
)

Building Applications with QMainWindow Chapter 4

[90]

Our toolbar currently has text-labeled buttons, but normally a toolbar would have icon-
labeled buttons. To show how that works, we'll need some icons.

We can extract some icons from the built-in style, like so:

 open_icon = self.style().standardIcon(qtw.QStyle.SP_DirOpenIcon)
 save_icon = self.style().standardIcon(qtw.QStyle.SP_DriveHDIcon)

Don't worry about how this code works right now; a complete discussion of styles and
icons will come along in Chapter 6, Styling Qt Applications. For now, just understand that
open_icon and save_icon are QIcon objects, which is how Qt handles icons.

These can be attached to our QAction objects, which can be then attached to the toolbar,
like so:

 open_action.setIcon(open_icon)
 toolbar.addAction(open_action)

As you can see, that looks a bit better:

Notice when you run this that the File | Open option in the menu also now has an icon.
Because both use the open_action object, any changes we make to that action object will
carry to all uses of the object.

Icon objects can be passed into the toolbar's addAction method as the first argument, like
so:

 toolbar.addAction(
 save_icon,
 'Save',
 lambda: self.statusBar().showMessage('File Saved!')
)

This adds a Save action to the toolbar with an icon and a rather useless callback. Notice that
this time, the File | Save action in the menu did not get an icon; despite the fact that we
used the same label text, calling addAction() with discrete arguments in both places
results in two distinct and unrelated QAction objects.

Building Applications with QMainWindow Chapter 4

[91]

Finally, just like with the menu, we can create QAction objects explicitly and add them to
the toolbar, like so:

 help_action = qtw.QAction(
 self.style().standardIcon(qtw.QStyle.SP_DialogHelpButton),
 'Help',
 self, # important to pass the parent!
 triggered=lambda: self.statusBar().showMessage(
 'Sorry, no help yet!'
)
)
 toolbar.addAction(help_action)

To synchronize actions across multiple action containers (toolbars, menus,
and so on), either explicitly create QAction objects or save the references
returned from addAction() to make sure you're adding the same action
objects in each case.

We can add as many toolbars as we wish to our application and attach them to whichever
side of the application we wish. To specify a side, we have to use an alternative form of
addToolBar(), like so:

 toolbar2 = qtw.QToolBar('Edit')
 toolbar2.addAction('Copy', self.textedit.copy)
 toolbar2.addAction('Cut', self.textedit.cut)
 toolbar2.addAction('Paste', self.textedit.paste)
 self.addToolBar(qtc.Qt.RightToolBarArea, toolbar2)

To use this form of addToolBar(), we have to create the toolbar first then pass it in along
with a QtCore.Qt.ToolBarArea constant.

Adding dock widgets
Dock widgets are similar to toolbars, but they sit between the toolbar areas and the central
widget and are able to contain any kind of widget.

Adding a dock widget is much like explicitly creating a toolbar:

 dock = qtw.QDockWidget("Replace")
 self.addDockWidget(qtc.Qt.LeftDockWidgetArea, dock)

Building Applications with QMainWindow Chapter 4

[92]

Like toolbars, dock widgets by default can be closed, floated, or moved to another side of
the application. To change whether a dock widget can be closed, floated, or moved, we
have to set its features property to a combination of
QDockWidget.DockWidgetFeatures flag values.

For instance, let's make it so the user cannot close our dock widget, by adding this code:

 dock.setFeatures(
 qtw.QDockWidget.DockWidgetMovable |
 qtw.QDockWidget.DockWidgetFloatable
)

We've set features to DockWidgetMovable and DockWidgetFloatable. Since
DockWidgetClosable is missing here, the user won't be able to close the widget.

The dock widget is designed to hold a single widget that is set using the setWidget()
method. As with our main application's centralWidget, we typically will set this to a
QWidget containing some kind of form or other GUI.

Let's build a form to place in the dock widget, as follows:

 replace_widget = qtw.QWidget()
 replace_widget.setLayout(qtw.QVBoxLayout())
 dock.setWidget(replace_widget)

 self.search_text_inp = qtw.QLineEdit(placeholderText='search')
 self.replace_text_inp = qtw.QLineEdit(placeholderText='replace')
 search_and_replace_btn = qtw.QPushButton(
 "Search and Replace",
 clicked=self.search_and_replace
)
 replace_widget.layout().addWidget(self.search_text_inp)
 replace_widget.layout().addWidget(self.replace_text_inp)
 replace_widget.layout().addWidget(search_and_replace_btn)
 replace_widget.layout().addStretch()

The addStretch() method can be called on a layout to add an
expanding QWidget that pushes the other widgets together.

Building Applications with QMainWindow Chapter 4

[93]

This is a fairly simple form containing two QLineEdit widgets and a button. When the
button is clicked, it calls the main window's search_and_replace() method. Let's code
that quickly:

 def search_and_replace(self):
 s_text = self.search_text_inp.text()
 r_text = self.replace_text_inp.text()

 if s_text:
 self.textedit.setText(
 self.textedit.toPlainText().replace(s_text, r_text)
)

This method simply retrieves the contents of the two-line edits; then, if there is content in
the first, it replaces all instances of the first text with the second in the text edit's contents.

Run the program at this point and you should see our dock widget on the left side of the
application, like so:

Note the icon in the upper right of the dock widget. This allows the user to detach and float
the widget outside the application window.

Other QMainWindow features
Although we've covered its main components, the QMainWindow offers many other features
and configuration options that you can explore in its documentation at https:/ /doc. qt.
io/qt-5/qmainwindow. html. We may touch on some of these in future chapters, as we will
make extensive use of QMainWindow from here onward.

https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html

Building Applications with QMainWindow Chapter 4

[94]

Standard dialog boxes
Dialog boxes are commonly required in applications, whether to ask a question, present a
form or merely alert the user to some information. Qt provides a wide variety of ready-
made dialog boxes for common situations, as well as the capability to define custom dialog
boxes of our own. In this section, we'll look at some of the more commonly used dialog box
classes and take a stab at designing our own.

QMessageBox
QMessageBox is a simple dialog box used mainly to display short messages or ask yes-or-
no questions. The simplest way to use QMessageBox is to take advantage of its convenient
static methods, which create and show a dialog box with minimal fuss.

The six static methods are as follows:

Function Type Dialog
about() Modeless Shows an About dialog box for your application with the given text.
aboutQt() Modeless Shows an About dialog box for Qt.
critical() Modal Show a critical error message with the provided text.
information() Modal Show an informational message with the provided text.
warning() Modal Show a warning message with the provided text.
question() Modal Asks the user a question.

The main difference between most of these boxes are the default icons, the default buttons,
and the modality of the dialog.

Dialog boxes can be either modal or modeless. Modal dialog boxes prevent the user from
interacting with any other part of the program and block program execution while
displayed, and they can return a value when finished. Modeless dialog boxes do not block
execution, but they also do not return a value. In the case of a modal QMessageBox, the
return value is an enum constant representing the button pressed.

Let's use the about() method to add an About message to our application. First, we'll
create a callback to display the dialog:

 def showAboutDialog(self):
 qtw.QMessageBox.about(
 self,
 "About text_editor.py",

Building Applications with QMainWindow Chapter 4

[95]

 "This is a text editor written in PyQt5."
)

The About dialog is modeless, so it's really just a way to display information passively. The
arguments are, in order, the dialog's parent widget, the dialog's window title text, and the
dialog's main text.

Back in the constructor, let's add a menu action to call this method:

 help_menu.addAction('About', self.showAboutDialog)

Modal dialog boxes can be used to retrieve a response from the user. For instance, we could
warn the user about the unfinished nature of our editor and see whether they are really
intent on using it, like so:

 response = qtw.QMessageBox.question(
 self,
 'My Text Editor',
 'This is beta software, do you want to continue?'
)
 if response == qtw.QMessageBox.No:
 self.close()
 sys.exit()

All modal dialog boxes return a Qt constant corresponding to the button the user pushed;
by default, question() creates a dialog box with the QMessageBox.Yes and
QMessageBox.No button values so we can test the response and react accordingly. The
buttons presented can also be overridden by passing in a fourth argument containing
multiple buttons combined with the pipe operator.

For example, we can change No to Abort, like so:

 response = qtw.QMessageBox.question(
 self,
 'My Text Editor',
 'This is beta software, do you want to continue?',
 qtw.QMessageBox.Yes | qtw.QMessageBox.Abort
)
 if response == qtw.QMessageBox.Abort:
 self.close()
 sys.exit()

Building Applications with QMainWindow Chapter 4

[96]

If the static QMessageBox methods do not provide enough flexibility, you can also
explicitly create a QMessageBox object, like so:

 splash_screen = qtw.QMessageBox()
 splash_screen.setWindowTitle('My Text Editor')
 splash_screen.setText('BETA SOFTWARE WARNING!')
 splash_screen.setInformativeText(
 'This is very, very beta, '
 'are you really sure you want to use it?'
)
 splash_screen.setDetailedText(
 'This editor was written for pedagogical '
 'purposes, and probably is not fit for real work.'
)
 splash_screen.setWindowModality(qtc.Qt.WindowModal)
 splash_screen.addButton(qtw.QMessageBox.Yes)
 splash_screen.addButton(qtw.QMessageBox.Abort)
 response = splash_screen.exec()
 if response == qtw.QMessageBox.Abort:
 self.close()
 sys.exit()

As you can see, we can set quite a few properties on the message box; these are described
here:

Property Description
windowTitle The title printed in the taskbar and title bar of the dialog.
text The text displayed in the dialog.

informativeText
A longer, explanatory piece of text displayed under the text string often
displayed in a smaller or lighter font face.

detailedText
Text that will be hidden behind a Show details button and displayed in a scrolling
textbox. Useful for debugging or log output.

windowModality
Used to set whether the message box is modal or modeless. Requires a
QtCore.Qt.WindowModality constant.

We can also add any number of buttons to the dialog box using the addButton() method
and then display the dialog box by calling its exec() method. If we configured the dialog
box to be modal, this method will return the constant matching the button that was clicked.

Building Applications with QMainWindow Chapter 4

[97]

QFileDialog
Applications commonly need to open or save files, and users need an easy way to browse
and select those files. Qt provides us with the QFileDialog class to meet this need.

Just as with QMessageBox, the QFileDialog class contains several static methods that
display an appropriate modal dialog box and return the value selected by the user.

This table shows the static methods and their intended use:

Method Returns Description
getExistingDirectory String Select an existing directory path.
getExistingDirectoryUrl QUrl Select an existing directory URL.
getOpenFileName String Select an existing filename path to open.
getOpenFileNames List Select multiple existing filename paths to open.
getOpenFileUrl QUrl Select an existing filename URL.
getSaveFileName String Select a new or existing filename path to save to.
getSaveFileUrl QUrl Select a new or existing URL.

On platforms that support it, the URL versions of these methods allow for selecting remote
files and directories.

To see how file dialog boxes work, let's create the ability to open a file in our application:

 def openFile(self):
 filename, _ = qtw.QFileDialog.getOpenFileName()
 if filename:
 try:
 with open(filename, 'r') as fh:
 self.textedit.setText(fh.read())
 except Exception as e:
 qtw.QMessageBox.critical(f"Could not load file: {e}")

getOpenFileName() returns a tuple containing the filename selected and the selected file
type filter. If the user cancels the dialog, an empty string is returned for the filename, and
our method will exit. If we receive a filename, we attempt to open the file and write into it
the contents of our textedit widget.

Since we aren't using the second value returned from the method, we're
assigning it to the _ (underscore) variable. This is a standard Python
convention for naming variables you don't intend to use.

Building Applications with QMainWindow Chapter 4

[98]

getOpenFileName() has a number of arguments for configuring the dialog, all of which
are optional. In order, they are as follows:

The parent widget1.
The caption, used in the window title2.
The starting directory, as a path string3.
The filters available for the file type filter dropdown4.
The default selected filter5.
Option flags6.

For example, let's configure our file dialog:

 filename, _ = qtw.QFileDialog.getOpenFileName(
 self,
 "Select a text file to open…",
 qtc.QDir.homePath(),
 'Text Files (*.txt) ;;Python Files (*.py) ;;All Files (*)',
 'Python Files (*.py)',
 qtw.QFileDialog.DontUseNativeDialog |
 qtw.QFileDialog.DontResolveSymlinks
)

QDir.homePath() is a static method that returns the user's home
directory.

Notice that the filters are specified as a single string; each filter is a description plus a
wildcard string in parenthesis, and the filters are separated by double semi-colons. This
results in a filter dropdown that looks like this:

Last, of all, we can specify a collection of option flags combined using the pipe operator. In
this case, we're telling Qt not to use the native OS file dialog boxes and not to resolve
symbolic links (both of which it does by default). See the QFileDialog documentation at
https://doc.qt.io/ qt- 5/ qfiledialog. html#Option- enum for a complete list of option
flags.

https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum
https://doc.qt.io/qt-5/qfiledialog.html#Option-enum

Building Applications with QMainWindow Chapter 4

[99]

The save file dialog box works much the same way but provides an interface more
appropriate for saving a file. We can implement our saveFile() method as follows:

 def saveFile(self):
 filename, _ = qtw.QFileDialog.getSaveFileName(
 self,
 "Select the file to save to…",
 qtc.QDir.homePath(),
 'Text Files (*.txt) ;;Python Files (*.py) ;;All Files (*)'
)
 if filename:
 try:
 with open(filename, 'w') as fh:
 fh.write(self.textedit.toPlainText())
 except Exception as e:
 qtw.QMessageBox.critical(f"Could not save file: {e}")

Other QFileDialog convenience methods work the same way. As with QMessageBox, it's
also possible to explicitly create a QFileDialog object, configure its properties manually,
and then display it with its exec() method. However, this is rarely necessary as the built-
in methods are adequate for most file-selection situations.

Before moving on, don't forget to add actions to call these methods back in the MainWindow
constructor:

 open_action.triggered.connect(self.openFile)
 save_action.triggered.connect(self.saveFile)

QFontDialog
Qt provides a number of other convenient selection dialog boxes similar to the
QFileDialog; one such dialog box is the QFontDialog, which allows users to select and
configure various aspects of a text font.

Like the other dialog box classes, this is most easily used by calling a static method to
display the dialog box and return the user's selection, in this case, the getFont() method.

Let's add a callback method to our MainWindow class to set the editor font:

 def set_font(self):
 current = self.textedit.currentFont()
 font, accepted = qtw.QFontDialog.getFont(current, self)
 if accepted:
 self.textedit.setCurrentFont(font)

Building Applications with QMainWindow Chapter 4

[100]

getFont takes the current font as an argument, which allows it to set the selected font to
whatever is current (if you neglect to do this, the dialog box will default to the first font
listed).

It returns a tuple containing the selected font and a Boolean indicating whether the user
clicked OK. The font is returned as a QFont object, which encapsulates not only the font
family but also the style, size, effects, and writing system of the font. Our method can pass
this object back to the QTextEdit object's setCurrentFont() slot to set its font.

As with QFileDialog, Qt tries to use the operating system's native font dialog box if it has
one; otherwise, it will use its own widget. You can force it to use the Qt version of the
dialog box by passing in the DontUseNativeDialog option to the options keyword
argument, as we've done here:

 font, accepted = qtw.QFontDialog.getFont(
 current,
 self,
 options=(
 qtw.QFontDialog.DontUseNativeDialog |
 qtw.QFontDialog.MonospacedFonts
)
)

We've also passed in an option here to limit the dialog box to mono-spaced fonts. See the Qt
documentation on QFontDialog at https:/ / doc.qt. io/ qt-5/ qfontdialog.
html#FontDialogOption- enum for more information about the available options.

Other dialog boxes
Qt contains other dialog box classes for selecting colors, requesting input values, and more.
All of these work more or less like the file and font dialog boxes, and they descend from the
QDialog class. We can subclass QDialog ourselves to create a custom dialog box.

For example, suppose we want to have a dialog box for entering our settings. We could
start building it like this:

class SettingsDialog(qtw.QDialog):
 """Dialog for setting the settings"""

 def __init__(self, settings, parent=None):
 super().__init__(parent, modal=True)
 self.setLayout(qtw.QFormLayout())
 self.settings = settings
 self.layout().addRow(

https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum
https://doc.qt.io/qt-5/qfontdialog.html#FontDialogOption-enum

Building Applications with QMainWindow Chapter 4

[101]

 qtw.QLabel('<h1>Application Settings</h1>'),
)
 self.show_warnings_cb = qtw.QCheckBox(
 checked=settings.get('show_warnings')
)
 self.layout().addRow("Show Warnings", self.show_warnings_cb)

 self.accept_btn = qtw.QPushButton('Ok', clicked=self.accept)
 self.cancel_btn = qtw.QPushButton('Cancel', clicked=self.reject)
 self.layout().addRow(self.accept_btn, self.cancel_btn)

This code isn't far removed from pop-up boxes we've made in past chapters using
QWidget. However, by using QDialog we get a few things for free, namely these:

We get accept and reject slots to which we can connect the appropriate
buttons. By default, these cause the window to close and emit either an
accepted or rejected signal respectively.
We also get the exec() method that returns a Boolean value indicating whether
the dialog box was accepted or rejected.
We can easily set the dialog box to be modal or modeless, by passing the
appropriate values to the super() constructor.

QDialog gives us a lot of flexibility on how to make use of the data entered by the user. We
could use a signal to emit the data or override exec() to return the data, for instance.

In this case, since we're passing in a mutable dict object, we'll override accept() to alter
that dict object:

 def accept(self):
 self.settings['show_warnings'] = self.show_warnings_cb.isChecked()
 super().accept()

Back in the MainWindow class, let's create a property and method to use the new dialog:

class MainWindow(qtw.QMainWindow):

 settings = {'show_warnings': True}

 def show_settings(self):
 settings_dialog = SettingsDialog(self.settings, self)
 settings_dialog.exec()

Building Applications with QMainWindow Chapter 4

[102]

Using a QDialog class is as simple as creating an instance of the dialog box class and
calling exec(). Since we're editing our settings dict directly, in this case, we don't need
to worry about connecting the accepted signal or using the output of exec().

Saving settings with QSettings
Applications of any reasonable size are likely to accumulate settings that need to be stored
between sessions. Saving these settings usually involves a lot of tedious work with file
operations and data serialization, and becomes even more complex when we want to do it
in a way that works well across platforms. Qt rescues us from this work with its
QtCore.QSettings class.

The QSettings class is a simple key-value data store that is automatically persisted in a
platform-appropriate way. For example, on Windows, the settings are stored in the registry
database, while on Linux they are placed in a plain-text configuration file under
~/.config.

Let's replace the settings dict object we created in our text editor with a QSettings object.

To create a QSettings object, we need to pass in a company name and application name,
like this:

class MainWindow(qtw.QMainWindow):

 settings = qtc.QSettings('Alan D Moore', 'text editor')

These strings will determine the registry key or file path where the settings will be stored.
On Linux, for example, this settings file will be saved at ~/.config/Alan D Moore/text
editor.conf. On Windows, it will be stored in the registry at HKEY_CURRENT_USER\Alan
D Moore\text editor\.

We can query the value of any setting using the object's value() method; for instance, we
can make our startup warning dialog boxes conditional on the show _warnings setting:

 if self.settings.value('show_warnings', False, type=bool):
 # Warning dialog code follows...

The arguments to value() are the key string, the default value if the key is not found, and
the type keyword argument, which tells QSettings how to interpret the saved value. The
type argument is crucial; not all platforms can adequately represent all data types in an
unambiguous way. Boolean values, for instance, are returned as the strings true and
false if the data type is not specified, both of which are True in Python.

Building Applications with QMainWindow Chapter 4

[103]

Setting the value of a key uses the setValue() method, as shown here in the
SettingsDialog.accept() method:

 self.settings.setValue(
 'show_warnings',
 self.show_warnings_cb.isChecked()
)

Note that we don't have to do anything to store these values to disk; they are automatically
synced to disk periodically by the Qt event loop. They are also read automatically from disk
the moment the QSettings object is created. Simply replacing our original settings dict
with a QSettings object is enough to give us persistent settings without writing a single
line of file I/O code!

Limitations of QSettings
As powerful as they are, QSettings objects can't store just anything. All values in the
settings object are stored as QVariant objects, so only objects that can be cast to QVariant
can be stored. This encompasses a long list of types, including nearly any Python built-in
type and most of the data classes from QtCore. Even function references can be stored
(though not the function definitions).

Unfortunately, in the event that you try to store an object that cannot be properly stored,
QSettings.setValue() will neither throw an exception or return an error. It will print a
warning to the console and store something that will likely not be useful, for example:

app = qtw.QApplication([])
s = qtc.QSettings('test')
s.setValue('app', app)
Prints: QVariant::save: unable to save type 'QObject*' (type id: 39).

In general, if you're storing objects that clearly represent data, you shouldn't have
problems.

The other major limitation of the QSettings object is its inability to automatically identify
the data type of some stored objects, as we saw with our Boolean value. For this reason, it's
critical to pass a type argument when dealing with anything that is not a string value.

Building Applications with QMainWindow Chapter 4

[104]

Summary
In this chapter, you learned about PyQt classes that help construct complete applications.
You learned about the QMainWindow class, its menus, status bar, toolbars, and dock
widgets. You also learned about standard dialog boxes and message boxes derived from
QDialog, and how to store application settings with QSettings.

In the next chapter, we'll learn about the model-view classes in Qt, which will help us
separate our concerns and create more robust application designs.

Questions
Try these questions to test your knowledge from this chapter:

You want to use QMainWindow with the calendar_app.py script from Chapter1.
3, Handling Events with Signals and Slots. How would you go about converting it?
You're working on an app and have added the submenu names to the menu bar2.
but not populated any of them with items. Your coworker says that none of the
menu names are appearing on his desktop when they test it. Your code looks
correct; what is probably going on here?
You're developing a code editor and want to create a sidebar panel for3.
interacting with a debugger. Which QMainWindow feature would be most
appropriate for this task?

The following code isn't working correctly; it proceeds no matter what is clicked.4.
Why doesn't it work, and how do you fix it?

 answer = qtw.QMessageBox.question(
 None, 'Continue?', 'Run this program?')
 if not answer:
 sys.exit()

You're building a custom dialog box by subclassing QDialog. You need to get5.
information entered into the dialog box back to the main window object. Which
of these approaches will not work?

Pass in a mutable object and use the dialog's accept() method to altera.
its values.
Override the objects accept() method and have it return a dict ofb.
the entered values.

Building Applications with QMainWindow Chapter 4

[105]

Override the dialog's accepted signal with one that passes along ac.
dict of the entered values. Connect this signal to a callback in your
main window class.

You're writing a photo editor called SuperPhoto on Linux. You've written the6.
code and saved the user settings, but looking in ~/.config/ you can't find
SuperPhoto.conf. Look at the code and determine what went wrong:

settings = qtc.QSettings()
settings.setValue('config_file', 'SuperPhoto.conf')
settings.setValue('default_color', QColor('black'))
settings.sync()

You're saving preferences from a settings dialog, but for some reason, the7.
settings being saved are coming back very strangely. What is wrong here?

settings = qtc.QSettings('My Company', 'SuperPhoto')
settings.setValue('Default Name', dialog.default_name_edit.text)
settings.setValue('Use GPS', dialog.gps_checkbox.isChecked)
settings.setValue('Default Color', dialog.color_picker.color)

Further reading
For further information, please refer to the following:

Qt's QMainWindow documentation can be found at https:/ /doc. qt. io/qt- 5/
qmainwindow. html.
Examples of using QMainWindow can be found at https:/ /github. com/pyqt/
examples/ tree/ master/ mainwindows.
Apple's Human Interface Guidelines for macOS include guidance on how to
structure the application menus. These can be found at https:/ /developer.
apple.com/ design/ human- interface- guidelines/ macos/ menus/ menu- anatomy/ .
Microsoft offers guidance for designing menus for Windows applications at
https:// docs. microsoft. com/ en-us/ windows/ desktop/ uxguide/ cmd-menus.
PyQt offers some examples of dialog box usage at https:/ / github. com/ pyqt/
examples/ tree/ master/ dialogs.
QMainWindow can also be used to create Multiple Document Interfaces (MDIs).
For more information on how to build an MDI application, see https:/ /www.
pythonstudio. us/ pyqt- programming/ multiple- document- interface- mdi. html
and the example code at https:/ /doc. qt. io/qt- 5/qtwidgets- mainwindows-
mdi-example. html.

https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://doc.qt.io/qt-5/qmainwindow.html
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://github.com/pyqt/examples/tree/master/mainwindows
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://developer.apple.com/design/human-interface-guidelines/macos/menus/menu-anatomy/
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://docs.microsoft.com/en-us/windows/desktop/uxguide/cmd-menus
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://github.com/pyqt/examples/tree/master/dialogs
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://www.pythonstudio.us/pyqt-programming/multiple-document-interface-mdi.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html
https://doc.qt.io/qt-5/qtwidgets-mainwindows-mdi-example.html

5
Creating Data Interfaces with

Model-View Classes
The vast majority of application software is built to view and manipulate organized data.
Even in applications that aren't explicitly database applications, there's often a need to interact
with collections of data on a smaller scale, such as populating a combobox with options or
displaying a hierarchy of settings. Without some sort of organizational paradigm,
interactions between a GUI and a set of data can quickly become a nightmare of spaghetti
code. The model-view pattern is one such paradigm.

In this chapter, we're going to learn about Qt's model-view widgets and how we can use
them to work elegantly with data in our applications. We'll cover the following topics:

Understanding model-view design
Models and views in PyQt
Building a comma-separated values (CSV) editor

Technical requirements
This chapter has the same technical requirements as the previous chapters. You might also
wish to have the example code from https:/ /github. com/ PacktPublishing/ Mastering-
GUI-Programming-with- Python/ tree/ master/ Chapter05.

You will also need one or two CSV files to use with our CSV editor. These can be made in
any spreadsheet program and should be created with column headers as the first row.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M66bnv

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter05
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv
http://bit.ly/2M66bnv

Creating Data Interfaces with Model-View Classes Chapter 5

[107]

Understanding model-view design
Model-view is a software application design paradigm that implements separation of
concerns. It is based on the venerable Model-View-Controller (MVC) pattern but differs in
that the controller and view are combined into one component.

In model-view design, the model is the component that holds the application data and
contains the logic for retrieving, storing, and manipulating data. The view component
presents the data to the user and provides an interface for entering and manipulating data.
By separating these components of the application, we keep their interdependency to a
minimum, making them much easier to reuse or refactor.

Let's go through a simple example to illustrate this process. Starting with the application
template from Chapter 4, Building Applications with QMainWindow, let's build a simple text-
file editor:

 # This code goes in MainWindow.__init__()
 form = qtw.QWidget()
 self.setCentralWidget(form)
 form.setLayout(qtw.QVBoxLayout())
 self.filename = qtw.QLineEdit()
 self.filecontent = qtw.QTextEdit()
 self.savebutton = qtw.QPushButton(
 'Save',
 clicked=self.save
)

 form.layout().addWidget(self.filename)
 form.layout().addWidget(self.filecontent)
 form.layout().addWidget(self.savebutton)

This is a simple form with a line edit for the filename, a text edit for the content, and a Save
button that calls a save() method.

Let's create the save() method as follows:

 def save(self):
 filename = self.filename.text()
 error = ''
 if not filename:
 error = 'Filename empty'
 elif path.exists(filename):
 error = f'Will not overwrite {filename}'
 else:
 try:
 with open(filename, 'w') as fh:

Creating Data Interfaces with Model-View Classes Chapter 5

[108]

 fh.write(self.filecontent.toPlainText())
 except Exception as e:
 error = f'Cannot write file: {e}'
 if error:
 qtw.QMessageBox.critical(None, 'Error', error)

This method checks whether there is a filename entered in the line edit, makes sure the
filename doesn't already exist (so you don't overwrite an important file while testing this
code!), then attempts to save it. If there is an error of any kind, the method displays
a QMessageBox instance to report the error.

This application works but lacks a clean separation of model and view. The same method
that writes the file to disk also displays error boxes and calls input widget methods. If we
were going to expand this application to any degree, the save() method would quickly
become a maze of presentation logic mixed with data-handling logic.

Let's rewrite this application with separate Model and View classes.

Starting with a clean copy of the application template, let's create our Model class:

class Model(qtc.QObject):

 error = qtc.pyqtSignal(str)

 def save(self, filename, content):
 print("save_called")
 error = ''
 if not filename:
 error = 'Filename empty'
 elif path.exists(filename):
 error = f'Will not overwrite {filename}'
 else:
 try:
 with open(filename, 'w') as fh:
 fh.write(content)
 except Exception as e:
 error = f'Cannot write file: {e}'
 if error:
 self.error.emit(error)

Creating Data Interfaces with Model-View Classes Chapter 5

[109]

We've built our model by subclassing QObject. Models should have no involvement in
displaying the GUI, so there's no need to base it on QWidget classes. However, as the
model will use signals and slots to communicate, we're using QObject as a base class. The
model implements our save() method from the previous example, but with two changes:

First, it expects user data to be passed in as arguments, having no knowledge of
the widgets this data came from
Second, it merely emits a Qt signal when an error is encountered, rather than
taking any GUI-specific actions

Next, let's create our View class:

class View(qtw.QWidget):

 submitted = qtc.pyqtSignal(str, str)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QVBoxLayout())
 self.filename = qtw.QLineEdit()
 self.filecontent = qtw.QTextEdit()
 self.savebutton = qtw.QPushButton(
 'Save',
 clicked=self.submit
)
 self.layout().addWidget(self.filename)
 self.layout().addWidget(self.filecontent)
 self.layout().addWidget(self.savebutton)

 def submit(self):
 filename = self.filename.text()
 filecontent = self.filecontent.toPlainText()
 self.submitted.emit(filename, filecontent)

 def show_error(self, error):
 qtw.QMessageBox.critical(None, 'Error', error)

This class contains the same fields and field layout definitions as before. This time,
however, rather than calling save(), our Save button is connected to a submit() callback
that gathers the form data and emits it using a signal. We've also added a show_error()
method that will display errors.

Creating Data Interfaces with Model-View Classes Chapter 5

[110]

In our MainWindow.__init__() method, we'll bring the model and view together:

 self.view = View()
 self.setCentralWidget(self.view)

 self.model = Model()

 self.view.submitted.connect(self.model.save)
 self.model.error.connect(self.view.show_error)

Here, we create an instance of the View class and the Model class and connect their signals
and slots.

At this point, the model-view version of our code works identically to our original version,
but with more code involved. You might well ask, what's the point? If this application was
destined never to be more than it is, there might not be a point. However, applications tend
to expand in functionality and, often, other applications need to reuse the same code.
Consider these scenarios:

You want to provide an alternative editing form, perhaps console-based or with
more editing features
You want to provide the option of saving to a database instead of a text file
You're creating another application that also saves text content to files

In each of these situations, using the model-view pattern means that we don't have to start
from scratch. In the first case, for example, we don't need to rewrite any file-saving code;
we just need to create the user-facing code that emits the same submitted signal. As your
code expands and your applications become more complex, this separation of concerns will
help you maintain order.

Models and views in PyQt
The model-view pattern is not only useful in the design of large applications, but also on a
smaller scale with widgets that contain data. Copy the application template from Chapter
4, Building Applications with QMainWindow, and let's look at a simple example of how
model-view works on the widget level.

Creating Data Interfaces with Model-View Classes Chapter 5

[111]

In the MainWindow class, create a list of items and add them to both the QListWidget and
QComboBox objects:

 data = [
 'Hamburger', 'Cheeseburger',
 'Chicken Nuggets', 'Hot Dog', 'Fish Sandwich'
]
 # The list widget
 listwidget = qtw.QListWidget()
 listwidget.addItems(data)
 # The combobox
 combobox = qtw.QComboBox()
 combobox.addItems(data)
 self.layout().addWidget(listwidget)
 self.layout().addWidget(combobox)

Because both widgets were initialized with the same list, both contain the same items. Now,
let's make the list widget items editable:

 for i in range(listwidget.count()):
 item = listwidget.item(i)
 item.setFlags(item.flags() | qtc.Qt.ItemIsEditable)

By iterating through the items in the list widget and setting the Qt.ItemIsEditable flag
on each one, the widget becomes editable and we can alter the text of the items. Run the
application and try editing the items in the list widget. Even though you've altered the
items in the list widget, the combobox items remain unchanged. Each widget has its own
internal list model, which stores a copy of the items that were originally passed in. Altering
the items in one copy of the list has no effect on the other copy.

How might we keep these two lists in sync? We could connect some signals and slots or
add class methods to do it, but Qt provides a better way.

QListWidget is actually a combination of two other Qt classes: QListView and
QStringListModel. As the names imply, these are model-view classes. We can use those
classes directly to build our own list widget with a discrete model and view:

 model = qtc.QStringListModel(data)
 listview = qtw.QListView()
 listview.setModel(model)

We simply create our model class, initializing it with our list of strings, then create the view
class. Finally, we connect the two using the view's setModel() method.

Creating Data Interfaces with Model-View Classes Chapter 5

[112]

QComboBox doesn't have analogous model-view classes, but is nonetheless internally a
model-view widget and has the capability to use an external model.

So, we can pass our QStringListModel to it using setModel():

 model_combobox = qtw.QComboBox()
 model_combobox.setModel(model)

Add those widgets to your layout and try running the program again. This time, you'll see
that edits to QListView are immediately available in the combobox, because the changes
you are making are being written to the QStringModel object, which both widgets consult
for item data.

QTableWidget and QTreeWidget also have analogous view classes: QTableView and
QTreeView. However, there are no ready-made model classes that we can use with these
views. Instead, we have to create our own custom model classes by subclassing
QAbstractTableModel and QAbstractTreeModel, respectively.

In the next section, we'll go through how to create and use a custom model class by
building our own CSV editor.

Building a CSV editor
The comma-separated values (CSV) is a plain-text format for storing tabular data. Any
spreadsheet program can export to CSV, or you can make your own by hand in a text
editor. Our program will be designed in such a way that it will open any arbitrary CSV file
and display the data in QTableView. It is common to use the first row of a CSV to hold
column headers, so our application will assume this and make that row immutable.

Creating a table model
When developing a data-driven model-view application, the model is usually the best place
to begin as this is where the most complex code will be found. Once we've put this backend
in place, implementing the frontend is fairly trivial.

In this case, we need to design a model that can read and write CSV data. Copy the
application template from Chapter 4, Building Applications with QMainWindow, and add an
import at the top for the Python csv library.

Creating Data Interfaces with Model-View Classes Chapter 5

[113]

Now, let's start building our model by subclassing QAbstractTableModel:

class CsvTableModel(qtc.QAbstractTableModel):
 """The model for a CSV table."""

 def __init__(self, csv_file):
 super().__init__()
 self.filename = csv_file
 with open(self.filename) as fh:
 csvreader = csv.reader(fh)
 self._headers = next(csvreader)
 self._data = list(csvreader)

Our model will take the name of a CSV file as an argument, and will immediately open the
file and read it into memory (not a great strategy for large files, but this is only an example
program). We'll assume the first row is a header row, and retrieve it using the next()
function before pulling the rest of the rows into the model's _data property.

Implementing read capabilities
To create instances of our model to display data in a view, we need to implement three
methods:

rowCount(), which must return the total number of rows in the table
columnCount(), which must return the total number of columns in the table
data(), which is used to request data from the model

rowCount() and columnCount() are easy enough in this case:

 def rowCount(self, parent):
 return len(self._data)

 def columnCount(self, parent):
 return len(self._headers)

The row count is just the length of the _data property, and the column count can be had by
taking the length of the _headers property. Both functions are required to take a parent
argument, but in this case, it is not used as it refers to the parent node, which is applicable
only in hierarchical data.

Creating Data Interfaces with Model-View Classes Chapter 5

[114]

The last required method is data(), which requires more explanation; data() looks like
this:

 def data(self, index, role):
 if role == qtc.Qt.DisplayRole:
 return self._data[index.row()][index.column()]

The purpose of data() is to return the data in a single cell of the table given the arguments
index and role. Now, index is an instance of the QModelIndex class, which describes the
location of a single node in a list, table, or tree structure. Every QModelIndex contains the
following properties:

A row number
A column number
A parent model index

In the case of a table model such as ours, we are interested in the row and column
properties, which indicate the table row and column of the data cell we want. If we were
dealing with hierarchical data, we'd also want the parent property, which would be the
index of the parent node. If this were a list, we'd only care about row.

role is a constant from the QtCore.Qt.ItemDataRole enum. When a view requests data
from a model, it passes a role value so that the model can return the data or metadata
appropriate to the context for which it is being requested. For example, if the view makes a
request using the EditRole role, the model should return data suitable for editing. If the
view requests with the DecorationRole role, the model should return an icon appropriate
to the cell.

If there is no data to be returned for a particular role, data() should
return nothing.

In this case, we're only interested in displaying the data, which is represented by the
DisplayRole role. To actually return the data, we need to get the index's row and column
and use that to pull the appropriate row and column from our CSV data.

At this point, we have a minimally functional, read-only CSV model, but there is more we
can add.

Creating Data Interfaces with Model-View Classes Chapter 5

[115]

Adding headers and sorting
Being able to return the data is only one piece of a model's functionality. Models also need
to be able to provide other information, such as the names of the column headers or the
appropriate method for sorting the data.

To implement header data in our model, we need to create a headerData() method:

 def headerData(self, section, orientation, role):

 if (
 orientation == qtc.Qt.Horizontal and
 role == qtc.Qt.DisplayRole
):
 return self._headers[section]
 else:
 return super().headerData(section, orientation, role)

headerData() returns data on a single header given three pieces of information—the
section, orientation, and role.

Headers can be either vertical or horizontal as determined by the orientation argument,
which is specified as either the QtCore.Qt.Horizontal or QtCore.Qt.Vertical
constant.

The section is an integer that indicates either the column number (for horizontal headers) or
row number (for vertical headers).

The role argument, as in the data() method, indicates the context for which the data needs
to be returned.

In our case, we're only interested in showing horizontal headers for the DisplayRole role.
Unlike the data() method, the parent class method has some default logic and return
values, so in any other case, we want to return the result of super().headerData().

If we want to be able to sort our data, we need to implement a sort() method, which will
look like this:

 def sort(self, column, order):
 self.layoutAboutToBeChanged.emit() # needs to be emitted before a sort
 self._data.sort(key=lambda x: x[column])
 if order == qtc.Qt.DescendingOrder:
 self._data.reverse()
 self.layoutChanged.emit() # needs to be emitted after a sort

Creating Data Interfaces with Model-View Classes Chapter 5

[116]

sort() takes a column number and order, which is either
QtCore.Qt.DescendingOrder or QtCore.Qt.AscendingOrder, and the aim of this
method is to sort the data accordingly. In this case, we're using Python's list.sort()
method to sort our data in place, using the column argument to determine which column of
each row will be returned for sorting. If descending order is requested, we'll use
reverse() to change the ordering accordingly.

sort() must also emit two signals:

layoutAboutToBeChanged must be emitted before any sorting happens
internally.
layoutChanged must be emitted after the sorting is finished.

These two signals are used by the views to redraw themselves appropriately, so it is
important to remember to emit them.

Implementing write capabilities
Our model is read-only at this point, but because we're implementing a CSV editor, we
need to implement writing data. To begin with, we need to override some methods to
enable editing of existing data rows: flags() and setData().

flags() takes a QModelIndex value and returns a set of QtCore.Qt.ItemFlag constants
for the item at the given index. These flags are used to indicate whether the item can be
selected, dragged, dropped, checked, or—most interesting to us—edited.

Our method looks like this:

 def flags(self, index):
 return super().flags(index) | qtc.Qt.ItemIsEditable

Here we're adding the ItemIsEditable flag to the list of flags returned by the parent
class's flags() method, indicating that the item is editable. If we wanted to implement
logic to make only certain cells editable under certain conditions, we could do that in this
method.

Creating Data Interfaces with Model-View Classes Chapter 5

[117]

For example, if we had a list of read-only indexes stored in self.readonly_indexes , we
could write this method as follows:

 def flags(self, index):
 if index not in self.readonly_indexes:
 return super().flags(index) | qtc.Qt.ItemIsEditable
 else:
 return super().flags(index)

For our application, though, we want every cell to be editable.

Now that all items in the model are marked as editable, we need to tell our model how to
actually edit them. This is defined in the setData() method:

 def setData(self, index, value, role):
 if index.isValid() and role == qtc.Qt.EditRole:
 self._data[index.row()][index.column()] = value
 self.dataChanged.emit(index, index, [role])
 return True
 else:
 return False

The setData() method takes the index of the item to be set, the value to set it to, and an
item role. This method must take on the task of setting the data and then return a
Boolean value indicating whether or not the data were successfully changed. We only want
to do this if the index is valid and the role is EditRole.

If the data are changed, setData() must also emit the dataChanged signal. This signal is
emitted whenever an item or group of items is updated with regard to any role, and so
carries with it three pieces of information: the top-leftmost index that was changed, the
bottom-rightmost index that was changed, and a list of the roles for each index. In our case,
we're only changing one cell so we can pass our index for both ends of the cell range, and a
list with a single role in it.

There's one more small change to the data() method that isn't required but will make
things easier for the user. Go back and edit the method as follows:

 def data(self, index, role):
 if role in (qtc.Qt.DisplayRole, qtc.Qt.EditRole):
 return self._data[index.row()][index.column()]

Creating Data Interfaces with Model-View Classes Chapter 5

[118]

When a table cell is selected for editing, data() will be called with the EditRole role.
Before this change, data() would return None when called with that role and, as a result,
the data in the cell will disappear as soon as the cell is selected. By returning the data for
EditRole as well, the user will have access to the existing data for editing.

We have now implemented the editing of existing cells, but to make our model completely
editable we need to implement the insertion and removal of rows. We can do this by
overriding two more methods: insertRows() and removeRows().

The insertRows() method looks like this:

 def insertRows(self, position, rows, parent):
 self.beginInsertRows(
 parent or qtc.QModelIndex(),
 position,
 position + rows - 1
)
 for i in range(rows):
 default_row = [''] * len(self._headers)
 self._data.insert(position, default_row)
 self.endInsertRows()

The method takes the position where the insertion starts, the number of rows to be inserted,
and the parent node index (used with hierarchical data).

Inside the method, we must put our logic between calls to beginInsertRows() and
endInsertRows(). The beginInsertRows() method prepares the underlying object for
modification, and requires three arguments:

The ModelIndex object of the parent node, which is an empty QModelIndex for
tabular data
The position where row insertion will start
The position where row insertion will end

We can calculate all this from the start position and the number of rows passed into the
method. Once we've taken care of that, we can generate a number of rows (in the form of
lists of empty strings the same length as our header list) and insert them into self._data
at the proper index.

After the rows are inserted, we call endInsertRows(), which takes no arguments.

Creating Data Interfaces with Model-View Classes Chapter 5

[119]

The removeRows() method is very similar:

 def removeRows(self, position, rows, parent):
 self.beginRemoveRows(
 parent or qtc.QModelIndex(),
 position,
 position + rows - 1
)
 for i in range(rows):
 del(self._data[position])
 self.endRemoveRows()

Once again, we need to call beginRemoveRows() before editing the data and
endRemoveRows() after editing, just as we did for insertion. If we wanted to allow editing
of the column structure, we could override the insertColumns() and removeColumns()
methods, which work essentially the same way as the row methods. For now, we'll just
stick to row editing.

At this point, our model is fully editable, but we'll add one more method that we can call to
flush the data to disk, as follows:

 def save_data(self):
 with open(self.filename, 'w', encoding='utf-8') as fh:
 writer = csv.writer(fh)
 writer.writerow(self._headers)
 writer.writerows(self._data)

This method simply opens our file and writes in the headers and all data rows using the
Python csv library.

Using the model in a view
Now that our model is ready to use, let's flesh out the rest of the application to demonstrate
how to use it.

To begin with, we need to create a QTableView widget and add it to our MainWindow :

 # in MainWindow.__init__()
 self.tableview = qtw.QTableView()
 self.tableview.setSortingEnabled(True)
 self.setCentralWidget(self.tableview)

As you can see, we don't have to do much to make the QTableView widget work with the
model. Because we implemented sort() in the model, we'll enable sorting, but otherwise,
it doesn't require much configuration.

Creating Data Interfaces with Model-View Classes Chapter 5

[120]

Of course, to see any data, we need to assign a model to the view; and in order to create a
model, we need a file. Let's create a callback to get one:

 def select_file(self):
 filename, _ = qtw.QFileDialog.getOpenFileName(
 self,
 'Select a CSV file to open…',
 qtc.QDir.homePath(),
 'CSV Files (*.csv) ;; All Files (*)'
)
 if filename:
 self.model = CsvTableModel(filename)
 self.tableview.setModel(self.model)

Our method uses a QFileDialog class to query the user for a CSV file to open. If one is
chosen, it uses the CSV file to create an instance of our model class. The model class is then
assigned to the view using the setModel() accessor method.

Back in MainWindow.__init__(), let's create a main menu for the application and add an
'Open' action:

 menu = self.menuBar()
 file_menu = menu.addMenu('File')
 file_menu.addAction('Open', self.select_file)

If you run the script now, you should be able to open a file by going to File | Open and
selecting a valid CSV. You should be able to view and even edit the data, and the data
should sort by column if you click a header cell.

Next, let's add the user interface components that will allow us to save our file. To begin,
create a menu item that calls a MainWindow method called save_file():

 file_menu.addAction('Save', self.save_file)

Now, let's create our save_file() method to actually save the file:

 def save_file(self):
 if self.model:
 self.model.save_data()

To save the file, all we really need to do is call the model's save_data() method.
However, we can't connect our menu item directly to that method, because the model
doesn't exist until a file is actually loaded. This wrapper method allows us to create a menu
option without a model.

Creating Data Interfaces with Model-View Classes Chapter 5

[121]

The last piece of functionality we want to connect is the ability to insert and remove rows.
In a spreadsheet, it is often useful to be able to insert rows either above or below the
selected row. So, let's create callbacks in MainWindow that do just that:

 def insert_above(self):
 selected = self.tableview.selectedIndexes()
 row = selected[0].row() if selected else 0
 self.model.insertRows(row, 1, None)

 def insert_below(self):
 selected = self.tableview.selectedIndexes()
 row = selected[-1].row() if selected else self.model.rowCount(None)
 self.model.insertRows(row + 1, 1, None)

In both methods, we're getting a list of the selected cells by calling the table view's
selectedIndexes() method. These lists are sorted from upper-leftmost cells to lower-
rightmost cells. So, for inserting above, we retrieve the row of the first index in the list (or 0
if the list is empty). For inserting below, we retrieve the row of the last index in the list (or
the last index in the table if the list is empty). Finally, in both methods, we use the model's
insertRows() method to insert one row to the appropriate location.

Removing rows is similar, as shown here:

 def remove_rows(self):
 selected = self.tableview.selectedIndexes()
 if selected:
 self.model.removeRows(selected[0].row(), len(selected), None)

This time we only act if there is an active selection, and use the model's removeRows()
method to remove the first selected row.

To make these callbacks available to the user, let's add an 'Edit' menu back in
MainWindow :

 edit_menu = menu.addMenu('Edit')
 edit_menu.addAction('Insert Above', self.insert_above)
 edit_menu.addAction('Insert Below', self.insert_below)
 edit_menu.addAction('Remove Row(s)', self.remove_rows)

At this point, try loading up a CSV file. You should be able to insert and remove rows in
your table, edit fields, and save the result. Congratulations, you've created a CSV editor!

Creating Data Interfaces with Model-View Classes Chapter 5

[122]

Summary
In this chapter, you learned about model-view programming. You learned about using
models with regular widgets and about the special model-view classes in Qt. You created a
custom table model and rapidly built a CSV editor by exploiting the power of model-view
classes.

We will learn more advanced model-view concepts, including delegates and data mapping
in Chapter 9, Exploring SQL with QtSQL.

In the next chapter, you'll learn about styling your PyQt applications. We'll dress up our
drab forms with images, dynamic icons, fancy fonts, and colors, and we'll learn multiple
approaches for controlling the overall look and feel of your Qt GUIs.

Questions
Try these questions to test your knowledge from this chapter:

Assuming we have a well-designed model-view application, is the following1.
code part of a model or a view?

 def save_as(self):
 filename, _ = qtw.QFileDialog(self)
 self.data.save_file(filename)

Can you name at least two things that a model should never do and two things2.
that a view should never do?
QAbstractTableModel and QAbstractTreeModel both have Abstract in the3.
name. What does Abstract mean in this context? Does it mean something different
in C++ from what it means in Python?
Which model type—list, table, or tree—would best suit the following collections4.
of data:

The user's recent files
A Windows registry hive
Linux syslog records
Blog entries
Personal salutations (for example, Mr., Mrs., or Dr.)
Distributed version control history

Creating Data Interfaces with Model-View Classes Chapter 5

[123]

Why is the following code failing?5.

 class DataModel(QAbstractTreeModel):
 def rowCount(self, node):
 if node > 2:
 return 1
 else:
 return len(self._data[node])

Your table model isn't working quite right when inserting columns. What is6.
wrong with your insertColumns() method?

 def insertColumns(self, col, count, parent):
 for row in self._data:
 for i in range(count):
 row.insert(col, '')

You would like your views to display the item data as a tooltip when hovered.7.
How would you accomplish this?

Further reading
You might want to check out the following resources:

The Qt documentation on model-view programming at https:/ /doc. qt.io/ qt-
5/model- view- programming. html

Martin Fowler presents an overview of Model View Controller (MVC) and
related patterns at https:/ / martinfowler. com/ eaaDev/ uiArchs. html

https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/qt-5/model-view-programming.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html

6
Styling Qt Applications

It is easy to appreciate the clean, native look that Qt effortlessly provides by default. But for
less business-like applications, plain gray widgets and bog-standard fonts don't always set
the right tone. Even the drabbest utility or data entry application occasionally benefits from
the addition of icons or the judicious tweaking of fonts to enhance usability. Fortunately,
Qt's flexibility allows us to take the look and feel of our application into our own hands.

In this chapter, we'll cover the following topics:

Using fonts, images, and icons
Configuring colors, style sheets, and styles
Creating animations

Technical requirements
In this chapter, you'll need all the requirements listed in Chapter 1, Getting Started with
PyQt, and the Qt application template from Chapter 4, Building Applications with
QMainWindow.

Additionally, you may require PNG, JPEG, or GIF image files to work with; you can use
those included in the example code at https:/ / github. com/ PacktPublishing/ Mastering-
GUI-Programming-with- Python/ tree/ master/ Chapter06.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5OJj6

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter06
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6
http://bit.ly/2M5OJj6

Styling Qt Applications Chapter 6

[125]

Using fonts, images, and icons
We'll begin styling our Qt application by customizing the application's fonts, displaying
some static images, and including dynamic icons. However, before we can do this, we'll
need to create a graphical user interface (GUI) that we can work with. We'll create a game
lobby dialog, which will be used for logging into an imaginary multiplayer game called
Fight Fighter.

To do this, open a fresh copy of your application template and add the following GUI code
to MainWindow.__init__():

 self.setWindowTitle('Fight Fighter Game Lobby')
 cx_form = qtw.QWidget()
 self.setCentralWidget(cx_form)
 cx_form.setLayout(qtw.QFormLayout())
 heading = qtw.QLabel("Fight Fighter!")
 cx_form.layout().addRow(heading)

 inputs = {
 'Server': qtw.QLineEdit(),
 'Name': qtw.QLineEdit(),
 'Password': qtw.QLineEdit(
 echoMode=qtw.QLineEdit.Password),
 'Team': qtw.QComboBox(),
 'Ready': qtw.QCheckBox('Check when ready')
 }
 teams = ('Crimson Sharks', 'Shadow Hawks',
 'Night Terrors', 'Blue Crew')
 inputs['Team'].addItems(teams)
 for label, widget in inputs.items():
 cx_form.layout().addRow(label, widget)
 self.submit = qtw.QPushButton(
 'Connect',
 clicked=lambda: qtw.QMessageBox.information(
 None, 'Connecting', 'Prepare for Battle!'))
 self.reset = qtw.QPushButton('Cancel', clicked=self.close)
 cx_form.layout().addRow(self.submit, self.reset)

Styling Qt Applications Chapter 6

[126]

This is fairly standard Qt GUI code that you should be familiar with by now; we're saving a
few lines of code by putting our inputs in a dict object and adding them to the layout in a
loop, but otherwise, it's relatively straightforward. Depending on your OS and theme
settings, the dialog box probably looks something like the following screenshot:

As you can see, it's a nice form but it's a bit bland. So, let's explore whether we can improve
the style.

Setting a font
The first thing we'll tackle is the font. Every QWidget class has a font property, which we
can either set in the constructor or by using the setFont() accessor. The value of font
must be a QtGui.QFont object.

Here is how you can create and use a QFont object:

 heading_font = qtg.QFont('Impact', 32, qtg.QFont.Bold)
 heading_font.setStretch(qtg.QFont.ExtraExpanded)
 heading.setFont(heading_font)

A QFont object contains all the attributes that describe the way text will be drawn to the
screen. The constructor can take any of the following arguments:

A string indicating the font family
A float or integer indicating the point size
A QtGui.QFont.FontWeight constant indicating the weight
A Boolean indicating whether the font should be italic

Styling Qt Applications Chapter 6

[127]

The remaining aspects of the font, such as the stretch property, can be configured using
keyword arguments or accessor methods. We can also create a QFont object with no
arguments and configure it programmatically, as follows:

 label_font = qtg.QFont()
 label_font.setFamily('Impact')
 label_font.setPointSize(14)
 label_font.setWeight(qtg.QFont.DemiBold)
 label_font.setStyle(qtg.QFont.StyleItalic)

 for inp in inputs.values():
 cx_form.layout().labelForField(inp).setFont(label_font)

Setting a font on a widget affects not only the widget but also all its child widgets.
Therefore, we could configure the font for the entire form by setting it on cx_form rather
than setting it on individual widgets.

Dealing with missing fonts
Now, if all platforms and operating systems (OSes) shipped with an infinite array of
identically named fonts, this would be all you'd need to know about QFont. Unfortunately,
that isn't the case. Most systems ship with only a handful of fonts built-in and only a few of
these are universal across platforms or even different versions of a platform. Therefore, Qt
has a fallback mechanism for dealing with missing fonts.

For example, suppose that we ask Qt to use a nonexistent font family, as follows:

 button_font = qtg.QFont(
 'Totally Nonexistant Font Family XYZ', 15.233)

Qt will not throw an error at this call or even register a warning. Instead, after not finding
the font family requested, it will fall back to its defaultFamily property, which utilizes
the default font set in the OS or desktop environment.

The QFont object won't actually tell us that this has happened; if you query it for
information, it will only tell you what was configured:

 print(f'Font is {button_font.family()}')
 # Prints: "Font is Totally Nonexistent Font Family XYZ"

To discover what font settings are actually being used, we need to pass our QFont object to
a QFontInfo object:

 actual_font = qtg.QFontInfo(button_font).family()
 print(f'Actual font used is {actual_font}')

Styling Qt Applications Chapter 6

[128]

If you run the script, you'll see that, more than likely, your default screen font is actually
being used here:

$ python game_lobby.py
Font is Totally Nonexistent Font Family XYZ
Actual font used is Bitstream Vera Sans

While this ensures that users won't be left without any text in the window, it would be nice
if we could give Qt a better idea of what sort of font it should use.

We can do this by setting the font's styleHint and styleStrategy properties, as follows:

 button_font.setStyleHint(qtg.QFont.Fantasy)
 button_font.setStyleStrategy(
 qtg.QFont.PreferAntialias |
 qtg.QFont.PreferQuality
)

styleHint suggests a general category for Qt to fall back on, which, in this case, is the
Fantasy category. Other options here include SansSerif, Serif, TypeWriter,
Decorative, Monospace, and Cursive. What these options correspond to is dependent on
the OS and desktop environment configuration.

The styleStrategy property informs Qt of more technical preferences related to the
capabilities of the chosen font, such as anti-aliasing, OpenGL compatibility, and whether
the size will be matched exactly or rounded to the nearest non-scaled size. The complete list
of strategy options can be found at https:/ /doc. qt.io/ qt- 5/qfont. html#StyleStrategy-
enum.

After setting these properties, check the font again to see whether anything has changed:

 actual_font = qtg.QFontInfo(button_font)
 print(f'Actual font used is {actual_font.family()}'
 f' {actual_font.pointSize()}')
 self.submit.setFont(button_font)
 self.cancel.setFont(button_font)

Depending on your system's configuration, you should see different results from before:

$ python game_lobby.py
Actual font used is Impact 15

On this system, Fantasy has been interpreted to mean Impact, and the PreferQuality
strategy flag has forced the initially odd 15.233 point size to be a nice round 15.

https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum
https://doc.qt.io/qt-5/qfont.html#StyleStrategy-enum

Styling Qt Applications Chapter 6

[129]

At this point, depending on the fonts available on your system, your application should
look as follows:

Fonts can also be bundled with the application; see the Using Qt resource
files section in this chapter.

Adding images
Qt offers a number of classes related to the use of images in an application, but, for simply
displaying a picture in your GUI, the most appropriate is QPixmap. QPixmap is a display-
optimized image class, which can load many common image formats including PNG, BMP,
GIF, and JPEG.

To create one, we simply need to pass QPixmap a path to an image file:

 logo = qtg.QPixmap('logo.png')

Once loaded, a QPixmap object can be displayed in a QLabel or QButton object, as follows:

 heading.setPixmap(logo)

Note that labels can only display a string or a pixmap, but not both.

Styling Qt Applications Chapter 6

[130]

Being optimized for display, the QPixmap objects offer only minimal editing functionality;
however, we can do simple transformations such as scaling:

 if logo.width() > 400:
 logo = logo.scaledToWidth(
 400, qtc.Qt.SmoothTransformation)

In this example, we've used the pixmap's scaledToWidth() method to restrict the logo's
width to 400 pixels using a smooth transformation algorithm.

The reason why QPixmap objects are so limited is that they are actually
stored in the display server's memory. The QImage class is similar but
stores data in application memory, so that it can be edited more
extensively. We'll explore this class more in Chapter 12, Creating 2D
Graphics with QPainter.

QPixmap also offers the handy capability to generate simple colored rectangles, as follows:

 go_pixmap = qtg.QPixmap(qtc.QSize(32, 32))
 stop_pixmap = qtg.QPixmap(qtc.QSize(32, 32))
 go_pixmap.fill(qtg.QColor('green'))
 stop_pixmap.fill(qtg.QColor('red'))

By specifying a size in the constructor and using the fill() method, we can create a
simple, colored rectangle pixmap. This is useful for displaying color swatches or to use as a
quick-and-dirty image stand-in.

Using icons
Now consider an icon on a toolbar or in a program menu. When the menu item is disabled,
you expect the icon to be grayed out in some way. Likewise, if a user hovers over the
button or item using a mouse cursor, you might expect it to be highlighted. To encapsulate
this type of state-dependent image display, Qt provides the QIcon class. A QIcon object
contains a collection of pixmaps that are each mapped to a widget state.

Here is how you can create a QIcon object:

 connect_icon = qtg.QIcon()
 connect_icon.addPixmap(go_pixmap, qtg.QIcon.Active)
 connect_icon.addPixmap(stop_pixmap, qtg.QIcon.Disabled)

Styling Qt Applications Chapter 6

[131]

After creating the icon object, we use its addPixmap() method to assign a QPixmap object
to a widget state. These states include Normal, Active, Disabled, and Selected.

The connect_icon icon will now be a red square when disabled, or a green square when
enabled. Let's add it to our submit button and add some logic to toggle the button's status:

 self.submit.setIcon(connect_icon)
 self.submit.setDisabled(True)
 inputs['Server'].textChanged.connect(
 lambda x: self.submit.setDisabled(x == '')
)

If you run the script at this point, you'll see that the red square appears in the submit button
until the Server field contains data, at which point it automatically switches to green.
Notice that we don't have to tell the icon object itself to switch states; once assigned to the
widget, it tracks any changes in the widget's state.

Icons can be used with the QPushButton, QToolButton, and QAction objects; the
QComboBox, QListView, QTableView, and QTreeView items; and most other places where
you might reasonably expect to have an icon.

Using Qt resource files
A significant problem with using image files in a program is making sure the program can
find them at runtime. Paths passed into a QPixmap constructor or a QIcon constructor are
interpreted as absolute (that is, if they begin with a drive letter or path separator), or as
relative to the current working directory (which you cannot control). For example, try
running your script from somewhere other than the code directory, as follows:

$ cd ..
$ python ch05/game_lobby.py

You'll find that your images are all missing! QPixmap does not complain when it cannot
find a file, it just doesn't show anything. Without an absolute path to the images, you'll only
be able to find them if the script is run from the exact directory to which your paths are
relative.

Unfortunately, specifying absolute paths means that your program will only work from one
location on the filesystem, which is a major problem if you plan to distribute it to multiple
platforms.

Styling Qt Applications Chapter 6

[132]

PyQt offers us a solution to this problem in the form of a PyQt Resource file, which we can
create using the PyQt resource compiler tool. The basic procedure is as follows:

Write an XML-format Qt Resource Collection file (.qrc) containing the paths of1.
all the files that we want to include
Run the pyrcc5 tool to serialize and compress these files into data contained in a2.
Python module
Import the resulting Python module into our application script3.
Now we can reference our resources using a special syntax4.

Let's step through this process—suppose that we have some team badges in the form of
PNG files that we want to include in our program. Our first step is to create the
resources.qrc file, which looks like the following code block:

<RCC>
 <qresource prefix="teams">
 <file>crimson_sharks.png</file>
 <file>shadow_hawks.png</file>
 <file>night_terrors.png</file>
 <file alias="blue_crew.png">blue_crew2.png</file>
 </qresource>
</RCC>

We've placed this file in the same directory as the image files listed in the script. Note that
we've added a prefix value of teams. Prefixes allow you to organize resources into
categories. Additionally, notice that the last file has an alias specified. In our program, we
can use this alias rather than the actual name of the file to access this resource.

Now, in the command line, we'll run pyrcc5, as follows:

$ pyrcc5 -o resources.py resources.qrc

The syntax here is pyrcc5 -o outputFile.py inputFile.qrc. This command should
generate a Python file containing your resource data. If you take a moment to open the file
and examine it, you'll find it's mostly just a large bytes object assigned to the
qt_resource_data variable.

Back in our main script, we just need to import this file in the same way as any other
Python file:

import resources

Styling Qt Applications Chapter 6

[133]

The file doesn't have to be called resources.py; in fact, any name will
suffice. You just need to import it, and the code in the file will make sure
that the resources are available to Qt.

Now that the resource file is imported, we can specify pixmap paths using the resource
syntax:

 inputs['Team'].setItemIcon(
 0, qtg.QIcon(':/teams/crimson_sharks.png'))
 inputs['Team'].setItemIcon(
 1, qtg.QIcon(':/teams/shadow_hawks.png'))
 inputs['Team'].setItemIcon(
 2, qtg.QIcon(':/teams/night_terrors.png'))
 inputs['Team'].setItemIcon(
 3, qtg.QIcon(':/teams/blue_crew.png'))

Essentially, the syntax is :/prefix/file_name_or_alias.extension.

Because our data is stored in a Python file, we can place it inside a Python library and it will
use Python's standard import resolution rules to locate the file.

Qt resource files and fonts
Resource files aren't limited to images; in fact, they can be used to include just about any
kind of binary, including font files. For example, suppose that we want to include our
favorite font in the program to ensure that it looks right on all platforms.

Just as with images, we start by including the font file in the .qrc file:

<RCC>
 <qresource prefix="teams">
 <file>crimson_sharks.png</file>
 <file>shadow_hawks.png</file>
 <file>night_terrors.png</file>
 <file>blue_crew.png</file>
 </qresource>
 <qresource prefix="fonts">
 <file>LiberationSans-Regular.ttf</file>
 </qresource>
</RCC>

Styling Qt Applications Chapter 6

[134]

Here, we've added a prefix of fonts and included a reference to the LiberationSans-
Regular.ttf file. After running pyrcc5 against this file, the font is bundled into our
resources.py file.

To use this font in the code, we start by adding it to the font database, as follows:

 libsans_id = qtg.QFontDatabase.addApplicationFont(
 ':/fonts/LiberationSans-Regular.ttf')

QFontDatabase.addApplicationFont() inserts the passed font file into the
application's font database and returns an ID number. We can then use that ID number to
determine the font's family string; this can be passed to QFont, as follows:

 family = qtg.QFontDatabase.applicationFontFamilies(libsans_id)[0]
 libsans = qtg.QFont(family)
 inputs['Team'].setFont(libsans)

Make sure to check the license on your font before distributing it with
your application! Remember that not all fonts are free to redistribute.

Our form is certainly looking more game-like now; run the application and it should look
similar the following screenshot:

Styling Qt Applications Chapter 6

[135]

Configuring colors, style sheets, and styles
Fonts and icons have improved the look of our form, but now it's time to ditch those
institutional gray tones and replace them with some color. In this section, we're going to
look at three different approaches that Qt offers for customizing application colors:
manipulating the palette, using style sheets, and overriding the application style.

Customizing colors with palettes
A palette, represented by the QPalette class, is a collection of colors and brushes that are
mapped to color roles and color groups.

Let's unpack that statement:

Here, color is a literal color value, represented by a QColor object
A brush combines a particular color with a style, such as a pattern, gradient, or
texture, and is represented by a QBrush class
A color role represents the way a widget uses the color, such as in the
foreground, in the background, or in the border
The color group refers to the interaction state of the widget; it can be Normal,
Active, Disabled, or Inactive

When a widget is painted on the screen, Qt's painting system consults the palette to
determine the color and brush used to render each piece of the widget. To customize this,
we can create our own palette and assign it to a widget.

To begin, we need to get a QPalette object, as follows:

 app = qtw.QApplication.instance()
 palette = app.palette()

While we could just create a QPalette object directly, the Qt documentation recommends
that we call palette() on our running QApplication instance to retrieve a copy of the
palette for the currently configured style.

You can always retrieve a copy of your QApplication object by calling
QApplication.instance().

Styling Qt Applications Chapter 6

[136]

Now that we have the palette, let's start overriding some of the rules:

 palette.setColor(
 qtg.QPalette.Button,
 qtg.QColor('#333')
)
 palette.setColor(
 qtg.QPalette.ButtonText,
 qtg.QColor('#3F3')
)

QtGui.QPalette.Button and QtGui.QPalette.ButtonText are color role constants
and, as you might guess, they represent the background and foreground colors,
respectively, of all the Qt button classes. We're overriding them with new colors.

To override the color for a particular button state, we need to pass in a color group constant
as the first argument:

 palette.setColor(
 qtg.QPalette.Disabled,
 qtg.QPalette.ButtonText,
 qtg.QColor('#F88')
)
 palette.setColor(
 qtg.QPalette.Disabled,
 qtg.QPalette.Button,
 qtg.QColor('#888')
)

In this case, we're changing the colors used when a button is in the Disabled state.

To apply this new palette, we have to assign it to a widget, as follows:

 self.submit.setPalette(palette)
 self.cancel.setPalette(palette)

setPalette() assigns the provided palette to the widget and all the child widgets as well.
So, rather than assigning this to individual widgets, we could create a single palette and
assign it to our QMainWindow class to apply it to all objects.

Styling Qt Applications Chapter 6

[137]

Working with QBrush objects
If we want something fancier than a solid color, then we can use a QBrush object. Brushes
are capable of filling colors in patterns, gradients, or textures (that is, image-based
patterns).

For example, let's create a brush that paints a white stipple fill:

 dotted_brush = qtg.QBrush(
 qtg.QColor('white'), qtc.Qt.Dense2Pattern)

Dense2Pattern is one of 15 patterns available. (You can refer to https:/ /doc. qt. io/qt-
5/qt.html#BrushStyle- enum for the full list.) Most of these are varying degrees of
stippling, cross-hatching, or alternating line patterns.

Patterns have their uses, but gradient-based brushes are perhaps more interesting for
modern styling. However, creating one is a little more involved, as shown in the following
code:

 gradient = qtg.QLinearGradient(0, 0, self.width(), self.height())
 gradient.setColorAt(0, qtg.QColor('navy'))
 gradient.setColorAt(0.5, qtg.QColor('darkred'))
 gradient.setColorAt(1, qtg.QColor('orange'))
 gradient_brush = qtg.QBrush(gradient)

To use a gradient in a brush, we first have to create a gradient object. Here, we've created a
QLinearGradient object, which implements a basic linear gradient. The arguments are the
starting and ending coordinates for the gradient, which we've specified as the top-left (0, 0),
and the bottom-right (width, height) of the main window.

Qt also offers the QRadialGradient and QConicalGradient classes for
additional gradient options.

After creating the object, we then specify color stops using setColorAt(). The first
argument is a float value between 0 and 1 that specifies the percentage between the start
and finish, and the second argument is the QColor object that the gradient should be at that
point.

After creating the gradient, we pass it to the QBrush constructor to create a brush that
paints with our gradient.

https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum

Styling Qt Applications Chapter 6

[138]

We can now apply our brushes to a palette using the setBrush() method, as follows:

 window_palette = app.palette()
 window_palette.setBrush(
 qtg.QPalette.Window,
 gradient_brush
)
 window_palette.setBrush(
 qtg.QPalette.Active,
 qtg.QPalette.WindowText,
 dotted_brush
)
 self.setPalette(window_palette)

Just as with QPalette.setColor(), we can assign our brush with or without specifying a
specific color group. In this case, our gradient brush will be used to paint the main window
regardless of its state, but our dotted brush will only be used when the widget is active
(that is, the currently active window).

Customizing the appearance with Qt Style Sheets
(QSS)
For developers who have worked with web technologies, styling an application using
palette, brush, and color objects may seem verbose and unintuitive. Fortunately, Qt offers
you an alternative known as QSS, which is very similar to the Cascading Style Sheets
(CSS) used in web development. It is an easy way to apply some simple changes to our
widgets.

You can use QSS as follows:

 stylesheet = """
 QMainWindow {
 background-color: black;
 }
 QWidget {
 background-color: transparent;
 color: #3F3;
 }
 QLineEdit, QComboBox, QCheckBox {
 font-size: 16pt;
 }"""
 self.setStyleSheet(stylesheet)

Styling Qt Applications Chapter 6

[139]

Here, a style sheet is just a string containing style directives, which we can assign to a
widget's styleSheet property.

The syntax, which should be familiar to anyone who has worked with CSS, is as follows:

WidgetClass {
 property-name: value;
 property-name2: value2;
}

If you run the program at this point, you'll find, to your dismay, that (depending on your
system theme) it may look something like the following screenshot:

Here, the interface has mostly gone black apart from the text and images. Our buttons and
checkbox, in particular, are indistinguishable from the background. So, why did this
happen?

Well, when you add a QSS style to a widget class, the style change carries down to all its
subclasses. Since we styled QWidget, all the other QWidget derived classes (such as
QCheckbox and QPushButton) inherited this style.

Let's fix this by overriding the styles for those subclasses, as follows:

 stylesheet += """
 QPushButton {
 background-color: #333;
 }
 QCheckBox::indicator:unchecked {
 border: 1px solid silver;
 background-color: darkred;
 }

Styling Qt Applications Chapter 6

[140]

 QCheckBox::indicator:checked {
 border: 1px solid silver;
 background-color: #3F3;
 }
 """
 self.setStyleSheet(stylesheet)

Just as with CSS, applying a style to a more specific class overrides the more general case.
For example, our QPushButton background color overrides the QWidget background
color.

Note the use of colons with QCheckBox—the double colon in QSS allows us to reference a
subelement of a widget. In this case, this is the indicator portion of the QCheckBox class (as
opposed to its label portion). We can also use a single colon to reference a widget state, as,
in this case, we're setting a different style depending on whether or not the checkbox is
checked or unchecked.

If you wanted to restrict a change to a particular class only and not any of its subclasses,
simply add a period (.) to the name, as follows:

 stylesheet += """
 .QWidget {
 background: url(tile.png);
 }
 """

This preceding example also demonstrates how to use images in QSS. Just like in CSS, we
can provide a file path that is wrapped in the url() function.

QSS also accepts resource paths if you've serialized your images with
pyrcc5.

If you want to apply a style to a particular widget rather than a whole class of widgets,
there are two ways to do so.

The first method is to rely on the objectName property, as follows:

 self.submit.setObjectName('SubmitButton')
 stylesheet += """
 #SubmitButton:disabled {
 background-color: #888;
 color: darkred;
 }
 """

Styling Qt Applications Chapter 6

[141]

In our style sheet, an object name must be preceded by a

symbol to identify it as an object name rather than a class.

The other way to set styles on individual widgets is to call t

he widget's setStyleSheet() method with some style sheet directives, as follows:

 for inp in ('Server', 'Name', 'Password'):
 inp_widget = inputs[inp]
 inp_widget.setStyleSheet('background-color: black')

If we want to apply a style directly to the widget we're calling, we don't need to specify
class names or object names; we can simply pass in the properties and values.

Having made all these changes, our application now looks a lot more like a game GUI:

The downside of QSS
As you can see, QSS is a very powerful styling method and is accessible for any developer
who has worked with web development; however, it does have some disadvantages.

QSS is an abstraction over the palette and style objects and must be translated to the actual
system. This makes them slower for large applications, and it also means that there is no
default style sheet that you can retrieve and edit – you're starting from scratch each time.

Styling Qt Applications Chapter 6

[142]

As we've already seen, QSS can have unpredictable results when applied to high-level
widgets, since it inherits through the class hierarchy.

Finally, bear in mind that QSS is a modest subset of CSS 2.0 with a few additions or
changes—it is not CSS. Therefore, transitions, animations, flexbox containers, relative units,
and other modern CSS goodies are completely absent. So, while web developers may find
its basic syntax familiar, the limited set of options may be frustrating and its different
behaviors confusing.

Customizing the appearance with QStyle
Palettes and style sheets can take us a long way towards customizing the look of a Qt
application, and for most cases, that's all you'll ever need. To really dig into the heart of a
Qt application's appearance, we need to understand the style system.

Every running instance of a Qt application has a single style, which is in charge of telling
the graphics system how to draw each widget or GUI component. Styles are dynamic and
pluggable, so that different OS platforms have different styles, and users can install their
own Qt styles to use in Qt applications. This is how Qt applications are able to have a native
look on different OSes.

In Chapter 1, Getting Started with PyQt, we learned that QApplication should be passed a
copy of sys.argv when created, so that it can process some Qt-specific arguments. One
such argument is -style, which allows the user to set a custom style for their Qt
application.

For example, let's run the calendar application from Chapter 3, Handling Events with Signals
and Slots, with the Windows style:

$ python3 calendar_app.py -style Windows

Now try it using the Fusion style, as follows:

$ python3 calendar_app.py -style Fusion

Notice the difference in appearance, especially in the input controls.

Capitalization counts with styles; windows is not a valid style, whereas
Windows is!

Styling Qt Applications Chapter 6

[143]

The styles that are available on common OS platforms are shown in the following table:

OS Styles
Windows 10 windowsvista, Windows, and Fusion
macOS macintosh, Windows, and Fusion
Ubuntu 18.04 Windows and Fusion

On many Linux distributions, additional Qt styles are available from the
package repositories. A list of currently installed styles can be obtained by
calling QtWidgets.QStyleFactory.keys().

Styles can also be set inside the application itself. In order to retrieve a style class, we need
to use the QStyleFactory class, as follows:

if __name__ == '__main__':
 app = qtw.QApplication(sys.argv)
 windows_style = qtw.QStyleFactory.create('Windows')
 app.setStyle(windows_style)

QStyleFactory.create() will attempt to find an installed style with the given name and
return a QCommonStyle object; if the style requested is not found, then it will return None.
The style object can then be used to set the style property of our QApplication object. (A
value of None will just cause it to use the default.)

If you plan to set a style inside the application, it's best to do it as early as
possible before any widgets are drawn to avoid visual glitches.

Customizing Qt styles
Building a Qt style is an involved process that requires a deep understanding of Qt's
widgets and painting system, and few developers will ever need to create one. We might,
however, want to override some aspects of the running style to accomplish some things
that aren't possible through manipulation of the palette or style sheets. We can do this by
subclassing QtWidgets.QProxyStyle.

Styling Qt Applications Chapter 6

[144]

A proxy style is an overlay that we can use to override methods of the actual style that's
running. In this way, it doesn't matter what actual style the user chooses, our proxy style's
methods (where implemented) will be used instead.

For example, let's create a proxy style that forces all the screen text to be in uppercase, as
follows:

class StyleOverrides(qtw.QProxyStyle):

 def drawItemText(
 self, painter, rect,
 flags, palette, enabled,
 text, textRole
):
 """Force uppercase in all text"""
 text = text.upper()
 super().drawItemText(
 painter, rect, flags,
 palette, enabled, text,
 textRole
)

drawItemText() is the method called on the style whenever text must be drawn to the
screen. It receives a number of arguments, but the one we're most concerned with is the
text argument that is to be drawn. We're simply going to intercept this text and make it
uppercase before passing all the arguments back to super().drawTextItem().

This proxy style can then be applied to our QApplication object in the same way as any
other style:

if __name__ == '__main__':
 app = qtw.QApplication(sys.argv)
 proxy_style= StyleOverrides()
 app.setStyle(proxy_style)

If you run the program at this point, you'll see that all the text is now uppercase. Mission
accomplished!

Styling Qt Applications Chapter 6

[145]

Drawing widgets
Now let's try something a bit more ambitious. Let's change all our QLineEdit entry boxes
to a green rounded rectangle outline. So, how do we go about doing this in a proxy style?

The first step is to figure out what element of the widget we're trying to modify. These can
be found as enum constants of the QStyle class, and they're divided into three main
classes:

PrimitiveElement, which includes fundamental, non-interactive GUI elements
such as frames or backgrounds
ControlElement, which includes interactive elements such as buttons or tabs
ComplexControl, which includes complex interactive elements such as combo
boxes and sliders

Each of these classes of items is drawn by a different method of QStyle; in this case, it
turns out that we want to modify the PE_FrameLineEdit element, which is a primitive
element (as indicated by the PE_ prefix). This type of element is drawn by
QStyle.drawPrimitive(), so we'll need to override that method in our proxy style.

Add this method to StyleOverrides, as follows:

 def drawPrimitive(
 self, element, option, painter, widget
):
 """Outline QLineEdits in Green"""

To control the drawing of an element, we need to issue commands to its painter object, as
follows:

 self.green_pen = qtg.QPen(qtg.QColor('green'))
 self.green_pen.setWidth(4)
 if element == qtw.QStyle.PE_FrameLineEdit:
 painter.setPen(self.green_pen)
 painter.drawRoundedRect(widget.rect(), 10, 10)
 else:
 super().drawPrimitive(element, option, painter, widget)

Painter objects and the drawing will be fully covered in Chapter 12, Creating 2D Graphics
with QPainter, but, for now, understand that the preceding code draws a green rounded
rectangle if the element argument matches QStyle.PE_FrameLineEdit. Otherwise, it
passes the arguments to the superclass's drawPrimitive() method.

Styling Qt Applications Chapter 6

[146]

Notice that we do not call the superclass method after drawing our rectangle. If we did,
then the superclass would draw its style-defined widget element on top of our green
rectangle.

As you can see in this example, while working with QProxyStyle is considerably more
esoteric than using palettes or style sheets, it does give us almost limitless control over how
our widgets appear.

It doesn't matter whether you use QSS or styles and palettes to restyle an
application; however, it is highly advised that you stick to one or the
other. Otherwise, your style modifications can fight with one another and
give unpredictable results across platforms and desktop settings.

Creating animations
Nothing quite adds a sophisticated edge to a GUI like the tasteful use of animations.
Dynamic GUI elements that fade smoothly between changes in color, size, or position can
add a modern touch to any interface.

Qt's animation framework allows us to create simple animations on our widgets using the
QPropertyAnimation class. In this section, we'll explore how to use this class to spice up
our game lobby with some animations.

Because Qt style sheets override another widget- and palette-based
styling, you will need to comment out all the style sheet code for these
animations to work correctly.

Basic property animations
A QPropertyAnimation object is used to animate a single Qt property of a widget. The
class automatically creates an interpolated series of steps between two numeric property
values and applies the changes over time.

For example, let's animate our logo so that it scrolls out from left to right. You can begin by
adding a property animation object, as follows:

 self.heading_animation = qtc.QPropertyAnimation(
 heading, b'maximumSize')

Styling Qt Applications Chapter 6

[147]

QPropertyAnimation requires two arguments: a widget (or another type of QObject
class) to be animated, and a bytes object indicating the property to be animated (note that
this is a bytes object and not a string).

Next, we need to configure our animation object as follows:

 self.heading_animation.setStartValue(qtc.QSize(10, logo.height()))
 self.heading_animation.setEndValue(qtc.QSize(400, logo.height()))
 self.heading_animation.setDuration(2000)

At the very least, we need to set a startValue value and an endValue value for the
property. Naturally, these values must be of the data type required by the property. We can
also set duration in milliseconds (the default is 250).

Once configured, we just need to tell the animation to start, as follows:

 self.heading_animation.start()

There are a few requirements that limit what QPropertyAnimation objects can do:

The object to be animated must be a QObject subclass. This includes all widgets
but excludes some Qt classes such as QPalette.
The property to be animated must be a Qt property (not just a Python member
variable).
The property must have read-and-write accessor methods that require only a
single value. For example, QWidget.size can be animated but not
QWidget.width, because there is no setWidth() method.
The property value must be one of the following types: int, float, QLine,
QLineF, QPoint, QPointF, QSize, QSizeF, QRect, QRectF, or QColor.

Unfortunately, for most widgets, these limitations exclude a number of aspects that we
might want to animate—in particular, colors. Fortunately, we can work around this.

Animating colors
As you learned earlier in this chapter, widget colors are not properties of the widget –
rather they are properties of the palette. The palette cannot be animated, because QPalette
is not a subclass of QObject, and because setColor() requires more than just a single
value.

Styling Qt Applications Chapter 6

[148]

Colors are something that we'd like to animate, though; to make that happen, we need to
subclass our widget and make its color settings into Qt properties.

Let's do that with a button; start a new class at the top of the script, as follows:

class ColorButton(qtw.QPushButton):

 def _color(self):
 return self.palette().color(qtg.QPalette.ButtonText)

 def _setColor(self, qcolor):
 palette = self.palette()
 palette.setColor(qtg.QPalette.ButtonText, qcolor)
 self.setPalette(palette)

Here, we have a QPushButton subclass with accessor methods for the palette's
ButtonText color. However, note that these are Python methods; in order to animate this
property, we need color to be an actual Qt property. To correct this, we'll use the
QtCore.pyqtProperty() function to wrap our accessor methods and create a property on
the underlying Qt object.

You can do this as follows:

 color = qtc.pyqtProperty(qtg.QColor, _color, _setColor)

The property name we use will be the name of the Qt property. The first argument passed
is the data type required by the property, and the next two arguments are the getter and
setter methods.

pyqtProperty() can also be used as a decorator, as follows:

 @qtc.pyqtProperty(qtg.QColor)
 def backgroundColor(self):
 return self.palette().color(qtg.QPalette.Button)

 @backgroundColor.setter
 def backgroundColor(self, qcolor):
 palette = self.palette()
 palette.setColor(qtg.QPalette.Button, qcolor)
 self.setPalette(palette)

Notice that, in this approach, both methods must be named identically using the property
name we intend to create.

Styling Qt Applications Chapter 6

[149]

Now that our properties are in place, we need to replace our regular QPushButton objects
with ColorButton objects:

 # Replace these definitions
 # at the top of the MainWindow constructor
 self.submit = ColorButton(
 'Connect',
 clicked=lambda: qtw.QMessageBox.information(
 None,
 'Connecting',
 'Prepare for Battle!'))
 self.cancel = ColorButton(
 'Cancel',
 clicked=self.close)

With these changes made, we can animate the color values, as follows:

 self.text_color_animation = qtc.QPropertyAnimation(
 self.submit, b'color')
 self.text_color_animation.setStartValue(qtg.QColor('#FFF'))
 self.text_color_animation.setEndValue(qtg.QColor('#888'))
 self.text_color_animation.setLoopCount(-1)
 self.text_color_animation.setEasingCurve(
 qtc.QEasingCurve.InOutQuad)
 self.text_color_animation.setDuration(2000)
 self.text_color_animation.start()

This works like a charm. We've also added a couple of additional configuration settings
here:

setLoopCount() will set how many times the animation restarts. A value of -1
will make it loop forever.
setEasingCurve() changes the curve along which the values are interpolated.
We've chosen InOutQuad, which slows the rate of the start and finish of the
animation.

Now, when you run the script, note that the color fades from white to gray and then
immediately loops back to white. If we want an animation to move from one value to
another and then smoothly back again, we can use the setKeyValue() method to put a
value in the middle of the animation:

 self.bg_color_animation = qtc.QPropertyAnimation(
 self.submit, b'backgroundColor')
 self.bg_color_animation.setStartValue(qtg.QColor('#000'))
 self.bg_color_animation.setKeyValueAt(0.5, qtg.QColor('darkred'))
 self.bg_color_animation.setEndValue(qtg.QColor('#000'))

Styling Qt Applications Chapter 6

[150]

 self.bg_color_animation.setLoopCount(-1)
 self.bg_color_animation.setDuration(1500)

In this case, our start and end values are the same, and we've added a value at 0.5 (50% of
the way through the animation) set to a second color. This animation will fade from black
to dark red and back again. You can add as many key values as you wish and make quite
complex animations.

Using animation groups
As we add more and more animations to a GUI, we may find it necessary to group them
together so that we can control the animations as a group. This can be done using the
animation group classes, QParallelAnimationGroup and
QSequentialAnimationGroup.

Both of these classes allow us to add multiple animations to the group and start, stop,
pause, and resume the animations as a group.

For example, let's group our button animations as follows:

 self.button_animations = qtc.QParallelAnimationGroup()
 self.button_animations.addAnimation(self.text_color_animation)
 self.button_animations.addAnimation(self.bg_color_animation)

QParallelAnimationGroup plays all animations in parallel whenever its start()
method is called. In contrast, QSequentialAnimationGroup will playback its animations
one at a time in the order added, as shown in the following code block:

 self.all_animations = qtc.QSequentialAnimationGroup()
 self.all_animations.addAnimation(self.heading_animation)
 self.all_animations.addAnimation(self.button_animations)
 self.all_animations.start()

By adding animation groups to other animation groups as we've done here, we can
choreograph complex arrangements of animations into one object that can be started,
stopped, or paused altogether.

Comment out all the other animation start() calls and launch the script. Note that the
button animations start only after the heading animation has finished.

We will explore more uses of QPropertyAnimation in Chapter 12, 2D
Graphics with QPainter.

Styling Qt Applications Chapter 6

[151]

Summary
In this chapter, we learned how to customize the look and feel of a PyQt application. We
also learned how to manipulate screen fonts and add images. Additionally, we learned how
to package image and font resources in a way that is resilient to path changes. We also
explored how to alter the color and appearance of the application using palettes and style
sheets, and how to override style methods to implement nearly limitless style changes.
Finally, we explored widget animation using Qt's animation framework and learned how
to add custom Qt properties to our classes so that we can animate them.

In the next chapter, we're going to explore the world of multimedia applications using the
QtMultimedia library. You'll learn how to work with cameras to take pictures and videos,
how to display video content, and how to record and playback audio.

Questions
Try these questions to test your knowledge from this chapter:

You are preparing to distribute your text editor application, and want to ensure1.
that the user is given a monospaced font by default, no matter what platform
they use. What two ways can you use to accomplish this?
As closely as possible, try to mimic the following text using QFont:2.

Can you explain the difference between QImage, QPixmap, and QIcon?3.
You have defined the following .qrc file for your application, run pyrcc5, and4.
imported the resource library in your script. How would you load this image into
QPixmap?

 <RCC>
 <qresource prefix="foodItems">
 <file alias="pancakes.png">pc_img.45234.png</file>
 </qresource>
 </RCC>

Styling Qt Applications Chapter 6

[152]

Using QPalette, how would you tile the background of a QWidget object with5.
the tile.png image?
You are trying to make a delete button pink using QSS, but it's not working.6.
What is wrong with your code?

 deleteButton = qtw.QPushButton('Delete')
 form.layout().addWidget(deleteButton)
 form.setStyleSheet(
 form.styleSheet() + 'deleteButton{ background-color: #8F8; }'
)

Which style sheet string will turn the background colors of your QLineEdit7.
widget black?

 stylesheet1 = "QWidget {background-color: black;}"
 stylesheet2 = ".QWidget {background-color: black;}"

Build a simple app with a combo box that allows you to change the Qt style to8.
any style installed on your system. Include some other widgets so that you can
see how they look in the different styles.
You feel very happy about learning how to style PyQt apps and want to create a9.
QProxyStyle class that will force all pixmaps in a GUI to be smile.gif. How
would you do this? Hint: You will need to research some other drawing methods
of QStyle than the ones discussed in this chapter.
The following animation doesn't work; figure out why it doesn't work:10.

 class MyWidget(qtw.QWidget):
 def __init__(self):
 super().__init__()
 animation = qtc.QPropertyAnimation(
 self, b'windowOpacity')
 animation.setStartValue(0)
 animation.setEndValue(1)
 animation.setDuration(10000)
 animation.start()

Styling Qt Applications Chapter 6

[153]

Further reading
For further information, please refer to the following:

A more detailed description of how fonts are resolved can be found in the QFont
documentation at https:/ / doc. qt. io/qt- 5/qfont. html#details

This Qt styling example in C++ (https:/ /doc. qt. io/qt- 5/qtwidgets- widgets-
styles-example. html) demonstrates how to create a comprehensive Qt Proxy
Style
The overview of the Qt's animation framework at https:/ /doc. qt. io/qt- 5/
animation- overview. html offers additional details on how to use property
animations and what their limitations are

https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qfont.html#details
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/qtwidgets-widgets-styles-example.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html

2
Section 2: Working with

External Resources
Now that you understand the basics of building a PyQt GUI, it's time to venture into the
outside world. In this section, you will learn how to connect your PyQt applications to
external resources, such as networks and databases.

The following chapters are in this section:

Chapter 7, Working with Audio-Visual Using QtMultimedia
Chapter 8, Networking with QtNetwork
Chapter 9, Exploring SQL with QtSQL

7
Working with Audio-Visual

Using QtMultimedia
Whether in games, communications, or media production applications, audio and video
content is often a crucial part of modern applications. When working with native APIs,
even the simplest audio-visual (AV) applications can be quite complicated, especially when
supporting multiple platforms. However, fortunately for us, Qt provides us with a simple
cross-platform multimedia API in the form of QtMultimedia. With QtMultimedia, we can
easily work with audio content, video content, or devices such as cameras and radios.

In this chapter, we'll use QtMultimedia to explore the following topics:

Simple audio playback
Recording and playing audio
Recording and playing video

Technical requirements
In addition to the basic PyQt setup described in Chapter 1, Getting Started with PyQt, you
will need to make sure the QtMultimedia and PyQt.QtMultimedia libraries are installed.
If you installed PyQt5 using pip, then it should already be installed. Linux users who are
using their distro's package manager should check that these packages are installed.

You may also want to download the code from our GitHub repository at https:/ /github.
com/PacktPublishing/ Mastering- GUI- Programming- with- Python/ tree/ master/
Chapter07, which contains not only the example code but the audio data used for these
examples.

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter07

Working with Audio-Visual Using QtMultimedia Chapter 7

[156]

If you want to create your own audio files to work with, you might want to install the free
Audacity sound editor at https:/ / www. audacityteam. org/ .

Finally, you will get the most out of this chapter if your computer has a working audio
system, microphone, and webcam. If it does not, then some of the examples will not work
for you.

Check out the following video to see the code in action: http:/ / bit.ly/ 2Mjr8vx

Simple audio playback
Quite often, applications need to playback sounds in response to GUI events, as you might
do in a game or just to provide audio feedback for user actions. For this application,
QtMultimedia offers the QSoundEffect class. QSoundEffect is limited to playing back
uncompressed audio, so it works with Pulse Code Modulation (PCM), Waveform data
(WAV) files but not MP3 or OGG files. The trade-off is that it is low-latency and very
efficient with resources, so while it's not useful as a general-purpose audio player, it is
perfect for fast playback of sound effects.

To demonstrate QSoundEffect, let's build a phone dialer. Copy the application template
from Chapter 4, Building Applications with QMainWindow, into a new file called
phone_dialer.py and open it in your editor.

Let's start by importing the QtMultimedia library, as follows:

from PyQt5 import QtMultimedia as qtmm

Importing QtMultimedia will be a necessary first step for all the
examples in this chapter, and we will consistently use qtmm as an alias for
it.

We'll also import a resources library containing the necessary WAV data:

import resources

This resources file contains a collection of Dial Tone Multi-Frequency (DTMF) tones.
These are the tones generated by telephones when dialing, and we've included 0 through
to 9, *, and #. We've included this file in the example code; alternatively, you can create
your own resources file from your own audio samples (you can refer to Chapter 6,
Styling Qt Applications, for information on how to do this).

https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
https://www.audacityteam.org/
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx
http://bit.ly/2Mjr8vx

Working with Audio-Visual Using QtMultimedia Chapter 7

[157]

You can generate DTMF tones using the free Audacity sound editor. To
do so, select Generate | DTMF from Audacity's main menu.

Once that's in place, we're going to create a QPushButton subclass that plays a sound effect
when it is clicked on, as follows:

class SoundButton(qtw.QPushButton):

 def __init__(self, wav_file, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.wav_file = wav_file
 self.player = qtmm.QSoundEffect()
 self.player.setSource(qtc.QUrl.fromLocalFile(wav_file))
 self.clicked.connect(self.player.play)

As you can see, we've modified the constructor to take a sound file path as an argument.
This value is converted to QUrl and passed into our QSoundEffect object using the
setSource() method. Finally, the QSoundEffect.play() method triggers playback of
the sound, so we've connected it to the button's clicked signal. This is all it takes to create
our SoundButton object.

Back in the MainWindow.__init__() method, let's create some SoundButton objects and
arrange them in the GUI:

 dialpad = qtw.QWidget()
 self.setCentralWidget(dialpad)
 dialpad.setLayout(qtw.QGridLayout())

 for i, symbol in enumerate('123456789*0#'):
 button = SoundButton(f':/dtmf/{symbol}.wav', symbol)
 row = i // 3
 column = i % 3
 dialpad.layout().addWidget(button, row, column)

We've set up the resource file so that each DTMF tone can be accessed by its symbol under
the dtmf prefix; for example, ':/dtmf/1.wav' refers to the DTMF tone for 1. In this way,
we can just iterate through a string of symbols and create a SoundButton object for each,
which we add to a three-column grid.

That's all there is to it; run this program and push the buttons. It should sound just like
dialing a phone!

Working with Audio-Visual Using QtMultimedia Chapter 7

[158]

Recording and playing audio
QSoundEffect is adequate for dealing with simple event sounds, but for more advanced
audio projects we're going to need something with more capabilities. Ideally, we want the
ability to load more formats, control various aspects of the playback, and record new
sounds.

In this section, we're going to focus on two classes that provide these features:

The QMediaPlayer class, which is like a virtual media player device that can
load audio or video content
The QAudioRecorder class, which manages the recording of audio data to a disk

To see these classes in action, we're going to build a sampling soundboard.

The initial setup
First, make a fresh copy of the application template and call it soundboard.py. Then,
import QtMultimedia as you did for the last project, and let's layout the main interface.

Inside the MainWindow constructor, add in the following code:

 rows = 3
 columns = 3
 soundboard = qtw.QWidget()
 soundboard.setLayout(qtw.QGridLayout())
 self.setCentralWidget(soundboard)
 for c in range(columns):
 for r in range(rows):
 sw = SoundWidget()
 soundboard.layout().addWidget(sw, c, r)

All we're doing here is creating an empty central widget, adding a grid layout, and then
filling it with 3 rows and 3 columns of SoundWidget objects.

Implementing sound playback
Our SoundWidget class is going to be a QWidget object that manages a single sound
sample. When finished, it will allow us to load or record an audio sample, play it back
looped or as a one-shot, and control its volume and playback position.

Working with Audio-Visual Using QtMultimedia Chapter 7

[159]

Above the MainWindow constructor, let's create the class and give it a layout:

class SoundWidget(qtw.QWidget):

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QGridLayout())
 self.label = qtw.QLabel("No file loaded")
 self.layout().addWidget(self.label, 0, 0, 1, 2)

The first thing we've added is a label that will display the name of the sample file the
widget has loaded. The next thing we need is a button to control the playback. Instead of
just a plain push button, let's apply some of our styling skills to create a custom button that
can switch between being a Play button and a Stop button.

Start a PlayButton class above the SoundWidget class, as follows:

class PlayButton(qtw.QPushButton):
 play_stylesheet = 'background-color: lightgreen; color: black;'
 stop_stylesheet = 'background-color: darkred; color: white;'

 def __init__(self):
 super().__init__('Play')
 self.setFont(qtg.QFont('Sans', 32, qtg.QFont.Bold))
 self.setSizePolicy(
 qtw.QSizePolicy.Expanding,
 qtw.QSizePolicy.Expanding
)
 self.setStyleSheet(self.play_stylesheet)

Back in the SoundWidget class, we'll add a PlayButton object, as follows:

 self.play_button = PlayButton()
 self.layout().addWidget(self.play_button, 3, 0, 1, 2)

Now that we have a control button, we need to create the QMediaPlayer object that will
play the sample, as follows:

 self.player = qtmm.QMediaPlayer()

You can think of QMediaPlayer as the software equivalent to a hardware media player
such as a CD or Blu-ray player. Just like a hardware media player has Play, Pause, and
Stop buttons, the QMediaPlayer object has play(), stop(), and pause() slots to control
the playback of the media.

Working with Audio-Visual Using QtMultimedia Chapter 7

[160]

Let's connect our dual-function PlayButton object to the player. We'll do this by way of an
instance method called on_playbutton():

 self.play_button.clicked.connect(self.on_playbutton)

Here is how SoundWidget.on_playbutton() will look:

 def on_playbutton(self):
 if self.player.state() == qtmm.QMediaPlayer.PlayingState:
 self.player.stop()
 else:
 self.player.play()

This method examines the player object's state property, which returns a constant
indicating whether the player is playing, has paused, or has stopped. If the player is
currently playing, we stop it—if not, we ask it to play.

Since our button is switching between a play and stop button, let's update its label and
appearance. QMediaPlayer emits a stateChanged signal when its state changes, which
we can send to our PlayButton object, as follows:

 self.player.stateChanged.connect(self.play_button.on_state_changed)

Back in the PlayButton class, let's handle that signal, as follows:

 def on_state_changed(self, state):
 if state == qtmm.QMediaPlayer.PlayingState:
 self.setStyleSheet(self.stop_stylesheet)
 self.setText('Stop')
 else:
 self.setStyleSheet(self.play_stylesheet)
 self.setText('Play')

Here, stateChanged passes along the new state of the media player, which we use to set
the button to its play or stop appearance.

Loading the media
Just as a hardware media player requires a CD, a DVD, or a Blu-ray disc loaded into it to
actually play anything back, our QMediaPlayer also needs some kind of content loaded
before it can play any audio. Let's explore how to load a sound from a file.

Working with Audio-Visual Using QtMultimedia Chapter 7

[161]

Start by adding a button to the SoundWidget layout, as follows:

 self.file_button = qtw.QPushButton(
 'Load File', clicked=self.get_file)
 self.layout().addWidget(self.file_button, 4, 0)

This button calls to the get_file() method, which looks like this:

 def get_file(self):
 fn, _ = qtw.QFileDialog.getOpenFileUrl(
 self,
 "Select File",
 qtc.QDir.homePath(),
 "Audio files (*.wav *.flac *.mp3 *.ogg *.aiff);; All files (*)"
)
 if fn:
 self.set_file(fn)

This method simply calls QFileDialog to retrieve a file URL and then passes it along to
another method, set_file(), which we'll write next. We've set the filter to look for five
common audio file types, but feel free to add more if you have audio in a different
format—QMediaPlayer is quite flexible in what it can load.

Note that we're calling getOpenFileUrl(), which returns a QUrl object rather than a file
path string. QMediaPlayer prefers working with QUrl objects so this will save us a
conversion step.

The set_file() method is where we'll finally load our media into the player:

 def set_file(self, url):
 content = qtmm.QMediaContent(url)
 self.player.setMedia(content)
 self.label.setText(url.fileName())

Before we can pass the URL to our media player, we have to wrap it in a QMediaContent
class. This provides the player with the API it needs to playback the content. Once
wrapped, we can use QMediaPlayer.setMedia() to load it up, and then it's ready for
playback. You can visualize this process as putting audio data onto a CD (the
QMediaContent object), and then loading that CD into a CD player (using setMedia()).

As a last touch, we've retrieved the filename of the loaded file and put it in the label.

Working with Audio-Visual Using QtMultimedia Chapter 7

[162]

Tracking the playback position
At this point, our soundboard can load and play samples, but it would be nice to see and
control the position of playback, particularly for long samples. QMediaPlayer allows us to
retrieve and control the playback position through signals and slots, so let's look into that
from our GUI.

Start by creating a QSlider widget, as follows:

 self.position = qtw.QSlider(
 minimum=0, orientation=qtc.Qt.Horizontal)
 self.layout().addWidget(self.position, 1, 0, 1, 2)

QSlider is a widget that we haven't looked at yet; it's just a slider control that can be used
to input integers between a minimum and maximum value.

Now connect the slider and player, as follows:

self.player.positionChanged.connect(self.position.setSliderPosition)
 self.player.durationChanged.connect(self.position.setMaximum)
 self.position.sliderMoved.connect(self.player.setPosition)

The QMediaPlayer class reports its position in integers representing the number of
milliseconds from the start of the file so that we can connect the positionChanged signal
to the slider's setSliderPosition() slot.

However, we also need to adjust the slider's maximum position so that it matches the
duration of the sample, otherwise, the slider won't know what percentage the value
represents. Therefore, we've connected the player's durationChanged signal (which is
emitted whenever new content is loaded into the player) to the slider's setMaximum() slot.

Finally, we'd like to be able to control the playback position using the slider, so we set
the sliderMoved signal to the player's setPosition() slot. Note that we definitely want
to use sliderMoved and not valueChanged (which QSlider emits when the value is
changed by the user or by an event), because the latter would create a feedback loop when
the media player changes the position.

These connections are all we need for our slider to work. Now you can run the program
and load up a long sound; you'll see that the slider tracks the playback position and can be
moved around before or during playback to alter the position.

Working with Audio-Visual Using QtMultimedia Chapter 7

[163]

Looping the audio
Playing our samples in one-shots is neat, but we'd also like to loop them. Looping audio in
a QMediaPlayer object requires a slightly different approach. Instead of loading a
QMediaContent object directly, we need to first add it to a QMediaPlayList object. We
can then tell the playlist to loop.

Back in our set_file() method, we need to make the following changes to our code:

 def set_file(self, url):
 self.label.setText(url.fileName())
 content = qtmm.QMediaContent(url)
 #self.player.setMedia(content)
 self.playlist = qtmm.QMediaPlaylist()
 self.playlist.addMedia(content)
 self.playlist.setCurrentIndex(1)
 self.player.setPlaylist(self.playlist)

A playlist can, of course, have multiple files loaded, but, in this case, we only want one. We
load the QMediaContent object into the playlist using the addMedia() method and then
point the playlist to that file using the setCurrentIndex() method. Note that the playlist
won't automatically point to any item by default. This means that if you skip this last step,
then nothing will happen when you try to play the playlist.

Finally, we use the media player's setPlaylist() method to add the playlist.

Now that our content is in a playlist, we'll create a checkbox to switch looping on and off:

 self.loop_cb = qtw.QCheckBox(
 'Loop', stateChanged=self.on_loop_cb)
 self.layout().addWidget(self.loop_cb, 2, 0)

As you can see, we're connecting the checkbox's stateChanged signal to a callback
method; the method will be as follows:

 def on_loop_cb(self, state):
 if state == qtc.Qt.Checked:
 self.playlist.setPlaybackMode(
 qtmm.QMediaPlaylist.CurrentItemInLoop)
 else:
 self.playlist.setPlaybackMode(
 qtmm.QMediaPlaylist.CurrentItemOnce)

Working with Audio-Visual Using QtMultimedia Chapter 7

[164]

The playbackMode property of the QMediaPlaylist class is very similar to the track
mode button on a CD player, which can be used to switch between repeat, shuffle, or
sequential play. There are five playback modes, as shown in the following table:

Mode Description
CurrentItemOnce Play the current track once and stop.
CurrentItemInLoop Play the current item repeatedly.
Sequential Play all the items in the order and then stop.
Loop Play all the items in the order and then repeat.
Random Play all the items in a random order.

In this method, we're switching between CurrentItemOnce and CurrentItemInLoop
depending on whether the checkbox is checked. Since our playlist only has one item, the
remaining modes aren't meaningful.

As a final touch, we'll clear the checkbox on loading a new file. So, add this to the end of
set_file():

 self.loop_cb.setChecked(False)

At this point, you should be able to run the program and loop the sample. Note that
looping audio using this method may not guarantee a seamless loop; depending on your
platform and system capabilities, there may be a small gap between iterations of the loop.

Setting the volume
Our final playback feature will be volume control. To allow us to control the playback level,
QMediaPlayer has a volume parameter that accepts values from 0 (muted) to 100 (full
volume).

We'll simply add another slider widget to control the volume, as follows:

 self.volume = qtw.QSlider(
 minimum=0,
 maximum=100,
 sliderPosition=75,
 orientation=qtc.Qt.Horizontal,
 sliderMoved=self.player.setVolume
)
 self.layout().addWidget(self.volume, 2, 1)

Working with Audio-Visual Using QtMultimedia Chapter 7

[165]

After setting the minimum and maximum values accordingly, we just need to connect
sliderMoved to the media player's setVolume() slot. That's all there is to it!

For smoother volume control, the Qt documentation recommends
converting the slider's linear scale to a logarithmic scale. We recommend
that you read https:/ /doc. qt. io/qt- 5/qaudio. html#convertVolume and
see whether you can do this yourself.

Implementing recording
The audio recording in Qt is facilitated by the QAudioRecorder class. Just as the
QMediaPlayer class was analogous to a media playback device, the
QAudioRecorder class is analogous to a media recording device such as a digital audio
recorder (or, if you're of the author's generation, a tape recorder). The recorder is controlled
using the record(), stop(), and pause() methods, much like the media player object.

Let's add a recorder object to our SoundWidget, as follows:

 self.recorder = qtmm.QAudioRecorder()

To control the recorder, we'll create another dual-function button class that is similar to the
play button that we previously created:

class RecordButton(qtw.QPushButton):

 record_stylesheet = 'background-color: black; color: white;'
 stop_stylesheet = 'background-color: darkred; color: white;'

 def __init__(self):
 super().__init__('Record')

 def on_state_changed(self, state):
 if state == qtmm.QAudioRecorder.RecordingState:
 self.setStyleSheet(self.stop_stylesheet)
 self.setText('Stop')
 else:
 self.setStyleSheet(self.record_stylesheet)
 self.setText('Record')

Just as with the PlayButton class, we're switching the appearance of the button whenever
a new state value is received from the recorder's stateChanged signal. In this case, we're
looking for the recorder's RecordingState state.

https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume
https://doc.qt.io/qt-5/qaudio.html#convertVolume

Working with Audio-Visual Using QtMultimedia Chapter 7

[166]

Let's add a RecordButtoon() method to our widget, as follows:

 self.record_button = RecordButton()
 self.recorder.stateChanged.connect(
 self.record_button.on_state_changed)
 self.layout().addWidget(self.record_button, 4, 1)
 self.record_button.clicked.connect(self.on_recordbutton)

We've connected the clicked signal to an on_recordbutton() method, which will
handle the starting and stopping of the audio recording.

This method is as follows:

 def on_recordbutton(self):
 if self.recorder.state() == qtmm.QMediaRecorder.RecordingState:
 self.recorder.stop()
 url = self.recorder.actualLocation()
 self.set_file(url)

The first thing that we'll do is check the state of the recorder. If it's currently recording, then
we'll stop it by calling recorder.stop(), which not only stops the recording but writes
the recorded data to an audio file on a disk. We can then get the location of that file by
calling the recorder's actualLocation() method. This method returns a QUrl object,
which we can pass directly to self.set_file() to set our playback to the newly recorded
file.

Make sure that you use actualLocation() to get the location of the file.
The recording location can be configured using setLocation(), and this
value is available from the location() accessor. However, Qt may fall
back to a default setting if the configured location is invalid or non-
writable. actualLocation() returns the URL where the file was actually
saved.

If we're not currently recording, we'll tell the recorder to start recording by calling
recorder.record():

 else:
 self.recorder.record()

When record() is called, the audio recorder begins recording audio in the background
and will continue to do so until stop() is called.

Working with Audio-Visual Using QtMultimedia Chapter 7

[167]

Before we can playback our recorded files, we need to make one fix to set_file(). At the
time of writing, the QAudioRecorder.actualLocation() method neglects to add a
scheme value to the URL, so we'll need to specify this manually:

 def set_file(self, url):
 if url.scheme() == '':
 url.setScheme('file')
 content = qtmm.QMediaContent(url)
 #...

In QUrl terms, the scheme object indicates the protocol of the URL, such
as HTTP, HTTPS, or FTP. Since we're accessing local files, the scheme
should be 'file'.

If the default settings of QAudioRecorder work correctly on your system, then you should
be able to record and playback audio. However, that's a big if; it is more than likely that
you'll need to do some configuration on the audio recorder object to get things working.
Let's look at how to do that next.

Examining and configuring the recorder
Even if the QAudioRecorder class worked well for you, you might wonder whether there's
a way to control the type and quality of the audio that it records, what source it records the
audio from, and what location it writes the audio files to.

In order to configure these things, we first have to know what your system supports, as
support for different audio recording features can be dependent on hardware, drivers, or
operating system capabilities. QAudioRecorder has methods that can provide information
about the capabilities that are available.

The following script will display information about supported audio features on your
system:

from PyQt5.QtCore import *
from PyQt5.QtMultimedia import *

app = QCoreApplication([])
r = QAudioRecorder()
print('Inputs: ', r.audioInputs())
print('Codecs: ', r.supportedAudioCodecs())
print('Sample Rates: ', r.supportedAudioSampleRates())
print('Containers: ', r.supportedContainers())

Working with Audio-Visual Using QtMultimedia Chapter 7

[168]

You can run this script on your system and get a list of the supported Inputs, Codecs,
Sample Rates, and container formats. For instance, on a typical Microsoft Windows
system, your results will probably be as follows:

Inputs: ['Microhpone (High Defnition Aud']
Codecs: ['audio/pcm']
Sample Rates: ([8000, 11025, 16000, 22050, 32000,
 44100, 48000, 88200, 96000, 192000], False)
Containers: ['audio/x-wav', 'audio/x-raw']

To configure the input source for a QAudioRecorder object, you need to pass the name of
the audio input to the setAudioInput() method, as follows:

 self.recorder.setAudioInput('default:')

The actual name of the input may be different on your system. Unfortunately,
QAudioRecorder will not throw an exception or register an error when you set an invalid
audio input—it will simply fail to record any audio. So, if you decide to customize this
attribute, take pains to ensure that the value is valid first.

To change the output file that is recorded, we need to call setOutputLocation(), as
follows:

 sample_path = qtc.QDir.home().filePath('sample1')
 self.recorder.setOutputLocation(
 qtc.QUrl.fromLocalFile(sample_path))

Note that setOutputLocation() requires a QUrl object and not a file path. Once set, Qt
will try to use this location for recording audio. However, as mentioned previously, it will
revert to a platform-specific default if this location is not available.

The container format is the type of file that holds the audio data. For example, audio/x-
wav is the container used for WAV files. We can set this value in the record object using the
setContainerFormat() method, as follows:

 self.recorder.setContainerFormat('audio/x-wav')

The value of this property should be a string returned by
QAudioRecorder.supportedContainers(). Using an invalid value will result in an
error when you try to record.

Working with Audio-Visual Using QtMultimedia Chapter 7

[169]

Setting the codec, sample rate, and quality requires a new object called a
QAudioEncoderSettings object. The following example demonstrates how to create and
configure a settings object:

 settings = qtmm.QAudioEncoderSettings()
 settings.setCodec('audio/pcm')
 settings.setSampleRate(44100)
 settings.setQuality(qtmm.QMultimedia.HighQuality)
 self.recorder.setEncodingSettings(settings)

In this case, we've configured our audio to high-quality encoding at 44100 Hz using the
PCM codec.

Understand that not all codecs are compatible with all container types. If you pick two
incompatible types, Qt will print errors to the console and the recording will fail, but it will
not otherwise crash or throw an exception. It's up to you to do the proper research and
testing to make sure that you are picking compatible settings.

Depending on the codec chosen, there may be other settings you can set on your
QAudioEncoderSettings object. You can consult the Qt documentation at https:/ / doc.
qt.io/qt-5/qaudioencodersettings. html for more information.

Configuring audio settings can be very tricky, especially as support varies
widely from system to system. It's best to let Qt use its default settings
when you can, or let the user configure these settings using values
obtained from the support detection methods of QAudioRecorder.
Whatever you do, don't hardcode settings or options if you cannot
guarantee that the systems running your software will support them.

Recording and playing video
Once you understand how to work with audio in Qt, working with video is only a small
step up in terms of complexity. Just as with audio, we'll use a player object to load and
playback content, and a recorder object to record it. However, with video, we'll need to add
in a few extra components to handle the visualization of the content and to initialize the
source device.

In order to understand how it works, we're going to build a video-logging application.
Copy the application template from Chapter 4, Building Applications with QMainWindow, to
a new file called captains_log.py and we'll start coding.

https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html
https://doc.qt.io/qt-5/qaudioencodersettings.html

Working with Audio-Visual Using QtMultimedia Chapter 7

[170]

Building the basic GUI
The Captain's Log application will allow us to record videos from a webcam to a
timestamped file in a preset directory and play them back. Our interface will feature a list
of past logs on the right and a preview/playback area on the left. We'll have a tabbed
interface so that the user can swap between playback and recording mode.

Inside MainWindow.__init__(), start laying out the basic GUI as follows:

 base_widget = qtw.QWidget()
 base_widget.setLayout(qtw.QHBoxLayout())
 notebook = qtw.QTabWidget()
 base_widget.layout().addWidget(notebook)
 self.file_list = qtw.QListWidget()
 base_widget.layout().addWidget(self.file_list)
 self.setCentralWidget(base_widget)

Next, we'll add a toolbar to hold the transport controls:

 toolbar = self.addToolBar("Transport")
 record_act = toolbar.addAction('Rec')
 stop_act = toolbar.addAction('Stop')
 play_act = toolbar.addAction('Play')
 pause_act = toolbar.addAction('Pause')

We want our application to only display log videos, so we need to isolate our recordings to
a unique directory rather than using the record's default location. Using QtCore.QDir,
we'll create and store a custom location in a cross-platform way, as follows:

 self.video_dir = qtc.QDir.home()
 if not self.video_dir.cd('captains_log'):
 qtc.QDir.home().mkdir('captains_log')
 self.video_dir.cd('captains_log')

This creates the captains_log directory under your home directory (if it doesn't exist) and
sets the self.video_dir object to point to that directory.

We now need a method to scan this directory for videos and populate the list widget:

 def refresh_video_list(self):
 self.file_list.clear()
 video_files = self.video_dir.entryList(
 ["*.ogg", "*.avi", "*.mov", "*.mp4", "*.mkv"],
 qtc.QDir.Files | qtc.QDir.Readable
)
 for fn in sorted(video_files):
 self.file_list.addItem(fn)

Working with Audio-Visual Using QtMultimedia Chapter 7

[171]

QDir.entryList() returns a list of the contents of our video_dir. This first argument is
a list of filters for common video file types so that non-video files won't be listed in our log
list (feel free to add whatever formats your OS prefers), and the second is a set of flags that
will limit the entries returned to readable files. Once retrieved, these files are sorted and
added to the list widget.

Back in __init__(), let's call this function to refresh the list:

 self.refresh_video_list()

You may want to drop a video file or two in that directory to make sure they're being read
and added to the list widget.

Video playback
Our old friend QMediaPlayer can handle video playback as well as audio. However, just
as a Blu-ray player needs to be connected to a TV or monitor to display what it's playing,
QMediaPlayer needs to be connected to a widget that will actually display the video. The
widget we need is the QVideoWidget class, which is found in the QtMultimediaWidgets
module.

To use it, we'll need to import QMultimediaWidgets, as follows:

from PyQt5 import QtMultimediaWidgets as qtmmw

To connect our QMediaPlayer() method to a QVideoWidget() method, we set the
player's videoOutput property, as follows:

 self.player = qtmm.QMediaPlayer()
 self.video_widget = qtmmw.QVideoWidget()
 self.player.setVideoOutput(self.video_widget)

This is easier than hooking up your Blu-ray player, right?

Now we can add the video widget to our GUI and connect the transport to our player:

 notebook.addTab(self.video_widget, "Play")
 play_act.triggered.connect(self.player.play)
 pause_act.triggered.connect(self.player.pause)
 stop_act.triggered.connect(self.player.stop)
 play_act.triggered.connect(
 lambda: notebook.setCurrentWidget(self.video_widget))

Working with Audio-Visual Using QtMultimedia Chapter 7

[172]

As a final touch, we've added a connection to switch back to the Play tab whenever the
Play button is clicked on.

The last thing we need to do to enable playback is to connect the selecting of a file in the file
list to the loading and playing of the video in the media player.

We'll do that in a callback called on_file_selected(), as follows:

 def on_file_selected(self, item):
 fn = item.text()
 url = qtc.QUrl.fromLocalFile(self.video_dir.filePath(fn))
 content = qtmm.QMediaContent(url)
 self.player.setMedia(content)
 self.player.play()

The callback receives QListWidgetItem from file_list and extracts the text
parameter, which should be the name of the file. We pass this to the filePath() method
of our QDir object to get a full path to the file and build a QUrl object from this (remember
that QMediaPlayer works with URLs, not file paths). Finally, we wrap the content in a
QMediaContent object, load it into the player, and hit play().

Back in __init__(), let's connect this callback to our list widget:

 self.file_list.itemDoubleClicked.connect(
 self.on_file_selected)
 self.file_list.itemDoubleClicked.connect(
 lambda: notebook.setCurrentWidget(self.video_widget))

Here, we're connecting itemDoubleClicked, which passes the item that's been clicked on
to the slot just as our callback expects. Note that we're also connecting the action to a
lambda function to switch to the video widget. This is so that if the user double-clicks on a
file while on the Record tab, they will be able to watch it without manually switching back
to the Play tab.

At this point, your player is capable of playing videos. Drop a few video files in your
captains_log directory if you haven't already and see if they play.

Video recording
To record videos, we first need a source. In Qt, this source must be a subclass of
QMediaObject, which can include an audio source, a media player, a radio, or—as we'll be
using in this program—a camera.

Working with Audio-Visual Using QtMultimedia Chapter 7

[173]

Qt 5.12 currently does not support video recording on Windows, only
macOS, and Linux. For more information about the current state of
multimedia support on Windows, please see https:/ /doc. qt. io/qt- 5/
qtmultimedia- windows. html.

Cameras themselves are represented as QCamera objects in Qt. To create a working
QCamera object, though, we need to first get a QCameraInfo object. The
QCameraInfo object contains information about a physical camera attached to the
computer. A list of these objects can be obtained from the
QtMultimedia.QCameraInfo.availableCameras() method.

Let's put this together into a method that will find a camera on your system and return a
QCamera object for it:

 def camera_check(self):
 cameras = qtmm.QCameraInfo.availableCameras()
 if not cameras:
 qtw.QMessageBox.critical(
 self,
 'No cameras',
 'No cameras were found, recording disabled.'
)
 else:
 return qtmm.QCamera(cameras[0])

availableCameras() should return a list of QCameraInfo objects if you have one or
more cameras attached to your system. If it does not, then we'll display an error and return
nothing; if it does, then we pass the info object to the QCamera constructor and return an
object representing the camera.

Back in __init__(), we'll use the following function to acquire a camera object:

 self.camera = self.camera_check()
 if not self.camera:
 self.show()
 return

If there is no camera, then none of the remaining code in this method will work, so we'll
just show the window and return.

Before we use our camera, we need to tell it what we want it to capture. Cameras can
capture still images or video content, which are configured by the camera's captureMode
property.

https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html
https://doc.qt.io/qt-5/qtmultimedia-windows.html

Working with Audio-Visual Using QtMultimedia Chapter 7

[174]

Here, we set it to video using the QCamera.CaptureVideo constant:

 self.camera.setCaptureMode(qtmm.QCamera.CaptureVideo)

Before we hit record, we'd like to be able to preview what the camera is capturing (after all,
the captain needs to make sure their hair looks good for posterity). QtMultimediaWidgets
has a special widget just for this purpose called QCameraViewfinder.

We'll add one and connect our camera to it as follows:

 self.cvf = qtmmw.QCameraViewfinder()
 self.camera.setViewfinder(self.cvf)
 notebook.addTab(self.cvf, 'Record')

The camera is now created and configured, so we need to activate it by calling the start()
method:

 self.camera.start()

If you run the program at this point, you should see a real-time display of what your
camera is capturing on the Record tab.

The final piece of this puzzle is the recorder object. In the case of video, we use the
QMediaRecorder class to create a video recording object. This class is actually the parent of
the QAudioRecorder class we used in our soundboard and works much the same way.

Let's create our recorder object, as follows:

 self.recorder = qtmm.QMediaRecorder(self.camera)

Note that we pass in our camera object to the constructor. You must pass QMediaObject
(of which QCamera is a subclass) whenever you are creating a QMediaRecorder property.
This property cannot be set later, nor can the constructor be called without it.

Just as with our audio recorder, we can configure various settings about the video we
capture. This is done by creating a QVideoEncoderSettings class and passing it to the
recorder's videoSettings property:

 settings = self.recorder.videoSettings()
 settings.setResolution(640, 480)
 settings.setFrameRate(24.0)
 settings.setQuality(qtmm.QMultimedia.VeryHighQuality)
 self.recorder.setVideoSettings(settings)

Working with Audio-Visual Using QtMultimedia Chapter 7

[175]

It's important to understand that if you set a configuration that your camera doesn't
support, then the recording will likely fail and you may see errors in the console:

CameraBin warning: "not negotiated"
CameraBin error: "Internal data stream error."

To make sure that this doesn't happen, we can query our recorder object to see which
settings are supported just as we did with the audio settings. The following script will print
supported codecs, frame rates, resolutions, and containers to the console for each detected
camera on your system:

from PyQt5.QtCore import *
from PyQt5.QtMultimedia import *

app = QCoreApplication([])

for camera_info in QCameraInfo.availableCameras():
 print('Camera: ', camera_info.deviceName())
 camera = QCamera(camera_info)
 r = QMediaRecorder(camera)
 print('\tAudio Codecs: ', r.supportedAudioCodecs())
 print('\tVideo Codecs: ', r.supportedVideoCodecs())
 print('\tAudio Sample Rates: ', r.supportedAudioSampleRates())
 print('\tFrame Rates: ', r.supportedFrameRates())
 print('\tResolutions: ', r.supportedResolutions())
 print('\tContainers: ', r.supportedContainers())
 print('\n\n')

Bear in mind that, on some systems, the results returned may be empty. When in doubt, it
may be best to either experiment or accept whatever the default settings provide.

Now that our recorder is ready, we need to connect the transport and enable it to record.
Let's start by writing a callback method for recording:

 def record(self):
 # create a filename
 datestamp = qtc.QDateTime.currentDateTime().toString()
 self.mediafile = qtc.QUrl.fromLocalFile(
 self.video_dir.filePath('log - ' + datestamp)
)
 self.recorder.setOutputLocation(self.mediafile)
 # start recording
 self.recorder.record()

Working with Audio-Visual Using QtMultimedia Chapter 7

[176]

This callback has two jobs—to create and set the filename to record to, and to start the
recording. We're using our QDir object again in conjunction with a QDateTime class to
generate a filename containing the date and time when the record was pressed. Note that
we don't add a file extension to the filename. This is because QMediaRecorder will do this
automatically based on the type of file it has been configured to create.

The recording is started by simply calling record() on the QMediaRecorder object. It will
record video in the background until the stop() slot is called.

Back in __init__(), let's finish things up by wiring in the transport controls as follows:

 record_act.triggered.connect(self.record)
 record_act.triggered.connect(
 lambda: notebook.setCurrentWidget(self.cvf)
)
 pause_act.triggered.connect(self.recorder.pause)
 stop_act.triggered.connect(self.recorder.stop)
 stop_act.triggered.connect(self.refresh_video_list)

We're connecting the record action to our callback and to a lambda function, which
switches to the recording tab. We're then connecting the pause and stop actions directly to
the recorder's pause() and stop() slots. Finally, when the video stops recording, we will
want to refresh the file list to display the new file, so we connect stop_act to the
refresh_video_list() callback.

And that's all we need; dust your webcam's lens, fire up this script, and start keeping track
of your stardates!

Summary
In this chapter, we explored the capabilities of the QtMultimedia and
QMultimediaWidgets modules. You learned how to play back low-latency sound effects
with QSoundEffect, and how to play and record a variety of media formats using
QMediaPlayer and QAudioRecorder. Finally, we created a video recording and playback
application using QCamera, QMediaPlayer, and QMediaRecorder.

In the next chapter, we'll connect to the wider world by exploring Qt's networking features.
We'll work with low-level networking with sockets and higher-level networking with
the QNetworkAccessManager.

Working with Audio-Visual Using QtMultimedia Chapter 7

[177]

Questions
Try these questions to test your knowledge from this chapter:

Using QSoundEffect, you've written a utility for a call center that allows them1.
to review recorded phone calls. They're moving to a new phone system that
stores the audio calls as MP3 files. Do you need to make any changes to your
utility?
cool_songs is a Python list containing path strings to your favorite songs. What2.
do you need to do to play these songs back in a random order?

You have installed the audio/mpeg codec on your system, but the following3.
code isn't working. Find out what's wrong with it:

 recorder = qtmm.QAudioRecorder()
 recorder.setCodec('audio/mpeg')
 recorder.record()

Run audio_test.py and video_test.py on several different Windows,4.
macOS, and Linux systems. How is the output different? Are there any items
supported across all systems?
The properties of the QCamera class include several control objects, which allow5.
you to manage different aspects of the camera. One of these is QCameraFocus.
Investigate QCameraFocus in the Qt documentation at https:/ /doc. qt.io/ qt-
5/qcamerafocus. html and write a simple script that shows a viewfinder and lets
you adjust the digital zoom.
You've noticed the audio being recorded to your Captain's Log video log is quite6.
loud. You want to add a control to adjust it; how would you do this?
Implement a dock widget in captains_log.py that allows you to control as7.
many aspects of the audio and video recording as you can. You can include
things such as focus, zoom, exposure, white balance, frame rate, resolution, audio
volume, audio quality, and more.

https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html

Working with Audio-Visual Using QtMultimedia Chapter 7

[178]

Further reading
You can check the following references for further information:

You can get an overview of the Qt Multimedia system and its capabilities
at https:/ /doc. qt. io/ qt- 5/multimediaoverview. html.
The official PyQt QtMultimedia and QtMultimediaWidgets examples can be
found at https:/ /github. com/ pyqt/ examples/ tree/ master/ multimedia and
https:// github. com/ pyqt/ examples/ tree/ master/ multimediawidgets. They
provide more example code of using PyQt for media capture and playback.

https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://doc.qt.io/qt-5/multimediaoverview.html
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimedia
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets
https://github.com/pyqt/examples/tree/master/multimediawidgets

8
Networking with QtNetwork

Humans are social creatures and, increasingly, so are the software systems we create. As
useful as computers are on their own, they are far more useful when connected to other
computers. Whether on a small local switch or the global internet, engaging with other
systems over a network is crucial functionality for much modern software. In this chapter,
we're going to explore the networking capabilities offered by Qt and how to use them
within PyQt5.

In particular, we'll cover the following topics:

Low-level networking with sockets
HTTP communications with QNetworkAccessManager

Technical requirements
You will, as in other chapters, need a basic Python and PyQt5 setup as described in Chapter
1, Getting Started with PyQt, and you will benefit from downloading the example code from
our GitHub repository at https:/ / github. com/ PacktPublishing/ Mastering- GUI-
Programming-with- Python/ tree/ master/ Chapter08.

In addition, you will want access to at least one other Python-equipped computer on the
same local area network.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xqid

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter08
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid
http://bit.ly/2M5xqid

Networking with QtNetwork Chapter 8

[180]

Low-level networking with sockets
Nearly every modern network uses the internet protocol suite, also known as TCP/IP, to
facilitate connections between computers or other devices. TCP/IP is a set of protocols that
manage the transmission of raw data over the network. The most common way to work
with TCP/IP directly in code is with a socket API.

A socket is a file-like object that represents a single point of network connectivity for the
system. Every socket has a host address, network port, and transmission protocol.

The host address, also known as an IP address, is a set of numbers used to identify a single
network host on a network. Although backbone systems rely on the IPv6 protocol, most
personal computers still use the older IPv4 address, which consists of four numbers
between 0 and 255 separated by a dot. You can find the address of your system using GUI
tools, or by typing one of the following commands into a command-line terminal:

OS Command
Windows ipconfig

macOS ifconfig

Linux ip address

Port is simply a number from 0 to 65535. Although you can create a socket with any port
number, certain port numbers are assigned to common services; these are called well-
known ports. For example, HTTP servers are typically assigned to port 80, and SSH is
typically on port 22. On many operating systems, administrative or root privileges are
required to create a socket on ports less than 1024.

An official list of well-known ports can be found at https:/ /www. iana.
org/assignments/ service- names- port- numbers/ service- names- port-
numbers. xhtml.

Transmission protocols include Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). TCP is a stateful connection between two systems. You can think of it as a
phone call—a connection is established, information is exchanged, and at some definite
point the connection is disconnected. Because of its statefulness, TCP ensures that all
transmitted packets are received. UDP, on the other hand, is a stateless protocol. Think of it
like using a walkie-talkie—users transmit a message, which receivers may or may not
receive in whole or in part, and an explicit connection is never established. UDP is
comparatively lightweight and often used for broadcast messages since it doesn't require a
connection to a specific host.

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Networking with QtNetwork Chapter 8

[181]

The QtNetwork module provides us with classes to establish TCP and UDP socket
connections. To understand how they work, we're going to construct two chat
systems—one using UDP, the other using TCP.

Building a chat GUI
Let's begin by creating a basic GUI form that we can use for both versions of the chat
application. Start with the application template from Chapter 4, Building Applications with
QMainWindow, and add this class:

class ChatWindow(qtw.QWidget):

 submitted = qtc.pyqtSignal(str)

 def __init__(self):
 super().__init__()

 self.setLayout(qtw.QGridLayout())
 self.message_view = qtw.QTextEdit(readOnly=True)
 self.layout().addWidget(self.message_view, 1, 1, 1, 2)
 self.message_entry = qtw.QLineEdit()
 self.layout().addWidget(self.message_entry, 2, 1)
 self.send_btn = qtw.QPushButton('Send', clicked=self.send)
 self.layout().addWidget(self.send_btn, 2, 2)

The GUI is pretty simple, just a text edit to display the conversation, a line edit to enter a
message, and a button to send. We've also implemented a signal we can emit whenever the
user submits a new message.

The GUI will also have two methods:

 def write_message(self, username, message):
 self.message_view.append(f'{username}: {message}
')

 def send(self):
 message = self.message_entry.text().strip()
 if message:
 self.submitted.emit(message)
 self.message_entry.clear()

Networking with QtNetwork Chapter 8

[182]

The send() method, triggered by the send_btn button, emits our submitted signal
containing the text in the line edit, and the write_message() method which receives a
username and message and writes it to the text edit using some simple formatting.

Down in the MainWindow.__init__() method, add in this code:

 self.cw = ChatWindow()
 self.setCentralWidget(self.cw)

Finally, before we can do any networking code, we need to add an import for QtNetwork.
Add it to the top of the file, like this:

from PyQt5 import QtNetwork as qtn

This code will be the base code for both our UDP and TCP chat applications, so save one
copy of this file as udp_chat.py and another as tcp_chat.py. We'll complete each
application by creating a backend object for the form.

Building a UDP chat client
UDP is most commonly used in broadcast applications on local networks, so to
demonstrate this, we're going to make our UDP chat a local-network-only broadcast chat.
That means that any computer on a local network running a copy of this application will be
able to view and participate in the conversation.

We'll start by creating our backend class, which we'll call UdpChatInterface:

class UdpChatInterface(qtc.QObject):

 port = 7777
 delimiter = '||'
 received = qtc.pyqtSignal(str, str)
 error = qtc.pyqtSignal(str)

Our backend inherits QObject so that we can use Qt signals, of which we've defined
two—a received signal that we'll emit when a message is received, and an error signal
that we'll emit when an error happens. We've also defined a port number to use, and a
delimiter string. The delimiter string will be used to separate the username and
message when we serialize our message for transmission; so, when the user alanm sends
the message Hello World, our interface will send the string alanm||Hello World out on
the wire.

Networking with QtNetwork Chapter 8

[183]

Only one application can be bound to a port at one time; if you already
have an application using port 7777, you should change this number to
something else between 1024 and 65535. On Windows, macOS, and older
Linux systems, the netstat command can be used to show which ports
are in use. On newer Linux systems, the ss command can be used.

Now start an __init__() method:

 def __init__(self, username):
 super().__init__()
 self.username = username

 self.socket = qtn.QUdpSocket()
 self.socket.bind(qtn.QHostAddress.Any, self.port)

After calling super() and storing the username variable, our first order of business is to
create and configure a QUdpSocket object. Before we can use the socket, it must be bound
to a localhost address and a port number. QtNetwork.QHostAddress.Any represents all
addresses on the local system so our socket will be listening and sending on port 7777 on
all local interfaces.

To use the socket, we have to handle its signals:

 self.socket.readyRead.connect(self.process_datagrams)
 self.socket.error.connect(self.on_error)

Socket objects have two signals that we're interested in watching. The first is readyRead,
and it's emitted whenever data is received by the socket. We're going to handle that signal
in a method called process_datagrams(), which we'll write in a moment.

The error signal is emitted when there is an error of any kind, which we'll handle in an
instance method called on_error().

Let's start with that error handler since it's relatively simple:

 def on_error(self, socket_error):
 error_index = (qtn.QAbstractSocket
 .staticMetaObject
 .indexOfEnumerator('SocketError'))
 error = (qtn.QAbstractSocket
 .staticMetaObject
 .enumerator(error_index)
 .valueToKey(socket_error))
 message = f"There was a network error: {error}"
 self.error.emit(message)

Networking with QtNetwork Chapter 8

[184]

This method has a little bit of Qt magic in it. Network errors are defined in the
SocketError enum of the QAbstractSocket class (the parent class of UdpSocket).
Unfortunately, if we just try to print the error, we get the integer value of the constant. To
actually get a meaningful string, we're going to dig into the staticMetaObject associated
with QAbstractSocket. We first get the index of the enum class containing the error
constants, then use valueToKey() to convert our socket error integer into its constant
name. This trick can be used with any Qt enum to retrieve a meaningful name rather than
just its integer value.

One that's been retrieved, we simply format the error in a message and emit it in our error
signal.

Now let's tackle process_datagrams():

 def process_datagrams(self):
 while self.socket.hasPendingDatagrams():
 datagram = self.socket.receiveDatagram()
 raw_message = bytes(datagram.data()).decode('utf-8')

A single UDP transmission is known as a datagram. When a datagram is received by our
socket, it is stored in a buffer and the readyRead signal is emitted. As long as that buffer
has datagrams waiting, the socket's hasPendingDatagrams() will return True. Thus, we
loop continually while there are pending datagrams, calling the socket's
receiveDatagram() method, which returns and removes the next datagram waiting in
the buffer until all the datagrams are retrieved.

The datagram object returned by receiveDatagram() is a QByteArray, the Qt equivalent
of a Python bytes object. Since our program is transmitting strings, rather than binary
objects, we can just convert the QByteArray to a Unicode string. The fastest way to do this
is to first cast it to a bytes object, then use the decode() method to convert it to UTF-8
Unicode text.

Now that we have our raw string, we need to check it to make sure it came from another
instance of udp_chat.py, then split it out into its username and message components:

 if self.delimiter not in raw_message:
 continue
 username, message = raw_message.split(self.delimiter, 1)
 self.received.emit(username, message)

Networking with QtNetwork Chapter 8

[185]

If the raw text received by the socket doesn't contain our delimiter string, it's most likely
from some other program or a corrupt packet, and we'll just skip it. Otherwise, we'll split it
at the first instance of the delimiter into the username and message strings, then emit
those strings with the received signal.

The final thing our chat client needs is a method to send a message, which we'll implement
in the send_message() method:

 def send_message(self, message):
 msg_bytes = (
 f'{self.username}{self.delimiter}{message}'
).encode('utf-8')
 self.socket.writeDatagram(
 qtc.QByteArray(msg_bytes),
 qtn.QHostAddress.Broadcast,
 self.port
)

This method starts by formatting the passed message with our configured username using
the delimiter string, then encodes the formatted string as a bytes object.

Next, we write the datagram to our socket object using the writeDatagram() method.
This method takes a QByteArray (to which we have cast our bytes object) and a
destination address and port. Our destination is specified as QHostAddress.Broadcast,
which indicates that we want to use the broadcast address, and the port is, of course, the
one we defined in our class variable.

The broadcast address is a reserved address on a TCP/IP network which,
when used, indicates that the transmission should be received by all hosts.

Let's summarize what we've done in this backend:

When a message is sent, it is prefixed with the username and broadcast as a byte
array to all hosts on the network on port 7777.
When a message is received on port 7777, it is converted from a byte array to a
string. The message and username are split and emitted in a signal.
When an error occurs, the error number is converted to an error string and
emitted with an error signal.

Now we just need to hook our backend into the frontend form.

Networking with QtNetwork Chapter 8

[186]

Connecting signals
Back in our MainWindow constructor, we need to finish up our application by creating a
UdpChatInterface object and connecting its signals:

 username = qtc.QDir.home().dirName()
 self.interface = UdpChatInterface(username)
 self.cw.submitted.connect(self.interface.send_message)
 self.interface.received.connect(self.cw.write_message)
 self.interface.error.connect(
 lambda x: qtw.QMessageBox.critical(None, 'Error', x))

Before creating the interface, we're determining the username by grabbing the name of the
current user's home directory. This is a bit of a hack, but it works well enough for our
purposes here.

Next, we create our interface object and connect the chat window submitted signal to its
send_message() slot.

We then connect the interface's received signal to the chat window's write_message()
method, and the error signal to a lambda function that shows the error in a QMessageBox.

With everything wired up, we're ready to test.

Testing the chat
To test this chat system, you'll need two computers with Python and PyQt5 installed
running on the same local area network. You may need to disable the systems' firewalls or
open UPD port 7777 before proceeding.

Once you've done that, copy udp_chat.py to both machines and launch it. Type a message
on one machine; it should show up in the chat window on both machines, looking
something like this:

Networking with QtNetwork Chapter 8

[187]

Notice that the systems also pick up and react to their own broadcast messages, so we don't
need to worry about echoing our own messages in the text area.

UDP is certainly simple to work with, but it has many limitations. For example, UDP
broadcasts cannot usually be routed outside a local network, and the lack of stateful
connection means that there is no way to know whether a transmission was received or
lost. In the Building a TCP chat client section, we'll build a TCP version of our chat that
doesn't have these issues.

Building a TCP chat client
TCP is a stateful transmission protocol, meaning that a connection is established and
maintained until the transmission is complete. TCP is also primarily a one-to-one
connection between hosts, which we generally implement using a client-server design. Our
TCP chat application will make a direct connection between two network hosts and will
contain both a client component that will connect to other instances of the app and a server
component that will handle incoming client connections.

In the tcp_chat.py file you created earlier, start a TCP chat interface class like so:

class TcpChatInterface(qtc.QObject):

 port = 7777
 delimiter = '||'
 received = qtc.pyqtSignal(str, str)
 error = qtc.pyqtSignal(str)

So far, this is identical to the UDP interface apart from the name. Now let's create the
constructor:

 def __init__(self, username, recipient):
 super().__init__()
 self.username = username
 self.recipient = recipient

As before, the interface object takes a username, but we've added a recipient argument
as well. Since TCP requires a direct connection to another host, we need to specify which
remote host we want to connect to.

Networking with QtNetwork Chapter 8

[188]

Now we need to create the server component that will listen for incoming connections:

 self.listener = qtn.QTcpServer()
 self.listener.listen(qtn.QHostAddress.Any, self.port)
 self.listener.acceptError.connect(self.on_error)

 self.listener.newConnection.connect(self.on_connection)
 self.connections = []

listener is a QTcpServer object. QTcpServer enables our interface to receive incoming
connections from TCP clients on the given interface and port, which in this case we've set to
any local interface on port 7777.

When there is an error with an incoming connection, the server object emits an
acceptError signal, which we connect to an on_error() method. These are the same
kind of errors that UdpSocket emits, so we can copy the on_error() method from
udp_chat.py and handle them identically.

The newConnection signal is emitted whenever a new connection comes into the server;
we're going to handle that in a method called on_connection(), which looks like this:

 def on_connection(self):
 connection = self.listener.nextPendingConnection()
 connection.readyRead.connect(self.process_datastream)
 self.connections.append(connection)

The server's nextPendingConnection() method returns the next waiting connection as a
QTcpSocket object. Like QUdpSocket, QTcpSocket emits a readyRead signal when it
receives data. We'll connect this signal to a process_datastream() method.

Finally, we'll save a reference to our new connection in the self.connections list.

Working with data streams
While UDP sockets work with datagrams, TCP sockets work with data streams. As the
name implies, data streams involve a flow of data rather than discrete units. TCP
transmissions are sent as a stream of network packets that may or may not arrive in the
correct order, and it's up to the receiver to correctly reassemble the data received. To make
this process easier, we can wrap our socket in a QtCore.QDataStream object, which
provides a generic interface for reading and writing data from file-like sources.

Networking with QtNetwork Chapter 8

[189]

Let's begin our method like this:

 def process_datastream(self):
 for socket in self.connections:
 self.datastream = qtc.QDataStream(socket)
 if not socket.bytesAvailable():
 continue

We're iterating through the connected sockets and passing each to a QDataStream object.
The socket object has a bytesAvailable() method that tells us how many bytes of data
are queued up to be read. If this number is zero, we're going to continue to the next
connection in the list.

If not, we'll read from the data stream:

 raw_message = self.datastream.readQString()
 if raw_message and self.delimiter in raw_message:
 username, message = raw_message.split(self.delimiter, 1)
 self.received.emit(username, message)

QDataStream.readQString() attempts to pull a string from the data stream and return
it. Despite the name, in PyQt5 this method actually returns a Python Unicode string, not a
QString. It's important to understand that this method only works if a QString was sent
with the original packet. If some other object was sent (a raw byte string, an integer, and so
on), readQString() will return None.

The QDataStream has methods for writing and reading a variety of data
types. See its documentation at https:/ /doc. qt.io/ qt-5/ qdatastream.
html.

Once we have the transmission as a string, we check for the delimiter string in the raw
message and, if found, split the raw message and emit the received signal.

Sending data over TCP
QTcpServer has handled the reception of messages; now we need to implement sending
messages. To do this, we first need to create a QTcpSocket object to be our client socket.

Let's add this to the end of __init__():

 self.client_socket = qtn.QTcpSocket()
 self.client_socket.error.connect(self.on_error)

https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html
https://doc.qt.io/qt-5/qdatastream.html

Networking with QtNetwork Chapter 8

[190]

We've created a default QTcpSocket object and connected its error signal to our error
handling method. Note that we don't need to bind this socket because it won't be listening.

To use the client socket, we'll create a send_message() method; just as with our UDP chat,
this method will start by formatting the message it into the raw transmission string:

 def send_message(self, message):
 raw_message = f'{self.username}{self.delimiter}{message}'

Now we need to connect to the remote host with which we're going to communicate:

 socket_state = self.client_socket.state()
 if socket_state != qtn.QAbstractSocket.ConnectedState:
 self.client_socket.connectToHost(
 self.recipient, self.port)

The socket's state property can tell us whether our socket is connected to a remote host.
The QAbstractSocket.ConnectedState state indicates that our client is connected to a
server. If it's not, we call the socket's connectToHost() method to establish the connection
to our recipient host.

Now that we can be fairly certain we've connected, let's send the message. To do this, we
once again turn to the QDataStream object to handle the delicate aspects of communicating
with our TCP socket.

Begin by creating a new data stream attached to the client socket:

 self.datastream = qtc.QDataStream(self.client_socket)

Now we can write a string to the data stream using its writeQString() method:

 self.datastream.writeQString(raw_message)

It's important to understand that objects can be pulled from the data stream only in the
order we sent them. For instance, if we wanted to prefix the string with its length so that
the recipient can check it for corruption, we might do this:

 self.datastream.writeUInt32(len(raw_message))
 self.datastream.writeQString(raw_message)

Our process_datastream() method would then have to be adjusted accordingly:

 def process_datastream(self):
 #...
 message_length = self.datastream.readUInt32()
 raw_message = self.datastream.readQString()

Networking with QtNetwork Chapter 8

[191]

The last thing we need to do in send_message() is emit our message locally so that the
local display can show it. Since this isn't a broadcast message, our local TCP server won't
hear the messages being sent out.

Add this at the end of send_message():

 self.received.emit(self.username, message)

Let's summarize how this backend operates:

We have a TCP server component:
The TCP server object listens for connections from remote hosts on
port 7777
When one is received, it stores the connection as a socket and waits
for data from that socket
When data is received, it is read from the socket using a data
stream, interpreted, and emitted

We have a TCP client component:
When a message needs to be sent, it is first formatted
Then the connection state is checked, and one is established if
necessary
Once the connection state is ensured, the message is written to the
socket using a data stream

Connecting our backend and testing
Back in MainWindow.__init__(), we need to add the relevant code to create our interface
and connect the signals:

 recipient, _ = qtw.QInputDialog.getText(
 None, 'Recipient',
 'Specify of the IP or hostname of the remote host.')
 if not recipient:
 sys.exit()

 self.interface = TcpChatInterface(username, recipient)
 self.cw.submitted.connect(self.interface.send_message)
 self.interface.received.connect(self.cw.write_message)
 self.interface.error.connect(
 lambda x: qtw.QMessageBox.critical(None, 'Error', x))

Networking with QtNetwork Chapter 8

[192]

Since we need a recipient, we'll ask the user using a QInputDialog. This dialog class
allows you to easily query a user for a single value. In this case, we're asking for the IP
address or hostname of the other system. This value we pass to the TcpChatInterface
constructor.

The rest of the code is essentially the same as the UDP chat client.

To test this chat client, you'll need to run one copy on another computer on the same
network or on an address you can reach from your own network. When you launch the
client, specify the IP or hostname of the other machine. Once both clients are running, you
should be able to send messages back and forth. If you launch the client on a third machine,
note that you won't see the messages, since they are being directed to a single machine
only.

HTTP communications with
QNetworkAccessManager
HyperText Transfer Protocol (HTTP) is the protocol on which the World Wide Web is
built, and arguably the most important communications protocol of our time. We could
certainly implement our own HTTP communications on top of sockets, but Qt has already
done the work for us. The QNetworkAccessManager class implements an object that can
transmit HTTP requests and receive HTTP replies. We can use this class to create
applications that communicate with web services and APIs.

Simple downloading
To demonstrate the basic use of QNetworkAccessManager, we're going to build a simple
command-line HTTP download tool. Open a blank file called downloader.py and let's
start with some imports:

import sys
from os import path
from PyQt5 import QtNetwork as qtn
from PyQt5 import QtCore as qtc

Since we aren't doing a GUI here, we don't need QtWidgets or QtGui, just QtNetwork, and
QtCore. We'll also use the standard library path module for some filesystem-based
operations.

Networking with QtNetwork Chapter 8

[193]

Let's create a QObject subclass for our download engine:

class Downloader(qtc.QObject):

 def __init__(self, url):
 super().__init__()
 self.manager = qtn.QNetworkAccessManager(
 finished=self.on_finished)
 self.request = qtn.QNetworkRequest(qtc.QUrl(url))
 self.manager.get(self.request)

Inside our download engine, we're creating a QNetworkAccessManager and connecting its
finished signal to a callback called on_finish(). The finished signal is emitted when
the manager completes a network transaction and has a reply ready to process, which it
includes with the signal.

Next, we create a QNetworkRequest object. QNetworkRequest represents the HTTP
request that we're sending to the remote server and contains all the information we're going
to send. In this case, we just need the URL that has been passed into the constructor.

Finally, we tell our network manager to execute the request using get(). The get()
method sends our request using the HTTP GET method, which is typically used for
requesting information for download. The manager will send this request and await a
reply.

When the reply comes, it will be sent to our on_finished() callback:

 def on_finished(self, reply):
 filename = reply.url().fileName() or 'download'
 if path.exists(filename):
 print('File already exists, not overwriting.')
 sys.exit(1)
 with open(filename, 'wb') as fh:
 fh.write(reply.readAll())
 print(f"{filename} written")
 sys.exit(0)

The reply object here is a QNetworkReply instance, which contains the data and metadata
received from the remote server.

We first try to determine a filename, which we'll use for saving the file. The reply's url
property contains the URL to which the original request was made, and we can query the
URL's fileName property. Sometimes this is empty, though, so we'll fall back to the
'download' string.

Networking with QtNetwork Chapter 8

[194]

Next, we'll check whether the filename already exists on our system. For safety, we exit if it
does, so that you don't destroy important files on your system testing this demo.

Finally, we extract the data from the reply using its readAll() method, writing this data to
a local file. Notice that we open the file in wb mode (write-binary) since readAll() returns
binary data in the form of a QByteAarray object.

The main execution code for our Downloader class comes last:

if __name__ == '__main__':
 if len(sys.argv) < 2:
 print(f'Usage: {sys.argv[0]} <download url>')
 sys.exit(1)
 app = qtc.QCoreApplication(sys.argv)
 d = Downloader(sys.argv[1])
 sys.exit(app.exec_())

Here, we're just getting the first argument from the command line and passing it into our
Downloader object. Notice that we use QCoreApplication rather than QApplication;
this class is used when you want to create a command-line Qt application. It's otherwise the
same as QApplication.

In a nutshell, using QNetworkAccessManager is as simple as this:

Create a QNetworkAccessManager object
Create a QNetworkRequest object
Pass the request to the manager's get() method
Handle the reply in a callback connected to the manager's finished signal

Posting data and files
Retrieving data with a GET request is fairly simple HTTP; for a deeper exploration of HTTP
communications with PyQt5, we're going to build a utility that will allow us to send POST
requests with arbitrary key-value and file data to a remote URL. This utility might be useful
for testing web APIs, for example.

Networking with QtNetwork Chapter 8

[195]

Building the GUI
Starting with a copy of your Qt application template from Chapter 4, Building Applications
with QMainWindow, let's add our main GUI code into the MainWindow.__init__()
method:

 widget = qtw.QWidget(minimumWidth=600)
 self.setCentralWidget(widget)
 widget.setLayout(qtw.QVBoxLayout())
 self.url = qtw.QLineEdit()
 self.table = qtw.QTableWidget(columnCount=2, rowCount=5)
 self.table.horizontalHeader().setSectionResizeMode(
 qtw.QHeaderView.Stretch)
 self.table.setHorizontalHeaderLabels(['key', 'value'])
 self.fname = qtw.QPushButton(
 '(No File)', clicked=self.on_file_btn)
 submit = qtw.QPushButton('Submit Post', clicked=self.submit)
 response = qtw.QTextEdit(readOnly=True)
 for w in (self.url, self.table, self.fname, submit, response):
 widget.layout().addWidget(w)

This is a simple form built on a QWidget object. There is a line input for the URL, a table
widget for entering key-value pairs, and a button that will be used to trigger a file dialog
and store the selected filename.

After that, we have a submit button for sending the request and a read-only text edit that
will display the returned results.

The fname button calls on_file_btn() when clicked, which looks like this:

 def on_file_btn(self):
 filename, accepted = qtw.QFileDialog.getOpenFileName()
 if accepted:
 self.fname.setText(filename)

This method simply calls a QFileDialog function to retrieve a filename to open. In order
to keep things simple, we're taking the slightly unorthodox approach of storing the
filename as our QPushButton text.

The final MainWindow method is submit(), which is called when the submit button is
clicked. We'll come back to that method after writing our web backend since its operation
depends on how we define that backend.

Networking with QtNetwork Chapter 8

[196]

The POSTing backend
Our web posting backend will be based on a QObject simply so that we can use signals
and slots.

Begin by subclassing QObject and creating a signal:

class Poster(qtc.QObject):

 replyReceived = qtc.pyqtSignal(str)

The replyReceived will be emitted when we receive a reply from the server to which
we're posting and will carry with it the body of the reply as a string.

Now let's create the constructor:

 def __init__(self):
 super().__init__()
 self.nam = qtn.QNetworkAccessManager()
 self.nam.finished.connect(self.on_reply)

Here, we're creating our QNetworkAccessManager object and connecting its finished
signal to a local method called on_reply().

The on_reply() method will look like this:

 def on_reply(self, reply):
 reply_bytes = reply.readAll()
 reply_string = bytes(reply_bytes).decode('utf-8')
 self.replyReceived.emit(reply_string)

Recall that the finished signal carries with it a QNetworkReply object. We can call its
readAll() method to get the body of the reply as a QByteArray. Just as we did with our
raw socket data, we first cast this to a bytes object, then use the decode() method to
convert it to UTF-8 Unicode data. Finally, we'll emit our replyReceived signal with the
string from the server.

Now we need a method that will actually post our key-value data and file to a URL. We'll
call it make_request(), and it begins as follows:

 def make_request(self, url, data, filename):
 self.request = qtn.QNetworkRequest(url)

Just as with a GET request, we start by creating a QNetworkRequest object from the
provided URL. Unlike the GET request, however, our POST request carries a data payload.
To carry this payload, we need to create a special object that we can send with the request.

Networking with QtNetwork Chapter 8

[197]

There are a few ways that an HTTP request can format a data payload, but the most
common way to transmit a file over HTTP is to use a Multipart Form request. This kind of
request contains both key-value data and byte-encoded file data and is what you would get
from submitting an HTML form containing a mix of input widgets and file widgets.

To perform this kind of request in PyQt, we will begin by creating a
QtNetwork.QHttpMultiPart object, like so:

 self.multipart = qtn.QHttpMultiPart(
 qtn.QHttpMultiPart.FormDataType)

There are different types of multipart HTTP messages, and we define which type we want
by passing a QtNetwork.QHttpMultiPart.ContentType enum constant to the
constructor. The type we need for transmitting file and form data together is
FormDataType, which we've used here.

The HTTP multipart object is a container for QHttpPart objects, each of which represents a
component of our data payload. We need to create these parts from the data passed into
this method and add them to our multipart object.

Let's start with our key-value pairs:

 for key, value in (data or {}).items():
 http_part = qtn.QHttpPart()
 http_part.setHeader(
 qtn.QNetworkRequest.ContentDispositionHeader,
 f'form-data; name="{key}"'
)
 http_part.setBody(value.encode('utf-8'))
 self.multipart.append(http_part)

Each HTTP part has a header and a body. The header contains metadata about the part,
including its Content-Disposition—in other words, what it contains. In the case of form
data, that would be form-data.

So, for each key-value pair in the data dictionary, we're creating a single QHttpPart
object, setting the Content-Disposition header to form-data with a name argument set to
the key. Finally, we set the body of the HTTP part to our value (encoded as a byte string)
and add the HTTP part to our multipart object.

To include our file, we need to do something similar:

 if filename:
 file_part = qtn.QHttpPart()
 file_part.setHeader(
 qtn.QNetworkRequest.ContentDispositionHeader,

Networking with QtNetwork Chapter 8

[198]

 f'form-data; name="attachment"; filename="{filename}"'
)
 filedata = open(filename, 'rb').read()
 file_part.setBody(filedata)
 self.multipart.append(file_part)

This time, our Content-Disposition header is still set to form-data, but also includes a
filename argument set to the name of our file. The body of the HTTP part is set to the
contents of the file. Note that we open the file in rb mode, meaning that its binary contents
will be read as a bytes object rather than interpreting it as plaintext. This is important as
setBody() expects bytes rather than Unicode.

Now that our multipart object is built, we can call the post() method of our
QNetworkAccessManager object to send the request with the multipart data:

 self.nam.post(self.request, self.multipart)

Back in MainWindow.__init__(), let's create a Poster object to work with:

 self.poster = Poster()
 self.poster.replyReceived.connect(self.response.setText)

Since replyReceived emits the reply body as a string, we can connect it directly to
setText in our response widget to view the server's response.

Finally, it's time to create our submit() callback:

 def submit(self):
 url = qtc.QUrl(self.url.text())
 filename = self.fname.text()
 if filename == '(No File)':
 filename = None
 data = {}
 for rownum in range(self.table.rowCount()):
 key_item = self.table.item(rownum, 0)
 key = key_item.text() if key_item else None
 if key:
 data[key] = self.table.item(rownum, 1).text()
 self.poster.make_request(url, data, filename)

Remember that make_request() wants QUrl, a dict of the key-value pairs, and a
filename string; so, this method simply goes through each widget, extracting and
formatting the data, then passes it to make_request().

Networking with QtNetwork Chapter 8

[199]

Testing the utility
If you have access to a server that accepts POST requests and file uploads, you can certainly
use that to test your script; if not, you can also use the sample_http_server.py script
included with the example code for this chapter. This script requires only Python 3 and the
standard library and will echo back your POST request to you.

Launch the server script in a console window, then in a second console run your
poster.py script and do the following:

Enter http://localhost:8000 for the URL
Add a few arbitrary key-value pairs to the table
Select a file (probably a not-very-large text file, such as one of your Python
scripts) to upload
Click Submit Post

You should see a printout of your request in both the server console window and in the
response text edit on the GUI. It should look like this:

Networking with QtNetwork Chapter 8

[200]

To summarize, handling a POST request with QNetworkAccessManager involves the
following:

Creating a QNetworkAccessManager and connecting its finished signal to a
method that will process a QNetworkReply
Creating a QNetworkRequest pointed to the target URL
Creating a data payload object, such as a QHttpMultiPart object
Passing the request and data payload to the QNetworkAccessManager object's
post() method

Summary
In this chapter, we explored connecting our PyQt applications to the network. You learned
how to do low-level programming with sockets, including both a UDP broadcast
application and TCP client-server application. You also learned how to interact with HTTP
services using QNetworkAccessManager, beginning with simple downloading and ending
with the uploading of complex multi-part form and file data.

The next chapter will explore the use of SQL databases to store and retrieve data. You will
learn how to build and query a SQL database, how to integrate SQL commands into your
applications using the QtSQL module, and how to use SQL model-view components to
quickly build data-driven GUI applications.

Questions
Try these questions to test your knowledge from this chapter:

You are designing an application that will emit a status message to the local1.
network, which you will monitor with administrator tools. What kind of socket
object would be a good choice?

Your GUI class has a QTcpSocket object called self.socket. You've connected2.
its readyRead signal to the following method, but it's not working. What's
happening, and how can you fix it?

 def on_ready_read(self):
 while self.socket.hasPendingDatagrams():
 self.process_data(self.socket.readDatagram())

Networking with QtNetwork Chapter 8

[201]

Use QTcpServer to implement a simple service that listens on port 8080 and3.
prints any requests received. Make it reply to the client with a byte string of your
choice.

You're creating a download function for your application to retrieve a large data4.
file for import into your application. The code does not work. Read the code and
decide what you're doing wrong:

 def download(self, url):
 self.manager = qtn.QNetworkAccessManager(
 finished=self.on_finished)
 self.request = qtn.QNetworkRequest(qtc.QUrl(url))
 reply = self.manager.get(self.request)
 with open('datafile.dat', 'wb') as fh:
 fh.write(reply.readAll())

Modify your poster.py script so that it sends the key-value data as JSON rather5.
than HTTP form data.

Further reading
For further information, please refer to the following:

More information on the datagram packet structure can be found at https:/ /en.
wikipedia. org/ wiki/ Datagram.
With the ever-increasing focus on security and privacy in network
communications, it's important to know how to work with SSL. See https:/ /
doc.qt. io/ qt- 5/ssl. html for an overview of the QtNetwork facilities for
working with SSL.
The Mozilla Developer Network has a large number of resources for
understanding HTTP and its various standards and protocols at https:/ /
developer. mozilla. org/ en- US/ docs/ Web/ HTTP.

https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://en.wikipedia.org/wiki/Datagram
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://doc.qt.io/qt-5/ssl.html
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP

9
Exploring SQL with Qt SQL

For about 40 years, relational databases managed with the structured query language
(commonly known as SQL) have been the de facto standard technology for storing,
retrieving, and analyzing the world's data. Whether you are creating business applications,
games, web applications, or something else, if your application deals with a large amount
of data, you will almost certainly be working with SQL. While Python has many modules
available for connecting to a SQL database, Qt's QtSql module provides us with powerful
and convenient classes for integrating SQL data into PyQt applications.

In this chapter, you'll learn how to build database-driven PyQt applications as we cover the
following topics:

SQL basics
Performing SQL queries with Qt
Using SQL with model-view widgets

Technical requirements
Apart from the basic setup you've been using since Chapter 1, Getting Started with PyQt,
you will want the example code found in the GitHub repository at https:/ / github. com/
PacktPublishing/Mastering- GUI- Programming- with- Python/ tree/ master/ Chapter09.

You may also find it helpful to have a copy of SQLite to practice the SQL examples. SQLite
is free and can be downloaded from https:/ /sqlite. org/ download. html.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xu1r

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter09
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/download.html
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r
http://bit.ly/2M5xu1r

Exploring SQL with Qt SQL Chapter 9

[203]

SQL basics
Before we jump into what QtSql has to offer, you will need to be familiar with the basics of
SQL. This section will give you a quick overview of how to create, populate, alter, and
query data in a SQL database. If you already know SQL, you may want to skip ahead to the
PyQt part of this chapter.

SQL is a very different language from Python in syntax and structure. It is a declarative
language, meaning that we describe the results we want rather than the procedures used to
get them. To interact with a SQL database, we execute statements. Each statement is made
up of a SQL command followed by a series of clauses, each of which further describes the
results desired. Statements are terminated with a semicolon.

Although SQL is standardized, all SQL database implementations provide their own
alterations and extensions to the standard language. We're going to be learning the SQLite
dialect of SQL, which is reasonably close to standard SQL.

Unlike Python, SQL is generally a case-insensitive language; however, it is
a long-standing convention to write SQL keywords in all uppercase
letters. This helps them to stand out from data and object names. We will
follow this convention in the book, but it is optional for your code.

Creating tables
SQL databases are made of relations, also known as tables. A table is a two-dimensional
data structure made of rows and columns. Each row in the table represents a single item
about which we have information, and each column represents a type of information we
are storing.

Tables are defined using the CREATE TABLE command, like so:

CREATE TABLE coffees (
 id INTEGER PRIMARY KEY,
 coffee_brand TEXT NOT NULL,
 coffee_name TEXT NOT NULL,
 UNIQUE(coffee_brand, coffee_name)
);

Exploring SQL with Qt SQL Chapter 9

[204]

The CREATE TABLE statement is followed by a table name and a list of column definitions.
In this example, coffees is the name of the table we're creating, and the column
definitions are inside the parentheses. Each column has a name, a data type, and any
number of constraints that describe valid values.

In this case, we have three columns:

id is an integer column. It's marked as the primary key, which means it will be a
unique value that can be used to identify the row.
coffee_brand and coffee_name are both text columns with a NOT NULL
constraint, meaning they cannot have NULL for a value.

Constraints can also be defined on multiple columns. The UNIQUE constraint added after
the fields is not a field, but a table-level constraint that makes sure the combination of
coffee _brand and coffee _name is unique for each row.

NULL is the SQL equivalent of Python's None. It indicates the absence of
information.

SQL databases, at a minimum, support text, numeric, date, time, and binary object data
types; but it's not uncommon for different database implementations to extend SQL with
additional data types, such as currency or IP address types. Many databases also have
SMALL and BIG variants of numeric types, allowing the developer to fine-tune the amount
of storage space used by a column.

As useful as simple two-dimensional tables are, the real power of a SQL database is in
joining multiple, related tables together, for example:

CREATE TABLE roasts (
 id INTEGER PRIMARY KEY,
 description TEXT NOT NULL UNIQUE,
 color TEXT NOT NULL UNIQUE
);

CREATE TABLE coffees (
 id INTEGER PRIMARY KEY,
 coffee_brand TEXT NOT NULL,
 coffee_name TEXT NOT NULL,
 roast_id INTEGER REFERENCES roasts(id),
 UNIQUE(coffee_brand, coffee_name)
);

CREATE TABLE reviews (

Exploring SQL with Qt SQL Chapter 9

[205]

 id INTEGER PRIMARY KEY,
 coffee_id REFERENCES coffees(id),
 reviewer TEXT NOT NULL,
 review_date DATE NOT NULL DEFAULT CURRENT_DATE,
 review TEXT NOT NULL
);

The roast_id column in coffees holds values that match the primary keys of roasts, as
indicated by the REFERENCES constraint. Rather than having to rewrite the description and
color of a roast in every coffee record, each coffees record simply points to a row in
roasts that holds the information about the roast of that coffee. In the same way,
the reviews table contains the coffee_id column, which refers to an individual coffees
entry. These relationships are called foreign key relationships since the field refers to the
key from another table.

Modeling data in multiple, related tables like this reduces duplication and
enforces data consistency. Imagine if the data in all three tables were
combined into one table of coffee reviews—it would be possible for two
reviews of the same coffee product to have different roasts specified. That
shouldn't be possible, and with relational data tables, it isn't.

Inserting and updating data
Once tables are created, we can add new rows of data using an INSERT statement using this
syntax:

INSERT INTO table_name(column1, column2, ...)
 VALUES (value1, value2, ...), (value3, value4, ...);

For example, let's insert some rows into roasts :

INSERT INTO roasts(description, color) VALUES
 ('Light', '#FFD99B'),
 ('Medium', '#947E5A'),
 ('Dark', '#473C2B'),
 ('Burnt to a Crisp', '#000000');

In this example, we're providing a description and color value for each new record in
the roasts table. The VALUES clause contains a list of tuples, each of which represents a
row of data. The number and data types of the values in these tuples must match the
number and data types of the columns specified.

Exploring SQL with Qt SQL Chapter 9

[206]

Note that we didn't include all the columns—id is missing. Any fields we don't specify in
an INSERT statement will get a default value, which is NULL unless we specify otherwise.

In SQLite, an INTEGER PRIMARY KEY field has special behavior in which its default value
is automatically incremented on each insert. Therefore, the id values resulting from this
query will be 1 for Light, 2 for Medium, 3 for Dark, and 4 for Burnt to a Crisp.

This is important to know, since we need that key value to insert records into our coffees
table:

INSERT INTO coffees(coffee_brand, coffee_name, roast_id) VALUES
 ('Dumpy''s Donuts', 'Breakfast Blend', 2),
 ('Boise''s Better than Average', 'Italian Roast', 3),
 ('Strawbunks', 'Sumatra', 2),
 ('Chartreuse Hillock', 'Pumpkin Spice', 1),
 ('Strawbunks', 'Espresso', 3),
 ('9 o''clock', 'Original Decaf', 2);

Unlike Python, SQL string literals must use single quotes only. A double-
quoted string is interpreted as the name of a database object, such as a
table or column. To escape a single quote in a string, use two of them, as
we've done in the preceding query.

Because of our foreign key constraint, it is impossible to insert a row in coffees that
contains a roast_id that doesn't exist in roasts. For example, this would return an error:

INSERT INTO coffees(coffee_brand, coffee_name, roast_id) VALUES
 ('Minwell House', 'Instant', 48);

Note that we can insert NULL in the roast_id field; unless the column was defined with a
NOT NULL constraint, NULL is the only value that doesn't have to obey the foreign key
constraint.

Updating existing rows
To update existing rows in a table, you use the UPDATE statement, like so:

UPDATE coffees SET roast_id = 4 WHERE id = 2;

The SET clause is followed by a list of value assignments for the fields you want to change,
and the WHERE clause describes conditions that must be true if a particular row is to be
updated. In this case, we're going to change the value of the roast_id column to 4 for the
record where the id column is 2.

Exploring SQL with Qt SQL Chapter 9

[207]

SQL uses a single equals sign for both assignment and equality
operations. It does not ever use the double-equals sign that Python uses.

Update operations can also affect multiple records, like this:

UPDATE coffees SET roast_id = roast_id + 1
 WHERE coffee_brand LIKE 'Strawbunks';

In this case, we're incrementing the roast_id value on all the Strawbunks coffees by
setting it equal to roast_id + 1. Whenever we reference a column's value in a query like
this, the value will be that of the column in the same row.

Selecting data
Probably the most important operation in SQL is the SELECT statement, which is used to
retrieve data. A simple SELECT statement looks like this:

SELECT reviewer, review_date
FROM reviews
WHERE review_date > '2019-03-01'
ORDER BY reviewer DESC;

The SELECT command is followed by a list of fields, or by the * symbol, which means all
fields. The FROM clause defines the source of the data; in this case, the reviews table. The
WHERE clause, once again, defines conditions that must be true for the rows to be included.
In this case, we'll only include reviews newer than March 1, 2019, by comparing each row's
review_date field (which is a DATE type) to the string '2019-03-01' (which SQLite will
convert to a DATE to make the comparison). Finally, the ORDER BY clause determines the
sorting of the result set.

Table joins
SELECT statements always return a single table of values. Even if your result set has only a
single value, it will be in a table of one row and one column, and there is no way to return
multiple tables from a single query. However, we can pull data from multiple tables by
combining the data into a single table.

Exploring SQL with Qt SQL Chapter 9

[208]

This can be done using a JOIN in the FROM clause, for example:

SELECT coffees.coffee_brand,
 coffees.coffee_name,
 roasts.description AS roast,
 COUNT(reviews.id) AS reviews
FROM coffees
 JOIN roasts ON coffees.roast_id = roasts.id
 LEFT OUTER JOIN reviews ON reviews.coffee_id = coffees.id
GROUP BY coffee_brand, coffee_name, roast
ORDER BY reviews DESC;

In this case, our FROM clause contains two JOIN statements. The first joins coffees to
roasts by matching the roast_id field in coffees to the id field in roasts. The second
joins the reviews table by matching the coffee_id column in reviews to the id column
in coffees.

The joins are slightly different: notice that the reviews join is a LEFT OUTER JOIN. This
means that we're including rows from coffees that don't have any matching reviews
records; a default JOIN is an INNER join, meaning only rows with matching records in both
tables will be shown.

We're also using an aggregate function in this query, COUNT(). The COUNT() function
merely tallies up the matching rows. An aggregate function requires that we specify a
GROUP BY clause listing the fields that will be the basis of the aggregation. In other words,
for each unique combination of coffee_brand, coffee_name, and roast, we'll get a tally
of the review records in the database. Other standard aggregate functions include SUM (for
summing all matching values), MIN (for returning the minimum of all matching values),
and MAX (for returning the maximum of all matching values). Different database
implementations also include their own custom aggregate functions.

SQL subqueries
A SELECT statement can be embedded in another SQL statement by putting it in
parentheses. This is called a subquery. Exactly where it can be embedded depends on what
kind of data the query is expected to return:

If the statement will return a single row and column, it can be embedded
wherever a single value is expected
If the statement will return a single column with multiple rows, it can be
embedded wherever a list of values is expected

Exploring SQL with Qt SQL Chapter 9

[209]

If the statement will return multiple rows and columns, it can be embedded
wherever a table of values is expected

Consider this query:

SELECT coffees.coffee_brand, coffees.coffee_name
FROM coffees
 JOIN (
 SELECT * FROM roasts WHERE id > (
 SELECT id FROM roasts WHERE description = 'Medium'
)) AS dark_roasts
 ON coffees.roast_id = dark_roasts.id
WHERE coffees.id IN (
 SELECT coffee_id FROM reviews WHERE reviewer = 'Maxwell');

We have three subqueries here. The first is located in the FROM clause:

 (SELECT * FROM roasts WHERE id > (
 SELECT id FROM roasts WHERE description = 'Medium'
)) AS dark_roasts

Because it begins with SELECT *, we can be sure it will return a table of data (or no data,
but that's moot). Therefore, it can be used in the FROM clause, since a table is expected here.
Note that we need to give the subquery a name using the AS keyword. This is required
when using a subquery in the FROM clause.

This subquery contains its own subquery:

 SELECT id FROM roasts WHERE description = 'Medium'

This query is reasonably certain to give us a single value, so we're using it where a single
value is expected; in this case, as an operand of a greater-than expression. If, for some
reason, this query returned multiple rows, our query would return an error.

Our final subquery is in the WHERE clause:

 SELECT coffee_id FROM reviews WHERE reviewer = 'Maxwell'

This expression is guaranteed to return only one column but may return multiple rows.
We're therefore using it as an argument to the IN keyword, which expects a list of values.

Subqueries are powerful, but can also cause slowdown and, sometimes, errors if our
assumptions about the data are incorrect.

Exploring SQL with Qt SQL Chapter 9

[210]

Learning more
We've only touched on the basics of SQL here, but this should be enough to get you started
creating and using simple databases, and covers the SQL we'll be using in this chapter. See
the Further reading section at the end of the chapter for more in-depth SQL resources. In the
next section, you'll see how to combine your knowledge of SQL with PyQt to create data-
driven applications.

Performing SQL queries with Qt
Working with different SQL implementations can be frustrating: not only are there slight
differences in the SQL syntax, but the Python libraries used to connect to them are often
inconsistent in the various methods they implement. While, in some ways, it's less
convenient than the better-known Python SQL libraries, QtSQL does provide us with a
single abstracted API for working with a variety of database products in a consistent way.
When leveraged properly, it can also save us a large amount of code.

To learn how to work with SQL data in PyQt, we're going to build a graphical frontend for
the coffee database we created in the SQL basics section of this chapter.

A complete version of this database can be created from the sample code
using this command:
$ sqlite3 coffee.db -init coffee.sql. You will need to create
this database file before the frontend will work.

Building a form
Our coffee database has three tables: a list of coffee products, a list of roasts, and a table of
reviews for the products. Our GUI will be designed as follows:

It will have a list of coffee brands and products
When we double-click an item in the list, it will open a form that will show all the
information about the coffee and all the reviews associated with that product
It will allow us to add new products and new reviews or edit any existing
information

Exploring SQL with Qt SQL Chapter 9

[211]

Let's start by copying your basic PyQt application template from Chapter 4, Building
Applications with QMainWindow to a file called coffee_list1.py. Then, add an import for
QtSQL like so:

from PyQt5 import QtSql as qts

Now we're going to create a form to display information about our coffee product. The
basic form looks like this:

class CoffeeForm(qtw.QWidget):

 def __init__(self, roasts):
 super().__init__()
 self.setLayout(qtw.QFormLayout())
 self.coffee_brand = qtw.QLineEdit()
 self.layout().addRow('Brand: ', self.coffee_brand)
 self.coffee_name = qtw.QLineEdit()
 self.layout().addRow('Name: ', self.coffee_name)
 self.roast = qtw.QComboBox()
 self.roast.addItems(roasts)
 self.layout().addRow('Roast: ', self.roast)
 self.reviews = qtw.QTableWidget(columnCount=3)
 self.reviews.horizontalHeader().setSectionResizeMode(
 2, qtw.QHeaderView.Stretch)
 self.layout().addRow(self.reviews)

This form has fields for the brand, name, and roast of the coffee, plus a table widget for
showing the reviews. Note that the constructor requires roasts, which is a list of roasts for
the combo box; we want to get these from the database, not hardcode them into the form,
since new roasts might get added to the database.

This form is also going to need a way to display a coffee product. Let's create a method that
will take coffee data and review it, and populate the form with it:

 def show_coffee(self, coffee_data, reviews):
 self.coffee_brand.setText(coffee_data.get('coffee_brand'))
 self.coffee_name.setText(coffee_data.get('coffee_name'))
 self.roast.setCurrentIndex(coffee_data.get('roast_id'))
 self.reviews.clear()
 self.reviews.setHorizontalHeaderLabels(
 ['Reviewer', 'Date', 'Review'])
 self.reviews.setRowCount(len(reviews))
 for i, review in enumerate(reviews):
 for j, value in enumerate(review):
 self.reviews.setItem(i, j, qtw.QTableWidgetItem(value))

Exploring SQL with Qt SQL Chapter 9

[212]

This method assumes that coffee_data is a dict object containing the brand, name, and
roast ID and that reviews is a list of tuples containing the review data. It simply goes
through those data structures and populates each field with the data.

Down in MainWindow.__init__(), let's start the main GUI:

 self.stack = qtw.QStackedWidget()
 self.setCentralWidget(self.stack)

We'll be using QStackedWidget to swap between our coffee list and coffee form widgets.
Recall that this widget is similar to QTabWidget but without the tabs.

Before we can build more of our GUI, we need to get some information from the database.
Let's talk about how to connect to a database with QtSQL.

Connecting and making simple queries
To use a SQL database with QtSQL, we first have to establish a connection. There are three
steps to this:

Create the connection object
Configure the connection object
Open the connection

In MainWindow.__init__(), let's create our database connection:

 self.db = qts.QSqlDatabase.addDatabase('QSQLITE')

Rather than directly creating a QSqlDatabase object, we create one by calling the static
addDatabase method with the name of the database driver we're going to use. In this case,
we're using Qt's SQLite3 driver. Qt 5.12 comes with nine drivers built-in, including ones for
MySQL (QMYSQL), PostgreSQL (QPSQL), and ODBC connections (including Microsoft SQL
Server) (QODBC). A complete list can be found at https:/ /doc. qt.io/ qt- 5/qsqldatabase.
html#QSqlDatabase- 2.

Once our database object is created, we need to configure it with any required connection
settings, such as the host, user, password, and database name. For SQLite, we only need to
specify a filename, as shown here:

 self.db.setDatabaseName('coffee.db')

https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2
https://doc.qt.io/qt-5/qsqldatabase.html#QSqlDatabase-2

Exploring SQL with Qt SQL Chapter 9

[213]

Some of the properties we can configure include the following:

hostName—The hostname or IP of the database server
port—The network port on which the database service is listening
userName—The username to connect with
password—The password to authenticate with
connectOptions—A string of additional connection options

All of these can be configured or queried using the usual accessor method (for example,
hostName() and setHostName()). If you're working with something other than SQLite,
consult its documentation to see what settings you need to configure.

Once our connection object is configured, we can open the connection using the open()
method. This method returns a Boolean value, indicating whether or not the connection
succeeded. If it failed, we can find out why by checking the connection object's lastError
property.

This code demonstrates how we might do that:

 if not self.db.open():
 error = self.db.lastError().text()
 qtw.QMessageBox.critical(
 None, 'DB Connection Error',
 'Could not open database file: '
 f'{error}')
 sys.exit(1)

Here, we call self.db.open() and, if it fails, we retrieve the error from lastError and
display it in a dialog. The lastError() call returns a QSqlError object, which holds data
and metadata about the error; to extract the actual error text, we call its text() method.

Getting information about the database
Once our connection is actually connected, we can use it to start inspecting the database.
For example, the tables() method lists all tables in the database. We can use this to check
that all required tables are present as follows, for example:

 required_tables = {'roasts', 'coffees', 'reviews'}
 tables = self.db.tables()
 missing_tables = required_tables - set(tables)
 if missing_tables:
 qtw.QMessageBox.critica(
 None, 'DB Integrity Error'

Exploring SQL with Qt SQL Chapter 9

[214]

 'Missing tables, please repair DB: '
 f'{missing_tables}')
 sys.exit(1)

Here, we compare the tables that exist in the database to a set of the required tables. If we
find any missing, we'll show an error and exit.

set objects are like lists, except that all items in them are unique, and they
allow for some useful comparisons. In this situation, we're subtracting sets
to find out whether there are any items in required_tables that aren't
in tables.

Making simple queries
Interacting with our SQL database relies on the QSqlQuery class. This class represents a
request to the SQL engine and can be used to prepare, execute, and retrieve data and
metadata about a query.

We can make a SQL query to the database by using our database object's exec() method:

 query = self.db.exec('SELECT count(*) FROM coffees')

The exec() method creates a QSqlQuery object from our string, executes it, and returns it
to us. We can then retrieve the results of our query from the query object:

 query.next()
 count = query.value(0)
 print(f'There are {count} coffees in the database.')

It's important to get a mental model of what's happening here, because it's not terribly
intuitive. As you know, SQL queries always return a table of data, even if there is just one
row and one column. QSqlQuery has an implicit cursor that will be pointed at a row of the
data. Initially, this cursor is pointed nowhere, but calling the next() method moves it to
the next available row of data, which, in this case, is the first row. The value() method is
then used to retrieve the value of a given column in the currently selected row (value(0)
will retrieve the first column, value(1) the second, and so on).

So, what's happening here is something like this:

The query is executed and populated with data. The cursor points nowhere.
We call next() to point the cursor at the first row.
We call value(0) to retrieve the value from the first column of the row.

Exploring SQL with Qt SQL Chapter 9

[215]

To retrieve a list or table of data from a QSqlQuery object, we just need to repeat those last
two steps until next() returns False (meaning that there is not the next row to point to).
For example, we need a list of the coffee roasts to populate our form, so let's retrieve that:

 query = self.db.exec('SELECT * FROM roasts ORDER BY id')
 roasts = []
 while query.next():
 roasts.append(query.value(1))

In this case, we've asked a query to get all the data from the roasts table and order it by
id. Then, we call next() on our query object until it returns False; each time, extracting
the value of the second field (query.value(1)) and appending it to our roasts list.

Now that we have that data, we can create our CoffeeForm and add it to the application:

 self.coffee_form = CoffeeForm(roasts)
 self.stack.addWidget(self.coffee_form)

In addition to retrieving values using value(), we can retrieve an entire row by calling the
record() method. This returns a QSqlRecord object containing data for the current row
(or an empty record, if no row is pointed at). We'll use QSqlRecord later in this chapter.

Prepared queries
Quite often, data needs to be passed into a SQL query from an application. For example, we
need to write a method that looks up a single coffee by ID number so that we can display it
in our form.

We could start writing that method something like this:

 def show_coffee(self, coffee_id):
 query = self.db.exec(f'SELECT * FROM coffees WHERE id={coffee_id}')

In this situation, we're using a format string to put the coffee_id value directly into our
query. Do not do this!

Using string formatting or concatenation to build SQL queries can lead to something called
a SQL injection vulnerability, in which passing a specially crafted value can expose or
destroy data in the database. In this case, we're assuming that coffee_id is going to be an
integer, but suppose a malicious user is able to send this function a string like this:

0; DELETE FROM coffees;

Exploring SQL with Qt SQL Chapter 9

[216]

Our string formatting would evaluate this and generate the following SQL statement:

SELECT * FROM coffees WHERE id=0; DELETE FROM coffees;

The result would be that all the rows in our coffees table would be deleted! While this
may seem trivial or absurd in this context, SQL injection vulnerabilities are behind many of
the data breaches and hacking scandals you read about in the news. It's important to be
defensive when working with important data (and what's more important than coffee?).

The proper way to do this query and protect your database from such vulnerabilities is to
use a prepared query. A prepared query is a query that contains variables to which we can
bind values. The database driver will then properly escape our values so that they are not
accidentally interpreted as SQL code.

This version of the code uses a prepared query:

 query1 = qts.QSqlQuery(self.db)
 query1.prepare('SELECT * FROM coffees WHERE id=:id')
 query1.bindValue(':id', coffee_id)
 query1.exec()

Here, we've explicitly created an empty QSqlQuery object connected to our database. Then,
we passed a SQL string to the prepare() method. Notice the :id string used in our query;
the colon indicates that this is a variable. Once we have the prepared query, we can begin
binding the variables in the query to variables in our code using bindValue(). In this case,
we've bound the :id SQL variable to our coffee_id Python variable.

Once our query is prepared and the variables are bound, we call its exec() method to
execute it.

Once executed, we can extract the data from the query object just as we've done before:

 query1.next()
 coffee = {
 'id': query1.value(0),
 'coffee_brand': query1.value(1),
 'coffee_name': query1.value(2),
 'roast_id': query1.value(3)
 }

Let's try the same approach to retrieve the coffee's review data:

 query2 = qts.QSqlQuery()
 query2.prepare('SELECT * FROM reviews WHERE coffee_id=:id')
 query2.bindValue(':id', coffee_id)
 query2.exec()

Exploring SQL with Qt SQL Chapter 9

[217]

 reviews = []
 while query2.next():
 reviews.append((
 query2.value('reviewer'),
 query2.value('review_date'),
 query2.value('review')
))

Notice that we did not pass the database connection object to the QSqlQuery constructor
this time. Since we only have one connection, it's not necessary to pass the database
connection object to QSqlQuery; QtSQL will automatically use our default connection in
any method call that requires a database connection.

Also notice that we're using the column names, rather than their numbers, to fetch the
values from our reviews table. This works just as well, and is a much friendlier approach,
especially in tables with many columns.

We'll finish off this method by populating and showing our coffee form:

 self.coffee_form.show_coffee(coffee, reviews)
 self.stack.setCurrentWidget(self.coffee_form)

Note that prepared queries are only able to introduce values into a query. You cannot, for
example, prepare a query like this:

 query.prepare('SELECT * from :table ORDER BY :column')

If you want to build queries containing variable tables or column names, you'll have to
resort to string formatting, unfortunately. In such cases, be aware of the potential for SQL
injection and take extra precautions to ensure that the values being interpolated are what
you think they are.

Using QSqlQueryModel
Populating data into a table widget manually seems like an awful chore; if you recall
Chapter 5, Creating Data Interfaces with Model-View Classes, Qt provides us with model-view
classes that do the boring work for us. We could subclass QAbstractTableModel and
create a model that is populated from a SQL query, but fortunately, QtSql already
provides this in the form of QSqlQueryModel.

Exploring SQL with Qt SQL Chapter 9

[218]

As the name suggests, QSqlQueryModel is a table model that uses a SQL query for its data
source. We'll use one to create our coffee products list, like so:

 coffees = qts.QSqlQueryModel()
 coffees.setQuery(
 "SELECT id, coffee_brand, coffee_name AS coffee "
 "FROM coffees ORDER BY id")

After creating our model, we set its query property to a SQL SELECT statement. The
model's data will be drawn from the table returned by this query.

Just as with QSqlQuery, we don't need to explicitly pass a database
connection because there's only one. If you did have multiple database
connections active, you should pass the one you want to use to
QSqlQueryModel().

Once we have the model, we can use it in QTableView, like this:

 self.coffee_list = qtw.QTableView()
 self.coffee_list.setModel(coffees)
 self.stack.addWidget(self.coffee_list)
 self.stack.setCurrentWidget(self.coffee_list)

Just as we did in Chapter 5, Creating Data Interfaces with Model-View Classes, we've created
QTableView and passed the model to its setModel() method. Then, we added the table
view to the stacked widget and set it as the currently visible widget.

By default, the table view will use the column names from the query as the header labels.
We can override this by using the model's setHeaderData() method, like so:

 coffees.setHeaderData(1, qtc.Qt.Horizontal, 'Brand')
 coffees.setHeaderData(2, qtc.Qt.Horizontal, 'Product')

Keep in mind that the QSqlQueryModel object is in read-only mode, so there is no way to
set this table view to editable in order to change details about our coffee list. We'll look at
how to have an editable SQL model in the next section, Using model-view widgets without
SQL. First, though, let's finish our GUI.

Exploring SQL with Qt SQL Chapter 9

[219]

Finishing the GUI
Now that our application has both the list and the form widgets, let's enable some
navigation between them. First, create a toolbar button to switch from the coffee form to the
list:

 navigation = self.addToolBar("Navigation")
 navigation.addAction(
 "Back to list",
 lambda: self.stack.setCurrentWidget(self.coffee_list))

Next, we'll configure our list so that double-clicking an item will show the coffee form with
that coffee record in it. Remember that our MainView.show_coffee() method expects the
coffee's id value, but the list widget's itemDoubleClicked signal carries the model index
of the click. Let's create a method on MainView to translate one to the other:

 def get_id_for_row(self, index):
 index = index.siblingAtColumn(0)
 coffee_id = self.coffee_list.model().data(index)
 return coffee_id

Since id is in column 0 of the model, we retrieve the index of column 0 from whatever row
was clicked using siblingAtColumn(0). Then we can retrieve the id value by passing
that index to model().data().

Now that we have this, let's add a connection for the itemDoubleClicked signal:

 self.coffee_list.doubleClicked.connect(
 lambda x: self.show_coffee(self.get_id_for_row(x)))

At this point, we have a simple, read-only application for our coffee database. We can
certainly keep going with the current approach of using SQL queries to manage our data,
but Qt provides a more elegant approach. We'll explore that approach in the next section.

Using model-view widgets without SQL
Having used QSqlQueryModel in the last section, you might wonder whether this
approach can be further generalized to just access tables directly and avoid having to write
SQL queries altogether. You also might wonder if we can get around the read-only
limitations of QSqlQueryModel. The answer to both questions is yes, thanks to
QSqlTableModel and QSqlRelationalTableModels.

Exploring SQL with Qt SQL Chapter 9

[220]

To see how these work, let's back up and start over with our application:

Start with a fresh template copy, calling it coffee_list2.py. Add the import1.
for QtSql and the database connection code from the first application. Now let's
start building using table models. For simple situations where we want to create
a model from a single database table, we can use QSqlTableModel:

self.reviews_model = qts.QSqlTableModel()
self.reviews_model.setTable('reviews')

The reviews_model is now a read-write table model for the reviews table. Just2.
as we used our CSV table model to edit our CSV file in Chapter 5, Creating Data
Interfaces with Model-View Classes, we can use this model to view and edit the
reviews table. For tables that need to look up values from joined tables, we can
useQSqlRelationalTableModel:

self.coffees_model = qts.QSqlRelationalTableModel()
self.coffees_model.setTable('coffees')

Once again, we have a table model that can be used to view and edit the data in3.
the SQL table; this time, the coffees table. However, the coffees table has a
roast_id column that references the roasts table. roast_id is not meaningful
to the application user, who would much rather work with the roast's
description column. To replace roast_id with roasts.description in our
model, we can use the setRelation() function to join the two tables together,
like so:

 self.coffees_model.setRelation(
 self.coffees_model.fieldIndex('roast_id'),
 qts.QSqlRelation('roasts', 'id', 'description')
)

This method takes two arguments. The first is the column number of the main
table that we're joining, which we can fetch by name using the model's
fieldIndex() method. The second is a QSqlRelation object, which represents
a foreign key relationship. The arguments it takes are the table name (roasts),
the related column in the joined table (roasts.id), and the field to display for
this relationship (description).

The result of setting this relationship is that our table view will use the related
description column from roasts in place of the roast_id value when we join
our coffee_model to a view.

Exploring SQL with Qt SQL Chapter 9

[221]

Before we can join the model to the view, there's one more step we need to take:4.

self.mapper.model().select()

Whenever we configure or reconfigure a QSqlTableModel or
QSqlRelationalTableModel, we must call its select() method. This causes
the model to generate and run a SQL query to refresh its data and make it
available to views.

Now that our model is ready, we can try it in a view:5.

 self.coffee_list = qtw.QTableView()
 self.coffee_list.setModel(self.coffees_model)

Running the program at this point, you should get something like this:6.

Notice that, thanks to our relational table model, we have a description column
containing the description of the roast in place of the roast_id column. Just what we
wanted.

Also note that, at this point, you can view and edit any of the values in the coffee
list. QSqlRelationalTableModel is read/write by default, and we do not need to make
any adjustments to the view to make it editable. However, it could use some improvement.

Delegates and data mapping
While we can edit the list, we can't yet add or remove items in the list; let's add that
capability before we move on to the coffee form itself.

Exploring SQL with Qt SQL Chapter 9

[222]

Start by creating some toolbar actions pointing to MainView methods:

 toolbar = self.addToolBar('Controls')
 toolbar.addAction('Delete Coffee(s)', self.delete_coffee)
 toolbar.addAction('Add Coffee', self.add_coffee)

Now we'll write the MainView methods for those actions:

 def delete_coffee(self):
 selected = self.coffee_list.selectedIndexes()
 for index in selected or []:
 self.coffees_model.removeRow(index.row())

 def add_coffee(self):
 self.stack.setCurrentWidget(self.coffee_list)
 self.coffees_model.insertRows(
 self.coffees_model.rowCount(), 1)

To delete a row from the model, we can call its removeRow() method, passing in the row
number desired. This, we can obtain from the selectedIndexes property. To add a row,
we call the model's insertRows() method. This code should be familiar, from Chapter 5,
Creating Data Interfaces with Model-View Classes.

Now, if you run the program and try to add a row, notice that you get what is essentially a
QLineEdit in each cell for entering the data. This is fine for text fields such as coffee brand
and product name, but for the roast description, it makes more sense to have something
that constrains us to the proper values, such as a combo box.

In Qt's model-view system, the object that decides what widget to draw for a piece of data
is called a delegate. The delegate is a property of the view, and by setting our own delegate
object we can control how data is presented for viewing or editing.

In the case of a view backed by QSqlRelationalTableModel, we can take advantage of a
ready-made delegate called QSqlRelationalDelegate, as follows:

self.coffee_list.setItemDelegate(qts.QSqlRelationalDelegate())

QSqlRelationalDelegate automatically provides a combo box for any field for which a
QSqlRelation has been set. With this simple change, you should find that the
description column now presents you with a combo box containing the available
description values from the roasts table. Much better!

Exploring SQL with Qt SQL Chapter 9

[223]

Data mapping
Now that our coffee list is in good shape, it's time to deal with the coffee form, which will
allow us to display and edit the details of individual products and their reviews

Let's start with the GUI code for the coffee details part of the form:

class CoffeeForm(qtw.QWidget):

 def __init__(self, coffees_model, reviews_model):
 super().__init__()
 self.setLayout(qtw.QFormLayout())
 self.coffee_brand = qtw.QLineEdit()
 self.layout().addRow('Brand: ', self.coffee_brand)
 self.coffee_name = qtw.QLineEdit()
 self.layout().addRow('Name: ', self.coffee_name)
 self.roast = qtw.QComboBox()
 self.layout().addRow('Roast: ', self.roast)

This section of the form is the exact same information that we displayed in the coffee list,
except now we're displaying just a single record, using a series of distinct widgets.
Connecting our coffees table model to a view was straightforward, but how can we
connect a model to a form like this? One answer is with a QDataWidgetMapper object.

The purpose of QDataWidgetMapper is to map fields from a model to widgets in a form.
To see how it works, let's add one to CoffeeForm:

 self.mapper = qtw.QDataWidgetMapper(self)
 self.mapper.setModel(coffees_model)
 self.mapper.setItemDelegate(
 qts.QSqlRelationalDelegate(self))

The mapper sits between the model and the form's fields, translating the columns between
them. In order to ensure that data is written properly from the form widgets to the
relational fields in the model, we also need to set an itemDelegate of the proper type, in
this case, QSqlRelationalDelegate.

Now that we have a mapper, we need to define the field mappings using the addMapping
method:

 self.mapper.addMapping(
 self.coffee_brand,
 coffees_model.fieldIndex('coffee_brand')
)
 self.mapper.addMapping(
 self.coffee_name,

Exploring SQL with Qt SQL Chapter 9

[224]

 coffees_model.fieldIndex('coffee_name')
)
 self.mapper.addMapping(
 self.roast,
 coffees_model.fieldIndex('description')
)

The addMapping() method takes two arguments: a widget and a model column number.
We're using the model's fieldIndex() method to retrieve these column numbers by
name, but you could also just use integers here.

Before we can use our combo box, we need to populate it with options. To do this, we need
to retrieve the roasts model from our relational model and pass it to the combo box:

 roasts_model = coffees_model.relationModel(
 self.coffees_model.fieldIndex('description'))
 self.roast.setModel(roasts_model)
 self.roast.setModelColumn(1)

The relationalModel() method can be used to retrieve an individual table model back
from our coffees_model object by passing in the field number. Notice we retrieve the
field number by asking for the field index of description, not roast_id. In our relational
model, roast_id has been replaced with description.

While the coffee list QTableView can display all records at once, our CoffeeForm is
designed to show only one record at a time. For this reason, QDataWidgetMapper has the
concept of a current record and will populate the widgets only with the data of the current
record.

In order to display data in our form, then, we need to control the record that the mapper is
pointed to. The QDataWidgetMapper class has five methods to navigate through the table
of records:

Method Description
toFirst() Go to the first record in the table.
toLast() Go to the last record in the table.
toNext() Advance to the next record in the table.
toPrevious() Go back to the previous record.
setCurrentIndex() Go to a specific row number.

Exploring SQL with Qt SQL Chapter 9

[225]

Since our user is selecting an arbitrary coffee from the list to navigate to, we are going to
use the last method, setCurrentIndex(). We'll use this in our show_coffee() method,
like so:

 def show_coffee(self, coffee_index):
 self.mapper.setCurrentIndex(coffee_index.row())

setCurrentIndex() takes a single integer value that corresponds to the row number in
the model. Note that this is not the same as the coffee's id value, which we used in the
previous version of the application. We're working strictly with model index values at this
point.

Now that we have our working CoffeeForm, let's create one back in MainView and
connect it to our coffee list's signals:

 self.coffee_form = CoffeeForm(
 self.coffees_model,
 self.reviews_model
)
 self.stack.addWidget(self.coffee_form)
 self.coffee_list.doubleClicked.connect(
 self.coffee_form.show_coffee)
 self.coffee_list.doubleClicked.connect(
 lambda: self.stack.setCurrentWidget(self.coffee_form))

Since we're using indexes instead of row numbers, we can just connect our
doubleClicked signal directly to the form's show_coffee() method. We'll also connect it
to a lambda function to change the current widget to the form.

While we're here, let's go ahead and create a toolbar action to return to the list:

toolbar.addAction("Back to list", self.show_list)

The associated callback looks like this:

def show_list(self):
 self.coffee_list.resizeColumnsToContents()
 self.coffee_list.resizeRowsToContents()
 self.stack.setCurrentWidget(self.coffee_list)

To accommodate possible changes to the data that may have happened while editing
in CoffeeForm, we'll call resizeColumnsToContents() and
resizeRowsToContents(). Then, we simply set the stack widget's current widget to
coffee_list.

Exploring SQL with Qt SQL Chapter 9

[226]

Filtering data
The last thing we need to take care of in this application is the review section of the coffee
form:

The reviews model, remember, is QSqlTableModel, which we pass into the1.
CoffeeForm constructor. We can easily bind it to QTableView, like this:

 self.reviews = qtw.QTableView()
 self.layout().addRow(self.reviews)
 self.reviews.setModel(reviews_model)

This adds a table of reviews to our form. Before moving on, let's take care of2.
some cosmetic issues with the view:

 self.reviews.hideColumn(0)
 self.reviews.hideColumn(1)
 self.reviews.horizontalHeader().setSectionResizeMode(
 4, qtw.QHeaderView.Stretch)

The first two columns of the table are the id and coffee_id, both of which are
implementation details we don't need to display for the user. The last line of code
causes the fourth field (review) to expand to the right-hand edge of the widget.

If you run this, you'll see we have a slight problem here: we don't want to see all
the reviews in the table when we view a coffee's record. We only want to display
the ones that are associated with the current coffee product.

We can do this by applying a filter to the table model. In the show_coffee()3.
method, we'll add the following code:

 id_index = coffee_index.siblingAtColumn(0)
 self.coffee_id = int(self.coffees_model.data(id_index))
 self.reviews.model().setFilter(f'coffee_id = {self.coffee_id}')
 self.reviews.model().setSort(3, qtc.Qt.DescendingOrder)
 self.reviews.model().select()
 self.reviews.resizeRowsToContents()
 self.reviews.resizeColumnsToContents()

We begin by extracting the selected coffee's id number from our coffee model.
This may not be the same as the row number, which is why we are consulting the
value from column 0 of the selected row. We're going to save it as an instance
variable because we may need it later.

Exploring SQL with Qt SQL Chapter 9

[227]

Next, we call the review model's setFilter() method. This method takes a4.
string that it will quite literally append to a WHERE clause in the query used to
select data from the SQL table. Likewise, setSort() will set the ORDER BY
clause. In this case, we're sorting by the review date, with the most recent first.

Unfortunately, there is no way to use a bound variable in setFilter(),
so if you want to insert a value, you must use string formatting. As you
have learned, this opens you up to SQL injection vulnerabilities, so be very
careful about how you insert data. In this example, we've cast coffee_id
to an int to make sure it's not SQL injection code.

After setting our filter and sort properties, we need to call select() to apply them. Then,
we can resize our rows and columns to the new content. Now, the form should only show
reviews for the currently selected coffee.

Using a custom delegate
The reviews table contains a column with a date; while we can certainly edit dates using a
regular QLineEdit, it would be nicer if we could use the more appropriate QDateEdit
widget. Unlike the situation with our coffee list view, Qt doesn't have a ready-made
delegate that will do this for us. Fortunately, we can easily create our own delegate:

Above the CoffeeForm class, let's define a new delegate class:1.

class DateDelegate(qtw.QStyledItemDelegate):

 def createEditor(self, parent, option, proxyModelIndex):
 date_inp = qtw.QDateEdit(parent, calendarPopup=True)
 return date_inp

The delegate class inherits QStyledItemDelegate, and its createEditor()
method is responsible for returning the widget that will be used for editing the
data. In this case, we simply need to create QDateEdit and return it. We can
configure the widget any way that we deem appropriate; for instance, we've
enabled the calendar popup here.

Note that we're passing along the parent argument—this is critical! If
you don't explicitly pass the parent widget, your delegate widget will pop
up in its own top-level window.

Exploring SQL with Qt SQL Chapter 9

[228]

For our purposes in the reviews table, this is all that we need to change. In more
complex scenarios, there are a few other methods you might need to override:

The setModelData() method is responsible for extracting data
from the widget and passing it to the model. You might override
this if the raw data from the widget needs to be converted or
prepped in some way before being updated in the model.
The setEditorData() method is responsible for retrieving data
from the model and writing it to the widget. You might override
this if the model data isn't in the right format for the widget to
understand.
The paint() method draws the editing widget to the screen. You
might override this to build a custom widget or to change the
appearance of the widget depending on the data. If you override
this method, you might also need to override sizeHint() and
updateEditorGeometry() to make sure enough space is
provided for your custom widget.

Once we've created our custom delegate class, we need to tell our table view to2.
use it:

 self.dateDelegate = DateDelegate()
 self.reviews.setItemDelegateForColumn(
 reviews_model.fieldIndex('review_date'),
 self.dateDelegate)

In this case, we've created an instance of DateDelegate and told the reviews view to use
it for the review_date column. Now, when you edit the review date, you'll get QDateEdit
with a calendar popup.

Inserting custom rows in a table view
The last feature we want to implement is adding and deleting rows in our review table:

We'll start with some buttons:1.

 self.new_review = qtw.QPushButton(
 'New Review', clicked=self.add_review)
 self.delete_review = qtw.QPushButton(
 'Delete Review', clicked=self.delete_review)
 self.layout().addRow(self.new_review, self.delete_review)

Exploring SQL with Qt SQL Chapter 9

[229]

The callback for deleting rows is straightforward enough:2.

 def delete_review(self):
 for index in self.reviews.selectedIndexes() or []:
 self.reviews.model().removeRow(index.row())
 self.reviews.model().select()

Just as we did with MainView.coffee_list, we just iterate through the selected
indexes and remove them by row number.

Adding new rows presents a problem: we can add rows, but we need to make3.
sure they're set to use the currently selected coffee_id. To do this, we'll use a
QSqlRecord object. This object represents a single row from QSqlTableModel,
and can be created using the model's record() method. Once we have an empty
record object, we can populate it with values and write it back to the model.
Our callback starts like this:

 def add_review(self):
 reviews_model = self.reviews.model()
 new_row = reviews_model.record()
 defaults = {
 'coffee_id': self.coffee_id,
 'review_date': qtc.QDate.currentDate(),
 'reviewer': '',
 'review': ''
 }
 for field, value in defaults.items():
 index = reviews_model.fieldIndex(field)
 new_row.setValue(index, value)

To begin with, we extract an empty record from the reviews_model by calling
record(). It's important to do this from the model, as it will be prepopulated
with all the model's fields. Next, we need to set the values. By default, all fields
are set to None (SQL NULL), so we'll need to override this if we want a default
value or if our fields have a NOT NULL constraint.

In this case, we're setting coffee_id to the currently shown coffee ID (good
thing we saved that as an instance variable, eh?) and review_date to the current
date. We're also setting reviewer and review to empty strings because they
have NOT NULL constraints. Note that we're leaving id as None, because inserting
a NULL on a field will cause it to use its default value (which, in this case, will be
an auto-incremented integer).

Exploring SQL with Qt SQL Chapter 9

[230]

After setting up the dict, we iterate through it and write the values to the4.
record's fields. Now we need to insert this prepared record into the model:

 inserted = reviews_model.insertRecord(-1, new_row)
 if not inserted:
 error = reviews_model.lastError().text()
 print(f"Insert Failed: {error}")
 reviews_model.select()

QSqlTableModel.insertRecord() takes the index of insertion (-1 means the
end of the table) and the record to insert, and returns a simple Boolean value
indicating whether insertion was successful. If it failed, we can query the model
for the error text by calling lastError().text().

Finally, we call select() on the model. This will repopulate the view with our5.
inserted record and allow us to edit the remaining fields.

At this point, our application is fully functional. Take some time to insert new records and
reviews, edit records, and delete them.

Summary
In this chapter, you learned about SQL databases and how to use them with PyQt. You
learned the basics of creating a relational database with SQL, how to connect to the
database with the QSqlDatabase class, and how to execute queries on the database. You
also learned how to build elegant database applications without having to write SQL by
using the SQL model-view classes available in QtSql.

In the next chapter, you're going to learn how to create asynchronous applications that can
deal with slow workloads without locking up your application. You'll learn the effective
use of the QTimer class, as well as how to safely utilize QThread. We'll also cover the use of
QTheadPool to enable high-concurrency processing.

Exploring SQL with Qt SQL Chapter 9

[231]

Questions
Try these questions to test your knowledge of this chapter:

Compose a SQL CREATE statement that builds a table to hold television schedule1.
listings. Make sure it has fields for date, time, channel, and program name. Also
make sure it has a primary key and constraints to prevent nonsensical data (such
as two shows at the same time on the same channel, or a show with no time or
date).
The following SQL query is returning a syntax error; can you fix it?2.

DELETE * FROM my_table IF category_id == 12;

The following SQL query doesn't work correctly; can you fix it?3.

INSERT INTO flavors(name) VALUES ('hazelnut', 'vanilla',
'caramel', 'onion');

The documentation for QSqlDatabase can be found at https:/ /doc. qt. io/qt-4.
5/qsqldatabase. html. Read up on how you can work with multiple database
connections; for example, a read-only and read/write connection to the same
database. How would you create two connections and make specific queries to
each?
Using QSqlQuery, write code to safely insert the data in the dict object into the5.
coffees table:

data = {'brand': 'generic', 'name': 'cheap coffee',
 'roast': 'light'}
Your code here:

You've created a QSqlTableModel object and attached it to a QTableView. You6.
know there is data in the table, but it is not showing in the view. Look at the code
and decide what is wrong:

flavor_model = qts.QSqlTableModel()
flavor_model.setTable('flavors')
flavor_table = qtw.QTableView()
flavor_table.setModel(flavor_model)
mainform.layout().addWidget(flavor_table)

https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html

Exploring SQL with Qt SQL Chapter 9

[232]

The following is a callback attached to the textChanged signal of QLineEdit.7.
Explain why this is not a good idea:

def do_search(self, text):
 self.sql_table_model.setFilter(f'description={text}')
 self.sql_table_model.select()

You decide you'd rather have colors than names in the roasts combo boxes in8.
your coffee list. What changes would you need to make to accomplish this?

Further reading
Check out these resources for more information:

A guide to the SQL language used in SQLite can be found at https:/ /sqlite.
org/lang. html

An overview of the QtSQL module and its use can be found at https:/ /doc. qt.
io/qt- 5/ qtsql- index. html

https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://sqlite.org/lang.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html
https://doc.qt.io/qt-5/qtsql-index.html

3
Section 3: Unraveling

Advanced Qt Implementations
In this final section, you will jump into the more advanced functionality offered by PyQt.
You'll tackle multithreading, 2D and 3D graphics, rich-text documents, printing, data
plotting, and web browsing. You'll learn how to work with PyQt on the Raspberry Pi, and
how to structure and deploy your code to desktop systems. By the end of this section, you
will have all the tools and techniques that you need in your arsenal to build beautiful GUIs
using PyQt.

The following chapters are in this section:

Chapter 10, Multithreading with QTimer and QThread
Chapter 11, Creating Rich Text with QTextDocument
Chapter 12, Creating 2D Graphics with QPainter
Chapter 13, Creating 3D Graphics with QtOpenGL
Chapter 14, Embedding Data Plots with QtCharts
Chapter 15, PyQt Raspberry Pi
Chapter 16, Web Browsing with QtWebEngine
Chapter 17, Preparing Your Software for Distribution

10
Multithreading with QTimer and

QThread
Despite the ever-increasing power of computer hardware, programs are still often called
upon to perform tasks that take seconds, if not minutes, to complete. While such delays
may be due to factors outside the programmer's control, it nevertheless reflects poorly on
an application to become unresponsive while background tasks are running. In this
chapter, we're going to learn about some tools that can help us to retain our application's
responsiveness by deferring heavy operations or moving them out of the thread entirely.
We'll also learn how to use a multithreaded application design to speed up these operations
on multicore systems.

This chapter is broken into the following topics:

Delayed actions with QTimer
Multithreading with QThread
High concurrency with QThreadPool and QRunner

Technical requirements
This chapter requires only the basic Python and PyQt5 setup you've been using throughout
the book. You can also reference the example code at https:/ /github. com/
PacktPublishing/Mastering- GUI- Programming- with- Python/ tree/ master/ Chapter10.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M6iSPl

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter10
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl
http://bit.ly/2M6iSPl

Multithreading with QTimer and QThread Chapter 10

[235]

Delayed actions with QTimer
Being able to delay action in a program is useful in a variety of situations. For example, let's
say that we want a modeless pop-up dialog that closes itself after a defined number of
seconds rather than waiting for a user to click on a button.

We will start by subclassing QDialog:

class AutoCloseDialog(qtw.QDialog):

 def __init__(self, parent, title, message, timeout):
 super().__init__(parent)
 self.setModal(False)
 self.setWindowTitle(title)
 self.setLayout(qtw.QVBoxLayout())
 self.layout().addWidget(qtw.QLabel(message))
 self.timeout = timeout

Having saved a timeout value, we now want to override the dialog box's show() method
so that it closes after that number of seconds.

A naive approach might be as follows:

 def show(self):
 super().show()
 from time import sleep
 sleep(self.timeout)
 self.hide()

Python's time.sleep() function will halt program execution for the number of seconds
we pass in as an argument. At first glance, it appears like this should do what we
want—that is, show the window, pause for timeout seconds, and then hide the window.

So, let's add some code in our MainWindow.__init__() method to test it:

 self.dialog = AutoCloseDialog(
 self,
 "Self-destructing message",
 "This message will self-destruct in 10 seconds",
 10
)
 self.dialog.show()

Multithreading with QTimer and QThread Chapter 10

[236]

If you run the program, you'll find that things don't go quite as expected. Since this dialog
is modeless, it should appear alongside our main window and not block anything.
Additionally, since we called show() before calling sleep(), it should display itself before
pausing. Instead, you most likely got a blank and frozen dialog window that paused the
entire program for the duration of its existence. So, what's happening here?

Remember from Chapter 1, Getting Started with PyQt, that Qt programs have an event loop,
which is started when we call QApplication.exec(). When we call a method such
as show(), which involves many behind-the-scenes actions such as painting widgets and
communicating with the window manager, these tasks aren't executed immediately.
Instead, they are placed in a task queue. The event loop works through this task queue one
job at a time until it's empty. This process is asynchronous, so a call to
the QWidget.show() method doesn't wait for the window to be shown before it returns; it
merely places the tasks involved in showing the widget on the event queue and returns.

Our call to the time.sleep() method creates an immediate blocking delay in the program,
halting all other processing until the function exits. This includes halting the Qt event loop,
which means that all of those drawing operations that are still in the queue won't happen.
In fact, no events will be processed until sleep() completes. This is why the widget was
not fully drawn, and why the program did not continue while sleep() was executing.

In order to work correctly, we need to place our hide() call on the event loop, so that our
call to AutoCloseDialog.show() can return immediately and let the event loop handle
hiding the dialog, in the same way that it handles showing it. But we don't want to do this
right away—we want to delay its execution on the event queue until a certain amount of
time has passed. This is what the QtCore.QTimer class can do for us.

Single shot timers
QTimer is a simple QObject subclass that can emit a timeout signal after a certain period
of time.

The simplest way to defer a single action with QTimer is to use the QTimer.singleShot()
static method, as follows:

 def show(self):
 super().show()
 qtc.QTimer.singleShot(self.timeout * 1000, self.hide)

Multithreading with QTimer and QThread Chapter 10

[237]

singleShot() takes two arguments: an interval in milliseconds and a callback function. In
this case, we're calling the self.hide() method after a number of self.timeout seconds
(we will multiply by 1,000 to convert this into milliseconds).

Running this script again, you should now see your dialog behaving as expected.

Repeating timers
Sometimes in an application, we need to repeat an action at specified intervals, such as
autosaving a document, polling a network socket, or nagging a user incessantly to give the
application a 5-star review in the app store (well, maybe not that one).

QTimer can handle this too, as you can see from the following code block:

 interval_seconds = 10
 self.timer = qtc.QTimer()
 self.timer.setInterval(interval_seconds * 1000)
 self.interval_dialog = AutoCloseDialog(
 self, "It's time again",
 f"It has been {interval_seconds} seconds "
 "since this dialog was last shown.", 2000)
 self.timer.timeout.connect(self.interval_dialog.show)
 self.timer.start()

In this example, we're creating a QTimer object explicitly rather than using the static
singleShot() method. Then, we're using the setInterval() method to configure a
timeout interval in milliseconds. When that interval has passed, the timer object will emit a
timeout signal. By default, the QTimer object will repeatedly issue the timeout signal
every time reaches the end of the specified interval. You can use the setSingleShot()
method to convert it into a single shot as well, though, in general, it's easier to use the static
method that we demonstrated in the Single shot timers section.

After creating the QTimer object and configuring the interval, we just connect its timeout
signal to the show() method of another AutoCloseDialog object and then start the timer
by calling the start() method.

We can also stop the timer and restart it again:

 toolbar = self.addToolBar('Tools')
 toolbar.addAction('Stop Bugging Me', self.timer.stop)
 toolbar.addAction('Start Bugging Me', self.timer.start)

Multithreading with QTimer and QThread Chapter 10

[238]

The QTimer.stop() method stops the timer and the start() method will start it again
from the beginning. It's worth noting that there is no pause() method here; the stop()
method will clear any current progress and the start() method will start over from the
configured interval.

Getting information from timers
QTimer has a few methods that we can use to extract information about the state of the
timer. For example, let's keep our user updated on how things are going with the following
lines of code:

 self.timer2 = qtc.QTimer()
 self.timer2.setInterval(1000)
 self.timer2.timeout.connect(self.update_status)
 self.timer2.start()

We've set up yet another timer that will call self.update_status() once every
second. update_status() will then query the first time for information, as follows:

 def update_status(self):
 if self.timer.isActive():
 time_left = (self.timer.remainingTime() // 1000) + 1
 self.statusBar().showMessage(
 f"Next dialog will be shown in {time_left} seconds.")
 else:
 self.statusBar().showMessage('Dialogs are off.')

The QTimer.isActive() method tells us whether a timer is currently running,
while remainingTime() tells us how many milliseconds remain until the next timeout
signal.

Running this program now, you should see a status update about your next dialog box.

Limitations of timers
While timers allow us to defer actions to the event queue and can help to prevent awkward
pauses in our programs, it's important to understand that functions connected to the
timeout signal are still executed in—and will therefore block—the main execution thread.

Multithreading with QTimer and QThread Chapter 10

[239]

For example, suppose that we have a long blocking method, as follows:

 def long_blocking_callback(self):
 from time import sleep
 self.statusBar().showMessage('Beginning a long blocking function.')
 sleep(30)
 self.statusBar().showMessage('Ending a long blocking function.')

You might think that calling this method from a single shot timer will prevent it from
locking up your application. Let's test that theory by adding this code to
MainView.__init__():

 qtc.QTimer.singleShot(1, self.long_blocking_callback)

Calling singleShot() with a 1 millisecond delay is a simple way of scheduling an event
almost immediately. So, does it work?

Well, no, it doesn't; if you run the program, then you'll see that it locks up for 30 seconds.
Despite the fact that we deferred the action, it's still a long blocking action that will freeze
up the program when it runs. It may be that we can play with the delay value to make sure
it's deferred to a more opportune moment (such as after the application has painted itself or
after a splash screen displays), but sooner or later, the application will have to freeze and
become unresponsive while the task runs.

There is a solution to such a problem, however; in the next section, Multithreading with
QThread, we'll look at how to push heavy, blocking tasks like this to another thread so that
our program can keep running without freezing.

Multithreading with QThread
Waiting is sometimes unavoidable. Whether querying the network, accessing a filesystem,
or running a complex computation, sometimes a program just needs time to complete a
process. While we're waiting, though, there's no reason for our GUI to become completely
unresponsive. Modern systems with multiple CPU cores and threading technology allow
us to run concurrent processes, and there's no reason why we can't take advantage of this to
make responsive GUIs. Although Python has its own threading library, Qt offers us the
QThread object, which can be used to build multithreaded applications easily. It has the
additional advantage of being integrated into Qt and being compatible with signals and
slots.

In this section, we'll build a somewhat slow file searching tool and then use QThread to
ensure that the GUI remains responsive.

Multithreading with QTimer and QThread Chapter 10

[240]

The SlowSearcher file search engine
In order to talk effectively about threading, we first require a slow process that can be run
on a separate thread. Open a new copy of the Qt application template and call it
file_searcher.py.

Let's begin by implementing a file searching engine:

class SlowSearcher(qtc.QObject):

 match_found = qtc.pyqtSignal(str)
 directory_changed = qtc.pyqtSignal(str)
 finished = qtc.pyqtSignal()

 def __init__(self):
 super().__init__()
 self.term = None

We're calling this SlowSearcher because it's going to be deliberately non-optimized. It
starts with defining a few signals, as follows:

The match_found signal will be emitted when a filename matches the search
term and will contain the matched filename
The directory_changed signal will be emitted whenever we start searching in
a new directory
The finished signal will be emitted when the whole filesystem tree has been
searched

Finally, we override __init__() just to define an instance variable called self.term.

Next, we'll create a setter method for term:

 def set_term(self, term):
 self.term = term

If you're wondering why we're bothering with such a simple setter method when we could
just set the variable directly, the reason for this will soon become apparent as we discuss
some of the limitations of QThread.

Multithreading with QTimer and QThread Chapter 10

[241]

Now, we'll create the searching methods, as follows:

 def do_search(self):
 root = qtc.QDir.rootPath()
 self._search(self.term, root)
 self.finished.emit()

This method will be the slot that we call to start off the search process. It begins by locating
the root directory as a QDir object and then calls the _search() method. Once _search()
returns, it emits the finished signal.

The actual _search() method is as follows:

 def _search(self, term, path):
 self.directory_changed.emit(path)
 directory = qtc.QDir(path)
 directory.setFilter(directory.filter() |
 qtc.QDir.NoDotAndDotDot | qtc.QDir.NoSymLinks)
 for entry in directory.entryInfoList():
 if term in entry.filePath():
 print(entry.filePath())
 self.match_found.emit(entry.filePath())
 if entry.isDir():
 self._search(term, entry.filePath())

_search() is a recursive search method. It begins by emitting the directory_changed
signal to indicate that we're searching in a new directory and then creates a QDir object for
the current path. Next, it sets the filter property so that, when we query the
entryInfoList() method, it won't include symbolic links or the . and .. shortcuts (this
is to avoid infinite loops in the search). Finally, we iterate the contents of the directory
retrieved by entryInfoList() and emit a match_found signal for each matched item.
For each directory found, we run the _search() method on it.

In this way, our method will recurse through all of the directories on the filesystem, looking
for matches to our search term. This is not the most optimized approach, and intentionally
so. Depending on your hardware, platform, and the number of files on your drive, this
search can take anywhere from a few seconds to several minutes to complete, so it's perfect
for looking at how threading can help an application that must execute a slow process.

In multithreading terminology, a class that performs the actual work is
referred to as a Worker class. SlowSearcher is an example of a Worker
class.

Multithreading with QTimer and QThread Chapter 10

[242]

A non-threaded searcher
To implement a searching application, let's add a GUI form for entering a search term and
displaying the search results.

Let's call it SearchForm, as follows:

class SearchForm(qtw.QWidget):

 textChanged = qtc.pyqtSignal(str)
 returnPressed = qtc.pyqtSignal()

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QVBoxLayout())
 self.search_term_inp = qtw.QLineEdit(
 placeholderText='Search Term',
 textChanged=self.textChanged,
 returnPressed=self.returnPressed)
 self.layout().addWidget(self.search_term_inp)
 self.results = qtw.QListWidget()
 self.layout().addWidget(self.results)
 self.returnPressed.connect(self.results.clear)

This GUI only contains a QLineEdit widget for entering a term and a
QListWidget widget for displaying the results. We're forwarding the QLineEdit widget's
returnPressed and textChanged signals to identically named signals on the
SearchForm object so that we can connect them more easily in our MainView method.
We've also connected returnPressed to the list widget's clear slot so that starting a new
search clears the results area.

The SearchForm() method will also require a method to add a new item:

 def addResult(self, result):
 self.results.addItem(result)

This is simply a convenience method so that, once again, the main application doesn't have
to directly manipulate the widgets in the form.

In our MainWindow.__init__() method, we can create a searcher and form object and
connect them, as follows:

 form = SearchForm()
 self.setCentralWidget(form)
 self.ss = SlowSearcher()
 form.textChanged.connect(self.ss.set_term)

Multithreading with QTimer and QThread Chapter 10

[243]

 form.returnPressed.connect(self.ss.do_search)
 self.ss.match_found.connect(form.addResult)

After creating the SlowSearcher and SearchForm objects and setting the form as the
central widget, we connect the appropriate signals together, as follows:

The form's textChanged signal, which emits the string entered, is connected to
the searcher's set_term() setter method.
The form's returnPressed signal is connected to the searcher's do_search()
method to trigger the search.
The searcher's match_found signal, which carries the pathname found, is
connected to the form's addResult() method.

Finally, let's add two MainWindow methods to keep the user informed about the status of
the search:

 def on_finished(self):
 qtw.QMessageBox.information(self, 'Complete', 'Search complete')

 def on_directory_changed(self, path):
 self.statusBar().showMessage(f'Searching in: {path}')

The first will show a status indicating that the search is finished, while the second will
show a status indicating the current path that the searcher is searching.

Back in __init__(), these will be connected to the searcher, as follows:

 self.ss.finished.connect(self.on_finished)
 self.ss.directory_changed.connect(self.on_directory_changed)

Testing our non-threaded search application
Our expectation with this script is that, as we search through directories on the system,
we'll get a steady printout of search results to the results area, as well as constant updates
on the current directory being searched in the status bar.

If you run it, however, you'll find that this is not what actually happens. Instead, the
moment the search starts, the GUI freezes up. Nothing is shown in the status bar and no
entries appear in the list widget, even though matches are being printed to the console.
Only when the search finally finishes do the results appear and the status gets updated.

Multithreading with QTimer and QThread Chapter 10

[244]

To fix this, we need to introduce threading.

So, why does the program print to the console in real time but not update
our GUI in real time? It's because print() is synchronous—it executes as
soon as it's called and does not return until the text is written to the
console. Our GUI methods, however, are asynchronous—they are queued
in the Qt event queue and will not execute until the main event loop
finishes executing the SlowSearcher.search() method.

Adding threads
A thread is an independent code execution context. By default, all of our code runs in a
single thread, so we refer to it as a single-threaded application. Using the
QtCore.QThread class, we can create new threads and move portions of our code to them,
making it a multithreaded application.

You can use the QThread object as follows:

 self.searcher_thread = qtc.QThread()
 self.ss.moveToThread(self.searcher_thread)
 self.ss.finished.connect(self.searcher_thread.quit)
 self.searcher_thread.start()

We start by creating a QThread object, and then use the SlowSearcher.moveToThread()
method to move our SlowSearcher object to the new thread. moveToThread() is a
QObject method inherited by any class that subclasses QObject.

Next, we connect the searcher's finished signal to the thread's quit slot; this will cause
the thread to stop executing when the search is finished. Since the search thread isn't part of
our main execution thread, it must have some way to quit on its own or it will continue to
run after the search is over.

Finally, we need to call the search thread's start() method to begin executing the code
and allow our main thread to interact with the SlowSearcher object.

This code needs to be inserted after the SlowSearcher object is created, but before any
signals or slots are connected to it (we'll discuss why in the Threading tips and caveats
section).

Multithreading with QTimer and QThread Chapter 10

[245]

Since we're quitting the thread after each search, we need to restart the thread each time a
new search is started. We can do this by using the following connection:

 form.returnPressed.connect(self.searcher_thread.start)

This is all that is needed to use a thread. Run the script again and you'll see that the GUI is
updated as the search progresses.

Let's recap the process, as follows:

Create an instance of the Worker class of your QObject object1.
Create a QThread object2.
Use the Worker class' moveToThread() method to move it to the new thread3.
Connect any other signals and slots4.
Call the thread's start() method5.

An alternate method
Although the moveToThread() method of working with QThread is the preferred
approach recommended by the documentation, there is another way that works perfectly
well and, in some way, simplifies our code. This approach is to create our Worker class by
subclassing QThread and overriding the run() method using our worker code.

For example, create a copy of SlowSearcher and alter it as follows:

class SlowSearcherThread(qtc.QThread):
 # rename "do_search()" to "run()":

 def run (self):
 root = qtc.QDir.rootPath()
 self._search(self.term, root)
 self.finished.emit()

 # The rest of the class is the same

Here, we've altered only three things:

We've renamed the class to SlowSearcherThread.
We've changed the parent class to QThread.
We've renamed do_search() to run().

Multithreading with QTimer and QThread Chapter 10

[246]

Our MainWindow.__init__() method will now be considerably simpler:

 form = SearchForm()
 self.setCentralWidget(form)
 self.ss = SlowSearcherThread()
 form.textChanged.connect(self.ss.set_term)
 form.returnPressed.connect(self.ss.start)
 self.ss.match_found.connect(form.addResult)
 self.ss.finished.connect(self.on_finished)
 self.ss.directory_changed.connect(self.on_directory_changed)

Now, we only need to connect returnPressed to SlowSearcher.start(). The start()
method creates the new thread and executes the object's run() method inside the new
thread. This means that, by overriding that method, we can effectively place that code in a
new thread.

Always remember to implement run() but call start(). Don't get this
mixed up, or your multithreading won't work!

While there are some valid use cases for such an approach, it can create subtle problems
with the thread ownership of the object's data. Even though a QThread object provides a
control interface for a secondary thread, the object itself lives in the main thread. When we
call moveToThread() on a worker object, we can be assured that the worker object is
moved entirely to the new thread. However, when the worker object is a subclass of
QThread, those QThread parts must remain in the main thread even though the executed
code is moved to the new thread. This can lead to subtle bugs as it is difficult to untangle
which parts of the worker object are in which thread.

Ultimately, unless you have clear reasons for subclassing QThread5, you should use
moveToThread().

Threading tips and caveats
The previous example may have made multithreaded programming seem simple, but that's
because the code was carefully designed to avoid some of the problems that can arise when
working with threads. In reality, retrofitting multithreading on a single-threaded
application can be much more difficult.

Multithreading with QTimer and QThread Chapter 10

[247]

One common problem is when a worker object gets stuck in the main thread, causing us to
lose the benefits of multithreading. This can happen in a few ways.

For example, in our original threading script (the one that used moveToThread()), we had
to move the worker to the thread before connecting any signals. If you try moving the
threading code after the signal connections, you will find that the GUI locks up as though
you hadn't used a thread.

The reason this happens is that our worker's methods are Python methods and connecting
to them creates a connection in Python, which must persist in the main thread. One way
around this is to use the pyqtSlot() decorator to make the worker's methods into true Qt
slots, as follows:

 @qtc.pyqtSlot(str)
 def set_term(self, term):
 self.term = term

 @qtc.pyqtSlot()
 def do_search(self):
 root = qtc.QDir.rootPath()
 self._search(self.term, root)
 self.finished.emit()

Once you do this, the order won't matter because the connections will exist entirely
between the Qt objects rather than between the Python objects.

You can also trap a worker object in the main thread by calling one of its methods directly
in the main thread:

 # in MainView__init__():
 self.ss.set_term('foo')
 self.ss.do_search()

Placing the preceding lines in __init__() will cause the GUI to remain hidden until a
filesystem search for foo has completed. Sometimes, this issue can be subtle; for example,
the following lambda callback suggests that we are simply connecting the signal directly to
the slot:

 form.returnPressed.connect(lambda: self.ss.do_search())

However, this connection breaks threading because the lambda function is itself part of the
main thread and, therefore, the call to search() will be executed in the main thread.

Multithreading with QTimer and QThread Chapter 10

[248]

Unfortunately, this limitation also means that you cannot use a MainWindow method as a
slot to call the worker methods either; for example, we cannot run the following code in
MainWindow:

 def on_return_pressed(self):
 self.searcher_thread.start()
 self.ss.do_search()

Using this as a callback for returnPressed rather than connecting the signal to the
worker object's methods individually causes the threading to fail and the GUI to lock.

In short, it's best to constrain your interactions with the worker object to pure Qt signal and
slot connections with no intermediate functions.

High concurrency with QThreadPool and
QRunner
QThreads are ideal for putting a single long process into the background, especially when
we want to communicate with that process using signals and slots. Sometimes, however,
what we need to do is run a number of computationally intensive operations in parallel
using as many threads as possible. This can be done with QThread, but a better alternative
is found in QThreadPool and QRunner.

QRunner represents a single runnable task that we want our worker threads to perform.
Unlike QThread, it is not derived from QObject and cannot use signals and slots.
However, it is very efficient and is much simpler to use when you want many threads.

The QThreadPool object's job is to manage a queue of QRunner objects, spinning up new
threads to execute the objects as compute resources become available.

To demonstrate how to work with this, let's build a file hashing utility.

The file hasher GUI
Our file hasher utility will take a source directory, a destination file, and a number of
threads to use. It will use the number of threads to calculate the MD5 hash of each file in
the directory and then write the information out to the destination file as it does so.

Multithreading with QTimer and QThread Chapter 10

[249]

A hashing function such as MD5 is used to calculate a unique, fixed-
length binary value from any arbitrary piece of data. Hashes are often
used to determine the authenticity of a file since any change to the file will
result in a different hash value.

Make a clean copy of your Qt template from Chapter 4, Building Applications with
QMainWindow, calling it hasher.py.

Then, we'll start with our GUI form class, as follows:

class HashForm(qtw.QWidget):

 submitted = qtc.pyqtSignal(str, str, int)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QFormLayout())
 self.source_path = qtw.QPushButton(
 'Click to select…', clicked=self.on_source_click)
 self.layout().addRow('Source Path', self.source_path)
 self.destination_file = qtw.QPushButton(
 'Click to select…', clicked=self.on_dest_click)
 self.layout().addRow('Destination File', self.destination_file)
 self.threads = qtw.QSpinBox(minimum=1, maximum=7, value=2)
 self.layout().addRow('Threads', self.threads)
 submit = qtw.QPushButton('Go', clicked=self.on_submit)
 self.layout().addRow(submit)

This form is very similar to the forms we've designed in previous chapters, with a
submitted signal to publish the data, QPushButton objects to store the selected files, a
spin box to select the number of threads, and another push button to submit the form.

The file button callbacks will be as follows:

 def on_source_click(self):
 dirname = qtw.QFileDialog.getExistingDirectory()
 if dirname:
 self.source_path.setText(dirname)

 def on_dest_click(self):
 filename, _ = qtw.QFileDialog.getSaveFileName()
 if filename:
 self.destination_file.setText(filename)

Multithreading with QTimer and QThread Chapter 10

[250]

Here, we're using QFileDialog static functions (which you learned about in Chapter 5,
Creating Data Interfaces with Model-View Classes) to retrieve a directory name to examine and
a filename that we'll use to save the output to.

Finally, our on_submit() callback is as follows:

 def on_submit(self):
 self.submitted.emit(
 self.source_path.text(),
 self.destination_file.text(),
 self.threads.value()
)

This callback simply gathers the data from our widgets and publishes it with the
submitted signal.

In MainWindow.__init__(), create a form and make it the central widget:

 form = HashForm()
 self.setCentralWidget(form)

That takes care of our GUI, so let's now build the backend.

A hash runner
The HashRunner class will represent a single instance of the actual task that we're going to
perform. For each file that we need to process, we'll create a unique HashRunner instance
so its constructor will need to receive an input filename and an output filename as
arguments. Its task will be to calculate the MD5 hash of the input file and append it along
with the input filename to the output file.

We'll start it by subclassing QRunnable:

class HashRunner(qtc.QRunnable):

 file_lock = qtc.QMutex()

The first thing we do is create a QMutex object. In multithreading terminology, a mutex is
an object shared between threads that can be locked or unlocked.

Multithreading with QTimer and QThread Chapter 10

[251]

You can think of a mutex in the same way as the door of a single-user restroom facility;
suppose that Bob attempts to enter the restroom and lock the door. If Alice is in the
restroom already, then the door won't open, and Bob will have to wait patiently outside
until Alice has unlocked the door and exited the restroom. Then, Bob will be able to enter
and lock the door.

Likewise, when a thread attempts to lock a mutex that another thread has already locked, it
has to wait until the first thread has finished and unlocked the mutex before it can acquire
the lock.

In HashRunner, we're going to use our file_lock mutex to ensure that two threads don't
attempt to write to the output file at the same time. Note that this object is created in the
class definition so it will be shared by all instances of HashRunner.

Now, let's create the __init__() method:

 def __init__(self, infile, outfile):
 super().__init__()
 self.infile = infile
 self.outfile = outfile
 self.hasher = qtc.QCryptographicHash(
 qtc.QCryptographicHash.Md5)
 self.setAutoDelete(True)

The object will receive paths to the input file and output file and store them as instance
variables. It also creates an instance of QtCore.QCryptographicHash. This object is able
to calculate various cryptographic hashes of data, such as MD5, SHA-256, or Keccak-512. A
complete list of hashes supported by this class can be found at https:/ /doc. qt.io/ qt- 5/
qcryptographichash. html.

Finally, we set the autoDelete property of the class to True. This property of QRunnable
will cause the object to be deleted whenever the run() method returns, saving us memory
and resources.

The actual work done by the runner is defined in the run() method:

 def run(self):
 print(f'hashing {self.infile}')
 self.hasher.reset()
 with open(self.infile, 'rb') as fh:
 self.hasher.addData(fh.read())
 hash_string = bytes(self.hasher.result().toHex()).decode('UTF-8')

https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html
https://doc.qt.io/qt-5/qcryptographichash.html

Multithreading with QTimer and QThread Chapter 10

[252]

Our function starts by printing a message to the console and resetting the
QCryptographicHash object, clearing out any data that might be in it.

We then read the binary contents of our file into the hash object using the addData()
method. The hash value can be calculated and retrieved as a QByteArray object from the
hash object using the result() method. We then convert the byte array into a hexadecimal
string using the toHex() method and then into a Python Unicode string by way of a bytes
object.

Now all that's left is to write this hash string to the output file. This is where our mutex
object comes in.

Traditionally, the way to use the mutex is as follows:

 try:
 self.file_lock.lock()
 with open(self.outfile, 'a', encoding='utf-8') as out:
 out.write(f'{self.infile}\t{hash_string}\n')
 finally:
 self.file_lock.unlock()

We call the mutex's lock() method inside a try block and then perform our file operation.
Inside the finally block, we call the unlock method. The reason this is done inside the
try and finally blocks is so that the mutex is sure to be released even if something goes
wrong with the file method.

In Python, however, whenever we have an operation like this that has initialization and
cleanup code, it is best to use a context manager object in conjunction with the with
keyword. PyQt provides us with such an object: QMutexLocker.

We can use this object as follows:

 with qtc.QMutexLocker(self.file_lock):
 with open(self.outfile, 'a', encoding='utf-8') as out:
 out.write(f'{self.infile}\t{hash_string}\n')

This method is much cleaner. By using the mutex context manager, we are assured that
anything done inside the with block is done by only one thread at a time, and other threads
will wait until the object finishes.

Multithreading with QTimer and QThread Chapter 10

[253]

Creating the thread pool
The final piece of this application will be a HashManager object. The job of this object is to
take the form output, locate the files to be hashed, and then start up a HashRunner object
for each file.

It will begin like this:

class HashManager(qtc.QObject):

 finished = qtc.pyqtSignal()

 def __init__(self):
 super().__init__()
 self.pool = qtc.QThreadPool.globalInstance()

We've based the class on QObject so that we can define a finished signal. This signal will
be emitted when all of the runners have completed their tasks.

In the constructor, we're creating our QThreadPool object. Rather than creating a new
object, however, we're using the globalInstance() static method to access the global
thread pool object that already exists in every Qt application. You don't have to do this, but
it is sufficient for most applications and removes some complexities involved in having
multiple thread pools.

The real work of this class will happen in a method we'll call do_hashing:

 @qtc.pyqtSlot(str, str, int)
 def do_hashing(self, source, destination, threads):
 self.pool.setMaxThreadCount(threads)
 qdir = qtc.QDir(source)
 for filename in qdir.entryList(qtc.QDir.Files):
 filepath = qdir.absoluteFilePath(filename)
 runner = HashRunner(filepath, destination)
 self.pool.start(runner)

This method is designed to be hooked directly to the HashForm.submitted signal, so
we've made it a slot with a matching signal. It begins by setting the thread pool's maximum
number of threads (as defined by the maxThreadCount property) to the number received
in the function call. Once this is set, we can queue up any number of QRunnable objects in
the thread pool, but only maxThreadCount threads will actually be started up
concurrently.

Multithreading with QTimer and QThread Chapter 10

[254]

Next, we'll use the QDir object's entryList() method to iterate through the files in the
directory and create a HashRunner object for each one. The runner object is then passed to
the thread pool's start() method, which adds it to the pool's work queue.

At this point, all of our runners are running in separate execution threads, but we'd like to
emit a signal when they are done. Unfortunately, there is no signal built-in to QThreadPool
to tell us this, but the waitForDone() method will continue to block until all of the threads
are done.

So, add the following code to do_hashing():

 self.pool.waitForDone()
 self.finished.emit()

Back in MainWindow.__init__(), let's create our manager object and add our
connections:

 self.manager = HashManager()
 self.manager_thread = qtc.QThread()
 self.manager.moveToThread(self.manager_thread)
 self.manager_thread.start()
 form.submitted.connect(self.manager.do_hashing)

After creating our HashManager, we move it to a separate thread using moveToThread().
This is because our do_hashing() method is going to block until all of the runners are
completed, and we don't want the GUI to freeze up while waiting for that to happen. Had
we left out the last two lines of do_hashing(), this wouldn't be necessary (but we'd also
never know when it was done).

In order to get feedback on what's happening, let's add two more connections:

 form.submitted.connect(
 lambda x, y, z: self.statusBar().showMessage(
 f'Processing files in {x} into {y} with {z} threads.'))
 self.manager.finished.connect(
 lambda: self.statusBar().showMessage('Finished'))

The first connection will set the status when the form is submitted, indicating details about
the job that is commencing; the second will notify us when the job is done.

Multithreading with QTimer and QThread Chapter 10

[255]

Testing the script
Go ahead and launch this script and let's see how it works. Point your source directory at a
folder full of large files, such as DVD images, archive files, or video files. Leave the threads'
spin box at its default setting and click on Go.

Notice from the console output that the files are being hashed two at a time. As soon as one
completes, another one starts until all of the files have been hashed.

Try it again, but this time bump the threads up to four or five. Notice that more files are
being processed at once. As you play with this value, you may also notice that there is a
point of diminishing returns, especially as you approach the number of cores in your CPU.
This is an important lesson about parallelization—sometimes, too much causes the
performance to drop.

Threading and the Python GIL
No discussion of multithreading in Python is complete without addressing the global
interpreter lock (GIL). The GIL is part of the memory management system in the official
Python implementation (CPython). Essentially, it is like the mutex that we used in our
HashRunner class—just as a HashRunner class has to acquire the file_lock mutex before
it can write to the output, any thread in a Python application must acquire the GIL before it
can execute any Python code. In other words, only one thread can execute Python code at a
time.

At first glance, this may appear to make multithreading in Python a futile pursuit; after all,
what's the point of creating multiple threads if only one thread can execute Python code at
a time?

The answer involves two exceptions to the GIL requirement:

The long-running code can be CPU-bound or I/O-bound. CPU-bound means
that most of the processing time is spent running heavy CPU operations, such as
cryptographic hashing. I/O-bound operations are those that spend most of their
time waiting on input/output (I/O) calls, such as writing a large file to a disk or
reading data from a network socket. When a thread makes an I/O call and begins
waiting on a response, it releases the GIL. Therefore, if our worker code is mostly
I/O-bound, we can benefit from multithreading because other code can run while
we wait on the I/O operation to finish.

Multithreading with QTimer and QThread Chapter 10

[256]

CPU-bound code also releases the GIL if the code is running outside of Python.
In other words, if we use a C or C++ function or object to perform a CPU-bound
operation, then the GIL is released and only reacquired when the next Python
operation is run.

This is why our HashRunner works; its two heaviest operations are as follows:

Reading the large file from disk (which is an I/O-bound operation)
Hashing the file contents (which is handled inside of the QCryptographicHash
object—a C++ object that operates outside of Python)

If we were to implement a hashing algorithm in pure Python instead, then we'd likely find
that our multithreaded code actually ran slower than even a single-threaded
implementation.

Ultimately, multithreading is not a magic bullet to speed up the code in Python; it must be
carefully planned out to avoid problems with the GIL and the pitfalls that we discussed in
the Threading tips and caveats section. With proper care, however, it can help us to create fast
and responsive programs.

Summary
In this chapter, you learned how to keep your application responsive when running a slow
code. You learned how to use QTimer to defer actions to a later time, either as a one-time or
repeating action. You learned how to push code to another thread using QThread, both by
using moveToThread() and by subclassing QThread. Finally, you learned how to use
QThreadPool and QRunnable to build highly concurrent data processing applications.

In Chapter 11, Creating Rich Text with QTextDocument, we're going to take a look at
working with rich text in PyQt. You'll learn how to define rich text using an HTML-like
markup and how to inspect and manipulate documents using the QDocument API. You'll
also learn how to take advantage of Qt's printing support to bring documents into the real
world.

Multithreading with QTimer and QThread Chapter 10

[257]

Questions
Try answering these questions to test your knowledge from this chapter:

Create code to call the self.every_ten_seconds() method every 10 seconds.1.

The following code uses QTimer incorrectly. Can you fix it?2.

 timer = qtc.QTimer()
 timer.setSingleShot(True)
 timer.setInterval(1000)
 timer.start()
 while timer.remainingTime():
 sleep(.01)
 run_delayed_command()

You've created the following word-counting Worker class and want to move it to3.
another thread to prevent large documents from slowing the GUI. But it's not
working—what do you need to change about this class?

 class Worker(qtc.QObject):

 counted = qtc.pyqtSignal(int)

 def __init__(self, parent):
 super().__init__(parent)
 self.parent = parent

 def count_words(self):
 content = self.parent.textedit.toPlainText()
 self.counted.emit(len(content.split()))

The following code is blocking rather than running in a separate thread. Why is4.
this the case?

 class Worker(qtc.QThread):

 def set_data(data):
 self.data = data

 def run(self):n
 start_complex_calculations(self.data)

 class MainWindow(qtw.QMainWindow):

 def __init__(self):
 super().__init__()

Multithreading with QTimer and QThread Chapter 10

[258]

 form = qtw.QWidget()
 self.setCentralWidget(form)
 form.setLayout(qtw.QFormLayout())

 worker = Worker()
 line_edit = qtw.QLineEdit(textChanged=worker.set_data)
 button = qtw.QPushButton('Run', clicked=worker.run)
 form.layout().addRow('Data:', line_edit)
 form.layout().addRow(button)
 self.show()

Will this Worker class run correctly? If not, why?5.

 class Worker(qtc.QRunnable):

 finished = qtc.pyqtSignal()

 def run(self):
 calculate_navigation_vectors(30)
 self.finished.emit()

The following code is a run() method from a QRunnable class designed for6.
processing large data files output from scientific equipment. The files consist of
millions of long rows of space-delimited numbers. Is this code likely to be slowed
down by the Python GIL? Could you make it less likely that the GIL will
interfere?

 def run(self):
 with open(self.file, 'r') as fh:
 for row in fh:
 numbers = [float(x) for x in row.split()]
 if numbers:
 mean = sum(numbers) / len(numbers)
 numbers.append(mean)
 self.queue.put(numbers)

The following is a run() method from a QRunnable class in a multithreaded7.
TCP Server application you're writing. All of the threads share a server socket
instance accessed through self.datastream. This code is not thread-safe,
however. What do you need to do to fix it?

 def run(self):
 message = get_http_response_string()
 message_len = len(message)
 self.datastream.writeUInt32(message_len)
 self.datastream.writeQString(message)

Multithreading with QTimer and QThread Chapter 10

[259]

Further reading
For further information, please refer to the following:

A semaphore is similar to a mutex but allows for an arbitrary number of locks to
be taken rather than just a single lock. You can read more about Qt's
implementation, the QSemaphore class, at https:/ / doc.qt. io/ qt-5/
qsemaphore. html

David Beazley's talk from PyCon 2010, available at https:/ /www. youtube. com/
watch?v= Obt- vMVdM8s, provides deeper insight into the operation of the Python
GIL

https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://doc.qt.io/qt-5/qsemaphore.html
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s
https://www.youtube.com/watch?v=Obt-vMVdM8s

11
Creating Rich Text with

QTextDocument
Whether drafting business memos in a word processor, writing a blog entry, or generating
reports, much of the world's computing involves the creation of text documents. Most of
these applications require the ability to produce not just plain alphanumeric strings, but
rich text as well. Rich text (as opposed to plain text) means text that includes styles and
formatting features such as font faces, colors, lists, tables, and images.

In this chapter, we're going to learn how PyQt allows us to work with rich text by covering
the following topics:

Creating rich text using markup
Manipulating rich text using QTextDocument
Printing rich text

Technical requirements
For this chapter, you'll need the basic Python and Qt setup you've been using since Chapter
1, Getting Started with PyQt. You might like to have the example code that can be found at
https://github.com/ PacktPublishing/ Mastering- GUI- Programming- with- Python/ tree/
master/Chapter11 as a reference.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5P4Cq

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter11
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq
http://bit.ly/2M5P4Cq

Creating Rich Text with QTextDocument Chapter 11

[261]

Creating rich text using markup
Every application that supports rich text must have some format to represent that text in
memory and when saving it to a file. Some formats use custom binary code, such as the
.doc and .rtf files used by older versions of Microsoft Word. In other cases, a plain-text
markup language is used. In a markup language, special strings called tags indicate the
placement of rich text features. Qt takes the markup approach and represents rich text
using a subset of hypertext markup language (HTML) version 4.

Rich text markup in Qt is rendered by the QTextDocument object, and as such it is only
usable on widgets that use QTextDocument to store their contents. This includes the
QLabel, QTextEdit, and QTextBrowser widgets. In this section, we're going to create a
demo script to explore the syntax and capabilities of this markup language.

Given the popularity and ubiquity of web development, it's likely that you already know a
bit about HTML; in case you don't, the following section will act as a quick introduction.

HTML basics
An HTML document is composed of text content interspersed with tags to indicate non-
plain text features. A tag is simply a word enclosed in angle brackets, as follows:

<sometag>This is some content</sometag>

Notice the </sometag> code at the end of the preceding example. This is called a closing
tag, and it's simply like the opening tag but with a forward slash (/) before the tag name.
Closing tags are generally only used for tags that enclose (or have the ability to enclose) text
content.

Consider the following example:

Text can be bold

Text can be emphasized

Text can be <u>underlined</u> <hr>

The b, em, and u tags require a closing tag because they enclose a portion of the content and
indicate a change in appearance. The br and hr tags (break and horizontal rule, respectively)
simply indicate non-textual items to include in the document, so they have no closing tags.

Creating Rich Text with QTextDocument Chapter 11

[262]

If you want to see what any of these examples look like, you can copy
them into a text file and open them in your web browser. Also, check out
the html_examples.html file in the example code.

Sometimes, complex structures are created by nesting tags, such as in the following list:

 Item one
 Item two
 Item three

Here, the ol tag starts an ordered list (a list that uses sequential numbers or letters, rather
than bullet characters). Each item in the list is indicated by the li (list item) tag. Note that
when nesting tags use a closing tag, the tags must be closed in the correct order, as follows:

<i>This is right</i>
<i>This is wrong!</i>

The preceding incorrect example would not work because the inner tag (<i>) was closed
after the outer tag ().

HTML tags can have attributes, which are key-value pairs that are used to configure the
tag, as shown in the following example:

The preceding tag is an img (image) tag that's used for showing images. Its attributes are
src (indicating the image file path), width (indicating the width to display the image), and
height (indicating the height to display).

HTML attributes are space-delimited, so don't put commas between them. Values can be
quoted using single or double-quotes, or left unquoted if they contain no spaces or other
confusing characters (such as a closing angle bracket); in general, however, it's usually best
to double-quote them. In Qt HTML, sizes are usually specified in px (pixels) or % (percent),
though in modern web HTML, other units are commonly used.

Creating Rich Text with QTextDocument Chapter 11

[263]

Style sheet syntax
Modern HTML is styled using Cascading Style Sheets (CSS). You learned about CSS in
Chapter 6, Styling Qt Applications, when we discussed QSS. To review, CSS allows you to
make declarations about the way a tag will look, as follows:

b {
 color: red;
 font-size: 16pt;
}

The preceding CSS directive will make all the content inside bold tags (between and
) appear in a red 16 point font.

Certain tags can also have modifiers, for example:

a:hovered {
 color: green;
 font-size: 16pt;
}

The preceding CSS applies to <a> (anchor) tag contents, but only when the anchor is
hovered over by the mouse pointer. Modifiers like this are also called pseudo-classes.

Semantic versus cosmetic tags
Some HTML tags describe how a piece of content should appear. We call these cosmetic
tags. For example, the <i> tag indicates that text should be printed in an italic font.
Consider, though, that italics are used in modern printing for many reasons—to emphasize
a word, to indicate a title of a published work, or to indicate that a phrase is from a foreign
language. To differentiate between these uses, HTML also has semantic tags. For example,
 means emphasis, and will result in italic text in most situations. But unlike the <i>
tag, it also indicates why the text should be italic. Older versions of HTML generally
focused on cosmetic tags, whereas newer versions focus increasingly on semantic tags.

Qt's rich-text HTML supports a few semantic tags, but they are merely aliases for
equivalent cosmetic tags.

There is much more to the modern HTML and CSS that's used on web pages than we've
described here, but what we've covered is sufficient for understanding the limited subset
used by Qt widgets. If you want to learn more, take a look at the resources under
the, Further reading section at the end of this chapter.

Creating Rich Text with QTextDocument Chapter 11

[264]

Structure and heading tags
To experiment with rich text markup, we're going to write an advertisement for our next
big game, Fight Fighter 2, and view it in a QTextBrowser. To begin, get a copy of the
application template from Chapter 4, Building Applications with QMainWindow, and call it
qt_richtext_demo.py.

In MainWindow.__init__(), add in a QTextBrowser object as the main widget, like so:

 main = qtw.QTextBrowser()
 self.setCentralWidget(main)
 with open('fight_fighter2.html', 'r') as fh:
 main.insertHtml(fh.read())

QTextBrowser is based on QTextEdit, but is read-only and preconfigured to navigate
hypertext links. After creating the text browser, we open the fight_fighter2.html
file and insert its contents into the browser using the insertHtml() method. Now, we can
edit fight_fighter2.html and see how it is rendered in PyQt.

Open fight_fighter2.html in your editor and begin with the following code:

<qt>
 <body>
 <h1>Fight Fighter 2</h1>
 <hr>

HTML documents are built hierarchically, with the outermost tag usually being <html>.
However, we can also use <qt> as the outermost tag when passing HTML to a
QTextDocument-based widget, which is a good idea as it reminds us that we're writing the
Qt-supported subset of HTML, not actual HTML.

Inside that, we have a <body> tag. This tag is also optional, but it will make styling easier
down the road.

Next, we've got a title inside an <h1> tag. The H here stands for heading, and tags <h1>
through <h6> indicate section headings from the outermost to the innermost. This tag will
be rendered in a larger and bolder font, indicating that it is the title of the section.

Creating Rich Text with QTextDocument Chapter 11

[265]

Following the heading, we have an <hr> tag to add a horizontal line. By default, <hr>
produces a single-pixel-thick black line, but that can be customized using style sheets.

Let's add the following regular text content:

 <p>Everything you love about fight-fighter, but better!</p>

The <p> tag, or paragraph tag, indicates a block of text. It is not strictly necessary to enclose
text content in paragraph tags, but understand that HTML does not respect new lines by
default. If you want to get distinct paragraphs separated by line breaks, you need to enclose
them in paragraph tags. (You can also insert
 tags, but the paragraph tag is considered
a cleaner approach as it is more semantic.)

Next, add the first child heading, as follows:

 <h2>About</h2>

Any child section under <h1> should be <h2>; any child section inside <h2> should be
<h3>, and so on. Heading tags are examples of semantic tags, and indicate the level of the
document hierarchy.

Never select heading levels based on the appearance they produce—for
example, don't use <h4> under <h1> just because you want smaller
header text. Use them semantically and adjust the look using styles (see
the Fonts, colors, images, and styles, section for more information).

Typography tags
Qt rich text supports many tags for altering the basic appearance of the text, as follows:

 <p>Fight fighter 2 is the <i>amazing</i> sequel to <u>Fight Fighter</u>,
an <s>intense</s> ultra-intense multiplayer action game from FightSoft
Software, LLC.</p>

In this example, we've used the following tags:

Tag Result
<i> Italic
 Bold
<u> Underlined
<s> Strikethrough

Creating Rich Text with QTextDocument Chapter 11

[266]

These are cosmetic tags, and each of them alters the appearance of the text inside the tag as
indicated. In addition to these tags, some lesser-used tags for the sizing and position of text
are supported, including the following:

 <p>Fight Fighter 2's new Ultra-ActionTM technology delivers
low-latency combat like never before. Best of all, at only
$1.99_{USD}, you <big>Huge Action</big> for a <small>tiny</small>
price.</p>

In the preceding example, we can see the <sup> and <sub> tags, which provide superscript
and subscript text, respectively, and the <big> and <small> tags, which provide slightly
bigger or smaller fonts.

Hyperlinks
Hyperlinks can also be added to Qt rich text using the <a> (anchor) tag, as follows:

 <p>Download it today from
 Example.com!</p>

The exact behavior of hyperlinks varies according to the widget displaying the hyperlink
and the settings of the widget.

The QTextBrowser by default will attempt to navigate to a hyperlink within the widget;
keep in mind, however, that these links will only work if they are resource URLs or local
file paths. QTextBrowser lacks a network stack and cannot be used to browse the internet.

It can, however, be configured to open URLs in an external browser; back in the Python
script, add the following line of code to MainWindow.__init__():

 main.setOpenExternalLinks(True)

This utilizes QDesktopServices.openUrl() to open the anchor's href value in the
desktop's default browser. You should configure this setting whenever you want to support
external hyperlinks in a document.

External hyperlinks can also be configured on QLabel widgets, but not within a
QTextEdit widget.

Creating Rich Text with QTextDocument Chapter 11

[267]

Documents can also use hyperlinks for navigating within a document itself, as follows:

 <p>Read about the features</p>

 <h2>Features</h2>
 <p>Fight Fighter 2 is so amazing in so many ways:</p>

Here, we've added an anchor pointing to #Features (with a pound sign), followed by a
number of breaks to simulate more content. When a user clicks the link, it will scroll the
browser widget to the anchor tag with a name (not href) attribute of Features (without
the pound sign).

This feature can be useful for doing things such as providing a navigable table of contents.

Lists and tables
Lists and tables are very useful for presenting orderly information in a way that users can
quickly parse.

An example of a list is as follows:

 <ul type=square>
 More players at once! Have up to 72 players.
 More teams! Play with up to 16 teams!
 Easier installation! Simply:
 Copy the executable to your system.
 Run it!

 Sound and music! >16 Million colors on some systems!

Lists in Qt rich text can be of the ordered or unordered variety. In the preceding example,
we have an unordered list (). The optional type attribute allows you to specify what
kind of bullets should be used. In this case, we've chosen square; other options for
unordered lists include circle and disc.

Each item in a list is specified using the (list item) tag. We can also nest a list inside a
list item to make a sublist. In this case, we've added an ordered list, which will use
sequential numbers to indicate new items. Ordered lists also accept the type attribute;
valid values are a (lower case letters), A (upper case letters), or 1 (sequential numbers).

Creating Rich Text with QTextDocument Chapter 11

[268]

> in the last bullet item is an example of an HTML entity. These are
special codes that are used to display HTML special characters such as
angle brackets, or non-ASCII characters, such as the copyright symbol.
Entities start with an ampersand and end with a colon and contain a
string indicating the character to display. The gt, in this case, stands for
greater than. An official list of entities can be found at https:/ /dev. w3.
org/html5/ html- author/ charref, though not all may be supported by
QTextDocument.

Creating HTML tables is somewhat more involved, as it requires many levels of nesting.
The hierarchy for table tags is as follows:

The table itself is defined by a <table> tag
The heading portion of the table is defined by the <thead> tag
Each row of the table (header or data) is defined by a <tr> (table row) tag
Within each row, table cells are defined by either a <th> (table heading) tag or
a <td> (table data) tag

Let's start a table with the following code:

 <table border=2>
 <thead>
 <tr bgcolor='grey'>
 <th>System</th><th>Graphics</th><th>Sound</th></tr>
 </thead>

In the preceding example, we've started with the opening <table> tag. The border
attribute specifies a width for the table border in pixels; in this case, we want a two-pixel
border. Keep in mind that this border goes around each cell and does not collapse (that is,
merge with an adjacent cell's border), so in actuality, we'll have a four-pixel border between
each cell. Table borders can have different styles; by default, the ridge style is used, so this
border will be shaded to look slightly three-dimensional.

Inside the <thead> section, there is a table row filled with table heading cells. By setting
the bgcolor attribute of the row, we can change the background color of all the header
cells to grey.

Now, let's add some data rows with the following code:

 <tr><td>Windows</td><td>DirectX 3D</td><td>24 bit PCM</td></tr>
 <tr><td>FreeDOS</td><td>256 color</td><td>8 bit Adlib PCM</td></tr>
 <tr><td>Commodore 64</td><td>256 color</td><td>SID audio</td></tr>
 <tr><td>TRS80</td>
 <td rowspan=2>Monochrome</td>

https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref
https://dev.w3.org/html5/html-author/charref

Creating Rich Text with QTextDocument Chapter 11

[269]

 <td rowspan=2>Beeps</td>
 </tr>
 <tr><td>Timex Sinclair</td></tr>
 <tr>
 <td>BBC Micro</td>
 <td colspan=2 bgcolor='red'>No support</td>
 </tr>
 </table>

In the preceding example, the rows contain <td> cells for the actual table data. Note that
we can use the rowspan and colspan attributes on individual cells to make them take up
additional rows and columns, and the bgcolor attribute can also be applied to individual
cells.

It's possible to wrap the data rows in a <tbody> tag to differentiate it from
the <thead> section, but this doesn't actually have any useful impact in
Qt rich text HTML.

Fonts, colors, images, and styles
Rich text fonts can be set using the tag, as follows:

 <h2>Special!</h2>

 <p>
 Buy Now!
 and receive <tt>20%</tt> off the regular price plus a
 Free sticker!
 </p>

 may be unfamiliar to those who have learned more modern HTML, as it was
deprecated in HTML 5. As you can see, though, it can be used to set the face, size, and
color attributes of the text enclosed in the tags.

The <tt> (typewriter type) tag is shorthand for using mono-spaced fonts and is useful for
presenting things like inline code, keyboard shortcuts, and terminal output.

Creating Rich Text with QTextDocument Chapter 11

[270]

If you prefer to use more modern CSS-style font configuration, this can be done by setting
the style attribute on a block-level tag like <div>, as follows:

 <div style='font-size: 16pt; font-weight: bold; color: navy;
 background-color: orange; padding: 20px;
 text-align: center;'>
 Don't miss this exciting offer!
 </div>

Within the style attribute, you can set any of the supported CSS values to be applied to
that block.

Document-wide styles
Qt rich text documents do not support HTML <style> tags or <link> tags for setting a
document-wide style sheet. Instead, you can use the setDefaultStyleSheet() method
of the QTextDocument object to set a CSS style sheet that will be applied to all viewed
documents.

Back in MainWindow.__init__(), add the following:

 main.document().setDefaultStyleSheet(
 'body {color: #333; font-size: 14px;} '
 'h2 {background: #CCF; color: #443;} '
 'h1 {background: #001133; color: white;} '
)

Note, however, that this must be added before the HTML is inserted into the widget. The
defaultStyleSheet method is only applied to newly inserted HTML.

Also note that certain aspects of the appearance are not properties of the document, but of
the widget. Notably, the background color of the document cannot be set by altering
the body's styles.

Instead, set the widget's style sheet, as follows:

 main.setStyleSheet('background-color: #EEF;')

Keep in mind that the widget's style sheet uses QSS, whereas the document's style sheet
uses CSS. The difference is minimal, but could come into play in certain situations.

Creating Rich Text with QTextDocument Chapter 11

[271]

Images
An image can be inserted using the tag, as follows:

 <div>

 </div>

The src attribute should be a file or resource path to an image file supported by Qt (see
Chapter 6, Styling Qt Applications, for more information about image format support). The
width and height attributes can be used to force a certain size.

Differences between Qt rich text and Web HTML
If you have any experience in web design or development, you have no doubt already
noted several differences between Qt's rich text markup and the HTML used in modern
web browsers. It's important to keep these in mind as you create rich text, so let's go over
the main differences.

First, Qt rich text is based on HTML 4 and CSS 2.1; as you have seen, it includes some
deprecated tags, such as , and excludes many of the more modern tags, such
as <section> or <figure>.

Furthermore, Qt rich text is based on only a subset of those specifications, so it lacks
support for many tags. For example, there are no input- or form-related tags, such
as <select> or <textarea>.

QTextDocument is also less forgiving than most web browser renderers when it comes to
syntax errors and case. For example, when setting a default style sheet, the case of the tag
name needs to match the case used in the document, or the style won't apply. In addition,
failing to use block-level tags (such as <p>, <div>, and so on) around content can lead to
unpredictable results.

In short, it's best not to think of Qt rich text markup as true HTML, but rather as a similar
but separate markup language. If you have any questions about whether a particular tag or
style directive is supported, consult the support reference at https:/ / doc.qt. io/ qt-5/
richtext-html-subset. html.

https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html
https://doc.qt.io/qt-5/richtext-html-subset.html

Creating Rich Text with QTextDocument Chapter 11

[272]

Manipulating rich text using QTextDocument
In addition to allowing us to specify rich text in markup, Qt provides us with an API to
create and manipulate rich text programmatically. This API is called the Qt Scribe
Framework, and it's built around the QTextDocument and QTextCursor classes.

To demonstrate how to create a document using the QTextDocument and QTextCursor
classes, we're going to build a simple invoice generator application. Our application will
take data from a widget form and use it to generate a rich text document programmatically.

Creating the invoice application GUI
Get a fresh copy of our PyQt application template and call it invoice_maker.py. We'll
begin our application by creating the GUI elements, and then develop the method that will
actually build the document.

Start your script with a data entry form class, as follows:

class InvoiceForm(qtw.QWidget):

 submitted = qtc.pyqtSignal(dict)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QFormLayout())
 self.inputs = dict()
 self.inputs['Customer Name'] = qtw.QLineEdit()
 self.inputs['Customer Address'] = qtw.QPlainTextEdit()
 self.inputs['Invoice Date'] = qtw.QDateEdit(
 date=qtc.QDate.currentDate(), calendarPopup=True)
 self.inputs['Days until Due'] = qtw.QSpinBox(
 minimum=0, maximum=60, value=30)
 for label, widget in self.inputs.items():
 self.layout().addRow(label, widget)

Like with most of the forms we've created, this class is based on QWidget and starts by
defining a submitted signal to carry a dictionary of the form's values. Here, we have also
added various inputs to QFormLayout to enter basic invoice data such as customer name,
customer address, and invoice date.

Creating Rich Text with QTextDocument Chapter 11

[273]

Next, we'll add QTableWidget for entering the invoice's line items, as follows:

 self.line_items = qtw.QTableWidget(
 rowCount=10, columnCount=3)
 self.line_items.setHorizontalHeaderLabels(
 ['Job', 'Rate', 'Hours'])
 self.line_items.horizontalHeader().setSectionResizeMode(
 qtw.QHeaderView.Stretch)
 self.layout().addRow(self.line_items)
 for row in range(self.line_items.rowCount()):
 for col in range(self.line_items.columnCount()):
 if col > 0:
 w = qtw.QSpinBox(minimum=0)
 self.line_items.setCellWidget(row, col, w)

Each row of this table widget contains a description of the task, the rate for the work, and
the number of hours worked. Because the values in the last two columns are numbers,
we're using the table widget's setCellWidget() method to replace the default QLineEdit
widgets in those cells with QSpinBox widgets.

Finally, we'll add a submit button with the following code:

 submit = qtw.QPushButton('Create Invoice', clicked=self.on_submit)
 self.layout().addRow(submit)

The submit button calls an on_submit() method, which starts as follows:

 def on_submit(self):
 data = {
 'c_name': self.inputs['Customer Name'].text(),
 'c_addr': self.inputs['Customer Address'].toPlainText(),
 'i_date': self.inputs['Invoice Date'].date().toString(),
 'i_due': self.inputs['Invoice Date'].date().addDays(
 self.inputs['Days until Due'].value()).toString(),
 'i_terms': '{} days'.format(
 self.inputs['Days until Due'].value())
 }

This method is simply going to extract the values that are entered into the form, make a few
calculations, and emit the resulting data dict with the submitted signal. Here, we started
by grabbing the values from each of the form's input widgets into a Python dictionary
using the appropriate method for each widget.

Creating Rich Text with QTextDocument Chapter 11

[274]

Next, we need to retrieve the line items' data, as follows:

 data['line_items'] = list()
 for row in range(self.line_items.rowCount()):
 if not self.line_items.item(row, 0):
 continue
 job = self.line_items.item(row, 0).text()
 rate = self.line_items.cellWidget(row, 1).value()
 hours = self.line_items.cellWidget(row, 2).value()
 total = rate * hours
 row_data = [job, rate, hours, total]
 if any(row_data):
 data['line_items'].append(row_data)

For each row in the table widget that has a description, we're going to retrieve all the data,
calculate a total cost by multiplying the rate and hours, and append all the data to the list in
our data dictionary.

Finally, we'll calculate a grand total cost and append that with the following code:

 data['total_due'] = sum(x[3] for x in data['line_items'])
 self.submitted.emit(data)

After summing the cost in each line, we will add it to the data dictionary and emit our
submitted signal with the data.

This takes care of our form class, so let's set up the main application layout in MainWindow.
Down in MainWindow.__init__(), add the following code:

 main = qtw.QWidget()
 main.setLayout(qtw.QHBoxLayout())
 self.setCentralWidget(main)

 form = InvoiceForm()
 main.layout().addWidget(form)

 self.preview = InvoiceView()
 main.layout().addWidget(self.preview)

 form.submitted.connect(self.preview.build_invoice)

The main widget is given a horizontal layout to contain the form and the view widget for
the formatted invoice. We then connect the form's submitted signal to a
build_invoice() method, which we will create on the view object.

This is the main GUI and logic for the application; now all that's left to do is create our
InvoiceView class.

Creating Rich Text with QTextDocument Chapter 11

[275]

Building InvoiceView
The InvoiceView class is where all the hard work takes place; we will base it on a read-
only QTextEdit widget, and it will contain a build_invoice() method that, when called
with a dictionary of data, will construct a formatted invoice document using the Qt Scribe
framework.

Let's start with the constructor, as shown in the following example:

class InvoiceView(qtw.QTextEdit):

 dpi = 72
 doc_width = 8.5 * dpi
 doc_height = 11 * dpi

 def __init__(self):
 super().__init__(readOnly=True)
 self.setFixedSize(qtc.QSize(self.doc_width, self.doc_height))

To begin, we've defined class variables for the document's width and height. We've chosen
these values to give us the aspect ratio of a standard US letter-sized document at a
reasonable size for the average computer monitor. Inside the constructor, we use the
calculated value to set a fixed size for the widget. This is all we need to do in the
constructor, so it's now time to get to the real work—building a document.

Let's begin with build_invoice(), as follows:

 def build_invoice(self, data):
 document = qtg.QTextDocument()
 self.setDocument(document)
 document.setPageSize(qtc.QSizeF(self.doc_width, self.doc_height))

As you can see in the preceding example, the method starts by creating a fresh
QTextDocument object and assigning it to the view's document property. Then, the
pageSize property is set using the document dimensions calculated in the class definition.
Note that our QTextEdit-based view already has a document object that we could retrieve,
but we're creating a fresh object so that the method will start with an empty document each
time it is called.

Editing documents with QTextDocument may feel a bit backward from the way we have
been creating GUI forms, where we typically create objects, and then configure and place
them on the layout.

Creating Rich Text with QTextDocument Chapter 11

[276]

Instead, the QTextDocument workflow is more like a word processor:

There is a cursor that always points to some location in the document
There is an active text style, paragraph style, or another block-level style whose
settings will be applied to whatever is entered
To add content, users start by positioning the cursor, configuring the styles, and
finally creating the content

So, clearly, the first step is to get a reference to the cursor; do this with the following code:

 cursor = qtg.QTextCursor(document)

The QTextCursor object is the tool that we use to insert content, and it has many methods
for inserting different types of elements into the document.

For example, at this point, we could just start inserting text content, as follows:

 cursor.insertText("Invoice, woohoo!")

However, before we start writing content to our document, we should build a basic
document framework to work within. To do this, we need to understand how
QTextDocument objects are structured.

The QTextDocument structure
Just like an HTML document, a QTextDocument object is a hierarchical structure. It is made
up of frames, blocks, and fragments, which are defined as follows:

A frame is represented by the QTextFrame object, and is a rectangular region of
a document that can contain any type of content, including other frames. At the
top of our hierarchy is the root frame, which contains all the document's
contents.
A block, represented by the QTextBlock object, is a region of text surrounded by
line breaks, such as a paragraph or a list item.
A fragment, represented by the QTextFragment object, is a contiguous region of
text inside a block that shares a common text formatting. For example, if you
have a sentence containing a word in bold, that represents three text fragments:
the sentence before the bold word, the bold word, and the sentence after the bold
word.
Other items, such as tables, lists, and images, are subclassed from one of these
preceding classes.

Creating Rich Text with QTextDocument Chapter 11

[277]

We're going to organize our document by inserting a set of sub-frames under the root frame
so that we can easily navigate to the section of the document we want to work on. Our
document will have the following four frames:

The logo frame will contain the company logo and contact information
The customer address frame will hold the customer name and address
The terms frame will hold a list of the invoice terms and conditions
The line items frame will hold a table of the line-items and totals

Let's create some text frames to outline the structure of our document. We'll start by saving
a reference to the root frame so that we can easily return to it after creating a sub-frame, as
follows:

 root = document.rootFrame()

Now that we have that, we can retrieve a cursor position for the end of the root frame at
any point by calling the following command:

 cursor.setPosition(root.lastPosition())

The cursor's setPosition() method places our cursor at any given position, and the root
frame's lastPosition() method retrieves the position at the end of the root frame.

Now, let's define the first sub-frame, as follows:

 logo_frame_fmt = qtg.QTextFrameFormat()
 logo_frame_fmt.setBorder(2)
 logo_frame_fmt.setPadding(10)
 logo_frame = cursor.insertFrame(logo_frame_fmt)

A frame must be created with a QTextFrameFormat object defining its format, so before
we can write the frame, we have to define our formatting. Unfortunately, the frame
format's properties cannot be set using keyword arguments, so we must configure it using
setter methods instead. In this example, we've set a two-pixel border around the frame, as
well as ten pixels of padding.

Once the format object is created, we call the cursor's insertFrame() method to create a
new frame with our configured format.

Creating Rich Text with QTextDocument Chapter 11

[278]

insertFrame() returns the QTextFrame object created, and also positions our document's
cursor inside the new frame. Since we aren't ready to add content to this frame, and we
don't want to create the next frame inside of it, we need to return to the root frame before
creating the next frame by using the following code:

 cursor.setPosition(root.lastPosition())
 cust_addr_frame_fmt = qtg.QTextFrameFormat()
 cust_addr_frame_fmt.setWidth(self.doc_width * .3)
 cust_addr_frame_fmt.setPosition(qtg.QTextFrameFormat.FloatRight)
 cust_addr_frame = cursor.insertFrame(cust_addr_frame_fmt)

In the preceding example, we're using the frame format to set the width of this frame to
one-third of the width of the document and to make it float to the right. Floating a
document frame means that it will be pushed to one side of the document and other
content will flow around it.

Now, we'll add the terms frame, as follows:

 cursor.setPosition(root.lastPosition())
 terms_frame_fmt = qtg.QTextFrameFormat()
 terms_frame_fmt.setWidth(self.doc_width * .5)
 terms_frame_fmt.setPosition(qtg.QTextFrameFormat.FloatLeft)
 terms_frame = cursor.insertFrame(terms_frame_fmt)

This time, we're going to make the frame half of the document's width and float it to the
left.

In theory, these two frames should be next to each other. In practice, due
to a quirk in the QTextDocument class' rendering, the top of the second
frame will be a line below the top of the first one. This is OK for our demo,
but if you need actual columns, use a table instead.

Finally, let's add the frame to hold our line items table, as follows:

 cursor.setPosition(root.lastPosition())
 line_items_frame_fmt = qtg.QTextFrameFormat()
 line_items_frame_fmt.setMargin(25)
 line_items_frame = cursor.insertFrame(line_items_frame_fmt)

Once again, we've moved the cursor back to the root frame and inserted a new frame. This
time, the format adds a margin of 25 pixels to the frame.

Note that we don't have to do any special configuration of the QTextFrameFormat objects
if we don't want to, but we do have to create one for each frame, and we do need to set up
any configuration on them before creating the new frame. Note that it's also possible to reuse
frame formats if you have many frames with the same configuration.

Creating Rich Text with QTextDocument Chapter 11

[279]

Character formats
Just like frames must be created with a frame format, text content must be created with a
character format, which defines properties such as the font and alignment of the text.
Before we start adding content to our frames, we should define some common character
formats to use for different parts of the document.

This is done using the QTextCharFormat class, as follows:

 std_format = qtg.QTextCharFormat()

 logo_format = qtg.QTextCharFormat()
 logo_format.setFont(
 qtg.QFont('Impact', 24, qtg.QFont.DemiBold))
 logo_format.setUnderlineStyle(
 qtg.QTextCharFormat.SingleUnderline)
 logo_format.setVerticalAlignment(
 qtg.QTextCharFormat.AlignMiddle)

 label_format = qtg.QTextCharFormat()
 label_format.setFont(qtg.QFont('Sans', 12, qtg.QFont.Bold))

In the preceding example, we've created the following three formats:

std_format, which will be used for regular text. We aren't changing anything
from the default settings.
logo_format, which will be used for our company logo. We're customizing its
font and adding an underline, as well as setting its vertical alignment.
label_format, which will be used for labels; they will be in 12-point font and
bold.

Note that QTextCharFormat allows you to make many font configurations directly using
setter methods, or you can even configure a QFont object to assign to the format. We'll use
these three formats when we add our text content for the remainder of the document.

Adding basic content
Now, let's add some basic content to our logo_frame with the following command:

 cursor.setPosition(logo_frame.firstPosition())

Creating Rich Text with QTextDocument Chapter 11

[280]

Just like we called the root frame's lastPosition method to get the position at its end, we
can call the logo frame's firstPosition() method to get the position at the beginning of
the frame. Once there, we can insert content, such as a logo image, as follows:

 cursor.insertImage('nc_logo.png')

Images can be inserted just like this—by passing a path to the image as a string. However,
this method offers little in the way of configuration, so let's try a slightly more involved
approach:

 logo_image_fmt = qtg.QTextImageFormat()
 logo_image_fmt.setName('nc_logo.png')
 logo_image_fmt.setHeight(48)
 cursor.insertImage(logo_image_fmt, qtg.QTextFrameFormat.FloatLeft)

By using a QTextImageFormat object, we can configure various aspects of the image first,
such as its height and width, then add it along with an enum constant specifying its
positioning policy. In this case, FloatLeft will cause the image to align to the left of the
frame, and subsequent text will wrap around it.

Now, let's write the following text in the block:

 cursor.insertText(' ')
 cursor.insertText('Ninja Coders, LLC', logo_format)
 cursor.insertBlock()
 cursor.insertText('123 N Wizard St, Yonkers, NY 10701', std_format)

Using our logo_format, we have written a text fragment containing the company name
and then inserted a new block so, we can add another fragment containing the address on
another line. Note that passing a character format is optional; if we don't do it, the fragment
will be inserted with the currently active format, just as it is in a word processor.

That takes care of our logo, so now let's deal with the customer address block, as follows:

 cursor.setPosition(cust_addr_frame.lastPosition())

Text blocks can have formats just like frames and characters. Let's create a text block format
to use with our customer address using the following code:

 address_format = qtg.QTextBlockFormat()
 address_format.setAlignment(qtc.Qt.AlignRight)
 address_format.setRightMargin(25)
 address_format.setLineHeight(
 150, qtg.QTextBlockFormat.ProportionalHeight)

Creating Rich Text with QTextDocument Chapter 11

[281]

Text block formats allow you to change the sort of settings you'd change in a paragraph of
text: margins, line heights, indents, and alignment. Here, we've set the text alignment to the
right-aligned, a right margin of 25 pixels, and the line-height to 1.5 lines. There are multiple
ways to specify the height in QTextDocument, and the second argument to
setLineHeight() determines how the value passed in will be interpreted. In this case,
we're using the ProportionalHeight mode, which interprets the value as a percentage of
the line-height.

We can pass our block format object to any insertBlock call, as follows:

 cursor.insertBlock(address_format)
 cursor.insertText('Customer:', label_format)
 cursor.insertBlock(address_format)
 cursor.insertText(data['c_name'], std_format)
 cursor.insertBlock(address_format)
 cursor.insertText(data['c_addr'])

Each time we insert a block, it's like starting a new paragraph. Our multi-line address string
will be inserted as one paragraph, but note that it will still be spaced to 1.5 lines.

Inserting a list
Our invoice terms will be presented as an unordered bullet list. Ordered and unordered
lists can be inserted into QTextDocument using the cursor's insertList() method, as
follows:

 cursor.setPosition(terms_frame.lastPosition())
 cursor.insertText('Terms:', label_format)
 cursor.insertList(qtg.QTextListFormat.ListDisc)

The argument for insertList() can be either a QTextListFormat object or a constant
from the QTextListFormat.Style enum. In this case, we're using the latter, specifying
that we want a list with disc-style bullets.

Other options for list formats include ListCircle and ListSquare for
unordered lists, and ListDecimal, ListLowerAlpha, ListUpperAlpha,
ListUpperRoman, and ListLowerRoman for ordered lists.

Now, we'll define some items to insert into our list, as follows:

 term_items = (
 f'Invoice dated: {data["i_date"]}',
 f'Invoice terms: {data["i_terms"]}',

Creating Rich Text with QTextDocument Chapter 11

[282]

 f'Invoice due: {data["i_due"]}',
)

Note that we're using markup in the preceding example, rather than raw strings. You can
still use markup when creating a document with QTextCursor; however, you'll need to tell
the cursor it's inserting HTML rather than plain text by calling insertHtml() rather than
insertText(), as shown in the following example:

 for i, item in enumerate(term_items):
 if i > 0:
 cursor.insertBlock()
 cursor.insertHtml(item)

After calling insertList(), our cursor is positioned inside the first list item, so we now
need to call insertBlock() to get to subsequent items (we don't want to do this for the
first item, since we're already in a bullet point, hence the if i > 0 check).

Unlike insertText(), insertHtml() does not accept a character format
object. You have to rely on your markup to determine the formatting.

Inserting a table
The last thing we're going to insert in our invoice is a table containing our line items.
QTextTable is a subclass of QTextFrame, and just like a frame, we'll need to create a
format object for it before we can create the table itself.

The class we need is the QTextTableFormat class:

 table_format = qtg.QTextTableFormat()
 table_format.setHeaderRowCount(1)
 table_format.setWidth(
 qtg.QTextLength(qtg.QTextLength.PercentageLength, 100))

Here, we've configured the headerRowCount property, which indicates that the first row is
a header row and should be repeated at the top of each page. This is equivalent to putting
the first row in a <thead> tag in markup.

We're also setting the width, but instead of using pixel values, we're making use of a
QTextLength object. This class is somewhat confusingly named because it doesn't refer
specifically to the length of text, but rather to any generic length you might need in
QTextDocument. QTextLength objects can be of the percentage, fixed, or variable type; in
this case, we're specifying PercentageLength with a value of 100, or 100%.

Creating Rich Text with QTextDocument Chapter 11

[283]

Now, let's insert our table with the following code:

 headings = ('Job', 'Rate', 'Hours', 'Cost')
 num_rows = len(data['line_items']) + 1
 num_cols = len(headings)

 cursor.setPosition(line_items_frame.lastPosition())
 table = cursor.insertTable(num_rows, num_cols, table_format)

When inserting a table into QTextDocument, we not only need to define a format, but also
a number of rows and columns. To do that, we've created a tuple of the headers, then
calculated the rows and columns by taking the length of the line item list (adding 1 for the
header row), and the length of the headers tuple.

We then need to position the cursor in the line items frame and insert our table. Just like
other insert methods, insertTable() positions our cursor inside the inserted item, in the
first column of the first row.

We can now insert our heading row with the following code:

 for heading in headings:
 cursor.insertText(heading, label_format)
 cursor.movePosition(qtg.QTextCursor.NextCell)

Up to this point, we've been positioning the cursor by passing an exact position to
setPosition(). QTextCursor objects also have a movePosition() method which can
take a constant from the QTextCursor.MoveOperation enum. This enum defines
constants representing about two dozen different cursor movements, such as
StartOfLine, PreviousBlock, and NextWord. In this case, the NextCell movement
takes us to the next cell in a table.

We can use the same idea to insert our data, like this:

 for row in data['line_items']:
 for col, value in enumerate(row):
 text = f'${value}' if col in (1, 3) else f'{value}'
 cursor.insertText(text, std_format)
 cursor.movePosition(qtg.QTextCursor.NextCell)

In this case, we're iterating every column of every row in the data list and using
insertText() to add the data to the cell. If the column number is 1 or 3, that is, a
monetary value, we need to add a currency symbol to the display.

Creating Rich Text with QTextDocument Chapter 11

[284]

We also need to add one more row to hold the grand total for the invoice. To add an extra
row in our table, we can use the following QTextTable.appendRows() method:

 table.appendRows(1)

To position our cursor into a particular cell in the new row, we can use the table object's
cellAt() method to retrieve a QTableCell object, then use that object's
lastCursorPosition() method, which returns a new cursor positioned at the end of the
cell, as follows:

 cursor = table.cellAt(num_rows, 0).lastCursorPosition()
 cursor.insertText('Total', label_format)
 cursor = table.cellAt(num_rows, 3).lastCursorPosition()
 cursor.insertText(f"${data['total_due']}", label_format)

That's the last bit of content we need to write to the invoice document, so let's go ahead and
test it out.

Finishing and testing
Now, if you run your application, fill in the fields, and hit Create Invoice, you should see
something like the following screenshot:

Creating Rich Text with QTextDocument Chapter 11

[285]

Looking good! Of course, that invoice won't do us much good if we can't print or export it.
So, in the next section, we'll look at how to handle the printing of documents.

Printing rich text
Nothing strikes terror into the hearts of programmers like being asked to implement printer
support. The act of turning pristine digital bits into ink on paper is messy in real life and
can be just as messy in the software world. Fortunately, Qt provides the QtPrintSupport
module, a cross-platform print system that can easily turn QTextDocument into hard-copy
format, no matter what OS we're using.

Updating the Invoice app for print support
Readers outside the United States almost certainly groaned when we hard-coded the
dimensions of our document to 8.5×11, but never fear—we're going to make some changes
that will allow us to set the size based on a user's selection of document sizes.

In the InvoiceView class, create the following new method, set_page_size(), to set the
page size:

 def set_page_size(self, qrect):
 self.doc_width = qrect.width()
 self.doc_height = qrect.height()
 self.setFixedSize(qtc.QSize(self.doc_width, self.doc_height))
 self.document().setPageSize(
 qtc.QSizeF(self.doc_width, self.doc_height))

This method will receive a QRect object, from which it will extract width and height values
to update the document's settings, the widget's fixed size, and the document's page size.

Down in MainWindow.__init__(), add a toolbar to control printing and set up the
following actions:

 print_tb = self.addToolBar('Printing')
 print_tb.addAction('Configure Printer', self.printer_config)
 print_tb.addAction('Print Preview', self.print_preview)
 print_tb.addAction('Print dialog', self.print_dialog)
 print_tb.addAction('Export PDF', self.export_pdf)

We'll implement each of these callbacks as we walk through how to set up each aspect of
the print process.

Creating Rich Text with QTextDocument Chapter 11

[286]

Configuring the printer
Printing begins with a QtPrintSupport.QPrinter object, which represents a printed
document in memory. The basic workflow of printing in PyQt is as follows:

Create a QPrinter object1.
Configure the QPrinter object using its methods or printer configuration2.
dialogs
Print QTextDocument to the QPrinter object3.
Pass the QPrinter object to the operating system's print dialog, from which the4.
user can print using a physical printer

In MainWindow.__init__(), let's create our QPrinter object, as follows:

 self.printer = qtps.QPrinter()
 self.printer.setOrientation(qtps.QPrinter.Portrait)
 self.printer.setPageSize(qtg.QPageSize(qtg.QPageSize.Letter))

Once the printer is created, we can configure a wide number of properties; here, we've
simply set the orientation and page size (to the US letter defaults, once again, but feel free
to change this to your preferred paper size).

Anything you can configure in a printer settings dialog can be configured via the QPrinter
method, but ideally, we'd rather let the user make these decisions. So, let's implement the
following printer_config() method:

 def printer_config(self):
 dialog = qtps.QPageSetupDialog(self.printer, self)
 dialog.exec()

The QPageSetupDialog object is a QDialog subclass that presents all the options that are
available for the QPrinter object. We pass into it our QPrinter object, which causes any
changes that have been made in the dialog to be applied to that printer object. On Windows
and macOS, Qt will use the OS-provided print dialogs by default; on other platforms, a Qt-
specific dialog will be used.

Now that the user can configure paper size, we need to allow the page size used by
InvoiceView to reset after each change. So, let's add the following method to
MainWindow:

 def _update_preview_size(self):
 self.preview.set_page_size(
 self.printer.pageRect(qtps.QPrinter.Point))

Creating Rich Text with QTextDocument Chapter 11

[287]

The QPrinter.pageRect() method extracts a QRect object, defining the configured page
size. Since our InvoiceView.set_page_size() method accepts a QRect, we just need to
pass this object along to it.

Note that we've passed a constant into pageRect(), indicating that we want the size in
points. A point is 1/72 of an inch, so our widget size will be 72 × the physical page size in
inches. You can request the page rectangle in a variety of units (including millimeters,
picas, inches, and so on) if you want to do your own calculations to scale the widget's size.

Unfortunately, the QPrinter object is not a QObject descendant, so that
we cannot use signals to determine when its parameters were changed.

Now, add a call to self._update_preview_size() to the end of printer_config(), so
that it will be called whenever the user configures the page. You'll find that if you change
the size of the paper in the printer configuration dialog, your preview widget will resize
accordingly.

Printing a page
Before we can physically print a document, we have to first print QTextDocument to the
QPrinter object. This is done by passing the printer object to the document's print()
method.

We'll create the following method to do that for us:

 def _print_document(self):
 self.preview.document().print(self.printer)

Note that this doesn't actually cause your printing device to start putting ink on the page –
it just loads the document into the QPrinter object.

To actually print it to paper, a printer dialog is needed; so, add the following method to
MainView:

 def print_dialog(self):
 self._print_document()
 dialog = qtps.QPrintDialog(self.printer, self)
 dialog.exec()
 self._update_preview_size()

Creating Rich Text with QTextDocument Chapter 11

[288]

In this method, we first call our internal method to load the document into the QPrinter
object, then pass the object to a QPrintDialog object, which we execute by calling its
exec() method. This will display the printing dialog, which the user can then use to send
the document off to a physical printer.

If you don't need the printing dialog to block program execution, you can
call its open() method instead. We're blocking in the preceding example
so we can perform actions once the dialog is closed.

After the dialog has closed, we call _update_preview_size() to grab the new paper size
and update our widget and document. In theory, we could connect the dialog's accepted
signal to that method, but in practice, there are some race conditions that may cause this to
fail.

Print previewing
Nobody likes to waste paper by printing something that isn't right, so we should add a
print_preview function. QPrintPreviewDialog exists for this purpose and works very
much like other printing dialogs, as follows:

 def print_preview(self):
 dialog = qtps.QPrintPreviewDialog(self.printer, self)
 dialog.paintRequested.connect(self._print_document)
 dialog.exec()
 self._update_preview_size()

Once again, we just need to pass the printer object to the dialog's constructor and call
exec(). We also need to connect the dialog's paintRequested signal to a slot that will
update the document in QPrinter so that the dialog can make sure the preview is up to
date. Here, we've connected it to our _print_document() method, which does exactly
what is required.

Exporting to PDF
In this paperless digital age, the PDF file has replaced the hard copy for many purposes, so
an easy export to PDF function is always a good thing to add. QPrinter can do this for us
easily.

Creating Rich Text with QTextDocument Chapter 11

[289]

Add the following export_pdf() method to MainView:

 def export_pdf(self):
 filename, _ = qtw.QFileDialog.getSaveFileName(
 self, "Save to PDF", qtc.QDir.homePath(), "PDF Files (*.pdf)")
 if filename:
 self.printer.setOutputFileName(filename)
 self.printer.setOutputFormat(qtps.QPrinter.PdfFormat)
 self._print_document()

Here, we're going to start by asking the user for a filename. If they provide one, we'll
configure our QPrinter object with the filename, set the output format to PdfFormat, and
then print the document. When writing to a file, QTextDocument.print() will take care
of writing the data and saving the file for us, so we don't need to do anything else here.

That covers all your printing needs for the invoice program! Take some time to test this
functionality and see how it works with your printers.

Summary
In this chapter, you mastered working with rich text documents in PyQt5. You learned how
to use Qt's HTML subset to add rich text formatting in the QLabel, QTextEdit, and
QTextBrowser widgets. You worked through constructing a QTextDocument
programmatically using the QTextCursor interface. Finally, you learned how to bring your
QTextDocument objects into the real world using Qt's printing support module.

In Chapter 12, Creating 2D Graphics with QPainter, you'll learn some advanced concepts of
two-dimensional graphics. You'll learn to work with QPainter objects to create graphics,
build custom widgets, and create an animation.

Questions
Try these questions to test your knowledge from this chapter:

The following HTML isn't displaying as you'd hoped. Find as many errors as you1.
can:

<table>
<thead background=#EFE><th>Job</th><th>Status</th></thead>
<tr><td>Backup</td>
Success!</td></tr>

Creating Rich Text with QTextDocument Chapter 11

[290]

<tr><td>Cleanup<td>Fail!</td></tr>
</table>

What is wrong with the following Qt HTML snippets?2.

<p>There is nothing <i>wrong</i> with your television
set</p>
<table><row><data>french fries</data>
<data>$1.99</data></row></table>
Can you feel the
<strikethrough>love</strikethrough>code tonight?
<label>Username</label><input type='text' name='username'></input>
My picture

This snippet is supposed to implement a table of contents. Why doesn't it work3.
correctly?

 Section 1
 Section 2

 <div id=Section1>
 <p>This is section 1</p>
 </div>
 <div id=Section2>
 <p>This is section 2</p>
 </div>

Using QTextCursor, add a sidebar to the right-hand side of your document.4.
Explain how you would go about this.
You are trying to create a document with QTextCursor. It should have a top and5.
bottom frame; in the top frame, there should be a title, and in the bottom frame,
an unordered list. Correct the following code so that it does that:

 document = qtg.QTextDocument()
 cursor = qtg.QTextCursor(document)
 top_frame = cursor.insertFrame(qtg.QTextFrameFormat())
 bottom_frame = cursor.insertFrame(qtg.QTextFrameFormat())

 cursor.insertText('This is the title')
 cursor.movePosition(qtg.QTextCursor.NextBlock)
 cursor.insertList(qtg.QTextListFormat())
 for item in ('thing 1', 'thing 2', 'thing 3'):
 cursor.insertText(item)

Creating Rich Text with QTextDocument Chapter 11

[291]

You're creating your own QPrinter subclass to add a signal when the page size6.
changes. Will the following code work?

 class MyPrinter(qtps.QPrinter):

 page_size_changed = qtc.pyqtSignal(qtg.QPageSize)

 def setPageSize(self, size):
 super().setPageSize(size)
 self.page_size_changed.emit(size)

QtPrintSupport contains a class called QPrinterInfo. Using this class, print a7.
list of the names, makes, models, and default page sizes of all of the printers on
your system.

Further reading
For further information, please refer to the following links:

Qt's overview of the Scribe framework can be found at https:/ / doc.qt. io/ qt-
5/richtext. html

Advanced document layouts can be defined using the
QAbstractTextDocumentLayout and QTextLine classes; information about
how to use these classes can be found at https:/ / doc.qt. io/ qt-5/ richtext-
layouts. html

An overview of Qt's printing system can be found at https:/ /doc. qt. io/qt- 5/
qtprintsupport- index. html

https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/richtext-layouts.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html
https://doc.qt.io/qt-5/qtprintsupport-index.html

12
Creating 2D Graphics with

QPainter
We've already seen that Qt provides a vast array of widgets with extensive styling and
customization capabilities. There are times, however, when we need to take direct control
of what is being drawn on the screen; for example, we might like to edit an image, create a
unique widget, or build an interactive animation. At the core of all these tasks in Qt sits a
humble, hardworking object known as QPainter.

In this chapter, we're going to explore Qt's two-dimensional (2D) graphics capabilities in
three sections:

Image editing with QPainter
Custom widgets with QPainter
Animating 2D graphics with QGraphicsScene

Technical requirements
This chapter requires the basic Python and PyQt5 setup that you've been using throughout
the book. You may also wish to download the example code from https:/ / github. com/
PacktPublishing/Mastering- GUI- Programming- with- Python/ tree/ master/ Chapter12.

You will also need the psutil library, which you can install from PyPI using the following
command:

$ pip install --user psutil

Finally, it would be helpful to have some images on hand that you can use for sample data.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xzlL

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter12
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL
http://bit.ly/2M5xzlL

Creating 2D Graphics with QPainter Chapter 12

[293]

Image editing with QPainter
Images can be edited in Qt using a QPainter object to draw on a QImage object. In Chapter
6, Styling Qt Applications, you learned about the QPixmap object, which is a display-
optimized object representing a graphical image. The QImage object is a similar object,
which is optimized for editing rather than display. To demonstrate how we can draw on a
QImage object using QPainter, we're going to build a classic meme generator application.

The meme generator GUI
Create a copy of your Qt application template from Chapter 4, Building Applications with
QMainWindow, and call it meme_gen.py. We will begin by building the GUI form for our
meme generator.

The editing form
Before we create the actual form, we're going to simplify our code slightly by creating some
custom button classes: a ColorButton class for setting colors, a FontButton class for
setting fonts, and an ImageFileButton class for selecting images.

The ColorButton class begins like this:

class ColorButton(qtw.QPushButton):

 changed = qtc.pyqtSignal()

 def __init__(self, default_color, changed=None):
 super().__init__()
 self.set_color(qtg.QColor(default_color))
 self.clicked.connect(self.on_click)
 if changed:
 self.changed.connect(changed)

This button inherits QPushButton but makes a few changes. We've defined a changed
signal to track when the value of the button changes and added a keyword option so that
this signal can be connected using keywords, just like built-in signals.

Creating 2D Graphics with QPainter Chapter 12

[294]

We've also added the ability to specify a default color, which will be passed to a
set_color method:

 def set_color(self, color):
 self._color = color
 pixmap = qtg.QPixmap(32, 32)
 pixmap.fill(self._color)
 self.setIcon(qtg.QIcon(pixmap))

This method stores the passed color value in an instance variable and then generates a
pixmap object of the given color to use as a button icon (we saw this technique in Chapter
6, Styling Qt Applications).

The button's clicked signal is connected to an on_click() method:

 def on_click(self):
 color = qtw.QColorDialog.getColor(self._color)
 if color:
 self.set_color(color)
 self.changed.emit()

This method opens QColorDialog, allowing the user to choose a color and, if one is
selected, it sets its color and emits the changed signal.

The FontButton class will be nearly identical to the preceding class:

class FontButton(qtw.QPushButton):

 changed = qtc.pyqtSignal()

 def __init__(self, default_family, default_size, changed=None):
 super().__init__()
 self.set_font(qtg.QFont(default_family, default_size))
 self.clicked.connect(self.on_click)
 if changed:
 self.changed.connect(changed)

 def set_font(self, font):
 self._font = font
 self.setFont(font)
 self.setText(f'{font.family()} {font.pointSize()}')

Similar to the color button, it defines a changed signal that can be connected through a
keyword. It takes a default family and size, which is used to generate a default QFont object
stored in the button's _font property using the set_font() method.

Creating 2D Graphics with QPainter Chapter 12

[295]

The set_font() method also changes the button's font and text to the selected family and
size.

Finally, the on_click() method handles the button clicks:

 def on_click(self):
 font, accepted = qtw.QFontDialog.getFont(self._font)
 if accepted:
 self.set_font(font)
 self.changed.emit()

Similar to the color button, we're displaying a QFontDialog dialog box and, if the user
selects a font, setting the button's font accordingly.

Finally, the ImageFileButton class will be very much like the preceding two classes:

class ImageFileButton(qtw.QPushButton):

 changed = qtc.pyqtSignal()

 def __init__(self, changed=None):
 super().__init__("Click to select…")
 self._filename = None
 self.clicked.connect(self.on_click)
 if changed:
 self.changed.connect(changed)

 def on_click(self):
 filename, _ = qtw.QFileDialog.getOpenFileName(
 None, "Select an image to use",
 qtc.QDir.homePath(), "Images (*.png *.xpm *.jpg)")
 if filename:
 self._filename = filename
 self.setText(qtc.QFileInfo(filename).fileName())
 self.changed.emit()

The only difference here is that the dialog is now a getOpenFileName dialog that allows
the user to select PNG, XPM, or JPEG files.

QImage can actually handle a wide variety of image files. You can find
these at https:/ / doc. qt. io/qt- 5/qimage. html#reading- and- writing-
image- files or by calling QImageReader.supportedImageFormats().
We've shortened the list here for brevity.

https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files
https://doc.qt.io/qt-5/qimage.html#reading-and-writing-image-files

Creating 2D Graphics with QPainter Chapter 12

[296]

Now that these classes are created, let's build a form for editing the meme's properties:

class MemeEditForm(qtw.QWidget):

 changed = qtc.pyqtSignal(dict)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QFormLayout())

This form will be very similar to those that we have created in previous chapters, but,
rather than using a submitted signal for when the form is submitted, the changed signal
will be triggered whenever any form item is changed. This will allow us to display any
changes in real-time rather than requiring a button push.

Our first control will be to set the filename of the source image:

 self.image_source = ImageFileButton(changed=self.on_change)
 self.layout().addRow('Image file', self.image_source)

We're going to be linking the changed signal (or something similar) on each widget to a
method called on_change(), which will gather up the data in the form and emit
the changed signal of MemeEditForm.

First, though, let's add fields to control the text itself:

 self.top_text = qtw.QPlainTextEdit(textChanged=self.on_change)
 self.bottom_text = qtw.QPlainTextEdit(textChanged=self.on_change)
 self.layout().addRow("Top Text", self.top_text)
 self.layout().addRow("Bottom Text", self.bottom_text)
 self.text_color = ColorButton('white', changed=self.on_change)
 self.layout().addRow("Text Color", self.text_color)
 self.text_font = FontButton('Impact', 32, changed=self.on_change)
 self.layout().addRow("Text Font", self.text_font)

Our memes will have separate text drawn at the top and bottom of the images, and we've
used our ColorButton and FontButton classes to create inputs for the text's color and
font. Once again, we're connecting an appropriate changed signal from each widget to an
on_changed() instance method.

Creating 2D Graphics with QPainter Chapter 12

[297]

Let's finish up the form GUI by adding controls to draw background boxes for the text:

 self.text_bg_color = ColorButton('black', changed=self.on_change)
 self.layout().addRow('Text Background', self.text_bg_color)
 self.top_bg_height = qtw.QSpinBox(
 minimum=0, maximum=32,
 valueChanged=self.on_change, suffix=' line(s)')
 self.layout().addRow('Top BG height', self.top_bg_height)
 self.bottom_bg_height = qtw.QSpinBox(
 minimum=0, maximum=32,
 valueChanged=self.on_change, suffix=' line(s)')
 self.layout().addRow('Bottom BG height', self.bottom_bg_height)
 self.bg_padding = qtw.QSpinBox(
 minimum=0, maximum=100, value=10,
 valueChanged=self.on_change, suffix=' px')
 self.layout().addRow('BG Padding', self.bg_padding)

These fields allow the user to add opaque backgrounds behind the text in case the image is
too colorful for it to be readable. The controls allow you to change the number of lines for
the top and bottom backgrounds, the color of the boxes, and the padding.

That takes care of the form layout, so now we'll deal with the on_change() method:

 def get_data(self):
 return {
 'image_source': self.image_source._filename,
 'top_text': self.top_text.toPlainText(),
 'bottom_text': self.bottom_text.toPlainText(),
 'text_color': self.text_color._color,
 'text_font': self.text_font._font,
 'bg_color': self.text_bg_color._color,
 'top_bg_height': self.top_bg_height.value(),
 'bottom_bg_height': self.bottom_bg_height.value(),
 'bg_padding': self.bg_padding.value()
 }

 def on_change(self):
 self.changed.emit(self.get_data())

First, we define a get_data() method, which assembles a dict object of values from the
form's widgets and returns them. This will be useful if we need to pull data from the form
explicitly, rather than rely on a signal. The on_change() method retrieves this dict object
and emits it with the changed signal.

Creating 2D Graphics with QPainter Chapter 12

[298]

The main GUI
With the form widget created, let's now assemble our main GUI.

Let's start with MainView.__init__():

 self.setWindowTitle('Qt Meme Generator')
 self.max_size = qtc.QSize(800, 600)
 self.image = qtg.QImage(
 self.max_size, qtg.QImage.Format_ARGB32)
 self.image.fill(qtg.QColor('black'))

We're going to begin by setting a window title and then defining a maximum size for our
generated meme image. We'll use this to create our QImage object. Since we haven't got an
image file at program launch time, we'll just generate a black placeholder image that is of
the maximum size, which we do using the fill() method—just as we did with our
pixmaps. However, when creating a blank QImage object, we need to specify an image
format to use for the generated image. In this case, we're using the ARGB32 format, which
can be used to make full-color images with transparency.

We'll use this image as we create the main GUI layout:

 mainwidget = qtw.QWidget()
 self.setCentralWidget(mainwidget)
 mainwidget.setLayout(qtw.QHBoxLayout())
 self.image_display = qtw.QLabel(pixmap=qtg.QPixmap(self.image))
 mainwidget.layout().addWidget(self.image_display)
 self.form = MemeTextForm()
 mainwidget.layout().addWidget(self.form)
 self.form.changed.connect(self.build_image)

This GUI is a simple two-panel layout featuring a QLabel object on the left for displaying
our meme image, and the MemeTextForm() method on the right for editing it. We've
connected the form's changed signal to a MainWindow method called build_image(),
which will contain our main drawing logic. Note that we cannot display a QImage object in
a QLabel object directly; we must convert it to a QPixmap object first.

Drawing with QImage
Now that our GUI is squared away, it's time to create MainView.build_image(). This
method will contain all of the image manipulation and painting methods.

Creating 2D Graphics with QPainter Chapter 12

[299]

We'll begin by adding the following code:

 def build_image(self, data):
 if not data.get('image_source'):
 self.image.fill(qtg.QColor('black'))
 else:
 self.image.load(data.get('image_source'))
 if not (self.max_size - self.image.size()).isValid():
 # isValid returns false if either dimension is negative
 self.image = self.image.scaled(
 self.max_size, qtc.Qt.KeepAspectRatio)

Our first task is to set up the base image of our meme. If we don't have an image_source
value in the form data, then we'll just fill our QImage object with the color black, providing
us a blank canvas for the rest of the drawing. If we do have an image source, then we can
load in the selected image by passing its file path to QImage.load(). In the event that our
loaded image is larger than the maximum size, we will want to scale it down so that it is
smaller than the maximum width and height while keeping the same aspect ratio.

A quick way to check whether the image is too large in either dimension is
to subtract its size from our maximum size. If either the width or the
height is larger than the maximum, then one of the dimensions will be
negative, which makes the QSize object produced by the subtraction
expression invalid.

The QImage.scaled() method will return a new QImage object, which has been scaled to
the provided QSize object. By specifying KeepAspectRatio, our width and height will be
scaled separately so that the resulting size has an identical aspect ratio to the original.

Now that we have our image, we can start painting on it.

The QPainter object
At last, we get to meet the QPainter class! QPainter can be thought of as a little robot that
lives inside your screen—to whom we can provide a brush and a pen, and issue drawing
commands.

Let's create our painting robot:

 painter = qtg.QPainter(self.image)

Creating 2D Graphics with QPainter Chapter 12

[300]

The painter's constructor is passed a reference to the object on which it will paint. The
object to be painted must be a subclass of QPaintDevice; in this case, we're passing a
QImage object, which is such a class. The passed object will be the painter's canvas on
which the painter will draw when we issue drawing commands.

To see how basic painting works, let's start with our top and bottom background blocks.
We'll first figure out the boundaries of the rectangles that we need to paint:

 font_px = qtg.QFontInfo(data['text_font']).pixelSize()
 top_px = (data['top_bg_height'] * font_px) + data['bg_padding']
 top_block_rect = qtc.QRect(
 0, 0, self.image.width(), top_px)
 bottom_px = (
 self.image.height() - data['bg_padding']
 - (data['bottom_bg_height'] * font_px))
 bottom_block_rect = qtc.QRect(
 0, bottom_px, self.image.width(), self.image.height())

The coordinates used by QPainter start from the upper-left side of the painting surface.
Therefore, the coordinates (0, 0) are the upper-left side of the screen, and (width,
height) will be the lower-right of the screen.

To calculate the height of our top rectangle, we've multiplied the number of lines desired
by the pixel height of our selected font (which we obtained from QFontInfo; see Chapter
6, Styling Qt Applications, for more information about using QFontInfo). Finally, we add in
the padding amount. We end up with a rectangle that starts at the origin ((0, 0)) and
ends on a point that is at the full width and height of the image of our box. These
coordinates are used to create a QRect object representing the box area.

For the bottom box, we will need to calculate from the bottom of the image; this means that
we must first calculate the height of the rectangle and then subtract it from the height of the
box. Then, we construct a rectangle that starts at that coordinate on the left-side and
extends to the bottom-right.

QRect coordinates must always be defined from upper-left to bottom-
right.

Now that we have our rectangles, let's draw them:

 painter.setBrush(qtg.QBrush(data['bg_color']))
 painter.drawRect(top_block_rect)
 painter.drawRect(bottom_block_rect)

Creating 2D Graphics with QPainter Chapter 12

[301]

QPainter has a number of drawing functions for creating lines, circles, polygons, and
other shapes. In this case, we're using drawRect(), which draws a rectangle. To define the
fill of this rectangle, we've set the painter's brush property to a QBrush object, which is set
to our selected background color. The painter's brush value determines the color and
pattern with which it will fill any shape.

In addition to drawRect(), QPainter contains a number of other drawing methods, as
follows:

Method For drawing
drawEllipse() Circles and ellipses
drawLine() Straight lines
drawRoundedRect() Rectangle with rounded corners
drawPolygon() Polygons of any kind
drawPixmap() QPixmap objects
drawText() Text

To place our meme text on the image, we need to use drawText():

 painter.setPen(data['text_color'])
 painter.setFont(data['text_font'])
 flags = qtc.Qt.AlignHCenter | qtc.Qt.TextWordWrap
 painter.drawText(
 self.image.rect(), flags | qtc.Qt.AlignTop, data['top_text'])
 painter.drawText(
 self.image.rect(), flags | qtc.Qt.AlignBottom,
 data['bottom_text'])

Before we draw the text, we need to give the painter a QPen object to define the text color
and a QFont object to define the font used. The painter's QPen determines the color used for
text, shape outlines, lines, and points drawn by our painter.

To control where the text is drawn on the image, we could use the first argument to
drawText(), which is a QRect object defining the bounding box for our text. However,
since we don't know how many lines of text we're dealing with, we're just going to use the
entire image as a bounding box and use vertical alignment to determine whether the text is
written at the top or bottom.

Creating 2D Graphics with QPainter Chapter 12

[302]

Behaviors such as alignment and word-wrap are configured using flag values from the
QtCore.Qt.TextFlag and QtCore.Qt.AlignmentFlag enums. In this case, we're
specifying the center alignment and word wrap for both the top and bottom text, and then
adding the vertical alignment option inside the drawText() call.

The last argument to drawText() is the actual text, which we've pulled from our
dict data.

Now that we've drawn our text, the final thing we need to do is set the image in our image
display label:

 self.image_display.setPixmap(qtg.QPixmap(self.image))

At this point, you should be able to start up the program and create an image. Go ahead
and try it out!

Saving our image
After creating a snazzy meme image, our user probably wants to save it so that they can
upload it to their favorite social media website. To enable that, let's head back to
MainWindow.__init_() and create a toolbar:

 toolbar = self.addToolBar('File')
 toolbar.addAction("Save Image", self.save_image)

You could, of course, do this using the menu options or another widget. In any case, we
need to define the save_image() method called by this action:

 def save_image(self):
 save_file, _ = qtw.QFileDialog.getSaveFileName(
 None, "Save your image",
 qtc.QDir.homePath(), "PNG Images (*.png)")
 if save_file:
 self.image.save(save_file, "PNG")

To save a QImage file to disk, we need to call its save() method with a file path string and
a second string defining the image format. In this case, we're going to retrieve a save
location using QFileDialog.getSaveFileName() and save it in the PNG format.

Creating 2D Graphics with QPainter Chapter 12

[303]

If you run your meme generator, you should find that it looks something like the following
screenshot:

As an additional exercise, try thinking up some other things that you'd like to draw on a
meme and add this capability to the code.

Custom widgets with QPainter
QPainter is not merely a specialized tool for drawing on images; it's actually the
workhorse that draws all the graphics for all the widgets in Qt. In other words, every pixel
of every widget you see in your PyQt application was drawn by a QPainter object. We can
take control of QPainter to create a purely custom widget.

To explore this idea, let's create a CPU monitor application. Get a fresh copy of the Qt
application template and call it cpu_graph.py, and then we'll begin.

Creating 2D Graphics with QPainter Chapter 12

[304]

Building a GraphWidget
Our CPU monitor will display real-time CPU activity using an area graph. The graph will
be enhanced by a color gradient, which will show higher values in a different color from
lower values. The graph will only show a configured number of values at one time,
scrolling old values off to the left side of the widget as new ones are added from the right.

To accomplish this, we need to build a custom widget. We'll call it GraphWidget, and
begin it as follows:

class GraphWidget(qtw.QWidget):
 """A widget to display a running graph of information"""

 crit_color = qtg.QColor(255, 0, 0) # red
 warn_color = qtg.QColor(255, 255, 0) # yellow
 good_color = qtg.QColor(0, 255, 0) # green

 def __init__(
 self, *args, data_width=20,
 minimum=0, maximum=100,
 warn_val=50, crit_val=75, scale=10,
 **kwargs
):
 super().__init__(*args, **kwargs)

The custom widget begins with some class properties to define colors for good, warning, and
critical values. Feel free to change these if you prefer.

Our constructor takes a number of keyword arguments, as follows:

data_width: This refers to how many values will be displayed at a time
minimum and maximum: The minimum and maximum values to be displayed
warn_val and crit_val: These are threshold values for color changes
Scale: This refers to how many pixels will be used on each data point

Our next step is to save all of these values as instance properties:

 self.minimum = minimum
 self.maximum = maximum
 self.warn_val = warn_val
 self.scale = scale
 self.crit_val = crit_val

Creating 2D Graphics with QPainter Chapter 12

[305]

To store our values, we require something like a Python list but constrained to a fixed
number of items. Python's collections module offers the perfect object for this: the
deque class.

Let's import this class at the top of our code block:

from collections import deque

The deque class can take a maxlen argument, which will limit its length. When new items
are appended to the deque class, pushing it beyond its maxlen value, old items will be
dropped from the beginning of the list to keep it under the limit. This is perfect for our
graph since we only want to display a fixed number of data points in the graph at one time.

We'll create our deque class as follows:

 self.values = deque([self.minimum] * data_width, maxlen=data_width)
 self.setFixedWidth(data_width * scale)

deque can take a list as an argument, which will be used to initialize its data. In this case,
we're initializing it with a list of data_width items containing our minimum value and
setting the maxlen value of the deque class to data_width.

You can create a list of N items quickly in Python by multiplying a list of 1
item by N, as we've done here; for example, [2] * 4 will create a list
of [2, 2, 2, 2].

We finish off the __init__() method by setting the fixed width of the widget to
data_width * scale, which represents the total number of pixels that we want to
display.

Next, we need a method to add a new value to our deque class, which we'll call
add_value() :

 def add_value(self, value):
 value = max(value, self.minimum)
 value = min(value, self.maximum)
 self.values.append(value)
 self.update()

Creating 2D Graphics with QPainter Chapter 12

[306]

The method begins by constraining our value between the minimum and maximum values
and then appending it to the deque object. This has the additional effect of popping the
first item off the beginning of the deque object so that it remains at the data_width value.

Finally, we call update(), which is a QWidget method that tells the widget to redraw itself.
We'll handle this drawing process next.

Painting the widget
The QWidget class, just like QImage, is a subclass of QPaintDevice; as such, we can use a
QPainter object to draw directly onto the widget. When a widget gets a request to redraw
itself (similar to how we issued our call to update()), it calls its paintEvent() method.
We can override this method with our own drawing commands to define a custom look for
our widget.

Let's start the method as follows:

 def paintEvent(self, paint_event):
 painter = qtg.QPainter(self)

paintEvent() will be called with one argument, a QPaintEvent object. This object
contains information about the event that requested the repaint – most notably, the region
and rectangle that needs to be redrawn. For a complex widget, we can use this information
to only redraw requested parts. For our simple widget, we're going to ignore this
information and just redraw the whole thing.

We've defined a painter object that is pointed to the widget itself, so any commands we
issue to the painter will be drawn on our widget. Let's start by creating a background:

 brush = qtg.QBrush(qtg.QColor(48, 48, 48))
 painter.setBrush(brush)
 painter.drawRect(0, 0, self.width(), self.height())

Just as we did in our meme generator, we're defining a brush, giving it to our painter, and
drawing a rectangle.

Notice that we're using an alternate form of drawRect() here, which
takes coordinates directly instead of a QRect object. Many of
the QPainter object's drawing functions have alternate versions that take
slightly different types of arguments for flexibility.

Creating 2D Graphics with QPainter Chapter 12

[307]

Next, let's draw some dotted lines to show where the thresholds for warning and critical
are. To do this, we're going to need to translate a raw data value to a y coordinate on the
widget. Since this will need to happen often, let's create a convenient method to convert
values to y coordinates:

 def val_to_y(self, value):
 data_range = self.maximum - self.minimum
 value_fraction = value / data_range
 y_offset = round(value_fraction * self.height())
 y = self.height() - y_offset
 return y

To convert a value to a y coordinate, we need to first determine what fraction of the data
range the value represents. We then multiply that fraction by the height of the widget to
determine how many pixels it should be from the bottom of the widget. Then, because pixel
coordinates count down from the top, we have to subtract our offset from the height of the
widget to determine the y coordinate.

Back in paintEvent(), let's use this method to draw a warning threshold line:

 pen = qtg.QPen()
 pen.setDashPattern([1, 0])
 warn_y = self.val_to_y(self.warn_val)
 pen.setColor(self.warn_color)
 painter.setPen(pen)
 painter.drawLine(0, warn_y, self.width(), warn_y)

Since we're drawing a line, we need to set the painter's pen property. The
QPen.setDashPattern() method allows us to define a dash pattern for the line by
passing it a list of 1 and 0 values, representing drawn or not-drawn pixels. In this case, our
pattern will alternate between a drawn pixel and an empty pixel.

With the pen created, we use our new conversion method to convert our warn_val value
to a y coordinate and set the color of the pen to warn_color. We hand the configured pen
to our painter and instruct it to draw a line across the width of the widget at the y
coordinate that we calculated.

The same approach can be used to draw our critical threshold line:

 crit_y = self.val_to_y(self.crit_val)
 pen.setColor(self.crit_color)
 painter.setPen(pen)
 painter.drawLine(0, crit_y, self.width(), crit_y)

Creating 2D Graphics with QPainter Chapter 12

[308]

We can reuse our QPen object, but remember that any time we make changes to a pen or
brush, we have to reassign it to the painter. The painter is passed a copy of the pen or
brush, so the changes that we make to the object after assigning it to a painter are not
implicitly passed along to the pen or brush that is used.

In Chapter 6, Styling Qt Applications, you learned how to make a gradient object and apply
it to a QBrush object. We'll want to use a gradient in this application to draw our data
values so that high values are red at the top, medium values are yellow, and low values are
green.

Let's define a QLinearGradient gradient object as follows:

 gradient = qtg.QLinearGradient(
 qtc.QPointF(0, self.height()), qtc.QPointF(0, 0))

This gradient will go from the bottom of the widget (self.height()) to the top (0). This is
important to remember because, as we define the color stops, a 0 location indicates the start
of the gradient (which is at the bottom of the widget) and a 1 location will indicate the end
of the gradient (which is at the top).

We'll set our color stops as follows:

 gradient.setColorAt(0, self.good_color)
 gradient.setColorAt(
 self.warn_val/(self.maximum - self.minimum),
 self.warn_color)
 gradient.setColorAt(
 self.crit_val/(self.maximum - self.minimum),
 self.crit_color)

Similar to how we calculated the y coordinates, here, we're determining the fraction of the
data range represented by the warning and critical values by dividing them by the
difference between the minimum and maximum values. This fraction is what
setColorAt() needs for its first argument.

Now that we have a gradient, let's set up our painter for drawing the data:

 brush = qtg.QBrush(gradient)
 painter.setBrush(brush)
 painter.setPen(qtc.Qt.NoPen)

Creating 2D Graphics with QPainter Chapter 12

[309]

To make our area graph look smooth and cohesive, we don't want any outlines on the chart
sections. To stop QPainter from outlining shapes, we're setting our pen to a special
constant: QtCore.Qt.NoPen.

To create our area chart, each data point is going to be represented by a quadrilateral,
where the upper-right corner will be the current data point and the upper left corner will be
the previous data point. The width will be equal to the scale property we set in the
constructor.

Since we're going to need a previous value for each data point, we need to start with a bit of
bookkeeping:

 self.start_value = getattr(self, 'start_value', self.minimum)
 last_value = self.start_value
 self.start_value = self.values[0]

The first thing we need to do is to determine a starting value. Since we need a value before
our current value, our first item needs a place to start drawing. We're going to create an
instance variable called start_value, which persists between calls to paintEvent and
stores the value, to begin with. We then assign that to last_value, which is a local
variable that will be used to remember the previous value for each iteration of the loop.
Finally, we update the start value for the next call to paintEvent as the first value of the
deque object.

Now, let's start looping through the data and calculating x and y values for each point:

 for indx, value in enumerate(self.values):
 x = (indx + 1) * self.scale
 last_x = indx * self.scale
 y = self.val_to_y(value)
 last_y = self.val_to_y(last_value)

The two x coordinates for the polygon will be (1) the index of the value multiplied by the
scale, and (2) the scale multiplied by the index of the value plus one. For the y values, we
pass the current and last values to our conversion method. These four values will give us
the ability to draw a four-sided shape representing a change from one point of data to the
next.

Creating 2D Graphics with QPainter Chapter 12

[310]

To draw that shape, we're going to use something called a QPainterPath object. In digital
graphics, a path is an object built from individual line segments or shapes combined
together. The QPainterPath object allows us to create a unique shape by drawing each
side individually in code.

Let's start drawing our path object using the x and y data we've calculated:

 path = qtg.QPainterPath()
 path.moveTo(x, self.height())
 path.lineTo(last_x, self.height())
 path.lineTo(last_x, last_y)
 path.lineTo(x, y)

To draw a path, we begin by creating a QPainterPath object. We then use its moveTo()
method to set a starting point for drawing. We then connect the four corners of the path
using the lineTo() method to draw a straight line between the points. The last connection
between our end and start points is made automatically.

Note that we're not actually drawing on the screen at this point; we're merely defining an
object that our painter can paint to the screen using its current brush and pen.

Let's draw this object:

 painter.drawPath(path)
 last_value = value

We've finished out the method by painting the path and updating the last value to the
current value. Of course, this path, which is made of straight lines, is rather dull—we could
have just used the painter's drawPolygon() method for this. The real power of using a
QPainterPath object is to take advantage of some of its non-linear drawing methods.

For example, if we want our chart to be smooth and rounded rather than jagged, then we
can draw the last line (which is the top of the shape) using a cubic Bezier curve rather than
a straight line:

 #path.lineTo(x, y)
 c_x = round(self.scale * .5) + last_x
 c1 = (c_x, last_y)
 c2 = (c_x, y)
 path.cubicTo(*c1, *c2, x, y)

Creating 2D Graphics with QPainter Chapter 12

[311]

A cubic Bezier curve uses two control points to define its curve. Each control point pulls a
segment of the line towards it—the first control point pulling the first half of the line, and
the second control point pulling the second half of the line:

We're setting the first control point at the last y value and the second control point at the
current y value—both of these are halfway between the start and end x values. This gives us
an S curve on the upward slopes and a reverse S curve on the downward slopes, resulting
in softer peaks and valleys.

After setting up the GraphWidget object in an application, you can try switching between
the curve and line commands to see the difference.

Using GraphWidget
Our graph widget is finished, so let's head down to MainWindow and use it.

Start by creating your widget and making it the central widget:

 self.graph = GraphWidget(self)
 self.setCentralWidget(self.graph)

Next, let's create a method that will read the current CPU usage and send it to
GraphWidget. To do this, we'll need to import the cpu_percent function from the psutil
library:

from psutil import cpu_percent

Now we can write our graph-updating method as follows:

 def update_graph(self):
 cpu_usage = cpu_percent()
 self.graph.add_value(cpu_usage)

Creating 2D Graphics with QPainter Chapter 12

[312]

The cpu_percent() function returns an integer from 0 to 100, reflecting the current CPU
utilization on your computer. This is perfect for sending directly to our GraphWidget,
whose default range is 0 to 100.

Now we just need to call this method periodically to update the graph; back in
MainWindow.__init__(), add the following code:

 self.timer = qtc.QTimer()
 self.timer.setInterval(1000)
 self.timer.timeout.connect(self.update_graph)
 self.timer.start()

This is just a QTimer object, which you learned about in Chapter 10, Multithreading with
QTimer and QThread, set to call update_graph() on a one-second interval.

If you run the application now, you should get something like this:

Notice the smooth peaks created by our Bezier curves. If you switch back to the straight-
line code, you'll see those peaks sharpen up.

If your CPU is too powerful to provide an interesting activity graph, try the following
changes to update_graph() for a better test of the widget:

 def update_graph(self):
 import random
 cpu_usage = random.randint(1, 100)
 self.graph.add_value(cpu_usage)

This will just spit out random values between 1 and 100 and should make for some fairly
chaotic results.

Seeing this CPU graph animated in real-time might make you wonder about the animation
capabilities of Qt. In the next section, we'll learn how to create 2D animations in Qt using
QPainter in conjunction with the Qt Graphics View framework.

Creating 2D Graphics with QPainter Chapter 12

[313]

Animating 2D graphics with
QGraphicsScene
Painting on a QPaintDevice object works well for simple widgets and image editing, but
in situations where we want to draw a large number of 2D objects, and possibly animate
them in real-time, we need a more powerful object. Qt provides the Graphics View
Framework, an item-based model-view framework for composing complex 2D graphics
and animations.

To explore how this framework operates, we're going to create a game called Tankity Tank
Tank Tank.

First steps
This tank game will be a two-player combat game modeled after the kind of simple action
game you might find on a classic 1980s game system. One player will be at the top of the
screen, one at the bottom, and the two tanks will move constantly from left to right while
each player tries to shoot the other with a single bullet.

To get started, copy your Qt application template to a new file called
tankity_tank_tank_tank.py. Starting just after the import statements at the top of the
file, we'll add a few constants:

SCREEN_WIDTH = 800
SCREEN_HEIGHT = 600
BORDER_HEIGHT = 100

These constants will be used throughout the game code to calculate sizes and locations. In
fact, we'll use two of them right away in MainWindow.__init__():

 self.resize(qtc.QSize(SCREEN_WIDTH, SCREEN_HEIGHT))
 self.scene = Scene()
 view = qtw.QGraphicsView(self.scene)
 self.setCentralWidget(view)

Creating 2D Graphics with QPainter Chapter 12

[314]

This is all the code we're going to add into MainWindow. After resizing the window to our
width and height constants, we'll create two objects, as follows:

The first is a Scene object. This is a custom class we're going to create, subclassed
from QGraphicsScene. QGraphicsScene is the model in this model-view
framework and represents a 2D scene containing a variety of graphics items.
The second is the QGraphicsView object, which is the view component of the
framework. This widget's job is simply to render the scene and display it for the
user.

Our Scene object is going to contain most of the code for the game, so we will build that
part next.

Making a scene
The Scene class will be the main stage for our game and will manage all the various objects
involved in the game, such as the tanks, bullets, and walls. It will also display the scores
and keep track of other game logic.

Let's start it as follows:

class Scene(qtw.QGraphicsScene):

 def __init__(self):
 super().__init__()
 self.setBackgroundBrush(qtg.QBrush(qtg.QColor('black')))
 self.setSceneRect(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT)

The first thing we've done here is to paint our scene black by setting
the backgroundBrush property. This property, naturally, takes a QBrush object, which it
will use to fill the background of the scene. We've also set the sceneRect property, which
describes the size of the scene, to a QRect object set to our width and height constants.

To begin placing objects on the scene, we can use one of its many add methods:

 wall_brush = qtg.QBrush(qtg.QColor('blue'), qtc.Qt.Dense5Pattern)
 floor = self.addRect(
 qtc.QRectF(0, SCREEN_HEIGHT - BORDER_HEIGHT,
 SCREEN_WIDTH, BORDER_HEIGHT),
 brush=wall_brush)
 ceiling = self.addRect(
 qtc.QRectF(0, 0, SCREEN_WIDTH, BORDER_HEIGHT),
 brush=wall_brush)

Creating 2D Graphics with QPainter Chapter 12

[315]

Here, we've used addRect() to draw two rectangles on the scene—one across the bottom
for a floor and one across the top for a ceiling. Just like the QPainter class,
QGraphicsScene has methods to add ellipses, pixmaps, lines, polygons, text, and other
such items. Unlike the painter, however, the QGraphicsScene methods don't just draw
pixels to the screen; instead, they create items of the QGraphicsItem class (or a subclass).
We can subsequently query or manipulate the items created.

For example, we can add some text items to display our scores as follows:

 self.top_score = 0
 self.bottom_score = 0
 score_font = qtg.QFont('Sans', 32)
 self.top_score_display = self.addText(
 str(self.top_score), score_font)
 self.top_score_display.setPos(10, 10)
 self.bottom_score_display = self.addText(
 str(self.bottom_score), score_font)
 self.bottom_score_display.setPos(
 SCREEN_WIDTH - 60, SCREEN_HEIGHT - 60)

Here, after creating the text items, we are manipulating their properties and setting the
position of each text item using the setPos() method.

We can also update the text in the items; for example, let's create methods to update our
scores:

 def top_score_increment(self):
 self.top_score += 1
 self.top_score_display.setPlainText(str(self.top_score))

 def bottom_score_increment(self):
 self.bottom_score += 1
 self.bottom_score_display.setPlainText(str(self.bottom_score))

If you think about QPainter as being analogous to painting on paper, adding
QGraphicsItems to a QGraphicsScene class is analogous to placing felt shapes on a
flannel-graph. The items are on the scene, but they not part of it and, subsequently, they can
be altered or removed.

Creating 2D Graphics with QPainter Chapter 12

[316]

Creating the tanks
Our game will have two tanks, one at the top of the screen and one at the bottom. These
will be drawn on the Scene object and be animated so that the players can move them left
and right. In Chapter 6, Styling Qt Applications, you learned that animation can be done
using QPropertyAnimation, but only if the property being animated belongs to a
descendant of QObject. QGraphicsItem is not a QObject descendant, but the
QGraphicsObject object combines both to provide us with a graphics item that we can
animate.

Therefore, we'll need to build our Tank class as a subclass of QGraphicsObject:

class Tank(qtw.QGraphicsObject):

 BOTTOM, TOP = 0, 1
 TANK_BM = b'\x18\x18\xFF\xFF\xFF\xFF\xFF\x66'

This class begins by defining two constants, TOP, and BOTTOM. These will be used to signify
whether we're creating the tank at the top of the screen or the bottom.

TANK_BM is a bytes object that contains data for an 8 × 8 bitmap of a tank graphic. We'll see
how this works shortly.

First, though, let's begin the constructor:

 def __init__(self, color, y_pos, side=TOP):
 super().__init__()
 self.side = side

Our tank will be given a color, a y coordinate, and a side value, which will be either TOP or
BOTTOM. We'll use this information to position and orient the tank.

Next, let's use our bytes string to create a bitmap for our tank:

 self.bitmap = qtg.QBitmap.fromData(
 qtc.QSize(8, 8), self.TANK_BM)

A QBitmap object is a special case of QPixmap for monochromatic images. By passing a size
and bytes object to the fromData() static method, we can generate a simple bitmap object
without needing a separate image file.

To understand how this works, consider the TANK_BM string. Because we're interpreting it
as an 8 × 8 graphic, each byte (which is 8 bits) in this string corresponds to one row of the
graphic.

Creating 2D Graphics with QPainter Chapter 12

[317]

If you were to convert each row to binary numbers and lay them out one byte per line, it
would look like this:

00011000
00011000
11111111
11111111
11111111
11111111
11111111
01100110

The shape created by the ones is essentially the shape that this bitmap will take. Of course,
an 8x8 graphic will be quite small, so we ought to enlarge it. Additionally, this tank is
clearly pointing up, so if we're the top tank, we need to flip it over.

We can do both of those things using a QTransform object:

 transform = qtg.QTransform()
 transform.scale(4, 4) # scale to 32x32
 if self.side == self.TOP: # We're pointing down
 transform.rotate(180)
 self.bitmap = self.bitmap.transformed(transform)

A QTransform object represents a set of transformations to be done on QPixmap or
QBitmap. After creating the transform object, we can set the various transformations to be
applied, starting with a scaling operation and adding a rotate transformation if the tank is
on the top. The QTransform object can be passed to a bitmap transformed() method,
which returns a new QBitmap object with the transformations applied.

The bitmap is monochromatic and, by default, it draws in black. To draw in another color,
we will need a QPen (not a brush!) object set to the desired color. Let's use our color
argument to create this as follows:

 self.pen = qtg.QPen(qtg.QColor(color))

The actual appearance of the QGraphicsObject object is determined by overriding
the paint() method. Let's create this as follows:

 def paint(self, painter, option, widget):
 painter.setPen(self.pen)
 painter.drawPixmap(0, 0, self.bitmap)

Creating 2D Graphics with QPainter Chapter 12

[318]

The first argument to paint() is the QPainter object, which Qt has created and assigned
to paint the object. We simply need to apply commands to that painter, which will draw the
image as we desire. We'll start by setting the pen property to the pen we've created, and
then use the painter's drawPixmap() method to draw our bitmap.

Note that the coordinates we pass to drawPixmap() do not refer to coordinates of the
QGraphicsScene class, but coordinates within the bounding rectangle of the
QGraphicsObject object itself. Because of that, we need to make sure that our object
returns a proper bounding rectangle so that our image is drawn correctly.

To do this, we'll need to override the boundingRect() method:

 def boundingRect(self):
 return qtc.QRectF(0, 0, self.bitmap.width(),
 self.bitmap.height())

In this case, we want our boundingRect() method to return a rectangle that is the same
size as the bitmap.

Back in Tank.__init__(), let's position our tank:

 if self.side == self.BOTTOM:
 y_pos -= self.bitmap.height()
 self.setPos(0, y_pos)

The QGraphicsObject.setPos() method allows you to position the object anywhere on
its assigned QGraphicsScene using pixel coordinates. Since pixel coordinates always
count from the top-left of the object, we need to adjust the y coordinate of our object if it is
on the bottom of the screen, raising it by its own height so that the bottom of the tank is at
y_pos pixels from the top.

The position of an object always indicates the position of its upper-left
corner.

Now we want to animate our tanks; each tank will move back and forth along the x axis,
bouncing back when it hits the edge of the screen.

Let's create a QPropertyAnimation method to do this:

 self.animation = qtc.QPropertyAnimation(self, b'x')
 self.animation.setStartValue(0)
 self.animation.setEndValue(SCREEN_WIDTH - self.bitmap.width())
 self.animation.setDuration(2000)

Creating 2D Graphics with QPainter Chapter 12

[319]

The QGraphicsObject object has x and y properties that define its x and y coordinates on
the scene, so animating the object is as simple as directing our property animation to these
properties. We're going to animate x starting at 0 and ending at the width of the screen;
however, to keep our tanks from going off the edge, we need to subtract the width of the
bitmap from the value. Finally, we set duration of two seconds.

A property animation can be run forward or backward. So, to enable the left and right
movement, we simply need to toggle the direction in which the animation runs. Let's create
some methods to do this:

 def toggle_direction(self):
 if self.animation.direction() == qtc.QPropertyAnimation.Forward:
 self.left()
 else:
 self.right()

 def right(self):
 self.animation.setDirection(qtc.QPropertyAnimation.Forward)
 self.animation.start()

 def left(self):
 self.animation.setDirection(qtc.QPropertyAnimation.Backward)
 self.animation.start()

Switching directions is just a matter of setting the animation object's direction property
to Forward or Backward, and then calling start() to apply it.

Back in __init__(), let's use the toggle_direction() method to create the bounce:

 self.animation.finished.connect(self.toggle_direction)

To make the game more interesting, we should also start our tanks on opposite ends of the
screen:

 if self.side == self.TOP:
 self.toggle_direction()
 self.animation.start()

After setting up the animation, we start it by calling start(). This takes care of the tank
animation; now it's time to load our weapons.

Creating 2D Graphics with QPainter Chapter 12

[320]

Creating the bullets
In this game, each tank will only be allowed one bullet on the screen at a time. This
simplifies our game code, but also keeps the game relatively challenging.

To implement these bullets, we'll create another QGraphicsObject object called Bullet,
which is animated to move along the y axis.

Let's start our Bullet class as follows:

class Bullet(qtw.QGraphicsObject):

 hit = qtc.pyqtSignal()

 def __init__(self, y_pos, up=True):
 super().__init__()
 self.up = up
 self.y_pos = y_pos

The bullet class starts by defining a hit signal indicating that it has hit an enemy tank. The
constructor takes a y_pos argument to define the starting point of the bullet, and a Boolean
indicating whether the bullet is to travel up or down. These arguments are saved as
instance variables.

Next, let's define the bullet's look as follows:

 def boundingRect(self):
 return qtc.QRectF(0, 0, 10, 10)

 def paint(self, painter, options, widget):
 painter.setBrush(qtg.QBrush(qtg.QColor('yellow')))
 painter.drawRect(0, 0, 10, 10)

Our bullet will simply be a 10 × 10 yellow square created using the painter's drawRect()
method. This is appropriate for a retro game but, just for fun, let's make it a bit more
interesting. To do this, we can apply something called a QGraphicsEffect class to the
QGraphicsObject. The QGraphicsEffect class can apply a visual effect to the object in
real-time. We implement this by creating an instance of one of the QGraphicEffect class's
subclasses and assigning it to the bullet's graphicsEffect property, as follows:

 blur = qtw.QGraphicsBlurEffect()
 blur.setBlurRadius(10)
 blur.setBlurHints(
 qtw.QGraphicsBlurEffect.AnimationHint)
 self.setGraphicsEffect(blur)

Creating 2D Graphics with QPainter Chapter 12

[321]

This code added to Bullet.__init__(), creates a blur effect and applies it to
our QGraphicsObject class. Note that this is applied at the object level, and not at the
painting level, so it is applied to any pixels we draw. We've adjusted the blur radius to 10
pixels and added the AnimationHint object, which tells us the effect that is being applied
to an animated object and activates certain performance optimizations.

Speaking of animation, let's create the bullet's animation as follows:

 self.animation = qtc.QPropertyAnimation(self, b'y')
 self.animation.setStartValue(y_pos)
 end = 0 if up else SCREEN_HEIGHT
 self.animation.setEndValue(end)
 self.animation.setDuration(1000)

The animation is configured so that it takes the bullet one second to go from its current
y_pos argument to either the top or bottom of the screen, depending on whether the bullet
is to shoot up or down. We aren't starting the animation yet, though, because we don't want
the bullet to start moving until it's shot.

Shooting will happen in a shoot() method, as follows:

 def shoot(self, x_pos):
 self.animation.stop()
 self.setPos(x_pos, self.y_pos)
 self.animation.start()

When a player shoots a bullet, we first stop any animation that might be happening. Since
only one bullet is allowed at a time, rapid-firing will just result in the bullet starting over
(while this is not terribly realistic, it makes gameplay more challenging).

Then, the bullet is repositioned to the x coordinate and passed into the shoot() method
and the tank's y coordinate. Finally, the animation is started. The idea is that we'll pass in
the tank's current x coordinate when the player shoots and the bullet will fly up or down
from that position in a straight line.

Let's go back to our Tank class and add a Bullet object. In Tank.__init__(), add in the
following code:

 bullet_y = (
 y_pos - self.bitmap.height()
 if self.side == self.BOTTOM
 else y_pos + self.bitmap.height()
)
 self.bullet = Bullet(bullet_y, self.side == self.BOTTOM)

Creating 2D Graphics with QPainter Chapter 12

[322]

So that we don't hit our own tank with our own bullet, we want the bullet to start at a
position just above the bottom tank or just below the top tank, which is what we've
calculated in the first statement. Since our tanks don't move up or down, this position is a
constant, and we can pass it to the bullet's constructor.

To make the tank shoot the bullet, we'll create a method in the Tank class called shoot():

 def shoot(self):
 if not self.bullet.scene():
 self.scene().addItem(self.bullet)
 self.bullet.shoot(self.x())

The first thing we need to do is to add the bullet to the scene if it's not yet added (or if it's
been removed). We can determine this by checking the bullet's scene property, which
returns None if the object is not on the scene.

Then, we call the bullet's shoot() method by passing in the tank's x coordinate.

Collision detection
Bullets don't do much good if nothing happens when they hit the target. To make
something happen when a bullet hits a tank, we need to implement collision detection. We
will implement this in the Bullet class by asking it to check whether it has hit anything
whenever it moves.

Start by creating a method in Bullet called check_colllision():

 def check_collision(self):
 colliding_items = self.collidingItems()
 if colliding_items:
 self.scene().removeItem(self)
 for item in colliding_items:
 if type(item).__name__ == 'Tank':
 self.hit.emit()

QGraphicsObject.collidingItems() returns a list of any QGraphicsItem objects
whose bounding rectangles overlap with this item. This includes not only our Tank objects,
but also the floor and ceiling items we created in the Scene class, or even the other
tank's Bullet object. If our bullet touches any of these items, we need to remove it from the
scene; to do this, we call self.scene().removeItem(self) to eliminate the bullet.

Creating 2D Graphics with QPainter Chapter 12

[323]

Then, we need to check whether any of the items we've collided with are Tank objects. This
we do by simply checking the type and name of the object hit. If we hit a tank, we emit our
hit signal. (We can safely assume it's the other tank because of the way our bullets move.)

This method needs to be called every time the Bullet object moves, since every movement
could result in a collision. Fortunately, the QGraphicsObject method has a yChanged
signal, which is emitted every time its y coordinate changes.

So, back in the Bullet.__init__() method, we can add a connection, as follows:

 self.yChanged.connect(self.check_collision)

Our tank and bullet objects are now ready, so let's head back to the Scene object to finish
out our game.

Finishing the game
Back in Scene.__init__(), let's create our two tanks:

 self.bottom_tank = Tank(
 'red', floor.rect().top(), Tank.BOTTOM)
 self.addItem(self.bottom_tank)

 self.top_tank = Tank(
 'green', ceiling.rect().bottom(), Tank.TOP)
 self.addItem(self.top_tank)

The bottom tank sits on top of the floor, and the top tank is positioned on the bottom of the
ceiling. Now we can connect the hit signals of their bullets to the proper score-
incrementing methods:

 self.top_tank.bullet.hit.connect(self.top_score_increment)
 self.bottom_tank.bullet.hit.connect(self.bottom_score_increment)

Creating 2D Graphics with QPainter Chapter 12

[324]

At this point, our game is almost done:

Of course, there is one very important aspect still missing—the controls!

Our tanks will be controlled by the keyboard; we'll assign the bottom player the arrow keys
for movement and the return key for firing, while the top player will get A and D for
movement and the spacebar for firing.

To handle keystrokes, we need to override the Scene object's keyPressEvent() method:

 def keyPressEvent(self, event):
 keymap = {
 qtc.Qt.Key_Right: self.bottom_tank.right,
 qtc.Qt.Key_Left: self.bottom_tank.left,
 qtc.Qt.Key_Return: self.bottom_tank.shoot,
 qtc.Qt.Key_A: self.top_tank.left,
 qtc.Qt.Key_D: self.top_tank.right,
 qtc.Qt.Key_Space: self.top_tank.shoot
 }
 callback = keymap.get(event.key())
 if callback:
 callback()

Creating 2D Graphics with QPainter Chapter 12

[325]

keyPressEvent() is called whenever the user presses a key while the Scene object is
focused. It's the only argument that is a QKeyEvent object whose key() method returns a
constant from the QtCore.Qt.Key enum telling us what key was pressed. In this method,
we've created a dict object that maps certain key constants to methods on our tank objects.
Whenever we receive a keystroke, we attempt to fetch a callback method, and if we're
successful, we call the method.

The game is now ready to play! Grab a friend (preferably someone you don't mind sharing
a keyboard with) and fire it up.

Summary
In this chapter, you learned all about working with 2D graphics in PyQt. We learned how
to use the QPainter object to edit images and create custom widgets. You then learned
how to use a QGraphicsScene method in conjunction with the QGraphicsObject class to
create animated scenes that can be controlled using automated logic or user input.

In the next chapter, we'll add an additional dimension to our graphics as we explore the use
of OpenGL 3D graphics with PyQt. You'll learn some of the basics of OpenGL
programming and how it can be integrated into a PyQt application.

Questions
Try these questions to test your knowledge from this chapter:

Add code to this method to write your name in blue on the bottom of the picture:1.

 def create_headshot(self, image_file, name):
 image = qtg.QImage()
 image.load(image_file)
 # your code here

 # end of your code
 return image

Given a QPainter object called painter, write a line of code to paint an 80 × 802.
pixel octagon in the upper-left corner of the painter's paint device. You can refer
to the documentation at https:/ /doc. qt. io/qt- 5/qpainter.
html#drawPolygon for guidance.

https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon

Creating 2D Graphics with QPainter Chapter 12

[326]

You're creating a custom widget and can't figure out why the text is showing up3.
in black. The following is your paintEvent() method; see whether you can
figure out the problem:

 def paintEvent(self, event):
 black_brush = qtg.QBrush(qtg.QColor('black'))
 white_brush = qtg.QBrush(qtg.QColor('white'))
 painter = qtg.QPainter()
 painter.setBrush(black_brush)
 painter.drawRect(0, 0, self.width(), self.height())
 painter.setBrush(white_brush)
 painter.drawText(0, 0, 'Test Text')

A deep-fried meme is a style of a meme that uses extreme compression,4.
saturation, and other processing to make the meme image look intentionally low
quality. Add a feature to your meme generator to optionally make the meme
deep-fried. Some things you can try include reducing the color bit depth and
adjusting the hue and saturation of the colors in the image.
You'd like to animate a circle moving horizontally across the screen. Change the5.
following code to animate the circle:

 scene = QGraphicsScene()
 scene.setSceneRect(0, 0, 800, 600)
 circle = scene.addEllipse(0, 0, 10, 10)
 animation = QPropertyAnimation(circle, b'x')
 animation.setStartValue(0)
 animation.setEndValue(600)
 animation.setDuration(5000)
 animation.start()

The following code attempts to set up a QPainter object with a gradient brush.6.
Discover what is wrong with it:

 gradient = qtg.QLinearGradient(
 qtc.QPointF(0, 100), qtc.QPointF(0, 0))
 gradient.setColorAt(20, qtg.QColor('red'))
 gradient.setColorAt(40, qtg.QColor('orange'))
 gradient.setColorAt(60, qtg.QColor('green'))
 painter = QPainter()
 painter.setGradient(gradient)

Creating 2D Graphics with QPainter Chapter 12

[327]

See whether you can implement some of the following improvements to the7.
game we created:

Pulsating bullets
Explosions when a tank is hit
Sounds (see Chapter 7, Working with Audio-Visual Using
QtMultimedia, for guidance)
Background animation
Multiple bullets

Further reading
For further information, please refer the following:

An in-depth discussion of QPainter and Qt's paint system can be found
at https:/ /doc. qt. io/ qt- 5/paintsystem. html

An overview of the Qt Graphics View framework can be found at https:/ /doc.
qt.io/ qt- 5/ graphicsview. html

An overview of the animation framework can be found at https:/ /doc. qt. io/
qt-5/animation- overview. html

https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/paintsystem.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/graphicsview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html
https://doc.qt.io/qt-5/animation-overview.html

13
Creating 3D Graphics with

QtOpenGL
From games to data visualizations to engineering simulations, 3D graphics and animations
are at the heart of many important software applications. For several decades, the de facto
standard Application Programming Interface (API)
for cross-platform 3D graphics has been OpenGL. Although many Python and C
implementations of the API exist, Qt offers one that is directly integrated into its widgets,
giving us the capability to embed interactive OpenGL graphics and animations in our GUI.

In this chapter, we'll take a look at those capabilities in the following topics:

The basics of OpenGL
Embedding OpenGL drawings with QOpenGLWidget
Animating and controlling OpenGL drawings

Technical requirements
For this chapter, you'll need a basic Python 3 and PyQt5 setup, as we've been using
throughout the book, and you might like to download the example code from
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/m

aster/Chapter13. You will also need to make sure that your graphics hardware and drivers
support OpenGL 2.0 or higher, although this is almost certainly true if you are using a
conventional desktop or laptop computer made within the last ten years.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xApP

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter13
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter13
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP
http://bit.ly/2M5xApP

Creating 3D Graphics with QtOpenGL Chapter 13

[329]

The basics of OpenGL
OpenGL is not simply a library; it is a specification for an API to interact with your
graphics hardware. The implementation of this specification is shared between your
graphics hardware, the drivers for that hardware, and the OpenGL software library you
choose to use. As a result, the exact behavior of your OpenGL-based code might be slightly
different depending on any of those factors, just as, for example, the same HTML code
might be slightly differently rendered in different web browsers.

OpenGL is also a versioned specification, meaning that the available features and
recommended usage of OpenGL changes depending on which version of the specification
you're targeting. As new features are introduced and old features deprecated, the best
practices and recommendations also evolve, so that code written for OpenGL 2.x systems
may look nothing at all like a code written for OpenGL 4.x.

The OpenGL specification is managed by the Khronos Group, an industry consortium that
maintains several graphics-related standards. The latest specification at the time of writing
is 4.6, released in February 2019, which can be found at https:/ /www. khronos. org/
registry/OpenGL/ index_ gl. php. However, it's not always a good idea to follow the latest
specification. A computer's ability to run an OpenGL code of a given version is limited by
hardware, driver, and platform considerations, so if you want your code to be run by the
widest possible array of users, it's better to target an older and more established version.
Many common embedded graphics chips from Intel only support OpenGL 3.x or lower,
and some low-end devices, such as the Raspberry Pi (which we'll look at in Chapter 15,
PyQt on the Raspberry Pi) only support 2.x.

In this chapter, we'll limit our code to OpenGL 2.1, since it is well supported by PyQt and
most modern computers should be able to run it. However, since we're going to be sticking
to the basics, everything we'll learn applies equally well to the 4.x version.

The rendering pipeline and drawing basics
Turning code and data into pixels on a screen requires a multi-stage process; in OpenGL,
this process is known as the rendering pipeline. Some stages in this pipeline are
programmable, while others are fixed-function, meaning that their behavior is
predetermined by the OpenGL implementation and cannot be altered.

https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php
https://www.khronos.org/registry/OpenGL/index_gl.php

Creating 3D Graphics with QtOpenGL Chapter 13

[330]

Let's walk through the major stages of this pipeline from start to finish:

Vertex specification: In the first stage, the vertices of the drawing are1.
determined by your application. A vertex is essentially a point in a 3D space that
can be used to draw a shape. The vertex may also contain metadata about the
point, such as its color.
Vertex processing: This user-definable stage processes each vertex in various2.
ways to calculate the final position of each vertex; for example, in this step you
might rotate or move the basic shape defined in the vertex specification.
Vertex post-processing: This fixed-function stage does some additional3.
processing on the vertices, such as clipping sections that fall outside the viewing
space.
Primitive assembly: In this stage, vertices are composed into primitives. A4.
primitive is a 2D shape, such as a triangle or rectangle, from which more complex
3D shapes are built.
Rasterization: This stage transforms the primitives into a series of individual5.
pixel points, called fragments, by interpolating between the vertices.
Fragment shading: The main job of this user-defined stage is to determine the6.
depth and color value for each fragment.
Per-sample operations: This final stage performs a series of tests on each7.
fragment to determine its final visibility and color.

As programmers using OpenGL, we are mostly concerned with just three stages of this
operation – the vertex specification, the vertex processing, and the fragment shading. For
the vertex specification, we will simply define some points in Python code to describe a
shape for OpenGL to draw; for the other two stages, we will need to learn about creating
OpenGL programs and shaders.

Programs and shaders
Despite the name, a shader has nothing to do with shadows or shading; it is simply the
name for a unit of code that runs on your GPU. In the previous section, we talked about
some stages of the rendering pipeline being user-definable; in fact, some of them must be
defined, as most OpenGL implementations do not provide default behavior for certain
stages. To define those stages, we need to write a shader.

Creating 3D Graphics with QtOpenGL Chapter 13

[331]

At a minimum, we need to define two shaders:

The vertex shader: This shader is the first step of the vertex processing stage. Its
main job is to determine the spatial coordinates of each vertex.
The fragment shader: This is the second-to-last stage of the pipeline, and its only
required job is to determine the color of an individual fragment.

When we have a collection of shaders that comprise a complete render pipeline, this is
called a program.

Shaders cannot be written in Python. They must be written in a language called GL Shader
Language (GLSL), a C-like language that is part of the OpenGL specification. It's
impossible to create serious OpenGL drawings without some knowledge of GLSL, but
fortunately, it is simple enough to write a fairly rudimentary set of shaders good enough
for a basic example.

A simple vertex shader
We're going to compose a simple GLSL vertex shader that we can use for our demo; create
a file called vertex_shader.glsl, and copy in the following code:

#version 120

We've begun with a comment indicating the version of GLSL we are using. This is
important, as each version of OpenGL is only compatible with a particular version of GLSL,
and the GLSL compiler will use this comment to check whether we've mismatched those
versions.

A chart showing compatibility between versions of GLSL and OpenGL
can be found at https:/ / www.khronos. org/ opengl/ wiki/ Core_ Language_
(GLSL).

Next, we will need to make some variable declarations:

attribute highp vec4 vertex;
uniform highp mat4 matrix;
attribute lowp vec4 color_attr;
varying lowp vec4 color;

https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)

Creating 3D Graphics with QtOpenGL Chapter 13

[332]

In C-like languages, variable declarations are used to create the variable, define various
attributes about it, and allocate space for it in memory. Each of our declarations has four
tokens; let's go through these in order:

The first token is one of attribute, uniform, or varying. This indicates
whether the variable will be distinct for each vertex (attribute), each primitive
(uniform), or each fragment (varying). So, our first variable will be different for
each vertex, but our second one will be the same for each vertex within the same
primitive.
The second token indicates the basic data type that the variable contains. In this
case, it's either highp (a high-precision number), mediump (a medium-precision
number), or lowp (a low-precision number). We could have used float or
double here, but these aliases are helpful in making our code cross-platform.
The third term defines each of these variables as pointing to either a vector or a
matrix. You can think of a vector like a Python list object, and a matrix like a
list object where each item is a list object of the same length. The number at
the end indicates the size, so vec4 is a list of four values, and mat4 is a 4x4
matrix of values.
The last token is the variable name. These names will be used through the entire
program so we can use them in shaders further down the pipeline to access data
from earlier shaders.

These variables can be used to insert data into the program or pass data to other shaders in
the program. We'll see how to do that later in this chapter, but for now, understand that, in
our shader, vertex, matrix, and color_attr represent data that will be received by the
vertex shader from our PyQt application.

After the variable declarations, we will create a function called main():

void main(void)
{
 gl_Position = matrix * vertex;
 color = color_attr;
}

The primary purpose of the vertex shader is to set a variable called gl_Position with the
coordinates of the vertex. In this case, we're setting it to our vertex value passed into the
shader multiplied by the matrix value. As you'll see later, this arrangement will allow us
to manipulate our drawing in space.

Creating 3D Graphics with QtOpenGL Chapter 13

[333]

Matrices and vectors are critical mathematical concepts to understand
when creating 3D graphics. While we will remain mostly abstracted from
the details of this math in this chapter, it's a good idea to brush up on
these concepts if you want to dive deeper into OpenGL programming.

The last line of code in our shader may seem somewhat pointless, but it allows us to specify
a color for each vertex in the vertex specification stage and have that color passed along to
other shaders later in the pipeline. Variables in a shader are either input or output
variables, meaning that they expect to receive data from the previous stage of the pipeline
or pass data along to the next stages. Within the vertex shader, declaring a variable with the
attribute or uniform qualifiers implicitly marks a variable as an input variable, while
declaring it with the varying qualifier implicitly marks it as an output variable. Thus, we
are copying the value of our attribute-type color_attr variable to the varying-type
color variable in order to pass the value to shaders further down the pipeline; specifically,
we want to pass it to the fragment shader.

A simple fragment shader
The second shader we need to create is the fragment shader. Remember that this shader's
primary job is to determine the color of each point (or fragment) on a primitive.

Create a new file called fragment_shader.glsl and add in this code:

#version 120

varying lowp vec4 color;

void main(void)
{
 gl_FragColor = color;
}

Just as with our vertex shader, we begin with a comment specifying the version of GLSL
we're targeting. Then, we will declare a variable called color.

Because this is the fragment shader, specifying a variable as varying makes it an input
variable. Using the name color, which was an output variable from our shader, means that
we will receive from that shader the color value it assigned.

Within main(), we then assign that color to the built-in gl_FragColor variable. What this
shader effectively does is tell OpenGL to use the color value passed in with the
vertex shader to determine the color of an individual fragment.

Creating 3D Graphics with QtOpenGL Chapter 13

[334]

This is about as simple a fragment shader as we can get. A more complex fragment
shader, such as one that you would find in a game or simulation, might implement
textures, lighting effects, or other color manipulations; but this one should suffice for our
purposes.

Now that we have our required shaders, we can create a PyQt application to use them.

Embedding OpenGL drawings with
QOpenGLWidget
To see how OpenGL works with PyQt, we're going to use our shaders to make a simple
OpenGL image, which we will be able to control through a PyQt interface. Create a copy of
your Qt application template from Chapter 4, Building Applications with QMainWindow, and
call it wedge_animation.py. Put this in the same directory as your shader files.

Then, start by adding this code in MainWindow.__init__():

 self.resize(800, 600)
 main = qtw.QWidget()
 self.setCentralWidget(main)
 main.setLayout(qtw.QVBoxLayout())
 oglw = GlWidget()
 main.layout().addWidget(oglw)

This code creates our central widget and adds a GlWidget object to it. The GlWidget class
is what we'll be creating to display our OpenGL drawing. To create it, we'll need to
subclass a widget that can display OpenGL content.

First steps with OpenGLWidget
There are two Qt classes that we can use to display OpenGL content:
QtWidgets.QOpenGLWidget and QtGui.QOpenGLWindow. In practice, they behave almost
exactly the same, but OpenGLWindow offers slightly better performance and may be a better
choice if you don't want to use any other Qt widgets (that is, if your application is just full-
screen OpenGL content). In our case, we're going to be combining our OpenGL drawing
with other widgets, so we'll use QOpenGLWidget as the base for our class:

class GlWidget(qtw.QOpenGLWidget):
 """A widget to display our OpenGL drawing"""

Creating 3D Graphics with QtOpenGL Chapter 13

[335]

To create OpenGL content on our widget, we need to override two QOpenGLWidget
methods:

initializeGL(), which is run once to set up our OpenGL drawing
paintGL(), which is called whenever our widget needs to paint itself (for
example, in response to an update() call)

We'll start with initializeGL():

 def initializeGL(self):
 super().initializeGL()
 gl_context = self.context()
 version = qtg.QOpenGLVersionProfile()
 version.setVersion(2, 1)
 self.gl = gl_context.versionFunctions(version)

The first thing that we need to do is get access to our OpenGL API. The API is made up of a
set of functions, variables, and constants; in an object-oriented platform, such as PyQt, we
will be creating a special OpenGL functions object that contains those functions as methods
and the variables and constants as properties.

To do this, we first retrieve an OpenGL context from the QOpenGLWidget method. The
context represents our interface to the OpenGL surface on which we're currently drawing.
From the context, we can retrieve the object that contains our API.

Because we need access to a specific version of the API (2.1), we will first need to create a
QOpenGLVersionProfile object with its version property set to (2, 1). This can be
passed to the context's versionFunctions() method, which will return a
QOpenGLFunctions_2_1 object. This is the object that contains our OpenGL 2.1 API.

Qt defines OpenGL function objects for other versions of OpenGL as well,
but be aware that, depending on your platform, your hardware, and how
you acquired Qt, a particular version may or may not be supported.

We're saving the functions object as self.gl; all of our API calls will be done on this
object.

Now that we have access to the API, let's start configuring OpenGL:

 self.gl.glEnable(self.gl.GL_DEPTH_TEST)
 self.gl.glDepthFunc(self.gl.GL_LESS)
 self.gl.glEnable(self.gl.GL_CULL_FACE)

Creating 3D Graphics with QtOpenGL Chapter 13

[336]

Much like Qt, OpenGL uses defined constants to represent various settings and states.
Configuring OpenGL is mostly a matter of passing these constants to various API functions
that toggle various settings.

In this case, we're performing three settings:

Passing GL_DEPTH_TEST to glEnable() activates depth testing, which means
that OpenGL will try to figure out which of the points its drawings are in the
foreground and which are in the background.
glDepthFunc() sets the function that will determine whether or not a depth-
tested pixel will be drawn. In this case, the GL_LESS constant indicates that the
pixel with the lowest depth (that is, the one closest to us) will be drawn.
Generally, this is the setting you want, and it's also the default setting.
Passing GL_CULL_FACE to glEnable() activates face culling. This simply means
that OpenGL will not bother drawing the sides of the object that the viewer can't
actually see. It makes sense to enable this as well, as it saves on resources that
would otherwise be wasted.

These three optimizations should help to reduce the resources used by our animation; in
most cases, you'll want to use them. There are many more options that can be enabled and
configured; for a complete list, see https:/ /www.khronos. org/ registry/ OpenGL- Refpages/
gl2.1/xhtml/glEnable. xml. Be aware that some options only apply to the older fixed-
function method of using OpenGL.

If you see OpenGL code that uses glBegin() and glEnd(), it is using the
very old OpenGL 1.x fixed-function drawing API. This approach was
easier, but much more limited, so this shouldn't be used for modern
OpenGL programming.

Creating a program
Our next step in implementing an OpenGL drawing is to create our program. You may
remember that an OpenGL program is a collection of shaders that form a complete pipeline.

In Qt, the process to create a program is as follows:

Create a QOpenGLShaderProgram object1.
Add your shader code to the program2.
Link the code into a complete program3.

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glEnable.xml

Creating 3D Graphics with QtOpenGL Chapter 13

[337]

The following code will implement this:

 self.program = qtg.QOpenGLShaderProgram()
 self.program.addShaderFromSourceFile(
 qtg.QOpenGLShader.Vertex, 'vertex_shader.glsl')
 self.program.addShaderFromSourceFile(
 qtg.QOpenGLShader.Fragment, 'fragment_shader.glsl')
 self.program.link()

Shaders can be added from files, as we've done here using addShaderFromSourceFile(),
or from strings using addShaderFromSourceCode(). We're using relative file paths here,
but the best approach would be to use Qt resource files (see the Using Qt Resource
Files section in Chapter 6, Styling Qt Applications). As the files are added, Qt compiles the
shader code and outputs any compilation errors to the Terminal.

In the production code, you'll want to check the Boolean output of
addShaderFromSourceFile() to see whether your shader compiled
successfully before proceeding.

Note that the first argument to addShaderFromSourceFile() specifies what kind of
shader we're adding. This is important, as vertex shaders and fragment shaders have very
different requirements and functionality.

Once all the shaders are loaded, we call link() to link all the compiled code into a ready-
to-execute program.

Accessing our variables
Our shader programs contained some variables that we need to be able to access and put
values into, so we need to retrieve a handle for those variables. The QOpenGLProgram
object has two methods, attributeLocation() and uniformLocation(), which can be
used to retrieve a handle for attribute and uniform variables, respectively (there is no such
function for the varying types).

Let's grab some handles for our vertex shader variables:

 self.vertex_location = self.program.attributeLocation('vertex')
 self.matrix_location = self.program.uniformLocation('matrix')
 self.color_location = self.program.attributeLocation('color_attr')

Creating 3D Graphics with QtOpenGL Chapter 13

[338]

The values returned from these methods are actually just integers; internally, OpenGL just
uses sequential integers to track and reference objects. However, that doesn't matter to us.
We can treat this as if they were object handles and pass them into OpenGL calls to access
these variables, as you'll see soon.

Configuring a projection matrix
In OpenGL, the projection matrix defines how our 3D model is projected to a 2D screen.
This is represented by a 4x4 matrix of numbers that can be used to calculate vertex
positions. Before we can do any drawing, we need to define this matrix.

In Qt, we can use the QMatrix4x4 object to represent it:

 self.view_matrix = qtg.QMatrix4x4()

A QMatrix4x4 object is very simply a table of numbers arranged in four rows and four
columns. However, it has several methods that allow us to manipulate those numbers in
such a way that they represent 3D transformations, such as our projection.

OpenGL can use two kinds of projections—orthographic, meaning that points at all depths
are rendered the same, or perspective, meaning that the field of view expands as we move
away from the viewer. For realistic 3D drawings, you'll want to use perspective projection.
This kind of projection is represented by a frustum.

A frustum is a section of a regular geometric solid between two parallel planes, and it's a
useful shape for describing a field of vision. To understand this, place your hands on either
side of your head. Now, move them forward, keeping them just outside your field of
vision. Notice that you must move them outward (to the left and right) in order to do this.
Try this again with your hands above and below your head. Once again, you must move
them outward vertically to keep them from your field of visions.

The shape that you've just made with your hands is like a pyramid, extending from your
eyes, whose point has been sliced off parallel to the base—in other words, a frustum.

To create a matrix that represents a perspective frustum, we can use the matrix object's
perspective() method:

 self.view_matrix.perspective(
 45, # Angle
 self.width() / self.height(), # Aspect Ratio
 0.1, # Near clipping plane
 100.0 # Far clipping plane
)

Creating 3D Graphics with QtOpenGL Chapter 13

[339]

The perspective() method takes four arguments:

The angle, in degrees, at which the frustum expands from the near plane to the
far plane
The aspect ratio of the near and far planes (which are identical)
The depth into the screen of the near plane
The depth into the screen of the far plane

Without digging into the complicated math, this matrix effectively represents our field of
view relative to our drawing. As we'll see when we start drawing, all we need to do to
move our object is to manipulate the matrix.

For example, we should probably back up a bit from where we're going to be drawing so
that it's not happening right up in the front of the field of view. This movement can be
accomplished by the translate() method:

 self.view_matrix.translate(0, 0, -5)

translate takes three arguments—an x amount, a y amount, and a z amount. Here, we've
specified a z translation of -5, which pushes the object deeper into the screen.

This may all seem a bit confusing now, but, once we start drawing our shape, things will
become clearer.

Drawing our first shape
Now that our OpenGL environment is initialized, we can move on to the paintGL()
method. This method will contain all the code for drawing our 3D object and will be called
whenever the widget needs to be updated.

The first thing we'll do when painting is clear the canvas:

 def paintGL(self):
 self.gl.glClearColor(0.1, 0, 0.2, 1)
 self.gl.glClear(
 self.gl.GL_COLOR_BUFFER_BIT | self.gl.GL_DEPTH_BUFFER_BIT)
 self.program.bind()

Creating 3D Graphics with QtOpenGL Chapter 13

[340]

glClearColor() is used to fill the background of the drawing with a solid color, as
specified by our arguments. Colors in OpenGL are specified using three or four values. In
the case of three values, they represent red, green, and blue. A fourth value, when used,
represents the alpha, or opacity, of the color. Unlike Qt, where RGB values are integers
ranging from 0 to 255, OpenGL color values are floating-point numbers ranging from 0 to
1. Our values in the preceding describe a deep purple-blue color; feel free to experiment
with other values.

You should redraw the background with glClearColor on every
repaint; if you don't, the previous paint operations will still be visible.
This is a problem if you animate or resize your drawing.

The glClear() function is used to clean out various memory buffers on the GPU, which
we'd like to reset between redraws. In this case, we're specifying some constants that cause
OpenGL to clear the color buffer and the depth buffer. This helps to maximize performance.

Finally, we bind() the program object. Since an OpenGL application can have multiple
programs, we call bind() to tell OpenGL that the commands we're about to issue apply to
this particular program.

Now we can draw our shape.

Shapes in OpenGL are described using vertices. You may recall that a vertex is essentially a
point in 3D space described by X, Y, and Z coordinates, and defines one corner or end of a
primitive.

Let's create a list of vertices to describe a triangle that will be the front of a wedge shape:

 front_vertices = [
 qtg.QVector3D(0.0, 1.0, 0.0), # Peak
 qtg.QVector3D(-1.0, 0.0, 0.0), # Bottom left
 qtg.QVector3D(1.0, 0.0, 0.0) # Bottom right
]

Our vertex data doesn't have to be grouped into distinct objects of any kind, but, for
convenience and readability, we've used the QVector3D object to hold the coordinates for
each of the vertices in our triangle.

Creating 3D Graphics with QtOpenGL Chapter 13

[341]

The numbers used here represent points on a grid, where (0, 0, 0) is the center of our
OpenGL viewport at the forward-most point. The x axis goes from -1 at the left-hand side
of the screen to 1 at the right-hand side, and the y axis goes from 1 at the top of the screen
to -1 at the bottom. The z axis is a bit different; if you imagine the field of vision (the
frustum we described earlier) as a shape expanding out of the back of your monitor, a
negative z value pushes deeper into that field of vision. A positive z value would move out
of the screen toward (and eventually behind) the viewer. So, generally, we will be operating
with negative or zero z values to stay within the visible range.

By default, OpenGL will draw in black, but it would be far more interesting to have some
colors. So, we'll define a tuple object containing some colors:

 face_colors = (
 qtg.QColor('red'),
 qtg.QColor('orange'),
 qtg.QColor('yellow'),
)

We've defined three colors here, one for each vertex of the triangle. These are QColor
objects, though; remember that OpenGL needs colors as vectors of values between 0 and 1.

To address this, we'll create a little method to convert a QColor to an OpenGL-friendly
vector:

 def qcolor_to_glvec(self, qcolor):
 return qtg.QVector3D(
 qcolor.red() / 255,
 qcolor.green() / 255,
 qcolor.blue() / 255
)

This code is fairly self-explanatory, it will create another QVector3D object with the
converted RGB values.

Back in paintGL(), we can use a list comprehension to convert our colors to something
usable:

 gl_colors = [
 self.qcolor_to_glvec(color)
 for color in face_colors
]

Creating 3D Graphics with QtOpenGL Chapter 13

[342]

At this point, we've defined some vertex and color data, but we've sent nothing to OpenGL
yet; these are just data values in our Python script. To pass these to OpenGL, we'll need
those variable handles we grabbed in initializeGL().

The first variable we'll pass to our shaders is the matrix variable. We're going to use our
view_matrix object that we defined in initializeGL() for this:

 self.program.setUniformValue(
 self.matrix_location, self.view_matrix)

setUniformValue() can be used to set the value of a uniform variable; we can simply
pass it the handle of the GLSL variable that we retrieved using uniformLocation() and
the matrix object we created to define our projection and field of vision.

You can also use setAttributeValue() to set the value of attribute variables. For
instance, if we wanted all our vertices to be red, we could add this:

 self.program.setAttributeValue(
 self.color_location, gl_colors[0])

But let's not do that; it will look much better if each vertex has its own color.

To do this, we need to create some attribute arrays. An attribute array is an array of data
that will be passed into an attribute-type variable. Remember that variables marked as
attributes in GLSL apply a distinct value to each vertex. So effectively we're telling
OpenGL, here are some arrays of data where each item applies to one vertex.

The code looks like this:

 self.program.enableAttributeArray(self.vertex_location)
 self.program.setAttributeArray(
 self.vertex_location, front_vertices)
 self.program.enableAttributeArray(self.color_location)
 self.program.setAttributeArray(self.color_location, gl_colors)

The first step is to enable an array on the GLSL variable by calling
enableAttributeArray() with the handle for the variable that we want to set the array
on. Then, we pass in the data using setAttributeArray(). This effectively means that
our vertex shader is going to be run on each of the items in the front_vertices array.
Each time that shader runs, it will also grab the next item from the gl_colors list and will
apply that to the color_attr variable.

Creating 3D Graphics with QtOpenGL Chapter 13

[343]

If you are using multiple attribute arrays like this, you need to make sure
that there are enough items in the arrays to cover all the vertices. If we
only had two colors defined, the third vertex would pull garbage data for
color_attr, resulting in an undefined output.

Now that we've queued up all the data for our first primitive, let's draw using the following
code:

 self.gl.glDrawArrays(self.gl.GL_TRIANGLES, 0, 3)

glDrawArrays() will send all the arrays we've defined into the pipeline. The
GL_TRIANGLES argument tells OpenGL that it will be drawing triangle primitives, and the
next two arguments tell it to start at array item 0 and draw three items.

If you run the program at this point, you should see that we've drawn a red and yellow
triangle. Nice! Now, let's make it 3D.

Creating a 3D object
To make a 3D object, we need to draw the back and sides of our wedge object. We'll start by
calculating the coordinates for the back of the wedge using a list comprehension:

 back_vertices = [
 qtg.QVector3D(x.toVector2D(), -0.5)
 for x in front_vertices]

To create the back face, we only need to copy each of the front face coordinates and move
the z axis back a bit. So, we're using the QVector3D object's toVector2D() method to
produce a new vector with only the x and y axes, then passing that to the constructor of a
new QVector3D object along with a second argument specifying the new z coordinate.

Now, we'll pass this set of vertices to OpenGL and draw as follows:

 self.program.setAttributeArray(
 self.vertex_location, reversed(back_vertices))
 self.gl.glDrawArrays(self.gl.GL_TRIANGLES, 0, 3)

By writing these to vertex_location, we've overwritten the vertices for the front face
(which are already drawn) and replaced them with the back face vertices. Then, we make
the same call to glDrawArrays() and the new set of vertices will be drawn, along with the
corresponding colors.

Creating 3D Graphics with QtOpenGL Chapter 13

[344]

You will notice that we will reverse the order of the vertices before drawing. When
OpenGL displays a primitive, it only shows one side of that primitive, since it's assumed
that the primitive is part of some 3D object whose insides would not need to be drawn.
OpenGL determines which side of the primitive should be drawn depending on whether its
points are drawn clockwise or counterclockwise. By default, the near face of a primitive
drawn counter-clockwise is shown, so we will reverse the order of the back face vertices so
that it is drawn clockwise and its far face is shown (which will be the outside of the wedge).

Let's finish our shape by drawing its sides. Unlike the front and back, which are triangles,
our sides are rectangles and so will need four vertices each to describe them.

We'll calculate those vertices from our other two lists:

 sides = [(0, 1), (1, 2), (2, 0)]
 side_vertices = list()
 for index1, index2 in sides:
 side_vertices += [
 front_vertices[index1],
 back_vertices[index1],
 back_vertices[index2],
 front_vertices[index2]
]

The sides list contains indexes for the front_vertices and back_vertices lists, which
define the sides of each triangle. We iterate this list, and, for each one, define a list of four
vertices describing one side of the wedge.

Notice that those four vertices are drawn in counter-clockwise order, just like the front (you
may need to sketch this out on paper to see it).

We'll also define a new list of colors since we now need more than three:

 side_colors = [
 qtg.QColor('blue'),
 qtg.QColor('purple'),
 qtg.QColor('cyan'),
 qtg.QColor('magenta'),
]
 gl_colors = [
 self.qcolor_to_glvec(color)
 for color in side_colors
] * 3

Our list of side vertices contains a total of 12 vertices (4 for each of the 3 sides), so we need a
list of 12 colors to match it. We can do this by just specifying 4 colors and then multiplying
the Python list object by 3 to produce a repeating list with 12 items in total.

Creating 3D Graphics with QtOpenGL Chapter 13

[345]

Now, we'll pass these arrays to OpenGL and draw:

 self.program.setAttributeArray(self.color_location, gl_colors)
 self.program.setAttributeArray(self.vertex_location, side_vertices)
 self.gl.glDrawArrays(self.gl.GL_QUADS, 0, len(side_vertices))

This time, instead of GL_TRIANGLES, we're using GL_QUADS as the first argument to
indicate that we're drawing quadrilaterals.

OpenGL can draw several different primitive types, including lines,
points, and polygons. Most of the time, you should use triangles, because
this is the fastest primitive on most graphics hardware.

Now that all our points are drawn, we'll clean up a bit:

 self.program.disableAttributeArray(self.vertex_location)
 self.program.disableAttributeArray(self.color_location)
 self.program.release()

These calls aren't strictly necessary in our simple little demonstration, but, in a more
complex program, they would likely save you some headaches. OpenGL operates as a state
machine, where the result of an operation depends on the current state of the system. When
we bind or enable a particular object, OpenGL is then pointed to that object and certain
operations (such as setting array data) will be automatically directed to it. When we've
finished a drawing operation, we don't want to leave OpenGL pointed at our object, so it's
good practice to release and disable objects when we're finished with them.

If you run the application now, you should see your amazing 3D shape:

Oops, not so 3D, is it? In fact, we have drawn a 3Dshape, but you can't see that, because
we're looking directly at it. In the next section, we'll create some code to animate this shape
and get a full appreciation of all its dimensions.

Creating 3D Graphics with QtOpenGL Chapter 13

[346]

Animating and controlling OpenGL drawings
To get a sense of the 3D aspects of our drawing, we're going to build some controls into our
GUI that allow us to rotate and zoom around the drawing.

We'll start by adding some buttons in MainWindow.__init__() that we can use as
controls:

 btn_layout = qtw.QHBoxLayout()
 main.layout().addLayout(btn_layout)
 for direction in ('none', 'left', 'right', 'up', 'down'):
 button = qtw.QPushButton(
 direction,
 autoExclusive=True,
 checkable=True,
 clicked=getattr(oglw, f'spin_{direction}'))
 btn_layout.addWidget(button)
 zoom_layout = qtw.QHBoxLayout()
 main.layout().addLayout(zoom_layout)
 zoom_in = qtw.QPushButton('zoom in', clicked=oglw.zoom_in)
 zoom_layout.addWidget(zoom_in)
 zoom_out = qtw.QPushButton('zoom out', clicked=oglw.zoom_out)
 zoom_layout.addWidget(zoom_out)

We've created two sets of buttons here; the first set will be a set of radio-style buttons (so
only one can be down at a time) that will select the rotation direction of the object – none
(no rotation), left, right, up, or down. Each button will call a corresponding method on the
GlWidget object when activated.

The second set comprises a zoom-in and zoom-out buttons, which calls a zoom_in() or
zoom_out() method on the GlWidget respectively. With these buttons added to our GUI,
let's hop over to GlWidget and implement the callback methods.

Animating in OpenGL
Animating our wedge is purely a matter of manipulating the view matrix and redrawing
our image. We'll start in GlWidget.initializeGL() by creating an instance variable to
hold rotation values:

 self.rotation = [0, 0, 0, 0]

The first value in this list represents an angle of rotation; the remaining values are the X, Y,
and Z coordinates of the point around which the view matrix will rotate.

Creating 3D Graphics with QtOpenGL Chapter 13

[347]

At the end of paintGL(), we can pass these values into the matrix object's rotate()
method:

 self.view_matrix.rotate(*self.rotation)

Right now, this will do nothing, because our rotation values are all 0. To cause rotation, we
will have to change self.rotation and trigger a repaint of the image.

So, our rotation callbacks will look like this:

 def spin_none(self):
 self.rotation = [0, 0, 0, 0]

 def spin_left(self):
 self.rotation = [-1, 0, 1, 0]

 def spin_right(self):
 self.rotation = [1, 0, 1, 0]

 def spin_up(self):
 self.rotation = [1, 1, 0, 0]

 def spin_down(self):
 self.rotation = [-1, 1, 0, 0]

Each method simply changes the value of our rotation vector. The angle is shifted one
degree forward (1) or backward (1) around an appropriate point to produce the rotation
desired.

Now, we just need to kick off animation by triggering repeated repaints. At the end of
paintGL(), add this line:

 self.update()

update() schedules a repaint on the event loop, which means that this method will be
called again and again. Each time, our view matrix will be rotated by the amount set in
self.rotation.

Zooming in and out
We also want to implement zooming. Each time we click the zoom-in or zoom-out buttons,
we want the image to get a tiny bit closer or further away.

Creating 3D Graphics with QtOpenGL Chapter 13

[348]

Those callbacks look like this:

 def zoom_in(self):
 self.view_matrix.scale(1.1, 1.1, 1.1)

 def zoom_out(self):
 self.view_matrix.scale(.9, .9, .9)

The scale() method of QMatrix4x4 causes the matrix to multiply each vertex point by
the given amounts. Thus, we can cause our object to shrink or grow, giving the illusion that
it is nearer or further away.

We could use translate() here, but translating in conjunction with rotation can cause
some confusing results and we can lose sight of our object quickly.

Now, when you run the application, you should be able to spin your wedge and see it in all
its 3D glory:

This demonstration is only the beginning of what can be done with OpenGL. While this
chapter may not have made you an OpenGL expert, you'll hopefully feel more comfortable
digging deeper with the resources at the end of this chapter.

Creating 3D Graphics with QtOpenGL Chapter 13

[349]

Summary
In this chapter, you have learned about creating 3D animations with OpenGL, and how to
integrate them into your PyQt application. We explored the basic principles of OpenGL,
such as the render pipeline, shaders, and GLSL. We learned how to use Qt widgets as an
OpenGL context to draw and animate a simple 3D object.

In the next chapter, we'll learn to visualize data interactively using the QtCharts module.
We'll create basic charts and graphs and learn how to build charts using a model-view
architecture.

Questions
Try these questions to test your knowledge from this chapter:

Which steps of the OpenGL render pipeline are user-definable? Which steps must1.
be defined in order to render anything? You may need to reference the
documentation at https:/ / www. khronos. org/ opengl/ wiki/ Rendering_
Pipeline_ Overview.

You're writing a shader for an OpenGL 2.1 program. Does the following look2.
correct?

 #version 2.1

 attribute highp vec4 vertex;

 void main (void)
 {
 gl_Position = vertex;
 }

Is the following a vertex or fragment shader? How can you tell?3.

 attribute highp vec4 value1;
 varying highp vec3 x[4];
 void main(void)
 {
 x[0] = vec3(sin(value1[0] * .4));
 x[1] = vec3(cos(value1[1]));
 gl_Position = value1;
 x[2] = vec3(10 * x[0])
 }

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

Creating 3D Graphics with QtOpenGL Chapter 13

[350]

Given the following vertex shader, what code do you need to write to assign4.
simple values to the two variables?

 attribute highp vec4 coordinates;
 uniform highp mat4 matrix1;

 void main(void){
 gl_Position = matrix1 * coordinates;
 }

You enable face culling to save some processing power, but find that several of5.
the visible primitives in your drawing are now not rendering. What could the
problem be?
What does the following code do to our OpenGL image?6.

 matrix = qtg.QMatrix4x4()
 matrix.perspective(60, 4/3, 2, 10)
 matrix.translate(1, -1, -4)
 matrix.rotate(45, 1, 0, 0)

Experiment with the demo and see whether you can add any of the following7.
features:

A more interesting shape (a pyramid, cube, and so on)
More controls for moving the object
Shadows and lighting effects
Animated shape changes in the object

Further reading
For further information, please refer the following:

A complete tutorial on modern OpenGL programming can be found at https:/ /
paroj.github. io/ gltut

Packt Publications' Learn OpenGL, available at https:/ /www. packtpub. com/ game-
development/ learn- opengl, is a good resource for learning the basics of OpenGL
A free tutorial on matrix mathematics for 3D graphics is available from Central
Connecticut State University at https:/ / chortle. ccsu. edu/ VectorLessons/
vectorIndex. html

https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://paroj.github.io/gltut
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://www.packtpub.com/game-development/learn-opengl
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html
https://chortle.ccsu.edu/VectorLessons/vectorIndex.html

14
Embedding Data Plots with

QtCharts
The world is full of data. From server logs to financial records, sensor telemetry to census
statistics, there seems to be no end to the raw data that programmers are tasked to sift
through and extract meaning from. In addition to this, nothing distills a set of raw data into
meaningful information as effectively as a good chart or graph. While there are some great
charting tools such as matplotlib available for Python, PyQt offers its own QtCharts
library, which is a simple toolkit for constructing charts, graphs, and other data
visualizations.

In this chapter, we're going to explore data visualization using QtCharts in the following
topics:

Making a simple chart
Displaying real-time data
Styling Qt charts

Technical requirements
In addition to the basic PyQt setup we've been using throughout the book, you will need to
install PyQt support for the QtCharts library. This support is not part of the default PyQt
install, but it can be easily installed from PyPI, as follows:

$ pip install --user PyQtChart

Embedding Data Plots with QtCharts Chapter 14

[352]

You'll also need the psutil library, which can be installed from PyPI. We already used this
library in Chapter 12, Creating 2D Graphics with QPainter, so if you have been through that
chapter, then you should already have it. If not, it can be easily installed using the
following command:

$ pip install --user psutil

Finally, you may want to download the example code for this chapter from https:/ /
github.com/PacktPublishing/ Mastering- GUI-Programming- with- Python/ tree/ master/
Chapter14.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5y67f

Making a simple chart
In Chapter 12, Creating 2D Graphics with QPainter, we created a CPU activity graph using
the Qt graphics framework and the psutil library. While that approach to building a chart
worked fine, it took a lot of work to create a rudimentary chart that lacked simple niceties
such as axis labels, a title, or a legend. The QtChart library is also based on the Qt graphics
framework, but simplifies the creation of a variety of feature-complete charts.

To demonstrate how it works, we're going to build a more complete system monitoring
program that includes several charts derived from data provided by the psutil library.

Setting up the GUI
To begin our program, copy the Qt application template from Chapter 4, Building
Applications with QMainWindow, to a new file called system_monitor.py.

At the top of the application, we need to import the QtChart library:

from PyQt5 import QtChart as qtch

We're also going to need the deque class and the psutil library, just like we needed them
in Chapter 12, Creating 2D Graphics with QPainter:

from collections import deque
import psutil

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter14
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
http://bit.ly/2M5y67f
https://cdp.packtpub.com/mastering_gui_programming_with_python/wp-admin/post.php?post=37&action=edit#post_35

Embedding Data Plots with QtCharts Chapter 14

[353]

Our program will contain several charts, each in its own tab. So, we will create a tab widget
in MainWindow.__init__() to hold all the charts:

 tabs = qtw.QTabWidget()
 self.setCentralWidget(tabs)

Now that the main framework of the GUI is in place, we'll start creating our chart classes
and adding them to the GUI.

Building a disk usage chart
The first chart we'll create is a bar chart for displaying the disk space used by each storage
partition on the computer. Each detected partition will have a bar indicating what
percentage of its space is being used.

Let's start by creating a class for the chart:

class DiskUsageChartView(qtch.QChartView):

 chart_title = 'Disk Usage by Partition'

 def __init__(self):
 super().__init__()

The class is subclassed from the QtChart.QChartView class; this subclass of
QGraphicsView is a widget that can display QChart objects. Just like the Qt graphics
framework, the QtChart framework is based on a model-view design. In this case, the
QChart object is analogous to a QGraphicsScene object, which will be attached to the
QChartView object for display.

Let's create our QChart object, as follows:

 chart = qtch.QChart(title=self.chart_title)
 self.setChart(chart)

The QChart object receives a title but, otherwise, doesn't require a lot of configuration;
notice that it says nothing about being a bar chart either. Unlike other charting libraries you
may have used, the QChart object doesn't determine what kind of chart we're creating. It's
simply a container for data plots.

Embedding Data Plots with QtCharts Chapter 14

[354]

The actual type of chart is determined by adding one or more series objects to the chart. A
series represents a single set of plotted data on a chart. QtChart contains many series
classes, all derived from QAbstractSeries, each of which represents a different kind of
chart style.

Some of these classes are as follows:

Class Chart type Useful for
QLineSeries Straight-line plot Points sampled from continuous data
QSplineSeries Line plot, but with curves Points sampled from continuous data
QBarSeries Bar chart Comparing values by category
QStackedBarSeries Stacked bar chart Comparing subdivided values by category
QPieSeries Pie chart Relative percentages
QScatterSeries Scatter Plot Collections of points

A complete list of available series types can be found at https:/ /doc. qt.io/ qt- 5/
qtcharts-overview. html. Our chart will be comparing disk usage percentages across
multiple partitions, so the most sensible type of series to use from among these options
seems to be the QBarSeries class. Each partition will be a category that will have a single
value (the usage percentage) associated with it.

Let's create the QBarSeries class, as follows:

 series = qtch.QBarSeries()
 chart.addSeries(series)

After creating the series object, we can add it to our chart using the addSeries() method.
As you might suspect from the name of this method, we can actually add multiple series to
the chart, and they don't all need to be of the same type. We could, for example, combine a
bar and line series in the same chart. In our case, though, we're only going to have one
series.

To append data to our series, we have to create something called a bar set:

 bar_set = qtch.QBarSet('Percent Used')
 series.append(bar_set)

Qt bar charts are designed to show data in categories, but also allow for different sets of
data to be compared across those categories. For instance, if you wanted to compare the
relative sales success of several of your company's products in various US cities, you could
use the cities as your categories and create a bar set for each product.

https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html
https://doc.qt.io/qt-5/qtcharts-overview.html

Embedding Data Plots with QtCharts Chapter 14

[355]

In our case, the categories are going to be the partitions on the system, and we have only
one set of data that we want to see for each of those partitions – that is, the disk usage
percent.

So, we'll create a single bar set to append to our series:

 bar_set = qtch.QBarSet('Percent Used')
 series.append(bar_set)

The QBarSet constructor takes a single argument, which represents the label for the
dataset. This QBarSet object is the object to which we're going to append our actual data.

So, let's go ahead and retrieve that data:

 partitions = []
 for part in psutil.disk_partitions():
 if 'rw' in part.opts.split(','):
 partitions.append(part.device)
 usage = psutil.disk_usage(part.mountpoint)
 bar_set.append(usage.percent)

This code utilizes the disk_partitions() function of pustil to list all the writable
partitions on the system (we aren't interested in read-only devices, such as optical drives,
since their usage is irrelevant). For each partition, we use the disk_usage() function to
retrieve a named tuple of information about disk usage. The percent property of this tuple
contains the usage percentage of the disk, so we append that value to our bar set. We also
append the device name of the partition to a list of partitions.

At this point, our chart contains a data series and can display the bars for the data.
However, it would be difficult to extract much meaning from the chart because there would
be no axes labeling the data. To fix this, we need to create a couple of axis objects to
represent the x and y axes.

We'll start with the x axis, as follows:

 x_axis = qtch.QBarCategoryAxis()
 x_axis.append(partitions)
 chart.setAxisX(x_axis)
 series.attachAxis(x_axis)

Embedding Data Plots with QtCharts Chapter 14

[356]

QtCharts offers different types of axis objects to handle different approaches to organizing
data. Our x axis is made up of categories—one for each partition found on the computer –
so, we've created a QBarCategoryAxis object to represent the x axis. To define the
categories used, we pass a list of strings to the append() method.

It's important that the order of our categories matches the order in which
data is appended to the bar set, since each data point is categorized
according to its position in the series.

Once created, an axis has to be attached both to the chart and to the series; this is because
the chart needs to know about the axis object so that it can properly label and scale the axis.
This is accomplished by passing the axis object to the chart's setAxisX() method. The
series also needs to know about the axis object so that it can scale the plots correctly for the
chart, which we accomplish by passing it to the series object's attachAxis() method.

Our y axis represents a percentage, so we'll need an axis type that handles values between 0
and 100. We will use a QValueAxis object for this, as follows:

 y_axis = qtch.QValueAxis()
 y_axis.setRange(0, 100)
 chart.setAxisY(y_axis)
 series.attachAxis(y_axis)

QValueAxis represents an axis that displays a scale of numeric values, and allows us to set
an appropriate range for the values. Once created, we can attach it to both the chart and the
series.

At this point, we can create an instance of our chart view object in MainView.__init__()
and add it to the tab widget:

 disk_usage_view = DiskUsageChartView()
 tabs.addTab(disk_usage_view, "Disk Usage")

If you run the application at this point, you should get a display of your partition usage
percentages:

Embedding Data Plots with QtCharts Chapter 14

[357]

Your display will look slightly different, depending on your OS and drive configurations.
The preceding diagram looks pretty good, but one small improvement we can make is to
actually put percentage labels on our bars so that readers can see the precise data values.
This can be done back in DiskUsageChartView.__init__() by adding the following
line:

 series.setLabelsVisible(True)

Now when we run the program, we get labeled bars, as follows:

Well, it seems this author is due for a larger hard drive!

Embedding Data Plots with QtCharts Chapter 14

[358]

Displaying real-time data
Now that we have seen how easy it is to create a static chart, let's take a look at the process
of creating a chart that updates in real time. Essentially, the process is the same, but we'll
need to periodically update the chart's data series with fresh data. To demonstrate this, let's
make a real-time CPU usage monitor.

Building a CPU usage chart
Let's start our CPU monitor in a new class called CPUUsageView:

class CPUUsageView(qtch.QChartView):

 num_data_points = 500
 chart_title = "CPU Utilization"

 def __init__(self):
 super().__init__()
 chart = qtch.QChart(title=self.chart_title)
 self.setChart(chart)

Just as we did with our disk usage chart, we're basing this class on QChartView and
beginning the constructor by creating a QChart object. We've also defined a title, and, just
as we did in Chapter 12, Creating 2D Graphics with QPainter, configured a number of data
points to display at one time. We're going to do a lot more points this time, though, so that
we can get a more detailed chart.

After creating the chart object, the next step is to create the series object:

 self.series = qtch.QSplineSeries(name="Percentage")
 chart.addSeries(self.series)

This time, we're using the QSplineSeries object; we could have also used QLineSeries,
but the spline version will connect our data point using cubic spline curves for a smooth
appearance, which is similar to what we achieved using Bezier curves in Chapter
12, Creating 2D Graphics with QPainter.

Embedding Data Plots with QtCharts Chapter 14

[359]

Next, we need to populate the series object with some default data, as follows:

 self.data = deque(
 [0] * self.num_data_points, maxlen=self.num_data_points)
 self.series.append([
 qtc.QPoint(x, y)
 for x, y in enumerate(self.data)
])

Once again, we're creating a deque object to store the data points and filling it with zeros.
We then append this data to our series by creating a list of QPoint objects from our
deque object using a list comprehension. Unlike the QBarSeries class, data is appended
directly to the QSplineSeries object; there is nothing analogous to the QBarSet class for
line-based series.

Now that our series is set up, let's work on the axes:

 x_axis = qtch.QValueAxis()
 x_axis.setRange(0, self.num_data_points)
 x_axis.setLabelsVisible(False)
 y_axis = qtch.QValueAxis()
 y_axis.setRange(0, 100)
 chart.setAxisX(x_axis, self.series)
 chart.setAxisY(y_axis, self.series)

Because our data is mostly (x, y) coordinates, both our axes are QValueAxis objects.
However, the value of our x axis coordinate is essentially meaningless (it's just the index of
the CPU usage value in the deque object), so we'll hide those labels by setting the axis's
labelsVisible property to False.

Note that this time, we passed the series object along with the axis when setting the chart's
x and y axes with setAxisX() and setAxisY. Doing this automatically attaches the axis to
the series as well, and saves us an extra method call for each axis.

Since we're using curves here, we should make one appearance optimization:

 self.setRenderHint(qtg.QPainter.Antialiasing)

The QChartView object's renderHint property can be used to activate anti-aliasing,
which will improve the smoothness of the spline curves.

The basic framework for our chart is now complete; what we need now is a way to collect
the data and update the series.

Embedding Data Plots with QtCharts Chapter 14

[360]

Updating the chart data
Our first step in updating our data is to create a method that calls psutil.cpu_percent()
and updates the deque object:

 def refresh_stats(self):
 usage = psutil.cpu_percent()
 self.data.append(usage)

To update the chart, we only need to update the data in the series. There are a couple of
ways to do this; for example, we could completely remove all the data in the chart and
append() new values.

A better approach is to replace() the values, as follows:

 new_data = [
 qtc.QPoint(x, y)
 for x, y in enumerate(self.data)]
 self.series.replace(new_data)

First, we generate a new set of QPoint objects from our deque object using a list
comprehension, and then pass the list to the series object's replace() method, which
swaps out all the data. This method is somewhat faster than wiping out all the data and
repopulating the series, although either approach works.

Now that we have the refresh method, we just need to call it periodically; back in
__init__(), let's add a timer:

 self.timer = qtc.QTimer(
 interval=200, timeout=self.refresh_stats)
 self.timer.start()

This timer will call refresh_stats() every 200 milliseconds, updating the series and,
consequently, the chart.

Back in MainView.__init__(), let's add our CPU chart:

 cpu_view = CPUUsageView()
 tabs.addTab(cpu_view, "CPU Usage")

Embedding Data Plots with QtCharts Chapter 14

[361]

Now, you can run the application and click on the CPU Usage tab to see a chart that is
similar to the following diagram:

Try doing some CPU-intensive tasks to generate some interesting data for the chart.

Panning and zooming around the chart
With our refresh method being called five times a second, the data in this series is pretty
detailed for such a small chart. A dense chart such as this one is something a user might
like to explore in more detail. To implement this capability, we can take advantage of the
QChart object's methods for panning and zooming around the chart image, and allow the
user to get a better view of the data.

Embedding Data Plots with QtCharts Chapter 14

[362]

To configure interactive controls for the CPUUsageView class, we can override
the keyPressEvent() method, just as we did in our game in Chapter 12, Creating 2D
Graphics with QPainter:

 def keyPressEvent(self, event):
 keymap = {
 qtc.Qt.Key_Up: lambda: self.chart().scroll(0, -10),
 qtc.Qt.Key_Down: lambda: self.chart().scroll(0, 10),
 qtc.Qt.Key_Right: lambda: self.chart().scroll(-10, 0),
 qtc.Qt.Key_Left: lambda: self.chart().scroll(10, 0),
 qtc.Qt.Key_Greater: self.chart().zoomIn,
 qtc.Qt.Key_Less: self.chart().zoomOut,
 }
 callback = keymap.get(event.key())
 if callback:
 callback()

This code is similar to the code that we used in our tank game—we create a dict object to
map key codes to callback functions, and then check our event object to see whether one of
the mapped keys was pressed. If it was, then we call the callback method.

The first of these methods we've mapped is QChart.scroll(). scroll() takes x and
y values and moves the chart within the chart view by that amount. Here, we've mapped
the arrow keys to lambda functions, which scroll the chart appropriately.

The other methods we've mapped are zoomIn() and zoomOut(). These do precisely what
their names suggest, each zooming in or out by a factor of two. If we wanted to customize
the amount of zoom, then we could alternately call the zoom() method, which takes a float
value indicating the zoom factor.

If you run this program now, you should find that you can move the chart around using
the arrow keys and zoom in or out using the angle brackets (remember to press Shift on
most keyboards to get an angle bracket).

Styling Qt charts
As good as Qt charts look by default, let's face it—nobody wants to be stuck with defaults
when it comes to style. Fortunately, QtCharts offers a wide variety of options for styling
the different components of our visualizations.

To explore these options, we're going to build a third chart to show physical and swap
memory usage, and then style it to our own preferences.

Embedding Data Plots with QtCharts Chapter 14

[363]

Building the memory chart
We'll start this chart view object just like we started the others in the previous sections:

class MemoryChartView(qtch.QChartView):

 chart_title = "Memory Usage"
 num_data_points = 50

 def __init__(self):
 super().__init__()
 chart = qtch.QChart(title=self.chart_title)
 self.setChart(chart)
 series = qtch.QStackedBarSeries()
 chart.addSeries(series)
 self.phys_set = qtch.QBarSet("Physical")
 self.swap_set = qtch.QBarSet("Swap")
 series.append(self.phys_set)
 series.append(self.swap_set)

This class starts in a similar way to our disk usage chart – by subclassing QChartView,
defining a chart, defining a series, and then defining some bar sets. This time, however, we
are going to use QStackedBarSeries. The stacked bar is just like the regular bar chart,
except that each bar set is stacked vertically rather than placed side by side. This kind of
chart is useful for displaying a series of relative percentages, which is exactly what we're
going to display.

In this case, we're going to have two bar sets – one for physical memory usage and the
other for swap memory usage, each as a percentage of the total memory (physical and
swap). By using a stacked bar, the total memory usage will be represented by the bar
height, while the individual segments will show the swap and physical components of that
total.

To hold our data, we'll once again set up a deque object with the default data and append
the data to the bar sets:

 self.data = deque(
 [(0, 0)] * self.num_data_points,
 maxlen=self.num_data_points)
 for phys, swap in self.data:
 self.phys_set.append(phys)
 self.swap_set.append(swap)

Embedding Data Plots with QtCharts Chapter 14

[364]

This time, each data point in the deque object needs to have two values: the first for the
physical data and the second for the swap. We're representing this by using a two-tuple
sequence for each data point.

The next step, once again, is to set up our axes:

 x_axis = qtch.QValueAxis()
 x_axis.setRange(0, self.num_data_points)
 x_axis.setLabelsVisible(False)
 y_axis = qtch.QValueAxis()
 y_axis.setRange(0, 100)
 chart.setAxisX(x_axis, series)
 chart.setAxisY(y_axis, series)

Here, like the CPU usage chart, our x axis just represents the somewhat meaningless index
number of the data, so we're just going to hide the labels. Our y axis, on the other hand,
represents a percentage, so we'll set its range from 0 to 100.

Now, we'll create our refresh method to update the chart data:

 def refresh_stats(self):
 phys = psutil.virtual_memory()
 swap = psutil.swap_memory()
 total_mem = phys.total + swap.total
 phys_pct = (phys.used / total_mem) * 100
 swap_pct = (swap.used / total_mem) * 100

 self.data.append(
 (phys_pct, swap_pct))
 for x, (phys, swap) in enumerate(self.data):
 self.phys_set.replace(x, phys)
 self.swap_set.replace(x, swap)

The psutil library has two functions for examining memory usage: virtual_memory(),
which returns information about the physical RAM; and swap_memory(), which returns
information about the swap file usage. We're applying some basic arithmetic to find out the
percentage of total memory (swap and physical) used by swap and physical memory. We
then append this data to the deque object and iterate through it to replace the data in the
bar sets.

Finally, we'll add our timer back in __init__() to call the refresh method:

 self.timer = qtc.QTimer(
 interval=1000, timeout=self.refresh_stats)
 self.timer.start()

Embedding Data Plots with QtCharts Chapter 14

[365]

The chart view class should now be fully functional, so let's add it to the MainWindow class
and test it out.

To do this, add the following code in MainWindow.__init__():

 cpu_time_view = MemoryChartView()
 tabs.addTab(cpu_time_view, "Memory Usage")

If you run the program at this point, you should have a working memory usage monitor
that updates once per second. It's nice, but it looks too default-like; so, let's style things up a
bit.

Chart styling
To give our memory chart a healthy dose of individuality, let's head back up to
MemoryChartView.__init__() and start adding in code to style the various elements of
the chart.

One of the easiest, yet most interesting, changes that we can make is to activate the chart's
built-in animations:

 chart.setAnimationOptions(qtch.QChart.AllAnimations)

The QChart object's animationOptions property determines which of the built-in chart
animations will be run when the chart is created or updated. The options include
GridAxisAnimations, which animate the drawing of the axes; SeriesAnimations,
which animate updates to the series data; AllAnimations, which we've used here to
activate both grid and series animations; and NoAnimations, which, as you might guess, is
used to turn all the animations off (this is, of course, the default).

If you run the program now, you'll see that the grid and axes sweep into place and each bar
pops up from the bottom of the chart in a smooth animation. The animations themselves
are preset for each series type; note that we can't do much to customize them other than set
the easing curve and duration:

 chart.setAnimationEasingCurve(
 qtc.QEasingCurve(qtc.QEasingCurve.OutBounce))
 chart.setAnimationDuration(1000)

Here, we've set the chart's animationEasingCurve property to a QtCore.QEasingCurve
object with an out bounce easing curve. We've also slowed the animation time to a full
second. If you run the program now, you'll see the animations bounce and last slightly
longer.

Embedding Data Plots with QtCharts Chapter 14

[366]

Another simple tweak we can make is enabling the chart's drop shadow, as follows:

 chart.setDropShadowEnabled(True)

Setting dropShadowEnabled to True will cause a drop shadow to be displayed around the
chart's plot area, giving it a subtle 3D effect.

A more dramatic change in appearance comes by setting the chart's theme property, as
follows:

 chart.setTheme(qtch.QChart.ChartThemeBrownSand)

Although this is called a chart theme, it mainly affects the colors used for the plots. Qt 5.12
ships with eight chart themes, which can be found at https:/ /doc. qt.io/ qt-5/ qchart.
html#ChartTheme-enum. Here, we've configured the Brown Sand theme, which will utilize
earth tones for our data plots.

In the case of our stacked bar chart, this means each part of the stack will get a different
color from the theme.

Another very noticeable change we can make is done by setting the chart's background.
This can be done by setting the backgroundBrush property to a custom QBrush object:

 gradient = qtg.QLinearGradient(
 chart.plotArea().topLeft(), chart.plotArea().bottomRight())
 gradient.setColorAt(0, qtg.QColor("#333"))
 gradient.setColorAt(1, qtg.QColor("#660"))
 chart.setBackgroundBrush(qtg.QBrush(gradient))

In this case, we've created a linear gradient and used it to create a QBrush object for the
background (see Chapter 6, Styling Qt Applications, for more discussion on this).

The background also has a QPen object, which is used to draw the border around the plot
area:

 chart.setBackgroundPen(qtg.QPen(qtg.QColor('black'), 5))

If you run the program at this point, you might find the text a little hard to read.
Unfortunately, there isn't an easy way to update the look of all the text in the chart at once –
we need to do it piece by piece. We can start with the chart's title text by setting the
titleBrush and titleFont properties, as follows:

 chart.setTitleBrush(
 qtg.QBrush(qtc.Qt.white))
 chart.setTitleFont(qtg.QFont('Impact', 32, qtg.QFont.Bold))

https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum
https://doc.qt.io/qt-5/qchart.html#ChartTheme-enum

Embedding Data Plots with QtCharts Chapter 14

[367]

Fixing the rest of the text cannot be done through the chart object. For that, we need to
look at styling the other objects in the chart.

Styling axes
The font and color of the labels used on the chart's axes must be set through our axis's
objects:

 axis_font = qtg.QFont('Mono', 16)
 axis_brush = qtg.QBrush(qtg.QColor('#EEF'))
 y_axis.setLabelsFont(axis_font)
 y_axis.setLabelsBrush(axis_brush)

Here, we've set the y axis font and color by using the setLabelsFont() and
setLabelsBrush() methods, respectively. Note that we could set the x axis label font and
color as well, but there isn't much point since we're not showing the x labels.

The axis objects also give us access to styling our grid lines, using the gridLinePen
property:

 grid_pen = qtg.QPen(qtg.QColor('silver'))
 grid_pen.setDashPattern([1, 1, 1, 0])
 x_axis.setGridLinePen(grid_pen)
 y_axis.setGridLinePen(grid_pen)

Here, we've set up a dashed silver QPen object to draw the grid lines of our x and y axes.
Incidentally, if you want to change how many grid lines are drawn on the chart, that can be
done by setting the axis object's tickCount property:

 y_axis.setTickCount(11)

The default tick count is 5, and the minimum is 2. Note that this number includes the top
and bottom lines, so to have a grid line at every 10 percent, we've set the axis to 11 ticks.

To help users distinguish between tightly-packed grid lines, we can also enable shades on
the axis object:

 y_axis.setShadesVisible(True)
 y_axis.setShadesColor(qtg.QColor('#884'))

As you can see, if you run the application, this causes every alternate region between the
grid lines to be shaded according to the configured color rather than using the default
background.

Embedding Data Plots with QtCharts Chapter 14

[368]

Styling the legend
The final thing that we might want to fix in this chart is the legend. This is the part of the
chart that explains which color goes with which bar set. The legend is represented by a
QLegend object, which is automatically created and updated by the QChart object as we
add bar sets or series objects.

We can retrieve the chart's QLegend object using the legend() accessor method:

 legend = chart.legend()

By default, the legend doesn't have a background and simply draws directly on the chart
background. We can change that to improve readability, as follows:

 legend.setBackgroundVisible(True)
 legend.setBrush(
 qtg.QBrush(qtg.QColor('white')))

We first turn on the background by setting backgroundVisible to True and then
configuring a brush for the background by setting the brush property to a QBrush object.

The color and font of the text can also be configured, as follows:

 legend.setFont(qtg.QFont('Courier', 14))
 legend.setLabelColor(qtc.Qt.darkRed)

We can set the label color using setLabelColor(), or use a brush for finer control using
the setLabelBrush() method.

Finally, we can configure the shape of the markers that are used to indicate the colors:

 legend.setMarkerShape(qtch.QLegend.MarkerShapeCircle)

The options here include MarkerShapeCircle, MarkerShapeRectangle, and
MarkerShapeFromSeries, the last of which chooses a shape that is appropriate to the
series being drawn (for example, a short line for line or spline plots, or a dot for scatter
plots).

Embedding Data Plots with QtCharts Chapter 14

[369]

At this point, your memory chart should look something like this:

Not bad! Now, try your own color, brush, pen, and font values to see what you can create!

Summary
In this chapter, you learned how to visualize data using QtChart. You created a static table,
an animated real-time table, and a fancy chart with custom colors and fonts. You also
learned how to create bar charts, stacked bar charts, and spline charts.

In the next chapter, we're going to explore the use of PyQt on the Raspberry Pi. You'll learn
how to install a recent version of PyQt and how to interface your PyQt applications with
circuits and external hardware using the unique capabilities of the Pi.

Embedding Data Plots with QtCharts Chapter 14

[370]

Questions
Try these questions to test your knowledge on this chapter:

Consider the following descriptions of datasets. Suggest a style of chart for each:1.
Web server hit counts by date
Sales figures by salesperson per month
The percentage of support tickets for the past year by a company
department
The yield of a plot of bean plants against the plant's height, for several
hundred plants

Which chart component has not been configured in the following code, and what2.
will the result be?

 data_list = [
 qtc.QPoint(2, 3),
 qtc.QPoint(4, 5),
 qtc.QPoint(6, 7)]
 chart = qtch.QChart()
 series = qtch.QLineSeries()
 series.append(data_list)
 view = qtch.QChartView()
 view.setChart(chart)
 view.show()

What's wrong with the following code?3.

 mainwindow = qtw.QMainWindow()
 chart = qtch.QChart()
 series = qtch.QPieSeries()
 series.append('Half', 50)
 series.append('Other Half', 50)
 mainwindow.setCentralWidget(chart)
 mainwindow.show()

You want to create a bar chart comparing Bob and Alice's sales figures for the4.
quarter. What code needs to be added? Note that axes are not required here:

 bob_sales = [2500, 1300, 800]
 alice_sales = [1700, 1850, 2010]

 chart = qtch.QChart()
 series = qtch.QBarSeries()
 chart.addSeries(series)

Embedding Data Plots with QtCharts Chapter 14

[371]

 # add code here

 # end code
 view = qtch.QChartView()
 view.setChart(chart)
 view.show()

Given a QChart object named chart, write some code so that the chart has a5.
black background and blue data plots.
Style the other two charts in the system monitor script using the techniques you6.
used for the Memory Usage chart. Experiment with different brushes and pens,
and see whether you can find other properties to set.

QPolarChart is a subclass of QChart, which allows you to construct a polar7.
chart. Investigate the use of the polar chart in the Qt documentation and see
whether you can create a polar chart of an appropriate dataset.
psutil.cpu_percent() takes an optional argument, percpu, which will create8.
a list of values showing usage information per CPU core. Update your
application to use this option and separately display each CPU core's activity on
one chart.

Further reading
For further information, please refer to the following links:

The QtCharts overview can be found at https:/ /doc. qt. io/qt- 5/qtcharts-
index.html

More documentation on the psutil library can be found at https:/ /psutil.
readthedocs. io/ en/ latest/

This guide from the University of California at Berkeley offers some guidelines
for choosing the right kind of plot for different types of data: http:/ /guides.
lib.berkeley. edu/ data- visualization/ type

https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://doc.qt.io/qt-5/qtcharts-index.html
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type
http://guides.lib.berkeley.edu/data-visualization/type

15
PyQt Raspberry Pi

The Raspberry Pi is one of the most successful and exciting computers of the past decade.
Introduced in 2012 by a British nonprofit organization as a way to teach children about
computer science, the tiny Advanced RISC Machine (ARM)-based computer has become a
ubiquitous tool for hobbyists, tinkerers, developers, and IT professionals of all kinds. With
Python and PyQt readily available and well supported on its default OS, the Raspberry Pi is
a great tool for PyQt developers as well.

In this chapter, we'll look at developing with PyQt5 on the Raspberry Pi in the following
sections:

Running PyQt5 on the Raspberry Pi
Controlling General Purpose Input/Output (GPIO) devices with PyQt
Controlling PyQt with GPIO devices

Technical requirements
In order to follow along with the examples in this chapter, you'll need these items:

A Raspberry Pi—preferably 3 Model B+ or newer
A power supply, keyboard, mouse, monitor, and network connection for the Pi
A micro SD card with Raspbian 10 or later installed; you can refer to the official
documentation at https:/ / www. raspberrypi. org/documentation/
installation/ for instructions on how to install Raspbian

At the time of writing, Raspbian 10 has not yet been released, though it is
possible to upgrade Raspbian 9 to the testing version. You can refer
to Appendix B, Upgrading Raspbian 9 to Raspbian 10, of this book for
instructions on how to upgrade if Raspbian 10 is not available.

https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/installation/

PyQt Raspberry Pi Chapter 15

[373]

To program our GPIO-based projects, you'll also need some electronic components to
interface with. These parts are commonly available in electronics starter kits or from your
local electronics supply store.

The first project will require the following items:

A breadboard
Three identical resistors (between 220 and 1,000 ohms)
One tri-color LED
Four female-to-male jumper wires

The second project will require the following items:

A breadboard
One DHT11 or DHT22 temperature/humidity sensor
One push button switch
One resistor (the value isn't important)
Three female-to-male jumper wires
The Adafruit DHT sensor library, which is available from PyPI using the
following command:

$ sudo pip3 install Adafruit_DHT

You can refer to the GitHub repository at https:/ /github. com/adafruit/ Adafruit_
Python_DHT for more information.

You may also want to download the example code from https:/ /github. com/
PacktPublishing/Mastering- GUI- Programming- with- Python/ tree/ master/ Chapter15.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xDSx

Running PyQt5 on the Pi
The Raspberry Pi is capable of running many different operating systems, so installing
Python and PyQt is entirely dependent on which operating system you choose. In this
book, we're going to focus on Raspbian—the official (and most commonly used) operating
system for the Pi.

https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter15
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx
http://bit.ly/2M5xDSx

PyQt Raspberry Pi Chapter 15

[374]

Raspbian is based on the stable release of Debian GNU/Linux, which, at the time of
publication, is Debian 9 (Stretch). Unfortunately, the versions of Python and PyQt5
available for this release of Debian are too old for the code in this book. If, as you read this
book, Raspbian 10 has not yet been released, please consult Appendix B, Upgrading Raspbian
9 to Raspbian 10, for instructions on how to upgrade Raspbian 9 to Raspbian 10.

Raspbian 10 comes with Python 3.7 preinstalled, but we'll need to install PyQt5 ourselves.
Note that you cannot use pip to install PyQt5 on the Raspberry Pi, as the required Qt
binary files are not available from PyPI for the ARM platform (on which the Pi is based).
However, a version of PyQt5 is available from the Raspbian software repositories. This will
not be the latest version of PyQt5, but a version that was chosen during the Debian
development process to be the most stable and compatible with the release. For
Debian/Raspbian 10, this version is PyQt 5.11.

To install it, first make sure that your device is connected to the internet. Then, open a
command-line Terminal and enter the following command:

$ sudo apt install python3-pyqt5

The Advanced Packaging Tool (APT) utility will download and install PyQt5 and all of the
necessary dependencies. Note that this command only installs the main modules of PyQt5
for Python 3. Certain modules, such as QtSQL, QtMultimedia, QtChart, and
QtWebEngineWidgets, are packaged separately and will need to be installed using an
additional command:

$ sudo apt install python3-pyqt5.qtsql python3-pyqt5.qtmultimedia python3-
pyqt5.qtchart python3-pyqt5.qtwebengine

There are many more optional libraries packaged for PyQt5. To obtain a complete list, you
can use the apt search command, as follows:

$ apt search pyqt5

APT is the primary way in which software is installed, removed, and
updated on Raspbian, Debian, and many other Linux distributions. While
similar to pip, APT is used for the whole operating system.

PyQt Raspberry Pi Chapter 15

[375]

Editing Python on the Pi
Although you can edit Python on your own computer and copy it to the Raspberry Pi for
execution, you will likely find it more convenient to edit your code directly on the device. If
your favorite code editor or Integrated Development Environment (IDE) is not available
for Linux or ARM, never fear; Raspbian offers several alternatives:

The Thonny Python IDE comes preloaded with the default Raspbian image and
is perfectly suitable for the examples in this chapter
IDLE, Python's default programming environment is also preinstalled
Geany, a generic programming text editor suitable for many languages, is also
preinstalled
Traditional code editors such as Vim and Emacs and Python IDEs, such
as Spyder, Ninja IDE, and Eric, can be installed from the package repository
using the Add/Remove Software tool (found under Preferences in the Programs
menu) or using the apt command

Whatever application or approach you choose, make sure that you back up your files to
another device, as Raspberry Pi's SD card storage is not the most robust.

Running PyQt5 applications on the Pi
Once Python and PyQt5 are installed on your Raspberry Pi, you should be able to run any
of the applications we've written so far in this book. Essentially, the Pi is a computer
running GNU/Linux, with which all of the code in this book is compatible. With this in
mind, you could simply use it as a small, energy-efficient computer for running your PyQt
applications.

However, the Raspberry Pi has some distinctive features of its own, most notably, its
GPIO pins. These pins enable the Pi to communicate with external digital circuits in a very
simple and accessible way. Raspbian comes with software libraries preinstalled, which
allows us to control these pins using Python.

To take full advantage of the unique platform that this feature offers us, we're going to
spend the rest of this chapter focused on using PyQt5 in combination with the GPIO
features of the Raspberry Pi to create GUI applications that interact with real-world
circuitry in a way that only a device like the Pi can.

PyQt Raspberry Pi Chapter 15

[376]

Controlling GPIO devices with PyQt
For our first project, we're going to learn how we can control an external circuit from a
PyQt application. You'll be wiring up a multicolor LED and controlling its color
using QColorDialog. Gather the components listed in the Technical requirements section for
the first project and let's get started.

Connecting the LED circuit
Let's begin this project by connecting the components of our circuit on the breadboard.
Power off the Pi and disconnect the power, and then place it near your breadboard.

It's always a good idea to shut down your Raspberry Pi and disconnect
the power before connecting circuits to the GPIO pins. This will reduce
the risk of destroying your Raspberry Pi in the event that you connect
something incorrectly, or if you accidentally touch the component leads.

The main component in this circuit is the tri-color LED. Although these vary slightly, the
most common pinout for this component is as follows:

Essentially, a tri-color LED is a red LED, a green LED, and a blue LED combined into one
package. It provides separate input leads to send current into each color separately and a
fourth lead for the common ground. By feeding different voltages into each pin, we can mix
red, green, and blue light to create a wide variety of colors, just as we mix these three
elements to create RGB colors in our applications.

PyQt Raspberry Pi Chapter 15

[377]

Add the LED to your breadboard so that each pin is on a separate row in the board. Then,
connect the remaining components as follows:

PyQt Raspberry Pi Chapter 15

[378]

As you can see in the preceding diagram, we're making the following connections:

The ground pin on the LED is connected directly to the third outside pin from
the left on the Raspberry Pi
The red pin on the LED is connected to one of the resistors, which is then
connected to the next pin to the right (that is, pin 8)
The green pin on the LED is connected to another resistor, which is then
connected to the next free pin to the right (that is, pin 10)
The blue pin on the LED is connected to the last resistor, which is connected to
the next free pin to the right on the Pi (pin 12)

It is important to double-check your circuit and make sure that you've connected the wires
to the correct pins on the Raspberry Pi. Not all GPIO pins on the Raspberry Pi are the same;
some of them are programmable, while others have a hardcoded purpose. You can view a
listing of the pins on your Pi by running the pinout command in the Terminal; you should
see the following output:

The preceding screenshot shows the layout of the pins as if you were holding the Pi in front
of you with the USB ports down. Note that several of the pins are marked GND; these are
always the ground pins so you can connect the ground of your circuit to any of those pins.
Other pins are labeled 5V or 3V3; these are always 5 volts or 3.3 volts, respectively. The
remaining pins with the GPIO labels are programmable pins. Your wires should be
connected to pins 8 (GPIO14), 10 (GPIO15), and 12 (GPIO18).

Double-check your circuit connections, and then boot the Raspberry Pi. It's time to start
coding!

PyQt Raspberry Pi Chapter 15

[379]

Writing a driver library
Now that our circuit is connected, we need to write some code to control it. To do this,
we're going to make use of the GPIO library on the Pi. Create a copy of your PyQt
application template from Chapter 4, Building Applications with QMainWindow, and call it
three_color_led_gui.py.

We'll start by importing the GPIO library:

from RPi import GPIO

What we want to do first is to create a Python class that will serve as an API for our circuit.
We'll call it ThreeColorLed, and then start it as follows:

class ThreeColorLed():
 """Represents a three color LED circuit"""

 def __init__(self, red, green, blue, pinmode=GPIO.BOARD, freq=50):
 GPIO.setmode(pinmode)

Our __init__() method takes five arguments: the first three arguments are the pin
numbers for the red, green, and blue LED connections; the fourth argument is the pin mode
used to interpret the pin numbers; and the fifth argument is a frequency, which we'll
discuss later. First, let's talk about the pin mode.

If you look at the output from the pinout command, you'll notice that there are two ways
to describe a pin on the Pi using integers. The first is by its position on the board, from 1 to
40. The second is by its GPIO number (that is, the number following GPIO in the pin
description). The GPIO library allows you to specify pins using either number, but you have
to tell it which method you're going to use by passing one of two constants to the
GPIO.setmode() function. GPIO.BOARD specifies that you're using the positional numbers
(such as 1 to 40), while GPIO.BCM means you want to use the GPIO names. As you can see,
we default here to using BOARD.

Whenever you write a class that takes GPIO pin numbers as arguments,
be sure to allow the user to specify the pin mode as well. The numbers
themselves are meaningless without the context of the pin mode.

PyQt Raspberry Pi Chapter 15

[380]

Next, our __init__() method needs to set up the output pins:

 self.pins = {
 "red": red,
 "green": green,
 "blue": blue
 }
 for pin in self.pins.values():
 GPIO.setup(pin, GPIO.OUT)

A GPIO pin can be set to the IN or OUT mode, depending on whether you want to read
from the pin's state or write to it. In this project, we're going to be sending information from
the software to the circuit, so we need all of the pins in the OUT mode. After storing our pin
numbers in a dict object, we have iterated through them and set them to the appropriate
mode using the GPIO.setup() function.

Once set up, we can tell an individual pin to go high or low using the GPIO.output()
function, as follows:

 # Turn all on and all off
 for pin in self.pins.values():
 GPIO.output(pin, GPIO.HIGH)
 GPIO.output(pin, GPIO.LOW)

This code simply turns each pin on and immediately off again (probably faster than you
can see). We could use this approach to set the LED to a few simple colors; for example, we
could make it red by setting the red pin HIGH and the others LOW, or cyan by setting the
blue and green pins HIGH and the red LOW. Of course, we want to produce a much wider
variety of colors, but we can't do that by simply turning the pins fully on or off. We need
some way to vary the voltage of each pin between the minimum (0 volts) and the maximum
(5 volts) smoothly.

Unfortunately, the Raspberry Pi cannot do this. The outputs are digital, not analog, so they
can only be fully on or fully off. However, we can simulate varying voltage by using a
technique called Pulse Width Modulation (PWM).

PWM
Find a light switch in your house with reasonably responsive bulbs (LED bulbs work best).
Then, try turning them on and off once per second. Now flick the switch faster and faster
until the light in the room appears almost constant. You should notice that it seems dimmer
in the room than when you had the light on all of the time, even though the bulb is only
ever completely on or completely off.

PyQt Raspberry Pi Chapter 15

[381]

PWM works in the same way, except that, with the Pi, we can turn the voltage on and off so
quickly (and quietly, of course) that the toggling between on and off appears seamless.
Additionally, by varying the ratio of how long the pin is on to how long it is off in each
cycle, we can simulate varying voltages between zero voltage and the maximum voltage.
This ratio is known as the duty cycle.

More information about the concept and use of pulse width modulation
can be found at https:/ / en. wikipedia. org/ wiki/ Pulse- width_
modulation.

To use PWM on our pins, we have to set them up first by creating a GPIO.PWM object on
each pin:

 self.pwms = dict([
 (name, GPIO.PWM(pin, freq))
 for name, pin in self.pins.items()
])

In this case, we're using a list comprehension to produce another dict that will contain the
name of each pin along with a PWM object. The PWM object is created by passing in a pin
number and a frequency value. This frequency will be the rate at which the pin is toggled
on and off.

Once we've created our PWM objects, we need to start them up:

 for pwm in self.pwms.values():
 pwm.start(0)

The PWM.start() method begins the flicking of the pin from on to off. The argument
passed to start() indicates the duty cycle as a percentage; here, 0 means that the pin will
be on 0% of the time (so, basically, it's off). A value of 100 will keep the pin completely on
all of the time, and values in between indicate the amount of on time the pin receives per
cycle.

Setting a color
Now that our pins are configured for PWM, we need to create a method that will allow us
to set the LED to a specific color by passing in red, green, and blue values. Most software
RGB color implementations (including QColor) specify these values as 8-bit integers (0 to
255). Our PWM values, however, represent a duty cycle, which is expressed as a percentage
(0 to 100).

https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation
https://en.wikipedia.org/wiki/Pulse-width_modulation

PyQt Raspberry Pi Chapter 15

[382]

Therefore, since we're going to need to convert numbers from the 0 to 255 range into the 0
to 100 range several times, let's start with a static method that will do such a conversion:

 @staticmethod
 def convert(val):
 val = abs(val)
 val = val//2.55
 val %= 101
 return val

This method ensures that we'll get a valid duty cycle regardless of the input by using
simple arithmetic:

First, we use the absolute value of the number to prevent passing any negative
values.
Second, we divide the value by 2.55 to find the percentage of 255 that it
represents.
Finally, we get the modulus of 101 for the number, so that percentages higher
than 100 will cycle around and remain in range.

Now, let's write our set_color() method, as follows:

 def set_color(self, red, green, blue):
 """Set color using RGB color values of 0-255"""
 self.pwms['red'].ChangeDutyCycle(self.convert(red))
 self.pwms['green'].ChangeDutyCycle(self.convert(green))
 self.pwms['blue'].ChangeDutyCycle(self.convert(blue))

The PWM.ChangeDutyCycle() method takes a value from 0 to 100 and adjusts the duty
cycle of the pin accordingly. In this method, we're simply converting our input RGB values
into the proper scale and passing them into the corresponding PWM objects.

Cleaning up
The last method we need to add to our class is a clean-up method. The GPIO pins on the
Raspberry Pi can be thought of as a state machine, in which each pin has a state of high or a
state of low (that is, on or off). When we set these pins in our program, the state of those
pins will remain set after our program exits.

Note that this could cause a problem if we're connecting a different circuit to our Pi; having
a pin set to HIGH at the wrong moment while connecting a circuit could fry some of our
components. For that reason, we want to leave everything off when we exit the program.

PyQt Raspberry Pi Chapter 15

[383]

This can be done using the GPIO.cleanup() function:

 def cleanup(self):
 GPIO.cleanup()

By adding this method to our LED driver class, we can easily clean up the state of the Pi
after each use.

Creating the PyQt GUI
Now that we've taken care of the GPIO side, let's create our PyQt GUI. In
MainWindow.__init__(), add in the following code:

 self.tcl = ThreeColorLed(8, 10, 12)

Here, we're creating a ThreeColorLed instance using the pin numbers that we connected
to our breadboard. Remember that the class uses the BOARD numbers by default, so 8, 10,
and 12 are the correct values here. If you want to use the BCM numbers, be sure to specify
this in the constructor arguments.

Now let's add a color picker dialog:

 ccd = qtw.QColorDialog()
 ccd.setOptions(
 qtw.QColorDialog.NoButtons
 | qtw.QColorDialog.DontUseNativeDialog)
 ccd.currentColorChanged.connect(self.set_color)
 self.setCentralWidget(ccd)

Typically, we invoke a color dialog by calling QColorDialog.getColor(), but in this
case, we want to use the dialog as if it were a widget. So, we're instantiating one directly
and setting the NoButtons and DontUseNativeDialog options. By taking away the
buttons and using the Qt version of the dialog, we can prevent the user from canceling or
submitting the dialog. This allows us to treat it as a regular widget and assign it as the main
window's central widget.

We've connected the currentColorChanged signal (which is emitted whenever the user
selects a color) to a MainWindow method called set_color(). We'll add this next, as
follows:

 def set_color(self, color):
 self.tcl.set_color(color.red(), color.green(), color.blue())

PyQt Raspberry Pi Chapter 15

[384]

The currentColorChanged signal includes a QColor object representing the color
selected, so we can simply dissect that into red, green, and blue values using the QColor
property accessors, and then pass that information to our ThreeColorLed object's
set_color() method.

Now the script is complete. You should be able to run it and light up your LED—give it a
try!

Note that the color you pick won't exactly match the color output for the
LED due to differences in the relative brightness of different colored
LEDs. However, they should be reasonably close.

Controlling PyQt with GPIO devices
Controlling circuits from Python using GPIO pins is fairly straightforward. It's simply a
matter of calling the GPIO.output() function with the appropriate pin number and high
or low value. Now, however, we're going to look at the opposite situation, that is,
controlling or updating a PyQt GUI from GPIO input.

To demonstrate this, we're going to build a temperature and humidity readout. Just as
before, we'll start by connecting the circuit.

Connecting the sensor circuit
The DHT 11 and DHT 22 sensors are both temperature and humidity sensors that can easily
work with the Raspberry Pi. Both are packaged as four-pin components, but only three of
the pins are actually used. Some component kits even mount the DHT 11/22 on a small PCB
with only the active three pins for output.

In either case, if you're looking at the DHT's front (that is, the grill side), then the pins from
left to right are as follows:

The input voltage—either 5 or 3 volts
The sensor output
The dead pin (on a 4-pin configuration)
Ground

PyQt Raspberry Pi Chapter 15

[385]

Either the DHT 11 or the DHT 22 will work equally well for this project. The 11 is smaller
and cheaper, but slower and less accurate than the 22. Otherwise, they are functionally the
same.

Plug your sensor into the breadboard so that each pin is in its own row. Then, connect it to
the Raspberry Pi using jumper wires, as demonstrated in the following screenshot:

PyQt Raspberry Pi Chapter 15

[386]

The sensor's voltage input pin can be connected to either of the 5V pins, and the ground can
be connected to any of the GND pins. Additionally, the data pin can be connected to any
GPIO pin on the Pi, but in this case, we'll use pin 7 (once again, going by the BOARD
numbers).

Double-check your connections to make sure everything is correct, then power on the
Raspberry Pi, and we'll start coding.

Creating the sensor interface
To begin our sensor interface software, first, create another copy of your Qt application
template and call it temp_humid_display.py.

The first thing we'll do is import the necessary libraries, as follows:

import Adafruit_DHT
from RPi import GPIO

Adafruit_DHT will encapsulate all of the complicated bits required to talk to the DHT unit
so that we only need to work with high-level functions to control and read data from the
device.

Underneath the imports, let's set up a global constant:

SENSOR_MODEL = 11
GPIO.setmode(GPIO.BCM)

We're setting up a global constant indicating which model of DHT we're working with; if
you have the DHT 22, then set this value to 22. We're also setting up the Pi's pin mode. But
this time, we're going to use the BCM mode to specify our pin numbers. The Adafruit library
only takes BCM numbers, so it makes sense to be consistent across all of our classes.

Now, let's start our sensor interface class for the DHT:

class SensorInterface(qtc.QObject):

 temperature = qtc.pyqtSignal(float)
 humidity = qtc.pyqtSignal(float)
 read_time = qtc.pyqtSignal(qtc.QTime)

PyQt Raspberry Pi Chapter 15

[387]

This time, we're going to base our class on QObject so that we can emit signals when the
values are read from the sensor and run the object in its own thread. The DHT units are a
bit slow and can take a full second or more to respond when we request a reading. For that
reason, we'll want to run its interface in a separate thread of execution. As you may
remember from Chapter 10, Multithreading with QTimer and QThread, this is easily done
when we can interact with the object using signals and slots.

Now, let's add the __init__() method, as follows:

 def __init__(self, pin, sensor_model, fahrenheit=False):
 super().__init__()
 self.pin = pin
 self.model = sensor_model
 self.fahrenheit = fahrenheit

The constructor will take three arguments: the pin connected to the data line, the model
number (11 or 22), and a Boolean indicating whether we want to use the Fahrenheit or
Celsius scale. We'll simply save all of these arguments to instance variables for the time
being.

Now we want to create a method to tell the sensor to take a reading:

 @qtc.pyqtSlot()
 def take_reading(self):
 h, t = Adafruit_DHT.read_retry(self.model, self.pin)
 if self.fahrenheit:
 t = ((9/5) * t) + 32
 self.temperature.emit(t)
 self.humidity.emit(h)
 self.read_time.emit(qtc.QTime.currentTime())

As you can see, the Adafruit_DHT library takes all of the complications out of reading this
sensor. We simply have to call read_entry() with the model and pin numbers of our
sensor and it returns a tuple containing the humidity and temperature values. The
temperature is returned in degrees Celsius, so for American users, we're doing a calculation
to convert this into Fahrenheit if the object is configured to do so. Then, we emit our three
signals—one each for temperature, humidity, and the current time.

Note that we have wrapped this function using the pyqtSlot decorator. Again, recall from
Chapter 10, Multithreading with QTimer and QThread, that this will remove some of the
complications of moving this class to its own thread.

This takes care of our sensor driver class, so now, let's build the GUI.

PyQt Raspberry Pi Chapter 15

[388]

Displaying the readings
By this point in this book, creating a PyQt GUI to display a couple of numbers should be a
walk in the park. Just to make things interesting and to create a stylish look, we're going to
use a widget that we haven't talked about yet—QLCDNumber.

First, create a base widget in MainWindow.__init__(), as follows:

 widget = qtw.QWidget()
 widget.setLayout(qtw.QFormLayout())
 self.setCentralWidget(widget)

Now, let's apply some of the styling skills that we learned in Chapter 6, Styling Qt
Applications:

 p = widget.palette()
 p.setColor(qtg.QPalette.WindowText, qtg.QColor('cyan'))
 p.setColor(qtg.QPalette.Window, qtg.QColor('navy'))
 p.setColor(qtg.QPalette.Button, qtg.QColor('#335'))
 p.setColor(qtg.QPalette.ButtonText, qtg.QColor('cyan'))
 self.setPalette(p)

Here, we're creating a custom QPalette object for this widget and its children, giving it a
color scheme that is reminiscent of a blue-backlit LCD screen.

Next, let's create widgets to display our readings:

 tempview = qtw.QLCDNumber()
 humview = qtw.QLCDNumber()
 tempview.setSegmentStyle(qtw.QLCDNumber.Flat)
 humview.setSegmentStyle(qtw.QLCDNumber.Flat)
 widget.layout().addRow('Temperature', tempview)
 widget.layout().addRow('Humidity', humview)

The QLCDNumber widget is a widget for displaying numbers. It resembles an eight-segment
LCD display, such as you might find on an instrument panel or digital clock. Its
segmentStyle property switches between a couple of different visual styles; in this case,
we're using Flat, which draws the segments filled in with the foreground color.

With the layout now configured, let's create a sensor object:

 self.sensor = SensorInterface(4, SENSOR_MODEL, True)
 self.sensor_thread = qtc.QThread()
 self.sensor.moveToThread(self.sensor_thread)
 self.sensor_thread.start()

PyQt Raspberry Pi Chapter 15

[389]

Here, we've created a sensor connected to pin GPIO4 (that is, pin 7), which passes in the
SENSOR_MODEL constant that we defined earlier and sets Fahrenheit to True (feel free to set
it to False if you prefer Celsius). After that, we create a QThread object and move the
SensorInterface object to it.

Next, let's connect our signals and slots, as follows:

 self.sensor.temperature.connect(tempview.display)
 self.sensor.humidity.connect(humview.display)
 self.sensor.read_time.connect(self.show_time)

The QLCDNumber.display() slot can be connected to any signal that emits a number, so
we connect our temperature and humidity signals directly. The QTime object sent with the
read_time signal will need some parsing, however, so we'll connect it to a MainWindow
method called show_time().

That method looks like the following code block:

 def show_time(self, qtime):
 self.statusBar().showMessage(
 f'Read at {qtime.toString("HH:mm:ss")}')

This method will take advantage of the MainWindow object's convenient statusBar()
method to show the time of the last temperature reading in the status area.

So, that takes care of our GUI output display; we now need a way to trigger the sensor to
take readings. One approach we could take is to create a timer to do it periodically:

 self.timer = qtc.QTimer(interval=(60000))
 self.timer.timeout.connect(self.sensor.take_reading)
 self.timer.start()

In this case, this timer will call sensor.take_reading() every minute, ensuring that our
readings are regularly updated.

We can also add QPushButton to the interface so that the user can get fresh readings on
demand:

 readbutton = qtw.QPushButton('Read Now')
 widget.layout().addRow(readbutton)
 readbutton.clicked.connect(self.sensor.take_reading)

This is fairly trivial, as we just need to connect the button's clicked signal to the sensor's
take_reading slot. But what about a hardware control? How might we implement
something external to trigger a temperature reading? We'll explore that in the next section.

PyQt Raspberry Pi Chapter 15

[390]

Adding a hardware button
Reading values from a sensor can be useful, but what would be even more useful is being
able to respond to events that happen in a circuit and take action as a result. To
demonstrate this process, we'll add a hardware button to our circuit and monitor its state so
that we can take temperature and humidity readings at the push of a button.

Expanding the circuit
To begin, power off the Raspberry Pi and let's add some components to the circuit, as
shown in the following diagram:

PyQt Raspberry Pi Chapter 15

[391]

Here, we've essentially added a button and a resistor. The button needs to be connected to
pin 8 on the Pi on one side, and the resistor, which is connected to ground, on the other. To
keep the wiring clean, we've also taken advantage of the common ground and common
voltage rails on the side of the breadboard, although this is optional (you can just connect
things directly to the appropriate GND and 5V pins on the Pi, if you prefer).

The push buttons that are often found in starter kits have four
connectors—two for each side of the switch. Make sure that your
connections are not connected until the button is pushed. If you find that
they are always connected even without the button being pushed, then
you probably need to rotate your button by 90 degrees in the circuit.

The button in this circuit will simply connect our GPIO pin to ground when pushed, which
will allow us to detect a button push. We'll see how that works in more detail when we
write the software.

Implementing the button driver
Start a new class at the top of your script to be the driver for our push button:

class HWButton(qtc.QObject):

 button_press = qtc.pyqtSignal()

Once again, we're using QObject so that we can emit Qt signals, which we'll do when we
detect that the button has been pushed down.

Now, let's write the constructor, as follows:

 def __init__(self, pin):
 super().__init__()
 self.pin = pin
 GPIO.setup(pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

The first thing our __init__() method does after calling super().__init__() is
configure our button's GPIO pin to be an input pin by passing the GPIO.IN constant to the
setup() function.

PyQt Raspberry Pi Chapter 15

[392]

The pull_up_down value we've passed here is very important. Because of the way we've
connected this circuit, the pin will be connected to the ground whenever the button is
pushed. But what happens when the button is not pushed? Well, in that case, it's in a state
called float, in which the input will be unpredictable. In order to keep the pin in a
predictable state when the button is not pushed, the pull_up_down argument will cause it
to be pulled either HIGH or LOW when it is not otherwise connected. In our case, we want it
pulled HIGH because our button will be pulling it LOW; passing in the GPIO.PUD_UP
constant will do this.

This could work in a reverse fashion as well; for example, we could have
connected the other side of the button to 5V, and then set pull_up_down
to GPIO.PUD_DOWN in the setup() function.

Now, we need to figure out how to detect when the button is being pressed so that we can
emit our signal.

One simple approach to this task is polling. Polling simply means that we're going to check
the button at a regular interval and emit a signal if something changes from the last check.

To do this, we first need to create an instance variable to save the last known state of the
button:

 self.pressed = GPIO.input(self.pin) == GPIO.LOW

We can check the current state of the button by calling the GPIO.input() function with the
pin number. This function will return either HIGH or LOW, indicating whether the pin is at
5V or ground. If the pin is LOW, then that means the button is pressed down. We'll save that
result to self.pressed.

Next, we'll write a method to check the state of the button for changes:

 def check(self):
 pressed = GPIO.input(self.pin) == GPIO.LOW
 if pressed != self.pressed:
 if pressed:
 self.button_press.emit()
 self.pressed = pressed

PyQt Raspberry Pi Chapter 15

[393]

This check method will take the following steps:

First, it compares the output of input() to the LOW constant to see whether the1.
button is pressed
Then, we compare the current state of the button to the saved state to see2.
whether the button's state has changed
If it has, we then need to check whether the change of state is a press or a release3.
If it is a press (pressed is True), then we emit the signal4.
In either case, we update self.pressed with the new state5.

Now, all that remains is to call this method on a regular basis to poll for changes; back in
__init__(), we can do this with a timer, as follows:

 self.timer = qtc.QTimer(interval=50, timeout=self.check)
 self.timer.start()

Here, we've created a timer that times out every 50 milliseconds, calling self.check()
when it does so. This should be often enough to catch even the fastest button push that a
human being can execute.

Polling works well, but there is a cleaner way to do this by using the GPIO library's
add_event_detect() function:

 # Comment out timer code
 #self.timer = qtc.QTimer(interval=50, timeout=self.check)
 #self.timer.start()
 GPIO.add_event_detect(
 self.pin,
 GPIO.RISING,
 callback=self.on_event_detect)

The add_event_detect() function will start monitoring the pin in another thread for
either a RISING event or a FALLING event, and call the configured callback method when
such an event is detected.

In this case, we just call the following instance method:

 def on_event_detect(self, *args):
 self.button_press.emit()

We could pass our emit() method directly as a callback, but add_event_detect() will
call the callback function with the pin number as an argument, which emit() will not
accept.

PyQt Raspberry Pi Chapter 15

[394]

The downside of using add_event_detect() is that it introduces another thread, using
the Python threading library, which can lead to subtle problems with the PyQt event
loop. Polling is a perfectly workable alternative that allows you to avoid this complication.

Either approach will work for our simple script, so let's head back to
MainWindow.__init__() to add support for our button:

 self.hwbutton = HWButton(8)
 self.hwbutton.button_press.connect(self.sensor.take_reading)

All we need to do is create an instance of our HWButton class with the right pin number
and connect its button_press signal to the sensor's take_reading() slot.

Now, if you fire everything up on the Pi, you should be able to see an update when you
push the button.

Summary
The Raspberry Pi is an exciting technology, not only because of its small size, low cost, and
low resource usage, but because it makes connecting the world of programming to real-
world circuitry simple and accessible in a way that nothing had before. In this chapter, you
learned how to configure the Raspberry Pi to run PyQt applications. You also learned how
to control circuits using PyQt and Python, and how circuits could control actions in your
software.

In the next chapter, we're going to bring the World Wide Web into our PyQt applications
using QtWebEngineWidgets, a full Chromium-based browser inside a Qt Widget. We'll
build a functional browser, and we'll learn about the ins and outs of the web engine library.

Questions
Try answering the following questions to test your knowledge from this chapter:

You have just bought a Raspberry Pi with Raspbian preinstalled to run your1.
PyQt5 application. When you try to run your application, you get an error trying
to import QtNetworkAuth, which your application depends on. What is likely to
be the problem?

PyQt Raspberry Pi Chapter 15

[395]

You have written a PyQt frontend for a legacy scanner device. Your code talks to2.
the scanner through a proprietary driver utility called scanutil.exe. It is
currently running on a Windows 10 PC, but your employer wants to save money
by moving it to a Raspberry Pi. Is this a good idea?
You've acquired a new sensor and want to try it out with the Raspberry Pi. It has3.
three connections, labeled Vcc, GND, and Data. How would you connect this to
the Raspberry Pi? Is there more information you need?

You're trying to light an LED connected to the fourth GPIO pin from the left on4.
the outside. What is wrong with this code?

 GPIO.setmode(GPIO.BCM)
 GPIO.setup(8, GPIO.OUT)
 GPIO.output(8, 1)

You are trying to dim an LED connected to GPIO pin 12. Does the following code5.
work?

 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 GPIO.output(12, 0.5)

You have a motion sensor with a data pin that goes HIGH when motion is6.
detected. It's connected to pin 8. The following is your driver code:

 class MotionSensor(qtc.QObject):

 detection = qtc.pyqtSignal()

 def __init__(self):
 super().__init__()
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(8, GPIO.IN)
 self.state = GPIO.input(8)

 def check(self):
 state = GPIO.input(8)
 if state and state != self.state:
 detection.emit()
 self.state = state

PyQt Raspberry Pi Chapter 15

[396]

Your main window class creates a MotionSensor object and connects its
detection signal to a callback method. However, nothing is being detected.
What is missing?

Combine the two circuits in this chapter in a creative way; for example, you7.
might create a light that changes color depending on humidity and temperature.

Further reading
For further information, please refer to the following:

More documentation for the Raspberry Pi's GPIO library can be found at https:/
/sourceforge. net/ p/ raspberry- gpio- python/ wiki/ Home/

Packt offers many books covering the Raspberry Pi in detail; you can find more
information at https:/ / www. packtpub. com/books/ content/ raspberry- pi

https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi
https://www.packtpub.com/books/content/raspberry-pi

16
Web Browsing with

QtWebEngine
In Chapter 8, Networking with QtNetwork, you learned how to interact with systems over a
network using sockets and HTTP. The modern web is much more than just networking
protocols, however; it's a programming platform built on the combination of HTML,
JavaScript, and CSS, and working with it effectively requires a complete web browser.
Fortunately for us, Qt provides us with the QtWebEngineWidgets library, which gives our
application a full web browser in a widget.

In this chapter, we're going to learn how to access the web with Qt in the following section:

Building a basic browser with QWebEngineView
Advanced QtWebEngine usage

Technical requirements
In addition to the basic PyQt5 setup that we've used in this book, you will need to make
sure you have the PyQtWebEngine package installed from PyPI. You can do this using the
following command:

$ pip install --user PyQtWebEngine

You may also want the example code for this chapter, and this is available from https:/ /
github.com/PacktPublishing/ Mastering- GUI-Programming- with- Python/ tree/ master/
Chapter16.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xFtD

https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter16
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD
http://bit.ly/2M5xFtD

Web Browsing with QtWebEngine Chapter 16

[398]

Building a basic browser with
QWebEngineView
The primary class used from QtWebEngineWidgets is the QWebEngineView class; this
class provides a nearly complete Chromium-based browser in a QWidget object. Chromium
is the open source project that underpins much of Google Chrome, the newest versions of
Microsoft Edge, and many other browsers.

Qt also has a deprecated QtWebKit module based on the Webkit
rendering engine used in Safari, Opera, and some older browsers. There
are some significant differences between the API and the rendering
behavior of QtWebKit and QtWebEngineWidgets, with the latter being
preferred for newer projects.

In this section, we'll see how easy it is to include web content in your Qt application by
building a simple web browser using QtWebEngineWidgets.

Using the QWebEngineView widget
We need to make a copy of our Qt application template from Chapter 4, Building
Applications with QMainWindow, and call it simple_browser.py; we're going to develop a
rudimentary browser with tabs and a history display.

We start by importing the QtWebEngineWidgets library as follows:

from PyQt5 import QtWebEngineWidgets as qtwe

Note that there is also a QtWebEngine module, but it is for use with
the Qt Modeling Language (QML) declarative framework, not the Qt
Widgets framework covered by this book. QtWebEngineWidgets
contains the widgets-based browser.

In our MainWindow class constructor, we'll start the GUI by defining a navigation toolbar:

 navigation = self.addToolBar('Navigation')
 style = self.style()
 self.back = navigation.addAction('Back')
 self.back.setIcon(style.standardIcon(style.SP_ArrowBack))
 self.forward = navigation.addAction('Forward')
 self.forward.setIcon(style.standardIcon(style.SP_ArrowForward))
 self.reload = navigation.addAction('Reload')

Web Browsing with QtWebEngine Chapter 16

[399]

 self.reload.setIcon(style.standardIcon(style.SP_BrowserReload))
 self.stop = navigation.addAction('Stop')
 self.stop.setIcon(style.standardIcon(style.SP_BrowserStop))
 self.urlbar = qtw.QLineEdit()
 navigation.addWidget(self.urlbar)
 self.go = navigation.addAction('Go')
 self.go.setIcon(style.standardIcon(style.SP_DialogOkButton))

Here, we've defined toolbar buttons for standard browser actions, as well as a QLineEdit
object for the URL bar. We've also extracted icons for these actions from the default style,
just as we did in the Adding toolbars section of Chapter 4, Building Applications with
QMainWindow.

Now we'll create a QWebEngineView object:

 webview = qtwe.QWebEngineView()
 self.setCentralWidget(webview)

A QWebEngineView object is a (mostly, as you'll see) fully functional and interactive web
widget, capable of retrieving and rendering HTML, CSS, JavaScript, images, and other
standard web content.

To load a URL in the view, we pass QUrl to its load() method:

 webview.load(qtc.QUrl('http://www.alandmoore.com'))

This will prompt the web view to download and render the page just like a normal web
browser would.

Of course, as good as that website is, we'd like to be able to navigate to others, so we'll add
the following connection:

 self.go.triggered.connect(lambda: webview.load(
 qtc.QUrl(self.urlbar.text())))

Here, we've connected our go action to a lambda function that retrieves the text of the URL
bar, wraps it in a QUrl object, and sends it to the web view. If you run the script at this
point, you should be able to type a URL into the bar, hit Go, and browse the web just like
any other browser.

Web Browsing with QtWebEngine Chapter 16

[400]

QWebView has slots for all the common browser navigation actions, which we can connect
to our navigation bar:

 self.back.triggered.connect(webview.back)
 self.forward.triggered.connect(webview.forward)
 self.reload.triggered.connect(webview.reload)
 self.stop.triggered.connect(webview.stop)

With these signals connected, our script is well on its way to being a fully functional web-
browsing experience. However, we're currently limited to a single browser window; we
want tabs, so let's implement that in the following section.

Allowing multiple windows and tabs
In MainWindow.__init__(), delete or comment-out the web view code you just added
(going back to the creation of the QWebEngineView object). We're going to move that
functionality to a method instead, so that we can create multiple web views in a tabbed
interface. We will do this as follows:

To begin, we'll replace our QWebEngineView object with a QTabWidget object as1.
our central widget:

 self.tabs = qtw.QTabWidget(
 tabsClosable=True, movable=True)
 self.tabs.tabCloseRequested.connect(self.tabs.removeTab)
 self.new = qtw.QPushButton('New')
 self.tabs.setCornerWidget(self.new)
 self.setCentralWidget(self.tabs)

This tab widget will have movable and closable tabs, and a New button in the left
corner for adding new tabs.

To add a new tab with a web view, we'll create an add_tab() method:2.

 def add_tab(self, *args):
 webview = qtwe.QWebEngineView()
 tab_index = self.tabs.addTab(webview, 'New Tab')

This method begins by creating a web view widget and adding it to a new tab in
the tab widget.

Web Browsing with QtWebEngine Chapter 16

[401]

Now that we have our web view object, we need to connect some signals:3.

 webview.urlChanged.connect(
 lambda x: self.tabs.setTabText(tab_index, x.toString()))
 webview.urlChanged.connect(
 lambda x: self.urlbar.setText(x.toString()))

The QWebEngineView object's urlChanged signal is emitted whenever a new
URL is loaded into the view, and it sends with it the new URL as a QUrl object.
We're connecting this signal to a lambda function that sets the tab title text to the
URL, as well as another function that sets the contents of the URL bar. This will
keep the URL bar in sync with the browser when the user navigates using
hyperlinks in the web page, rather than directly using the URL bar.

We can then add default content to our web view using its setHtml() method:4.

 webview.setHtml(
 '<h1>Blank Tab</h1><p>It is a blank tab!</p>',
 qtc.QUrl('about:blank'))

This sets the content of the browser window to whatever HTML string we give to
it. If we also pass a QUrl object, it will be used as the current URL (and published
to the urlChanged signal, for example).

To enable navigation, we need to connect our toolbar actions to the browser5.
widget. Since our browser has one global toolbar, we can't just directly connect
these to the web view widgets. We'll need to connect them to methods that pass
the signals on to the slots in the currently active web view. Start by creating the
callback methods as follows:

 def on_back(self):
 self.tabs.currentWidget().back()

 def on_forward(self):
 self.tabs.currentWidget().forward()

 def on_reload(self):
 self.tabs.currentWidget().reload()

 def on_stop(self):
 self.tabs.currentWidget().stop()

 def on_go(self):
 self.tabs.currentWidget().load(
 qtc.QUrl(self.urlbar.text()))

Web Browsing with QtWebEngine Chapter 16

[402]

These methods are essentially the same as those used with the single-pane
browser, but with one crucial change—they use the tab widget's
currentWidget() method to retrieve the QWebEngineView object for a currently
visible tab, then call the navigation methods on that web view.

Back in __init__(), connect the following methods:6.

 self.back.triggered.connect(self.on_back)
 self.forward.triggered.connect(self.on_forward)
 self.reload.triggered.connect(self.on_reload)
 self.stop.triggered.connect(self.on_stop)
 self.go.triggered.connect(self.on_go)
 self.urlbar.returnPressed.connect(self.on_go)
 self.new.clicked.connect(self.add_tab)

For convenience and keyboard-friendliness, we've also connected the URL bar's
returnPressed signal to the on_go() method. We've also connected our New
button to the add_tab() method.

Give the browser a try now, and you should be able to add multiple tabs and
browse independently in each one.

Adding a tab for pop-up windows
Currently, there is a problem with our script in that if you Ctrl + click on a hyperlink, or
open a link that is configured to open a new window, nothing happens. By default,
QWebEngineView is incapable of opening new tabs or windows. In order to enable this, we
have to override its createWindow() method with a function that creates and returns a
new QWebEngineView object.

We can do this fairly easily by updating our add_tab() method:

 webview.createWindow = self.add_tab
 return webview

Rather than subclassing QWebEngineView to override the method, we'll just assign our
MainWindow.add_tab() method to its createWindow() method. Then we just need to
make sure that we return the created web view object at the end of the method.

Web Browsing with QtWebEngine Chapter 16

[403]

Note that it's not our responsibility to load the URL in the createWindow() method; we
only need to create the view and add it appropriately to the GUI. Qt will take care of doing
what needs to be done browsing-wise in the web view object that we return.

Now when you try the browser, you should find that a Ctrl + click opens a new tab with the
requested link.

Advanced QtWebEngine usage
While we have implemented a basic, serviceable browser, it leaves much to be desired. In
this section, we're going to explore some of the more advanced features of
QtWebEngineWidgets by fixing some pain points in our user experience and
implementing useful tools such as history and text search.

Sharing a profile
Although we can view multiple tabs in our browser, there is a small problem in the way
they work with authenticated websites. Visit any website where you have a login account;
log in, then Ctrl + click on a link within the site to open it in a new tab. You'll find that you
aren't authenticated in the new tab. This can be a real problem with sites that use multiple
windows or tabs to implement their user interface. We'd like authentication and other
session data to be browser-wide, so let's fix this.

Session information is stored in a profile that is represented by a QWebEngineProfile
object. This object is autogenerated for each QWebEngineWidget object, but we can
override it with an object of our own.

Start by creating one in MainWindow.__init__():

 self.profile = qtwe.QWebEngineProfile()

We will need to associate this profile object with each new web view as we create them in
add_tab(). Profiles, however, are not actually a property of the web view; they're the
property of the web page object. The page, represented by a QWebEnginePage object, can
be thought of as the model for the web view. Each web view generates its own page object,
which acts as an interface to the browsing engine.

Web Browsing with QtWebEngine Chapter 16

[404]

To override the web view's profile, we need to create a page object, override its profile with
our own, then override the web view's page with our new page, like this:

 page = qtwe.QWebEnginePage(self.profile)
 webview.setPage(page)

The profile must be passed as an argument to the QWebEnginePage constructor, as there is
no accessor function to set it afterward. Once we've got a new QWebEnginePage object that
uses our profile, we can call QWebEngineView.setPage() to assign it to our web view.

Now when you test the browser, your authentication status should remain intact across all
tabs.

Viewing history
Each QWebEngineView object manages its own browsing history, which we can access to
allow the user to view and navigate the URLs visited.

To build this feature, let's create an interface that displays the history of the current tab and
allows the user to click history items to navigate back to:

Start by creating a dock widget for history in MainView.__init__():1.

 history_dock = qtw.QDockWidget('History')
 self.addDockWidget(qtc.Qt.RightDockWidgetArea, history_dock)
 self.history_list = qtw.QListWidget()
 history_dock.setWidget(self.history_list)

The history dock just contains a QListWidget object, which will display the
history of the currently selected tab.

Since we'll need to refresh this list when the user switches tabs, connect the tab2.
widget's currentChanged signal to a callback that can do this:

 self.tabs.currentChanged.connect(self.update_history)

The update_history() method looks like this:3.

 def update_history(self, *args):
 self.history_list.clear()
 webview = self.tabs.currentWidget()
 if webview:
 history = webview.history()
 for history_item in reversed(history.items()):
 list_item = qtw.QListWidgetItem()

Web Browsing with QtWebEngine Chapter 16

[405]

 list_item.setData(
 qtc.Qt.DisplayRole, history_item.url())
 self.history_list.addItem(list_item)

First, we clear the list widget and retrieve the web view for the currently active
tab. If a web view exists (it might not if all the tabs are closed), we retrieve the
web view's history using the history() method.

This history is a QWebEngineHistory object; this object is a property of the web
page object and tracks the browsing history. When the back() and forward()
slots are called on a web view, this object is consulted to find the correct URL to
load. The items() method of the history object returns a list of
QWebEngineHistoryItem objects detailing the entire browsing history of the
web view object.

Our update_history method iterates this list and adds a new
QListWidgetItem object for each item in the history. Note that we're using the
list widget item's setData() method rather than setText(), as it allows us to
store the QUrl object directly instead of having to convert it to a string
(QListWidget will automatically convert the URL to a string for display, using
the URL's toString() method).

In addition to calling this method whenever the tabs are switched, we also need4.
to call it when a web view navigates to a new page, in order to keep the history
current as the user browses. To make this happen, add a connection to each
newly generated web view in the add_tab() method:

 webview.urlChanged.connect(self.update_history)

To finish our history feature, we'd like to be able to double-click an item in the5.
history and navigate to its URL in the currently open tab. We'll start by creating a
MainWindow method to do the navigation:

 def navigate_history(self, item):
 qurl = item.data(qtc.Qt.DisplayRole)
 if self.tabs.currentWidget():
 self.tabs.currentWidget().load(qurl)

We're going to be using the itemDoubleClicked signal within QListWidget to
trigger this method, which passes the QListItemWidget object that was clicked
to its callback. We simply retrieve the URL from the list item by calling its data()
accessor method, then pass the URL to the currently visible web view.

Web Browsing with QtWebEngine Chapter 16

[406]

Now, back in __init__(), we'll connect the signal to the callback as follows:6.

 self.history_list.itemDoubleClicked.connect(
 self.navigate_history)

This completes our history functionality; launch the browser and you'll find you can view
and navigate using the history list in the dock.

Web settings
The QtWebEngine browser, just like the Chromium browser that it's based on, offers a very
customizable web experience; we can edit many of its settings to implement various
security, functionality, or appearance changes.

To do this, we need to access the following default settings object:

 settings = qtwe.QWebEngineSettings.defaultSettings()

The QWebEngineSettings object returned by the defaultSettings() static method is a
global object referenced by all web views in our program. We do not have to (nor can we)
explicitly assign it to the web views after changing it. Once we've retrieved it, we can
configure it in various ways and our settings will be respected by all the web views we
create.

For example, let's alter the fonts a bit:

 # The web needs more drama:
 settings.setFontFamily(
 qtwe.QWebEngineSettings.SansSerifFont, 'Impact')

In this case, we're setting the default font family for all sans-serif fonts to Impact. In
addition to setting the font family, we can also set a default fontSize object and a
defaultTextEncoding object.

The settings object also has a number of attributes, which are Boolean switches that we
can toggle; for example:

 settings.setAttribute(
 qtwe.QWebEngineSettings.PluginsEnabled, True)

Web Browsing with QtWebEngine Chapter 16

[407]

In this example, we're enabling the use of Pepper API plugins, such as Chrome's Flash
implementation. There are 29 attributes that we can toggle, a few examples of which are
listed in the following table:

Attribute Default Description
JavascriptEnabled True Allow running JavaScript code.
JavascriptCanOpenWindows True Allow JavaScript to open new pop-up windows.
FullScreenSupportEnabled False Allow the browser to be fullscreen.
AllowRunningInsecureContent False Allow running HTTP content on HTTPS pages.

PlaybackRequiresUserGesture False Don't play back media until the user interacts with the
page.

To alter settings for an individual web view, access its
QWebEnginSettings object using page().settings().

Building a text search feature
So far, we've loaded and displayed content in our web view widget, but we haven't really
done much with the actual content. One of the powerful features that we get with
QtWebEngine is the ability to manipulate the contents of web pages by injecting our own
JavaScript code into those pages. To see how this works, we're going to use the following
instructions to develop a text search feature that will highlight all instances of a search
term:

We'll start by adding the GUI components to MainWindow.__init__():1.

 find_dock = qtw.QDockWidget('Search')
 self.addDockWidget(qtc.Qt.BottomDockWidgetArea, find_dock)
 self.find_text = qtw.QLineEdit()
 find_dock.setWidget(self.find_text)
 self.find_text.textChanged.connect(self.text_search)

The search widget is just a QLineEdit object that is embedded in a dock widget.
We've connected the textChanged signal to a callback function that will perform
the search.

Web Browsing with QtWebEngine Chapter 16

[408]

To implement the search functionality, we need to write some JavaScript code2.
that will locate and highlight all the instances of a search term for us. We could
add this code as a string, but for clarity let's write it in a separate file; open a file
called finder.js and add in this code:

function highlight_selection(){
 let tag = document.createElement('found');
 tag.style.backgroundColor = 'lightgreen';
 window.getSelection().getRangeAt(0).surroundContents(tag);}

function highlight_term(term){
 let found_tags = document.getElementsByTagName("found");
 while (found_tags.length > 0){
 found_tags[0].outerHTML = found_tags[0].innerHTML;}
 while (window.find(term)){highlight_selection();}
 while (window.find(term, false, true)){highlight_selection();}}

This book isn't a JavaScript text, so we won't get into the dirty details of how this
code works, other than to summarize what's happening:

The highlight_term() function takes a single string as a search1.
term. It begins by cleaning up any HTML <found> tags; this isn't a real
tag—it's one we've invented for this functionality so that it won't
conflict with any real tags.
The function then searches forward and backward through the2.
document looking for instances of the search term.
When it finds one, it wraps it in a <found> tag with the background3.
color set to light green.

Back in MainWindow.__init__(), we'll read in this file and save it as an3.
instance variable:

 with open('finder.js', 'r') as fh:
 self.finder_js = fh.read()

Now, let's implement our search callback method under MainWindow:4.

 def text_search(self, term):
 term = term.replace('"', '')
 page = self.tabs.currentWidget().page()
 page.runJavaScript(self.finder_js)
 js = f'highlight_term("{term}");'
 page.runJavaScript(js)

Web Browsing with QtWebEngine Chapter 16

[409]

To run JavaScript code in our current web view, we need to get a reference to its
QWebEnginePage object. Then we can call the page's runJavaScript() method.
This method simply takes a string containing JavaScript code and executes it on
the web page.

In this case, we first run the contents of our finder.js file to set up the5.
functions, then we call the highlight_term() function with the search term
inserted. As a quick-and-dirty security measure, we're also stripping all the
double quotes from the search term; therefore, it can't be used to inject arbitrary
JavaScript. If you run the application now, you should be able to search for
strings on the page, like this:

This works pretty well, but it is not very efficient to redefine those functions every
time we update the search term, is it? It would be great if we could just define
those functions once and then have access to them on any page that we navigate
to.

This can be done using the QWebEnginePage object's scripts property. This6.
property stores a collection of QWebEngineScript objects, which contain
JavaScript snippets to be run each time a new page is loaded. By adding our
scripts to this collection, we can ensure that our function definitions are run only
on each page load, rather than every time we try to search. To make this work,
we'll start back in MainWindow.__init__() by defining a QWebEngineScript
object:

 self.finder_script = qtwe.QWebEngineScript()
 self.finder_script.setSourceCode(self.finder_js)

Web Browsing with QtWebEngine Chapter 16

[410]

Each script in the collection is run in one of 256 worlds, which are isolated7.
JavaScript contexts. For us to have access to our functions in subsequent calls, we
need to make sure our script object is executed in the main world by setting its
worldId property:

 self.finder_script.setWorldId(qtwe.QWebEngineScript.MainWorld)

QWebEngineScript.MainWorld is a constant that points to the main JavaScript
execution context. If we did not set this, our script would run, but the functions
would run in their own world, and wouldn't be available in the web page context
for us to use for searching.

Now that we have our script object, we need to add it to the web page object.8.
This should be done in MainWindow.add_tab(), when we create our page
object:

 page.scripts().insert(self.finder_script)

Finally, we can shorten the text_search() method:9.

 def text_search(self, term):
 page = self.tabs.currentWidget().page()
 js = f'highlight_term("{term}");'
 page.runJavaScript(js)

Apart from just running scripts, we can also retrieve data back from the scripts and send it
to a callback method within our Python code.

For example, we can make the following change to our JavaScript to return the number of
matches from our function:

function highlight_term(term){
 //cleanup
 let found_tags = document.getElementsByTagName("found");
 while (found_tags.length > 0){
 found_tags[0].outerHTML = found_tags[0].innerHTML;}
 let matches = 0
 //search forward and backward
 while (window.find(term)){
 highlight_selection();
 matches++;
 }
 while (window.find(term, false, true)){
 highlight_selection();
 matches++;
 }

Web Browsing with QtWebEngine Chapter 16

[411]

 return matches;
}

This value is not returned from runJavaScript() as the JavaScript code is executed
asynchronously.

To access the return value, we need to pass a reference to a Python callable as a second
argument to runJavaScript(); Qt will call that method with the return value of the called
code:

 def text_search(self, term):
 term = term.replace('"', '')
 page = self.tabs.currentWidget().page()
 js = f'highlight_term("{term}");'
 page.runJavaScript(js, self.match_count)

Here, we're going to pass the output of the JavaScript call to a method called
match_count(), which looks like the following code snippet:

 def match_count(self, count):
 if count:
 self.statusBar().showMessage(f'{count} matches ')
 else:
 self.statusBar().clearMessage()

In this case, we'll just show a status bar message if there are any matches found. Try the
browser again and you'll see that the message should successfully be conveyed.

Summary
In this chapter, we explored the possibilities made available to us by
QtWebEngineWidgets. You implemented a simple browser, then learned how to utilize
features such as browsing history, profile sharing, multiple tabs, and common settings. You
also learned to inject arbitrary JavaScript into web pages and retrieve the results of those
calls.

In the next chapter, you'll learn how to prepare your code for sharing, distribution, and
deployment. We'll discuss how to structure your project directory properly, how to
distribute Python code using official tools, and how to create standalone executables for
various platforms using PyInstaller.

Web Browsing with QtWebEngine Chapter 16

[412]

Questions
Try these questions to test your knowledge from this chapter:

The following code is giving you an attribute error; what's wrong?1.

 from PyQt5 import QtWebEngine as qtwe
 w = qtwe.QWebEngineView()

The following code should connect this UrlBar class with a QWebEngineView so2.
that the entered URL is loaded when the return/Enter key is pressed. It doesn't
work, though; what is wrong?

 class UrlBar(qtw.QLineEdit):

 url_request = qtc.pyqtSignal(str)

 def __init__(self):
 super().__init__()
 self.returnPressed.connect(self.request)

 def request(self):
 self.url_request.emit(self.text())

 mywebview = qtwe.QWebEngineView()
 myurlbar = UrlBar()
 myurlbar.url_request(mywebview.load)

What is the result of the following code?3.

 class WebView(qtwe.QWebEngineView):

 def createWindow(self, _):

 return self

Web Browsing with QtWebEngine Chapter 16

[413]

Check out the documentation for QWebEngineView at https:/ /doc. qt. io/qt-4.
5/qwebengineview. html. How would you implement a zoom feature in your
browser?
As the name implies, QWebEngineView represents the view portion of a model-5.
view architecture. What class represents the model in this design?
Given a QWebEngineView object that is named webview, write code to6.
determine whether JavaScript is enabled on webview.
You saw in our browser example that runJavaScript() can pass an integer7.
value to a callback function. Write a simple demo script to test what other kinds
of JavaScript objects can be returned, and how they would appear in Python
code.

Further reading
For further information, please refer to the following:

QuteBrowser is an open source web browser written in Python using
QtWebEngineWidgets. You can find its source code at https:/ /github. com/
qutebrowser/ qutebrowser.
ADMBrowser is a browser that is based on QtWebEngineWidgets, which was
created by the author of this book, and can be used with kiosk systems. You can
find it at https:/ /github. com/ alandmoore/ admbrowser.
QtWebChannel is a feature that allows for more robust communication between
your PyQt application and web content. You can start exploring this advanced
feature at https:/ /doc. qt. io/ qt-5/ qtwebchannel- index. html.

https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/qutebrowser/qutebrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://github.com/alandmoore/admbrowser
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html
https://doc.qt.io/qt-5/qtwebchannel-index.html

17
Preparing Your Software for

Distribution
Up to this point in the book, we have primarily been concerned with writing a working
piece of code. Our projects have all been single scripts with, at most, a handful of
supporting data files. Producing a finished project doesn't end with writing the code,
however; we also need our projects to be easily distributable so that we can share them
with (or sell them to) other people.

In this chapter, we're going to look at ways to prepare our code for sharing and
distribution.

We'll cover these topics:

Structuring a project
Distributing with setuptools
Compiling with PyInstaller

Technical requirements
For this chapter, you will need the basic Python and PyQt setup we have used throughout
the book. You will also need the setuptools, wheel, and pyinstaller libraries available
from PyPI with this command:

$ pip install --user setuptools wheel pyinstaller

Preparing Your Software for Distribution Chapter 17

[415]

Windows users will want to install the 7-Zip program from https:/ /www. 7- zip.org/ so
that they can work with tar.gz files, and users on all platforms should install the UPX
utility from https:/ / upx. github. io/ .

Finally, you will want the example code from the repository at https:/ /github. com/
PacktPublishing/Mastering- GUI- Programming- with- Python/ tree/ master/ Chapter17.

Check out the following video to see the code in action: http:/ / bit.ly/ 2M5xH4J

Structuring a project
So far in this book, we've been putting all the Python code in each example project into a
single file. Real-world Python projects, however, benefit from better organization. While
there are no official standards on how to structure a Python project, there are some
conventions and general concepts we can apply to our project structure that will not only
keep things organized, but encourage others to contribute to our code.

To see how this works, we're going to create a simple tic-tac-toe game in PyQt, then spend
the rest of the chapter getting it ready for distribution.

Tic-tac-toe
Our tic-tac-toe game is made up of three classes:

An engine class that manages the logic of the game
A board class that provides a view of the game state and a way to make plays
The main window class that brings the other two together into a GUI

Open a new copy of the application template from Chapter 4, Building Applications with
QMainWindow, and call it ttt-qt.py. Now let's create these classes.

The engine class
Our game engine object's main responsibility is to keep track of plays and to check whether
there is a winner or whether the game is a draw. The players will be represented simply by
the 'X' and 'O' strings, and the board will be modeled as a list of nine items that will
either be a player or None.

https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://www.7-zip.org/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
https://github.com/PacktPublishing/Mastering-GUI-Programming-with-Python/tree/master/Chapter17
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J
http://bit.ly/2M5xH4J

Preparing Your Software for Distribution Chapter 17

[416]

It begins like this:

class TicTacToeEngine(qtc.QObject):

 winning_sets = [
 {0, 1, 2}, {3, 4, 5}, {6, 7, 8},
 {0, 3, 6}, {1, 4, 7}, {2, 5, 8},
 {0, 4, 8}, {2, 4, 6}
]
 players = ('X', 'O')

 game_won = qtc.pyqtSignal(str)
 game_draw = qtc.pyqtSignal()

 def __init__(self):
 super().__init__()
 self.board = [None] * 9
 self.current_player = self.players[0]

The winning_sets list contains set objects with every combination of board indexes that
constitutes a win. We'll be using that list to check whether a player won. We've also defined
signals to be emitted when the game is won or when there is a draw (that is, all the squares
are filled and nobody won). The constructor populates the board list and sets the current
player to X.

We'll need a method to update the current player after each turn, which looks like this:

 def next_player(self):
 self.current_player = self.players[
 not self.players.index(self.current_player)]

Next, we'll add a method for marking a square:

 def mark_square(self, square):
 if any([
 not isinstance(square, int),
 not (0 <= square < len(self.board)),
 self.board[square] is not None
]):
 return False
 self.board[square] = self.current_player
 self.next_player()
 return True

This method first checks for any reason the given square shouldn't be marked, returning
False if there is a reason; otherwise, we mark the square, swap to the next player, and
return True.

Preparing Your Software for Distribution Chapter 17

[417]

The last method in this class will check the state of the board to see whether there is a
winner or a draw:

 def check_board(self):
 for player in self.players:
 plays = {
 index for index, value in enumerate(self.board)
 if value == player
 }
 for win in self.winning_sets:
 if not win - plays: # player has a winning combo
 self.game_won.emit(player)
 return
 if None not in self.board:
 self.game_draw.emit()

This method uses some set operations to check each player's currently-marked squares
against the list of winning combinations. If any match is found, the game_won signal is
emitted and the method returns. If nobody has won yet, we also check to see whether there
are any unmarked squares; if there aren't, the game is a draw. If neither of these cases is
true, we do nothing.

The board class
For the board GUI, we'll use a QGraphicsScene object just as we did for our tank game in
Chapter 12, Creating 2D Graphics with QPainter.

We'll start with some class variables:

class TTTBoard(qtw.QGraphicsScene):

 square_rects = (
 qtc.QRectF(5, 5, 190, 190),
 qtc.QRectF(205, 5, 190, 190),
 qtc.QRectF(405, 5, 190, 190),
 qtc.QRectF(5, 205, 190, 190),
 qtc.QRectF(205, 205, 190, 190),
 qtc.QRectF(405, 205, 190, 190),
 qtc.QRectF(5, 405, 190, 190),
 qtc.QRectF(205, 405, 190, 190),
 qtc.QRectF(405, 405, 190, 190)
)

 square_clicked = qtc.pyqtSignal(int)

Preparing Your Software for Distribution Chapter 17

[418]

The square_rects tuple defines a QRectF object for each of the nine squares on the board,
and a square_clicked signal is emitted whenever a square is clicked on; the
accompanying integer will indicate which square (0-8) was clicked on.

Here is the =__init__() method:

 def __init__(self):
 super().__init__()
 self.setSceneRect(0, 0, 600, 600)
 self.setBackgroundBrush(qtg.QBrush(qtc.Qt.cyan))
 for square in self.square_rects:
 self.addRect(square, brush=qtg.QBrush(qtc.Qt.white))
 self.mark_pngs = {
 'X': qtg.QPixmap('X.png'),
 'O': qtg.QPixmap('O.png')
 }
 self.marks = []

This method sets the scene size and paints a cyan background, and then it draws each of
the squares in square_rects. We then load up the QPixmap objects for the 'X' and 'O'
images that will be used to mark the squares, and we create an empty list to keep track of
the QGraphicsSceneItem objects for our marks.

Next, we'll add a method to draw the current state of the board:

 def set_board(self, marks):
 for i, square in enumerate(marks):
 if square in self.mark_pngs:
 mark = self.addPixmap(self.mark_pngs[square])
 mark.setPos(self.square_rects[i].topLeft())
 self.marks.append(mark)

This method will take a list of the marks on our board and draw the appropriate pixmap in
each square, keeping track of the QGraphicsSceneItems objects created.

Now we'll need a method to clear the board:

 def clear_board(self):
 for mark in self.marks:
 self.removeItem(mark)

This method simply iterates through the saved pixmap items and removes them all.

Preparing Your Software for Distribution Chapter 17

[419]

The last thing we need to do is handle mouse clicks:

 def mousePressEvent(self, mouse_event):
 position = mouse_event.buttonDownScenePos(qtc.Qt.LeftButton)
 for square, qrect in enumerate(self.square_rects):
 if qrect.contains(position):
 self.square_clicked.emit(square)
 break

The mousePressEvent()) method is called by QGraphicsScene whenever the user
makes a mouse click. It includes a QMouseEvent object that contains details about the
event, including the position of the mouse click. We can check whether this click is inside
any of our square_rects objects, and if so, we'll emit the square_clicked signal and exit
the method.

The main window class
In MainWindow.__init__(), we'll start by creating a board and a QGraphicsView object
to display it:

 self.board = TTTBoard()
 self.board_view = qtw.QGraphicsView()
 self.board_view.setScene(self.board)
 self.setCentralWidget(self.board_view)

Now we need to create an instance of the game engine and connect its signals. In order to
allow us to start games over and over, we'll create a separate method for this:

 def start_game(self):
 self.board.clear_board()
 self.game = TicTacToeEngine()
 self.game.game_won.connect(self.game_won)
 self.game.game_draw.connect(self.game_draw)

This method clears the board, and then it creates an instance of the game engine object,
connecting the engine's signals to MainWindow methods to handle the two game-over
scenarios.

Preparing Your Software for Distribution Chapter 17

[420]

Back in __init__(), we'll go ahead and call this method to set up the first game
automatically:

 self.start_game()

Next, we need to enable player input. We'll need a method that will try to mark the square
in the engine and then check the board for a win or a draw if the mark was successful:

 def try_mark(self, square):
 if self.game.mark_square(square):
 self.board.set_board(self.game.board)
 self.game.check_board()

That method can be connected to the board's square_clicked signal; back in
__init__(), add this code:

 self.board.square_clicked.connect(self.try_mark)

Finally, we need to handle the two game-over scenarios:

 def game_won(self, player):
 """Display the winner and start a new game"""
 qtw.QMessageBox.information(
 None, 'Game Won', f'Player {player} Won!')
 self.start_game()

 def game_draw(self):
 """Display the lack of a winner and start a new game"""
 qtw.QMessageBox.information(
 None, 'Game Over', 'Game Over. Nobody Won...')
 self.start_game()

In both cases, we're just going to display an appropriate message in QMessageBox and then
restart the game.

This completes our game. Take a moment to run the game and make sure you understand
how it responds when working correctly (maybe get a friend to play a few rounds with
you; it helps if your friend is quite young or not particularly bright).

Now that we have a working game, it's time to prepare it for distribution. The first thing
we'll do is structure our project in a way that will make it easier for us to maintain and
expand, and for other Python programmers to collaborate on.

Preparing Your Software for Distribution Chapter 17

[421]

Module-style structure
As programmers, we tend to think of applications and libraries as two very different things,
but, in truth, well-structured applications aren't that different from libraries. A library is
just a collection of ready-made classes and functions. Our application is mostly just class
definitions as well; it just happens to have a few lines of code at the end that allow it to be
executed as an application. When we see things this way, structuring our application as a
Python library module makes a lot of sense. To do this, we're going to convert our single
Python file to a directory full of files, each containing an individual unit of code.

The first step is to consider our project's name; right now, that name is ttt-qt.py. It's not
uncommon to come up with a quick and short name when you first start hacking on a
project, but that doesn't need to be the name you stick with. In this case, our name is rather
cryptic and doesn't work as a Python module name due to the hyphen. Instead, let's call it
qtictactoe, a name that is more explicit and avoids the hyphen.

To begin, create a new directory called QTicTacToe; this will be our project root. The
project root is the directory under which all our project files will go.

Inside that directory, we'll create a second directory called qtictactoe; this will be the
module directory inside which the bulk of our source code will live.

Structuring the module
To begin our module, we're going to start by adding the code for our three classes. We're
going to put each one in a separate file; this isn't strictly necessary, but it will help us to
keep our code decoupled and make it easier to find the class we want to edit.

Therefore, under qtictactoe, create three files:

engine.py will hold our game engine class. Copy in the TicTacToeEngine
definition along with the necessary PyQt5 import statements for the classes it
uses. In this case, you only need QtCore.
board.py will hold the TTTBoard class. Copy in that code as well as the full set
of PyQt5 import statements.
Finally, mainwindow.py will hold the MainWindow class. Copy in the code for
that class as well as the PyQt5 imports.

Preparing Your Software for Distribution Chapter 17

[422]

mainwindow.py also needs access to the TicTacToeEngine and TTTBoard classes from
the other files. To provide this access, we need to use relative imports. A relative import is
a way of importing submodules from the same module.

At the top of mainwindow.py, add this:

from .engine import TicTacToeEngine
from .board import TTTBoard

The dot in the import indicates that this is a relative import, and refers specifically to the
current container module (in this case, qtictactoe). By using relative imports like this, we
can ensure that we're importing these modules from our own project and not from some
other Python library on the end user's system.

The next code we need to add to our module is code to make it actually run. This is the
code we usually put under our if __name__ == '__main__' block.

In the module, we'll put it in a file called __main__.py:

import sys
from PyQt5.QtWidgets import QApplication
from .mainwindow import MainWindow

def main():
 app = QApplication(sys.argv)
 mainwindow = MainWindow()
 sys.exit(app.exec())

if __name__ == '__main__':
 main()

The __main__.py file serves a special purpose in a Python module. It is executed
whenever our module is run using the -m switch, like so:

$ python3 -m qtictactoe

Essentially, __main__.py is the module equivalent of the if __name__ == '__main__':
block in a Python script.

Note that we have placed our three main lines of code inside a function called main(). The
reason for that will become apparent when we discuss the use of setuptools.

Preparing Your Software for Distribution Chapter 17

[423]

The last file we need to create inside our module is an empty file called __init__.py. The
__init__.py file of a Python module is analogous to the __init__() method of a Python
class. It is executed whenever the module is imported, and anything in its namespace is
considered to be in the root namespace of the module. In this case, though, we're going to
just leave it empty. That may seem pointless, but without this file many of the tools we're
going to be working with won't recognize this folder of Python files as an actual module.

At this point, your directory structure should look like this:

QTicTacToe/
├── qtictactoe
 ├── board.py
 ├── engine.py
 ├── __init__.py
 ├── __main__.py
 └── mainwindow.py

Now we can execute our program using python3 -m qtictactoe, but that's not terribly
intuitive for most users. Let's help out a little by creating an obvious file for executing the
application.

Directly under the project root (outside the module), create a file called run.py:

from qtictactoe.__main__ import main
main()

This file's only purpose is to load the main() function from our module and execute it.
Now you can execute python run.py and you'll find it launches just fine. However,
there's a problem—when you click a square, nothing happens. That's because our image
files are missing. We'll need to deal with those next.

Non-Python files
In a PyQt program, the best way to deal with files such as our X and O images is to use the
pyrcc5 tool to generate a resources file that can then be added to your module like any
other Python file (we learned about this in Chapter 6, Styling Qt Applications). However, in
this case, we're going to keep our images as PNG files so that we can explore our options
for dealing with non-Python files.

There is little consensus on where these kinds of files should live inside a project directory,
but since these images are a required component of the TTTBoard class, it makes sense to
put them inside our module. For the sake of organization, put them in a directory called
images.

Preparing Your Software for Distribution Chapter 17

[424]

Your directory structure should now look like this:

QTicTacToe/
├── qtictactoe
│ ├── board.py
│ ├── engine.py
│ ├── images
│ │ ├── O.png
│ │ └── X.png
│ ├── __init__.py
│ ├── __main__.py
│ └── mainwindow.py
└── run.py

The way we have written TTTBoard, you can see that each image is loaded using a relative
file path. In Python, relative paths are always relative to the current working
directory—that is, the directory from which the user launched the script. Unfortunately,
this is a rather brittle design, as we have no control over this directory. We also can't
hardcode an absolute file path since we don't know where our application might be stored
on a user's system (see our discussion of this problem in Chapter 6, Styling Qt Applications,
under the Using Qt Resource files section).

The ideal way to solve this problem in a PyQt application is to use Qt
Resource files; however, we're going to try a different approach just to
illustrate how to solve this problem in cases where that isn't an option.

To get around this, we need to modify the way TTTBoard loads the images so that it's
relative to the location of our module, rather than the user's current working directory. This
will require us to use the os.path module from the Python standard library, so add this at
the top of board.py:

from os import path

Now, down in __init__(), we'll modify the lines that load in the images:

 directory = path.dirname(__file__)
 self.mark_pngs = {
 'X': qtg.QPixmap(path.join(directory, 'images', 'X.png')),
 'O': qtg.QPixmap(path.join(directory, 'images', 'O.png'))
 }

Preparing Your Software for Distribution Chapter 17

[425]

The __file__ variable is a built-in variable that always contains the absolute path to the
current file (board.py, in this case). Using path.dirname, we can find the directory that
contains this file. Then, we can use path.join to assemble a path that looks for the files
under a folder called images in the same directory.

If you run the program now, you should find that it works perfectly, just as before. We're
not quite done yet, though.

Documentation and metadata
Working and well-organized code is a great start for our project; however if you want
others to use or contribute to your project, you'll need to address some of the questions
they're likely to have. For example, they'll need to know how to install the program, what
its prerequisites are, or what the legal terms of use or distribution are.

To answer these questions, we'll include a series of standard files and directories: the
LICENSE file, the README file, the docs directory, and the requirements.txt file.

The LICENSE file
When you share code, it's important to spell out exactly what others can or cannot do with
that code. In most countries, a person who creates a piece of work such as a program is
automatically the copyright holder of that work; that means you exercise control over the
copying of your work. If you want others to contribute to or use what you've created, you
need to grant them a license to do so.

The license that governs your project is usually provided in a plain-text file in the project
root called LICENSE. In our example code, we've included such a file that contains a copy of
the MIT license. The MIT license is a permissive open source license which basically allows
anyone to do anything with the code as long as they retain our copyright notice. It also
states that we aren't responsible for anything terrible that happens as a result of someone
using our code.

This file is sometimes called COPYING, and may have a file extension such
as txt as well.

Preparing Your Software for Distribution Chapter 17

[426]

You are certainly free to put any conditions you wish in your license; however, for PyQt
applications, you need to make sure your license is compatible with the terms of PyQt's
General Public License (GPL) GNU and Qt's Lesser General Public License (LGPL) GNU.
If you intend to release commercial or restrictively-licensed PyQt software, remember from
Chapter 1, Getting Started with PyQt, that you will need to purchase commercial licenses
from both the Qt company and Riverbank Computing.

For open source projects, the Python community strongly recommends you stick with well-
known licenses such as the MIT, BSD, GPL, or LGPL. A list of recognized open source
licenses can be found on the website of the Open Source Initiative at https:/ /opensource.
org/licenses. You may also want to consult https:/ /choosealicense. com, a site that
offers guidance on selecting a license that best matches your intentions.

The README file
The README file is one of the oldest traditions in software distribution. Dating back to the
mid 1970s, this plain-text file is usually meant to convey the most basic set of instructions
and information to users of the program before they install or run the software.

Although there is no standard for what a README file should contain, there are certain
things a user would expect to find; some of these include the following:

The name and home page of the software
The author of the software (with contact information)
A short description of the software
Basic usage instructions, including any command-line switches or arguments
Instructions for reporting bugs or contributing to the project
A list of known bugs
Notes such as platform-specific issues or instructions

Whatever you include in the file, you should aim to keep it concise and organized. To
facilitate some organizations, many modern software projects employ a markup language
when writing a README file; this allows us to use elements such as headers, bullet lists, and
even tables.

https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/licenses
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com
https://choosealicense.com

Preparing Your Software for Distribution Chapter 17

[427]

In Python projects, the preferred markup language is the ReStructured Text (RST). This
language is part of the docutils project, which provides documentation utilities for
Python.

We'll take a brief look at RST as we walk through creating a README.rst file for
qtictactoe. Start with a title:

============
 QTicTacToe
============

The equals signs around the top line indicate that it is a title; in this case, we've just used the
name of our project.

Next, we'll create a couple of sections for basic information about the project; we indicate
section headers by simply underlining a line of text with symbols, like this:

Authors
=======
By Alan D Moore - https://www.alandmoore.com

About
=====

This is the classic game of **tic-tac-toe**, also known as noughts and
crosses. Battle your opponent in a desperate race to get three in a line.

The symbols used for underlining section headers must be one of the following:

= - ` : ' " ~ ^ _ * + # < >

The order in which we use them isn't important, as RST interpreters will assume the first
symbols used as an underline representing a top-level header, the next type of symbol is a
second-level header, and so on. In this case, we're using the equals sign first, so it will
indicate a level-one header wherever we use it throughout this document.

Note the double asterisks around the words tic-tac-toe; this indicates bold text. RST can
also indicate underlines, italics, and similar typographic styles.

Preparing Your Software for Distribution Chapter 17

[428]

For example, we can indicate monospaced code text by using the backtick:

Usage
=====

Simply run `python qtictactoe.py` from within the project folder.

- Players take turns clicking the mouse on the playing field to mark
squares.
- When one player gets 3 in a row, they win.
- If the board is filled with nobody getting in a row, the game is a draw.

This example also shows a bullet list: each line is prefixed with a dash and space. We can
alternately use the + or * symbols as well, and create subpoints by indenting.

Let's finish our README.rst file with some information about contributing and some notes:

Contributing
============

Submit bugs and patches to the
`public git repository <http://git.example.com/qtictactoe>`_.

Notes
=====

 A strange game. The only winning move is not to play.

 —Joshua the AI, WarGames

The Contributing section shows how to create a hyperlink: put the hyperlink text inside
backticks, with the URL inside angle brackets, and add an underscore after the closing
backtick. The Notes section demonstrates a block quote, which is accomplished by simply
indenting the line four spaces.

Preparing Your Software for Distribution Chapter 17

[429]

Although our file is perfectly readable as text, many popular code-sharing sites will
translate RST and other markup languages to HTML. For example, on GitHub this file will
appear in the browser like this:

This simple README.rst file is sufficient for our small application; as an application grows,
it will warrant further expansion to document added features, contributors, community
policies, and more. This is why we prefer to use a plain-text format such as RST and why
we make it part of the project repository; it should be updated along with the code.

A quick reference for RST syntax can be found at
docutils.sourceforge.net/docs/user/rst/quickref.html.

http://docutils.sourceforge.net/docs/user/rst/quickref.html

Preparing Your Software for Distribution Chapter 17

[430]

The docs directory
While this README file is sufficient documentation for QTicTacToe, a more complex
program or library may demand more robust documentation. The standard place to put
such documentation is in the docs directory. This directory should be right under our
project root, and can contain any sort of additional documentation, including the following:

Sample configuration files
User manuals
API documentation
Database diagrams

Since our program doesn't need any of these things, we don't need to add a docs directory
to this project.

The requirements.txt file
Python programs often require packages outside the standard library to operate, and users
will need to know what to install in order for your project to run. You can (and probably
should) put this information in the README file, but you should also put it in
requirements.txt.

The format for requirements.txt is one library per line, like so:

PyQt5
PyQt5-sip

The library names in this file should match what is used in PyPI, as this file can then be
used by pip to install all the required libraries for the project, like so:

$ pip install --user -r requirements.txt

We don't actually have to specify PyQt5-sip since it's a dependency of
PyQt5 and will be installed automatically. We added it here to show how
multiple libraries are specified.

Preparing Your Software for Distribution Chapter 17

[431]

If specific versions of libraries are required, this can also be noted using version specifiers:

PyQt5 >= 5.12
PyQt5-sip == 4.19.4

In this case, we are specifying PyQt5 version 5.12 or greater, and only version 4.19.4 of
PyQt5-sip.

More information about the requirements.txt file can be found at https:/ /pip.
readthedocs.io/en/ 1.1/ requirements. html.

Other files
These are the bare essentials of project documentation and metadata, but you may find
some additional files useful in certain situations:

TODO.txt: A shortlist of bugs or missing features that need work
CHANGELOG.txt: A log of the history of major project changes and releases
tests: A directory containing unit tests for your module
scripts: A directory containing Python or shell scripts that are useful to, but not
part of, your module
Makefile: Some projects benefit from a scripted build process, and for that, a
utility such as make can be helpful; alternatives include CMake, SCons, or Waf

At this point, though, your project is ready to upload to your favorite source code-sharing
site. In the next section, we'll look at getting it ready for PyPI.

Distributing with setuptools
Many times throughout this book, you have installed Python packages using pip. You
probably know that pip downloads these packages from PyPI and installs them to your
system, Python virtual environment, or user environment. What you may not know is that
the tool used to create and install these packages is called setuptools, and it's readily
available to us if we want to make our own packages for PyPI or for personal use.

https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html
https://pip.readthedocs.io/en/1.1/requirements.html

Preparing Your Software for Distribution Chapter 17

[432]

Although setuptools is the officially recommended tool for creating Python packages, it
is not part of the standard library. However, it is included in the default distributions for
most operating systems (OSes) if you elect to include pip during installation. If for some
reason you don't have setuptools installed, consult the documentation at https:/ /
setuptools.readthedocs. io/ en/ latest/ to see how you can install it on your platform.

The main task involved in using setuptools is writing a setup.py script. In this section,
we'll learn how to write and use our setup.py script to generate distributable packages.

Writing the setuptools configuration
The primary purpose of setup.py is to call the setuptools.setup() function with
keyword arguments, which will define our project's metadata as well as how our project
should be packaged and installed.

So, the first thing we'll do is import that function:

from setuptools import setup

setup(
 # Arguments here
)

The remaining code in setup.py will be keyword arguments to setup(). Let's go through
the different categories of those arguments.

Basic metadata arguments
The simplest arguments involve the basic metadata about the project:

 name='QTicTacToe',
 version='1.0',
 author='Alan D Moore',
 author_email='alandmoore@example.com',
 description='The classic game of noughts and crosses',
 url="http://qtictactoe.example.com",
 license='MIT',

Here, we've described the package name, version, short description, project URL, and
license, as well as the author's name and email. This information will be written to the
package metadata and used by sites such as PyPI to build a profile page for your project.

https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/

Preparing Your Software for Distribution Chapter 17

[433]

For example, look at the PyPI page for PyQt5:

Along the left-side of the page, you'll see a link to the project's home page, the author (with
a hyperlinked email address), and the license. At the top, you see the project name and
version, as well as a short description of the project. All of this kind of data can be extracted
from a project's setup.py script.

If you plan to submit a package to PyPI, please see PEP 440 at https:/ /
www.python. org/ dev/ peps/ pep- 0440/ for how your version number
should be specified.

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/

Preparing Your Software for Distribution Chapter 17

[434]

The long text you see in the main body of this page comes from the long_description
argument. We could just put a long string directly into this argument, but since we already
have such a nice README.rst file, why not use that here? Since setup.py is a Python
script, we can just read in the file's contents, like so:

 long_description=open('README.rst', 'r').read(),

One advantage of using RST here is that PyPI (and many other code-sharing sites) will
automatically render your markup into nicely-formatted HTML.

If we wish to make our project easier to search for, we can include a string of space-
separated keywords:

 keywords='game multiplayer example pyqt5',

In this case, a person who searched for "multiplayer pyqt5" in PyPI should find our project.

Finally, you can include a dictionary of project-related URLs:

 project_urls={
 'Author Website': 'https://www.alandmoore.com',
 'Publisher Website': 'https://packtpub.com',
 'Source Code': 'https://git.example.com/qtictactoe'
 },

The format is {'label': 'URL'}; examples of things you might include here are the
project's bug tracker, documentation site, Wiki page, or source repository, especially if any
of those are different to the home URL.

Packages and dependencies
Apart from establishing the basic metadata, setup() needs information about the actual
code that needs to be included, or the environment that needs to be present on the system
for this package to be executed.

The first keyword we need to deal with here is packages, which defines the modules in
our project that need to be included:

 packages=['qtictactoe', 'qtictactoe.images'],

Note that we need to include both the qtictactoe module and the qtictactoe.images
module explicitly; even though the images directory is under qtictactoe, it will not be
included automatically.

Preparing Your Software for Distribution Chapter 17

[435]

If we had a lot of submodules and didn't want to explicitly list them, setuptools offers an
automatic solution as well:

from setuptools import setup, find_package

setup(
 #...
 packages=find_packages(),
)

If you want to use find_packages, make sure each submodule has an
__init__.py file in it so that setuputils can identify it as a module. In
this case, you'd need to add an __init__.py file to the images folder or
it will be ignored.

Both approaches have advantages and drawbacks; the manual approach is more work, but
find_packages may sometimes fail to identify a library in certain circumstances.

We also need to specify the external libraries that are needed for this project to run—in this
case, PyQt5. That can be done with the install_requires keyword:

 install_requires=['PyQt5'],

This keyword takes a list of names for packages that must be installed for the program to be
installed. When your program is installed using pip, it will use this list to install all
dependency packages automatically. You should include anything that isn't part of the
standard library in this list.

Just like the requirements.txt file, we can even be explicit about the version number of
each dependency required:

 install_requires=['PyQt5 >= 5.12'],

In this case, pip would make sure a version of PyQt5 greater than or equal to 5.12 is
installed. If no version is specified, pip will install the latest version available from PyPI.

In some cases, we might require a certain version of Python as well; for example, our
project uses f-strings, a feature only found in Python 3.6 or greater. We can specify that
with the python_requires keyword:

 python_requires='>=3.6',

Preparing Your Software for Distribution Chapter 17

[436]

We can also specify dependencies for optional features; for example, if we added an
optional network-play feature to qtictactoe, which required the requests library, we
would specify that like so:

 extras_require={
 "NetworkPlay": ["requests"]
 }

The extras_require keyword accepts a mapping of feature names (which can be
anything you want) to lists of package names. These modules won't be automatically
installed when your package is, but other modules can depend on these subfeatures. For
example, another module can specify a dependency on our project's NetworkPlay extra
keywords like so:

 install_requires=['QTicTacToe[NetworkPlay]'],

This would trigger a cascade of dependencies that would result in the requests library
being installed.

Non-Python files
By default, setuptools will package the Python files it finds in our project, and other file
types will be ignored. In almost any project, however, there are going to be non-Python
files that we're going to want to include in our distribution package. These files fall
generally into two categories: those that are part of a Python module, such as our PNG files,
and those that are not, such as the README file.

To incorporate files that are not part of a Python package, we need to create a file called
MANIFEST.in. This file contains include directives for file paths underneath the project
root. For example, if we want to include our documentation files, ours should look like the
following:

include README.rst
include LICENSE
include requirements.txt
include docs/*

The format is simple: the word include followed by a filename, path, or pattern that will
match a set of files. All paths are relative to the project root.

To include files that are part of a Python package, we have two choices.

Preparing Your Software for Distribution Chapter 17

[437]

One way is to include them in the MANIFEST.in file, and then set
include_package_data to True in setup.py:

 include_package_data=True,

Another way to include non-Python files is to use the package_data keyword argument in
setup.py:

 package_data={
 'qtictactoe.images': ['*.png'],
 '': ['*.txt', '*.rst']
 },

This argument takes a dict object, where each item is a module path and a list of patterns
that match the files included. In this case, we want to include all PNG files found in the
qtictactoe.images module, and any TXT or RST files anywhere in the package. Keep in
mind this argument only applies to files in the module directory (that is, files under
qtictactoe). If we want to include files such as README.rst or run.py, those should be
put in the MANIFEST.in file.

You can use either approach to including files, but you cannot use both
approaches in the same project; if you enable include_package_data,
the package_data directives will be ignored.

Executables
We tend to think of PyPI as a tool to install Python libraries; in fact, it works well for
installing applications as well, and many Python applications are available from it. Even if
you are creating a library, it's likely your library will ship with executable utilities, such as
the pyrcc5 and pyuic5 utilities that come with PyQt5.

To accommodate these, setuputils gives us a way to specify particular functions or
methods as console scripts; when the package is installed, it will create a simple executable
file, which will call that function or method when executed from the command line.

This is specified using the entry_points keyword:

 entry_points={
 'console_scripts': [
 'qtictactoe = qtictactoe.__main__:main'
]
 }

Preparing Your Software for Distribution Chapter 17

[438]

The entry_points dictionary has other uses, but the one we're most concerned with is the
'console_scripts' key. This key points to a list of strings that specify the functions we
want set up as command-line scripts. The format for these strings is as follows:

'command_name = module.submodule:function'

You can add as many console scripts as you wish; they just need to point to a function or
method in the package that can be run directly. Note that you must specify an actual
callable here; you can't just point to a Python file to run. This is why we've put all the
execution code under a main() function inside __main__.py.

setuptools contains many more directives to deal with less common situations; for a
complete list, see https:/ / setuptools. readthedocs. io/en/ latest/ setuptools. html.

Source distributions
Now that setup.py is ready to go, we can use it to actually create our package
distributions. There are two basic types of package distributions: source and built. In this
section, we'll talk about how to use source distributions.

A source distribution is a bundle of all the source code and extra files needed to build our
project. It includes the setup.py file and is useful for distributing your project in a cross-
platform way.

Creating a source distribution
To build a source distribution, open Command Prompt in your project root and enter this
command:

$ python3 setup.py sdist

This will create a couple of directories and many files:

The ProjectName.egg-info directory (in our case, the QTicTacToe.egg-info
directory) will contain several files of metadata generated from our setup.py
arguments.
The dist directory will contain the tar.gz archive file containing our
distribution. Ours is called QTicTacToe-1.0.tar.gz.

https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html
https://setuptools.readthedocs.io/en/latest/setuptools.html

Preparing Your Software for Distribution Chapter 17

[439]

Take a few minutes to explore the contents of QTicTacToe.egg-info; you'll see that all
the information we specified in setup() is there in some form. This directory is also
included inside the source distribution.

Also, take a moment to open the tar.gz file and see what it contains; you'll see all the files
we specified in MANIFEST.in, as well as the qtictactoe module and all the files from
QTicTacToe.egg-info. Essentially, this is a complete copy of our project directory.

Linux and macOS have native support for tar.gz archives; on Windows,
you can use the free 7-Zip utility. See the Technical requirements section for
information about 7-Zip.

Installing a source distribution
A source distribution can be installed using pip; to see how this works in a clean
environment, we'll install our library in a Python virtual environment. Virtual
environments are a way to create an isolated Python stack in which you can add or remove
libraries independently of your system Python installation.

In a console window, create a new directory and then make it a virtual environment:

$ mkdir test_env
$ virtualenv -p python3 test_env

The virtualenv command copies the necessary files into the given directory so that
Python can be run, as well as some scripts to activate and deactivate the environment.

To start using your new environment, run this command:

On Linux and Mac
$ source test_env/bin/activate
On Windows
$ test_env\Scripts\activate

Depending on your platform, your command-line prompt may change to indicate that
you're in a virtual environment. Now when you run python or Python-related tools such
as pip, they will do all the operations in the virtual environment rather than in your
system Python.

Preparing Your Software for Distribution Chapter 17

[440]

Let's install our source distribution package:

$ pip install QTicTacToe/dist/QTicTacToe-1.0.tar.gz

This command will cause pip to extract our source distribution and execute python
setup.py install inside the project root. The install directive will download any
dependencies, build an entry point executable, and copy the code into the directory where
your Python libraries are stored (in the case of our virtual environment, that would be
test_env/lib/python3.7/site-packages/). Notice that a fresh copy of PyQt5 is
downloaded; your virtual environment has nothing but Python and the standard library
installed, so any dependencies we listed in install_requires will have to be installed
anew.

After pip finishes, you should be able to run the qtictactoe command and launch the
application successfully. This command is stored in test_env/bin, in case your OS does
not automatically append the virtual environment directories to your PATH.

To remove the package from the virtual environment, you can run the following:

$ pip uninstall QTicTacToe

This should clean up the sources and all the generated files.

Built distributions
Source distributions are essential for developers, but they often contain many elements that
aren't necessary for an end user, such as unit tests or example code. In addition to this, if
the project contains compiled code (such as Python extensions written in C), that code will
require compilation before it can be used on the target. To address this, setuptools offers
a variety of built distribution types. A built distribution provides a ready-made set of files,
which only need to be copied to the appropriate directories to use.

In this section, we'll talk about how to work with built distributions.

Types of built distributions
The first step in creating a built distribution is determining the type of built distribution we
want. The setuptools library offers a few different built distribution types, and we can
install other libraries to add more options.

Preparing Your Software for Distribution Chapter 17

[441]

The built-in types are as follows:

Binary distribution: This is a tar.gz file just like a source distribution, but
unlike the source distribution it contains precompiled code (for example, the
qtictactoe executable) and omits certain types of files (such as tests). The
contents of a built distribution need to be extracted and copied to an appropriate
location to be run.
Windows installer: This is just like the binary distribution, except that it's an
executable that will launch an install wizard on Windows. The wizard merely
serves to copy the files to the proper location for execution or library use.
RPM Package Manager (RPM) installer: Again, this one is just like the binary
distribution, except that it packages code in an RPM file. RPM files are used by
package management utilities on several Linux distributions (such as Red Hat,
CentOS, Suse, Fedora, and more).

While you may find these distribution types useful in certain situations, they are all a bit
dated in 2019; the standard way to distribute Python today is using a wheel distribution.
These are the binary distribution packages you'll find on PyPI.

Let's look at creating and installing wheel packages.

Creating a wheel distribution
To create a wheel distribution, you first need to make sure the wheel library is installed
from PyPI (see the Technical requirements section). After that, setuptools will have an
additional bdist_wheel option.

You can use that to create your wheel file like this:

$ python3 setup.py bdist_wheel

Just as before, this command will create the QTicTacToe.egg-info directory and
populate it with files containing your project metadata. It also creates a build directory,
where compiled files are staged before being compacted into the wheel file.

Under dist, we'll find our completed wheel file. In our case, it's called QTicTacToe-1.0-
py3-none-any.whl. The format for the filename is as follows:

The project name (QTicTacToe).
The version (1.0).
The version of Python that is supported, whether 2, 3, or universal (py3).

Preparing Your Software for Distribution Chapter 17

[442]

The ABI tag, which indicates a specific release of Python on whose binary
interface our project depends (none). This will only be used if we have compiled
the code.
The platform (OS and CPU architecture). Ours is any because we aren't including
any platform-specific binaries.

Binary distributions come in three types:

A Universal type has only Python and is compatible with Python 2 or 3
A Pure Python type has only Python but is compatible with Python 2 or Python 3
A Platform type includes a compiled code that only runs on a particular platform

As reflected in the distribution name, our package is of the pure Python variety since it
contains no compiled code and only supports Python 3. PyQt5 is an example of a platform
package type since it includes the Qt libraries compiled for specific platforms.

Recall from Chapter 15, PyQt on the Raspberry Pi, that we could not install
PyQt from PyPI on the Raspberry Pi because there was no wheel file for
the Linux ARM platform. Since PyQt5 is a platform package type, it can
only be installed on platforms for which this wheel file has been
generated.

Installing a built distribution
Just as with source distributions, we can install our wheel file using pip:

$ pip install qtictactoe/dist/QTicTacToe-1.0-py3-none-any.whl

If you try this in a fresh virtual environment, you should find that, once again, PyQt5 is
downloaded from PyPI and installed and that you have the qtictactoe command
available afterward. There isn't much difference to the end user in the case of a program
such as QTicTacToe, but in the case of a library with binary files to compile (such as
PyQt5), it makes the set up considerably less problematic.

Of course, even a wheel file requires that the target system have Python and pip installed,
as well as access to the internet and PyPI. This is still a lot to ask of many users or
computing environments. In the next section, we're going to explore a tool that will allow
us to create a standalone executable from our Python projects, which can run without any
prerequisites.

Preparing Your Software for Distribution Chapter 17

[443]

Compiling with PyInstaller
After successfully writing their first application, the most common question many Python
programmers have is How do I make this code into an executable?. Unfortunately, there isn't a
single, official answer to this question. Over the years, many projects have been launched to
address this task (such as Py2Exe, cx _Freeze, Nuitka, and PyInstaller to name a few), with
varying degrees of support, simplicity of use, and consistency of results. In terms of these
qualities, the current best option is PyInstaller.

PyInstaller overview
Python is an interpreted language; instead of being compiled to machine code the way C or
C++ is, your Python code (or an optimized version of it called bytecode) is read and
executed by the Python interpreter each time you run it. This allows Python to have some
features that make it very easy to use, but also make it hard to compile into machine code to
provide a traditional standalone executable.

PyInstaller steps around this problem by packaging your script with a Python interpreter,
as well as any libraries or binaries required for it to run. These things are bundled together
into either a directory or a single file to provide a distributable application that can be
copied over to any system and executed, even if that system doesn't have Python.

To see how this works, make sure you have PyInstaller installed from PyPI (see
the Technical requirements section) and let's create an executable for QTicTacToe.

Note that the application packages created by PyInstaller are platform-
specific and can only be run on an OS and CPU architecture compatible
with that on which it was compiled. For example, if you build your
PyInstaller executable on 64-bit Linux, it will not run on 32-bit Linux or
64-bit Windows.

Basic command-line usage
In theory, using PyInstaller is as simple as opening Command Prompt and typing this:

$ pyinstaller my_python_script.py

In fact, let's try this with our qt_template.py file from Chapter 4, Building Applications
with QMainWindow; copy it to an empty directory, and run pyinstaller
qt_template.py in that directory.

Preparing Your Software for Distribution Chapter 17

[444]

You'll get a great deal of output to the console and find that several directories and files
were generated:

The build and __pycache__ directories mainly contain intermediate files
generated during the build process. These may be helpful during debugging, but
they are not part of the end product.
The dist directory contains our distributable output.
The qt_template.spec file holds the configuration data generated by
PyInstaller.

By default, PyInstaller produces a directory containing the executable file plus all the
libraries and data files required for it to work. The entire directory must be copied over to
another computer if you want to run the executable.

Enter this directory and look for an executable file called qt_template. If you run it, you
should see a blank QMainWindow object pop open.

If you'd rather just have a single file, PyInstaller can compress this directory into a single
executable, which when run, extracts itself into a temporary location and runs the main
executable.

This can be accomplished with the --onefile argument; delete the contents of dist and
build, and then run this command:

$ pyinstaller --onefile qt_template.py

Now, under dist, you'll just find a single qt_template executable file. Again, run it and
you'll see our blank QMainWindow. Keep in mind, while this approach is tidier, it increases
the start-up time (since the application needs to be extracted) and may create some
complications if your application opens up local files, as we'll see next.

If you make significant changes to your code, environment, or build
specifications, it's a good idea to delete the build and dist directories,
and possibly the .spec file.

Before we attempt to package QTicTacToe, let's take a deeper look into the .spec file.

Preparing Your Software for Distribution Chapter 17

[445]

The .spec file
The .spec file is a Python-syntax config file that contains all the metadata about our
build. You can think of it as PyInstaller's answer to a setup.py file. Unlike setup.py,
however, the .spec file is automatically generated. This happens whenever we run
pyinstaller, using a combination of detected data from our script and data passed in
through command-line switches. We can also just generate the .spec file (and not start the
build) using the pyi-makespec command.

Once generated, a .spec file can be edited and then passed back to pyinstaller to
rebuild the distribution without having to specify command-line switches every time:

$ pyinstaller qt_template.spec

To see what kind of things we might edit in this file, run pyi-makespec qt_template.py
again and open up qt_template.spec in your editor. Inside the file, you'll find four kinds
of objects being created: Analysis, PYZ, EXE, and COLLECT.

The Analysis constructor receives information about our script, data files, and libraries. It
uses this information to analyze the dependencies of the project and produces five tables of
paths pointing to the files that should be included in the distribution. The five tables are:

scripts: The Python files that serve as entry points and will be converted into
executables
pure: The pure Python modules required by the scripts
binaries: The binary libraries required by the scripts
datas: The non-Python data files, such as text files or images
zipfiles: Any zipped Python .egg files

In our file, the Analysis portions look something like this:

a = Analysis(['qt_template.py'],
 pathex=['/home/alanm/temp/qt_template'],
 binaries=[],
 datas=[],
 hiddenimports=[],
 hookspath=[],
 runtime_hooks=[],
 excludes=[],
 win_no_prefer_redirects=False,
 win_private_assemblies=False,
 cipher=block_cipher,
 noarchive=False)

Preparing Your Software for Distribution Chapter 17

[446]

You see the name of the Python script, the path, and a lot of empty keyword arguments.
Most of these arguments correspond to the output tables and are used to manually
supplement the results of the analysis with things that PyInstaller fails to detect, including
the following:

binaries correspond to the binaries table.
datas corresponds to the datas table.
hiddenimports corresponds to the pure table.
excludes allows us to leave out modules that may have been automatically
included but aren't really needed.
hookspath and runtime_hooks allow you to manually specify PyInstaller
hooks; hooks allow you to override aspects of the analysis. They're typically used
for dealing with troublesome dependencies.

The next object created is the PYZ object:

pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)

A PYZ object represents a compressed archive of all the pure Python scripts detected in the
analysis phase. All the pure Python scripts in our project will be compiled to bytecode
(.pyc) files and packed into this archive.

Note the cipher argument present in both Analysis and PYZ; this argument can be used
to obfuscate our Python bytecode further using AES256 encryption. While it doesn't fully
prevent decryption and decompiling of the code, it can be a useful deterrent to the curious
if you plan to distribute your code commercially. To use this option, specify an encryption
string using the --key argument when creating the file, like so:

$ pyi-makespec --key=n0H4CK1ngPLZ qt_template.py

After the PYZ section, an EXE() object is generated:

exe = EXE(pyz,
 a.scripts,
 [],
 exclude_binaries=True,
 name='qt_template',
 debug=False,
 bootloader_ignore_signals=False,
 strip=False,
 upx=True,
 console=True)

Preparing Your Software for Distribution Chapter 17

[447]

The EXE object represents the executable file. The positional arguments here represent all
the file tables we're bundling into the executable. Right now, this is just the compressed
Python libraries and the main scripts; if we had specified the --onefile option, the other
tables (binaries, zipfiles, and datas) would also be included here.

The keyword arguments to EXE allow us to control aspects of the executable file:

name is the filename of the executable
debug toggles the debugging output for the executable
upx toggles whether the executable will be compressed with UPX
console toggles whether to run the program in console or GUI mode in
Windows and macOS; in Linux, it has no effect

UPX is a free executable packer available for multiple platforms from
https:/ /upx. github. io/ . If you have it installed, enabling this argument
can make your executables smaller.

The final phase in the process is generating a COLLECT object:

coll = COLLECT(exe,
 a.binaries,
 a.zipfiles,
 a.datas,
 strip=False,
 upx=True,
 name='qt_template')

This object gathers all the necessary files into the final distribution directory. It only runs in
one-directory mode, and its positional arguments include the components to be included in
the directory. We can also override a few other aspects of the folder, such as whether to use
UPX on the binaries and the name of the output directory.

Now that we understand a bit more about how PyInstaller works, let's package
QTicTacToe.

Preparing QTicTacToe for PyInstaller
PyInstaller is simple enough when working with a single script, but how does it work with
our module-style project arrangement? We cannot point PyInstaller at our module, as it
will return an error; it needs to be pointed at a Python script that serves as the entry point,
such as our run.py file.

https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/

Preparing Your Software for Distribution Chapter 17

[448]

This seems to work:

$ pyinstaller run.py

However, the resulting distribution and executable are now called run, which is not so
great. You might be tempted to change run.py to qtictactoe.py; in fact, some tutorials
on Python packaging recommend this arrangement (that is, having the run script the same
name as the main module).

If you attempt this, however, you may find you got an error such as this:

Traceback (most recent call last):
 File "qtictactoe/__init__.py", line 3, in <module>
 from .mainwindow import MainWindow
ModuleNotFoundError: No module named '__main__.mainwindow'; '__main__' is
not a package
[3516] Failed to execute script qtictactoe

Because a Python module can be either a .py file or a directory, PyInstaller can't be sure
which one constitutes the qtictactoe module, so having the same name for both will fail.

The correct approach is to use the --name switch when creating our .spec file or running
pyinstaller:

$ pyinstaller --name qtictactoe run.py
or, to just create the spec file:
pyi-makespec --name qtictactoe run.py

This will create qtictactoe.spec and set the name arguments of EXE and COLLECT to
qtictactoe, like so:

exe = EXE(pyz,
 #...
 name='qtictactoe',
 #...
coll = COLLECT(exe,
 #...
 name='qtictactoe')

This can, of course, be done manually by editing the .spec file as well.

Preparing Your Software for Distribution Chapter 17

[449]

Dealing with non-Python files
Our program runs, but we're back to the old problem of the 'X' and 'O' images not
showing up. There are two problems here: first, our PNG files aren't being made part of the
distribution and, second, the program can't find them even when they are.

To deal with the first problem, we have to tell PyInstaller to include our files in the datas
table during the Analysis phase of the build. We can do that in the command line, like so:

On Linux and macOS:
$ pyinstaller --name qtictactoe --add-data qtictactoe/images:images run.py
On Windows:
$ pyinstaller --name qtictactoe --add-data qtictactoe\images;images run.py

The --add-data argument takes a source path and a destination path separated by either a
colon (on macOS and Linux) or a semicolon (on Windows). The source path is relative to
the project root where we're running pyinstaller (QTicTacToe, in this case), and the
destination path is relative to the distribution root folder.

If we don't want to make a long, complex command line, we can also update the Analysis
section of the qtictactoe.spec file:

a = Analysis(['run.py'],
 #...
 datas=[('qtictactoe/images', 'images')],

Here, the source and destination paths are just a tuple inside the datas list. The source
value can also be a pattern such as qtictactoe/images/*.png. If you run pyinstaller
qtictactoe.spec with these changes, you should find an images directory in
dist/qtictactoe, which contains our PNG files.

This has solved the first problem with the images, but we still need to solve the second. In
the Distributing with setuptools section, we solved the problem of locating our PNG files by
using the __file__ built-in variable. However, when you are running from a PyInstaller
executable, the value of __file__ is not the path to the executable; it's actually a path to a
temporary directory where the executable unpacks the compressed bytecode. The location
of this directory changes depending on whether we are in one-file or one-directory mode as
well. To work around this problem, we'll need to update our code to detect whether the
program has been made into an executable and, if so, use a different method to locate the
files.

Preparing Your Software for Distribution Chapter 17

[450]

When we run PyInstaller executables, PyInstaller adds two properties to the sys module to
help us:

The sys.frozen property, which is given a value of True
The sys._MEIPASS property, which stores the path to the executable directory

Thus, we can update our code in board.py to something like this:

 if getattr(sys, 'frozen', False):
 directory = sys._MEIPASS
 else: # Not frozen
 directory = path.dirname(__file__)
 self.mark_pngs = {
 'X': qtg.QPixmap(path.join(directory, 'images', 'X.png')),
 'O': qtg.QPixmap(path.join(directory, 'images', 'O.png'))
 }

Now, when executing from a frozen PyInstaller environment, our code will be able to locate
the files correctly. Re-run pyinstaller qtictactoe.spec and you should find that the X
and O graphics display correctly. Hooray!

As mentioned before, the far better solution in a PyQt5 application is to
use the Qt Resource files discussed in Chapter 6, Styling Qt Applications.
For non-PyQt programs, the setuptools library has a tool called
pkg_resources that might be helpful.

Further debugging
If your build continues to have trouble, there are a couple of ways to get more information
about what's going on.

First, make sure your code runs correctly as a Python script. If there is a syntax error or
other code problem in any of your module files, the distribution will be built without them.
These omissions will neither halt the build nor be mentioned in the command-line output.

Preparing Your Software for Distribution Chapter 17

[451]

After confirming that, check the build directory for details on what PyInstaller is doing.
Under build/projectname/, you should see a number of files that can help you debug,
including these:

warn-projectname.txt: This contains warnings output by the Analysis
process. Some of these are meaningless (often just failures to locate platform-
specific libraries that don't exist on your platform), but if libraries have errors or
are not being found, those issues will be logged here.
.toc files: These contain the tables of contents created during the phases of the
build process; for example, Analysis-00.toc shows the tables found in
Analysis(). You can examine these to see whether the project's dependencies
are being incorrectly identified or pulled from an incorrect location.
base_library.zip: This archive should contain Python bytecode files for all
the pure Python modules used by your application. You can inspect this to see
whether anything is missing.

If you need more verbose output, you can use the --log-level switch to increase the
detail of the output to warn-projectname.txt. A setting of DEBUG will provide more
details:

$ pyinstaller --log-level DEBUG my_project.py

More debugging tips can be found at https:/ /pyinstaller. readthedocs. io/ en/latest/
when-things-go-wrong. html.

Summary
In this chapter, you learned how to share your projects with others. You learned the
optimal layout for your project directory to enable you to collaborate with other Python
coders and Python tools. You learned how to work with setuptools to make distributable
Python packages for sites such as PyPI. Finally, you learned how to convert your code into
executables using PyInstaller.

Congratulations! You have finished this book. By now, you should feel confident in your
ability to develop a compelling GUI application from scratch using Python and PyQt5.
From basic input forms to advanced network, database, and multimedia applications, you
now have the tools to create and distribute amazing programs. Even with all the topics
we've covered, there's still much more to discover inside PyQt. Keep learning, and make
great things!

https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html
https://pyinstaller.readthedocs.io/en/latest/when-things-go-wrong.html

Preparing Your Software for Distribution Chapter 17

[452]

Questions
Try answering these questions to test your knowledge from this chapter:

You have written a PyQt application in a file called Scan & Print Tool-1.
box.py. You want to convert this into a module-style organization; what change
should you make?
Your PyQt5 database application has a set of .sql files containing queries used2.
by the application. It worked when your app was a single script in the same
directories as the .sql files, but now that you've converted it to a module-style
organization, the queries can't be found. What should you do?
You're writing a detailed README.rst file to document your new application3.
before uploading it to a code-sharing site. What characters should be used to
underline your level 1, 2, and 3 headings, respectively?
You're creating a setup.py script for your project so that you can upload it to4.
PyPI. You would like to include a URL for the project's FAQ page. How can you
accomplish this?
You have specified include_package_data=True in your setup.py file, but5.
for some reason, the docs folder is not being included in your distribution
package. What's wrong?
You ran pyinstaller fight_fighter3.py to package your new game as an6.
executable. Something went wrong, though; where can you find a log of the
build process?
Despite the name, PyInstaller cannot actually generate installer programs or7.
packages for your application. Research some options for your platform of
choice.

Further reading
For further information, please refer to the following:

A tutorial on ReStructuredText markup can be found at http:/ /docutils.
sourceforge. net/ docs/ user/ rst/quickstart. html.
More information on designing, structuring, documenting, and packaging
Python GUI applications can be found in this author's first book, Python GUI
programming with Tkinter, available from Packt Publications.

http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://docutils.sourceforge.net/docs/user/rst/quickstart.html

Preparing Your Software for Distribution Chapter 17

[453]

If you're interested in publishing a package to PyPI, see https:/ / blog.
jetbrains. com/ pycharm/ 2017/ 05/how- to- publish- your- package- on-pypi/ for
a tutorial on the process.
A better solution to the problem of including images in a Python library for a
non-PyQt code is the pkg_resources tool provided by setuptools. You can
read about it at https:/ /setuptools. readthedocs. io/en/ latest/ pkg_
resources. html.
Advanced usage of PyInstaller is documented in the PyInstaller manual found at
https:// pyinstaller. readthedocs. io/en/ stable/ .

https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://blog.jetbrains.com/pycharm/2017/05/how-to-publish-your-package-on-pypi/
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/
https://pyinstaller.readthedocs.io/en/stable/

Answers to Questions

Chapter 1
Qt is written in C++, a language that is very different from Python. What are1.
some of the major differences between the two languages? How might these
differences come across as we use Qt in Python?

The C++ language differences impact PyQt in several ways, for example:

Its static typing and type-safe functions mean that PyQt is fairly
strict about which functions can be called and which variables can
be passed, in some circumstances.
The relative lack of built-in data types in C++ means that Qt
provides a rich selection of data types, many of which we must use
in Python due to type safety.
The use of enum types, common in C++ but rare in Python, is
pervasive in Qt.

GUIs are composed of widgets. Open some GUI applications on your2.
computer and try to identify as many widgets as you can.

Some examples might include the following:

Buttons
Checkboxes
Radio buttons
Labels
Text edits
Sliders
Image areas
Comboboxes

Answers to Questions

[455]

Suppose that the following program crashes. Figure out why, and fix it so that3.
it shows a window:

 from PyQt5.QtWidgets import *
 app = QWidget()
 app.show()
 QApplication().exec()

The code should read as follows:

 from PyQt5.QtWidgets import *

 app = QApplication([])
 window = QWidget()
 window.show()
 app.exe()

Remember that a QApplication() object must exist before any QWidget
objects, and it must be created with a list as an argument.

The QWidget class has a property called statusTip. Which of these are most4.
likely to be the names of the accessor methods for this property:

getStatusTip() and setStatusTip()a.
statusTip() and setStatusTip()b.
get_statusTip() and change_statusTip()c.

The answer b is correct. In most cases, the accessors for property are
property() and setProperty().

QDate is a class for wrapping a calendar date. In which of the three main Qt5.
modules would you expect to find it?

QDate is in QtCore. QtCore holds data type classes for things not
necessarily related to a GUI.

QFont is a class that defines a screen font. In which of the three main Qt6.
modules would you expect to find it?

QFont is in QtGui. Fonts relate to GUIs but aren't widgets or layouts, so you
would expect it to be in QtGui.

Answers to Questions

[456]

Can you recreate hello_world.py using Qt Designer? Make sure to7.
set windowTitle.

Create a new project based on QWidget. Then select the main widget and
set windowTitle in the Properties pane.

Chapter 2
How would you create a QWidget that is fullscreen, has no window frame, and1.
uses the hourglass cursor?

The code looks like this:

 widget = QWidget(cursor=qtc.Qt.WaitCursor)
 widget.setWindowState(qtc.Qt.WindowFullScreen)
 widget.setWindowFlags(qtc.Qt.FramelessWindowHint)

Suppose that you're asked to design a data-entry form for a computer2.
inventory database. Choose the best widget to use for each of the following
fields:

Computer make: One of eight brands that your company
purchases
Processor speed: The CPU speed in GHz
Memory amount: The amount of RAM, in whole MB
Hostname: The computer's hostname
Video make: Whether the video hardware is Nvidia, AMD, or
Intel
OEM license: Whether the computer uses an OEM license

This table lists some possible answers:

Field Widget(s) Explanation

Computer make QComboBox For choosing between a list of many values, a
combobox is ideal

Processor Speed QDoubleSpinBox Best choice for decimal values
Memory Amount QSpinBox Best choice for integer values
Hostname QLineEdit A hostname is just a one-line text string

Video Make QComboBox, QRadioButton Combobox would work, but with only three choices,
radio buttons are an option, too

Answers to Questions

[457]

Field Widget(s) Explanation
OEM License QCheckBox QCheckBox is a good choice for Boolean values

The data entry form includes an inventory number field that requires3.
the XX-999-9999X format, where X is an uppercase letter from A to Z,
excluding O and I, and 9 is a number from 0 to 9. Can you create a validator
class to validate this input?

See inventory_validator.py in the example code.

Check out the following calculator form:4.

What layouts may have been used to create it?

It is most likely either a QVBoxLayout with a nested QGridLayout layout for
the button area, or a single QGridLayout layout using a column span for the
first two rows.

Referring to the preceding calculator form, how would you make the button5.
grid take up any extra space when the form is resized?

Set the sizePolicy property on each widget to
QtWidgets.QSizePolicy.Expanding for both vertical and horizontal.

Answers to Questions

[458]

The topmost widget in the calculator form is a QLCDNumber widget. Can you6.
find the Qt documentation on this widget? What unique properties does it
have? When might you use it?

The QLCDNumber documentation is at https:/ / doc.qt. io/ qt-5/
qlcdnumber. html. Its unique properties are digitCount, intValue, mode,
segmentStyle, smallDecimalPoint, and value. It's useful for displaying
any kind of number, including octal, hexadecimal, and binary.

Starting with your template code, build the calculator form in code.7.

See calculator_form.py in the example code.

Build the calculator form in Qt Designer.8.

See calculator_form.ui in the example code.

Chapter 3
Look at the following table and determine which of the connections could1.
actually be made, and which would result in an error. You may need to look up
the signatures of these signals and slots in the documentation:

Signal Slot
1 QPushButton.clicked QLineEdit.clear

2 QComboBox.currentIndexChanged QListWidget.scrollToItem

3 QLineEdit.returnPressed QCalendarWidget.setGridVisible

4 QLineEdit.textChanged QTextEdit.scrollToAnchor

The answers are as follows:

Yes, because the Boolean argument of clicked can be ignored by1.
clear

No, because currentIndexChanged sends int, but scrollToItem2.
expects an item and a scroll hint
No, because returnPressed sends no arguments and3.
setGridVisible expects one
Yes, because textChanged sends a string, which scrollToAnchor4.
accepts

https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html
https://doc.qt.io/qt-5/qlcdnumber.html

Answers to Questions

[459]

The emit() method does not exist on a signal object until the signal has been2.
bound (that is, connected to a slot). Rewrite
the CategoryWindow.onSubmit() method from our
first calendar_app.py file to protect against the possibility
of submitted being unbound.

We need to catch an AttributeError, like so:

 def onSubmit(self):
 if self.category_entry.text():
 try:
 self.submitted.emit(self.category_entry.text())
 except AttributeError:
 pass
 self.close()

You find an object in the Qt documentation with a slot that requires3.
QString as an argument. Can you connect your custom signal that sends a
Python str object?

Yes, because PyQt automatically converts between QString and Python str
objects.

You find an object in the Qt documentation with a slot that4.
requires QVariant as an argument. What built-in Python types could you sent
to this slot?

Any of them can be sent. QVariant is a generic object container that can
hold any other type of object.

You're trying to create a dialog window that takes time and emits it when the5.
user has finished editing the value. You're trying to use automatic slot
connections, but your code isn't doing anything. Determine what is missing
from the following:

 class TimeForm(qtw.QWidget):

 submitted = qtc.pyqtSignal(qtc.QTime)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QHBoxLayout())
 self.time_inp = qtw.QTimeEdit(self)
 self.layout().addWidget(self.time_inp)

Answers to Questions

[460]

 def on_time_inp_editingFinished(self):
 self.submitted.emit(self.time_inp.time())
 self.destroy()

First, you're missing a call to connectSlotsByName(). Also, you have not
set the object name of self.time_inp. Your code should look like this:

 class TimeForm(qtw.QWidget):

 submitted = qtc.pyqtSignal(qtc.QTime)

 def __init__(self):
 super().__init__()
 self.setLayout(qtw.QHBoxLayout())
 self.time_inp = qtw.QTimeEdit(
 self, objectName='time_inp')
 self.layout().addWidget(self.time_inp)
 qtc.QMetaObject.connectSlotsByName(self)

 def on_time_inp_editingFinished(self):
 self.submitted.emit(self.time_inp.time())
 self.destroy()

You've created a .ui file in Qt Designer for a calculator application, and you're6.
trying to get it working in code, but it's not. What are you doing wrong? See
the following source code:

 from calculator_form import Ui_Calculator

 class Calculator(qtw.QWidget):
 def __init__(self):
 self.ui = Ui_Calculator(self)
 self.ui.setupGUI(self.ui)
 self.show()

There are four things wrong here:

First, you've forgotten to call super().__init__()
Second, you're passing self to Ui_Calculator, which doesn't
need any arguments
Third, you're calling self.ui.setupGUI(); it should be
self.ui.setupUi()

Finally, you're passing self.ui into setupUi(); you should be
passing in a reference to the containing widget, in this case, self

Answers to Questions

[461]

You're trying to create a new button class that emits an integer value when7.
clicked; unfortunately, nothing happens when you click on the button. Look at
the following code and try to make it work:

 class IntegerValueButton(qtw.QPushButton):

 clicked = qtc.pyqtSignal(int)

 def __init__(self, value, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.value = value
 self.clicked.connect(
 lambda: self.clicked.emit(self.value))

The answer is to change the last line of __init__() to the following:

 super().clicked.connect(
 lambda: self.clicked.emit(self.value))

Because we've overridden the built-in clicked property with our own
signal, self.clicked no longer points to the signal emitted when the
button is clicked. We have to call super().clicked to get a reference to the
parent class's clicked signal.

Chapter 4
You want to use QMainWindow with the calendar_app.py script from Chapter1.
3, Handling Events with Signals and Slots. How would you go about converting
it?

The easiest approach would be the following:

Rename MainWindow to something like CalendarForm
Create a new MainWindow class based on QMainWindow
Create an instance of CalendarForm inside MainWindow and set it
as the central widget

Answers to Questions

[462]

You're working on an app and have added the sub-menu names to the menu2.
bar but have not populated any of them with items. Your coworker says that
none of the menu names are appearing on his desktop when he tests it. Your
code looks correct; what is probably going on here?

Your coworker is using a platform (such as macOS) that doesn't display
empty menu folders by default.

You're developing a code editor and want to create a sidebar panel for3.
interacting with a debugger. Which QMainWindow feature would be most
appropriate for this task?

QDockWidget would be most appropriate, since it allows you to build any
kind of widget into a dockable window. The toolbar wouldn't be a good
choice, since it's mainly designed for buttons.

The following code isn't working correctly; it proceeds no matter what is4.
clicked. Why doesn't it work, and how can you fix it?

 answer = qtw.QMessageBox.question(
 None, 'Continue?', 'Run this program?')
 if not answer:
 sys.exit()

QMessageBox.question() does not return a Boolean; it returns a constant
matching the type of button that was clicked. The actual integer value of the
constant matching the No button is 65536, which evaluates to True in
Python. The code should read as follows:

 answer = qtw.QMessageBox.question(
 None, 'Continue?', 'Run this program?')
 if answer == qtw.QMessageBox.No:
 sys.exit()

You're building a custom dialog by subclassing QDialog. You need to get the5.
information entered into the dialog back to the main window object. Which of
the following approaches will not work?

Pass in a mutable object and use the dialog's accept() method toa.
alter its values.
Override the objects accept() method and have it return a dict ofb.
the entered values.

Answers to Questions

[463]

Override the dialog's accepted signal with one that passes along ac.
dict of the entered values. Connect this signal to a callback in your
main window class.

Answers a and c will work. Answer b will not work, because the return
value of accept is not returned by the dialog when exec() is called.
exec() only returns a Boolean value indicating whether the dialog was
accepted or rejected.

You're writing a photo editor called SuperPhoto on Linux. You've written the6.
code and saved the user settings, but looking in ~/.config/, you can't
find SuperPhoto.conf. Look at the code and determine what went wrong:

 settings = qtc.QSettings()
 settings.setValue('config_file', 'SuperPhoto.conf')
 settings.setValue('default_color', QColor('black'))
 settings.sync()

The configuration file (or registry key, on Windows) used by QSettings is
determined by the company name and app name passed in as arguments to
the constructor. The code should read as follows:

 settings = qtc.QSettings('My Company', 'SuperPhoto')
 settings.setValue('default_color', QColor('black'))

Also, note that sync() doesn't need to be called explicitly. It's automatically
called by the Qt event loop.

You're saving preferences from a settings dialog, but for some reason, the7.
settings being saved are coming back very strangely. What is wrong here? See
the following code:

 settings = qtc.QSettings('My Company', 'SuperPhoto')
 settings.setValue('Default Name',
dialog.default_name_edit.text)
 settings.setValue('Use GPS', dialog.gps_checkbox.isChecked)
 settings.setValue('Default Color', dialog.color_picker.color)

The problem is that you're not actually calling the accessor functions for the
widgets. As a result, settings is storing a reference to the accessor function.
On the next program launch, these are meaningless, since new objects are
created at new memory locations. Be aware that settings won't complain if
you save function references.

Answers to Questions

[464]

Chapter 5
Assuming we have a well-designed model-view application, is the following1.
code part of a model or a view?

 def save_as(self):
 filename, _ = qtw.QFileDialog(self)
 self.data.save_file(filename)

It's view code, since it creates a GUI element (the file dialog) and seems to
call back to what might be a model (self.data).

Can you name at least two things that a model should never do, and two things2.
that a view should never do?

Examples of things models should never do are create or directly alter GUI
elements, format data for presentation, or close the application. Examples of
things views should never do are save data to disk, perform transformations
on the stored data (such as sorting or arithmetic), or read data from anything
other than the model.

QAbstractTableModel and QAbstractTreeModel both have abstract in the3.
name. What does abstract mean in this context? Does it mean something
different in C++ from what it means in Python?

In any programming language, abstract classes are classes that are not
intended to be instantiated into objects; they should only be used by
subclassing them and overriding required methods. In Python, this is
implied but not enforced; in C++, classes marked abstract will fail to
instantiate.

Which model type—list, table, or tree—would best suit the following4.
collections of data?

The user's recent files1.
A Windows registry hive2.
Linux syslog records3.
Blog entries4.
Personal salutations (for example, Mr., Mrs., or Dr.)5.
Distributed version control history6.

Answers to Questions

[465]

Although it's debatable, the most likely answers are as follows:

List1.
Tree2.
Table3.
Table4.
List5.
Tree6.

Why is the following code failing?5.

 class DataModel(QAbstractTreeModel):
 def rowCount(self, node):
 if node > 2:
 return 1
 else:
 return len(self._data[node])

The argument for rowCount() is a QModelIndex object pointing to a parent
node. It cannot be compared to an integer (if node > 2).

Your table model isn't working quite right when inserting columns. What is6.
wrong with your insertColumns() method?

 def insertColumns(self, col, count, parent):
 for row in self._data:
 for i in range(count):
 row.insert(col, '')

You've neglected to call self.beginInsertColumns() before altering the
data, and self.endInsertColumns() after doing it.

You would like your views to display the item data as a tooltip when hovered.7.
How would you accomplish this?

You need to handle QtCore.Qt.TooltipRole in the model's data()
method. An example of the code would be as follows:

 def data(self, index, role):
 if role in (
 qtc.Qt.DisplayRole,
 qtc.Qt.EditRole,
 qtc.Qt.ToolTipRole
):
 return self._data[index.row()][index.column()]

Answers to Questions

[466]

Chapter 6
You are preparing to distribute your text editor application and want to ensure1.
that the user is given a monospaced font by default, no matter what platform
they use. What two methods can you use to accomplish this?

The first way is to set the styleHint of the default font to
QtGui.QFont.Monospace. The second is to find an appropriately-licensed,
monospaced font, bundle it in a Qt Resource file, and set the font to your
bundled font.

As closely as possible, try to mimic the following text using QFont: 2.

The code is as follows:

 font = qtg.QFont('Times', 32, qtg.QFont.Bold)
 font.setUnderline(True)
 font.setOverline(True)
 font.setCapitalization(qtg.QFont.SmallCaps)

Can you explain the difference between QImage, QPixmap, and QIcon?3.

QPixmap and QImage both represent a single image, but QPixmap is
optimized for display, while QImage is optimized for image manipulation in
memory. QIcon is not a single image, but a collection of images that can be
tied to a widget or action's state.

You have defined the following .qrc file for your application, run pyrcc5,4.
and imported the resource library in your script. How would you load this
image into QPixmap?

 <RCC>
 <qresource prefix="foodItems">
 <file alias="pancakes.png">pc_img.45234.png</file>
 </qresource>
 </RCC>

The code should look like this:

 pancakes_pxm = qtg.QPixmap(":/foodItems/pancakes.png")

Answers to Questions

[467]

Using QPalette, how would you tile the background of a QWidget object with5.
the tile.png image?

The code should look like this:

 widget = qtw.QWidget()
 palette = widget.palette()
 tile_brush = qtg.QBrush(
 qtg.QColor('black'),
 qtg.QPixmap('tile.png')
)
 palette.setBrush(qtg.QPalette.Window, tile_brush)
 widget.setPalette(palette)

You are trying to make a delete button pink using QSS, but it's not working.6.
What is wrong with your code?

 deleteButton = qtw.QPushButton('Delete')
 form.layout().addWidget(deleteButton)
 form.setStyleSheet(
 form.styleSheet() + 'deleteButton{ background-color: #8F8; }'
)

There are two problems with your code. First, your deleteButton does not
have an objectName assigned. QSS does not know anything about your
Python variable names; it only knows Qt object names. Second, your style
sheet doesn't prefix the object name with a # symbol. The corrected code
should look like this:

 deleteButton = qtw.QPushButton('Delete')
 deleteButton.setObjectName('deleteButton')
 form.layout().addWidget(deleteButton)
 form.setStyleSheet(
 form.styleSheet() +
 '#deleteButton{ background-color: #8F8; }'
)

Which style sheet string will turn the background colors of7.
your QLineEdit widget black?

 stylesheet1 = "QWidget {background-color: black;}"
 stylesheet2 = ".QWidget {background-color: black;}"

stylesheet1 will turn the background of any QWidget child class black,
including QLineEdit. stylesheet2 will only turn the background of actual
QWidget objects black; child classes will remain unaffected.

Answers to Questions

[468]

Build a simple app with a combobox that allows you to change the Qt style to8.
any style installed on your system. Include some other widgets so that you can
see how they look in the different styles.

See question_8_answer.py in the example code included for this chapter.

You feel very happy about learning how to style PyQt apps and want to create9.
a QProxyStyle class that will force all pixmaps in a GUI to be smile.gif.
How would you do this? Hint: You will need to research some drawing
methods of QStyle other than the ones discussed in this chapter.

The class looks like this:

 class SmileyStyley(qtw.QProxyStyle):

 def drawItemPixmap(
 self, painter, rectangle, alignment, pixmap):
 smile = qtg.QPixmap('smile.gif')
 super().drawItemPixmap(
 painter, rectangle, alignment, smile)

The following animation doesn't work; figure out why it doesn't work:10.

 class MyWidget(qtw.QWidget):
 def __init__(self):
 super().__init__()
 animation = qtc.QPropertyAnimation(
 self, b'windowOpacity')
 animation.setStartValue(0)
 animation.setEndValue(1)
 animation.setDuration(10000)
 animation.start()

The short answer is that animation should be self.animation.
Animations do not have parent objects and do not get re-parented like
widgets do when they're added to a layout. Hence, when the constructor
exits, animation goes out of scope and gets destroyed. The moral of the
story is, save your animations as instance variables.

Answers to Questions

[469]

Chapter 7
Using QSoundEffect, you've written a utility for a call center that allows them1.
to review recorded phone calls. They're moving to a new phone system that
stores the audio calls as MP3 files. Do you need to make any changes to your
utility?

Yes. You'll need to use QMediaPlayer instead of QSoundEffect, or write a
layer to decode the MP3 to WAV, because QSoundEffect cannot play
compressed audio.

cool_songs is a Python list containing path strings to your favorite songs.2.
What do you need to do to play these songs back in a random order?

You need to convert the paths into QUrl objects, add them to
QMediaPlaylist, set playbackMode to Random, then pass it to
QMediaPlayer. The code looks like this:

 playlist = qtmm.QMediaPlaylist()
 for song in cool_songs:
 url = qtc.QUrl.fromLocalFile(song)
 content = qtmm.QMediaContent(url)
 playlist.addMedia(content)
 playlist.setPlaybackMode(qtmm.QMediaPlaylist.Random)
 player = qtmm.QMediaPlayer()
 player.setPlaylist(playlist)
 player.play()

You have installed the audio/mpeg codec on your system, but the following3.
code isn't working. Find out what's wrong with it:

 recorder = qtmm.QAudioRecorder()
 recorder.setCodec('audio/mpeg')
 recorder.record()

QAudioRecorder doesn't have a setCodec method. The codec used in the
recording is set on the QAudioEncoderSettings object. The code should
read as follows:

 recorder = qtmm.QAudioRecorder()
 settings = qtmm.QAudioEncoderSettings()
 settings.setCodec('audio/mpeg')
 recorder.setEncodingSettings(settings)
 recorder.record()

Answers to Questions

[470]

Run audio_test.py and video_test.py on several different Windows,4.
macOS, and Linux systems. How is the output different? Are there any items
supported across all systems?

The answers will depend on the systems you choose.

The properties of the QCamera class include several control objects, which5.
allow you to manage different aspects of the camera. One of these
is QCameraFocus. Investigate QCameraFocus in the Qt documentation
at https:/ / doc. qt. io/ qt- 5/ qcamerafocus. html and write a simple script that
shows a viewfinder and lets you adjust the digital zoom.

See question_5_example_code.py in the included code examples.

You've noticed the audio being recorded to your Captain's Log video log is6.
quite loud. You want to add a control to adjust it; how would you do this?

QMediaRecorder has a volume() slot, just like QAudioRecorder. You need
to create a QSlider (or any other control widget) and connect its
valueChanged or sliderMoved signal to the recorder's volume() slot.

Implement a dock widget in captains_log.py that allows you to control as7.
many aspects of the audio and video recording as you can. You can include
things such as the focus, zoom, exposure, white balance, framerate, resolution,
audio volume, audio quality, and more.

You're on your own here!

Chapter 8
You are designing an application that will emit a status message to the local1.
network, which you will monitor with administrator tools. What kind of
socket object would be a good choice?

QUdpSocket would be best here, since it allows for broadcasting packets,
and the status packets do not need the overhead of TCP.

https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html
https://doc.qt.io/qt-5/qcamerafocus.html

Answers to Questions

[471]

Your GUI class has a QTcpSocket object called self.socket. You've2.
connected its readyRead signal to the following method, but it's not working.
What's happening, and how can you fix it?

 def on_ready_read(self):
 while self.socket.hasPendingDatagrams():
 self.process_data(self.socket.readDatagram())

QTcpSocket does not have a hasPendingDatagrams() or readDatagram()
method. TCP sockets work with data streams, not datagrams. This method needs
to be rewritten to extract data using a QDataStream object.

Use QTcpServer to implement a simple service that listens on port 8080 and3.
prints any requests received. Make it reply to the client with a byte string of
your choice.

See question_3_tcp_server.py in the example code. Test it by running
the script and pointing a web browser to http:/ /localhost:8080.

You're creating a download function for your application to retrieve a large4.
data file for import into your application. The code does not work. Read the
code and decide what you're doing wrong:

 def download(self, url):
 self.manager = qtn.QNetworkAccessManager(
 finished=self.on_finished)
 self.request = qtn.QNetworkRequest(qtc.QUrl(url))
 reply = self.manager.get(self.request)
 with open('datafile.dat', 'wb') as fh:
 fh.write(reply.readAll())

You're trying to use QNetworkAccessManager.get() synchronously, but it
is designed to be used asynchronously. Instead of retrieving a reply object
from get(), you need to connect a callback to the network access manager's
finished signal, which carries the finished reply with it.

Modify your poster.py script so that it sends the key-value data as JSON,5.
rather than HTTP form data.

See the question_5_json_poster.py file in the example code.

Answers to Questions

[472]

Chapter 9
Compose an SQL CREATE statement that builds a table to hold television1.
schedule listings. Make sure it has fields for the date, time, channel, and
program name. Also, make sure it has a primary key and constraints to prevent
nonsensical data (such as two shows at the same time on the same channel, or a
show with no time or date).

An example might look like this:

 CREATE TABLE tv_schedule AS (
 id INTEGER PRIMARY KEY,
 channel TEXT NOT NULL,
 date DATE NOT NULL,
 time TIME NOT NULL,
 program TEXT NOT NULL,
 UNIQUE(channel, date, time)
)

The following SQL query is returning a syntax error; can you fix it?2.

DELETE * FROM my_table IF category_id == 12;

There are several problems here:

DELETE does not take a field list, so * must be removed.
IF is the wrong keyword. It should use WHERE.
== is not an SQL operator. Unlike Python, SQL uses a single = for
both assignment and comparison operations.

The resulting SQL should read as follows:

 DELETE FROM my_table WHERE category_id = 12;

The following SQL query doesn't work correctly; can you fix it?3.

INSERT INTO flavors(name) VALUES ('hazelnut', 'vanilla',
'caramel', 'onion');

Each set of parentheses in the VALUES clause represents a single row. Since
we are only inserting one column, each row should have only one value in it.
Hence, our statement should look like this:

 INSERT INTO flavors(name) VALUES ('hazelnut'), ('vanilla'),
('caramel'), ('onion');

Answers to Questions

[473]

The documentation for QSqlDatabase can be found at https:/ /doc. qt. io/qt-4.
5/qsqldatabase. html. Read up on how you can work with multiple database
connections, for example, a read-only and read/write connection to the same
database. How would you create two connections and make specific queries to
each?

The key is to call addDatabase() multiple times with unique connection
names; an example is as follows:

 db1 = qts.QSqlDatabase.addDatabase('QSQLITE', 'XYZ read-only')
 db1.setUserName('readonlyuser')
 # etc...
 db1.open()
 db2 = qts.QSqlDatabase.addDatabase('QSQLITE', 'XYZ read-write')
 db2.setUserName('readwriteuser')
 # etc...
 db2.open()

 # Keep the database reference for querying:
 query = qts.QSqlQuery('SELECT * FROM my_table', db1)

 # Or retrieve it using its name:
 db = qts.QSqlDatabase.database('XYZ read-write')
 db.exec('INSERT INTO my_table VALUES (1, 2, 3)')

Using QSqlQuery, write code to safely insert the data in the dict object into5.
the coffees table:

data = {'brand': 'generic', 'name': 'cheap coffee', 'roast':
 'light'}
Your code here:

To be safe, we'll use the prepare() method of QSqlQuery:

 data = {'brand': 'generic', 'name': 'cheap coffee', 'roast':
 'Light'}
 query = QSqlQuery()
 query.prepare(
 'INSERT INTO coffees(coffee_brand, coffee_name, roast_id) '
 'VALUES (:brand, :name,
 '(SELECT id FROM roasts WHERE description == :roast))'
)
 query.bindValue(':brand', data['brand'])
 query.bindValue(':name', data['name'])
 query.bindValue(':roast', data['roast'])
 query.exec()

https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html
https://doc.qt.io/qt-5/qsqldatabase.html

Answers to Questions

[474]

You've created a QSqlTableModel object and attached it to QTableView. You6.
know there is data in the table, but it is not showing in the view. Look at the
code and decide what is wrong:

flavor_model = qts.QSqlTableModel()
flavor_model.setTable('flavors')
flavor_table = qtw.QTableView()
flavor_table.setModel(flavor_model)
mainform.layout().addWidget(flavor_table)

You have not called select() on your model. Until you do so, it will be
empty.

The following is a callback attached to the textChanged signal of QLineEdit.7.
Explain why this is not a good idea:

def do_search(self, text):
 self.sql_table_model.setFilter(f'description={text}')
 self.sql_table_model.select()

The problem here is that you're taking arbitrary user input and passing it to a
table model's filter() string. This string is appended literally to the table
model's internal SQL query, opening up your database to SQL injection. To
make this safe, you would need to take steps to sanitize text or switch the
SQL table model for a QSqlQueryModel and use prepare() to create a
prepared statement.

You decide you'd rather have colors than names in the roasts comboboxes in8.
your coffee list. What changes would you need to make to accomplish this?

You would need to change the display field used by the QSqlRelation set
on roast_id to color. Then, you would need to create a custom delegate
for coffee_list that creates color icons (see Chapter 6, Styling Qt
Applications) and uses them instead of text labels in the combobox.

Answers to Questions

[475]

Chapter 10
Create code to call the self.every_ten_seconds() method every ten1.
seconds.

Assuming we're in the __init__() method of a class, it looks like this:

 self.timer = qtc.QTimer()
 self.timer.setInterval(10000)
 self.timer.timeout.connect(self.every_ten_seconds)

The following code uses QTimer incorrectly. Can you fix it?2.

 timer = qtc.QTimer()
 timer.setSingleShot(True)
 timer.setInterval(1000)
 timer.start()
 while timer.remainingTime():
 sleep(.01)
 run_delayed_command()

QTimer is being used synchronously with the while loop. This creates
blocking code. The same can be done asynchronously, like so:

 qtc.QTimer.singleShot(1000, run_delayed_command)

You've created the following word-counting worker class and want to move it3.
to another thread to prevent large documents from slowing the GUI. It's not
working, however; what do you need to change about this class?

 class Worker(qtc.QObject):

 counted = qtc.pyqtSignal(int)

 def __init__(self, parent):
 super().__init__(parent)
 self.parent = parent

 def count_words(self):
 content = self.parent.textedit.toPlainText()
 self.counted.emit(len(content.split()))

Answers to Questions

[476]

The class relies on accessing a widget through a common parent because the
Worker class must be parented by the GUI class containing the widget.
You'll need to change this class so that the following applies:

It doesn't have a parent widget.
It accesses the content some other way, such as through a slot.

The following code is blocking, rather than running in a separate thread. Why4.
is this so?

 class Worker(qtc.QThread):

 def set_data(data):
 self.data = data

 def run(self):n
 start_complex_calculations(self.data)

 class MainWindow(qtw.QMainWindow):

 def __init__(self):
 super().__init__()
 form = qtw.QWidget()
 self.setCentralWidget(form)
 form.setLayout(qtw.QFormLayout())

 worker = Worker()
 line_edit = qtw.QLineEdit(textChanged=worker.set_data)
 button = qtw.QPushButton('Run', clicked=worker.run)
 form.layout().addRow('Data:', line_edit)
 form.layout().addRow(button)
 self.show()

The button callback is pointed at Worker.run(). It should point to the
start() method of the QThread object.

Will this worker class run correctly? If not, why?5.

 class Worker(qtc.QRunnable):

 finished = qtc.pyqtSignal()

 def run(self):
 calculate_navigation_vectors(30)
 self.finished.emit()

Answers to Questions

[477]

No. QRunnable objects cannot emit signals, because they do not descend from
QObject or have an event loop. You would be better off using QThread, in this
case.

The following code is a run() method from a QRunnable class designed for6.
processing large data file output from scientific equipment. The files consist of
millions of long rows of space-delimited numbers. Is this code likely to be
slowed down by the Python GIL? Could you make it less likely that the GIL
will interfere?

 def run(self):
 with open(self.file, 'r') as fh:
 for row in fh:
 numbers = [float(x) for x in row.split()]
 if numbers:
 mean = sum(numbers) / len(numbers)
 numbers.append(mean)
 self.queue.put(numbers)

Reading in the file is an I/O-bound operation, which does not require
acquiring the GIL. However, doing mathematical calculations and type
conversions is a CPU-bound task and will require the acquisition of the GIL.
This could be mitigated by doing the calculations in a non-Python math
library, such as NumPy.

The following is a run() method from QRunnable in a multithreaded TCP7.
Server application you're writing. All threads share a server socket instance
accessed through self.datastream. This code is not thread-safe, though.
What do you need to do to fix it?

 def run(self):
 message = get_http_response_string()
 message_len = len(message)
 self.datastream.writeUInt32(message_len)
 self.datastream.writeQString(message)

Since you don't want two threads writing to the data stream at the same
time, you'll want to use QMutex to ensure that only one thread has access.
After defining a shared mutex objected called qmutex, the code would look
like this:

 def run(self):
 message = get_http_response_string()
 message_len = len(message)
 with qtc.QMutexLocker(self.qmutex):

Answers to Questions

[478]

 self.datastream.writeUInt32(message_len)
 self.datastream.writeQString(message)

Chapter 11
The following HTML isn't displaying like you wanted. Find as many errors as1.
you can:

<table>
<thead background=#EFE><th>Job</th><th>Status</th></thead>
<tr><td>Backup</td><font text-
color='green'>Success!</td></tr>
<tr><td>Cleanup<td><font text-
style='bold'>Fail!</td></tr>
</table>

There are several errors here:

The <thead> section is missing a <tr> tag around the cells.
In the next row, the second cell is missing the opening <td> tag.
Also, there's no text-color attribute. It's just color.
In the next row, the first cell is missing a closing </td> tag.
Also, there's no text-style attribute. The text should just be
wrapped in a tag.

What is wrong with the following Qt HTML snippets?2.

<p>There is nothing <i>wrong</i> with your television
set</p>
<table><row><data>french fries</data>
<data>$1.99</data></row></table>
Can you feel the
<strikethrough>love</strikethrough>code tonight?
<label>Username</label><input type='text'
name='username'></input>
My picture

Answers to Questions

[479]

The problems are as follows:

The last two closing tags are switched. Nested tags must be closed1.
before the outer tags.
There is no such tag as <row> or <data>. The correct tags should be2.
<tr> and <td>, respectively.
There are two problems— has no family attribute, and it3.
should be face; also, there is no <strikethrough> tag, and it should
be <s>.
Qt doesn't support the <label> or <input> tags. Also, <input> does4.
not use a closing tag.
 has no source attribute; it should be src. It also does not use a5.
closing tag and cannot enclose text content.

This snippet is supposed to implement a table of contents. Why doesn't it3.
work right?

 Section 1
 Section 2

 <div id=Section1>
 <p>This is section 1</p>
 </div>
 <div id=Section2>
 <p>This is section 2</p>
 </div>

This is not how document anchors work. The correct code is as follows:

 Section 1
 Section 2

 <div id=Section1>
 <p>This is section 1</p>
 </div>

 <div id=Section2>
 <p>This is section 2</p>
 </div>

Answers to Questions

[480]

Note the pound sign (#) before href, indicating that this is an internal
anchor, and the <a> tags above the sections, with a name attribute containing
the section name (without the pound sign!).

Using QTextCursor, you need to add a sidebar on the right-hand side of your4.
document. Explain how you would go about this.

The steps to do this are as follows:

Create a QTextFrameFormat object1.
Configure your frame format's position property to float right2.
Position your text cursor in the root frame3.
Call insertFrame() on your cursor with the frame object as the first4.
argument
Insert the sidebar contents using cursor insert methods5.

You are trying to create a document with QTextCursor. It should have a top5.
and bottom frame; in the top frame, there should be a title, and in the bottom
frame, an unordered list. Correct this code so that it does that:

 document = qtg.QTextDocument()
 cursor = qtg.QTextCursor(document)
 top_frame = cursor.insertFrame(qtg.QTextFrameFormat())
 bottom_frame = cursor.insertFrame(qtg.QTextFrameFormat())

 cursor.insertText('This is the title')
 cursor.movePosition(qtg.QTextCursor.NextBlock)
 cursor.insertList(qtg.QTextListFormat())
 for item in ('thing 1', 'thing 2', 'thing 3'):
 cursor.insertText(item)

The main problem with this code is that it fails to move the cursor correctly,
so content is not being created in the right spots. This is the corrected code:

 document = qtg.QTextDocument()
 cursor = qtg.QTextCursor(document)
 top_frame = cursor.insertFrame(qtg.QTextFrameFormat())
 cursor.setPosition(document.rootFrame().lastPosition())
 bottom_frame = cursor.insertFrame(qtg.QTextFrameFormat())

 cursor.setPosition(top_frame.lastPosition())
 cursor.insertText('This is the title')
 # This won't get us to the next frame:
 #cursor.movePosition(qtg.QTextCursor.NextBlock)
 cursor.setPosition(bottom_frame.lastPosition())

Answers to Questions

[481]

 cursor.insertList(qtg.QTextListFormat())
 for i, item in enumerate(('thing 1', 'thing 2', 'thing 3')):
 # don't forget to add a block for each item after the
first:
 if i > 0:
 cursor.insertBlock()
 cursor.insertText(item)

You're creating your own QPrinter subclass to add a signal when the page6.
size changes. Will the following code work?

 class MyPrinter(qtps.QPrinter):

 page_size_changed = qtc.pyqtSignal(qtg.QPageSize)

 def setPageSize(self, size):
 super().setPageSize(size)
 self.page_size_changed.emit(size)

Unfortunately, it won't. Since QPrinter is not derived from QObject, it
cannot have signals. You will get an error like this:

 TypeError: MyPrinter cannot be converted to PyQt5.QtCore.QObject
in this context

QtPrintSupport contains a class called QPrinterInfo. Using this class, print7.
a list of the names, make and model, and default page size of all of the printers
on your system.

The code looks like this:

 for printer in qtps.QPrinterInfo.availablePrinters():
 print(
 printer.printerName(),
 printer.makeAndModel(),
 printer.defaultPageSize())

Chapter 12
Add code to this method to write your name in blue on the bottom of the1.
picture:

 def create_headshot(self, image_file, name):
 image = qtg.QImage()
 image.load(image_file)

Answers to Questions

[482]

 # your code here
 # end of your code
 return image

Your code will need to create QPainter and QPen, then write to the image:

 def create_headshot(self, image_file, name):
 image = qtg.QImage()
 image.load(image_file)
 # your code here
 painter = qtg.QPainter(image)
 pen = qtg.QPen(qtg.QColor('blue'))
 painter.setPen(pen)
 painter.drawText(image.rect(), qtc.Qt.AlignBottom, name)
 # end of your code
 return image

Given a QPainter object called painter, write a line of code to paint an 80 ×2.
80 pixel octagon in the upper-left corner of the painter's paint device. Refer to
the documentation at https:/ /doc. qt.io/ qt- 5/qpainter. html#drawPolygon.

There are a few ways to create and draw a polygon, but the simplest is to
pass a series of QPoint objects to drawPolygon():

 painter.drawPolygon(
 qtc.QPoint(0, 20), qtc.QPoint(20, 0),
 qtc.QPoint(60, 0), qtc.QPoint(80, 20),
 qtc.QPoint(80, 60), qtc.QPoint(60, 80),
 qtc.QPoint(20, 80), qtc.QPoint(0, 60)
)

Of course, you could also use a QPainterPath object, as well.

You're creating a custom widget and can't figure out why the text is showing3.
up in black. The following is your paintEvent() method; see if you can
figure out the problem:

 def paintEvent(self, event):
 black_brush = qtg.QBrush(qtg.QColor('black'))
 white_brush = qtg.QBrush(qtg.QColor('white'))
 painter = qtg.QPainter()
 painter.setBrush(black_brush)
 painter.drawRect(0, 0, self.width(), self.height())
 painter.setBrush(white_brush)
 painter.drawText(0, 0, 'Test Text')

https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon
https://doc.qt.io/qt-5/qpainter.html#drawPolygon

Answers to Questions

[483]

The problem is that you've set brush, but the text is drawn with a pen. The
default pen is black. To fix this, create a pen set to white and pass it to
painter.setPen() before drawing the text.

A deep-fried meme is a style of meme that uses extreme compression,4.
saturation, and other processing to make the meme image look intentionally
low quality. Add a feature to your meme generator to optionally make the
meme deep-fried. Some things you can try include reducing the color bit depth
and adjusting the hue and saturation of the colors in the image.

Be creative here, but for an example, see the
question_4_example_code.py file in the included source code.

You'd like to animate a circle moving horizontally across the screen. What do5.
you need to change in the following code to animate the circle?

 scene = QGraphicsScene()
 scene.setSceneRect(0, 0, 800, 600)
 circle = scene.addEllipse(0, 0, 10, 10)
 animation = QPropertyAnimation(circle, b'x')
 animation.setStartValue(0)
 animation.setEndValue(600)
 animation.setDuration(5000)
 animation.start()

Your circle object cannot be animated as it is, since it is a QGraphicsItem.
To animate an object's properties with QPropertyAnimation, it must be a
QObject descendant. You need to build your circle as a subclass of
QGraphicsObject; then, you can animate it.

What's wrong with the following code, which attempts to set6.
up QPainter with a gradient brush?

 gradient = qtg.QLinearGradient(
 qtc.QPointF(0, 100), qtc.QPointF(0, 0))
 gradient.setColorAt(20, qtg.QColor('red'))
 gradient.setColorAt(40, qtg.QColor('orange'))
 gradient.setColorAt(60, qtg.QColor('green'))
 painter = QPainter()
 painter.setGradient(gradient)

Answers to Questions

[484]

There are two problems here:

The first argument to setColorAt is not a pixel location, but rather,1.
it's a percentage expressed as a float between 0 and 1.
There is no QPainter.setGradient() method. The gradient must be2.
passed into the QPainter constructor.

See if you can implement some of the following improvements to the game we7.
created:

Pulsating bullets
Explosions when a tank is hit
Sounds (see Chapter 7, Working with Audio-Visual Using
QtMultimedia, for help here)
Background animation
Multiple bullets

You're own your own here. Have fun!

Chapter 13
Which steps of the OpenGL render pipeline are user-definable? Which1.
steps must be defined in order to render anything? You may need to reference
the documentation at https:/ /www. khronos. org/ opengl/ wiki/ Rendering_
Pipeline_ Overview.

The vertex processing and fragment shader steps are user-definable. At a
minimum, you must create a vertex shader and a fragment shader. Optional
steps include the geometry shader and tessellation steps, which are part of
vertex processing.

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

Answers to Questions

[485]

You're writing a shader for an OpenGL 2.1 program. Does the following look2.
correct?

 #version 2.1

 attribute highp vec4 vertex;

 void main (void)
 {
 gl_Position = vertex;
 }

Your version string is wrong. It should read #version 120, since it specifies the
version of GLSL, not the version of OpenGL. Versions are also specified as a
three-digit number with no period.

Is the following a vertex or fragment shader? How can you tell?3.

 attribute highp vec4 value1;
 varying highp vec3 x[4];
 void main(void)
 {
 x[0] = vec3(sin(value1[0] * .4));
 x[1] = vec3(cos(value1[1]));
 gl_Position = value1;
 x[2] = vec3(10 * x[0])
 }

This is a vertex shader; there are a couple of clues:

It has an attribute variable, which it assigns to gl_Position.
It has a varying variable to which it's assigning values.

Given the following vertex shader, what code do you need to write to assign4.
simple values to the two variables?

 attribute highp vec4 coordinates;
 uniform highp mat4 matrix1;

 void main(void){
 gl_Position = matrix1 * coordinates;
 }

Answers to Questions

[486]

Assuming that your QOpenGLShaderProgram object is saved as
self.program, the following code is needed:

 c_handle = self.program.attributeLocation('coordinates')
 m_handle = self.program.uniformLocation('matrix1')
 self.program.setAttributeValue(c_handle, coordinate_value)
 self.program.setUniformValue(m_handle, matrix)

You enable face culling to save some processing power, but find that several of5.
the visible primitives in your drawing are not rendering now. What could be
the problem?

The vertices were drawn in the wrong order. Remember that drawing a
primitive counterclockwise will cause the far face to be culled; drawing it
clockwise will cause the near face to be culled.

What does the following code do to our OpenGL image?6.

 matrix = qtg.QMatrix4x4()
 matrix.perspective(60, 4/3, 2, 10)
 matrix.translate(1, -1, -4)
 matrix.rotate(45, 1, 0, 0)

By itself, nothing. This code simply creates a 4 x 4 matrix and runs some
transform operations on it. If, however, we passed this into a shader that
applied its values to a vertex, it would create a perspective projection, move
our object in space, and rotate the image. The actual matrix object is nothing
more than a matrix of numbers.

Experiment with the demo and see whether you can add any of the following7.
features:

A more interesting shape (pyramid, cube, and so on)
More controls for moving the object
Shadows and lighting effects
Animating shape changes in the object

You're on your own here!

Answers to Questions

[487]

Chapter 14
Consider the following descriptions of datasets. What style of chart would you1.
suggest for each?

Web server hit counts by date1.
Sales figures by salesperson per month2.
Percentages of support tickets for the past year by company3.
department
The yield of a plot of bean plants against the plant's height, for4.
several hundred plants

The answers are subjective, but the author suggests the following:

A line or spline chart, as it would illustrate traffic trends1.
A bar or stacked by chart, as this would allow you to compare2.
salespeople over time
A pie chart, since it represents a set of percentages adding up to 1003.
A scatter plot, since you want to show a general trend of a large set of4.
data

Which chart component has not been configured in the following code, and2.
what will the result be?

 data_list = [
 qtc.QPoint(2, 3),
 qtc.QPoint(4, 5),
 qtc.QPoint(6, 7)]
 chart = qtch.QChart()
 series = qtch.QLineSeries()
 series.append(data_list)
 view = qtch.QChartView()
 view.setChart(chart)
 view.show()

The axes have not been configured. This chart can be displayed, but will not
have reference marks on the axes, and may not be scaled intuitively.

Answers to Questions

[488]

What's wrong with the following code?3.

 mainwindow = qtw.QMainWindow()
 chart = qtch.QChart()
 series = qtch.QPieSeries()
 series.append('Half', 50)
 series.append('Other Half', 50)
 mainwindow.setCentralWidget(chart)
 mainwindow.show()

QChart is not a widget and cannot be added to a layout or set as a central widget.
It must be attached to QChartView.

You want to create a bar chart comparing Bob and Alice's sales figures for the4.
quarter. What code needs to be added? (Note that axes are not required here.):

 bob_sales = [2500, 1300, 800]
 alice_sales = [1700, 1850, 2010]

 chart = qtch.QChart()
 series = qtch.QBarSeries()
 chart.addSeries(series)

 # add code here

 # end code
 view = qtch.QChartView()
 view.setChart(chart)
 view.show()

We need to create bar sets for Bob and Alice and append them to the series:

 bob_set = qtch.QBarSet('Bob')
 alice_set = qtch.QBarSet('Alice')
 bob_set.append(bob_sales)
 alice_set.append(alice_sales)
 series.append(bob_set)
 series.append(alice_set)

Given a QChart object named chart, write code so that the chart has a black5.
background and blue data plots.

To do this, set the backgroundBrush and theme properties:

 chart.setBackgroundBrush(
 qtg.QBrush(qtc.Qt.black))
 chart.setTheme(qtch.QChart.ChartThemeBlueIcy)

Answers to Questions

[489]

Style the other two charts in the system monitor script using the techniques6.
you used on the last chart. Experiment with different brushes and pens, and
see whether you can find other properties to set.

You're on your own here!

QPolarChart is a subclass of QChart that allows you to construct a polar chart.7.
Investigate the use of the polar chart in the Qt documentation and see whether
you can create a polar chart of an appropriate dataset.

You're on your own here!

psutil.cpu_percent() takes an optional argument, percpu, that will create8.
a list of values showing usage information per CPU core. Update your
application to use this option and separately display each CPU core's activity
on one chart.

You're still on your own here; don't worry, though, you can do it!

Chapter 15
You have just bought a Raspberry Pi with Raspbian preinstalled to run your1.
PyQt5 application. When you try to run your application, you get an error
trying to import QtNetworkAuth, which your application depends on. What is
likely the problem?

Possibly, your Raspbian installation is version 9. Version 9 has Qt 5.7, which
does not have the QtNetworkAuth module. You need to upgrade to a newer
release of Raspbian.

You have written a PyQt frontend for a legacy scanner device. Your code talks2.
to the scanner through a proprietary driver utility called scanutil.exe. It is
currently running on a Windows 10 PC, but your employer wants to save
money by moving it to a Raspberry Pi. Is this a good idea?

Unfortunately, it isn't. If your application relies on a proprietary Windows
x86 binary, that program will not run on the Pi. To switch to the Pi, you
would need a binary compiled for the ARM platform that can run on one of
the Pi's supported operating systems (also, that OS needs to be able to run
Python and Qt).

Answers to Questions

[490]

You've acquired a new sensor and want to try it out with the Raspberry Pi. It3.
has three connections, labeled Vcc, GND, and Data. How would you connect
this to the Raspberry Pi? Is there more information you need?

You really need more information, but here's enough to get started:

Vcc is an abbreviation that means input voltage. You will have to
connect this to either a 5V or 3V3 pin on the Pi. You will need to
consult the manufacturer's documentation to determine which
connection will work.
GND means ground, and you can connect this to any ground pin
on the Pi.
Data is presumably a connection you would want to make to one
of the programmable GPIO pins. It's very likely that, you'll need
some kind of library to make it work, so you should check with the
manufacturer for that.

You're trying to light an LED connected to the fourth GPIO pin from the left4.
on the outside. What is wrong with this code?

 GPIO.setmode(GPIO.BCM)
 GPIO.setup(8, GPIO.OUT)
 GPIO.output(8, 1)

The GPIO pin mode is set to BCM, which means you have the wrong number
for the pin you're using. Set the mode to BOARD or use the correct BCM
number for your pin (14).

You are trying to dim an LED connected to GPIO pin 12. Does this code work?5.

 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 GPIO.output(12, 0.5)

This code doesn't work, because pins can only be either on or off. To simulate
half voltage, you need to use pulse width modulation, as shown in the
following example:

 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(12, GPIO.OUT)
 pwm = GPIO.PWM(12, 60)
 pwm.start(0)
 pwm.ChangeDutyCycle(50)

Answers to Questions

[491]

You have a motion sensor with a data pin that goes HIGH when motion is6.
detected. It's connected to pin 8. The following is your driver code:

 class MotionSensor(qtc.QObject):

 detection = qtc.pyqtSignal()

 def __init__(self):
 super().__init__()
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(8, GPIO.IN)
 self.state = GPIO.input(8)

 def check(self):
 state = GPIO.input(8)
 if state and state != self.state:
 detection.emit()
 self.state = state

Your main window class creates a MotionSensor object and connects
its detection signal to a callback method. However, nothing is being detected.
What is missing?

You are not calling MotionSensor.check(). You should implement polling
by adding a QTimer object that calls check() periodically.

Combine the two circuits in this chapter in a creative way; for example, you7.
might create a light that changes color depending on the humidity and
temperature.

You're on your own here!

Chapter 16
The following code is giving you an attribute error; what's wrong?1.

 from PyQt5 import QtWebEngine as qtwe
 w = qtwe.QWebEngineView()

You want to import QtWebEngineWidgets, not QtWebEngine. The latter is
for use with Qt's QML frontend.

Answers to Questions

[492]

The following code should connect this UrlBar class2.
with QWebEngineView, so that the entered URL is loaded when the
return/Enter key is pressed. It doesn't work, though; what is wrong?

 class UrlBar(qtw.QLineEdit):

 url_request = qtc.pyqtSignal(str)

 def __init__(self):
 super().__init__()
 self.returnPressed.connect(self.request)

 def request(self):
 self.url_request.emit(self.text())

 mywebview = qtwe.QWebEngineView()
 myurlbar = UrlBar()
 myurlbar.url_request(mywebview.load)

QWebEngineView.load() requires a QUrl object, not a string. The
url_request signal sends the text of the bar as a string directly to load().
It should wrap it in a QUrl object first.

What is the result of the following code?3.

 class WebView(qtwe.QWebEngineView):

 def createWindow(self, _):

 return self

QWebEngineView.createWindow() is called whenever a browser action
requests a new tab or window to be created, and is expected to return a
QWebEngineView object, which will be used for the new window or tab. By
returning self, this subclass forces any links or calls that try to create a new
window to just navigate in the same window, instead.

Check out the documentation for QWebEngineView at https:/ /doc. qt. io/qt-4.
5/qwebengineview. html. How would you implement a zoom feature in your
browser?

First, you'd need to implement callback functions on the MainWindow to set
the zoomFactor property on the current web view:

 def zoom_in(self):
 webview = self.tabs.currentWidget()

https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html
https://doc.qt.io/qt-5/qwebengineview.html

Answers to Questions

[493]

 webview.setZoomFactor(webview.zoomFactor() * 1.1)

 def zoom_out(self):
 webview = self.tabs.currentWidget()
 webview.setZoomFactor(webview.zoomFactor() * .9)

Then, in MainWindow.__init__(), you would just need to create controls
to call those methods:

 navigation.addAction('Zoom In', self.zoom_in)
 navigation.addAction('Zoom Out', self.zoom_out)

As the name implies, QWebEngineView represents the view portion of a model-5.
view architecture. What class represents the model in this design?

QWebEnginePage seems to be the clearest candidate here, since it stores and
controls the rendering of the web content.

Given a QWebEngineView named webview, write code to determine whether6.
JavaScript is enabled on webview.

The code must query the view's QWebEngineSettings object, like this:

 webview.settings().testAttribute(
 qtwe.QWebEngineSettings.JavascriptEnabled)

You saw in our browser example that runJavaScript() can pass an integer7.
value to a callback function. Write a simple demo script to test what other
kinds of JavaScript objects can be returned, and how they appear in Python
code.

See chapter_7_return_value_test.py in the example code.

Chapter 17
You have written a PyQt application in a file called Scan & Print Tool-1.
box.py. You want to convert this into module-style organization; what change
should you make?

The name of the script should change, since spaces, ampersands, and dashes
are not valid characters to use in a Python module name. You might change
the module name to scan_and_print_toolbox, for example.

Answers to Questions

[494]

Your PyQt5 database application has a set of .sql files containing queries2.
used by the application. It worked when your app was a single script in the
same directories as the .sql files, but now that you've converted it into
module-style organization, the queries can't be found. What should you do?

The best thing to do is to put your .sql files into a Qt resource file and make
that part of your Python module. If you are unable to use Qt resource files,
you will need to convert your relative paths to absolute paths using the path
module and the built-in file variable

You're writing a detailed README.rst file to document your new application3.
before uploading it to a code-sharing site. What characters should be used to
underline your level 1, 2, and 3 headings, respectively?

It actually doesn't matter, as long as you use characters from the list of
acceptable characters:

 = - ` : ' " ~ ^ _ * + # < >

An RST interpreter should consider the first header character encountered to
mean level one; the second, level two; and the third, level three.

You're creating a setup.py script for your project so that you can upload it to4.
PyPI. You would like to include a URL for the project's FAQ page. How can
you accomplish this?

You need to add a key: value pair to the project_urls dict, like so:

 setup(
 project_urls={
 'Project FAQ': 'https://example.com/faq',
 }
)

You have specified include_package_data=True in your setup.py file, but5.
for some reason, the docs folder is not being included in your distribution
package. What's wrong?

include_package_data only affects data files inside packages (modules). If
you want to include files outside your modules, you need to use the
MANIFEST.in file for these.

Answers to Questions

[495]

You ran pyinstaller fight_fighter3.py to package your new game as an6.
executable. Something went wrong, though; where can you find a log of the
build process?

You need to look at build/fight_fighter3/warn-
fight_fighter3.txt, for a start. You might need to increase the
debugging output by calling PyInstaller with the --log-level DEBUG
argument.

Despite the name, PyInstaller cannot actually generate installer programs or7.
packages for your application. Research some options for your platform of
choice.

You're on your own here, although a popular option is the Nullsoft
Scriptable Install System (NSIS).

Upgrading Raspbian 9 to
Raspbian 10

In Chapter 15, PyQt Raspberry Pi, Raspbian 10 is required so that you can have a
sufficiently recent version of Python and PyQt5. At the time of publication, the current
release of Raspbian is version 9, with version 10 expected in mid-to-late 2019. You can,
however, upgrade to the testing version of Raspbian 10, which will work correctly for the
purposes of this book.

To do so, follow these steps:

First, verify that you're using Raspbian 9 by checking the contents of1.
/etc/issue. It should read as follows:

 $ Rasbpian GNU/Linux 9 \n \l

Open Command Prompt and, using sudo, edit /etc/apt/sources.list:2.

 $ sudo -e /etc/apt/sources.list

Change every instance of stretch to buster. For example, the first line should3.
read as follows:

deb http://raspbian.raspbrrypi.org/raspbian/
 buster main contrib non-free rpi

Run the sudo apt update command and make sure you don't have any errors.4.
Now run the sudo apt upgrade command. This command may take a long5.
time to complete, as it will need to download an updated copy of every package
on the system and install it. After the download phase ends, there will be some
questions to answer as well. Generally speaking, take the default answer for
these questions.
Finally, restart your Raspberry Pi. To clean up old packages, run this command:6.

 $ sudo apt autoremove

That's it; you should now be running Raspbian 10. If you run into difficulties, consult the
Raspbian community at https:/ /www. raspberrypi. org/ forums/ .

https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/
https://www.raspberrypi.org/forums/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Qt5 Python GUI Programming Cookbook
B.M. Harwani

ISBN: 9781788831000

Use basic Qt components, such as a radio button, combo box, and sliders
Use QSpinBox and sliders to handle different signals generated on mouse clicks
Work with different Qt layouts to meet user interface requirements
Create custom widgets and set up customizations in your GUI
Perform asynchronous I/O operations and thread handling in the Python GUI
Employ network concepts, internet browsing, and Google Maps in UI
Use graphics rendering and implement animation in your GUI
Make your GUI application compatible with Android and iOS devices

Other Books You May Enjoy

[498]

Mastering OpenCV 4 with Python
Alberto Fernández Villán

ISBN: 9781789344912

Handle files and images, and explore various image processing techniques
Explore image transformations, including translation, resizing, and cropping
Gain insights into building histograms
Brush up on contour detection, filtering, and drawing
Work with Augmented Reality to build marker-based and markerless
applications
Work with the main machine learning algorithms in OpenCV
Explore the deep learning Python libraries and OpenCV deep learning
capabilities
Create computer vision and deep learning web applications

Other Books You May Enjoy

[499]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
actions 87
Advanced Packaging Tool (APT) 374
Advanced RISC Machine (ARM) 372
aggregate function 208
alpha 340
alternate method 245
animations
 basic property 146
 colors, animating 147, 149
 creating 146
 groups, used 150
anti-aliasing 359
Apple macOS 11
application menu
 about 86
 creating 86
 on macOS 88
application programming interface (API) 110, 328
application style 135
asynchronous 236
attribute arrays 342
audio playback 156
audio-visual (AV) 155
audio
 initial setup 158
 media recording, implementation 165
 playing 158
 recording 158
 sound playback, implementing 158
axes
 styling 367

B
backend
 posting 196

basic content
 adding 279
binary distribution
 Platform 442
 pure Python 442
 universal 442
block 276
board class 417
bound 183
browser
 building, with QWebEngineView 398
built distribution
 about 440
 binary distribution 441
 installing 442
 RPM installer 441
 types 440
 wheel distribution, creating 441
 Windows installer 441
button driver
 implementing 391, 394
bytecode 443

C
calendar application GUI, in code
 building 49
 layout, building 50
 widget, creating 49
calendar application GUI, in Qt Designer
 building 52
 event form, building 54
 form, previewing 55
 right panel, building 53
 steps 52
calendar application GUI
 building 48
calendar form

[501]

 automating 67
 hand-coded form, used 67
 Qt Designer .ui files, used 75
callback method
 check _delete _btn () method 72
 delete _event () method 72
 populate _form () method 70
 populate _list () method 69
 save _event () method 71
camelCase 15
Captain's Log application 170
Cascading Style Sheets (CSS) 138, 263
category popup form
 building 73
central widget 85
character format 279
chart
 creating 352
 data, updating 360
 disk usage chart, building 353, 356
 GUI, setting up 352
 styling 365
chat GUI
 building 181
check _delete _btn () method 72
circuit
 expanding 390
clauses 203
closing tag 261
collision detection 322
colors
 about 269
 configuring 135
 customizing, with palettes 135
 QBrush objects, working with 137
combobox 29
comma-separated values (CSV) 106
command 203
connection 180
constraints 204
container widget
 about 41
 QGroupBox 42
 QTabWidget 41
Content-Disposition 197

context 335
cosmetic tags
 about 263
 versus semantic tags 263
CPU usage chart
 building 358
CPU-bound 255
CSV editor
 building 112
 model, used in view 119, 121
 table model, creating 112
cubic Bezier curve 310
custom delegate
 using 227
custom rows
 inserting, in table view 228
custom widget
 GraphWidget, building 304
 GraphWidget, using 311
 with QPainter 303
customer address frame 277

D
data consistency 205
data mapping 221, 223, 224
data streams 188
data
 existing rows, updating 206
 filtering 226
 inserting 206
 selecting 207
 SQL subqueries 208
 table joins 207
 updating 206
datagram 184
debugging tips
 reference link 451
declarative language 203
delegates 221
delete _event () method 72
depth testing 336
Dial Tone Multi-Frequency (DTMF) 156
disk usage chart
 building 356
dock widgets

[502]

 about 91
 adding 91
docs directory 430
document-wide styles 270
documentation 425
driver library
 writing 379
duty cycle 381
dynamically typed 61

E
Emacs 375
emitted 59
engine class 415
enums 13
Eric 375
event 59
event loop 16, 236

F
face culling 336
file hasher GUI 248
flags 13
float 392
fonts
 about 269
 setting 126
 using 125
foreign key relationships 205
fragment 276
fragment shader 333
frame 276
frustum 338

G
Geany 375
General Public License (GPL) 12, 426
General Purpose Input/Output (GPIO) 372
GL Shader Language (GLSL) 331
global interpreter lock (GIL) 255
global menu 88
GNU/Linux 11
GPIO devices
 cleaning up 382
 color, setting 381

 controlling, with PyQt 376
 driver library, writing 379
 LED circuit, connecting 376, 378
graphical user interface (GUI)
 about 106, 125
 building 195
 setting up 352
GraphWidget
 building 304
 using 311
 widget, painting 306, 311

H
hand-coded form
 callback method, connecting 68
 callback method, creating 68
 category popup form, building 73
hardware button
 adding 390
 button driver, implementing 391, 394
 circuit, expanding 390
hash runner 250
hashing function 249
heading tags 264
Hello Qt
 creating 15
host address 180
HTML basics
 about 261
 semantic tags, versus cosmetic tags 263
 style sheet syntax 263
HTML subset
 reference link 271
HTTP communications
 data, posting 194
 downloading 192
 files, posting 194
 with QNetworkAccessManager 192
hyperlinks 266
hypertext markup language (HTML) 261
HyperText Transfer Protocol (HTTP) 192

I
I/O-bound 255
icons

[503]

 using 125, 130
image editing
 drawing, with QImage 298
 meme generator GUI 293
 with QPainter 293
images
 about 270, 271
 adding 129
 saving 302
 using 125
input/output (I/O) 255
integrated development environment (IDE) 375
internet protocol suite 180
Invoice App
 updating for print support 285
invoice application GUI
 creating 272, 274
InvoiceView
 basic content, adding 279
 building 275
 character format 279
 finishing 284
 list, inserting 281
 QTextDocument structure 276
 table, inserting 282
 testing 284
IP address 180
IPv4 entry widget
 creating 44

L
layout classes, widget
 QFormLayout 37
 QGridLayout 36
 QHBoxLayout 35
 QVBoxLayout 35
LED circuit
 connecting 376, 378
legend 368
Lesser General Public License (LGPL) 12, 426
license 425
LICENSE file 425
limited liability company (LLC) 12
line items frame 277
list

 about 267
 inserting 281
logo frame 277
loosely coupled 62
low-level networking
 with sockets 180

M
main GUI 298
main window class 419
markup language
 about 261
 used, for creating rich text 261
Mastering GUI Programming, with Python
 reference link 11
media recording
 implementation 165
 recorder, configuring 167
 recorder, examining 167
meme generator GUI
 about 293
 form, editing 293, 295, 297
 main GUI 298
memory chart
 building 363
metadata 425
Microsoft Windows 11
missing fonts
 dealing with 127
MIT license 425
modal dialog 94
model-view design 107, 110
model-view pattern 106
model-view widgets
 used, without SQL 219
Model-View-Controller (MVC) 107
model
 used, in view 119
modeless dialog 94
module directory 421
module-style structure 421
module
 structuring 421
Multipart Form 197
multiple inheritances 77

[504]

multithreaded application 244
mutex 251

N
network port 180
Ninja IDE 375
non-Python files 423
non-threaded search application
 about 242
 testing 243
notebook widget 41

O
Object Inspector panel 54
Open-Source Initiative
 reference link 426
OpenGL drawings
 3D object, creating 343, 345
 animating 346
 controlling 346
 embedding, with QOpenGLWidget 334
 paintGL() method 339
 program, creating 336
 projection matrix 338
 projection matrix, configuring 339
 steps 334
 variables, accessing 337
 zooming in 347
 zooming out 348
OpenGL
 basics 329
 drawing basics 329
 program 330
 rendering pipeline 329
 shader 330
operating systems (OSes) 127
orientation 115
orthographic 338
other files 431
overloaded slot 61

P
page
 printing 287
palette 135

path 310
PDF
 exporting 288
permanent mode 86
perspective 338
pin mode 379
points 287
polling 392
pop-up dialog 235
populate _form () method 70
populate _list () method 69
prepared query 216
primary key 204
print
 previewing 288
printer
 configuring 286
profile 403
project root 421
projection matrix 338
property 15
pseudo-classes 263
Pulse Code Modulation (PCM) 156
Pulse Width Modulation (PWM) 380
pulse width modulation
 reference link 381
PyInstaller hooks 446
PyInstaller
 .spec file 445
 about 443
 command-line usage 443
 compiling 443
 overview 443
 QTicTacToe, preparing 447
PyQt application template
 creating 17, 19
PyQt resource compiler tool 131
PyQt Resource file 131
PyQt5
 about 12
 application, executing on Raspberry Pi 375
 executing, on Raspberry Pi 373
 Python, editing on Raspberry Pi 375
PyQt
 about 12

[505]

 controlling, with GPIO devices 384
 GPIO devices, controlling 376
 GUI, creating 383
 hardware button, adding 390
 models 110
 reading, displayed 388
 sensor circuit, connecting 384
 sensor interface, creating 386
 views 110
 working with 13
PySide2 12
Python 3
 URL 10
Python GIL 255
Python Package Index (PyPI) 431
Python project
 documentation 425
 metadata 425
 module, structuring 421
 module-style structure 421
 non-Python files 423
 tic-tac-toe game 415

Q
QBrush objects
 working with 137
QComboBox 29
QCryptographicHash Class
 reference link 251
QDataStream
 reference link 189
QDateTimeEdit 31
QFileDialog 97, 99
QFontDialog 99
QFormLayout 37
QGraphicsScene
 two-dimensional (2D) graphics, animating 313
QGridLayout 36
QGroupBox 42
QHBoxLayout 36
QLabel 26
QLineEdit 27
QMainWindow class
 about 84
 application menu, creating 86

 central widget, setting 85
 dock widgets, adding 91
 features 93
 reference link 93
 status bar, adding 85
 toolbar, adding 88, 91
QMessageBox 94
QOpenGLWidget
 used, for embedding OpenGL drawings 334
QPainter object 299, 301
QPainter
 custom widget 303
 used, for image editing 293
QPushButton
 other button 27
QRunner
 high concurrency 248
QSettings
 limitations 103
 used, for saving settings 102
QSpinBox
 about 30
 used, for discrete values 46
QSqlQueryModel
 GUI, finishing 219
 using 217
QStyle
 used, for customizing appearance 142
Qt charts
 axes, styling 367
 chart, styling 365
 legend, styling 368
 memory chart, building 363
 styling 362
Qt Creator, installer
 URL, for downloading 11
Qt Designer .ui files
 automatic signal 78
 converting, to Python 76
 slot connection 78
 slot, connecting in Qt Designer 75
 using 75
 using, without conversion 79
Qt Designer 4.8 11
Qt Designer

[506]

 about 19
 installing 11
 reference link 21
 used, for building calendar application GUI 52
 using 20
Qt for Python
 about 12
 reference link 14
Qt menus, on macOS
 reference link 88
Qt Modeling Language (QML) 398
Qt modules
 about 14
 QtCore 14
 QtGui 14
 QtWidgets 14
Qt Resource Collection 132
Qt resource files
 about 133, 134
 using 131
Qt rich text
 versus Web HTML 271
Qt Scribe Framework 272
Qt Style Sheets (QSS)
 limitations 141
 used, for customizing appearance 140
Qt styles
 customizing 143
Qt
 about 12
 documentation 13
 used, for performing SQL queries 210
 working with 13
QTabWidget 41
QTextDocument structure
 about 276
 block 276
 fragment 276
 frame 276
QTextDocument
 used, for manipulating rich text 272
QTextEdit 34
QThread
 alternate method 245
 caveats 247

 multithreading with 239
 non-threaded search application 242
 SlowSearcher file search engine 240
 threading tips 246
 threads, adding 244
QThreadPool
 high concurrency 248
QTicTacToe
 debugging 450
 non-Python files, dealing with 449
 preparing, for PyInstaller 447
QTimer
 action, delaying 235
 information gathering, from timers 238
 single shot timers 236
 timers, limitations 238
 timers, repeating 237
QtWebEngine
 history, viewing 404
 profile, sharing 403
 text search feature, building 407, 411
 usage 403
 web settings 406
QtWidget
 about 24
 as top-level window 25
 QComboBox 29
 QDateTimeEdit 31
 QLabel 26
 QLineEdit 27
 QPushButton 27
 QSpinBox 30
 QTextEdit 34
 reference link 24
 widget, creating 23
QVBoxLayout 36
QWebEngineView
 browser, building 398
 multiple tabs, allowing 400
 multiple windows, allowing 400
 widget, using 398

R
Raspbian 374
read capabilities

[507]

 implementing 113
Read, Eval, Print, and Loop (REPL) 17
reading
 displayed 388
README file 426, 428
real-time data
 chart data, updating 360
 CPU usage chart, building 358
 displaying 358
 panning, around chart 361
 zooming, around chart 361
regular mode 86
relational databases 202
rendering pipeline
 about 329
 fragment shading 330
 per-sample operations 330
 primitive assembly 330
 rasterization 330
 vertex post-processing 330
 vertex processing 330
 vertex specification 330
requirements.txt file 430
ReStructured Text (RST) 427
rich text
 colors 269
 creating, markup language used 261
 fonts 269
 heading tags 264
 HTML basics 261
 hyperlinks 266
 images 269
 Invoice App, updating for print support 285
 invoice application GUI, creating 272, 274
 InvoiceView, building 275
 list 267
 manipulating, QTextDocument used 272
 page, printing 287
 PDF, exporting 288
 print, previewing 288
 printer, configuring 286
 printing 285
 structure tags 264
 styles 269
 table 267

 typography tags 265
role 115
root frame 276

S
save _event () method 71
script
 testing 255
section 115
semantic tags
 versus cosmetic tags 263
sensor circuit
 connecting 384
sensor interface
 creating 386
separation of concerns 107
settings
 saving, with QSettings 102
setuptools, distributing packages
 reference link 438
setuptools
 built distribution 440
 configuration, writing 432
 dependencies 434
 distributing with 431
 executable 437
 metadata arguments 432
 non-Python files 436
 packages 434
 reference link 432
 source distribution 438
shader
 about 330
 fragment shader 331, 333
 vertex shader 331
signal
 basics 59
 connection, restricting 60
 creating 62
 overloading 65
 used, for sharing data between windows 63
signature 61
single shot timers 236
single-threaded application 244
SIP 12

[508]

slot
 basics 59
 connection, restricting 60
 creating 62
 overloading 65
SlowSearcher file search engine 240
snake_case 15
socket API 180
sockets
 used, in low-level networking 180
sound playback
 audio, looping 163
 implementing 158
 media, loading 160
 playback position, tracking 162
 volume, setting 164
source distribution
 about 438
 creating 438
 installing 439
specification 329
Spyder 375
SQL injection vulnerability 215
SQL queries
 connecting 212
 creating 212, 214
 database, information gathering 213
 form, building 210
 performing, with Qt 210
 preparing 215
 QSqlQueryModel, using 217
SQLite
 about 202
 URL, for downloading 202
standard dialog boxes
 about 94
 other dialog boxes 100
 QFileDialog 97, 99
 QFontDialog 99
 QMessageBox 94
statements 203
statically typed language 60
status bar 85
structure tags 264
Structured Query Language (SQL)

 about 13, 110, 202
 basics 203
 data, inserting 205
 data, updating 205
 learning 210
 tables, creating 203
style sheet syntax 263
style sheets
 about 135
 appearance, customizing with Qt Style Sheets

(QSS) 138, 140
 configuring 135
styles
 about 270
 appearance, customizing with QStyle 142
 configuring 135

T
tab
 adding, for pop-up windows 402
table model
 creating 112
 data, sorting 115
 headers, adding 115
 read capabilities, implementing 113
 write capabilities, implementing 116, 119
table
 about 203, 267
 creating 203
 inserting 282
tags 261
Tankity Tank Tank Tank 313
TCP chat client
 backend, connecting 191
 backend, testing 191
 building 187
 data streams, working with 188
 data, sending 189
TCP/IP 180
terms frame 277
text search feature
 building 407, 411
Thonny Python 375
thread 244
thread pool

 creating 253
threading 255
tic-tac-toe game
 about 415
 board class 417
 engine class 415
 main window class 419
tight coupling 62
toolbar
 about 88
 adding 88, 91
Transmission Control Protocol (TCP) 180
transmission protocol 180
two-dimensional (2D) graphics
 about 292
 animating, with QGraphicsScene 313
 bullet, creating 320, 321
 game, finishing 323
 scene, creating 314
 steps 313
 tanks, creating 316, 319
type safety 60
typography tags 265

U
UDP chat client
 building 182
 signals, connecting 186
 testing 186
User Datagram Protocol (UDP) 180
utility
 testing 199

V
variable declarations 331
vector 332

versioned specification 329
vertex 330
vertex shader 331
vertices 330
video
 GUI, building 170
 playback 171
 playing 169
 recording 169, 172, 176
view component 107
Vim 375
virtual environment 439

W
Waveform data (WAV) 156
Web HTML
 versus Qt rich text 271
web settings 406
Webkit 398
well-known ports
 about 180
 reference link 180
wheel distribution 441
widget
 about 15
 arranging 35
 container widget 41
 drawing 145
 IPv4 entry widget, creating 44
 layout classes 35
 placing 35
 QSpinBox, used for discrete values 46
 size, controlling 38, 40
 validating 44
wildcard imports 17
WYSIWYG GUI designer 19

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Deep Dive into PyQt
	Chapter 1: Getting Started with PyQt
	Technical requirements
	Installing Qt Designer

	Introducing Qt and PyQt
	PyQt5
	Working with Qt and PyQt
	Understanding Qt's documentation

	Core Qt modules

	Creating Hello Qt – our first window
	Creating a PyQt application template
	Introducing Qt Designer
	Using Qt Designer

	Summary
	Questions
	Further reading

	Chapter 2: Building Forms with QtWidgets
	Technical requirements
	Creating basic QtWidgets widgets
	QWidget
	QWidget as a top-level window

	QLabel
	QLineEdit
	QPushButton and other buttons
	QComboBox
	QSpinBox
	QDateTimeEdit
	QTextEdit

	Placing and arranging widgets
	Layout classes
	QHBoxLayout and QVBoxLayout
	QGridLayout
	QFormLayout

	Controlling widget size
	Container widgets
	QTabWidget
	QGroupBox

	Validating widgets
	Creating an IPv4 entry widget
	Using QSpinBox for discrete values

	Building a calendar application GUI
	Building the GUI in code
	Creating the widgets
	Building the layout

	Building the GUI in Qt Designer
	First steps
	Building the right panel
	Building the event form
	Previewing the form

	Summary
	Questions
	Further reading

	Chapter 3: Handling Events with Signals and Slots
	Technical requirements
	Signal and slot basics
	Restrictions on signal and slot connections

	Creating custom signals and slots
	Sharing data between windows using custom signals
	Overloading signals and slots

	Automating our calendar form
	Using our hand-coded form
	Creating and connecting our callback methods
	The populate _list () method
	The populate _form () method
	The save _event () method
	The delete _event () method
	The check _delete _btn () method

	Building our new category pop-up form

	Using Qt Designer .ui files
	Connecting slots in Qt Designer
	Converting .ui files to Python
	Automatic signal and slot connections
	Using .ui files without conversion

	Summary
	Questions
	Further reading

	Chapter 4: Building Applications with QMainWindow
	Technical requirements
	The QMainWindow class
	Setting a central widget
	Adding a status bar
	Creating an application menu
	Menus on macOS

	Adding toolbars
	Adding dock widgets
	Other QMainWindow features

	Standard dialog boxes
	QMessageBox
	QFileDialog
	QFontDialog
	Other dialog boxes

	Saving settings with QSettings
	Limitations of QSettings

	Summary
	Questions
	Further reading

	Chapter 5: Creating Data Interfaces with Model-View Classes
	Technical requirements
	Understanding model-view design
	Models and views in PyQt
	Building a CSV editor
	Creating a table model
	Implementing read capabilities
	Adding headers and sorting
	Implementing write capabilities

	Using the model in a view

	Summary
	Questions
	Further reading

	Chapter 6: Styling Qt Applications
	Technical requirements
	Using fonts, images, and icons
	Setting a font
	Dealing with missing fonts

	Adding images
	Using icons
	Using Qt resource files
	Qt resource files and fonts

	Configuring colors, style sheets, and styles
	Customizing colors with palettes
	Working with QBrush objects

	Customizing the appearance with Qt Style Sheets (QSS)
	The downside of QSS

	Customizing the appearance with QStyle
	Customizing Qt styles
	Drawing widgets

	Creating animations
	Basic property animations
	Animating colors
	Using animation groups

	Summary
	Questions
	Further reading

	Section 2: Working with External Resources
	Chapter 7: Working with Audio-Visual Using QtMultimedia
	Technical requirements
	Simple audio playback
	Recording and playing audio
	The initial setup
	Implementing sound playback
	Loading the media
	Tracking the playback position
	Looping the audio
	Setting the volume

	Implementing recording
	Examining and configuring the recorder

	Recording and playing video
	Building the basic GUI
	Video playback
	Video recording

	Summary
	Questions
	Further reading

	Chapter 8: Networking with QtNetwork
	Technical requirements
	Low-level networking with sockets
	Building a chat GUI
	Building a UDP chat client
	Connecting signals
	Testing the chat

	Building a TCP chat client
	Working with data streams
	Sending data over TCP
	Connecting our backend and testing

	HTTP communications with QNetworkAccessManager
	Simple downloading
	Posting data and files
	Building the GUI
	The POSTing backend
	Testing the utility

	Summary
	Questions
	Further reading

	Chapter 9: Exploring SQL with Qt SQL
	Technical requirements
	SQL basics
	Creating tables
	Inserting and updating data
	Updating existing rows

	Selecting data
	Table joins
	SQL subqueries

	Learning more

	Performing SQL queries with Qt
	Building a form
	Connecting and making simple queries
	Getting information about the database
	Making simple queries
	Prepared queries

	Using QSqlQueryModel
	Finishing the GUI

	Using model-view widgets without SQL
	Delegates and data mapping
	Data mapping
	Filtering data
	Using a custom delegate
	Inserting custom rows in a table view

	Summary
	Questions
	Further reading

	Section 3: Unraveling Advanced Qt Implementations
	Chapter 10: Multithreading with QTimer and QThread
	Technical requirements
	Delayed actions with QTimer
	Single shot timers
	Repeating timers
	Getting information from timers
	Limitations of timers

	Multithreading with QThread
	The SlowSearcher file search engine
	A non-threaded searcher
	Testing our non-threaded search application

	Adding threads
	An alternate method
	Threading tips and caveats

	High concurrency with QThreadPool and QRunner
	The file hasher GUI
	A hash runner
	Creating the thread pool
	Testing the script
	Threading and the Python GIL

	Summary
	Questions
	Further reading

	Chapter 11: Creating Rich Text with QTextDocument
	Technical requirements
	Creating rich text using markup
	HTML basics
	Style sheet syntax
	Semantic versus cosmetic tags

	Structure and heading tags
	Typography tags
	Hyperlinks
	Lists and tables
	Fonts, colors, images, and styles
	Document-wide styles
	Images

	Differences between Qt rich text and Web HTML

	Manipulating rich text using QTextDocument
	Creating the invoice application GUI
	Building InvoiceView
	The QTextDocument structure
	Character formats
	Adding basic content
	Inserting a list
	Inserting a table
	Finishing and testing

	Printing rich text
	Updating the Invoice app for print support
	Configuring the printer
	Printing a page
	Print previewing
	Exporting to PDF

	Summary
	Questions
	Further reading

	Chapter 12: Creating 2D Graphics with QPainter
	Technical requirements
	Image editing with QPainter
	The meme generator GUI
	The editing form
	The main GUI

	Drawing with QImage
	The QPainter object

	Saving our image

	Custom widgets with QPainter
	Building a GraphWidget
	Painting the widget

	Using GraphWidget

	Animating 2D graphics with QGraphicsScene
	First steps
	Making a scene
	Creating the tanks
	Creating the bullets
	Collision detection

	Finishing the game

	Summary
	Questions
	Further reading

	Chapter 13: Creating 3D Graphics with QtOpenGL
	Technical requirements
	The basics of OpenGL
	The rendering pipeline and drawing basics
	Programs and shaders
	A simple vertex shader
	A simple fragment shader

	Embedding OpenGL drawings with QOpenGLWidget
	First steps with OpenGLWidget
	Creating a program
	Accessing our variables

	Configuring a projection matrix
	Drawing our first shape
	Creating a 3D object

	Animating and controlling OpenGL drawings
	Animating in OpenGL
	Zooming in and out

	Summary
	Questions
	Further reading

	Chapter 14: Embedding Data Plots with QtCharts
	Technical requirements
	Making a simple chart
	Setting up the GUI
	Building a disk usage chart

	Displaying real-time data
	Building a CPU usage chart
	Updating the chart data
	Panning and zooming around the chart

	Styling Qt charts
	Building the memory chart
	Chart styling
	Styling axes
	Styling the legend

	Summary
	Questions
	Further reading

	Chapter 15: PyQt Raspberry Pi
	Technical requirements
	Running PyQt5 on the Pi
	Editing Python on the Pi
	Running PyQt5 applications on the Pi

	Controlling GPIO devices with PyQt
	Connecting the LED circuit
	Writing a driver library
	PWM
	Setting a color
	Cleaning up

	Creating the PyQt GUI

	Controlling PyQt with GPIO devices
	Connecting the sensor circuit
	Creating the sensor interface
	Displaying the readings
	Adding a hardware button
	Expanding the circuit
	Implementing the button driver

	Summary
	Questions
	Further reading

	Chapter 16: Web Browsing with QtWebEngine
	Technical requirements
	Building a basic browser with QWebEngineView
	Using the QWebEngineView widget
	Allowing multiple windows and tabs
	Adding a tab for pop-up windows

	Advanced QtWebEngine usage
	Sharing a profile
	Viewing history
	Web settings
	Building a text search feature

	Summary
	Questions
	Further reading

	Chapter 17: Preparing Your Software for Distribution
	Technical requirements
	Structuring a project
	Tic-tac-toe
	The engine class
	The board class
	The main window class

	Module-style structure
	Structuring the module
	Non-Python files
	Documentation and metadata
	The LICENSE file
	The README file
	The docs directory
	The requirements.txt file
	Other files

	Distributing with setuptools
	Writing the setuptools configuration
	Basic metadata arguments
	Packages and dependencies
	Non-Python files
	Executables

	Source distributions
	Creating a source distribution
	Installing a source distribution

	Built distributions
	Types of built distributions
	Creating a wheel distribution
	Installing a built distribution

	Compiling with PyInstaller
	PyInstaller overview
	Basic command-line usage
	The .spec file
	Preparing QTicTacToe for PyInstaller
	Dealing with non-Python files
	Further debugging

	Summary
	Questions
	Further reading

	Appendix A: Answers to Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17

	Appendix B: Upgrading Raspbian 9 to Raspbian 10
	Other Books You May Enjoy
	Index

