
Learn Unity for
Android Game
Development

T E C H N O L O G Y I N A C T I O N ™

A Guide to Game Design, Development,
and Marketing
—
Adam Sinicki

Learn Unity for Android
Game Development

A Guide to Game Design,
Development, and Marketing

Adam Sinicki

Learn Unity for Android Game Development: A Guide to Game Design, Development, and Marketing

Adam Sinicki
Guildford, Surrey, United Kingdom

ISBN-13 (pbk): 978-1-4842-2703-9 ISBN-13 (electronic): 978-1-4842-2704-6
DOI 10.1007/978-1-4842-2704-6

Library of Congress Control Number: 2017948866

Copyright © 2017 by Adam Sinicki

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Wallace Jackson
Coordinating Editor: Mark Powers
Copy Editor: Corbin Collins

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484227039. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227039
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■ Chapter 1: Why This Is an Incredibly Exciting Time to Develop
Games for Android ��� 1

 ■Chapter 2: Introducing Unity and Getting Set Up ��� 17

 ■Chapter 3: Finding Your Way Around Unity �� 39

 ■Chapter 4: Adding Physics and Getting Started With Coding ������������������������������ 59

 ■Chapter 5: Filling the World with Prefabs, Effectors, and Collectibles ���������������� 75

 ■Chapter 6: Adding Animations, Effects, and a HUD �� 99

 ■Chapter 7: Making an Android App ��� 121

 ■ Chapter 8: Expanding the Game World with Checkpoints, Levels,
and Save Files ��� 137

 ■ Chapter 9: Adding More Game Elements: Springs, Moving Platforms, AI,
and More ��� 159

 ■Chapter 10: Making the Game Fun and Optimized �� 185

 ■Chapter 11: An Introduction to 3D Game Development and Virtual Reality ������� 207

 ■Chapter 12: How to Publish and Promote Your Android App ����������������������������� 229

Index ��� 245

v

Contents

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

 ■ Chapter 1: Why This Is an Incredibly Exciting Time to Develop
Games for Android ��� 1

Enter Unity �� 2

Sharing Assets ��� 4

Why Mobile Devices Are Perfect for Indie Projects �� 5

Why Android Is Better than iOS for Developers �� 7

Practical Advantages of Android Over iOS �� 7

Android vs� iOS for $$$ ��� 9

Android and Unity: a Match Made in Heaven ��� 10

How to Choose Your First Project ��� 11

The Best Strategy for Creating a Successful Indie Title �� 12

Considering Gameplay �� 13

So Here’s What We’re Going to Do �� 13

What You Will Learn in This Book ��� 14

 ■Chapter 2: Introducing Unity and Getting Set Up ��� 17

What Is Unity? �� 17

Unity as Game Engine ��� 17

Unity as IDE �� 18

Unity vs� Unreal 4 (and Others) ��� 19

 ■ Contents

vi

The Origin of Unity �� 20

What if You Have a Newer Version of Unity? ��� 21

Licenses�� 21

Downloading Unity and Required Components �� 24

Downloading Unity �� 25

Downloading the Java JDK ��� 25

Downloading the Android SDK �� 26

Installing Unity 3D �� 27

Unity ��� 27

The Java JDK �� 29

The Android SDK ��� 31

Hardware and Workflow ��� 33

Creating Your Battlestation (Work Setup) ��� 35

Starting Your First Project �� 36

Setting Paths �� 37

 ■Chapter 3: Finding Your Way Around Unity �� 39

What’s All This Then? Getting Acquainted with the IDE �� 39

Scene �� 40

Asset Store ��� 40

Game �� 41

Services �� 41

Inspector ��� 41

Project �� 42

Console ��� 42

Hierarchy �� 43

Housekeeping ��� 44

Getting Your Toes Wet with Objects and Scenes �� 44

Adding Sprites �� 44

Two Ways to Introduce GameObjects ��� 46

Manipulating GameObjects ��� 49

 ■ Contents

vii

Testing the Game and Using the Camera ��� 52

The Camera �� 53

Saving Your Project and Scene ��� 54

A Little More Organization �� 54

One Last Thing to Set Up: Snap Grid Settings �� 55

 ■Chapter 4: Adding Physics and Getting Started With Coding ������������������������������ 59

Using RigidBody 2D �� 61

Using Colliders ��� 61

Getting Started with Coding in C# �� 63

Introducing Variables �� 65

Controlling the Player Character �� 68

More Advanced Logic and Introducing Jumping �� 69

A Little Bit of Further Explanation ��� 72

One Final Touch: Keeping the Player Upright �� 73

 ■Chapter 5: Filling the World with Prefabs, Effectors, and Collectibles ���������������� 75

Using Effectors ��� 75

More Effectors �� 77

Prefabs and More Organization �� 78

Troubleshooting: Help! Squarey Keeps Getting Stuck! ��� 82

Understanding Parents and Making a Moving Camera �� 83

Decorating the Scene Using Z Order �� 84

Parallax Scrolling with Perspective �� 88

Adding Collectibles and Hazards �� 89

Introducing Enemies ��� 94

Pushable Objects �� 96

Using Materials ��� 97

 ■ Contents

viii

 ■Chapter 6: Adding Animations, Effects, and a HUD �� 99

Handling Death and Using Particles ��� 99

Destroying the Particle System �� 101

Making Hazards Hazardous �� 102

Two More Added Touches ��� 103

Animating the Player �� 105

Walking With the Animator ��� 108

Code for Animation ��� 109

Flippin’ Kevin �� 111

Adding a HUD ��� 114

Adding and Using Canvases ��� 115

Adding a Sound Effect �� 117

Some Advanced Theory: Classes, Objects, and Methods, Oh My! Just What Is an Object? ���������������� 119

 ■Chapter 7: Making an Android App ��� 121

Adding Touch Controls �� 121

Designing the Controls ��� 121

Adding Our Controls �� 122

Coding the Controls �� 125

Creating Your First APK ��� 130

Player Settings ��� 131

Preparing Your Phone ��� 133

Pulling the Trigger ��� 134

 ■ Chapter 8: Expanding the Game World with Checkpoints,
Levels, and Save Files ��� 137

Adding Checkpoints ��� 137

Scripting a More Fitting Death �� 139

Scripting the Checkpoint �� 142

Taking It to the Next Level �� 144

Creating a New Level �� 144

Escaping the Level �� 145

 ■ Contents

ix

Building a Level Select Screen ��� 147

Writing the Control Script ��� 149

Ready to Launch ��� 151

Saving Our Progress ��� 153

A Few Final Comments��� 157

 ■ Chapter 9: Adding More Game Elements: Springs, Moving Platforms, AI,
and More ��� 159

Some Common Game Objects and Their Behavior ��� 159

Springs ��� 160

Moving Platforms�� 161

Collapsing Platforms ��� 164

Better AI �� 167

Using Raycasts ��� 170

Coding Enemy Behavior �� 173

Arming the Player ��� 177

Using Assets from the Asset Store ��� 180

 ■Chapter 10: Making the Game Fun and Optimized �� 185

Onboarding and Tutorials ��� 185

Dissecting the Perfect Opening Level ��� 186

Making Sure Your Players Understand Your Game ��� 188

The Difficulty Curve �� 189

Other Ways to Make Your Game Fun ��� 190

Emergent Gameplay ��� 191

Interactions Between Hardware, Game Engines, Format, and Gameplay �������������������� 192

Creating a Great Camera �� 192

Hardware and Business Models ��� 193

Making Your Game Look Awesome �� 194

Easy Ways to Make Your Game More Attractive ��� 195

How to Create Great-Looking Sprites and Choose a Design Language for Your Game ���������������������� 197

 ■ Contents

x

Optimization ��� 199

tipsForBetterCode ��� 200

Performance and Compatibility �� 202

Making Other Types of Games �� 204

Puzzle Games and More ��� 205

 ■Chapter 11: An Introduction to 3D Game Development and Virtual Reality ������� 207

Creating a 3D World �� 207

Sprites and Skybox ��� 211

Adding a Player ��� 213

Touch Controls �� 215

Using 3D Models ��� 217

Another New Terrain ��� 218

Adding a Gun �� 219

Stepping into Virtual Reality ��� 220

Creating Gear VR/Google Daydream Ready Apps �� 223

Getting Your Oculus Signature File ��� 225

Endless Possibilities ��� 227

 ■Chapter 12: How to Publish and Promote Your Android App ����������������������������� 229

Creating Your Signed APK ��� 229

Creating a Keystore �� 230

Uploading Your App �� 231

Creating Your Store Listing ��� 232

Uploading an APK ��� 234

More Settings ��� 235

Go Time ��� 238

Creating More Downloads �� 239

Think About SEO ��� 239

Choose Your Name Wisely �� 240

Find Routes to Market �� 240

Gain Good Reviews ��� 241

 ■ Contents

xi

Update Regularly �� 241

Choose the Right Images and Text�� 241

Create a Buzz �� 242

Closing Comments ��� 242

Index ��� 245

xiii

About the Author

Adam Sinicki is a developer and health and fitness writer from
Bournemouth, England. He now lives in Bicester with his wife Hannah and
spends most of his days sitting in coffee shops around Oxford and London,
listening to 80s music while writing and drinking coffee.

Career highlights include releasing the high-grossing Android app
Multiscreen Multitasking and working with Coldfusion on Voxis launcher.
Multiscreen Multitasking came as pre-installed software on over 60,000
handsets from Indian OEMs Intex and Celkon. More recently, he has been
working with Android Authority, providing development articles as well as
video reviews for their YouTube channel. He has also worked as a writer for
the U.K. magazine Writers’ News and has a bachelor’s degree in psychology
from the University of Surrey.

Adam runs his own blog and YouTube channel called The Bioneer,
where he discusses technology, weight lifting, brain training, nootropics,

and more. You can stay up-to-date with his latest projects and learn about things like muscle fiber
recruitment by visiting www.thebioneer.com, or following him on Twitter and Instagram at @thebioneer, or
finding him on Facebook at facebook.com/thebioneer. Stop by and say hi!

Adam’s other interests include weight lifting, travel, 80s action movies, comic books, computer games,
and a good tuna sandwich.

http://www.thebioneer.com/
http://facebook.com/thebioneer

xv

About the Technical Reviewer

Wallace Jackson has been writing for leading multimedia publications about his work in new media content
development since the advent of Multimedia Producer magazine nearly two decades ago. He has authored
a half dozen Android book titles for Apress, including four titles in the popular Pro Android series. Wallace
received his undergraduate degree in business economics from the University of California at Los Angeles
and a graduate degree in MIS design and implementation from the University of Southern California. He is
currently the CEO of Mind Taffy Design, a new media content production and digital campaign design and
development agency.

xvii

Acknowledgments

I would like to thank my wonderful wife Hannah Sinicki for supporting me always and for proofreading
sections of this book specifically. Another shout out to my Mum, Sister (Kathryn “Squig” Sinicki) and
Pete Hunt. One more to Goof (Chris Hanlon) because I always thank him in these kinds of things whether it’s
deserved or not (usually it isn’t). And to Nathan Wallace for play-testing my games and always sharing words
of encouragement. And to Byron the dog.

More thanks to Apress for seeking me out and being awesome throughout the creation of this book.
And thanks to you reader, for picking up this book and giving me a chance to rock your world! Or at least give
you some coding tips … which I realize is not the same thing.

xix

Introduction

Thank you for picking up this book and making the decision to try your hand at Android development with
Unity. You’ve made a great choice for a number of reasons. Not only is Android a fantastic, open platform for
indie developers to build games for, but Unity also makes the process quick, easy, and enjoyable. Hopefully,
you’ll be surprised at just how easy it is to get something that looks quite professional up and running and to
share that with a huge audience of millions of users—for fun or for profit.

That said, I know that getting started with any kind of development can be daunting, especially if you’re
completely new to coding. That’s why this book walks you through every step in a simple and easy manner,
from setting up the development environment and installing all the necessary software, right down to
releasing the completed APK to the Google Play Store. You’ll learn the basics of programming with C#, as
well as how to design a game that people will actually enjoy playing. No prior experience required. Oh, and
we’ll take a brief look at virtual reality apps too, because that’s a subject that is super exciting.

Whether you plan to unleash the next big hit or are just looking for a creative outlet, Android
development with Unity has a lot to offer, and I hope you’ll find it as rewarding as I have. Android has
opened all kinds of doors for me and given me a wealth of great experiences and opportunities—including
the chance to write this book! I hope it will do the same for you.

1© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_1

CHAPTER 1

Why This Is an Incredibly
Exciting Time to Develop
Games for Android

This is a golden age for independent games developers.
There was a time like this once before. It was during the early days of the home computer—the days of

the ZX Spectrum and Amstrad. Back then games were very simple, owing to the limitations in technology.
No matter how big your dev team or your budget, there was only so much you could do with that hardware!
This put everyone on a level playing field and meant that a keen programmer could have a veritable hit like
Arkanoid from the comfort of their basement (see Figure 1-1).

Figure 1-1. Arkanoid, from a time when all games were indie

Then technology moved on, the games industry grew up, and we saw the advent of the triple-A title.
Games became bigger moneymakers than Hollywood films, and the hardware came on in leaps and bounds.
There was no way that a single developer could ever compete with the likes of a Halo or a Grand Theft Auto.
Not only does every model in a game like that need to be designed from scratch and every single line of
dialog need to be recorded, but simply coding the amount of physics that determine the way things explode
would be an impossible undertaking for a lone developer.

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

2

Then fate intervened. The growth in mobile devices and operating systems like iOS and Android
introduced new “lower spec” devices. Meanwhile, better distribution channels like the Google Play Store,
iTunes App Store, and even Steam have helped small-time developers get their creations discovered.

Slowly, more and more indie developers began releasing games to critical acclaim, and over time this
eventually translated into commercial success. Early hits like Spelunky! showed that great gameplay and
creative ideas could trump triple-A production values. Later, artistic attempts like Limbo or Fotonica have
shown that stylistic visuals can be just as eye-catching as hyperreal graphics. Soon, titles like Super Meat
Boy and Angry Birds began rivalling top studios for sales. In fact, Minecraft, a world-famous indie game and
household name, is actually now the second best-selling game of all time (right behind Tetris). No Man’s Sky
is one of the best-selling games ever on Steam—and it also came from an indie studio.

The movement has only gained more momentum over recent years. With many gamers gradually
becoming indifferent toward generic, big-budget sequels like the over-egged Call of Duty franchise, indie
games have crafted a niche for themselves and gained a reputation for being able to offer experiences that are
more creative and daring. Sometimes these experiences even challenge traditional notions of what makes a
game “a game.” Notable examples are the popular “walking sims” that have been gaining popularity lately.

Enter Unity
Although many factors have contributed to the rapid growth of indie games, it’s also true that tools like Unity
(Figure 1-2) have contributed greatly to this movement. Unity is a game engine that makes development
particularly easy for beginners to get started creating their own programs.

Figure 1-2. The Unity logo

A games engine is a software backbone that provides a lot of the basic elements needed to make a game
work. These elements include things like the ability to display (render) 3D and 2D graphics, handle basic
physics (called a physics engine), detect “collisions” between GameObjects (a collisions engine), and even
provide basic AI scripts or other ready-made assets.

Instead of creating a game from scratch, a tool like Unity allows a team of developers to focus on
the elements that make their game unique and then simply insert them into a working environment.
Unity combines this with a handy interface and cross-platform functionality and thereby saves countless
thousands of hours that would otherwise be necessary to build a fully realized game from scratch and port it
to Android, iOS, and Windows (Figure 1-3).

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

3

At this point, you may be wondering whether it’s in some way “cheating” to use a tool like Unity. If Unity
is providing the underlying code for your physics, then did you really “make” the game? And if it’s providing
a user-friendly graphical interface for dragging and dropping pre-made game assets, how is it any different
from a “game maker”? Is it that far removed from Super Mario Maker?

Make no mistake: Unity is a comprehensive tool that is used by thousands of developers, big and
small. Many of your favorite games on Android (and elsewhere) are most likely built using Unity,
including the following:

•	 Temple Run

•	 Bad Piggies

•	 Lara Croft: GO

•	 Deus Ex: The Fall

•	 Escape Plan

•	 Battlestar Galactica Online

•	 Rust

•	 Superhot

•	 Lucky’s Tale

•	 Monument Valley

•	 Cuphead

Figure 1-3. Unity saves developers a huge amount of time

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

4

•	 Ori and the Blind Forest

•	 Broforce

•	 Tilt Brush

In short, Unity is professional-grade software that has been used to create some of the biggest indie
titles and even some of the biggest triple-A titles. Using ready-made assets is far from a sign of being less
professional; in fact, it is one of the most important and encouraged strategies in coding. One of the key
mantras any good programmer follows is: don’t reinvent the wheel. In other words, don’t spend large
amounts of time working on something like a physics engine, AI, or even 3D models when that work
already exists and is available to use. Doing so simply isn’t a good use of time, and with games becoming
increasingly more complex and ambitious, sharing assets and code is not only wise, it’s a necessity.
Professional developers know this, and amateurs should follow suit.

When Unity is such a proven quantity—when you know that it’s capable of producing massive hit
titles—why would you make life more difficult for yourself by ignoring it?

Sharing Assets
The ethos of sharing is an important part of modern development, and it only takes a quick Google search
to realize this. Unity removes the need for much of the complex coding that you would otherwise have to
handle yourself, and if you want to make a very basic 2D platformer, then you’ll hardly have to write any
code at all. When you do have to write code, you’ll normally find someone willing to help you out if you ask
the question in a forum or elsewhere. Of course, this book should provide you with all the basic code you
need and the understanding to create more of it.

From time to time, you will need code that isn’t available in Unity itself and that you don’t want to have
to create from scratch—for example, a particular visual effect or an advanced control scheme. Fortunately,
this is where sharing comes in handy once again. Unity actually built a solution right into the software
itself—there is no need to trawl the Web or download files and import them into your project. The Unity
Assets Store (Figure 1-4) is a resource where you can download scripts, models, sprites, textures, special
effects, and much more, all provided by the community or by Unity Technologies itself. Downloading these
components automatically integrates them into your project. Better yet, many of the assets are free; others
incur a relatively small price. By taking full advantage of this feature, you can create pretty much anything
you can imagine while writing barely a line of code.

Figure 1-4. The Unity Assets Store, where you can find all the scripts, sprites, effects, and more

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

5

This open source spirit of sharing is another thing that has helped indie development take off in such
a big way recently. By crowdsourcing and borrowing elements for their games, developers can build huge
worlds with professional levels of polish in a fraction of the time that would otherwise be necessary.

The best bit? Unity itself is also free for hobbyists and small-time indie developers. You can download
it, get started right away, and publish to Steam or the Google Play Store with no limitations until your
games start raking in over $100K a year, at which point you’ll need to pay for a license (which is still very
reasonable). You also need to pay if you have an investment of over $200K per year, which you need to
keep in mind if you plan on taking your app idea to Kickstarter. Some features are only accessible for paid
accounts too, but most first-time developers don’t need to worry about that (I cover this in more detail in
Chapter 2).

At this point you should be excited! By using Unity, you get to build a game with precisely the same
tools used by some of the biggest recent developers. Building something basic requires hardly any coding,
and when you do need unique elements, you can normally obtain them online. The learning curve here is
incredibly generous considering the quality of game you’ll be able to develop—and it’s completely free
(as long as you stick within the restrictions of the free license).

If you’ve been dreaming of being a game developer but thought it was out of reach, think again. It has
never been easier, and with Unity and this book at hand, nothing can stop you.

Why Mobile Devices Are Perfect for Indie Projects
The other great thing about Unity is that it’s cross-platform. You can make a game on your Windows PC and
then sell it on Android, iOS, Xbox, Playstation, Unity (Figure 1-5) and more. Some of these require that you
apply for a developer license, purchase a development kit, or face other restrictions. In theory, though, the
cross-platform possibilities are endless. As you’ll see later in this book, Unity even supports virtual reality
platforms like the Samsung Gear VR, Oculus Rift, HTC Vive, and Google Daydream. When you follow the
instructions laid out for you in these pages, you’ll be able to choose to port your game over to all these
platforms if you so desire.

Figure 1-5. Indie titles are highly popular on Steam

But the focus of this book is going to be Android. That’s because Android is the most open source and
biggest of all these platforms. It also has the lowest barrier to entry, and you’ll find it’s generally the easiest
platform to be successful with.

http://dx.doi.org/10.1007/978-1-4842-2704-6_2

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

6

Take a look back at the list of big games made with Unity again and you’ll notice that a lot of them are
mobile games. One reason for this is that both Unity and mobile platforms attract indie developers. There
are two reasons why mobile is ideal for indies:

•	 Mobile gives you access to a huge audience via a simple distribution channel.

•	 Mobile lowers the expectations for your game and therefore the amount of work
involved in its creation.

Put simply, if you build a game for Xbox One, it’s going to compete with the likes of Call of Duty and
Grand Theft Auto. Although there is a thriving indie scene on Xbox, the potential graphical fidelity is still
much higher, and even the input is more complex.

This is why endless runners are so popular on mobile but not very successful on other platforms.
Endless runners are games where the main character runs forward … endlessly … and all the player has to
do is hit “jump” at the right time. Occasionally they may also have to swipe to change lanes or hit another
button to perform another action. But ultimately, the game consists of randomly generated obstacles,
minimal input, and no “stages” in the traditional sense. On a mobile device this is acceptable because it
provides an ideal two-minute distraction while you’re in line at the bank. But most people wouldn’t want to
sit down to play an endless runner for any length of time, hence they’re relatively rare on consoles and PCs.

Now ask yourself: as a new developer, would you rather make a hyper-real 3D role-playing game
(RPG)—or an endless runner?

This doesn’t mean you can produce rubbish, of course. It simply means that mobile gamers are much
more lenient and prefer bite-sized entertainment. And that means you can be successful with something
polished but relatively simple and short. Obviously, this bite-sized nature is often going to be reflected in the
price, but that just means you can potentially sell in higher volume. And of course, if you want to be more
ambitious, nothing is stopping you. Full games like several entries in the Grand Theft Auto series have been
successfully ported to mobile, as have twin stick shooters, RPGs, and others (see Figure 1-6).

Figure 1-6. Playing Geometry Wars 3 on an Android device

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

7

Selling in volume, though, brings us to the next point. The other reason why mobile platforms are so
popular is that they have such a massive audience. Most people these days have some kind of smartphone,
probably running iOS or Android, and this includes a wide range of different demographics. Everyone from
grandparents to young children can enjoy a game like Angry Birds, Candy Crush, or Words With Friends, and
that gives you a huge audience to work with.

If you’re making Android games as a hobby, you’ll be able to share them with friends and get lots of
feedback. If you’re making them with an eye to potentially selling, then you’ll have a wide audience to
market them to.

Why Android Is Better than iOS for Developers
So, mobile is great, but Android specifically is even better. Why? Well, for starters Android apps can now also
appear on a range of devices other than smartphones and tablets. Android is a completely open OS, meaning
that OEMs (original equipment manufacturers) can modify it to run on televisions, smart watches, eReaders,
washing machines, and a wide range of other hardware.

Okay, so most games aren’t going to run on washing machines any time soon. But you could certainly
create a game to run on a smart TV or, better yet, something like the Nvidia Shield. More likely, you’ill be
able to take advantage of new cross-compatibility with Chromebooks. Chromebooks are computers that run
Chrome OS, a lightweight browser-based operating system that has been able to run Android apps natively
since 2016. I talk more about how to achieve maximum compatibility with your app in a later chapter.

Practical Advantages of Android Over iOS
There are practical advantages to choosing Android over iOS as well. Apart from anything else, the process is
overall much easier and simpler when you pick Android. Currently, uploading apps to the Play Store is still a
relatively simple process that anyone can manage and that needn’t take more than a couple hours. You can
come up with an idea for an app, put something together, and have it live within 24 hours.

To make any real money with a game on Android, you’ll want to try and get it into the Google Play Store
(Figure 1-7), where users can search for apps and download them. Doing so costs a single one-off fee of
$25 and is all handled automatically. You simply package and sign your APK file (Figure 1-8—don’t worry, I
show you how) and upload it using simple on-screen instructions. The app then uploads and goes through
an automated approval process, and within a few hours people will be able to start downloading it. You can
do this as many times as you like without needing to pay again, and your app will only get taken down if it
violates Google’s policies.

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

8

Figure 1-8. Success is just a click away

Figure 1-7. Games in the Google Play Store

This is a real breeze compared with Apple’s process, which first of all requires an annual recurring fee
of $99. Even if you only have one app that gets a couple downloads per month, you’ll still be paying $99 each
year to keep it live. Additionally, iOS apps need to go through an approval process that involves real human
moderators and much more stringent restrictions. Many apps simply won’t be allowed on iTunes, and often
the reasons given are somewhat obscure or arbitrary. I know at least one developer who had a joke app
rejected because it wasn’t “entertaining enough.” That’s surely a matter of personal taste!

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

9

Of course, the Apple approach does result in a somewhat higher overall standard quality of app on the
iTunes Store. In general, apps on iTunes will meet at least a minimum quality, whereas some pretty serious
dross makes it onto the Play Store (not our aim here!). The risk with iOS, though, is that you spend months
creating an app you’re very happy with, only for it to be rejected and never see the light of day. What’s more,
using Android simply gives you more creative freedom and more options when it comes to the content and
nature of your app.

Oh, and another thing: in order to develop for iOS, you’re going to need to buy yourself a Mac computer
and an iOS device to test on. This is in contrast to developing for Android, which you could theoretically
do without even needing an Android phone by using emulators. These required purchases increase the
investment necessary to get started with iOS.

Android vs. iOS for $$$
If you’re interested in creating games primarily to make money, you may be less concerned with creative
freedom and more focused on which platform will allow you to make the most money. In that case, Apple
does have a slight edge.

First the good news: there are considerably more users on Android compared with iOS, but iOS users are
likely to spend two and a half times more on apps than Android users are. Put simply, iOS users tend to have a
little more money in their pockets and are somewhat more inclined to use it. In reality, that 2.5x is equivalent
to $1.08 versus $0.43 per app. iOS users are also 50 percent more likely to place in-app purchases (according
to The State of In-App Spending Global & Regional Benchmarks, published by AppsFlyer in 2016), and 7.1
percent of iOS users make at least one app-related payment per month, versus only 4.6% of Android users.

There is one category of app where Android has the advantage, but unfortunately, it’s of no use to
us as game devs: the category is utilities (Figure 1-9). Android users are more likely to spend on utility
applications, most likely thanks to the greater freedom afforded to developers and app owners in this
regard, which allows them to create custom launchers, memory/battery management tools, multitasking
applications, and so on.

Figure 1-9. Multiscreen Multitasking, an old utility app I developed for Android several years ago

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

10

The AppsFlyer report also revealed other interesting data: for example, Asian users spend 40 percent
more on in-app purchases compared with other territories. If you’re planning on using a freemium
business model, it might be a good strategy to target an Asian market. Later chapters talk more about how to
maximize your earnings.

For now, the question is: should you still develop for Android, considering that iOS offers the larger
earning potential? Of course, that’s your call, but for many people the advantages of developing for Android
outweigh the disadvantages. There is simply too much investment and risk involved in developing for iOS,
and the barriers to entry are too high. Android, on the other hand, allows you to start developing games
right away and reach a much larger audience with more creative freedom and less chance of your creation
being rejected. On top of all that, Android’s market share is constantly growing, whereas iOS’s is shrinking.
That stands to reason considering that thousands of OEMs are producing Android devices compared to
just one manufacturing for iOS. App spending in general is also on the rise. That makes Android the more
“futureproof” market, in as much as your audience (and revenue) will likely increase over time.

So, although iOS may be the slightly more lucrative platform, it is certainly very possible to make a lot of
money from developing for Android. More important than the platform by far are the nature of the app, the
marketing, and the promotion. And you’re going to learn how to handle all that deftly over the rest of this book.

Android and Unity: a Match Made in Heaven
Hopefully, you’re now convinced that Android is the platform of choice for indie game development. In
choosing Android, you’re making life incredibly easy for yourself by removing restrictions and upfront
expenses and that will mean less time until you have a working app in the Play Store and you can start
promoting it.

The other key part of our strategy is Unity 3D. We’ve already seen some of the incredible advantages that
Unity offers, and by choosing to develop for Android with Unity, you drastically lower the barriers to entry
for becoming a developer. You’ll learn more about how Unity works in Chapter 2. For now, just remember
that it is a game-building tool that will allow you to create much more professional games in a fraction of the
time compared to other tools. With Unity, you could realistically put together an infinite runner or a space
shooting game in a matter of days and it would look just as impressive as anything from a large, experienced
publisher (if you play your cards right).

Unity’s interface is incredibly beginner-friendly and allows you to simply drag and drop many of the
elements around the screen as needed (Figure 1-10 shows a sneak preview of that UI). If you’re worried
about programming, consider that you can actually pretty much avoid coding entirely using the Unity Assets
Store as mentioned earlier, although doing so limits what’s possible to a large extent.

http://dx.doi.org/10.1007/978-1-4842-2704-6_2

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

11

And as we’ve seen, Unity is also cross-platform and allows you to publish to multiple formats at the touch
of a button. So, all that debate about whether to target Android or iOS is somewhat less pertinent because you
can simply create a single game and then publish to both platforms at the touch of a button. In fact, you’ll also
be able to publish to PC (Windows Store and Steam), Windows Phone, Linux, Xbox, and more.

The process of creating your games is going to be near-enough the same across platforms, so even iOS
developers can benefit from what we’ll cover here.

How to Choose Your First Project
Using Unity 3D, the possibilities are pretty much endless. You can create anything from a simple puzzle
game to a fully realized 3D first-person shooter. Thanks to Moore’s Law, the capabilities of the average
smartphone are now such that near console-quality titles are able to fit in our pockets.

But that doesn’t mean you should set out to make the next Call of Duty. It’s entirely possible to develop
a highly detailed, 3D game for Android using Unity (see Figure 1-11), but that doesn’t mean you should. This
is where the vast majority of first-time developers go wrong, and it’s one of the first and most important take-
home messages you need to learn from this book.

Figure 1-10. Developing with Unity

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

12

Simply put: most first-time developers have aspirations that far outstrip their capabilities—they simply
overlook the need to reign in their ambitions for their first projects. I’m not looking to step on anyone’s
dreams here, but it’s a much better strategy to set out to create an achievable and realistic goal than to
commit to an impossible project that ends up taking up years of your life and never being seen through to
completion.

Consider for a moment the huge undertaking that developing a triple-A-style title involves. Create a 3D
level set in a city environment and you’ll need to 3D model every single passer-by, every car, every lamppost,
rubbish bin, letterbox, phonebox, bit of rubbish onthe street, building, enemy … the list goes on. Each of
these items also needs realistic physics, fluid animations, and associated sound effects. You’ll need cut-
scenes, voiceovers, music, sprawling play areas, multiple levels.... For one person, this is a project that could
take years and years. By which point, technology would have moved on, and everything you created would
probably end up looking outdated. That’s essentially what happened to Duke Nukem: Forever, and that was
a game with a large, experienced studio behind it. This is one reason why the most successful indie games
tend not to sport the most lifelike graphics; they instead choose original art styles that are eye-catching while
simultaneously reducing the workload for the creators.

The Best Strategy for Creating a Successful Indie Title
Look at something like Limbo, a game available for Xbox, Playstation, Windows, and mobile. This was an
early indie hit that sold incredibly well and made a big splash in the gaming community. This was possible
partly thanks to the art style, which entirely used silhouettes. That suited the tone and the image of the game
while also looking stunning and visually interesting. The developer (Playdead) couldn’t compete with top
publishers by using hyper-real graphics and took an entirely different route, coming up with something
unique and very appealing. The screenshots would stand out enough during app store scrolling to pique a
shopper’s interest and potentially get them to buy.

Figure 1-11. Full 3D is also easy in Unity

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

13

Better yet, by choosing to work with silhouettes, Playdead drastically reduced the amount of detail
needed for sprites and in-game elements. The game has absolutely gorgeous animation, which really helps
to sell the atmosphere, but this was likely only possible because the lack of detail enabled the team to focus
their attention on that area.

Of course, not every game can use silhouettes, but you’re going to need to think outside the box and
get creative. One option that is particularly popular is to use “pixel art.” This is a retro-looking style that
emulates graphics from old 8- and 16-bit consoles and has a very nostalgic appeal. Again, it limits the
amount of work needed. Games like Superbrothers: Sword & Sworcery EP show how the style can be used to
quite beautiful effect.

Considering Gameplay
The same approach should be taken to gameplay, especially for your first project. Instead of aiming to make
a first-person shooter that requires you to create 3D models and large maps filled with details, it makes much
more sense to attempt something 2D, ideally with procedural generation or other techniques to reduce
your workload. (Procedural generation means that game elements are added at random according to an
algorithm, removing the necessity to create levels manually.)

As mentioned, endless runners are very popular on mobile platforms thanks to their simply gameplay
and lack of complex controls. Here, all you do is tap to jump while the protagonist runs forward, and this
allows you to dodge upcoming obstacles and enemies. Said obstacles and platforms are generated randomly
as the game scrolls forward, and the game tends to speed up the longer the player lasts. Replayability
comes from trying to reach top scores and from the fact that no two “runs” will ever be identical. Games like
Rayman Fiesta Run, Canabalt, and Mario Run have sold in huge numbers using this very simple formula.
Flappy Bird can also be seen as a variation on the traditional infinite runner formula.

Other games use even simpler gameplay mechanics. The fantastic Super Hexagon by Terry Cavanagh
utilizes very inventive graphics comprised of hexagons moving inward toward the center of the screen
(which creates a very trippy effect) and a simple objective of pressing on the left and right sides of the screen
to try and move your avatar into the small gaps in each layer. This game looks instantly unique and hypnotic,
and the difficulty makes it highly engaging. That was enough to make it a massive hit, and Terry didn’t need
to design a single sprite or level map.

Or how about Goat Simulator? This is an indie game that does exactly what its name says: it allows you
to control a goat while creating all kinds of havoc in a sandbox environment. The game is 3D, but its goofy
nature means no one is expecting realistic graphics or physics or even challenging level designs. The game
has been very successful nevertheless thanks to the appeal of the central concept and the very YouTuber-
friendly nature of any gameplay footage. In this case, the idea alone trumped the need for any technical
accomplishment. There are many games on Android claiming to be the “world’s hardest games,” and these
are successful for the same reason: their concept is inherently intriguing, and that gets people to download.

If you want to create games as a hobby, feel free to tinker with whatever bombastic project you like. If
you want to make some money, though, or at least get some positive feedback from real users, look for
“easy wins”—at least to begin with.

So Here’s What We’re Going to Do
Put that world-changing RPG on hold for a while and instead consider taking on something smaller for your
first project. Forget Dragon Slayer 3D: An Epic Quest and think more in terms of Retro Catching Game.

A simple puzzle game, a basic 2D platformer, or an infinite runner that you can make in a few weeks will
give you the opportunity to actually get something concrete out into the world and develop your skills as you
go. That way, you won’t invest too much time and effort into something that may never take off and you’ll be
able to quickly start benefiting and honing your strategy. The good news is that Unity has a 2D “mode” that
makes this strategy a lot simpler and alters the UI and features to better support 2D game development.

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

14

In business, this approach is known as fail fast. Instead of creating a product that takes years of research
and development and thousands of dollars of investment, you instead create simple, easy products that
don’t need to succeed. If the product is a bust, you simply move on to your next idea. But if it gains traction in
the marketplace, then you spend some time developing the idea and taking it further.

There’s nothing more soul destroying that pouring years of your life into a game, only for it to get ten
downloads and a one-star review. So, create an MVP (minimum viable product), get it into the Play Store,
and then develop it only if it finds an audience.

If your art style is unique enough, the gameplay hook is original enough, and your marketing skills are
strong enough, you’ll be surprised at what an impact a relatively simple game can have.

What You Will Learn in This Book
Taking all that into account, this book is going to walk you through the entire process of designing, building,
and publishing a fully functioning Android game using Unity. Specifically, it walks you through the basics
of creating a 2D platformer or an endless runner, and that includes everything from building physics and
sprites to signing your APK ready to be uploaded to the Play Store.

The project you’ll be working on will be basic enough that you can easily adapt it to fit your own
purposes, and by changing a couple of sprites and giving it a fresh title, you’ll be ready to release your
first game within weeks. The game will be simple but will have enough features to help you grasp the core
concepts of game development with Unity so that you can apply them to future projects.

You’ll discover the following:

•	 How to install and set up Unity

•	 How to use the Android SDK (Software Development Kit)

•	 How to find your way around the Unity IDE (Integrated Development Environment)

•	 How to create and add sprites

•	 How to add animations

•	 How to introduce physics using RigidBody 2D

•	 How to program in C++ and Java using Visual Studio

•	 How to add collectibles, sound effects, enemies, gameplay mechanics, and more

•	 How to add checkpoints, scores, level selects, menus, and more

•	 How to add dynamic cameras

•	 How to design levels to be fun and challenging

•	 How to create signed APK files ready to upload

•	 How to publish your app to the Google Play Store

•	 How to price your app for maximum profit

•	 How to promote your game and gain more downloads

Throughout this process, we’ll be using a small amount of code and a fair amount of media (sprites,
music, sound effects, and backgrounds)—and all of it will be available for you to use in your own projects,
reverse engineer, or edit as you see fit.

Chapter 1 ■ Why this is an inCredibly exCiting time to develop games for android

15

During the course of this book we’ll also be looking at various alternative things you can create and
build with Unity. The aim is not to limit you, so you’ll discover how to work in 3D and even make virtual
reality applications for the Gear VR (Figure 1-12), Google Cardboard, and Google Daydream. This will
give you a firm base of knowledge that will act as a jumping-off point if ever you want to expand your
development and take on more challenging projects in the future.

Figure 1-12. Developing for the Gear VR with Unity

And yes, Unity 3D can be used to create apps and utilities, and the skills you learn in this book will
enable you to do that too if you desire.

TLDR; this is a great time to be an indie developer. Android and Unity offer the perfect combination
for beginners who want to launch something concrete in the Play Store. This book walks you through the
development of a simple game and provides everything you need to know to get your first project off the
ground and to help you grow as a developer in future.

Ready? Time to hit Start, Player 1!

17© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_2

CHAPTER 2

Introducing Unity and
Getting Set Up

Developing for Android already makes a ton of sense for beginners and for indie developers looking to make
some cash. But it’s Unity 3D that makes all the difference when it comes to the ease and practicality with
which this is possible. Unity is an incredibly powerful tool that makes it considerably quicker and easier to
create some awesome games.

In this chapter, you’re going to get a little better acquainted with Unity, what it is, where it came from,
and how you go about getting it set up so that you can start using it.

What Is Unity?
Chapter 1 introduced Unity briefly, but now it’s time to dive a little deeper into what you can expect Unity
to do for you and how it’s going to affect your workflow. This chapter covers what a game engine is, what
an IDE is, and how to get it all set up and running. By the end of this chapter, you’ll have the basics down
and you’ll be ready to start getting your hands dirty. If you’re already familiar with Unity, though, and it’s
currently installed on your PC, feel free to skip this chapter.

Unity as Game Engine
Essentially, Unity is a game engine that has evolved to become an IDE/rapid development tool. If that all
sounds like gobbledygook, don’t worry, I’m going to break it down.

To describe it in a little more detail, a game engine is essentially a large amount of code that takes care
of all the boring bits that make games function. Notably, this includes the physics as well as rendering,
lighting, basic camera function, and more. Unreal Engine is another example of a game engine, as is
CryENGINE 3. Others include Torque, Lumberyard, Ogre3D, Blender, JavaFX, and the list goes on.

Were you to program a game entirely from scratch without using a preexisting game engine, you would
need to code every single detail yourself, which would mean a huge amount of development before you even
got to start adding things like levels. There is simply no benefit to coding the way a wooden crate should fall
and break when that’s already been handled for you.

Again, this is why we’re seeing a renaissance for indie developers. Back in the days of the ZX Spectrum
and Amstrad, game engines could be considerably simpler, and most sprites were made of about 50 pixels.
The complexity of today’s games would make it impossible for one person to go it alone were it not for the
existence of solutions like Unity.

http://dx.doi.org/10.1007/978-1-4842-2704-6_1

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

18

Unity is also cross-compatible, meaning it can act like a bridge between your code and whatever device
you’re targeting. Compiling your game compresses all the assets and converts them into the right file format
for adding to the respective distribution platform.

In short, Unity handles all the behind-the-scenes stuff for you and allows you to develop a great game
without worrying about reinventing the wheel or worrying about how light should refract through various
materials (see me happily coding in Figure 2-1). It’s as if the laws of the universe have already been created,
and all you have to do is fill it. Unity then handles the final legwork necessary to turn your world into an
actual game ready for distribution.

Figure 2-1. Unity streamlines development (photo by Sophie Bunce)

Today, the vast majority of developers—even big studios—use ready-made IDEs like Unity or Unreal.
Occasionally, a game will use a custom-built engine (such as the “rhythm violence” game Thumper), but
these usually have unique gameplay mechanics that warrant the creation of a custom engine, and they
normally spend a long time in development.

Because Unity makes life that much easier without introducing any major limitations, there is simply
no reason not to use it (or a similar option like Unreal). “Going it alone” merely makes the challenge
considerably more difficult, with no tangible benefit.

Unity as IDE
What makes Unity such a blessing for developers, though, is that it is at once a game engine and a game
maker with a user-friendly interface that allows elements to be easily dragged and dropped around the
screen (Figure 2-2).

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

19

To use more technical language, Unity is not a game maker but rather an IDE. IDE is an acronym
for Integrated Development Environment, which is essentially a comprehensive set of tools used for
development and arranged with a simple interface that lets you view and modify various different aspects
all from one program. If you were to create an Android app without Unity, you would need to use another
IDE—most likely Android Studio, which would allow you to see the code, your assets folders, debug
information, graphical previews, and so on. In Unity’s case, you see a view of your scene (essentially the
level), a hierarchy of all the elements in said scene (called GameObjects), details for whichever item you
choose to focus on, your assets folders, and more. We’ll take a look at all the different windows and views
that Unity presents shortly.

Unity vs. Unreal 4 (and Others)
I said there was no reason not to use Unity, but that’s not quite true. There is one good reason you might opt
not to use Unity and that’s if you intend on using one of the other various game engines/makers out there.

Perhaps the closest comparison can be drawn with Unreal 4 (Figure 2-3), which has many similar features.
Both are fully functional with very few limitations, and this—along with their relative simplicity—makes them
arguably the two most popular IDEs for indie studios. So which is the better platform of the two? Why choose
Unity? As ever, the answer hinges on what type of game you plan on developing. In our case, we’re intending on
making a 2D game for Android, and for that specific task Unity is preferred.

Figure 2-2. An IDE is a single environment for developers to handle every aspect of creating their game

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

20

Although there isn’t a lot in it—and it often just comes down to personal preference—Unity arguably
has better built-in support for mobile game development and 2D game development. Unity is the most
popular game engine on mobile, which reflects just how capable it is. This also ensures that there is a huge
community out there to provide creators with support, as well as a near-infinite supply of custom assets in
the Asset Store, which can drastically speed up development.

Many people also like the flow of Unity, which allows you to build games using a simple system of
entities (GameObjects) and components (scripts). This is certainly a matter of opinion, but suffice to say
that Unity is, for the most part, very intuitive and easy to use as a beginner. Unreal, on the other hand,
has a steeper learning curve and isn’t so well organized. But Unreal 4 has better graphical capabilities for
developing triple-A-looking games. It’s also open source, which effectively means that you can access the
source code and make changes to the engine itself. Neither of these things is going to be an issue for indie
developers targeting mobile devices. So Unity wins.

The Origin of Unity
Unity is developed by a company called Unity Technologies SF, which was founded in 2004 by David
Helgason, Nicholas Francis, and Joachim Ante in Copenhagen, Denmark. Figure 2-4 shows the official
website at the time of writing.

Figure 2-4. The Unity home page today

Figure 2-3. The Unreal logo (boo!)

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

21

Prior to this, the three developers called themselves Over the Edge Entertainment and had worked on
a game for Mac called GooBall that had gameplay similar to Super Monkey Ball. Though the game failed to
make a splash, the team recognized that the engine might have value to other developers. As such, they went
on to announce Unity 3D for OS X at the 2006 WWDC trade show.

Since then, Unity has undergone many iterations and developments and is now far more
comprehensive in terms of the platforms it supports and the features it includes. With Version 1.1 came
support for creating games for Microsoft Windows and browsers, along with support for C/C++ plugins.
Version 2.0 added support for Microsoft DirectX, and in 2008 Unity iPhone was released.

Version 3.0, released in 2010, was another major step, as the team wanted to get the program to run
on Windows, which required it to be rebuilt from the ground up. Thus version 3.0 incorporated Windows,
iPhone, as well as support for the Wii and numerous other platforms that had previously only been
supported by separate standalone editors. Now the name Unity finally made sense. And yes, this is also
when we got support for Android.

Unity version 4.3 saw another important update: the inclusion of out-of-the-box 2D support with
Unity2D. Until this point, developers essentially had to “hack” the IDE to support 2D by using fixed camera
angles and adding textures to flat planes to create backgrounds. Now, creators could much more quickly and
easily build truly 2D games utilizing sprites and other more conventional methods.

According to Unity Technologies, it was Unity 5.0 that would be the biggest and most important release,
with better performance across the board and major updates to the animation system, audio mixer, shaders,
and more. Thus, many people refer to Unity as Unity5 now. The latest version of Unity at the time of writing
is 5.5.0. It has a number of improvements for Android in particular that should enhance performance.

What if You Have a Newer Version of Unity?
It’s important to note that Unity is constantly developing its platform and adding new features and
improvements. Thus, depending on when you’re reading this book, you may find that some elements are
different from those described here. Maybe you’re reading from the distant future and you’re using Unity 200.
If so, I hope you have a flying car.

More likely, though, any changes that you do encounter will be minor. Of course, middleware
developers like Unity Technologies work hard to avoid breaking code with future updates, and that means
most of the basic functionality should still work.

But in some rare cases, a line of code may be highlighted in Unity and described as being deprecated.
That means it’s supported but discouraged. If you notice this, a quick Google search should help you to find
the new, correct way to go ahead to handle that function.

Licenses
As if Unity weren’t already awesome enough, the best part of all this is that it’s also completely free to use (for
the most part). In the future, as your ambition grows, you may find yourself in need of additional features or
earning above the $100K threshold, but most beginners will be fine unless their games take off in a big way.
That’s a pretty good worst-case scenario.

Essentially, there are a few different types of accounts you can create, as shown in Figure 2-5, with each
priced differently and having different restrictions.

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

22

Personal
The free account that you’ll want to start with is the Personal account. This account costs nothing, and Unity
doesn’t even take royalties. The only restriction is that you’re not allowed to make more than $100K per year
on this license. That’s fine, though, because you can simply switch to one of the other licensing agreements
once you start turning over big numbers. Keep in mind that this $100K restriction also applies to money
raised, meaning that if you raise money on Kickstarter and it exceeds $100K, then that counts. This rule also
goes for profit that comes from other sources, including pay-per-click advertising or in-app purchases.

There are also a couple of missing features and restrictions with the Personal account. For instance,
creators using the Personal account are required to feature the Unity splash screen when the game boots
up (showing users that you made the game in Unity), and you won’t have access to the real-time developer
analytics or Cloud Build. For multiplayer online games, the Personal account only allows 20 players at once.

Unity Plus
Unity Plus currently costs $35 per month and removes the splash screen while increasing the revenue cap
up to $200K per fiscal year. It also adds extra support and features that might be useful for larger developers,
such as support for 50 concurrent users and discounted asset kits.

Unity Pro
Unity Pro hikes the price up to $125 per month and completely removes the revenue cap, meaning you
can become incredibly rich without paying anything more if you so wish. It also provides a number of pro
services, including support for up to 200 concurrent players, more analytics and performance, support for
large teams, and more.

Figure 2-5. For most people, the free personal plan will more than suffice

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

23

Unity Enterprise
Finally, Enterprise membership lets you pick and choose features to create a tailored development platform
specific to your independent needs. This is the most premium option, and the price actually isn’t listed at
all—which rather suggests it is very expensive. In short, it’s not going to be something most people reading
this book need to worry about for a while yet. In fact, for the vast majority of people, the basic Personal
account will more than suffice and should provide all the features and flexibility you require.

 ■ Note these are the prices at the time of writing, but they’re of course subject to change. It’s also possible
to save money by paying annually, and you should research this further if you’re looking to pay for a more
advanced account.

Here is a handy table comparing the various features:

Personal Plus Pro

All engine features All engine features All engine features

All platforms All platforms All platforms

Continuous updates Continuous updates Continuous updates

Royalty free Royalty free Royalty free

MWU splash screen Custom splash screen Custom splash screen

Revenue capped at $100K Revenue capped at $200K No revenue cap

Standard queue for
Unity cloud build

Priority queue for Unity
cloud build

Concurrent builds for
Unity cloud build

Personal analytics Plus analytics Pro analytics

20 concurrent players 50 concurrent players 200 concurrent players

Unity in-app purchases Unity in-app purchases Unity in-app purchases

Unity ads Unity ads Unity ads

Beta access Beta access Beta access

Pro editor UI skin Pro editor UI skin

Performance reporting Performance reporting

Flexible seat management Flexible seat management

Asset kits 20% off Asset kits 40% off

Unity certification courseware
1 month access

Unity certification courseware
3 month access

Source code access ($)

Premium support ($)

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

24

Downloading Unity and Required Components
Okay, I think I’ve prattled on long enough. Let’s get started with the technical stuff. You’re of course going to
need to set up Unity and get it running on your computer. This is straightforward enough for the most part,
but bear in mind that you’ll also need a few additional pieces of software too. Specifically, you’ll need to
download and install the following:

•	 Unity itself

•	 The Android SDK (along with Android Studio 2.3)

•	 The Java JDK

•	 Visual Studio

The Android SDK is the Android Software Development Kit. This is a set of software tools provided by
Google that can act like a bridge in accessing the functionality of your hardware. In other words, it provides
source code that Unity needs to make your games compatible on the Android platform. It also contains a
few other tools that might be useful for you in the future—including an emulator that will allow you to test
Android apps right on your desktop. You also need to opt to install Android Build Support, but you do this
through the Unity Installer, so there’s no need to download that separately.

The Java JDK (Figure 2-6) is another development kit, this time for Java. This is what your computer
needs to support Java development, and because Java is the main language of Android, you’ll need it to go
ahead. We’ll be downloading this first.

Figure 2-6. The Java logo

Visual Studio is what you’ll use to handle the actual programming in Unity. When you start writing
scripts, you’ll edit these in a separate Visual Studio window—but we can worry about that later. Note that
you don’t actually need Visual Studio, and it’s possible to use alternative options such as MonoDevelop. But
Visual Studio is certainly the preferred option of the two and will make your life a little easier.

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

25

Downloading Unity
To start downloading Unity, first head over to Unity3D.com (https://unity3d.com) and click Get Unity
Now. You’ll then be able to choose the plan you want (Personal, in most cases), and there you’ll simply click
Download Now and then Download Installer on the next page (Figure 2-7). Once you do that, the download
will begin.

Figure 2-7. This is where you will find Unity

You don’t need to download Visual Studio separately, because you can do that through the Unity
Downloader. That saves you a little time and trouble.

Downloading the Java JDK
If you’re feeling a little overwhelmed at this point, don’t worry. Once you’ve installed all these bits and
pieces, they’ll operate on their own in the background and you can forget all about them. This is a one-off
procedure (unless you set Unity up on a new computer) that you never need worry about again.

The Java JDK is what allows your computer and therefore Unity to understand and interpret Java
code. Head over to www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html and
download the Java SE Development Kit (Figure 2-8). Make sure you select the x64 version if your computer
will support it.

https://unity3d.com/
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

26

Downloading the Android SDK
To download the Android SDK, head over to https://developer.android.com/studio/index.html
(Figure 2-9). Click the Download Android Studio button, accept the terms and conditions, and let the
download begin. If you’re running a computer with a relatively small hard drive, click Download Options
instead. Android Studio is the standard Android IDE used for creating regular apps, and you don’t actually
need this to use Unity. To save yourself a huge unnecessary file, you can just download the command
line tools and then use the SDKManager included in order to download the rest of the SDK. You’ll find
instructions on how to do this on the Android Studio web site.

Figure 2-8. The Java JDK download page

https://developer.android.com/studio/index.html

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

27

This is more complicated, though, and Android Studio is certainly a useful thing to have around, so if
you can afford the space, I recommend just installing the whole package once you have Java.

Installing Unity 3D
Once everything is downloaded, it’s an easy enough process to begin installation. Start by finding the files
where you saved them and then double-clicking each one in turn. It doesn’t really matter which one you
start with, and all necessary steps are explained in this section.

Unity
When you double-click the Unity Installer and accept the terms of the license agreement, you’ll then need to
choose which version of Unity to download: 64-bit or 32-bit. The best version will depend on your version of
Windows because not all computers support 64-bit. To check whether you have an x64- or x32-bit processor,
head to This PC, right-click, and then go to Properties (Figure 2-10). If your computer is 64-bit, it will read:
“64-bit Operating System, x64-based processor.”

Figure 2-9. It’s easiest to download Android Studio and the Android SDK at the same time

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

28

If you can support 64-bit, then that’s the one to go for because it will enable console support andother
features. The next screen you’ll be shown is the Download Assistant screen. This lets you choose which
components you want to install along with Unity and it shows you how much space you require on your
computer.

On the left, a lot of different options are ticked, and there will be some boxes that are left unticked.
By default, you should find the following are selected:

•	 Unity 5.5 0f3

•	 Documentation

•	 Standard Assets

•	 Microsoft Visual Studio Community 2015

It should look like Figure 2-11. Leave all these as they are, as they’re all important. Unity and
Documentation are self-explanatory, whereas Microsoft Visual Studio Community 2015 is what will allow
you to create and edit scripts in your game (discussed earlier). The Standard Assets option isn’t compulsory
but will come in very handy—this is a large selection of pre-made scripts, sprites, 3D models, textures, and
more that you are free to use in your own games. If you have the space, then adding these is a very good idea.
If you think you’ll want to develop for any of the other platforms listed (and you have the space), go ahead
and tick those options too.

Figure 2-10. This Surface Pro 3 is 64-bit

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

29

There’s one more that isn’t selected by default, though, that you want to make sure you get: Android
Build Support. This is what will ensure that you can create APK files to upload to the Play Store and will be
required when you test and complete your project. Make sure it’s ticked.

You’ll also notice iOS Build Support here, as well as Mac Build Support, Windows Store options, and
more. The good news is that you’ll be able to come back and add these in later if you need to. You’ll notice
how much space is required (around 10.3 GB at the time of writing), and if you have that available on your
hard drive, you can go ahead and click Next again.

Now choose where you want Unity to be installed on your computer. This is entirely a matter of
preference, but do make a mental note of it. Accept some more terms of agreement, hit Next again, and then
wait for Unity to install.

Go and make yourself a cup of coffee, as this does tend to take a fair bit of time.

The Java JDK
Installing the Java JDK is very simple. Just double-click the file and click Next twice, and it will begin
(Figure 2-12).

Figure 2-11. Tick these boxes for smooth sailing later on

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

30

After a few progress bars have been filled, you’ll be given the option of choosing a destination folder. At
the time of writing, the default is C:\Program Files\Java\jre1.8.0_111 (Figure 2-13). It’s fine to leave it as this,
but you may want to make a note of it for later. Click Next again, the installer will finish, and you’ll be ready
to take the next step: installing the Android SDK.

Figure 2-12. The JDK installer

Figure 2-13. Set your destination folder

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

31

The Android SDK
Finally, you need to install the Android SDK. To do that, you install the Android-Studio-Bundle. Double-click
the .exe you downloaded earlier and then click Next on the welcome screen (Figure 2-14) to get to the first
set of options.

Figure 2-14. The Android Studio installer

Here you will choose what you want to install (Figure 2-15). Annoyingly, you can’t deselect Android
Studio (because Google) but you can decide whether you want the Android SDK and Virtual Device.

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

32

The SDK is the main bit we need, so make sure to leave that ticked. The Android Virtual Device meanwhile
is an emulator that you’re going to be able to use to run apps. Unless you’re making a very simple puzzle game
or you have a seriously beefy gaming rig (we’re talking two GTX1080s with a 4 GHz CPU here), you’re probably
not going to be able to use this much to test your fully realized games. You can test live on your Android device
too, so you may want to untick this one if you want to save yourself 1 GB of data. That said, it can be useful for
other testing purposes (experimenting with screen sizes, for instance), so this is your call.

Either way, click Next and then agree to the terms and conditions. On the next screen (Figure 2-16), you
can choose the location for installing both the SDK and Android Studio. If the latter is obtuse (by default,
it might be: C:\Users\rushd\AppData\Local\Android\sdk), then find somewhere simpler to install it that
has 3.2 GB+ of free space. Make a note of where this is, because you’ll need the path later. I’ve chosen C:\
AndroidSDK, seeing as the path isn’t allowed to include spaces (annoyingly).

Figure 2-15. Decide whether you need the AVD

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

33

Figure 2-16. Finally, set your destination folder

Click Next and again on the next screen, and then the installation will begin.

Hardware and Workflow
While all this stuff downloads, let’s take this brief interlude to consider the best hardware for creating your
games and achieving the best setup.

The good news is, your PC doesn’t need to be particularly powerful in order to handle Unity, but you
will want something at least fairly modern. I personally run Unity on a Dominator Pro GT72 6RE as well as
on a Surface Pro 3 (Figure 2-17). The Dominator Pro is a very new VR-ready gaming laptop with a GTX1070
GPU and has no difficulty whatsoever with Unity. The Surface Pro 3 is definitely on the lower end in terms of
ideal specs for Android development with Unity. Although I’ve never been unable to do anything, the system
does get rather hot while I’m coding, and some 3D games can see dropped frame-rates.

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

34

Figure 2-17. A device like the Surface lets you work on the move

Based on this, I would say the Surface Pro 3 (i5) model represents pretty much the minimum specs
you’ll want to work with. That means:

•	 1.9 GHz Processor (turbo boost up to 2.6 GHz)

•	 Integrated graphics

•	 4GB RAM

The Unity website recommends higher, though, and suggests that developers have at least some form
of dedicated graphics card or DX11 with feature level 9.3 capabilities. More RAM would also be preferable,
especially if you intend to use other software like Photoshop (or free alternatives like Fusion, DaVinci, or
GIMP) for creating large images and multitasking between tools. You’ll also want higher specs if you plan on
testing your games with emulators, though you can struggle with this even when using extremely capable
machines.

A GPU is a graphics processor that’s used to render 3D scenes more quickly. This might not be a big issue
if you’re developing largely in 2D (which the majority of this book will be devoted to) but it certainly doesn’t
hurt to give yourself options. Likewise, it would be useful for the section on 3D modeling with Blender.

As well as a GPU, another useful addition is to have both HDD and SSD hard drives. SSDs are solid state
disks—an alternative to hard disk drives—and are very fast but generally somewhat smaller than the slower,
older HDDs. It’s standard to get SSDs of around 128 GB or 256 GB. Because Unity, the Android SDK, and
Android Studio all take up a lot of space, it may be handy to keep at least some of these files on the HDD while
keeping your OS and game files on the SSD for speed. Again though, this is a preference, not a requirement.

In short, it’s possible to make do with a mid-range PC but it would certainly be preferable to use a
gaming rig of some kind. Apart from anything else, having a rig capable of playing games will be useful for
research purposes.

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

35

Creating Your Battlestation (Work Setup)
It’s also worth thinking about your actual setup and work environment because this can make a big
difference to your enjoyment during development and can save you headaches later on. One big advantage,
for example, is to have a large monitor and possibly even an ultrawide 21:9 display (Figure 2-18). Unity has
lots of different windows and panels as we’ll see in Chapter 3, and it is a big advantage to be able to see
all these at the same time so you can juggle tasks more easily. A big screen will provide a big boost to your
multitasking, help you avoid eye strain, and improve immersion (removing distraction).

Figure 2-18. A superior setup

If you prefer to work on a laptop, make sure it’s one with a larger screen (18.3 inches or larger) and has
enough horsepower to cope. There is something to be said for working in cafes over a cup of coffee (I find
it enhances productivity), but for that you’ll ideally want a newish laptop from the likes of Razer, Asus, Dell,
HP, Lenovo, or Toshiba. A Surface Book or a MacBook will also do the job nicely. Of course, our installation
instructions are aimed at Windows users, so if you’ll be running on a Mac, you’ll need to go through a slightly
different process to get up and running.

You’ll want a comfortable keyboard, of course, and a precise mouse for typing and dragging and
dropping. A wired keyboard is preferable to improve responsiveness when testing games on the computer. If
you’re shelling out in order to create the best possible setup, something like a Corsair Gaming keyboard will
be a joy not only to type on but also to test and play games on.

Otherwise, make sure you have a comfortable chair, ideally a large desk space to spread out and arrange
notes and sketches, and a room that’s as free from distraction as possible. If you manage all that, you’ll be
good to get started and you should find that your work goes as smoothly and as enjoyably as possible. If you
plan on doing a lot of development, investing in a good space for work is a good way to spend your money
and will result in a better end product completed more quickly.

http://dx.doi.org/10.1007/978-1-4842-2704-6_3

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

36

It doesn’t matter what you call the game at this point—this is only the name of the folder. You can
change the name of the APK to whatever you like later on. For now, let’s just call it Simple Platformer. Enter
that, tick 2D, and then click Create Project. Give it a second and you’ll be greeted by a rather empty Unity
project. There are lots of windows, and it probably looks a little confusing at this point, but don’t worry,
we’re going to go through what everything does in the very next chapter.

Starting Your First Project
Installation finished? Great!

At this point, you should have Unity and all the necessary components you need for it installed on your
computer and ready to go. And hopefully you’re eager to jump in and get started. In that case, let’s launch
Unity for the first time and do just one last bit of setup.

First you’ll need to sign in to the account you created on the web site. If you haven’t done that already,
click the link (Create One) and you’ll be taken to the relevant page where you can set one up. You can
then log in using your new Unity ID and you’ll need to confirm that your company is making less than the
threshold if you want to stick with the free account.

Once you’re past that screen, you’ll be greeted by window that lets you select from existing projects or
start a new one. You’ll probably have nothing here for now, seeing as this is your first ever time using it. So
click New and choose a name and location for your project (Figure 2-19). You also need to make sure that
you choose 2D so the game will automatically support a 2D format.

Figure 2-19. Starting your first project

Chapter 2 ■ IntroduCIng unIty and gettIng Set up

37

Setting Paths
Let’s do one last bit of setup by telling Unity where the Android SDK is located on our system. Head to the
top menu and find Edit ➤ Preferences ➤ External Tools. You’ll then find a space to input the location of the
Android SDK (main folder) and the Java JDK (file), as shown in Figure 2-20. If you made a note of these paths
earlier on, copy and paste them into here. Otherwise, hit Browse and navigate to the right locations. If your
folder is located in AppData, it may be hidden, so tell File Explorer to Show Hidden Items (under the View tab)
and then track it down manually. It’s there somewhere—just keep looking.

Figure 2-20. Setting up your paths

You won’t actually need to worry about this until you come to test your app for the first time, but it’s
good to have everything set up before we begin. If you want, you can skip this stage for now but just be sure
to come back to it when it comes to the first launch of your game.

With that done, Unity is now set up and ready to go. It’s time to get excited because in Chapter 3 we’re
going to start actually using it, arranging some GameObjects, and even introducing very basic physics.

http://dx.doi.org/10.1007/978-1-4842-2704-6_3

39© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_3

CHAPTER 3

Finding Your Way Around Unity

So Unity is now up and running, and there’s nothing left standing in your way. Time to get going.
Before you build anything, let’s first get you acquainted with the different UI elements, controls, and

options. You’re going to be spending a lot of time here, so it’s a good idea to familiarize yourself.

What’s All This Then? Getting Acquainted with the IDE
When you get your first look at Unity (Figure 3-1), it can all appear rather confusing with lots of different
windows, menus, and options. Fortunately, it’s all a lot simpler than it looks once you get going. We’ll go over
what each of these different views is for over the course of this chapter and at the same time we’ll be able to
test our first very simple application.

First, the views.

Figure 3-1. Welcome to Unity! You’ll be spending a lot of time here

Chapter 3 ■ Finding Your WaY around unitY

40

Scene
Right in the center of Unity is a view called Scene. This is where a lot of your work is going to get done
and is essentially the window where you’ll move your various GameObjects and arrange everything. This
shows you a view of the level/menu screen that you’re working on at any given time and lets you select and
reposition elements around the screen. You can zoom in and out and if you were in 3D mode you’d also be
able to move the camera around 360 degrees.

Asset Store
At the top of the Scene window (Figure 3-2) are two tabs that allow you to change between two different
functions. Hit the Asset Store tab, and as you might expect, the Scene view will be changed for the Asset Store
view. The Asset Store is where you browse for various assets—scripts, GameObjects, sprites, effects, and
more—to include in your own application. These assets are developed by other Unity developers, as well
as by Unity Technologies. Some are free and others cost money; some are very simple additions to existing
projects, whereas others are practically entire ready-made games for you to edit as you like.

In short, the Asset Store makes your life considerably easier by ensuring that you won’t need to create
every single script and sprite by hand.

That said, this isn’t something you’re going to be needing for a while, so for now keep the tab on Scene
and don’t worry about it.

Figure 3-2. Scene, Game, and Asset Store tabs

Chapter 3 ■ Finding Your WaY around unitY

41

Game
There may be a third tab on this window, as shown in the preceding figure, called Game. This view is where
you’ll see the actual game as it will appear when it’s live. And when you play the game, this is where it will be
located (unless you choose to maximize the game as you play it).

If Game isn’t located in the same place, it will be around there somewhere. You have freedom to change
the positions of the windows, and sometimes after an update, the default setup can get moved around. Most
people should find that everything is in the same place and they can follow along with these instructions. If
not, you should be able to locate each element pretty quickly.

You can’t drag and drop elements into the Game view (as you can in the Scene view) and you can’t
select them or move them around either. That said, for the most part Game view will mirror what you’re
seeing in the Scene view with a few differences. For one, the perspective will be fixed to the in-game camera,
meaning you’ll see what your players will see when they launch the game. Likewise, when there are multiple
items sharing the same X and Y coordinates, the item on top will be the one closest to the camera along the
Z axis, rather than the one selected.

If this all sound a little confusing, don’t worry about it—it will make sense once you see how it all works
(and that applies to all the windows).

Services
Usually located to the right of the Scene view is the Services tab, which shares a window with the Inspector.
This includes such things as ads for monetization, analytics for learning about how your players are enjoying
your games, multiplayer, and so forth. Note that some of these features will be missing or limited if you have
the free version.

For now, you can completely ignore this window. These services will mainly come into effect for more
ambitious projects and only once those apps are live in the Play Store.

Inspector
Next comes the tab that often shares its window with Services: the Inspector (Figure 3-3). The Inspector is
what you will use to see and edit details of GameObjects. So when you select a GameObject like a sprite in
the Scene view, you’ll then be able to use the Inspector in order to view things like the name of the object,
the dimensions, any scripts that might be attached, and so on.

Chapter 3 ■ Finding Your WaY around unitY

42

You’ll be using the Inspector a lot, so keep this where you can see it. Right now, though, it will be
completely blank.

Project
Normally located along the bottom of the screen is a window for the Project and Console tabs
(and sometimes Game will be here too). The Project tab should be open by default and is where you can
see all the individual files associated with your project. Along the left portion of the window is the directory
where you can select a folder, and on the right are the contents of that folder. Right now, your project only
has one folder called Assets. And in that folder is … nothing.

This will be a useful window as you work because it will allow you to find sprites that you’ve created
with other software and rename or delete files that you need for your game.

Console
Next to the Project tab is the Console tab (Figure 3-4). This is where you can get information regarding the
status of Unity and your app. You’ll be able to see debug information, crash reports, and errors, and this can
help you identify issues in your code or work out just why your game won’t run or compile. This will come in
handy, but we won’t need to worry about it for a little while, so keep Project visible in front of it for now.

Figure 3-3. Inspector and Services

Chapter 3 ■ Finding Your WaY around unitY

43

Hierarchy
Finally, one of the most important elements in the UI is the Hierarchy (shown in Figure 3-4), which is almost
always found on the left of the Scene view. Hierarchy shows a list of all the GameObjects in your scene at
any given time, and when you select one of them the Scene view will center on it; it will also be opened in
the Inspector. This lets you quickly find specific GameObjects to make edits, and it’s also the only way you
can select “invisible” objects like checkpoints. The Hierarchy can also be very handy when you want to
select multiple objects (maybe all of your collectibles, for example) and has a useful search utility for quickly
retrieving specific items.

Keeping a tidy Hierarchy is good practice and will help you to work a lot more quickly and efficiently
going forward.

Figure 3-4. The Hierarchy and Console

Chapter 3 ■ Finding Your WaY around unitY

44

Housekeeping
I recommend that you leave the windows in their default configuration in most cases. They have been
arranged like that for a reason (it works), and this will make it easier for you to follow along with the
instructions in this book. The Console or others might not be in precisely the same place, but we’ll mainly
be using the Scene, Game, Project, and Inspector windows for now. Don’t worry about the rest.

But if you find that the UI feels cramped or you just don’t like the way it’s arranged at any point, you
can hover the mouse pointer over any of the dividing lines to change the relative sizes. You can also drag
tabs from one window to another, close them entirely, or bring them back using the options in the Window
menu. You may have already noticed that there are additional windows that you can open, found in the
Window menu, including the likes of Audio Mixer, Animator, and Sprite Packer. Some of these we’ll be using
later, but for now you don’t need to worry about them; you should be able to do mostly everything with the
Hierarchy, Scene, Project, Game, Asset Store, Console, and Inspector windows.

Getting Your Toes Wet with Objects and Scenes
That’s enough theory—time to get practical. To really understand how these windows work and what you
need to do to get started, the best thing to do is to start building something. Once you do that, you will see
firsthand how everything works together and how you’ll manage your workflow once you get developing.

Adding Sprites
To get started then, let’s begin by adding our first GameObject. That is going to be a simple 2D square.

Unlike working with 3D objects, there are no simple shapes for you to insert in 2D. That means that any
2D objects you introduce must be created first as sprites. Creating a square is simple enough, though: we
can literally start a new MSPaint file, resize it to 50 x 50 pixels, and then just fill the space with a single block
color. Save that as a PNG file and drag it from wherever you saved it into your project folder. Call it Square for
simplicity. You can see my Square in Figure 3-5.

To help us get into good habits early on, we’ll first create a folder in our project specifically for sprites.
And in the spirit of good habits and good nomenclature, we’ll call the folder Sprites. To do this, right-click
your Assets folder in the Project window and then go to Create ➤ Folder (Figure 3-6) and name the folder
Sprites. It should look like Figure 3-7 once you’re finished.

Figure 3-5. Square. Not quite triple-A graphics.

Chapter 3 ■ Finding Your WaY around unitY

45

Figure 3-6. Creating new folders is very simple

Figure 3-7. Your Sprites folder should look like this. It’s a folder. Called sprites.

Chapter 3 ■ Finding Your WaY around unitY

46

As we go, we’ll be creating more folders for our scripts, sounds, scenes, and more—it’s smart to create
lots of folders to help keep everything separate and so we can quickly retrieve the type of file we need at any
given time.

Once you’ve made that folder, you can simply drag the square.png file from Windows Explorer into your
Sprites folder. Note that at any time, you’ll also be able to right-click your Project window and select Show in
Explorer. This will show you the Assets directory within your project, and anything you put in here will show
up in the Project window once you refresh the view.

With that, the sprite is now a part of your project. And you can use the exact same process whether you
want to add sprites of trees, collectibles, enemies, or anything else into your levels. It really is that simple.

Two Ways to Introduce GameObjects
There are two ways to add this simple GameObject into the scene, and we’re going to go through both of
them here because I feel it’s a good learning opportunity.

The most straightforward way is simply to click the sprite in your Project window and then drag it
straight into your scene and drop it. You’ll then see that it appears in your Scene view and also that it’s
listed in your Hierarchy on the right (Figure 3-8). If it’s selected, details about the square will show in your
Inspector window as well. Click your Game view and you’ll see that square against a different shade of blue
in the background.

Figure 3-8. The scene, now with the square

Chapter 3 ■ Finding Your WaY around unitY

47

The other way to add sprites like this to your Scene is to head over to the top menu and then click
GameObject ➤ 2D Object ➤ Sprite (Figure 3-9). When you do this, a New Sprite will appear in your
Hierarchy window, but you won’t be able to see it in the Scene view because it currently doesn’t have an
image file associated with it. It will have a translucent circle around its coordinates, however, whenever it’s
selected.

With New Sprite selected in the Hierarchy, open up the Inspector window and notice the section called
Sprite Rendered. In here, the first line says “Sprite: None (Sprite).” You can simply drag and drop your Square
file into here or you can click the small circular button next to the box to choose it from a file selector dialog
(Figure 3-10).

Figure 3-9. The second way to insert your sprite

Chapter 3 ■ Finding Your WaY around unitY

48

While you’re in the Inspector, why not also take this opportunity to change the name of your second
sprite (currently New Sprite) to something more interesting … like Square 2.

Try both these methods and you’ll have two different sprites on the screen in your Scene window:
Square 1 and Square 2. It should look like Figure 3-11.

Figure 3-10. Using the Sprite Renderer

Chapter 3 ■ Finding Your WaY around unitY

49

Manipulating GameObjects
As you might have guessed already, you can very easily move your new sprites around in the Scene view
simply by clicking them and dragging them around the screen. As you do this, you’ll notice that the
coordinates change in the Inspector. Under Transform, the X and Y values of Position change as you move
the square, as I have done in Figure 3-12.

Figure 3-11. If it looks something like this, you’re doing well

Chapter 3 ■ Finding Your WaY around unitY

50

That means you can just as easily change the positions by entering numbers in the Inspector. This will
come in handy if you need to line things up perfectly or set them in a very specific position (something you’ll
do a lot of). We’ll see later on though that there are also more effective ways to ensure that everything stays
nicely lined up and snapped to a grid while we work.

“What about Z?” I hear you ask! Well, the Z axis is largely redundant when creating 2D games, though not
entirely. We’ll see later on that you can use this option to create a parallax scrolling effect and that it can also
be useful for defining which sprite should be rendered for the player to see when there are multiple located in
the same place. This can also be controlled by changing the Z order, which we’ll also look at later on.

Rotation and Scale
You may have noticed that you also have two more interesting options under Transform here in the
Inspector: these are Rotation and Scale. They pretty much do what they say and allow you to alter the
rotation and the size of your sprites. We’ll ignore Rotation for now because we won’t be needing that for a
while. But you’ll find that if you change Scale X and Y from 1 to 2, your sprite doubles in size.

Manipulating GameObjects in the Scene View
If you wanted to do this freehand, you could opt to alternatively use the tools along the top of screen, on the
left just above the Hierarchy window. These tools include a hand and various arrows doing different things,
as shown in Figure 3-13.

Figure 3-12. Change the X and Y coordinates in the Inspector to move your sprites

Chapter 3 ■ Finding Your WaY around unitY

51

These tools change the way you interact with the Scene view. You simply click the tool you want to
indent it and select it:

•	 The hand at the furthest left lets you drag the screen around and move your view,
which is useful for scrolling through a large level.

•	 The tool that looks like four arrows on a compass is what you use to move specific
GameObjects around the screen (see Figure 3-14). You can simply click the
GameObject and start moving it around freely in the Scene view, or you can select
it and then drag either the red or green arrow to move it solely in the X or Y axis
respectively.

•	 The two curved arrows indicate the rotation tool. Select this and a circle will appear
around the selected game object that will allow you to rotate it in two dimensions.

•	 Then you have the scale tool, which again gives you two arrows that you can use to
scale the object along each axis.

•	 The final tool is your jack of all trades. It lets you drag GameObjects, resize them by
pulling on the corner, or draw squares to select multiple objects in one go.

Whether you move your objects around freehand with the tools or by changing numbers in the
Inspector, you can arrange your sprites however you like and conceivably create some nice-looking
landscapes.

But let’s not get ahead of ourselves....

Figure 3-13. The tools you’ll be using in the Scene view

Figure 3-14. The drag tool

Chapter 3 ■ Finding Your WaY around unitY

52

Testing the Game and Using the Camera
If there’s one control in the UI that’s likely to have caught your eye, it’s the play button. The good news is that
this does exactly what you would hope: it allows you to test the game.

Hit the play button and your game will run in the Game window, showing you two squares located on a
light blue background. It’s probably not going to take the world by storm, but congratulations, you just
ran your first working program (Figure 3-15)! This is our “Hello World,” and things only get a lot more fun
from here.

While the game is playing, you can view it in the Game view (Figure 3-15) and you can continue to make
edits via the Inspector or in the Scene window. Just keep in mind that when you do this, nothing will save. If
you move a sprite while the game is running, it will then jump back to the position where it last was as soon
as you stop it again. Use this for previewing changes “live” but not for making permanent alterations to your
code. Try and drum this into your head right now. It’s not uncommon to move a bunch of things around and
change a bunch of code, only to find out that you forgot to stop the game from running first and lose it all.

To stop the game at any time, just hit the play button again. Note that if you want the game to be full
screen when you hit play, you can click Maximize On Play. This is useful when you’re testing your game
properly, or you just want to have a good go at it. Figure 3-16 is what our game currently looks like when
blown up.

Figure 3-15. Your first “game”—congrats!

Chapter 3 ■ Finding Your WaY around unitY

53

The Camera
The observant among readers may have noticed that there are more than just two GameObjects in the
Hierarchy view. The third object is called Main Camera, and if you select it, you’ll see that this is the white
camera icon that is floating in your Scene view.

Main Camera is a GameObject, like your sprites, but with a Camera component rather than a sprite.
When you add one of these to a scene, it defines where the player’s perspective is and what they’re going to
see on the screen. Try moving the camera around and then hitting play, and you’ll find that it changes where
the squares appear on the screen—the squares haven’t moved, but your perspective has changed.

It may feel odd that your camera is treated in the exact same way as a sprite, but this is what you need
to understand about Unity: everything is a GameObject. Scripts do not run unless they are attached to
GameObjects, and this may require you to rethink the way you approach your code if you’re used to other
languages. But once you get to grips with it, it’s a powerful and flexible way of working.

P.S. This is not what is meant by object-oriented programming. It’s related... but I’ll explain more in a
subsequent chapter.

Since we’re looking at the camera, let’s edit something that you may be finding frustrating: the
background color of your Game view. Click the camera and you’ll see a setting called Background in the
Inspector, which is currently blue. If you select the color, you’ll be given the chance to set this to a new color.
Choose black—that way your blue squares will stand out a lot more clearly.

Figure 3-16. The same game, only massive

Chapter 3 ■ Finding Your WaY around unitY

54

Saving Your Project and Scene
Seeing as you’re probably incredibly pleased with this amazing creation, it’s time you go about saving it to
make sure nothing bad comes to it.

There are actually two things you need to save here: the project and the scene. The scene is what you are
viewing through your Scene window and it encompasses everything in your Hierarchy right now (two squares
and a camera). For all extents and purposes, a scene is a level in most cases, though it could also refer to a title
screen or an options menu. It is essentially any collection of GameObjects and scripts that you’ll want to load
at some point in your game.

To save your project, use the menu along the top and choose File ➤ Save Project.
To save the scene, you’ll first want to create a new subfolder in your Assets folder—call it Scenes. Now go

to File ➤ Save Scene (Figure 3-17). When the dialog comes up, select the Scenes folder you just created and
call the file Level 1. When you have multiple scenes in your project, you’ll be able to switch between them
simply by double-clicking them from the Scenes folder.

A Little More Organization
As we’re being so organized and getting into good habits early on, let’s make one more sort-of-folder before
we move on. Right-click any blank space in your Hierarchy and click Create Empty. This will create an
“empty” GameObject, called GameObject. It should already be selected, so head over to the Hierarchy and
rename it Squares. You could theoretically turn this empty GameObject into any other kind of GameObject
by clicking Add Component and then choosing the Camera component or the Sprite Renderer, for example.
Instead we’re keeping it empty, which will let us attach other GameObjects to it and thereby use it as a
makeshift grouping (Figure 3-18).

Figure 3-17. Saving our scene

Chapter 3 ■ Finding Your WaY around unitY

55

Drag your two squares from where they are onto your empty GameObject, and they will now be filed
underneath it. The arrow just next to the empty GameObject will also now allow you to expand and collapse
those items. This isn’t really necessary at this point, but trust me, when you have 200 collectible coins,
30 enemies, and 700 tiles on your screen, you’ll be glad for the organization.

One Last Thing to Set Up: Snap Grid Settings
In Chapter 4 things are going to get exciting: we’re going to add physics to our squares so that they can fall
and bounce around, and that’s just the start. Before we do that, though, we should handle one more bit of
setup and explain one more piece of the UI.

You may have noticed that there is a grid in your Scene view and wondered what all that was about. This
grid is made up of units, which can represent whatever you want them to in order to help you organize your
sprites around the screen. What do you call a program full of units? Unity! (Okay, this isn’t really where the
name comes from....)

Right now, you’ll notice that your squares and units bear no relation. To change that, first set the scale X
and scale Y on both squares back to 1. Now open up your Sprites folder and select the Square sprite so that it
opens in your Inspector (don’t just click one of the Square GameObjects, because that won’t work).

Figure 3-18. Start organizing your Hierarchy now and you’ll be very glad you did

http://dx.doi.org/10.1007/978-1-4842-2704-6_4

Chapter 3 ■ Finding Your WaY around unitY

56

You should notice an option for Pixels Per Unit, which may be set to 100 by default. Change that to
50—don’t forget to click Apply in the bottom right—and you should find that both squares now immediately
change to become the same size as the squares on the grid (as in Figure 3-19). Remember, when we made
these sprites, we made them 50 x 50 pixels. By making it so that 1 unit = 50 pixels, we now have perfectly
sized squares.

Another useful trick we can use now is to snap our sprites into place. While dragging a sprite, hold Ctrl
and you will find that it jumps from point to point rather than moving smoothly. You can change how far
apart those points are by choosing Edit ➤ Snap Settings. You’ll find that this is probably set to 1 for the X and
Y axes respectively. If it isn’t, change it so that it is (see Figure 3-20).

Figure 3-19. Make sure to set your pixels per unit for every new sprite

Chapter 3 ■ Finding Your WaY around unitY

57

Close that dialog and free-move one of your squares so that it is positioned exactly within the bounds of
one of the grid squares. Now press Ctrl + C (copy) and then Ctrl + V (paste). This will duplicate your Square
GameObject to create an exact copy in the exact same place. Hold down Ctrl and drag your square to the
right. It should move exactly one tile’s width to sit flush next to your previous tile. You can also copy and
paste GameObjects by right-clicking and selecting Copy from the Hierarchy view. Do this a few times and
you can create stairs and other structures.

This might feel pretty unexciting at this point, but it’s actually a very important skill. When creating
levels in games, it’s really important that all your tiles are perfectly positioned right next to each other and
that they don’t have tiny pixel-wide gaps between them.

Why not try using a slightly more elaborate sprite and making something that looks like the basics of a
level? I’ve made some grassy steps in Figure 3-21.

Figure 3-20. Snap settings

Chapter 3 ■ Finding Your WaY around unitY

58

Figure 3-21. We’ll learn how to create sprites and even pixel art in future chapters

Hey, would you look at that … we’re getting somewhere.
Now let’s bring this world to life, shall we?

59© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_4

CHAPTER 4

Adding Physics and Getting
Started With Coding

At this point, you now have a world that is starting to look a little bit like a conventional computer game level.
In this chapter, we’re going to make it play like a conventional computer game level by adding some basic
physics and movement. For this, you’re going to be trying your hand at coding for the first time. Good luck!

So, we have tiled sprites that have a grassy pattern, and to mix things up a little, I’ve also created a
sprite to represent the ground underneath the grass, so that I can get a bit more creative with my level
design (see Figures 4-1 and 4-2).

Figure 4-1. The second ground tile

Figure 4-2. Some tiles just ready to be climbed on!

Chapter 4 ■ adding physiCs and getting started With Coding

60

I created the second dirt sprite the exact same way as the first one and then just copied it around
wherever I needed ground underneath the surface of my grass. You can do the same—just remember to hold
down Ctrl to keep the distances perfect using the snap to grid feature.

Now we’re going to do something even more exciting: create a game character and drop him into our
world. To begin with, we’re going to make the simplest character sprite we possibly can, which would be
another square. In the interest of making things a bit more interesting, we’ll also give him eyes.

Meet Squarey (Figure 4-3).

Squarey can be any size you like, but for simplicity I recommend keeping the same dimensions as you
used for the ground tiles.

Now add Squarey into your Sprites folder just as you did with the others. Make sure that you remember
to set the Pixels Per Unit to 50 again and then drag him into your scene. Name this new Game Object Player
and keep it separate from the Squares folder. It doesn’t matter where in the level you want to drag him, but I
chose to put him at the top of the hill I created (Figure 4-4).

Congratulations! You now have a main character. Problem is, he doesn’t actually do anything yet.
So, the next thing we want to do is to apply some physics so that gravity and other things will affect our

character. And you won’t believe how easy Unity makes this bit.

Figure 4-3. Squarey, mate, you don’t look so good

Figure 4-4. Squarey surveys his domain

Chapter 4 ■ adding physiCs and getting started With Coding

61

Using RigidBody 2D
As mentioned, the whole point of using a physics engine like Unity is so that we can access ready-made
scripts and elements to avoid coding everything ourselves from scratch. This makes it incredibly simple to
add something like gravity: all we have to do is drag a script onto our GameObject for it to take effect.

While your player is selected, click Add Component in the Inspector. Now click Physics 2D ➤ RigidBody 2D.
RigidBody 2D is the name of a script that works on 2D sprites and applies all the basic physics we could
want, such as gravity, friction, momentum, collision, and more.

The easiest way to see what this does, though, is to put it into action. So drag Squarey a little higher
in the Scene window and then click play. If everything goes according to plan, we now have a sad-looking
Squarey who simply falls from the top of the screen and off the bottom. Squarey, meet gravity!

Using Colliders
The astute will note that there’s something missing here. Of course, we don’t actually want Squarey to fall
through the ground underneath him; we want him to land on it. Fortunately, this is an easy fix too.

Just click Squarey again and then Add Component ➤ Physics 2D ➤ Box Collider. You should now be
able to see both RigidBody 2D and Box Collider 2D in the Inspector.

What’s more, you should also notice a thin green outline around Squarey. This is the collider, which
essentially defines the boundaries of your sprite and tells RigidBody 2D where the physical mass that makes
up the character starts and stops.

Click play and you’ll see that the character still falls through the ground below. Hopefully, you’ve
guessed already that this is because our tiles also need to have colliders attached. To do this, drag a square
around the tiles in your Scene view using the mouse in order to select them all at once. You can do this
just the same way you would select a bunch of icons on your desktop (Figure 4-6), or by clicking the first
item in the hierarchy and then the last item while holding down Shift. You can also use Ctrl for making
bulk selections, just as you would in most Windows programs. This is a trick that will often come in handy,
although there’s another method for making mass changes that we will look at shortly. Make sure to deselect
the camera and then add a collider in the Inspector. This will now be applied to every GameObject selected
all at once.

Figure 4-5. The green outline shows Squarey’s collider

Chapter 4 ■ adding physiCs and getting started With Coding

62

Notice that we’re not adding the RigidBody 2D to our ground tiles. That’s because we don’t want them
to fall off the screen.

Now click play, and if everything goes according to plan our character will fall and land on the ground
(Figure 4-7).

If you want to test just how detailed RigidBody 2D is, position Squarey so that he’s partly hanging over
the edge of one of the steps and then click play again. When he lands, he should tip and actually roll down
the stairs.

At this point, we now already have a game that acts the way we expect it to. The next step should
probably be to make it interactive. Get ready: this is where the actual coding comes in.

Figure 4-6. Later we will discuss using prefabs to avoid having to select multiple GameObjects

Figure 4-7. Success!

Chapter 4 ■ adding physiCs and getting started With Coding

63

Getting Started with Coding in C#
Before you begin coding, we first need to make a folder to contain all of our scripts within the Assets
directory. Right-click in the Project view and select Create ➤ Folder, just as you did when you created the
Sprites and Scenes folders. Call this new folder Scripts and then open it up.

In here, you’re again going to right-click and this time select Create ➤ C# Script. Call this Player and
then double-click it to open it. You’ll now be opening Visual Studio for the first time. But first, you need to
sign in. To do that, you can just use your Microsoft account (the one you probably use to log into Windows
and Hotmail). If you don’t have one, you’ll be given the opportunity to create one.

Once you’re in, the UI should look something like Figure 4-8.

For now, we’re concentrating on that big window in the middle, which is where we can input and edit
code. We’re choosing to code in C# here because it’s somewhat similar to Java—the language used in most
Android development—only slightly simpler. One thing to keep in mind when coding in C# is that every line
needs to end with a semicolon or an open or closed curly bracket. If you miss this, you’ll get an error. You’ll
probably find that it’s surprisingly easy to miss this crucial detail and then spend ages routing through your
code trying to find out why it won’t run.

What you might also notice here is that the document actually isn’t empty but instead has several lines
of code already within it. These are functions, which are standalone collections of code that are called at
specific times. The two functions we have here will be present in every script we create and help to provide a
little bit of structure for what we’re about to do.

The whole thing should look like the following:

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour {

 // Use this for initialization
 void Start () {
 }

Figure 4-8. Welcome to Visual Studio

Chapter 4 ■ adding physiCs and getting started With Coding

64

 // Update is called once per frame
 void Update () {
 }
}

Don’t worry about the top two lines just yet. The third line that reads public class is really just naming
the script we’ve created, and the following two sections (void Start and void Update) are our functions.

Two other things to note are the forward slashes. Whenever a line starts with two forward slashes in C#,
that means it’s a comment and that it won’t have any effect on the way the code runs. In other words,
this is how you can write yourself messages in case you forget what a line of code does. When teams of
programmers work together, commenting like this is immensely important to ensure that every member
knows what everything does.

The two comments that are already here describe what the functions do. The first one says "Use this
for initialization", so void Start will run whenever the script is first introduced into the scene. The
second comment says "Update is called once per frame", so void Update runs repeatedly at a very fast
speed as the game refreshes.

To demonstrate this, let’s try and make our character move right across the screen. To do that, we first
need to refer to some important elements that we’re going to be working with in the code. In this case, we
need to work with the RigidBody 2D script that is attached to our Player GameObject. And to do that, we
need to add the following code:

public class Controls : MonoBehaviour {
 public Rigidbody2D rb;

 void Start () {
 rb = GetComponent<Rigidbody2D>();
 }

What’s happening here is that we’re creating a reference to a RigidBody 2D and calling it rb
(short for RigidBody). Then, when the script initializes, we’re telling it that the instance of RigidBody 2D
to work with is the GameObject that our script is attached to (in a moment, we’ll be attaching this to the
Player GameObject).

Don’t worry if this is all a little confusing: you can just copy and paste the code for now and it will make
more sense later on.

Finally, we’re going to add the following line of code to our Update function:

void Update () {
 rb.velocity = new Vector2(1, rb.velocity.y);
 }

This is simply adding a veleocity with the value 1 to the horizontal X coordinate of the RigidBody
(Vector is a coordinate). Because this is in Update, that means that it should run each time the scene
refreshes—which happens incredibly quickly. The whole thing should look like the following:

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour {
 public Rigidbody2D rb;

Chapter 4 ■ adding physiCs and getting started With Coding

65

 // Use this for initialization
 void Start () {
 rb = GetComponent<Rigidbody2D>();
 }

 // Update is called once per frame
 void Update () {
 rb.velocity = new Vector2(1, rb.velocity.y);
 }
}

Make sure you remember to save your work!
Now all that is left to do is to head back to Unity and add the Player script to the Player character.

We do this just the same as we added RigidBody 2D: select the Player GameObject, click Add Component,
and then Scripts ➤ Player. Now click play and you should find that Squarey moves continually to the right
and then falls down the steps to his ultimate doom (Figure 4-9).

Only once you’ve attached the script to your GameObject will it have any effect, and you could just as
easily have added this to a ground tile for the same effect.

Introducing Variables
Now it’s time for us to play with some variables. Variables are a very important concept in coding and are
where a lot of the logic and versatility come in.

Essentially, variable is a shorthand for a piece of data that can be used to represent that data (such as
health or a player’s name) in the future. Chances are, if you can think back to math at school, you will find
you have encountered variables in the past. Remember puzzles like these?

10 + x = 13, find x

Well, in this case, x is a variable that happens to represent 3. But if we were to write it like this

10 + x = ?

Figure 4-9. Squarey now has Lemming AI

Chapter 4 ■ adding physiCs and getting started With Coding

66

that would allow us to alter the outcome, simply by changing the value of x using a key or something similar.
We can do the precise same thing when working with variables in C#. For example, we can change the speed
that our character moves at by replacing the 1 with a variable called movespeed. But first, we need to define
what movespeed means by initializing it. So now our code looks like this:

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour {
 public Rigidbody2D rb;
 public int movespeed;

 // Use this for initialization
 void Start () {
 rb = GetComponent<Rigidbody2D>();
 movespeed = 2;
 }

 // Update is called once per frame
 void Update () {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 }
}

Squarey will move just the same before, but this time at twice the speed.
When we created our variable, I used some terminology that will be useful to understand. Int, for

example, is short for integer, which is a type of variable that stores whole numbers. Whenever you define a
variable, you always need to tell C# what type of variable you’re working with. A few useful ones to know at
this point are:

•	 Integer: Any whole number

•	 Float: A floating point variable is a number with a decimal point

•	 Boolean: A variable that can be true or false, or 1 or 0

•	 String: A text variable

Meanwhile, public means that the variable can be accessed from outside the script. In fact, this means
that we can even edit our movespeed from the Unity UI.

To do that, delete the line that says movespeed = 2 and then select the Player GameObject in Unity.
You should see that there’s now a Movespeed box in the Inspector, as in Figure 4-10.

Chapter 4 ■ adding physiCs and getting started With Coding

67

Try setting this value to –1 and you’ll see that Squarey now moves in the opposite direction, away
from the stairs and toward the sudden drop. If you don’t delete the movespeed = 2 line from the script, this
will simply be overwritten every time that the Start function is called. If you don’t want the variable to be
accessible outside of your code, then simply use the word private instead of public.

For now, let’s leave movespeed as 3, because we want Squarey to be a bit faster for the next bit. Although
you could have done the same thing without using a variable, this is all very useful to know and you’ll see it
comes in handy repeatedly as you add more elements to your scenes.

Figure 4-10. Changing Movespeed in the Inspector

Chapter 4 ■ adding physiCs and getting started With Coding

68

Controlling the Player Character
Seeing our character move around the level and interact with the scenery is pretty exciting, but really we
want to be able to control the character. The good news is that this is something we can do quite easily by
only slightly changing the code we already have. All we need to do is add a couple of if statements, as in the
following code:

void Update () {
 if (Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);

 }
 if (Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);

 }
}

What’s happening here is that the script is checking to see whether there’s an input each time the
game updates. Of course, KeyCode.LeftArrow and KeyCode.RightArrow refer to the respective keyboard
inputs, and we then move the character by movespeed or –movespeed depending on which one was pressed.
"If" statements essentially tell a section of code to run only when a specific argument is true. The code
inside the curly brackets will run only if the line inside the parentheses is true.

If we were to write this in pseudo code (fake “code” that uses normal English terminology to be more
easily understandable), then it would translate as follows:

If (Player is pressing right) {
Move character to the right
}

It’s always important that you remember to close the curly bracket at the end of the if statement.
If you have any experience with Excel or other spreadsheet software, using if statements like these
might be familiar.

 ■ Note if you were to create an apK (app package for android - more on this later) and run this on android
right now, it would actually work with a Bluetooth keyboard. Later on though, we’ll look at how to implement
touchscreen controls.

If you click play now, you should have the exciting opportunity to actually try controlling Squarey—like
a real game. Although we’ve had to write a little bit of code here, hopefully you agree that this is remarkably
simple all things considered: with just a few lines, we now have a good-looking game world and a character
that we can control within it.

Chapter 4 ■ adding physiCs and getting started With Coding

69

More Advanced Logic and Introducing Jumping
Squarey can move left and right like a pro now and is pretty adept at jumping off of things too. You should be
feeling like a proud parent. But in order to platform with Mario, Sonic, and the best of them, he’s also going
to need to learn some jumping skills. Unfortunately, that’s a little more complex than moving left and right.

You could try and implement jumping the same way you handled moving left and right. The following
code would allow our hero to jump:

if (Input.GetKey(KeyCode.Space))
 {
 rb.velocity = new Vector2(rb.velocity.x, 5);

 }

The only problem is that this code would also allow him to fly. That’s because we’d be adding more
upward velocity every time we pressed the spacebar, regardless of whether he was on the ground or in the air.
This is no good.

So instead we need to check that he’s on terra firma first. And that’s a tiny bit more complicated.
First, we’ll need to create a new transform. A transform is a point in space that has its own coordinates

and rotation (angle). This point is also going to have a radius (which will be a float), and we’ll also need a
layer mask. We’re now also creating our first Boolean variable called onGround.

In short, you’re adding all the following code to your script:

public Transform groundCheck;
public float groundCheckRadius;
public LayerMask whatIsGround;
private bool onGround;

Now, that might seem rather complicated, but don’t worry, I’ll explain what each bit is and what it does
as we go.

In case that wasn’t all daunting enough at this stage, we’re also going to add another function to our
code, called FixedUpdate. FixedUpdate is a function just like Update except that whereas Update is tied to
the refresh rate of the screen, FixedUpdate is more consistent and therefore more reliable for code relating
to physics.

Inside this function, you are going to add the following:

void FixedUpdate()
{
 onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,
whatIsGround);
}

Don’t worry about what this does just yet. Head back to Unity where you can now see the new public
float, Bool, and layer mask that we created in the Inspector.

Here you’re going to create a new empty GameObject. This is a GameObject just like a sprite or the
camera but with no components. Right-click in the Hierarchy and select Create Empty. You’re going to call
this empty GameObject Check Ground and make it a child of Player (by dragging it on top of Player in the
Hierarchy—see Figure 4-11).

Chapter 4 ■ adding physiCs and getting started With Coding

70

Now select the player again and in the Hierarchy find where it says Ground Check. Currently it will say
None (Transform), but you’re going to change that by dragging the Check Ground game object and dropping
it into that box. It should look like Figure 4-12.

Remember: Ground Check is a transform, meaning a set of coordinates. By dropping an empty
GameObject into here, we are now telling our script to set those coordinates to be those attached to Check
Ground. In other words, we have defined a “point,” and this is how we’re going to look at whether or not
Squarey is standing on solid ground. Now set the radius value to 0.1, meaning that it will be a very small
point. Finally, select Check Ground in the Scene view and use the move tool to position it just below Squarey
so that it’s checking the space directly below him.

One more thing we need to do is create a new layer and call it Ground. Drag and select all of your floor
tiles again and then look for the Layer menu at the top left of the Inspector. At the bottom of the dropdown,
you’ll see the option to Add Layer (Figure 4-13).

Figure 4-11. Check Ground is an empty GameObject and child of Player (more on what that means later)

Figure 4-13. Adding the Ground layer

Figure 4-12. Ground Check is a transform that is now defined as the coordinates of Check Ground

Chapter 4 ■ adding physiCs and getting started With Coding

71

You’ll then be given the opportunity to create your new layer simply by typing its name into the next
available space (several layers are already defined by Unity), as in Figure 4-14).

Type Ground into the empty space. Then go back to the Inspector for your Square tiles and this time
select Ground from the dropdown menu to set them all to that value.

Now view the Player GameObject in the Inspector again and this time set What is Ground to Ground
by using the dropdown menu. This basically means that anything that is set to the Ground layer will now be
treated as ground in our script— meaning Squarey can jump off of it.

With all this done, we can now simply add the final line of code to our script:

if (Input.GetKey(KeyCode.Space) && onGround)
 {
 rb.velocity = new Vector2(rb.velocity.x, 5);
 }

Now hit play and you’ll find that Squarey can jump—but only if he’s on solid ground. This means he
won’t be able to jump continuously in the air, and it means that in Chapter 5 we can start introducing some
actual platforming challenges.

Figure 4-14. Call the new layer Ground

http://dx.doi.org/10.1007/978-1-4842-2704-6_5

Chapter 4 ■ adding physiCs and getting started With Coding

72

A Little Bit of Further Explanation
You may still be a little confused at what has actually happened here. Let’s recap what’s going on.

The key is this line, which we have placed in our FixedUpdate function:

onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius, whatIsGround);

The statement Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,
whatIsGround) is a true or false statement that is asking whether the groundCheck transform is overlapping
with anything that we defined as Ground (whatIsGround). onGround is true if there is an overlap and false if
there is no overlap—remember, this is a variable that can only be either true or false. Because this line is in
FixedUpdate, it’s going to continually change its value depending on what’s going on in the game.

In pseudo code, we are saying this:

If the circle underneath the player is overlapping with ground material, then onGround is
true. Otherwise, onGround is false.

Then, in our Update function, we check whether onGround is true whenever the player presses space:
in C#, && simply means and. By using && inside an if statement, we’re testing whether two arguments are
true. So

if (Input.GetKey(KeyCode.Space) && onGround)
{
 rb.velocity = new Vector2(rb.velocity.x, 5);
}

actually means

If player presses jump and 'onGround' is true then add upward velocity.

We could also replace 5 with a variable as we did with movespeed. Call it jumppower.
For your convenience, the entire Player script should now look like so:

using UnityEngine;
using System.Collections;

public class Player : MonoBehaviour {
 public Rigidbody2D rb;
 public int movespeed;
 public int jumppower;
 public Transform groundCheck;
 public float groundCheckRadius;
 public LayerMask whatIsGround;
 private bool onGround;

 void Start () {
 rb = GetComponent<Rigidbody2D>();
 movespeed = 3;
 jumppower = 5;
 }

Chapter 4 ■ adding physiCs and getting started With Coding

73

 void FixedUpdate()
 {
 onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,

whatIsGround);
 }

 void Update () {
 if (Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);

 }
 if (Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);

 }

 if (Input.GetKey(KeyCode.Space) && onGround)
 {
 rb.velocity = new Vector2(rb.velocity.x, jumppower);

 }

 }
}

If you copy this for now, you can always try tweaking lines and reverse engineering it as you try and
understand it. You should find that a lot of it is actually quite self-explanatory.

One Final Touch: Keeping the Player Upright
Except there is one small problem: Squarey currently tumbles and spins down stairs as though he’s had a few
too many vodkas. If you jump and then land on your head, you won’t be able to take off again because the
Check Ground GameObject will now be pointing up in the air.

To fix this, click Squarey and find the Constraints option underneath the Rigidbody component in the
Inspector. Here, you’ll find the option to Freeze Rotation Z. Tick that box and Squarey’s angle will now be
locked in place (Figure 4-15).

Chapter 4 ■ adding physiCs and getting started With Coding

74

You’ll notice a few other options here too, such as Gravity Scale (which controls how Squarey is affected
by gravity) and a few others. We’ll be playing around with these in Chapter 5.

Now you can try creating a few floating platforms and having a little fun trying to cross them without
falling off the screen. You might need to adjust your jumppower a little for that or your Gravity Scale, so just
have some fun with it. And take a moment now to reflect on what you’ve already accomplished: only a short
way in and you already have a character that can jump around the screen and a level that’s quite fun to
navigate (Figure 4-16). We’ve barely gotten started, so just think what else you’ll be able to do before we’re
finished!

In Chapter 5, we’ll be looking at how to create better platforms with prefabs and affectors and we’ll be
doing some more interesting things with our camera. We’ll even be able to start putting in collectibles and
hazards.

Figure 4-15. Tick Freeze Rotation and your character will stop falling over

Figure 4-16. Only Chapter 4 and our game is already almost fun!

http://dx.doi.org/10.1007/978-1-4842-2704-6_5
http://dx.doi.org/10.1007/978-1-4842-2704-6_5
http://dx.doi.org/10.1007/978-1-4842-2704-6_4

75© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_5

CHAPTER 5

Filling the World with Prefabs,
Effectors, and Collectibles

At this point, things are starting to come together and feel a bit like an actual game. We have a very basic
2D level, we have a character that we can move around with the arrow keys and the spacebar, and we have
working physics.

But a few things are still a little off at the moment, and we’re not following all the best practices. The
world is also rather empty, devoid of any collectibles, scenery, or even a sky.

In this chapter then, we’ll be looking at how we can begin adding things like trees, coins, and platforms
that have special properties. We’ll also see how to keep better track of all these new elements and streamline
our game design process with prefabs. By the end, your game world will look a lot more colorful, and you’ll
even be able to start creating some basic platform challenges.

Using Effectors
One thing you may have noticed that isn’t quite right at the moment is the fact that we can stick to walls.
If we run Squarey into a wall and keep holding the arrow keys in that direction, then he will glue himself
to the surface and stop falling. That’s pretty odd behavior for a platform game, so let’s stop that
from happening.

First, click the platform you want to edit and then view it in the Inspector. Now click Add Component ➤
Physics 2D ➤ Area Effector 2D. You’ll then be prompted that you need to tick the box under the Box Collider
2D that says Used By Effector.

This will then show a semicircle around the box and bring up some more options in the Inspector. You
should have something that looks like Figure 5-1.

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

76

Now try and stick the character to the block and you’ll find he simply slips off. In short, Platform Effector
has caused the platform to behave like a platform.

Try and jump into the platform from underneath and you’ll notice something else: Squarey can pass
through them. You might have played platformers with this feature before, but at the moment we want to
turn it off. The reason for this is that as of now, performing this move will break the game. Holding jump will
currently cause Squarey to jump a second time as he passes through the floor, which looks very strange.

There are plenty of ways to fix this: by using raycasts to check for the ground instead of the system we’re
currently using, for example, or by simply making the player tap spacebar a second time before they can
jump again. Right now, though, it’s easiest just to untick the Use One Way box (Figure 5-2), which will also
allow for some gameplay features like caves and dead-ends.

Figure 5-1. Platform Effector added to one of our tiles

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

77

This is a very early example of how your gameplay is going to dictate decisions you make regarding your
physics and code. You can’t build a game engine and design your levels separately: the way the game world
behaves should be informed by your game design and vice versa. Form should follow function.

In this case, the question is whether you want to design a more fast-paced game that allows the player
to seamlessly scale through platforms by tapping jump, or whether you want something a little more
puzzle/exploration based and maintain the ability to trap them in different sections.

(Of course, you can also have multiple types of platform that behave in different ways, but then the
challenge of your game design is to make sure the differences are clearly communicated from the start of the
game.)

For our purposes, we’re going to keep things simple though and switch this feature off.

More Effectors
Effectors are a great way to quickly and easily get your game elements to behave in specific ways. When you
chose the Platform Effector, you may have noticed that there were also a few other effectors you could have
chosen.

For example, you may have spotted Buoyancy Effector. This is an effector that allows us to make tiles
behave like water.

To demonstrate how useful Effectors are, let’s design some new tiles that look like water (Figure 5-3),
keeping our same 50 x 50 dimensions.

Figure 5-2. Use One Way has now been unticked

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

78

Now add this to your Sprites folder and create a new game asset called Water Square (or whatever you
want to call it). Remember to set the Pixels Per Unit to 50 for this sprite and make sure that it has a collider.
Now choose Add Compontent ➤ Physics 2D ➤ Buoyancy Effector 2D. Remember to tick Used by Effector,
and this time you’re also going to click Is Trigger (I’ll explain what this means later). Copy and paste a few
water squares and surround them with banks on either side to create a pool. Now jump into it and watch
Squarey bob up and down just below the surface (see Figure 5-4).

Other effectors can let you create wind, conveyor belts, and more.

Prefabs and More Organization
Nope, I didn’t forget. Right now, we have a pool of water that’s a lot of fun, but only one of our tiles works the
way it’s supposed to.

Figure 5-4. Squarey bobbing just below the surface of the water

Figure 5-3. A square of water

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

79

You could go and change every square tile in the scene in order to apply the Platform Effector. And
actually, this wouldn’t even be that bad considering that we can select multiple GameObjects at once and
add compontents or change settings in that way. But now imagine that you have multiple levels, tons of
different GameObjects, and huge, intricate layouts. If you decide that you want to change a value now, all
that is going to make life extremely difficult for you.

What we’re going to do instead is to create a prefab. Prefab is short for prefabricated and is essentially
a GameObject with predefined properties. We can drop prefabs into a scene just as we’ve been dropping
sprites into our scenes, but they’ll carry all of the ready-made components and values.

Better yet, when we change the effector in our folder, those changes will be reflected across every
instance of the object in the game. That will let us change our minds about aspects of our game design and
be able to quickly implement those changes.

First, create a new folder inside Assets and call it Prefabs. This is the same process as it was for the
Sprites folder and Scripts folder (right-click ➤ Create ➤ Folder). Now find the ground tile you made that
included the effector and drag it from the Inspector into the Prefabs folder. Then do the same thing with the
other ground tile and one of the water tiles (Figure 5-5).

Now comes the scary part—you’re going to delete all the tiles in Scene view, leaving nothing except for
the Player and the Camera. All that hard work has not gone to waste, though, because now you’re going to be
able to simply drag and drop one of each tile into your game world again.

This is a nice opportunity to create some even better organization and redesign our level. Before you
start dropping tiles in again, first select the prefabs and view them in the Inspector. In here, change the
names to something that will be easily recognizable. I’ve gone with water, dirt, and grass. This won’t change
the name of the prefab itself but will change the names of the GameObjects once they’re in situ.

Figure 5-5. Two prefabs down, one to go

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

80

You can also take this opportunity to create separate empty GameObjects to serve as groupings for each
of the three elements you have on the go. Mine are Top Soil for the grass, Ground for the dirt, and Water for
the water.

Now drag one of each tile back into the scene, holding Ctrl to snap to the grid. Make sure the first
instance of each item goes in the correct group so that duplicates will also appear in here. Start by dragging
the item out from the Prefabs folder and into the correct category—then you’ll be able to simply copy and
paste the elements within the Scene view. Here you’re making copies that will conform to the rules of the
prefab. Don’t forget to hold Ctrl to space your tiles out and snap them to the grid. Now you can redesign the
level layout as you like. You can see mine in Figure 5-6.

Finally, create one more empty GameObject and call it Tiles or something similar.
To demonstrate the power of the prefab, you can now try selecting the Grass tile in the Prefab folder and

selecting Use One Way. Click play and you’ll find that you can now jump through any instance of the grass
block from underneath. Untick it and they will all change back.

This will make our workflow much easier as we move forward and so too will the way we’ve arranged our
Hierarachy. Try clicking the Water group for instance, and you’ll see that every single water tile gets highlighted
(Figure 5-7). Click Tiles and all the water tiles, grass tiles, and dirt tiles will be selected (Figure 5-8).

Figure 5-6. A new, more organized setup using prefabs

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

81

Figure 5-7. Water selected

Figure 5-8. All tiles selected

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

82

This means you could easily delete an entire category of tile, and in the future, this is going to help us to
manage things like collectibles, enemies, and decorative items. Good timing—the next part of this chapter is
going to start adding more variety.

Troubleshooting: Help! Squarey Keeps Getting Stuck!
One of the joys of software engineering (yep, that’s what this is) is that things will constantly go wrong and
you’ll be forced to try and deal with them. Sometimes there will be a simple fix (and Google is your friend
in this instance). Other times, the issue might be outside your control, forcing you to come up with a novel
solution.

Right now, if you’re using box colliders on your tiles and on your player character, you might find that
you occasionally get stuck on things that you shouldn’t—your character may stop moving and press against
thin air. The problem normally occurs at the vertices between the closely positioned tiles, and unfortunately,
it seems that this is a slight issue with Unity itself rather than anything you can fix (apparently, it was
introduced in 4.3.1 and has yet to be resolved as of the time of writing).

If you do encounter this problem, just try using a polygon collider for Squarey himself, changing the
shape slightly by clicking Edit Collider, and then creating a small bump in the outline as in Figure 5-9 so that
you can “slide” over these imagined obstacles.

Welcome to development!

Figure 5-9. Editing the polygon collider

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

83

Understanding Parents and Making a Moving Camera
One other thing that is useful to understand is the relationship between parents and children.

These groupings in your Hierarchy are not really folders as such. Rather, the empty GameObjects are
called parents and the items your group under them are called children. Like real parents and children,
children in this case will inheret the properties of the adult. For example, were you to move Top Soil to
the right, then all of its children would move right by the same amount, ensuring they all remained within
relative distance from one another. This can be a useful feature in a range of scenarios—for instance, if you
wanted two GameObjects to move at the same speed in the same direction.

Why might that be something you want to do? Well, how about if we use this to stick our camera to our
player? Right now, Squarey is only able to explore within the confines of the screen, which is rather limiting
in terms of the kinds of level designs we can make. But if we go to the Hierarchy and select the camera, we
can then drop it onto Player, thereby making it a child of that GameObject. Now, the camera will always
move relative to the player! Move it onto the center of the player to make sure it’s in a good position where
you can see obstacles from the left and right. Why not add some more level off to the right to celebrate?

In Figure 5-10 you can see how the camera should look, as well as some extra level design I’ve added.

Just note that this is very much a quick hack rather than the way we really want to handle the camera. In
a finished game, a camera should do much more than just blindly follow the player. Rather, it will speed up
or slow down, zoom in and out, and behave differently depending on the type of game. This can benefit the
gameplay or provide added drama and excitement depending on the circumstaces. We’ll discuss all of this in
more detail in a later chapter.

Figure 5-10. With his camera attached, Squarey is now free to explore foreign lands

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

84

Decorating the Scene Using Z Order
Right now, our level looks very gamey—it’s very clearly a computer game level and doesn’t feel very lifelike,
seeing as the only objects in it are clearly platforms designed to be jumped on. To change this, we need to
add some decoration to make the world feel like a living, breathing place.

To do that, you first need to create some elements that you can use for decoration. I’ve created a tree
(Figure 5-11) and a bush (Figure 5-12).

Note that both of these images are PNG files and have a transparency around the edge. I did this using
the free image-editing software GIMP, and we’ll discuss how you can do the same in more detail in chapter 10.

For now, you want to add these into the game as you’ve done several times before. Put them in your
Sprites folder, make sure to change the pixels per unit, and group them under an empty GameObject called
Plants. You may want to create prefabs again too, although this is much less important on this occasion as
they’ll all going to look and behave a little differently anyway.

Now scatter your plants and trees around the world a little. You can feel free to mix up the size, and it’s
not important to stick within the grid. In fact, it’s a good thing to make the positioning look a little random,
because that will appear more natural and help remove some of the gamey aesthetic.

Try playing the game now and you’ll find that when you walk past the bushes and trees, you might go in
front of them or behind them. In fact, you might even flicker in and out of view if you have an older version of
Unity.

The problem is that two things are being drawn in the same place, and you haven’t defined which
should go on top. To fix this, you need to change the Z order, which you do in the Inspector by changing the
option called Order in Layer. By default, this is set to 0 when you add a new GameObject, but you can change
this in order to create various effects.

If you make the number lower, that means the object will be drawn earlier—behind the other elements.
Likewise, if you make the number higher, that means it will be drawn at the end, on top of everything else.

My recommendation is to make some of the bushes and trees appear behind Squarey (set them to –1)
and make some appear in front of Squarey (set them to 1). This creates an interesting effect where he
appears to be walking through thick foliage (Figure 5-13), though it’s important as you build the game to
ensure that this doesn’t become confusing for the player.

Figure 5-11. Tree

Figure 5-12. Bush

http://dx.doi.org/10.1007/978-1-4842-2704-6_10

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

85

Likewise, you also need to try and avoid making things confusing for yourself. My recommendation
is to keep your player as 0 and to use this as your reference point. I also recommend making sure that the
tiles will stay in front unless you specifically intend to add decoration to them. This will allow you to tuck
GameObjects like trees a little below the surface without worrying about ugly gaps. You can do this by setting
their Order in Layer to something like 10.

Why would you ever want to put something on top of your platforms? One reason is if you want to
add a little more natural, random-looking detail. For example, I’ve created this creeper (Figure 5-14) and
then set the Z order to 11. By changing the scale to –1 on the X and Y axes respectively, I can flip the image
horizontally and vertically too (Figure 5-15).

Figure 5-13. Squarey peeping out from behind some bushes

Figure 5-14. This creeper adds a little detail to the game world

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

86

You can add as many details like this as you like. Personally, I feel that these little touches make a huge
difference to the way a world looks and feels. I recommend getting a bit creative and seeing what you come
up with.

And of course, now that we’re able to add different layers, that means it’s time to add in a backdrop,
which will make a big difference to the aesthetic. I’ve drawn a cloudy sky (Figure 5-16) and made it fairly
large so that it can cover the space with no dark borders around the edge.

Figure 5-15. This is how it looks when it’s in place

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

87

You can use large images like this or you can tile your background—the choice is yours. Just make sure
you never run out of sky. Obviously, using larger images is going to mean the following for your app:

•	 It takes up more memory

•	 It takes a little longer to load levels

Set the background to a Z order of something like –10 just to ensure that you never accidentally put
something behind it, and create a group in your Hierarchy called Backdrop.

We’re left with what you see in Figure 5-17. Now doesn’t that look much better?

Figure 5-16. A nice cloudy sky

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

88

Parallax Scrolling with Perspective
If you want to get really fancy, you might decide to use another extra trick: parallax scrolling.

You may have noticed that the Inspector allows you to change not only the X and Y coordinates of
objects, but also the Z coordinate. This may strike you as odd, seeing as you’re using Unity in 2D mode.
Why not just remove this option altogether?

The simple answer is that under some circumstances, you may want to change the Z position of an
element in order to create 3D effects. To demonstrate, select the backdrop you just created and change
the Z coordinate in the inspector to 30. Now select the camera and in the Inspector and click the dropdown
menu called Projection. Change this from Orthographic to Perspective.

Now click play and see what happens. You should find that the sky now appears further away and moves
much more slowly than the rest of the level. You just created a parallax scrolling effect!

The best way to illustrate what’s happening here is to switch the Scene window into 3D mode. Click the
2D button along the top to toggle between the two modes, and you should see something like Figure 5-18.

Figure 5-17. Much better!

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

89

In short, we now have a 3D perspective looking head-on at purely 2D elements arranged in a 3D space.
There are a lot of cool things you can do with this, and you can add as many layers and elements as you like.
You could even have translucent clouds passing in the foreground, or rolling hills moving at another speed in
the middle distance. All this can add depth and beauty to your scenes, but just make sure you don’t get carried
away at the expense of clarity or performance. If you have too much going on at any one time, your players
won’t know what they can jump on or walk through, and it can even get borderline headache-inducing.

Later on, we’ll be looking more at how to design your levels to look great and get rid of some of those
sharp edges. Until then, let’s keep things fairly basic.

Adding Collectibles and Hazards
Now that you’ve added some inanimate objects and decoration, it’s time to consider adding some
elements that you will actually be able to interact with. And a good place for us to start would be with some
collectibles.

To do this, we of course need to start by designing something that we can collect. A popular choice in
this regard is a gold coin, so let’s start with that. Mine is shown in Figure 5-19.

Figure 5-18. This is what the camera “really” sees

Figure 5-19. A gold coin. Don’t you just want to collect it?

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

90

Now we’re going to once again add it to our scene the way we’ve added other GameObjects to our scene.
That means we need to import the sprite, set the Pixels Per Unit, and then make it into a prefab. Any coins
we scatter around our scene we’re going to put into the following Hierarchy: Collectibles ➤ Coins ➤ Gold
Coin. This time we’re also going to create a collider though, and we’re going to tick the Is Trigger box in
the Inspector.

A trigger is basically a collider that doesn’t act like a physics object. In other words, our coin won’t be
something we can walk into or jump off of—rather, we’ll pass right through it as though it were made of air.
At the same time, though, Unity will “flag up” the fact that this has happened, allowing us to add code that
tells the game how to respond to this event.

Drop one or two of your new gold coin prefabs into the scene, and you should have something that
looks like Figure 5-20.

Now we need to create a new script, which you should remember how to do. Head down to your
Assets ➤ Scripts folder, right-click, and select Create C# Script. Name this CollectCoin (script names
can’t have spaces) and double-click on it to open Visual Studio for just a little more coding.

In here, we’re going to use a function called OnTriggerEnter2D. This function is called any time the
attached GameObject is triggered, so anything you place in here will happen once the player touches that
GameObject.

In this case, we want the coin to disappear, so we need to destroy it. We do this by saying
Destroy(gameObject). When using Unity, gameObject with a lowercase g refers to the specific GameObject
that the script is attached to.

Figure 5-20. The scene with some added gold coins

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

91

The full script should look like so:

public class CollectCoin : MonoBehaviour {

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 }

 private void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 Destroy(gameObject);
 }
 }
}

In pseudo code, this is saying: when something comes into contact with the 2D collider, if that thing has
the tag player, self-destruct. As you may have already guessed, that means we now also need to hop into Unity
and add that tag to Squarey. Select Squarey and then find the Tag option at the top of the Inspector. It should
currently say Untagged, and all you’re going to do is click the dropdown menu and choose Player.

Finally, don’t forget to attach the CollectCoin script to your coins. Do this by clicking Add
Component ➤ Scripts ➤ CollectCoin.

Hit play, and now when you walk into the coins, they should instantly disappear. In Figure 5-21 you can
see how I’ve arranged my coins, as well as how I’ve added the Player tag to Squarey.

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

92

What if we want to create some hazards? In that case, we could do the precise same thing, except we’d
want to move our player back to the starting position or possibly end the game.

To do this, we’ll need a new sprite (Figure 5-22).

Figure 5-21. Ready to do some collecting

Figure 5-22. Spikes

Now add the sprite and make a prefab just as you’ve done before. Remember to set the Pixels Per Unit
and add a polygon collider. You’ll probably need to shape it yourself to fit around the spikes nicely too.

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

93

You’ll be adding a script just like last time. And the code will be very similar this time around too, with a
slight twist. Now it will say the following:

public class Hazards : MonoBehaviour
{
 private Player player;

 // Use this for initialization
 void Start()
 {
 player = FindObjectOfType<Player>();
 }

 // Update is called once per frame
 void Update()
 {

 }

 private void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 player.transform.position = new Vector2(-6, 8);
 }
 }
}

Attach this script component to the Spikes prefab, remember to tick Is Trigger, and then you’re good
to go. This script works very similarly to the last one except instead of destroying the GameObject, we’re
moving the player. First, we have to define what we mean by “player,” which we do by looking for objects
attached to the Player script. From there, we can then change the transform (position) of the Player to a
new Vector2 (a coordinate with two axes). We’re moving the Player to position (–6, 8) because that’s where
Squarey starts out in my scene. Take a look at the starting position of your version of Squarey and change the
coordinates to match.

Finally, place some spikes in a logical position in your level as I’ve done in Figure 5-23. I also
recommend organizing them under an empty GameObject called Hazards.

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

94

Now when you hit play, falling on the spikes should automatically teleport you back to the starting
position. That’s not very glamorous, but it does the job and illustrates the point. In future chapters we’ll look
at how to kill and respawn the player properly, as well as how to tally up points for collectibles. For now,
though, this gives you a very good idea of how you can use triggers in order to make all kinds of effects work.
We could use the precise same code to make a portal or doorway to transport the player to the next part of
the level! Or we could use it to create some enemies….

Introducing Enemies
Essentially, all enemies are hazards that move. You know the drill by now: start out by creating a new sprite,
ideally something that looks a bit menacing, as in Figure 5-24.

Figure 5-23. Beware the spike pit!

Figure 5-24. Not sure who this guy is but he looks menacing

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

95

Give him a collider, make him a trigger, and create a prefab. Then attach the Hazard script so he’s
functionally the same as the spikes. The difference is that we’re also going to be adding another script called
BackAndForth. Go and make that just the same as you’ve made your previous scripts (right-click in the
Scripts folder) and then add this code:

public class BackAndForth : MonoBehaviour
{

 public double amountToMove;
 public float speed;
 private float startx;
 private int direction;

 // Use this for initialization
 void Start()
 {
 direction = 0;
 startx = gameObject.transform.position.x;

 }

 // Update is called once per frame
 void Update()
 {
 if (gameObject.transform.position.x < startx + amountToMove && direction == 0)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x +

speed, gameObject.transform.position.y);

 }
 else if (gameObject.transform.position.x >= startx + amountToMove && direction == 0)
 {
 direction = 1;
 }
 else if (gameObject.transform.position.x > startx && direction == 1)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x -

speed, gameObject.transform.position.y);
 }
 else if (gameObject.transform.position.x <= startx && direction == 1)
 {
 direction = 0;
 }
 }
}

Take a read through that and see if you can work out how it works. Got it? Of course you did. But just in
case … essentially, we have two public variables that we can set from the Inspector: the speed (called speed)
and the distance that the object will move (called amountToMove). When the object is created at runtime, it
also checks to get its current x coordinate. The direction can be 1 or 0 and—like all integers—is set to 0 by
default when the script starts.

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

96

So, the script then asks if the current position is smaller than my start point plus the distance I have to
move, move to the right at speed—but only if I’m moving right. Once the object goes past that point (>= means
“bigger than or equal to”), it will then change the direction to 1. When direction is 1, the reverse logic is
applied until the character is equal to or smaller than the start position—at which point direction switches
back to 0 and we go right again.

Now if you add this script to the bad guy along with the Hazard script, you should have a GameObject
that moves left and right and kills the player when it comes into contact with them. Just remember to set the
variables in the Inspector first (see Figure 5-25).

Notice how you can achieve impressive results without having to rewrite out lots of code—just combine
multiple scripts in unique ways. The sky’s the limit.

Pushable Objects
While we’re adding all these different kinds of objects and elements, let’s add one more that’s really nice and
simple: a pushable crate (Figure 5-26).

Figure 5-25. The bad guy in his starting position

Figure 5-26. Crate to finally meet you…

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

97

All you need to do is introduce a GameObject that has a collider and Rigidbody (just like the Player).
This will then allow you to interact with that object by pushing it or even dropping it into the water to watch
it bob up and down (Figure 5-27). This creates a lot of potential gameplay mechanics and challenges, and it
couldn’t be simpler.

Remember, though: if your character is going to be able to jump off the crates, they need to have their
layer set to Ground.

Using Materials
Before I close this chapter, let me address one small thing that still isn’t quite right with the objects in our
game world: the slidiness. You’ve probably noticed that Squarey likes to slide around all over the place like
he’s on ice, which doesn’t look right and is rather hard to control.

To fix this, we’re going to create a material and apply it to Top Soil. To do this, you’re going to create a
folder called Materials and then a new Physics Material 2D (RMB ➤ Create ➤ Physics Material 2D). Call this
Ground.

Now select that material to view it in the Inspector and you’ll see that you can change two properties:
Bounciness and Friction. As you might have guessed already, Friction controls how much friction a
particular surface has. Change this to 0.6 for a bit more ground control and change the Bounciness to 0.1 for
an imperceptible judder when Squarey lands (Figure 5-28).

Figure 5-27. Push the crate into the water and see what happens

Chapter 5 ■ Filling the World With preFabs, eFFeCtors, and ColleCtibles

98

Now select the topsoil prefab and in the Inspector and find the Material option beneath Box Collider
2D (not the one under Sprite Renderer). Choose the Ground material you just created, and it should
automatically apply to all the grassy tiles in your game. Try running and jumping now, and things should be
easier to control.

Materials like this provide a useful way to add properties to various GameObjects, and we’ll see more
uses for them later on.

For now, this is more than enough to start crafting a world filled with platform challenges, obstacles,
and things to collect. We still have much to do, though, and over the next couple of chapters we’ll be looking
at how to tally up scores, add UI elements, and even introduce fancy animations. Once all that is in place, we
can start trying it all out on an actual Android device.

It’s all coming together now!

Figure 5-28. Squarey lives in a material world

99© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_6

CHAPTER 6

Adding Animations, Effects,
and a HUD

Okay, so I am aware that we are now six chapters into the book and at this point we still haven’t actually
touched an Android phone! That’s the irony of coding with a desktop IDE, but don’t worry if you’re feeling
impatient—in the very next chapter you’ll get to try deploying your game on an actual Android phone or
tablet. For now, though, we’re going to add a few more touches that will give us the foundations for our
future game development—touches like animations, particle effects, and a heads up display (HUD). When
we get to Chapter 7, it will make sense why we did this first.

And don’t fret. There’s a lot to be excited about right now too: adding simple things like animations is
what will allow you to really add character and charm to your game and elevate it to a point where it starts to
look really rather professional.

Handling Death and Using Particles
Everyone has their own way of handling their mortality. Right now, Squarey’s way is not particularly elegant.
Not only does he just kind of “appear” back at the start of the game instantly, but he also doesn’t give us any
brief pause while that happens. The whole thing is a little too brief to let it really sink in.

It would be nice if we had some kind of death animation, or better yet, a gory explosion.
To do that, we’re going to use the particle system, an effect that lets you scatter pixels all around the

screen and get them to behave in different ways. We’re going to make a particle effect that will look like an
explosion of blood—but you could just as easily use this to make regular explosions, fireworks, fountains,
electricity, and more.

To create your first particle system, choose Game Object ➤ Particle System. You should see a fountain of
slow moving white blobs appear in your scene with options on the righthand side in the Inspector (Figure 6-1).

http://dx.doi.org/10.1007/978-1-4842-2704-6_7

Chapter 6 ■ adding animations, effeCts, and a hUd

100

You need to tweak some of the settings here in order to make the effect look a little more like blood. We
can start by changing the Start Color to red (click the white bar) and Start Size to 0.2. Then click the Shape
option below that and choose Sphere instead of Cone. Under Emission, change Rate over Time to read 300.

Now expand the Renderer menu option and click the circle next to the Material option. Choose
Sprites – Default, and the red blobs should change into red squares.

Next, expand Size over Lifetime (note that you need to tick the bullet box first) and drag the righthand
side so that the line is a downward slope. This means the particles will get smaller as they travel through the
air, allowing them to disappear in a way that looks natural rather than suddenly blinking out of existence.
Similarly, you can also do the same for Color over Lifetime. I’ve made my blood get slightly darker as it
expands outward, just to keep things interesting.

I also applied .2 gravity (so that the particles fall downward). Feel free to play around with the other
options as you want—they’re generally pretty self-explanatory.

One thing you need to do, though, is to untick the Looping box at the top and change the duration to 0.30.
Now the effect will play just once and end, rather than looping instantly. At any time, you can still test the
animation by clicking the Simulate button that floats over the Scene view when the particle effect is selected.
You should have something that looks like Figure 6-2 once you’re done.

Figure 6-1. Your first particle effect

Chapter 6 ■ adding animations, effeCts, and a hUd

101

Destroying the Particle System
We’re going to put this to one side for a moment now while we write another new script. Create this in the
Scripts folder, as ever, and call it DestroyParticleSystem. Can you guess what it is yet? (Ah good,
a Rolf Harriss reference...)

The script is going to look like this:

using System.Collections.Generic;
using UnityEngine;

public class DestroyParticleEffect : MonoBehaviour {

 private ParticleSystem thisParticleSystem;

 void Start()
 {
 thisParticleSystem = GetComponent<ParticleSystem>();
 }

 void Update()
 {
 if (thisParticleSystem.isPlaying)
 {
 return;
 }
 Destroy(gameObject);
 }
}

Figure 6-2. A lovely cloud of blood

Chapter 6 ■ adding animations, effeCts, and a hUd

102

The purpose of this script is simply to destroy the particle effect once it has finished playing. First we
look for the particular instance of our particle system (which in object-oriented programming is often
referred to as "this") and then we check to see if the particle system is playing during the Update method.

Finally, once the effect has finished playing, we destroy it.
Why is this important? Because otherwise, we would have countless instances of our particle held in

memory, which could eventually start to bog things down. This will make a little more sense in a moment.
For now, just take my word for it, save the script, and add it as a component to the particle effect object you
created earlier.

Rename said particle system as Blood and then drop it into the Prefabs folder. Now delete Blood from
your Hierarchy and your scene.

Making Hazards Hazardous
We’re not quite done yet, though. Next, you need to add additional code to your Hazards script, which will
look like so:

public class Hazards : MonoBehaviour
{

 private Player player;
 public GameObject Blood;

 void Start()
 {
 player = FindObjectOfType<Player>();
 }
 void Update()
 {

 }

 private void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 Instantiate(Blood, player.transform.position, player.transform.rotation);
 player.transform.position = new Vector2(-6, 8);
 }
 }
}

First, we’re looking for a public GameObject that will be referred to as Blood and then we’re
instantiating that GameObject. That means we’re creating an instance of said GameObject, and in this case
we’re using the same coordinates as we have for the player. It’s important that we do this before we move the
player, though.

Make sure you also remember to set the Blood prefab as the GameObject in the Hierarchy for each
of your hazards. You need to do this in the Prefab folder so that it will be reflected across each subsequent
instance of a spike or an enemy (rather than just that particular one). See Figure 6-3.

Chapter 6 ■ adding animations, effeCts, and a hUd

103

With all that in place, you can now try playing the game and testing the new effect. Only try watching
the game as it plays in the Scene view rather choosing the full-screen Game view. This way, you should be
able to see what happens: when Squarey walks onto a pit of spikes, he explodes, and an instance of the blood
particle effect is created at that location. You’ll see it appear in the Hierarchy at this point. The effect will then
play itself out before disappearing once the sequence has finished.

And that’s why we needed that DestroyParticleEffect script—otherwise, we would have lots of “finished”
particle effects all in the Hierarchy from all the times we died, and this would take up unnecessary memory.

We can likewise use similar scripts if we create bullets or enemies, so that data is destroyed as we use
it up. In this case, we might have a script that destroys objects after a set amount of time or after a certain
interaction with the player.

Why not try doing something similar for the coins in your game? Create a new particle effect and call it
Sparkle, make sure to add the DestroyParticleEffect script, and then apply it to the coins in the game. Don’t
forget to add the necessary line to the CollectCoin script either. You also want to make the sparkle appear at
the location of the coin, not the location of the player, but I’ll leave you to figure that out.

Two More Added Touches
We’re going to add two more little touches to our handling of death. The first is to introduce a short pause
between Squarey being killed and Squarey appearing in his new location. We do this with the following bit of
code added to the Hazards script:

void OnTriggerEnter2D(Collider2D other)
{
 if (other.tag == "Player")
 {
 StartCoroutine("respawndelay");
 }
}

Figure 6-3. Adding the blood particle system to the Hazards script attached to the Spikes prefab

Chapter 6 ■ adding animations, effeCts, and a hUd

104

public IEnumerator respawndelay()
{
 Instantiate(Blood, player.transform.position, player.transform.rotation);
 player.enabled = false;
 player.GetComponent<Rigidbody2D>().velocity = Vector3.zero;
 player.GetComponent<Renderer>().enabled = false;
 yield return new WaitForSeconds(1);
 player.transform.position =new Vector2(-6, 8);
 player.GetComponent<Renderer>().enabled = true;
 player.enabled = true;
}

You don’t need to worry too much about what’s going on in this code for now, but suffice to say we’re
adding a delay. Respawndelay is a routine that can occur while other things are going on, which means
we can include a pause without making it look as though the game has crashed. We’re instantiating our
explosion, waiting for 1 second (WaitForSeconds(1)), and then moving the player to the new position.

Between these events we’re also turning off the visibility for our player (player.GetComponent
<Renderer>().enabled = false) and we’re removing all momentum so that the player won’t be moving
when they respawn (player.GetComponent<Rigidbody2D>().velocity = Vector3.zero;).

Hit play and give this a try. You should find that Squarey’s death is now a little more convincing as he
explodes, the game pauses, and he then appears back at the start (Figure 6-4). In an upcoming chapter, we’ll
be taking a look at how to implement checkpoints, but for now, this should do the trick just nicely.

The last little touch we’re going to make for now regarding death is to stop Squarey from falling
infinitely when he drops off the edge of our level. This is very easy to do—all we’re going to do is to create an
invisible GameObject with a box collider and attach the Hazard script. Then we’ll stretch it out to create a
barrier underneath the level (see Figure 6-5). Remember to make sure that the GameObject is a trigger.

Figure 6-4. Ouch, that has got to smart!

Chapter 6 ■ adding animations, effeCts, and a hUd

105

Animating the Player
Adding particle effects like this has done something important for our game: it has added a basic animation,
which makes the world feel much more dynamic.

But not every animation involves lots of little dots being scattered all over the place. In a conventional
platformer, objects are animated like cartoons so that they look like they’re really running, jumping, or
blowing in the wind. It’s high time we added this kind of dynamic animation to our player character, so with
that in mind, I’ve created a little spaceman who can explore the alien worlds we’re going to be designing. We
will call him Kevin, after Kevin Spacey. His sprite is shown in Figure 6-6, below.

You may notice that Kevin’s sprite is a little different from your regular sprite. Specifically, Kevin is not
one sprite, but several sprites—except all those sprites are in a single file. You can either use Kevin in your
own game or you can create a different set of sprites; just be sure to keep them all in one image file.

This is what we call a sprite sheet, which is just a single image containing all the frames of animation for
a single character or object in the game. This is simply a more efficient way of handling sprites, and you can
likewise make sprite sheets for any other elements in a game. Import this into the game as you usually would
but then open it in the Inspector and after setting Pixels Per Unit to 50, set Sprite Mode to Multiple. This is
telling Unity that the file contains multiple different frames of animation in a single image. The checkerboard
pattern behind the sprites represents transparent areas in the image.

Now click Sprite Editor and then Slice (in the top left). See Figure 6-7 for reference.

Figure 6-5. Adding our barrier underneath the level

Figure 6-6. Kevin, your typical derivative platform hero!

Chapter 6 ■ adding animations, effeCts, and a hUd

106

This slice button is great because it automatically detects all the frames in our image and crops them
for us into multiple different images. You’ll see the individual frames outlined by boxes and you’ll have the
option to adjust this manually if you prefer. Once you’re happy, just click Apply along the top.

Now you can select the first image from the sequence in your Sprites folder (clicking the little arrow next
to the sprites will show the individual frames) and drop it into the sprite box for the Player character. Now we
have replaced Squarey with Kevin (you will be missed, Squarey), but he will still kind of slide along the floor
when we run (Figure 6-8).

Figure 6-7. The Sprite Editor

Figure 6-8. Kevin enters the world

Chapter 6 ■ adding animations, effeCts, and a hUd

107

The next step is to open up two more windows in Unity. These are Animation and Animator. You’ll do
this by selecting Window ➤ Animation and then Window ➤ Animator using the top menu. This will open
up the two new windows that will be floating on top of the UI to start with. Drag these by the tabs into place
where you want them in Unity. I’ve put Animation in the same position as Scene and Game, and I’ve put
Animator down the bottom along with the Project tab (see Figure 6-9).

You’ll see I’ve selected the player, which you should do too. In the Animation window you should
now see a Create button, which we can use to create our first animation. We’ll call this one Idle, and
when the dialog opens up for you to define this, you’ll also want to create a new folder to store it in called
Animations.

You’ll notice that once you’ve done this, a timeline appears in the Animation window, along with a kind
of “mind-map” in the Animation window. We’ll get to that in a second; for now, all you’re going to do is drag
and drop the first sprite (of Kevin standing completely still) into the start of the timeline so that you have
something that looks like Figure 6-10.

Figure 6-9. Animation and Animator windows in place

Chapter 6 ■ adding animations, effeCts, and a hUd

108

Believe it or not, you just created your first animation. It doesn’t feel like much of an animation, seeing
as it only has a single frame. But if you watch the Animation window while the game is playing, you’ll see
that the same image is looping over and over.

Walking With the Animator
Our more interesting animation of course is going to be the walking animation. To make this, you need to
find the word Idle in the Animation window with the up and down arrow next to it (it’s in the top left). Click
that and then click Create New Clip. Call this one Walking and make sure it’s in the Animation folder again.

Now drop each frame of the walking animation from the sprite sheet into the timeline, making sure
they’re more or less evenly spaced. If you need to create more space, you can do so by scrolling down on the
mouse, which will zoom out the view. It should look something like Figure 6-11.

Figure 6-10. An idle Kevin

Chapter 6 ■ adding animations, effeCts, and a hUd

109

Now we have two separate animations, but at the moment Unity doesn’t know when we want to switch
between them. With that in mind, we need to head into the flow chart in the Animator, which currently
goes straight from Entry into Idle (ignore Any State for now—this comes in handy only for more complex
interactions of animations).

What we need to do is to add a condition under which our flow chart moves from Idle into Walking.
To do this, right-click Idle and choose New Transition. This will create an arrow that you can drag onto the
Walking state. Now your chart goes Entry ➤ Idle ➤ Walking.

Make sure the transition itself (the arrow) is selected and then find the little tab that reads Parameter
and switch to that. You’ll see a plus button next to Name, and if you click that, you’ll be able to choose
from different types of variables. Remember: variables are containers that represent data like numbers and
strings. We’re creating a new bool, short for Boolean—a variable that can be either true or false, 1 or 0. Once
you’ve clicked plus, you’ll be able to name this and you should call it Walking. It will look like Figure 6-12 if
you’ve done everything correctly.

Code for Animation
We need to do a little coding again now, so open up the Player script and create a new Animator reference,
which we will call anim. Then we’re going to add a little code in the Update method that will check to see if
either the left or right keys are being pressed and set the Walking bool appropriately.

Figure 6-11. Kevin’s running animation, ready to go

Figure 6-12. Adding the walking Boolean

Chapter 6 ■ adding animations, effeCts, and a hUd

110

Once finished, your Player script should read as follows:

public class Player : MonoBehaviour {
 public Rigidbody2D rb;
 public int movespeed;
 public int jumppower;
 public Transform groundCheck;
 public float groundCheckRadius;
 public LayerMask whatIsGround;
 private bool onGround;
 private Animator anim;

 void Start () {
 rb = GetComponent<Rigidbody2D>();
 anim = GetComponent<Animator>();
 }

 void FixedUpdate()
 {
 onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,

whatIsGround);
 }

 void Update () {

if (Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);

 } else if (Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);

 } else
 {
 anim.SetBool("Walking", false);
 }

 if (Input.GetKey(KeyCode.Space) && onGround)
 {
 rb.velocity = new Vector2(rb.velocity.x, jumppower);

 }
 }
}

Chapter 6 ■ adding animations, effeCts, and a hUd

111

Notice we are using an "else if" statement. When this statement follows immediately after an
if statement, it means that the following code runs if the previous statement is false and the following
statement is true. This allows us to set Walking to false only in scenarios where neither button is being
pressed, while leaving our logic intact.

We could alternatively do something similar with the line anim.SetBool("Walking", rb.velocity.x 1=0),
meaning that the Walking variable will equal true if the statement that follows is true—if the velocity of the
player along the X axis is zero. However, this can leave Kevin jogging on the spot while he slides forward on
pure momentum.

With that done, return to Unity, select the transition that goes from Idle to Walking, and find the
heading that says Conditions in the Inspector. Click +, use the dropdown menu to choose Walking as the
condition, and to set the value to True. This essentially means that the transition will occur as long as the
Walking is true.

Untick the box that says Has Exit Time while you’re here. That means that Unity won’t wait until the
whole animation has played out before transitioning from one to the other.

Now repeat these steps in reverse so that you have a transition going from Walking back to Idle
whenever Walking = false. Once everything is in place, it should look like Figure 6-13.

As you may have already gathered, there’s nothing to stop us from adding more branches to our flow
diagram so that the character has animations for jumping, falling, or any other actions we add later in the
game. Likewise, we could add animations so that trees blow in the wind and coins spin in situ. Water could
even wave gently on the top layer.

Flippin’ Kevin
Of course, there’s one rather glaring omission here currently, which is that Kevin only has an animation for
running right. Oh no! We forgot to create sprites for running left.

Psych! Fortunately, there’s no need for us to make everything twice, and we can very easily create
animations for running left by simply flipping the image when Kevin turns around. To do that, we need to
create a private integer variable in our Player script and call it facing. Set facing to 1 in the Start method

Figure 6-13. Our flow chart is complete

Chapter 6 ■ adding animations, effeCts, and a hUd

112

(it makes some sense to have the forward direction correspond with the positive value, so 1 is going to = right).
Then update this section of code in the Update method like so:

if (Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);s
 anim.SetBool("Walking", true);
 if (facing == 1)
 {
 transform.localScale = new Vector3(-1f, 1f, 1f);
 facing = 0;
 }

 } else if (Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 0)
 {
 transform.localScale = new Vector3(1f, 1f, 1f);
 facing = 1;
 }

 } else
 {
 anim.SetBool("Walking", false);
 }

The key lines here are the ones that read transform.localscale—this is the one that is flipping the
Player sprite by setting the scale to 1 or –1. We also need to ensure that we’re changing the value of facing
so that this only happens the first time the player changes direction each way. The code should look like
Figure 6-14.

Chapter 6 ■ adding animations, effeCts, and a hUd

113

Now hit play and you should find that Kevin has a nice little running animation and can switch
direction. Make sure that your Camera object has the coordinates of precisely 0 and 0—otherwise, the view
will jolt slightly as Kevin flips left and right.

Of course, this is far from perfect right now. We’re lacking animations for jumping, the movement is a
little stilted, and the camera is rigidly following us around the screen. Don’t worry, you can fix all this later.
For now, I’m just giving you the nuts and bolts so you can start playing around yourself. Feel free to start
animating all your game elements. Figure 6-15 shows how much more action-packed Kevin already looks as
he grabs a coin and prepares to leap into the abyss.

Figure 6-14. The new Player script

Chapter 6 ■ adding animations, effeCts, and a hUd

114

Adding a HUD
In this chapter we’ve been focusing on using effects and animations to add more feedback for the player.
Now it’s time to focus on the more direct and fundamental kind of feedback: the player’s score and progress.

In other words, it’s time that we started letting the player know how they’re doing at the game we’ve
made for them and keeping a tally of things like the level, their score, and so on. This will be accomplished
via a HUD that shows the player important details. Later, we’ll be able to use this overlay to show all kinds of
other things too.

To start with, let’s begin by keeping track of how many coins the player has collected. To do that, we
want to create a new public integer called coins in the Player script. We don’t need to say coins = 0 in the
Start method, because all numerical variables are set to zero by default when they’re created.

Now we’re going to open up our CollectCoin script and add a reference to player. Then, in the
OnTriggerEnter2D event, we will add the line: player.coins++. This is shorthand for player.coins =
player.coins + 1. In other words, we are increasing the value of player’s coins by one.

The whole thing will read as follows:

public class CollectCoin : MonoBehaviour {

 // Use this for initialization
 public GameObject Sparkle;
 private Player player;

 void Start () {
 player = FindObjectOfType<Player>();
 }

 // Update is called once per frame
 void Update () {

 }

Figure 6-15. You go, Kevin

Chapter 6 ■ adding animations, effeCts, and a hUd

115

 private void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 player.coins++;
 Instantiate(Sparkle, gameObject.transform.position, gameObject.transform.

rotation);
 Destroy(gameObject);
 }
 }

If you try playing the game while watching the Coins variable in the Inspector (with Player selected),
you’ll see it goes up each time we collect a new coin.

We now know the number of coins our player has collected, but at the moment the player doesn’t.
To rectify this, we’re going to create something called a canvas.

Adding and Using Canvases
Head up to that top menu again and create a new GameObject. This time select GameObject ➤ UI ➤ Canvas.
Double-click it in your Hierarchy and you’ll see your scene suddenly zooms out to show you a large white box.
This is the canvas, which is where you can add UI elements to your game, such as a HUD and touch controls.
That, incidentally, is why it was pertinent to focus on graphics before creating the first APK.

Now right-click the canvas in your Hierarchy and choose UI ➤ Text to create a new text object. Here,
let’s write Level 1 in the Inspector and set Font Size to 20 and bold. We could change the font if we wanted
simply by finding the relevant ODF or TTF file (by downloading a font, in other words) and dropping it into
the box here as we would do a sprite. We can worry about that later, though.

The most important thing we need to do at this point is anchor this UI element to the top left of the
screen. Do that by clicking the picture of the square in the top left of the Inspector and then selecting the top
left option from the dropdown menu. Now position the text where you want it, and it will always stay locked
to the top lefthand corner of the screen. It should look like Figure 6-16.

Figure 6-16. I chose a color that would match Kevin’s boots and be readable against a lot of backgrounds

Chapter 6 ■ adding animations, effeCts, and a hUd

116

Rename the text object as Level. Then create another one that will be positioned just below the top one,
called Coins. Use the same size and color font and make this one say Coins: 0.

Guess what? It’s time to make another script. This one will be called Score and it will be attached to the
Coins object we just made. It will read as follows:

using UnityEngine;
using System.Collections;
using UnityEngine.UI;
public class Score : MonoBehaviour
{
 Text coins;
 private Player player;

 // Use this for initialization
 void Start()
 {
 coins = GetComponent<Text>();
 player = FindObjectOfType<Player>();
 }

 void Update()
 {
 coins.text = "Coins: " + player.coins;
 }
}

Notice the line that says using UnityEngine.UI. This basically tells Unity that we’re referring to an
additional class in order to gain more options to code with.

The rest of this script is hopefully fairly self-explanatory. All we’re doing is repeatedly updating the text
(which is a type of String variable) to read Coins: and then the player.coins integer.

Add this as a component to the coins text object and you should now find that the game lets you know
how many coins Kevin has collected as he goes about his adventures. Something like you see in Figure 6-17,
in fact.

Chapter 6 ■ adding animations, effeCts, and a hUd

117

Adding a Sound Effect
As we’ve done all that, we may as well finish the job and add a little sound effect to play as we’re collecting
coins. Fortunately, that’s rather easy to do.

You will of course need a file that you can use for your sounds (which you can get from the resources
included with this book or make yourself) and as you probably expect, you’ll want to add this to a new folder
called Audio. My audio file is called Bling.wav.

Now add a public Audio Source bling to your CollectCoin script and just above player.coins++, add
a line that reads bling.Play(). This would be super simple, except we can’t just drop the audio file directly
into the box in the Inspector. Instead, we need to use an Audio Source, which is any GameObject that has
the audio attached as a component. What I’ve seen a lot of people do is add the audio file to the empty
Collectibles GameObject that is the parent of the Coins object and then drag that into the box in the
Inspector. (Make sure to untick Play On Awake).

Unfortunately, you need to do this for the in-game instances of the objects, not the prefab.
There are other ways of doing this, but for now, it should look like Figure 6-18, and this will play a sound

every time you pick up a coin.

Figure 6-17. Kevin now has two coins. Way to go, Kevin. Remember to add your coin’s sparkle effect,
if you haven’t already.

Chapter 6 ■ adding animations, effeCts, and a hUd

118

And with that, we’re now ready to try this thing out on an actual mobile device. Unless you’re feeling
brave, that is.

Figure 6-18. The Collectibles object now has Bling as a component

Chapter 6 ■ adding animations, effeCts, and a hUd

119

Some Advanced Theory: Classes, Objects, and Methods, Oh My!
Just What Is an Object?
You may have noticed that I refer to pretty much everything in Unity as a GameObject. This terminology is
convenient because in a game development environment, most things are objects, like trees, enemies, coins,
and clouds. But actually there’s something a little deeper going on here.

That’s because an object can also refer to a type of data in a programming language. One of the (other)
things that makes Unity so powerful and convenient is the fact that it uses object-oriented programming
(OOP). Both C# and Java are OOP, and Unity runs with that fact in an elegant and smart way. You may have
heard of OOP before, or this might be your first time encountering it. Either way, OOP is a design philosophy
when it comes to programming and it represents something of an evolution that has occurred in coding over
the years. Were you to code in an old-school language such as BASIC (as I did on my ZX Spectrum!), you
would have programmed in a manner called imperative programming.

Objective vs. Imperative vs. Functional
Imperative meant that everything you wrote was sequential, and you would write statements in the order
that they were to be executed at runtime. The computer would read your code just as you would read an
essay: from top to bottom. The only exception was when you used the command GOTO, which would send
the interpreter backwards or forwards to a specific line number in the code. This was very straightforward
to understand but it also became impossible to manage as programs began to reach millions of lines (which
happened a lot). If there was an error in the code, you’d have to scroll through reams and reams of it to find
the cause and if you ever wanted to reuse a section, your only option was to copy and paste it.

Then procedural programming came along, which solved some of these issues by containing sections
of code in discrete sections called procedures or subroutines. This meant that certain instructions could be
called on over and over again and edited separately from the main code—but seeing as you had to call the
procedures, the code would still be taking a long winding journey and making countless stops along the way.
This is what is referred to now as spaghetti code.

OOP is simply the next evolution from there. It looks at programming less in terms of the commands
and more in terms of the data and objects that those commands describe.

Classes and Objects Explained
In OOP, subroutines are replaced with classes, which in turn are used to describe objects. An object is a
collection of data with properties and with behaviors called methods.

All the scripts we’ve written in our code are really classes because they describe the properties and the
behaviors of our objects. Our CollectCoin script (which is really a class called CollectCoin) describes the
behavior of the coin (to disappear when collected, to increase the player.coins value) and the properties
(the position of the coin, its size, and so on).

The class acts like a blueprint and can create as many coins (objects) as it wants (just as a blueprint for a
house can be used to create lots of houses). We call those instances of the object. When we destroy our coins,
we are destroying instances of those coins rather than the class itself. That’s why we have one script (class)
but lots of copies (instances) of the coins. It’s also why we need to destroy our particle effects whenever they
finish playing, so that there aren’t countless instances of the particle effect object being held in memory at
any given time.

And as we’ve seen by the fact that a method in CollectCoin (onTriggerEnter) can edit a property
in Player (coins), classes are able to interact with one another by accessing each other’s methods and
properties.

Chapter 6 ■ adding animations, effeCts, and a hUd

120

A class needn’t be attached to a sprite at all either. A class can also be used just for crunching numbers
and manipulating other classes. You could write a script (class) to control the time limit, for instance, and
the object in this case would be the time limit—an abstract concept rather than something you could move
around. But it’s still an object and it’s still defined by the class.

This is also what happens when we tell Unity that we’re using certain classes at the start of each script—
these are classes provided by Unity that provide additional functionality and that we can access the methods
and properties of. When we write those lines, we’re telling Unity we want to access some methods and
properties that it has created for us.

The Benefits of Going OOP in Unity
Therein lies the brilliance of object-oriented programming: it allows us to share elements between
programming languages and code in a modular fashion. If you wanted to add collectible coins to a future
game, you could simply lift that class and drop it in your new project. Likewise, when we use the Android SDK,
we’re really giving Unity access to the classes that Google has provided to ensure the code all runs smoothly
on Android devices. Using objects allows us to borrow elements from other programmers and implement
them in our own code. This also lends itself perfectly to a more open source and collaborative form of
development, which is good for the software industry as a whole.

For us, OOP also lets us keep things neatly organized in logical chunks. Rather than having one huge file
that determines the behavior of everything in our game world, instead we have GameObjects, all with their
own scripts. Unity helps make things even clearer by giving us a visual representation of those GameObjects
and by keeping most of the complicated stuff hidden (learning Java, on the other hand, is much more
complicated, largely owing to the need to get your head around classes, methods, and objects). In Unity,
objects really are objects much of the time, and we can literally move them around within our project as
tangible units. Unity is a perfect introduction to object-oriented code, then, and when you eventually make
the transition to a less visual type of code, it will help to imagine your classes and objects existing in a similar
way (hopefully).

If we were being pedantic, it would probably make more sense for us to put our code for dying in the
Player script, rather than the Hazards script (which are really classes). Dying is a behavior of the player
and so it makes more sense for it to be a method of that class (remember, classes describe objects and
behaviors). To do this, we would simply move the code over to a public method (public void dying()
{...) and make the necessary changes. Then we would invoke that method from within Hazards by writing
player.dying();. We could also pass information over by placing it inside the brackets. Oh, and private
methods and variables are ones that can’t be accessed by other classes.

Anyway, go ahead and make that change if you like—it will be a good learning opportunity. But if you’d
rather not, the code will still work just fine as is.

For our purposes, keeping our code as beautifully organized and efficient as possible is not super
important. We’re making a relatively small game that most devices will be more than capable of running,
and at this point it’s more important that you follow along and understand everything that’s happening.
When code gets larger, though—when you’re working as a team, or when the game is more resource-
intensive—being as elegant as possible in your code starts to pay off. Making code snippets as short and
efficient as possible too can actually get quite fun and rewarding. OOP? More like OCD programming.

Don’t worry if all that went straight over your head. It took me multiple rereads to eventually grasp what
OOP really means in a practical sense. Hopefully, though, you at least now have some idea what the term
means—essentially, to code in a modular fashion—and this will provide a useful foundation as you expand
your knowledge over time. That, and it will help you to think more like a programmer, which is always a good
thing.

Now, on to the fun part: let’s turn this thing into an app.

121© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_7

CHAPTER 7

Making an Android App

Our game is still far from complete at this point, and over the next several chapters you’ll learn how to add
things like levels, checkpoints, menus, more UI elements, and a host of other features.

But what we do have is a basic game that now works as a game and is something that is certainly
playable. Our canvas is in place—which is going to be an important point. In short, I feel you’ve waited long
enough. It’s time to get this thing up and running on your Android device.

In this chapter, you’ll learn how to create an APK, how to test your game on your phone or tablet,
and how to add touch controls to your game. By the end, you’ll be able to take the game you made with
you anywhere and slip it into your pocket. In theory, you could even release it to the world. But I wouldn’t
recommend doing that just yet....

Adding Touch Controls
Before we begin building an APK, it’s a good idea to add touch controls. Right now, you could use your app
on an Android device with a Bluetooth keyboard, but that’s not a terribly convenient way for most people to
play. Most people don’t even have a Bluetooth keyboard. You want them to be able to play it with just their
phone. Fortunately, adding touch controls isn’t too complicated a process.

If we were making an endless runner, adding touch controls would be incredibly simple. In that
case, all we would need would need to do is use the line Input.GetMouseButtonDown(0) instead of
Input.GetKey(KeyCode.Space) or whatever we were using for jump. In Unity, a mouse click and a touched
screen are registered as the exact same thing, and because we wouldn’t need to know where on the screen
the user tapped, this would be more than sufficient for controlling our game.

We’ll be looking at how to create an endless runner in a future chapter. If that’s what you’re interested in
doing, you can skip ahead to the next section on building an APK. Otherwise, stick with me and we’ll look at
how to implement proper touch controls.

Designing the Controls
The first thing you’re going to want to do is to design some touch controls to look the part when placed on
top of your game. They need to be clear and easy to find, but it’s also important that they don’t distract the
player or cover up any important elements of the game. For that reason, choosing something that will look
mildly translucent is a good option.

It’s also pertinent that the buttons match the aesthetics of your game world. The color you choose needs
to stand out against the levels but without clashing in a garish fashion. As your players progress through your
game, it’s normal to have the color palette of your game world change: perhaps one level is set under water
with lots of blues and greens, and another level is set in space with lots of black and white. If you make your
buttons red or green, you’ll find that they sometimes look ugly against the game world.

Chapter 7 ■ Making an android app

122

For these reasons, I’m making my buttons light grey with a thin, slightly darker grey outline. I also
applied a pixelized filter with the image editor GIMP and set the opacity to 80 percent. The result should
be something that won’t look too distracting and won’t feel out of place. You can what I created in
Figures 7-1 and 7-2.

Note that I only needed to create one directional arrow. That’s because I can simply reverse the image in
order to create the opposite arrow—no need to spend time drawing two.

Adding Our Controls
Now we need to add these to our game and make them do something. First, add the images to your project’s
Sprite folder just like you would any other. Now right-click in your Hierarchy somewhere underneath your
canvas—you want this new element to be a child of the Canvas GameObject—and select UI ➤ Image. An
image will appear in your game that will probably look like a big white square. Select this element and where
it says Source Image, drag and drop the arrow sprite you created from your Sprites folder. Where it says

Figure 7-1. An arrow

Figure 7-2. A button

Chapter 7 ■ Making an android app

123

Anchors, choose Bottom Left. Drag and position the arrow so that it’s in the lefthand corner of the canvas
(which will probably appear massive at this point) and then change the horizontal scale to negative numbers
so that the arrow points left instead of right. In other words, change the Width from 1 to –1 so that it will fold
back in on itself.

Depending on how large you drew your arrows, you will need to play around to make sure that these
images are the right size. You can tweak this later on once the APK is running on your phone, but for now I
have mine set to X = –2 and Y = 2 (see Figure 7-3).

Now do the same thing for the second arrow. This time the position will be slightly to the right, and the
anchor will still be bottom left. Of course, the Scale is going to be in positive figures this time. After that, you
can add the jump button, which will be our generic “button” image. This one will be anchored to the bottom
right of the screen. See Figure 7-2. Rename the buttons as appropriate.

What you’ll find is that the jump button and the right arrow may overlap at this point or just look very
close together (as in Figure 7-4), but you don’t need to worry about that. By setting the images to anchor to
the bottom corners of the screen, you’re stating that all positional information is going to be relative to that
corner. Unity doesn’t know what size the phone screen or whatever device you’ll be playing on is going to be,
and thus the canvas is likely to be a bit of an odd shape. But as long as the jump button is set to be a certain
distance from the righthand corner and the same goes for the arrows and the lefthand corner, they should be
in the correct position once you hit play.

Figure 7-3. Positioning the first control

Chapter 7 ■ Making an android app

124

Of course, for a preview you can hit play and see how it looks on your computer screen (Figure 7-5).
When positioning your arrows, it’s worth leaving a little space around the edges in order to make sure they
aren’t too cramped.

Figure 7-4. The buttons don’t look quite right yet, but have faith

Chapter 7 ■ Making an android app

125

Coding the Controls
Now that you have your buttons in place, it’s time to make them actually do something. With that in mind,
we need to create an empty GameObject that will act like a container for these elements. Right-click your
canvas, choose Create Empty, and then anchor this new object to the bottom of the screen. Click Stretch so
that it becomes as wide as the screen and then drag the elements into here in the Hierarchy. Call your new
container TouchController.

Head into your Player script (which, as we learned in Chapter 6, is really a class) and we’re going to add
two public Booleans. Remember, bools are variables that can be either true or false—1 or 0—and because
they’re public, they’re accessible by other classes (scripts) in our game.

These new variables are going to be called moveRight and moveLeft, and you’re going to use them to do
this (don’t paste this code yet):

if (moveright)
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 }
 if (moveleft)
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);
 }

Figure 7-5. See? Our arrows look lovely!!

http://dx.doi.org/10.1007/978-1-4842-2704-6_6

Chapter 7 ■ Making an android app

126

Notice that this is doing something very similar to pressing the right and left arrows manually.
The way these touchable image elements work is that they only allow us to register when they get

tapped and when they get released. That means we can’t ask Unity whether the button is “being pressed.”
Instead, we need to set our Booleans to true or false based on when the button is tapped and when it’s
released.

The reason I told you not to paste that code just yet is that there’s an easier way to do this. We already
have a bunch of code to handle the player walking left and right, and at the moment it includes things like
animations—so we don’t want to repeat ourselves.

Instead we’re going to use a command called OR. This basically allows us to ask whether one of two
things is happening. In this case, we’re asking whether the player is pressing an arrow key or one of our
Booleans is true. In C#, we write OR using the symbol ||.

So, our code should look like this now:

if (moveLeft || Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 1)
 {
 transform.localScale = new Vector3(-1f, 1f, 1f);
 facing = 0;
 }

 } else if (moveRight || Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 0)
 {
 transform.localScale = new Vector3(1f, 1f, 1f);
 facing = 1;
 }

 } else
 {
 anim.SetBool("Walking", false);
 }

Now, when you press right and left, your character should still move. But were you to set one of the
Booleans to true (remember, all variables equal 0 by default when first created—that is, false), then the
player would move automatically.

Likewise, I want you to move the code that is handling the jump action of your player character into a
new public method. A public method is a method—a snippet of instructional code—that can be executed
from other classes (scripts). That means we can now force the player to jump by activating it from external
scripts.

We still want to register the button press in our Update method, but instead of including the jump code,
we’re referencing the new public method that contains said code.

Chapter 7 ■ Making an android app

127

So, you’ll be creating the public method like so:

public void jump() {

 if (onGround) {
 rb.velocity = new Vector2(rb.velocity.x, jumppower);
 }
}

And then from within the Update method, you will simply say this:

if (Input.GetKey(KeyCode.Space))
{
 jump();
}

The whole thing should look like this:

void Update() {

 if (moveLeft || Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 1)
 {
 transform.localScale = new Vector3(-1f, 1f, 1f);
 facing = 0;
 }

 } else if (moveRight || Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 0)
 {
 transform.localScale = new Vector3(1f, 1f, 1f);
 facing = 1;
 }

 } else
 {
 anim.SetBool("Walking", false);
 }

 if (Input.GetKey(KeyCode.Space))
 {
 jump();
 }
 }

Chapter 7 ■ Making an android app

128

 public void jump() {

if (onGround) {
rb.velocity = new Vector2(rb.velocity.x, jumppower);
}
 }

This is important because we’ve essentially given ourselves access points that we can use to control the
player from outside the script. And we’re going to be utilizing that from within the script that will control our
buttons. If you’re struggling to understand what’s going on here, consider rereading the section on object
oriented programming (OOP) in Chapter 6.

You see? It’s always good to learn the theory stuff as you go.
Okay, so now we’ve done that. It’s time to make the buttons responsive. Start by creating another new

script, this time called Touch. Touch is going to contain the following code:

public class Touch : MonoBehaviour
{
 private Player player;

 void Start()
 {
 player = FindObjectOfType<Player>();
 }

 public void PressLeftArrow()
 {
 player.moveRight = false;
 player.moveLeft = true;
 }
 public void PressRightArrow()
 {
 player.moveRight = true;
 player.moveLeft = false;
 }
 public void ReleaseLeftArrow()
 {
 player.moveLeft = false;
 }
 public void ReleaseRightArrow()
 {
 player.moveRight = false;

 }

 public void Jump()
 {
 player.Jump();

 }
}

http://dx.doi.org/10.1007/978-1-4842-2704-6_6

Chapter 7 ■ Making an android app

129

This is basically a collection of public methods, each of which is going to interact with the Player script
(class) in one way or another. As you may have guessed, we’re now going to make it so that each onscreen
button triggers one of these methods.

Now head back to Unity and add this new Touch script as a component of the TouchController empty
GameObject we created earlier (see Figure 7-6).

Now we’re going to add a component to the left arrow—this time a new kind called an Event Trigger. Go
to Add Component ➤ Event ➤ Event Trigger. Now click Add New Event Type ➤ Pointer Down. Click the little
plus (+) symbol that appears on the right and then take the TouchController GameObject and drag it into
the None (Object) box. Then click the dropdown menu on the right and select Touch ➤ PressLeftArrow().
Basically, you’re telling Unity that you want the Pointer Down event (the action of pressing the button) to
trigger the public method PressLeftArrow that’s within the Touch script.

Click Add New Event Type and then choose Pointer Up. This registers the action of the finger being
lifted from the arrow. Now select Touch ➤ ReleaseLeftArrow() to go in here. It should look like Figure 7-7
if everything is working properly.

Figure 7-6. Add the Touch script to the empty GameObject

Figure 7-7. Event triggers added

Chapter 7 ■ Making an android app

130

As you’ve probably guessed, you need to do the same thing for the right arrow but using the respective
right arrow methods. For the jump button, you’re going to do something very slightly different by ignoring
the pointer up type of event and choosing the Jump() method for pointer down.

Click play and you should be able to test this. If you don’t have a touchscreen laptop to try it on, then
just clicking the buttons with your mouse should do the same trick. Don’t worry if it doesn’t feel like it’s very
responsive right now—it should be a different story once it’s running on an Android device.

Speaking of which....

Creating Your First APK
Now that you have an appropriate form of input, you can finally actually test all your hard work on an
Android device.

First, make sure you’ve saved your scene again by pressing Ctrl+S. Next, head over to File ➤ Build Settings.
You’ll see a box at the top of this window that says Scenes In Build—this is basically showing you which of
the scenes you’ve created you want to include in the final product. To add your Level 1, just drag it from your
Scenes folder in the Project window and drop it into the Scenes in Build area. It should look like Figure 7-8.

When you have more scenes (and you will), you’ll need to make sure that the scene at the top is the one
you want to run first. That would normally mean a splash screen or menu of some kind (but remember, if
you have the free Unity license, your splash screen will be preceded by a Unity one).

For now, don’t worry about texture compression. That’s useful for creating 3D games and will help
you to optimize your apps. For our purposes right now it isn’t necessary (our app is pretty small and not
very resource-intensive), and not all types of compression are supported by all Android platforms. I discuss
texture compression more later in the book.

Figure 7-8. Level 1 is currently the only scene in our build

Chapter 7 ■ Making an android app

131

You’ll notice that this window also has the option to select a platform, and right now it likely says PC,
Mac & Linux Standalone. You need to change this by clicking the Android option and then clicking Switch
Platform.

Player Settings
Next, click the Player Settings button beneath the Platform scroll box and you’ll find that some new options
open up for you to play with in the Inspector. This is where you can define many of the properties of the APK
you’re about to build: things like the icon, the package name, and the orientation (see Figure 7-9).

Before we dive into the settings, fill out the options at the top. Here, you can enter a name for your
company and the name of your app. If you leave this as it is, then the company will be DefaultCompany, and
the app will be called whatever you called your Project. There’s also the option to add an icon here. We’re not
going to worry about that right now—we’ll look at this again when we discuss uploading and marketing your
app. For now, we’ll stick with the default Unity icon.

Now, what do all the rest of these options do?

Resolution and Presentation
The first thing we’re going to look at is Resolution and Presentation. At the moment, the Default Orientation
is probably set to Auto Rotation, and beneath that there are tick boxes showing which orientations are
permitted—right now, the answer is probably all of them.

Figure 7-9. Player Settings is where you set the properties for your new APK

Chapter 7 ■ Making an android app

132

If you want to make a puzzle game (discussed in an upcoming chapter), there’s a chance you’ll want
to support a portrait orientation. There are even a small number of portrait action games like Fotonica
and Sonic Jump. But for the most part, it makes more sense to stick with landscape, which will prevent
your players from feeling too cramped and which will show the most screen. Controllers that hold the
phone while you play also tend to only support landscape. So, either choose an orientation in the Default
Orientation box or untick the two portrait options below.

Icon
The next section is the Icon section. As I said earlier, the icon is something we’ll come to later, but as you can see,
there is space here to add icons with various different resolutions. If you’re keen to put something here, it’s fine
to just use one image, in which case it’s better to use a higher resolution one rather than a lower resolution one.
Upscaling results in a better image quality than downscaling. I go into this in more detail later—it’s fine to leave
this empty for the time being. Figure 7-10 shows what the default icon will look like once installed.

Splash Image
Next up is Splash Image, which we’ll again be leaving blank—especially as you’re supposed to leave the
default image here on the free license.

Other Settings
Other Settings gives us plenty to play around with. You can change settings relating to the rendering, as
well as the minimum API level, write permission, install location, and more. Much of this is rather self-
explanatory, and the rest we’ll be coming back to later in a later chapter.

Figure 7-10. Soon this will be your app

Chapter 7 ■ Making an android app

133

You’re perfectly fine to skip over this section and leave everything as default again, but one or two things
may be worth looking at here. The Bundle Identifier, for example, is where you enter your package name.
The correct nomenclature for this is as follows: com.YourCompanyHere.YourAppNameHere. You’ll need to
set this before your app will build, so go ahead and enter a package name using your own details. It doesn’t
matter what you choose for now, but do think hard before you publish. Apart from anything else, once the
app is uploaded to the Play Store, you won’t be able to change this again.

The version and version code are for our sake and Android’s sake, respectively. The version is the
version as we see it and as our users see it. The version code, though, needs to change each time you update
your app in the Play Store. Even if you make the tiniest change and then upload a new APK, you will need to
make sure that the new version code is higher than the last one.

The minimum API level meanwhile defines what the lowest version of Android is that you want to
support. By default, this is probably set to Android 2.3.1 (Gingerbread). At the time of writing, Google has
just unleashed the developer preview for Android O, and the latest version available for users is 7.1 (Nougat).

The lower you make your API level, the more people will be able to download your app. But if you make
it too low, you won’t be able to access some of the later features of Android. Again, I discuss all this in further
detail later in the book.

Preparing Your Phone
One more thing to do before you can try running your game on a phone is to prepare the phone in question.
First, that means you need to allow USB debugging. Unfortunately, I can’t give you step-by-step instructions,
because every Android phone is different (that is the wonder and the frustration of working with Android).

USB debugging lets you install apps over a USB connection and then get feedback about how they’re
running. See Figure 7-11.

Figure 7-11. Allowing USB debugging

Chapter 7 ■ Making an android app

134

Usually, this option can be found under a section within your phone’s settings called Developer
Options. In some phones this is hidden, so do a Google search to find out how to turn on USB debugging on
your particular hardware. Figure 7-11 shows this option on a Samsung Galaxy device.

The other setting you need to change is the one that says “Allow installation of apps from sources
other than the Play Store.” This normally has the heading Unknown Sources and might be found in the
Applications section of your settings, or the Lock Screen and Security section. Again, a quick Google search
will help you out. As you might expect, this setting ensures that your phone will accept APKs from other
sources—such as your PC—so you need to have it turned on. See Figure 7-12.

Finally, make sure you’ve set up the drivers on your computer for your phone. This will likely have
happened the first time you connected it to transfer photos, but just in case, you may need to do another
search and grab those driver files for your phone. But if you can’t figure this out, there are other ways you can
get the app up and running on your phone.

Pulling the Trigger
Now all that’s left to do is to build your app and run it. Go ahead and plug the phone into your PC via the
USB port and then hit Build and Run. If everything goes according to plan, Unity will build the APK and then
install it on your phone. After showing the splash screen, it should pop straight to life right there before you.
Success!

Figure 7-12. You need to tick the Unknown Sources option

Chapter 7 ■ Making an android app

135

TECHNICAL DIFFICULTIES

Unfortunately, when i did this i ran into some technical difficulties that took a while to figure out.
Fortunately for you, it’s my job to deal with these things to make your life easier.

after recently upgrading android Sdk tools, it appears that compatibility has been broken and builds
stopped working. that means that if you’ve only recently installed the android Sdk, things might not
work as they should. the solution is to find an older version of android Sdk tools and replace the folder
in the Sdk root directory (rename the old one to toolsXXX or something).

hopefully, by the time you read this, that little problem will be fixed. if not, you may have to do a little
more googling. Unfortunately, this is the nature of development and especially development on android.
But it does make everything all the more rewarding when it finally does work.

If everything has gone to plan, you should now have a working version of your app on your phone with
touch controls. You may find that the UI elements are a little small, so move these around and resize them as
you see fit.

Take this moment to bask in your accomplishments. You’ve just built your first working Android app.
Go ahead and show Mom.

Figure 7-13. That UI is going to need to get a little larger

Chapter 7 ■ Making an android app

136

But don’t get too pleased with yourself—there’s still a long way to go. In Chapter 8 we’ll be creating
multiple levels, menus and save files. We’re just getting started.

Figure 7-14. We did it!

http://dx.doi.org/10.1007/978-1-4842-2704-6_8

137© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_8

CHAPTER 8

Expanding the Game World
with Checkpoints, Levels, and
Save Files

A lot of this book is optional. Really, you’re already at a point where you can build a nearly-finished game.
It now runs on Android, it has animations and sound, and by extrapolating from what you’ve already
learned, you can probably create a bunch of new elements and wrap it up into a “complete” game. Of course,
I hope you’ll stick with me until the end, because as I think it will result in a better finished product and
more coding knowledge for you. (Plus you’ll learn how to build virtual reality apps.)

With that said, there are still at least a couple of elements we haven’t covered yet that are pretty much
compulsory if you want your game to feel complete. Those are what this chapter covers.

First, if your levels are going to be more than a couple of platforms long, you’re going to need to
introduce checkpoints so that your players don’t get frustrated by being constantly sent back to the start.
Second, you’ll probably also want to create more than one level and find a way to transition between them.
And if you have more than one level, you’re going to need some kind of level select system (menu) and a way
to save player progress. These are really the only essential things you have left to learn before you can finish a
challenging and fun game. So let’s get to it.

Adding Checkpoints
Before you start adding checkpoints, it makes sense to make your level a little longer. This is the fun bit,
so copy and paste some more ground sprites around, add in more spikes and water pools, and let your
imagination run wild. In a chapter 10, we’ll be going over what makes good level design—so don’t put
too much time and effort into this just yet. Consider this level design a placeholder that will just give you
something to run through as you play.

Do make sure that there are some elements along the way that can kill the player, though. That’s kind of
required for checkpoints to make any sense. You can see what I did in Figure 8-1.

http://dx.doi.org/10.1007/978-1-4842-2704-6_10

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

138

Now we’re going to create our first checkpoint. This will simply be an empty GameObject that
we’re going to drop into the game at various locations. And guess what we’re going to call the first one?
Checkpoint 1.

The most obvious way to handle checkpoint placement is to put them just before the player encounters
a significant new challenge or just after. Later in the game, we may try combining multiple hazards in order
to create sequences of challenges and thereby increase the difficulty slightly. But for now, let’s start with the
one new checkpoint to begin with and place it directly before the first pit of spikes.

You want to make this empty object a trigger, which, you may recall, means we can detect when
someone passes through the collision cage but without it bumping into things. First, give it a circle
collider and then tick the IsTrigger box in the Inspector. This means we can tell when a user walks over the
checkpoint, but they won’t be any the wiser.

Make this object quite large, because it’s important that the player doesn’t accidentally skip the
checkpoint. You can do that using the resize tool or by entering the Radius in the Inspector. Mine is 3, which
is more than large enough to prevent it being circumvented. See Figure 8-2.

Figure 8-1. My level 1 is very flat and horizontal, keeping things simple for new players

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

139

As you’ve probably already guessed, it’s time for a little more script (class). So create a script and call it
Checkpoint. We’re also going to be editing our Player script, so open that in Visual Studio as well.

Scripting a More Fitting Death
In fact, we’re going to edit the script of Player 1 first. If you read the section on object-oriented programming
in Chapter 6, then you know that our Player character is really a construct called an object. This object has
properties (variables) and methods (behaviors), and it is through these that our other objects can interact with it.

If we want to move our player, it makes sense to do so by manipulating the variables in the Player script.
We start by creating two more public floats: startx and starty. These are going to be the starting points of
our player when respawning.

The start of the game is effectively our first checkpoint, so the first thing we should do on spawning our
player at the start of the game is to find out where they are in the world so that we can send them back to this
exact point each time they die. Currently, we are sending the player back to a specific set of coordinates that
we edited, and if we were to move the player in the Scene view, we’d have to update these numbers every time.
This would be even more of problem when we start creating multiple levels and were using the same script.

Figure 8-2. Behold the glory of checkpoint 1

http://dx.doi.org/10.1007/978-1-4842-2704-6_6

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

140

What we’ll do instead is check the position of the player when the object is first created and make that
the respawn position.

To do this, you simply need to add the following bit of code to the Start method:

startx = transform.position.x;
starty = transform.position.y;

The preceding code gets the position of the GameObject when it’s first created and stores the X and Y
coordinates separately.

Now find your Death method. This will either be in your Hazards script or your Player script (if you’re
one of my top students and you moved it, that is). Either way, you’re now going to swap the numbers for your
new variables. If the Death method is in the Player script, you can write this simply as follows:

transform.position = new Vector2(startx, starty);

Otherwise, if it’s still in the Hazards script, it will look like so:

player.transform.position = new Vector2(player.startx, player.starty);

Either way, our player is now respawning to the position that we read at the beginning. I recommend
that you move your Death method now so that it’s in the Player script. If you haven’t already figured out a
way to do this and need a little help, just update your scripts as follows.

Player script:

public class Player : MonoBehaviour {
 public Rigidbody2D rb;
 public int movespeed;
 public int jumppower;
 public Transform groundCheck;
 public float groundCheckRadius;
 public LayerMask whatIsGround;
 private bool onGround;
 public int coins;
 private Animator anim;
 private int facing;
 public bool moveLeft;
 public bool moveRight;
 public float startx;
 public float starty;
 public GameObject Blood;

 void Start () {
 rb = GetComponent<Rigidbody2D>();
 anim = GetComponent<Animator>();
 facing = 1;
 startx = transform.position.x;
 starty = transform.position.y;

 }

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

141

 void FixedUpdate()
 {
 onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,

whatIsGround);
 }

 void Update() {

 if (moveLeft || Input.GetKey(KeyCode.LeftArrow))
 {
 rb.velocity = new Vector2(-movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 1)
 {
 transform.localScale = new Vector3(-1f, 1f, 1f);
 facing = 0;
 }

 } else if (moveRight || Input.GetKey(KeyCode.RightArrow))
 {
 rb.velocity = new Vector2(movespeed, rb.velocity.y);
 anim.SetBool("Walking", true);
 if (facing == 0)
 {
 transform.localScale = new Vector3(1f, 1f, 1f);
 facing = 1;
 }

 } else
 {
 anim.SetBool("Walking", false);
 }

 if (Input.GetKey(KeyCode.Space))
 {
 Jump();
 }
 }

 public void Jump() {

 if (onGround)
 {
 rb.velocity = new Vector2(rb.velocity.x, jumppower);
 }

 }

 public void Death()
 {
 StartCoroutine("respawndelay");

 }

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

142

 public IEnumerator respawndelay()
 {
 Instantiate(Blood, transform.position, transform.rotation);
 enabled = false;
 GetComponent<Rigidbody2D>().velocity = Vector3.zero;
 GetComponent<Renderer>().enabled = false;
 yield return new WaitForSeconds(1);
 transform.position = new Vector2(startx, starty);
 GetComponent<Renderer>().enabled = true;
 enabled = true;

 }
}

Hazards script:

public class Hazards : MonoBehaviour
{

 private Player player;
 // Use this for initialization
 void Start()
 {
 player = FindObjectOfType<Player>();
 }

 // Update is called once per frame
 void Update()
 {

 }

 void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 player.Death();
 }
 }

}

Scripting the Checkpoint
You may already have figured out what’s coming next. All we need to do with our checkpoint is change the
value of startx and starty when they enter the collider.

Our new Checkpoint script is this simple:

public class Checkpoint : MonoBehaviour {

 private Player player;

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

143

 void Start()
 {
 player = FindObjectOfType<Player>();
 }

 void Update()
 {

 }

 void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 player.startx = transform.position.x;
 player.starty = transform.position.y;
 }
 }

}

And don’t forget, you also need to attach this script to the checkpoint in question. Then make it a prefab
so that you can add more checkpoints around the level easily in future. Give this a try and you should find
that you now respawn at the checkpoint rather than at the start of the game.

In fact, you should appear quickly enough to be showered in your own blood (see Figure 8-3). Nice.

Figure 8-3. Kevin returns!

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

144

Now make a few more checkpoints in smart places and have a little play to see what works best.
Organize them in your Hierarchy in a logical fashion too, perhaps by giving them a parent object called
Checkpoints. Of course, you could provide some kind of visible indicator to denote your checkpoints—such
as the posts found in the Sonic the Hedgehog games—but these days it is quite common for players to simply
reappear at a different point in the game. We accept this as part of the suspension of disbelief when we load
up, and it has become part of the language of video games.

Taking It to the Next Level
We’ve come a long way, but our game still only has one level. It’s time to introduce some form of real
progression.

To do that, we’re simply going to make another GameObject that will represent the end of the level and
make this a trigger. Seeing as Kevin is a spaceman, it would make sense for the end of his level to be some
kind of space rocket. Later, we’ll animate this; for now, simply reaching the space rocket will end the level.
You can see my rocket in Figure 8-4.

Creating a New Level
Before we can add the script, we first need to create another level. And before you do that, be sure to make
your Player GameObject a prefab (drag Player into the Prefabs folder and make sure to bring Main Camera
and Check Ground along with you). That way, any changes you make will be reflected globally across all the
levels you make. Do the same thing for your Canvas and all its children.

Once you’ve done that, try using this easy little trick to make a new level: simply click File ➤ Save Scene
As and call it Level 2. Make sure it’s going into the same Scenes folder as Level 1 (see Figure 8-5).

Figure 8-4. This rocket ship signals the end of each level

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

145

This is a great shortcut because it means you have all of your prefabs already in place and you can get
things up and running a lot more quickly. Just delete a few elements, move a few things around, and then hit
Ctrl+S to save the new layout.

(Alternatively, you could create an entirely new scene by simply right-clicking your Scenes folder and
then choosing Create ➤ Scene).

Now if you navigate to the Scenes folder in your Project pane and double-click level one, it should jump
between the two layouts. Notice that everything is new in the new scene—even the player and the camera.
Nevertheless, they are still all instances of the same objects that live in your Prefabs folder, so editing scripts
or properties will affect everything across all levels.

Escaping the Level
Now that our game has more than one level, we’re ready to make it possible to transition between them.
Head back to Level 1 and add the sprite to your first level just as you normally would. Make it a GameObject
with a polygon collider, tick Is Trigger, create a new script called EndLevel, and add it as a component to the
rocket ship.

EndLevel will look like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;

Figure 8-5. A quick way to make a new level

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

146

public class EndLevel : MonoBehaviour {
 public string nextLevel;

 void Start()
 {

 }

 void Update()
 {

 }

 void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 SceneManager.LoadScene(nextLevel);

 }
 }

}

Couldn’t be simpler! Note, though, that I included the top of the code with the using commands this
time. That’s because I’m using an additional class from Unity called SceneManagement. This class lets us use
the command that loads up the next scene. The scene in question meanwhile is a public string, which we
will name in the Inspector as Level 2. That will make it easier for us to update our level goal for each scene
while still using the same script and object.

Before you click play, there’s one more thing you need to do: head back into Build Settings and add
Scene 2 to your game (just drag it from your Scenes folder and drop it into the window—see Figure 8-6).

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

147

Now try completing the level by reaching the rocket. You should find that the next level immediately
loads and you’re ready to take on the next challenge: creating a level select.

Building a Level Select Screen
In most mobile games—and PC and console games for that matter—players can jump straight into a
given level as long as they have previously completed the one before it. This lets them replay their favorite
moments, go back to find hidden secrets, and beat their top scores. To allow this, we need to provide some
way for our players to view levels and select them. In other words, we need to build a level select.

This mean you need to create another scene, but this one will be entirely blank. We’ll call it Level Select.
Once that’s ready, it’s time to get reacquainted with Squarey, only this time he has lost a bit of his personality
(Figure 8-7).

Figure 8-6. Drag Level 2 into the build settings so you can load it

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

148

Actually, this isn’t Squarey at all, but rather an indicator or selector, meaning we need to have a
transparency in the center. This is what will show us which level we’re looking to select, so we’re also going
to need two views, one for each level, that will be the same size. I’ve made these 500 x 500. You can do this by
taking screenshots from your two levels (ignoring the fact that they’re essentially the same at this point) and
saving them as sprites.

Now, arrange the two level images into the scene so that they’re in view of the camera and nicely
aligned. Then place your selector on top (with the precise same coordinates) and make sure it has a higher
value for Order in Layer. You should have something that looks like Figure 8-8.

Figure 8-7. This will be our selector

Figure 8-8. The beginnings of our Level Select scene

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

149

Writing the Control Script
Now we’re going to create a new control script that will work much like the Player script. For the most part,
we will be controlling the selector just as we would have controlled the player. This is our player character for
the time being.

Create the script and call it Selector. Then use the following code:

public class Selector : MonoBehaviour {

 public bool moveLeft;
 public bool moveRight;

 void Start()
 {

 }

 void Update()
 {

 if (transform.position.x > -5 && (moveLeft || Input.GetKeyDown(KeyCode.LeftArrow)))
 {
 transform.position = new Vector2(transform.position.x - 6, transform.

position.y);
 moveLeft = false;
 }
 else if (transform.position.x < 1 && (moveRight || Input.GetKeyDown(KeyCode.RightArrow)))
 {
 transform.position = new Vector2(transform.position.x + 6, transform.

position.y);
 moveRight = false;
 }

 if (Input.GetKey(KeyCode.Space))
 {
 Select();
 }
 }

 public void Select()
 {

 }

}

My level images are spaced 6 units apart, so that is how much the selector will move with each step.

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

150

As you can see, this is very similar to our usual Player script, although obviously without the Death
method or the animations. There are also one or two other differences that you also need to be aware of.
We’ve created a Select method, but for now it’s empty. Instead, all that’s happening is that the selector
is moving 6 units to the left or right when the user taps the arrow key. Notice that we’re using GetKeyDown
now, so the user has to tap rather than hold down the arrows. I also set moveLeft and moveRight to false
immediately after the square moves one step for the same reason.

Finally, I’ve added a little bit of code to check that the selector isn’t going to move off the left or right
edge of the screen. You’ll need to update this each time you add a new level or potentially use something like
numberOfLevels * 6 to calculate how far the selector can move to the right.

If you drag the Main Camera object to make it a child of the selector in the Hierarchy, then the screen
will “scroll” as our selector moves. Right now, if you test this, it should work as long as you’re using the cursor
keys on your computer.

Now you need to create a new Touch script specifically for the Selector. We could add this code to the
same Touch script we already created and check the object it’s attached to, but making something new is
probably simpler.

So create another new script, this time called LevelSelectTouch. This one is effectively a rehash of the
previous Touch, making things nice and easy for us:

public class LevelSelectTouch : MonoBehaviour {

 private Selector selector;

 void Start()
 {
 selector = FindObjectOfType<Selector>();
 }

 public void PressLeftArrow()
 {
 selector.moveRight = false;
 selector.moveLeft = true;
 }
 public void PressRightArrow()
 {
 selector.moveRight = true;
 selector.moveLeft = false;
 }
 public void ReleaseLeftArrow()
 {
 selector.moveLeft = false;
 }
 public void ReleaseRightArrow()
 {
 selector.moveRight = false;

 }

 public void Select()
 {
 selector.Select();

 }
 }

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

151

Add this script to the TouchController GameObject in your Hierarchy—not to the prefab. Remember,
we only want this change to affect this instance of the touch controls and not the ones used in Levels 1 and 2.

Now you just need to set up the controls to work with this script. Open Right Arrow, Left Arrow and then
Jump in the Inspector and reconfigure the event triggers for each so that they correspond with the correct
methods in the new script. If you get stuck, check back and see how we did it last time—the process is the
exact same (it’s in Chapter 7). Of course, the jump button is going to be tied to the Select method in this case.

And while we’re ruining our prefabs, delete the Level and Coins GameObjects from the canvas because
they don’t make much sense in this context.

Ready to Launch
Give this a try and you should find you can now move the selector around with either the cursors or the
on-screen controls. It looks pretty good, although it could probably benefit from a nicer backdrop of some
sort (Figure 8-9).

What it really needs is the ability to actually select the level. A good way to do this would be to give our
level images proper names, which will be the same as our scene names (so, Level 1 and Level 2) and make
the selector itself a trigger with a box collider. We’re also going to add Rigidbodies, which are used for our
collisions detection. We obviously don’t want our levels to fall off the bottom of the screen, though (darn
gravity), so click the little dropdown menu to next to Body Type in order to choose Kinematic (Figure 8-10).

Figure 8-9. There we go, much better!

http://dx.doi.org/10.1007/978-1-4842-2704-6_7

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

152

Now update the Selector script like so, remembering to add the new using line up top as well:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;

public class Selector : MonoBehaviour {

 public bool moveLeft;
 public bool moveRight;
 private string levelChoice;

 void Start()
 {

 }

Figure 8-10. Set Body Type to Kinematic.

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

153

 void Update()
 {

 if (transform.position.x > -5 && (moveLeft || Input.GetKeyDown(KeyCode.LeftArrow)))
 {
 transform.position = new Vector2(transform.position.x - 6, transform.

position.y);
 moveLeft = false;

 }
 else if (transform.position.x < 7 && (moveRight || Input.GetKeyDown(KeyCode.RightArrow)))
 {
 transform.position = new Vector2(transform.position.x + 6, transform.position.y);
 moveRight = false;
 }

 if (Input.GetKey(KeyCode.Space))
 {
 Select();
 }
 }

 public void Select()
 {
 SceneManager.LoadScene(levelChoice);

 }

 void OnTriggerEnter2D(Collider2D other)
 {

 levelChoice = other.name;

 }

}

That code simply looks for a collision and then gets the name of the offending object to store as a string
called levelChoice. When you hit the jump button, levelChoice is then loaded the same way we loaded
it earlier. Give this a go and you should find that you can now jump into whichever level you choose. Don’t
forget to add the Level Select scene to the Build Settings.

Let’s take a moment to reflect on what you’ve accomplished here: you used all the same tricks you’ve
already been using but this time you made a menu rather than a level in a game. This is an early indication of
just how versatile the tools that Unity gives us are. It isn’t too much of a stretch to imagine creating a puzzle
game or even some kind of productivity tool.

Saving Our Progress
A level select isn’t much use until we can save our players’ progress. We want there to be a sense of
accomplishment and progression as they play through the levels, which means that the option to play
further should open up as each level is completed. This progress should persist from play session to play
session too, because it isn’t much fun having to start again from scratch every time.

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

154

So we need a way to save our progress, and Unity actually gives us a number of options, from using
player preferences to serialization or creating text files.

Technically, what we should be using is serialization—it lets you save a lot more information more
quickly. Without going into too much detail here, that means converting an object into bytes. It’s a little
complicated, though, so for now we’re going to use PlayerPrefs because it’s quick and dirty and much
easier to get your head around.

PlayerPrefs is supposed to be used for saving preferences like image quality, or whether you want the
sound on—settings, in other words. But to be honest, a lot of indie developers use this method exclusively,
and if all you need to do is store some top scores and level names, it will do just fine.

It’s incredibly simple to save the level as soon as we load it. Just update the EndLevel script attached to
the rocket in Level 1 to look like this:

public class EndLevel : MonoBehaviour {
 public string nextLevel;
 public int levelValue;

 void Start()
 {

 }

 void Update()
 {

 }

 void OnTriggerEnter2D(Collider2D other)
 {
 if (other.tag == "Player")
 {
 SaveLevel(levelValue);
 SceneManager.LoadScene(nextLevel);

 }
 }

 public void SaveLevel(int level)
 {
 PlayerPrefs.SetInt("farthestLevel", level);
 }
}

That one line: PlayerPrefs.SetInt("farthestLevel", level); is all it takes. This creates a new
integer with the key farthestLevel and puts it in PlayerPrefs. We just need to add the public variable
levelValue in the Inspector (Figure 8-11), and now touching the rocket will load up the next scene and
update the saved variable.

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

155

To make use of this, we need to make our level select screen a little smarter so that it will be able to show
us when a level isn’t ready to be loaded. Create something that will show in the place of upcoming levels. I’m
using a question mark that should match nicely with my backdrop (Figure 8-12).

Figure 8-11. The rocket has Level 2 value

Figure 8-12. What’s behind door number two?

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

156

Create two of these and place the first one so that it sits behind Level 2 further back in the order
(if you get this right, it won’t be visible). The second goes along to the right where Level 3 will be later.
These shouldn’t have colliders; they’re just images that will show when the image in front of it is missing.
You should have something that looks like Figure 8-13.

We’re now going to create another script called LevelLoader and attach that to the Level 2 image:

public class LevelLoader : MonoBehaviour {

 public int thisLevel;
 private Selector selector;

 void Start () {
 selector = FindObjectOfType<Selector>();

 }

 void Update () {
 if (selector.farthestLevel < thisLevel) {
 this.tag = "off";
 GetComponent<Renderer>().enabled = false;
 } else

Figure 8-13. There are actually two question marks here—the first one is behind Level 2

Chapter 8 ■ expanding the game World With CheCkpoints, levels, and save Files

157

 {
 this.tag = "on";
 GetComponent<Renderer>().enabled = true;
 }
 }
}

So, these images are now our level loaders. When the Level Select scene is created, they’ll all appear as
they should, and then they’ll check to see if the player has gotten far enough yet. If the player hasn’t, they’ll
disappear (GetComponent<Rendered>().enabled = false) and set their tag to off.

Attach this to the GameObject and then enter the public integer thisLevel in the Inspector, which
should of course be 2.

As you can see, the code we need to check the level is going to be in the Selector script (because we
only want to do this once), which has the public property loadLevel. To get this value, all we have to do is
add just one line of code to the Start method in that script:

PlayerPrefs.GetInt("farthestLevel");

Of course, we also need to define the public integer up top.
Now, when the selector is created, it will check the furthest level the player has gotten to by looking at

the PlayerPrefs and store this value as a public integer. The LevelLoader images will then disappear if the
player hasn’t gotten far enough to play them yet. When the player selects the ?, they’re still really selecting an
“invisible Level 2,” but because the tag is set to off, it won’t load.

A Few Final Comments
Give it a try and you should find that at first you can only play Level 1. Only after you reach Level 2 via the
rocket and then load this screen up again will you be able to choose either. Progress.

This isn’t necessarily the most ideal way to handle this. Some of our methods are in unusual places
right now in the interests of keeping things simple. What you might do instead is to create a script to act as a
kind of “game manager” that stores progress, loads different levels, and so on, and that way keeps your code
cleaner. I keep threatening that chapter on optimization and this is something else we’ll touch on there.

But for now, I think you’ve worked hard enough. This was a complicated chapter, so if you’ve struggled
try not to worry. I actually taught you very little that’s new (how to load scenes and how save and load
variables in PlayerPrefs). Mostly this was just using what you’ve already learned in novel ways. So if you’ve
come this far, you already have the tools to make checkpoints and level select screens—it’s simply a matter of
applying a little ingenuity in order to come up with a system that you like. That’s the fun of programming: it’s
essentially an exercise in resourcefulness.

For the next couple of chapters, things are going to get (a little) less technical again. We’ll be introducing
some common obstacles, power-ups, and abilities to create more fun gameplay possibilities. Then we’ll be
discussing what makes good game design. You’ve done the hard part (for now). It’s time to have some fun!

159© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_9

CHAPTER 9

Adding More Game Elements:
Springs, Moving Platforms,
AI, and More

You’ve spent the last few chapters working hard to create a working game world. You’ve developed the
engine, created save files, and made your character move and interact with the world the way they should.
Hopefully, you’ve had fun doing it, but it’s probably felt a little challenging and quite technical at points
along the way.

Well, now it’s time to bask in your achievements for a bit. You’ve created this world. Let’s have some
fun in it.

After all, a typical game will involve plenty of different obstacles, hazards, and power-ups, each of
which will normally create unique gameplay challenges and fun encounters. Sonic has springs, rings, posts,
Badniks, spike pits, chaos emeralds, and loop-de-loops. Mario has mushrooms, Bullet Bills, ghosts, question
mark boxes, and Yoshi(s). Super Meat Boy has portals, giant saws, missiles, and piles of used needles.

It’s time for you to get creative and to start introducing more elements into your own game. And the best
part? Creating these challenges is almost as much fun as getting to play through them later on.

In this chapter, you’ll learn how to create all kinds of environmental hazards and enemies and you’ll
be able to dip back in any time you want to add another element to your own game world. I hope it will also
serve as a source of inspiration to help you come up with your own obstacles and challenges. Of course, we’ll
learn a few new concepts along the way as well.

By the end, you’ll also learn how to plunder the Asset Store so that you can access particle effects,
scripts, and sprites that others have lovingly created and use them in your own games.

Ready? Let’s have some fun!

Some Common Game Objects and Their Behavior
Although every platformer is different and you should do what you can to differentiate yourself and stand
out from the crowd, it’s also true that certain tropes crop up time and again. This is normal in any genre in
any form of media, so don’t worry if you find yourself falling back on “old favorites.”

So, under the assumption you’ll be using some of the more common assets and objects in your game
design, this section will show you how to build basic elements like springs and moving blocks.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

160

Springs
The first game object we’re going to create is the spring, or “bounce pad.” Arguably popularized by Sonic
the Hedgehog, the spring is now a common trope in platformers used as a means of propelling the player
up a level.

Take a look around the Unity IDE and you may find something that looks like it will do the job: you
can add a “bounciness” property to a Physics Material 2D. Unfortunately, that’s not what we’re looking for
because this will make the ground act a lot more like an actual bouncy surface. That is to say that it will
propel the character higher the further they fall and eventually return less and less energy. You can do some
fun stuff with that, but it won’t act quite the way we want it to.

Instead we’re going to create a spring sprite (Figure 9-1) and add it to your level, as you’re accustomed
to doing by now (Figure 9-2). Notice that we’re using an edge collider along the top edge (rather than the
usual box collider).

Figure 9-1. A spring

Figure 9-2. A spring in a level

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

161

Next, you’re going to create a Spring script and add the following code:

public class Spring : MonoBehaviour {

 private Player player;
 // Use this for initialization
 void Start()
 {
 player = FindObjectOfType<Player>();
 }

 // Update is called once per frame
 void Update()
 {

 }

 void OnCollisionEnter2D(Collision2D other)
 {
 if (other.gameObject.tag == "Player")
 {
 player.SuperJump();
 }
 }

}

As you have maybe already guessed, you’re also going to add the SuperJump method to your Player
script:

public void SuperJump()
{
 rb.velocity = new Vector2(rb.velocity.x, jumpPower * 2);

}

Of course, remember to add the new Spring script to your GameObject and make it a prefab—the
usual stuff.

Now when you touch the spring, Kevin is going to be launched up into the air at twice the height he can
normally jump. I’ve kept the height proportional to his jumping height just in case we ever decide to change
the scale of the level. If you want to, you can add animations and sounds to the spring as well.

Moving Platforms
A common trope in any platform game is the moving platform. You have platforms that move left and right
and carry you over chasms and you have platforms that move up and down and act like elevators.

We can already make things move left and right—we’ve done that with our enemies already. The
problem is that if you attach this movement script to a piece of ground, Kevin won’t move with it. Instead,
the ground will move out from under him, and he’ll drop off of it. Not good.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

162

Meanwhile, if the platform moves up and down and your player is on it, he will judder and freak out and
possibly fall through the floor. We essentially need to modify this script so that we can stick to the top surface
and travel with it.

How might we do this?
I’ll give you a second to think … what have we used previously in this book that allows a GameObject to

move in relation to another GameObject?
Got it?
The answer is that we need to make Kevin a child of the GameObject he’s standing on. To do that, open

up your movement script (we called this BackAndForth) and get ready to make some changes. We’re not only
changing the script so that our character becomes a child of the platform when they come into contact with
it, we’re also adding another dimension of movement so that it can also move upward and downward. The
direction integer variable is now public, meaning we can edit it from the Inspector. It’s no longer set to 0 in
the onStart() method either, but remember that an integer always begins life as 0 if it is unset.

That means that our enemy behavior won’t have changed—they will continue to move left and right
because the direction variable will default to 0. For the platform, though, we have the option to set it to 2 or
3, which will make it move up then down, or down then up.

After all that, BackAndForth should now look like this:

public class BackAndForth : MonoBehaviour
{

 public double amounttomove;
 public float speed;
 private float startx;
 private float starty;
 public int direction;
 private Player player;

 // Use this for initialization
 void Start()
 {

 startx = gameObject.transform.position.x;
 starty = gameObject.transform.position.y;
 player = FindObjectOfType<Player>();

 }

 // Update is called once per frame

 void Update()
 {
 if (gameObject.transform.position.x < startx + amounttomove && direction == 0)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

+ speed, gameObject.transform.position.y);

 }
 else if (gameObject.transform.position.x >= startx + amounttomove && direction == 0)

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

163

 {
 direction = 1;
 }
 else if (gameObject.transform.position.x > startx && direction == 1)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.

x - speed, gameObject.transform.position.y);
 }
 else if (gameObject.transform.position.x <= startx && direction == 1)
 {
 direction = 0;
 }

 if (gameObject.transform.position.y < starty + amounttomove && direction == 3)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x,

gameObject.transform.position.y + speed);

 }
 else if (gameObject.transform.position.y >= starty + amounttomove && direction == 3)
 {
 direction = 2;
 }
 else if (gameObject.transform.position.y > starty && direction == 2)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x,

gameObject.transform.position.y - speed);
 }
 else if (gameObject.transform.position.y <= starty && direction == 2)
 {
 direction = 3;
 }

 }

 void OnCollisionEnter2D(Collision2D other)
 {
 if (other.gameObject.tag == "Player")
 {
 player.transform.parent = gameObject.transform;
 }
 }

 private void OnCollisionExit2D(Collision2D other)
 {
 if (other.gameObject.tag == "Player")
 {
 player.transform.parent = null;
 }
 }
}

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

164

I also recommend that you create a new Physics Material 2D for the platform and set the friction to
something high. This is to prevent Kevin from sliding too much on the platform, which looks a little odd in
conjunction with the movement.

It’s also a good idea to use an edge collider and add a platform effector. Tick Used by Effector and Use
One Way, and this will prevent our player from getting crushed by the platform or sticking to the side and
moving as a child of the platform. If this prevents the player from being able to jump off the platform, you
may want to increase the radius of your Ground Check slightly. There are other ways to accomplish the same
thing that may be a little more elegant, but this is an easy “fix” that will get your moving platforms up and
running.

If everything has worked, Kevin should now move with the platform whether it’s going left and right or
up and down (Figure 9-3). This creates tons of platform challenge opportunities, so have some fun with it.

Collapsing Platforms
You know what else is great? Collapsing platforms. These are the platforms that crumble underfoot when
you land on them and thereby encourage you to run and jump quickly in order to avoid falling to your doom.

With this kind of thing, it’s important that you communicate to the player the nature of the challenge
that they’re about to face. It’s not fair to sucker punch your player by having a platform drop out from
underneath them without warning, and for that reason it’s normally advisable to have a visual indicator that
the ground isn’t quite stable.

Figure 9-3. Kevin going for a ride

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

165

For that reason, I created a design for a crumbling platform you can see in Figure 9-4.

We want this platform tile to begin to crumble once we land on it, so we’re going to create a new script
called Crumble. This script will simply start a timer as soon as the player touches the object and then cause
the object to fall and disappear once that timer is complete.

The code looks like this:

public class Crumble : MonoBehaviour {
 private Player player;
 private Rigidbody2D rb;
 public int timeToCollapse;
 private int timeLeft;
 public int timeToRestore;
 private int restoreTime;
 private float startY;
 private float startX;
 // Use this for initialization
 void Start () {
 rb = GetComponent<Rigidbody2D>();
 player = FindObjectOfType<Player>();
 startX = transform.position.x;
 startY = transform.position.y;
 timeLeft = -70;
 }

 // Update is called once per frame
 void Update () {
 if (timeLeft > -70)
 {
 timeLeft = timeLeft - 1;
 }
 if (timeLeft == 0)
 {
 rb.constraints = RigidbodyConstraints2D.None;
 }
 if (timeLeft == -62)
 {
 GetComponent<Renderer>().enabled = false;
 restoreTime = timeToRestore;
 }
 if (restoreTime > 0)
 {
 restoreTime = restoreTime - 1;
 }

Figure 9-4. A crumbling platform tile

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

166

 if (restoreTime == 2)
 {
 transform.position = new Vector3(startX, startY);
 transform.rotation = Quaternion.identity;
 GetComponent<Rigidbody2D>().velocity = Vector3.zero;
 rb.constraints = RigidbodyConstraints2D.FreezeAll;
 GetComponent<Renderer>().enabled = true;
 }

 }

 void OnCollisionEnter2D(Collision2D other)
 {
 if (other.gameObject.tag == "Player")
 {
 timeLeft = timeToCollapse;
 }
 }

}

When the player touches the collider, that begins the countdown, which will be a value chosen in the
Inspector. When the countdown passes zero, the constraints are removed from the Rigidbody, allowing it
to fall and to rotate through the air. The timer carries on counting down past zero to –70 so that we have
time to see the platform fall and disappear. Just before the time reaches that point, the object will stop being
rendered and become invisible. This will then begin a new countdown: a restore timer. This is also set in
the Inspector, and when this counts down to zero, the object is returned to its original position, with the
constraints newly frozen, rotation set to zero, and the rendering back.

From the player’s perspective, this then creates a tile that can be stood on for a limited period of time
before it drops off of the screen and eventually disappears. You may want to add a “rumble” animation and
a sound effect for added drama, and from there you can introduce some cool reflexive platforming. It should
all look something like Figure 9-5.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

167

Better AI
Another thing you may want to add to your game at this point is a better enemy AI. Right now, our enemies
just move left and right and are literally no more intelligent than our moving platforms. Something more
challenging for the player would be an enemy that would actually seek the player out and chase them down.

I think something ground based would be more interesting here, so I’ve created another enemy. This
time I’m going with a kind of mean-looking mechanical rat (see Figure 9-6). Why? Probably because it is late
and I’ve lost it.

Figure 9-5. Running along collapsing blocks … action!

Figure 9-6. Look, it’s an alien planet. It doesn’t need to make sense

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

168

This little guy is going to use a new script, which will be called GroundEnemy. The basic behavior of this
character is going to be to follow the player along the ground. So, if our horizontal position is bigger than the
player’s, we reduce the value of X. If it’s smaller, we increase that value. We also need the rat to flip around
when he changes direction, just like the player.

This simple script looks like so:

public class GoundEnemy : MonoBehaviour {
 private Player player;
 private int facing;
 public float enemySpeed;

void Start () {
 player = FindObjectOfType<Player>();

 }

void Update () {

 if (gameObject.transform.position.x > player.transform.position.x)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

- enemySpeed, gameObject.transform.position.y);
 if (facing == 0)
 {
 facing = 1;
 transform.localScale = new Vector3(.2f, .2f, 1f);
 }
 }

 if (gameObject.transform.position.x < player.transform.position.x)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

+ enemySpeed, gameObject.transform.position.y);
 if (facing == 1)
 {
 facing = 0;
 transform.localScale = new Vector3(-.2f, .2f, 1f);
 }
 }
 }

}

Fun fact: the first game I ever made was based around this script (except in BASIC for the ZX Spectrum).
This was the point at which I “got” programming. I made a dot that could move around the screen and would
be chased by a second dot. The player’s objective was to trick the enemy into landing on a small mine (a red
dot). Maybe that’s not a fun fact … sometimes I get confused.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

169

Ahem. Of course, you should also add the Hazards script if you want the bad guy to actually be lethal
(and you’ll need to add an onCollissionEnter2D method so that both colliders and triggers will kill the
player). You can see the enemy giving chase in Figure 9-7.

Anyway, this script is a little too simple at the moment. As it is, the enemy will start chasing the player
as soon as the game begins and probably end up stranded in a pit somewhere. Not only that but he is very
easily fooled and will be stymied by pretty much any obstacle.

To solve this problem, we’re first going to get him to spring into action once the player reaches a certain
proximity and then stop following after the player gets away. The proximity will be a public integer that we
can set in the Inspector. A useful tip is to make sure that you play around with different ranges and different
speeds. Ideally, you don’t want the enemy to start moving until the player can see them on the screen.
Likewise, the ideal speed will be one that allows the player to escape but only after a tense chase.

Notice how tweaking these numbers even just slightly alters the pace and the tension of your game
considerably. This is similar to being a film director, and we’ll be discussing these kinds of aspects much
more in the next chapter.

While we’re at it, why don’t we get a little more creative and give our enemy the ability to traverse the
environment a little more? For example, it would be great if Roborat (yes, I shall call him Roborat) would
jump over blocks to try and reach the player and if it could get itself out of pits. To do this, we’ll be using a
new feature: raycasts.

Figure 9-7. Run Kevin, it's some kind of robot rat

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

170

The raycast is an invisible line, and we’re going to use more transforms and empty GameObjects in
order to define its position. To check that this is working, we’re going to use a debug function to draw a
straight line between two points. This is a handy feature of Unity that lets you draw directly onto the screen
in a way that is only visible in the Scene view. The players won’t see it, but we can use it to test our game.

Figure 9-8. Remember, you’re creating an empty GameObject just below the character to use as a transform
and then adding it to the Inspector

Using Raycasts
Raycasts are a little like the reverse sensor in your car; they send out a beam that checks for collisions and
then return “true” if there’s a hit. What we want to do is give our enemy the ability to look to see if something
is blocking its path and then jump over it. That means it will also need its own groundCheck too (so it doesn’t
keep jumping and fly through the air). Handle this the exact same way you did for the player: create an
empty GameObject with a small radius and then get it to check for ground to set a Boolean. You can copy
and paste the code directly, and it should then look something like this once it’s in place:

public class GoundEnemy : MonoBehaviour {
 private Player player;
 private int facing;
 public float enemySpeed;
 private bool chaseIsOn;
 public int attackRange;
 public Transform groundCheck;
 public float groundCheckRadius;
 public LayerMask whatIsGround;
 private bool onGround;

 void Start () {
 player = FindObjectOfType<Player>();

 }

 void FixedUpdate()
 {
 onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,

whatIsGround);

 }

You should also have something that looks like Figure 9-8 in the Inspector.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

171

So, create two new empty GameObjects that are children of the rat (which sounds like a strange book
title: Children of the Rat). The first one should be dead center, which we will call Sight Start. The second
will be two units in front of the rat and will be called Sight End.

Now we’re going to create two new public transforms, which will be enemySightStart and
enemySightEnd. Once again, we’ll use the Inspector to drop the two empty objects we just created into there.
If you’ve done this right, you should be able to add this line:

Debug.DrawLine(enemySightStart.position, enemySightEnd.position, Color.red);

And then see a red line appear in the Scene view between two points (see Figure 9-9). Now we’re just going
to swap this line for a raycast.

Our raycast is going to go precisely where the line is currently, but it can be useful to keep the line
anyway, seeing as the raycasts are completely invisible and can otherwise be difficult to visualize.

Fortunately, using our raycast is pretty simple—especially since you’re familiar with using the overlap circle.
We’re going to use Physics2D.Linecast for this job. There are other kinds of raycast, such as

Circlecast, but for a 2D game with simple rules, a line is the most efficient option. We need to give this
function a start point and end point (as we did with our line) and then we’re also going to provide a layer
mask. We don’t want the enemy to jump over the player, so the layer it’s looking for is Ground.

This will go inside the update and will only operate if chaseIsOn Boolean is true (that is, if the player has
been sighted):

if (Physics2D.Linecast(enemySightStart.position, enemySightEnd.position, whatIsGround)) {
 Jump();
 }

Figure 9-9. Once the transforms are set, your rat should look like he's jousting

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

172

As you can see, I’ve also created a Jump method just as we did for the player. This should be familiar:

private void Jump()
 {

 if (onGround)
 {
 rb.velocity = new Vector2(rb.velocity.x, jumpHeight);
 }

 }

This is actually all it takes for our enemy to now be able to leap over obstacles (see Figure 9-10). Nothing
can stop him now—he’s like a Terminator.

The good news is that when the rat turns around, the Sight End object will flip as well because it’s a
child of the rat. It wouldn’t take much more code to make the rat attempt to jump chasms as well; we’d just
need a second raycast that looks at the ground just below the first one. Add that and make sure that the
enemy jumps when that point doesn’t overlap ground (Figure 9-11).

Figure 9-10. Leaping rats—a common sight for an ex-Londoner like myself

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

173

Figure 9-11. Our rat friend looking for the floor

Coding Enemy Behavior
I’ve also added something else, which is essentially the same code from the BackAndForth script. I want the rat
to move left and right so that it’s “on patrol” until it begins chasing the player. It isn’t particularly natural-looking
to have an enemy that stays perfect still until the player is sighted … although that would be creepy, I grant you.
We’re going to make this code a little smarter, though, by getting the enemy to change direction on patrol if it gets
close to the edge so that it doesn’t patrol off of platforms or into walls.

I’m also going to move the code around slightly so that it isn’t all sitting in the Update function—that
looks a little ugly. If you want to take the easy route, you can just copy and paste this code to create your own
ground enemy:

public class GoundEnemy : MonoBehaviour {
 private Player player;
 private int facing;
 public int jumpHeight;
 public float enemySpeed;
 private bool chaseIsOn;
 public int attackRange;
 public Transform groundCheck;
 public Rigidbody2D rb;
 public float groundCheckRadius;
 public LayerMask whatIsGround;
 private bool onGround;
 public Transform enemySightStart;
 public Transform enemySightEnd;
 public Transform enemySightEnd2;
 private float startX;
 public double amountToMove;

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

174

 void Start () {
 player = FindObjectOfType<Player>();
 rb = GetComponent<Rigidbody2D>();
 startX = gameObject.transform.position.x;
 facing = 3;
 }

 void FixedUpdate()
 {
 onGround = Physics2D.OverlapCircle(groundCheck.position, groundCheckRadius,

whatIsGround);
 Debug.DrawLine(enemySightStart.position, enemySightEnd.position, Color.red);
 Debug.DrawLine(enemySightStart.position, enemySightEnd2.position, Color.green);
 }

 void Update()
 {

 if (gameObject.transform.position.x - player.transform.position.x < attackRange &&
gameObject.transform.position.x - player.transform.position.x > -attackRange &&
chaseIsOn == false)

 {
 chaseIsOn = true;
 }
 if (gameObject.transform.position.x - player.transform.position.x > attackRange ||

gameObject.transform.position.x - player.transform.position.x < -attackRange &&
chaseIsOn == true)

 {
 if (chaseIsOn)
 {
 startX = gameObject.transform.position.x;
 }
 chaseIsOn = false;
 }

 if (chaseIsOn)
 {
 Pursuit();
 } else
 {
 Patrol();
 }
 }

 private void Patrol()
 {
 if (facing == 3)
 {
 facing = 0;
 transform.localScale = new Vector3(-.2f, .2f, 1f);
 }

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

175

 if (gameObject.transform.position.x < startX + amountToMove && facing == 0)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

+ enemySpeed / 2, gameObject.transform.position.y);

 }
 else if (gameObject.transform.position.x >= startX + amountToMove && facing == 0)
 {
 facing = 1;
 transform.localScale = new Vector3(.2f, .2f, 1f);
 }
 else if (gameObject.transform.position.x > startX && facing == 1)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

- enemySpeed / 2, gameObject.transform.position.y);
 }
 else if (gameObject.transform.position.x <= startX && facing == 1)
 {
 facing = 0;
 transform.localScale = new Vector3(-.2f, .2f, 1f);
 }

 if (Physics2D.Linecast(enemySightStart.position, enemySightEnd2.position,
whatIsGround) == false || Physics2D.Linecast(enemySightStart.position,
enemySightEnd.position, whatIsGround))

 {
 if (facing == 1)
 {
 facing = 0;
 transform.localScale = new Vector3(-.2f, .2f, 1f);

 }
 else
 {
 facing = 1;
 transform.localScale = new Vector3(.2f, .2f, 1f);

 }
 }
 }

 private void Pursuit()
 {

 if (Physics2D.Linecast(enemySightStart.position, enemySightEnd.position,
whatIsGround) || Physics2D.Linecast(enemySightStart.position, enemySightEnd2.
position, whatIsGround) == false)

 {
 Jump();
 }

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

176

 if (gameObject.transform.position.x > player.transform.position.x)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

- enemySpeed, gameObject.transform.position.y);
 if (facing == 0 || facing == 3)
 {
 facing = 1;
 transform.localScale = new Vector3(.2f, .2f, 1f);
 }
 }

 if (gameObject.transform.position.x < player.transform.position.x)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

+ enemySpeed, gameObject.transform.position.y);
 if (facing == 1 || facing == 3)
 {
 facing = 0;
 transform.localScale = new Vector3(-.2f, .2f, 1f);
 }
 }
 }

 private void Jump()
 {

 if (onGround)
 {
 rb.velocity = new Vector2(rb.velocity.x, jumpHeight);
 }

 }

void OnCollisionEnter2D(Collision2D collision)
 {
 if (collision.gameObject.tag == "Enemy")
 {
 Physics2D.IgnoreCollision(collision.collider, GetComponent<Collider2D>());
 }
 }
}

This is still fairly simple as enemy AI goes, but it results in some quite enjoyable behavior. Our bad guy
will now slowly patrol (I set this to half speed) until the player gets in proximity. Being a rat, he can smell
Kevin, and so once Kevin gets too close the rat gives chase and leaps over obstacles and pits in hot pursuit.
If he touches Kevin, we die. If Kevin makes it away in time, the rat loses interest and patrols whatever space
he’s in.

That last method—the onCollission2D method—is there to prevent rats from bumping into each other.
I included this so that you could make a “pit” of rats for the gross-out factor. You will need to tag the rats as
Enemy for it to work, though.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

177

Figure 9-12. So long, sucker!

If Roborat finds himself stranded on a platform (see Figure 9-12), he’ll often just freeze. So, he’s
not perfect. But he’s still pretty interesting and certainly dynamic enough to create lots of gameplay
opportunities.

And feel proud: you just created your first artificial intelligence. All in a day’s work.

Arming the Player
Our rat has turned out to be a pretty mean threat and certainly enough of a challenge to give our players a
hard time. It’s time that we gave our players a way to fight back.

Creating a bullet that the player can fire is relatively easy, though we will need to do a little juggling to
make sure we’re referencing the right instance of our Bullet object. Allow me to explain. First, we need to
create a new GameObject, called Bullet. This is our bullet, which will have public variables for its direction
and speed. It will also have a collider. The script looks like this:

public class Bullet : MonoBehaviour {

 public float speed;
 public int direction;
 private int timeLeft;
 public GameObject Blood;

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

178

 void Start () {
 timeLeft = 100;
 }

 void Update () {
 timeLeft = timeLeft - 1;
 if (timeLeft < 1)
 {
 Destroy(gameObject);
 }
 if (direction == 0)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

- speed, gameObject.transform.position.y);
 } else if (direction == 1)
 {
 gameObject.transform.position = new Vector2(gameObject.transform.position.x

+ speed, gameObject.transform.position.y);
 }
 }

 void OnCollisionEnter2D(Collision2D other)
 {
 if (other.gameObject.tag == "Enemy")
 {
 Destroy(other.gameObject);
 Instantiate(Blood, transform.position, transform.rotation);
 }
 else if (other.gameObject.tag == "Player")
 {
 Physics2D.IgnoreCollision(other.collider, GetComponent<Collider2D>());
 }
 else
 {
 Destroy(gameObject);
 }
 }
}

Notice that killing a rat will cause the same bloody particle effect that occurs when the player dies.
That means you need to add that public GameObject in the Inspector just the same as before. Notice too that
our onCollision method checks the object tag, so that rats get destroyed with the blood, players get ignored,
and anything else destroys the bullet. The bullet also times out after a set duration and self-destructs to
remove itself from memory, just like the particle effects did before.

Likewise, we’re also going to want to create a new public object called Bullet in the Player script.
You need to place the bullet prefab in there through the Inspector.

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

179

You’ll then add the following bit of code:

if (Input.GetKeyDown(KeyCode.LeftControl)) {
 var newBullet = Instantiate(bullet, transform.position, transform.rotation);
 var bulletScript = newBullet.GetComponent<Bullet>();
 bulletScript.direction = facing;
 }

This is the new part. Here, we want to not only instantiate a new object but also set some of the
properties for that object as it’s created. To do that, we need to use GetComponent in order to get the reference
to the script from this instance. From there, we can then access the public variable and change it.

Ultimately, you should end up with a bullet that can plough through enemies, as seen in Figure 9-13.

(Of course, later on you’ll want to go into your canvas and add a “fire” button. I’m leaving this out as I
think that the bullet makes our player a bit overpowered. This section is here simply for your own reference
and so that you can add bullets and guns to your game if you want to. Likewise, you’re also going to need to
add a gun of some sort to your player sprite and possibly a new animation.)

Figure 9-13. Alas, poor Roborat

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

180

Using Assets from the Asset Store
I could carry on talking you through how to create different objects and behaviors until I’m blue in the face
but I’d never show you how to make everything you could possibly need. How about portals to teleport the
player? What about switches that open doors? What about flying enemies? Or double jumping? Or power-
ups?

Hopefully, you’ll be able to figure some of this stuff out yourself now. This chapter has introduced
raycasts, gone into more detail regarding instantiating, and generally added to your knowledge. Using that
new information and building on what you already knew, you should be able to come up with creative
solutions to nearly any problem you can dream up. Remember, there’s no such thing as a lack of resources,
only a lack of resourcefulness.

But if you can’t figure it out on your own, or you just don’t have the time or inclination, you can find
prefabs that have already been made by others (including Unity Technologies) and add them to your own
projects. This is where the Asset Store comes in (Figure 9-14).

Figure 9-14. The Asset Store in all its glory

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

181

To start browsing here, just select the Asset Store tab and take a look around. You’ll see all kinds of
things—from particle effects, to scripts, to sprite packages, to entire game demos. You’ll notice that there are
sliders to let you set the price (many assets are free) and the file size and you can pick from categories on the
righthand side. If you click the name of a publisher—say, Unity Technologies—you can see all of their assets
and packages.

I want you to find the selection of assets called 2D Platformer from Unity Technologies (Figure 9-15).
This is basically a full 2D game, but rather than use the whole thing, for now let’s try selecting just one
element that we want to bring over. Specifically, let’s grab a sound effect file: Player-jump1.wav.

Figure 9-15. This will do just nicely

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

182

Click Download in the store and then click Import. Unity will warn you that you’re at risk of overwriting
your hard work, but don’t worry about that—you’ll be able to choose precisely what you want to add on the
next screen. So click OK, deselect everything from the list in the window that opens up (click None), and
then manually reselect just the sound effect (Figure 9-16).

Now click Import and after a second you’ll find new subfolders in your Audio folder. Click through these
and you’ll eventually get to the sound effect you wanted.

You can now create an audio source as before and get it to play when Kevin jumps. This voice is
definitely all wrong for him, but hopefully you see the possibilities here—you can find pretty much anything
you could want in the Assets Store, and though you might need to pay for some, you’ll find it isn’t usually too
expensive. Often the quality and professionalism of the resources here will outstrip what you can do yourself,
and this will speed up development while resulting in an end product with higher production values and
more “sheen.” I don’t want to recommend anything specific, seeing as the contents of the store change all
the time and that might date this book. Right now, however, there is a 2D Essentials–curated selection which
includes some cool things like weather particle effects, dynamic lighting, reflective 2D water, and a “Pro
Camera 2D.”

Figure 9-16. Only select what you want

Chapter 9 ■ adding More gaMe eleMents: springs, Moving platforMs, ai, and More

183

Hopefully, your mind is now reeling at the possibilities, but the most important thing is that you don’t
get carried away. Good game design doesn’t just mean throwing every cool thing you can at the player—it’s
as much about restraint as anything else. With great power comes great responsibility.

Figure 9-17. My Level 2 looks like this right now, which is all wrong. Find out why in the next chapter.

That’s why Chapter 10 provides you with a basic introduction to good game design, finesse, and style.
You have the raw skills—now it’s time you learn what to do with them.

http://dx.doi.org/10.1007/978-1-4842-2704-6_10

185© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_10

CHAPTER 10

Making the Game Fun and
Optimized

Congratulations, you can now make games with Unity!
No, seriously, if you were to stop reading right now, I’m fairly confident you could build a complete

game with levels and everything. And you’d probably even be able to figure out how to release it on the Play
Store after a little reading around (though I’ll be explaining that in Chapter 12).

Yes, you can build a game. But can you build a good game? Because those are two very different things.
Remember: with great power comes great responsibility. I feel I’d be doing a disservice to the world if I were
teach you how to make games and then set you free with zero guidance on what makes a game fun.

That’s what we’ll be looking at in this chapter. We’ll also be discussing a little bit about optimization
(to get your game to run more smoothly and take up less space) and even how to make your levels a bit prettier.
This is the cherry to go on top of your programming cake. Let’s go!

Onboarding and Tutorials
Remember the days when you’d buy a computer game from a store and then wait in clothes shops while
your mom finished her shopping? You were probably happy sitting there because you had the manual to
read, which was filled with backstory, tips, and explanations about how everything in the game worked.
It filled you with anticipation for the game and ensured you had a good idea of how to get started once the
cartridge/disk was inserted.

These days, games rarely come with a manual, and that’s especially true for mobile games. But that
doesn’t mean you can assume your player knows how to play right away. In fact, you shouldn’t even assume
they’ve ever played a video game before. Because some of your players probably won’t have, and those are
still customers that you want to stick around. Every game is someone’s first. So it becomes your job to teach
the player “on the job,” as it were, and that means you need a tutorial level.

Actually, the tutorial level is almost as much of an anachronism as the instruction manual itself. Put
your hand up if you can remember the last tutorial level you actually enjoyed. No, didn’t think so!

A good first level then should instruct the player on how everything operates without explicitly telling
them a single thing. This means you’re going to need to use visual cues, as well as gameplay tropes that
create a foundation of knowledge and then build on that.

http://dx.doi.org/10.1007/978-1-4842-2704-6_12

Chapter 10 ■ Making the gaMe Fun and OptiMized

186

Dissecting the Perfect Opening Level
Though the lack of manual might be a modern problem, the perfect example of an opening level that
implicitly teaches the player how to play can be found in one of the all-time classics: Super Mario Bros.
This game’s opening level, called World 1-1, is one of the most analyzed and highly praised levels in all of
gaming history—and for good reason. Let’s look at how it works.

For your convenience, I’ve recreated that first level layout using the assets from our simple platformer
(Figure 10-1). This may or may not be sacrilege.

Right from the very first screen, the player begins to learn how to play. Here, they’re greeted by their
protagonist, Mario (or in our case, Kevin). Mario has been positioned at the far left of the screen with the
camera pushing forward to the right. This immediately and wordlessly tells the player: go right.

As Mario goes right, he will see an angry Goomba heading towards him (which we’ve replaced with our
RoboRat). Did you know that we are evolutionarily programmed to feel stress whenever something moves
directly towards us? That’s why commuting is such a nightmare. This movement pattern combined with the
Goomba’s angry eyebrows should be enough to tell us that we need to avoid the enemy. The only way we can
do that is to jump—otherwise, we die (Figure 10-2).

Figure 10-1. Hmm, this is oddly familiar…

Chapter 10 ■ Making the gaMe Fun and OptiMized

187

Jumping is the main mechanic in Mario, and this opening ensures that the player understands how this
works before they get any further. If they lose all their lives and go back to the start, then they’ve lost nothing
because they haven’t made any progress yet. So this is a fine place to experiment.

The next thing Mario will encounter is a question mark box. This box is begging to be touched by the
strong visual cue that is the question mark. This universal symbol is saying, “Ooh, what’s in here?”
(The “Ooh” is optional).

When Mario touches the question mark by bouncing into it, he’ll find that it produces a mushroom.
The design of the next bit of level is such that Mario is almost forced to then collect said mushroom.
It will emerge from the box, travel to the right above Mario, and then bounce back off the pipe to head left.
Mario is likely to be underneath the next platform at this point and so even if he tries to jump and avoid the
mushroom, it will still probably hit him. Figure 10-3 approximates this in our game.

Figure 10-2. Jump or die

Chapter 10 ■ Making the gaMe Fun and OptiMized

188

Thus, the player learns how they can become “Super Mario.”
The level continues in this vein, teaching the player every skill they need in a simple, wordless manner. The

next few levels are concerned with giving the player plenty of time to practice those skills before chaining a few
obstacles together in order to make real challenges. As the game progresses, the number of obstacles that must
be circumvented in sequence will increase, and eventually new quirks and twists will start to be introduced.

Making Sure Your Players Understand Your Game
This may all sound like common sense to you (aren’t you clever), but it’s surprisingly easy to lose sight of
these points when you’re in the throes of level design.

Take a look at what you’ve created already. I know you’re only playing around at this point, but I’d
be willing to bet that you’ve laid out some pretty fiendish traps. It’s easy to get carried away with this and
to mistakenly think that hard = fun. This philosophy is going to lead to a lot of people giving up on your
game before they’ve given it a proper chance. This is especially true if the player doesn’t have much prior
experience with gaming.

Something that you must always do, then, is give your game to people to try out. The advantage of
developing for Android is that you can take your phone down to the pub and pass it around to see how your
friends manage. What you may find is that things that seem obvious to you are obtuse or unfair for first-time
players. You’ll see where your players get stuck and at what point they consider giving up. If you’ve done this
right, they should be able to get through at least the first few levels without getting overly frustrated. It will
take at least that long for them to get hooked.

A tip from Shigeru Miyamotu, the genius mind behind Mario and World 1-1, is to design your first level
last. This makes it much easier to take a step back and avoid the temptation to become sadistic with your
level design.

Figure 10-3. Were this Mario, a mushroom would now be appearing

Chapter 10 ■ Making the gaMe Fun and OptiMized

189

The Difficulty Curve
You do need to start introducing significant challenges at some point in your game, though, because
otherwise it will become boring. Fun lies at the sweet spot between impossible and too easy.

Why? Because from a neurological standpoint, games are fun as long as we are learning. Yes, I’m about
to get deep.

Your brain evolved to help you survive. And what is it that makes humans so incredibly adept at
survival? Our ability to adapt and to learn. We thrive because we learn how to utilize the environment
around us and cope with changing climates and circumstances. Our reactions get better with practice, and
set movement patterns become deeply ingrained through repetition.

The brain wants to keep learning, so it rewards that learning by releasing certain neurotransmitters and
hormones. When you are working toward a goal, the brain releases dopamine to keep you focused. When
you accomplish that goal, it releases endorphins—which feel great. This encourages the brain to rewire itself,
so that you stand a better chance of accomplishing that same thing again. Games use sound effects to signal
reward, which strengthens that response.

If you present the brain with too little stimulation or challenge, it becomes bored. Boredom is bad for us
because it can literally cause the brain to atrophy. When bored, we’ll quickly look for something else to do.

Likewise, though, when you present the brain with an impossible challenge, it quickly becomes deflated
and gives up.

But if you’re given a challenge that’s just hard enough to require a lot of work but not so hard as to be
impossible, then this can stimulate and engage you as the brain learns, adapts, and grows. If a game gets this
just right, then the player will enter what is referred to in neuroscience as a flow state—a state of mind where
we are completely focused on the task in hand to the point that time around us almost seems to dilate and
slow down. Brain imaging studies show some fascinating changes in the way the brain works at this point;
it enters a state called hypofrontality in which the frontal regions of the brain become suppressed, and we
begin to act purely on instinct. This balance is demonstrated in Figure 10-4.

Figure 10-4. For your players to be engaged and have fun, your difficulty curve must perfectly match their
level of ability

Chapter 10 ■ Making the gaMe Fun and OptiMized

190

You’ve probably experienced this at some point during a bullet hell shooter where you’ve danced
around hundreds of bullets on the screen in a trance, or during an intense, boss battle where you only have
one life remaining.

The brain is engaged because it’s learning and growing, and you can feel the fruits of this labor when
you return to an earlier level and find that your new muscle memory now makes previously seemingly
impossible challenges easy.

As a game designer, it’s your job to ensure that the intensity of the challenge ramps up perfectly as the
player improves in skill and experience, with the end goal being to keep them in that sweet spot. Better yet,
you should give your game depth so that they can return to earlier levels and use their new skills to get better
times or find hidden collectibles.

(That said, pacing is also important, and you do need to provide the player with occasional space to
breathe so that they can recover.)

Other Ways to Make Your Game Fun
So, it’s so important that you keep teaching the player as they progress through the game and keep the
challenge fair but rewarding.

But that’s not the only way to make your game enjoyable. Another useful tool is variety. One way to
stimulate a flow state in the real world is to put a person in a novel environment, and this is something we
can use to our advantage. The brain wakes up and pays attention when the surroundings are unfamiliar
because this once again represents a learning opportunity.

That’s why you should keep introducing new mechanics and switching up your environments. This is
why it is so common to see “snow levels” and “volcano levels” in games. You can be more inventive than
that, of course, but the most important thing is that you keep changing the palette and the tone. That creates
a sense of discovery and encourages your player to want to keep pushing forward.

Puzzle solving is another trope that players enjoy in games. Once again, there is a neurological reward
that comes from that “eureka” moment and from letting everything click into place.

So how do you design a good puzzle? The answer is to introduce elements to your game and then
ask the player to look for new ways to combine and use those elements. So, the box you used to climb a
ledge becomes a weapon you can drop on an enemy (see Figure 10-5). This requires lateral thinking and
challenges the brain to overcome functional fixedness—the temptation to view objects and elements only
within the context that they were originally introduced.

Chapter 10 ■ Making the gaMe Fun and OptiMized

191

The best way to increase the challenge with your puzzles is to gradually increase the number of steps
that the player needs to take in order to solve them.

Finally, a great way to reward your players and engage them further is to empower them to somehow
have an impact on the world around them. This often relates to the central hook of your gameplay—the
mechanic that sets your game apart and allows your character to navigate the world in a unique manner.
If this mechanic also happens to let the player see the effect they’re having on their surroundings, then it will
help to make them feel more powerful, which a lot of fun can be derived from. That’s why games like Angry
Birds or even Just Cause essentially revolve around causing large amounts of destruction. It makes the player
feel powerful. Other games like Godus take this one step further by letting the player play as a god.

That said, depowering the player to create a sense of tension, isolation, and danger can be a good way to
increase their focus and attention and make their victories even more rewarding. This is perfectly illustrated
in games like Limbo.

Emergent Gameplay
Other things to consider are the aspects of your game that you can’t design. Your world will be an ever-changing
series of permutations, which will be based on random events and the actions of your player. You can’t
anticipate every single scenario, then—meaning some gameplay possibilities will be out of your hands.
But this isn’t a bad thing. It’s actually a great thing. This is how emergent gameplay is born: when elements
you created interact in unexpected ways, creating new challenges and unique situations for the players.
For example, if Roborat were able to trigger the falling blocks, under the right circumstances that could result

Figure 10-5. Tee hee!

Chapter 10 ■ Making the gaMe Fun and OptiMized

192

in both the player and the rat jumping across falling debris. Emergent gameplay is amazing because it gives
each player their own unique stories to tell and ensures that every game session is different. You just create
the elements, stir them together in a big pot, and then wait for the magic to happen.

Interactions Between Hardware, Game Engines, Format,
and Gameplay
In a chapter 5, I mentioned that the game physics and elements you create would be inseparable from
the gameplay and the challenge. What I meant by that is that there’s a two-way interaction here that must
be considered during your design. Decisions you make regarding the functioning of the game world will
have direct consequences regarding the way your game is played and the challenges that are possible. For
example, the amount of friction you add to a surface will change the difficulty that’s presented by a series of
moving platforms, as we saw before. Likewise, so will the size of the directional buttons on the screen and
the players’ own fingers. All this needs to be taken into account when creating a challenging sequence and
when designing the game physics in the first place.

As we’ll see, this two-way relationship goes much deeper....

Creating a Great Camera
One of the best examples of how gameplay mechanics and the programming of your game engine intersect
can be seen with the camera.

Right now, your Camera is incredibly simple: it’s a child of the Player and so moves at the exact same
speed the player does. You may not have given this much thought, but if you now go back to your favorite
platform games, you may notice that this is not how the majority of games behave.

For example, we saw in that early example of Mario that the camera begins far to the right of the player,
indicating the direction that they should move. This is also the position you’ll see the camera in in any
“endless runner game,” and in this case the camera takes that position so as to make sure the player has lots
of opportunity to see upcoming obstacles and therefore more time to react. The player can’t run backwards
in these types of games, so what use is there in having lots of useless space to the left of them?

The faster paced a game is, the more drawn back the camera should likely be with a wider FOV (field of
view) in order to show more of what’s coming up.

In games with lots of platforming, it’s important to prevent nausea. In that case, the camera will
sometimes have a neutral zone in the center that the player can move around in and then scroll only once
they move out of this center. Other platformers solve this issue by having the camera “snap” to whichever
platform the character is touching at any given time.

In Figure 10-6, the black box denotes our neutral zone. There’s a lot of space up and down, but not so
much room left and right. So if the player moves left or right, the camera will track pretty soon after with only
a slight delay (meaning they’ll feel quicker when dodging obstacles). However, there will be more space for
the player to jump up and down without the camera bobbing up and down madly. This would lend itself
best to a less vertical level design with lots of jumping across gaps. See how the camera behavior reflects
the level layout and vice versa? This is the same kind of camera behavior seen in the 2D Sonic the Hedgehog
games, which is actually crucial owing to the many hills and gradients in those games. If the camera simply
followed Sonic, it would be constantly moving up and down to a nauseating degree—especially at those
speeds.

http://dx.doi.org/10.1007/978-1-4842-2704-6_5

Chapter 10 ■ Making the gaMe Fun and OptiMized

193

In other cases, the camera can be used to dramatic effect—hinting at dangers that lie ahead or slowing
down as the player approaches a large challenge. If the camera stops moving forward, the player will
instantly wonder whether they should continue and start to wonder what lies beyond their field of vision
(FOV).

So, if your game design isn’t working quite as you think it should, consider whether there is the right
amount of synergy between the worlds you’re dreaming up and the movement of the camera. Could the
game be made more fun by coding some more advanced behavior into your camera or even just moving it
backwards slightly?

Hardware and Business Models
It’s not just the physics and code that will define what’s possible and what’s fun in your game design. It’s also
the hardware you’re targeting and the business model you want to use.

For an example of how hardware and monetization can directly impact on the way a game is played,
look no further than your local video arcade machine. Arcade games were conventionally very difficult and
had lives systems because they wanted players to insert more coins. Likewise, they had to be easy to learn
and challenging to master so people would keep coming back to top the high-scores charts.

When games migrated to PCs, they started to become a lot more complex and intricate. They became
even more elaborate with the introduction of save files and more powerful hardware.

Figure 10-6. A different approach to our camera

Chapter 10 ■ Making the gaMe Fun and OptiMized

194

Figure 10-7. Breath of the Wild works well as a portable game due to the ability to so easily dip in and out

Interestingly, mobile games have taken things back a little bit. Mobile gaming on small screens lends
itself to more “bite-sized” chunks of gameplay (see Figure 10-7), whereas the introduction of alternative
monetization options like “free to play” mean that games once again need to give us incentives to keep
spending.

Online functionality meanwhile means that “high score” lists have once again become more important.
The point here is that nothing should be included in your game because “that’s what games do.” Everything
should have a purpose, and that purpose will be defined by multiple different factors.

Whether you want to create a “sit-down” game with a one-off payment aimed at tablet devices or a
free-to-play endless runner for casual gamers is going to completely change the way you go about your
level design. This means you need some concept of your entire end game before you go about designing
that first level.

And to think you were just going to start dropping things in places.

Making Your Game Look Awesome
Although gameplay is arguably more important than looks, it’s still very important that your game has both.
We’ve already seen that the graphics in your game will have an impact on the way your game works; graphics
can convey a sense of place and can provide cues for interactions. At the same time, though, it’s going to be
the screenshots and gameplay footage more than anything that helps you to sell your game.

In other words, it’s time we looked at adding a lick of paint to the game we’ve built. What are some ways
we can improve the way it comes across in photos?

Chapter 10 ■ Making the gaMe Fun and OptiMized

195

Figure 10-8. The current look

Easy Ways to Make Your Game More Attractive
If you were to take a look at what we’ve created, it would be fair to say that at the moment it’s not all that
attractive. It doesn’t quite look like a professional game yet, and that’s what we’re looking to fix here
(see Figure 10-8).

But what precisely is wrong? What’s missing?
The first issue is that everything is very inorganic. The platforms are made from straight lines and are

all uniformly the same. A quick way to change this is to rotate some of them by 90 or 180 degrees. That’s an
efficient way to reuse the same assets and keep file sizes low, but it still adds some variation to the way things
look. Likewise, we should consider using some more detailed sprites for the edges of our platforms. That will
give the effect of natural decay and quickly make things look a lot more real.

We can add more details, like the vines we used earlier, to make every piece of land look a little different.
Basically, we want everything to look as random as possible, and we can accomplish that with a little code.

Chapter 10 ■ Making the gaMe Fun and OptiMized

196

Figure 10-9 looks much better.

As it is, another issue with our game world is that it’s static. Look outside your window, and you’ll see
that something is always moving, whether it’s a tree branch blowing in the wind or rainwater dripping from
a pipe. The same is true of the best games, and that’s why nearly everything is animated, from the flowers to
the stars in the background. That not only makes your world feel alive, it also brings a lot more character and
personality to your game and makes it more interesting to look at.

There is a cut-off point, though. We don’t want to distract our players from the important elements.
Of course, we’re missing animations throughout the game at the moment. You’ll want to give your bad

guys animations and your player animations for doing things like jumping or shooting. This is another way to
help the player feel that they’re interacting with the world. The spring should wobble when they bounce off it.

A final problem is that the game lacks depth. The background we designed is pretty flat and lacks
interest until we reach the clouds or the sun. This worsens the feeling that everything has been cut out of
pieces of cardboard, so you should look to improve it by adding in a few more layers.

Figure 10-9. Not much has changed, but it looks slightly more organic

Chapter 10 ■ Making the gaMe Fun and OptiMized

197

In Figure 10-10 I’ve added clouds at the foreground with some transparency that will move faster than
the middle ground as the level scrolls. I’ve also added a few more in the background and introduced a layer
of mountains. Those mountains move at yet another speed and they help to ensure that our game world
never looks completely blank in the background.

How to Create Great-Looking Sprites and Choose a Design Language
for Your Game
Although adding these elements can do a lot to improve the look and feel of your game, they all require you
to have some basic skill when it comes to creating your own sprites. What do you do if you don’t have an
artistic bone in your body?

One option is to outsource your artwork. Sites like Fiverr, Freelancer, and UpWork allow you to connect
with freelancers offering a wide range of services including art and design. These are also great places to get
background music and sound effects.

Figure 10-10. With these few changes, our game is starting to look more interesting

Chapter 10 ■ Making the gaMe Fun and OptiMized

198

Option two is to make a stylized game that uses a unique art style that greatly reduces the amount
of work you need to do. A lot of games these days use a black and white art style, silhouettes (like the
aforementioned Limbo), or various retro-looks (as seen in VVVVVV, which looks like it was designed on a
ZX Spectrum). Figure 10-11 shows us what our game might look like were it designed for a Game Boy.

Using a specific art style like this can allow your game to stand out and grab attention in the Play Store,
while also giving it a strong identity. If you choose something somewhat minimal, you’ll save yourself a lot of
time as well and remove the need to get great at design.

For our game, we’ve gone with a pixel art style. This is another retro-inspired look that gives our game a
sense of nostalgia and frees us from needing to create photorealistic sprites.

So how do you achieve this style? The answer is simple: just use any image-editing software such as
GIMP or even MSPaint and then zoom in as close as you can. If possible, select Show Grid Lines in the
settings. Now, using a pencil tool that has 100% opacity, you can go about drawing the outline for your sprite.
You should be able to see the individual pixels as you are drawing.

Figure 10-11. Retro-style Kevin

Chapter 10 ■ Making the gaMe Fun and OptiMized

199

Take time and care as you draw your sprite and make sure to keep an eye on any patterns that form.
For instance, if you’re drawing a gradient, you may notice that the pixels move one up, three across each
time. This will result in something that looks more consistent and controlled. Luckily, you can just hit Ctrl+Z
if you make any mistakes. Another tip is to consider using layers where available (GIMP and Photoshop offer
this feature, but MSPaint doesn’t) and that way trace around the images you want to turn into pixel art.

Figure 10-12. An early app I made used a pastel color palette and a Sudoku-inspired look: Debugger: Brain
Untraining

You can outline your sprites or you can use block colors. I also recommend adding shading.
That normally means you’ll use three colors: one for the main fill, one for shadows, and one for highlights.
Make sure the shadows are consistently on the same side in all your sprites that are going to be in the same
scene—otherwise it will look confusing because it will be unclear where the light source is.

Finally, export your image. Now, you may find that it looks tiny when you do this, but that can be fixed
when you import it into Unity and set the Pixels Per Unit and the Scale. Make a small image bigger and the
pixels will really pop.

Optimization
This chapter has been all about taking your functional game and turning it into an awesome game. To this
end, we have one left item left on our agenda: optimization. We’ve looked at the surface details—now we
need to take another look at what’s on the inside.

First, what do I mean by optimization anyway? Essentially, I’m talking about making your game run
smoothly and be easy to edit, improve, and update going forward. Good code should use as few lines as
possible, with everything organized neatly so that it’s easy for you to find whichever element you need.

Chapter 10 ■ Making the gaMe Fun and OptiMized

200

tipsForBetterCode
Whenever you write code, you need to have your eye on the future. One day, you’re going to want to update
your game to fix a bug or add a new feature (again, this is especially common on mobile) and will come back
to it after being away for a while. In an ideal world, this should be a painless experience. Everything is simple
to understand and you don’t need to spend ages squinting at the screen. You should know where everything
is and what you need to change to achieve your desired results. This becomes even more important if you’re
working in a team.

As mentioned, better code also means less code. The more code there is on the page, the harder it’s
going to be to find whatever it is you’re looking for, and the more steps each process will likely take. More
steps = slower execution.

So how can you start making more elegant programs? Here are some tips to get you started:

 1. Place multiple variables on a single line:

public float startX;
public float startY;

becomes

public float startX, startY;

 2. Always make sure to use variables with sensible names that describe their
function. This may sound obvious, but you’d be surprised how often programmers
use completely random labels. If your variable tells the character how high they
should jump, it should be called something like jumpHeight. This also means
avoiding abbreviations (jh), which will quickly become obtuse and confusing.

In fact, the ideal situation is that your variables allow your code to read like
English. When using a Boolean in particular, this can be either true or false,
which means you can create lines like this:

if (playerIsGrounded) {

This tells us everything we need to know, even if we don’t know a line of
programming.

 3. Use camel case. This means that each new word in a variable begins with a
capital letter in order to help the reader break it up (sometimes this excludes
the first word). For example: jumpheight should be written as either jumpHeight
or JumpHeight. Not only does this further aid readability, but you’ll also see
that Unity breaks these variables up into individual words when you view the
variables in the Inspector.

 4. Avoid using “magic numbers.” In other words, don’t assign random significance
to a number as a way to get around a coding challenge. I did this in Chapter 9
when I used the timer that went beyond zero for the falling blocks. The timer
stopped when it reached –70. Why minus seventy?

One way to avoid this would be to use constants. A constant is a type of
variable that has a fixed value and can’t be changed once it’s been defined.
This has no memory overhead, and its main purpose is usually for legibility.
We could create a constant integer for instance with the value of –70 and
call that endOfFallAnimation. Now our falling block would stop at the
endOfFallAnimation rather than at –70. Makes a lot more sense!

http://dx.doi.org/10.1007/978-1-4842-2704-6_9

Chapter 10 ■ Making the gaMe Fun and OptiMized

201

Remember our Player script and its use of 1 to represent “right” and 0 to
represent “left”? If you take a hiatus from your code and then come back to it, this
can be pretty confusing too. So instead why not use this:

const int left = 0, right = 1;

Now we can say

if (facing == right)

which is far easier for us to read back. (This still shows as 0 and 1 in the Inspector,
however.)

Another advantage of using constants is that it’s far easier to search and replace
values later on should you want to make changes.

 5. Describe why not what. When writing comments, describing the purpose of
a method is much more important than describing what it does. What is the
relevance of this function? How does it relate to the rest of the script?

 6. Avoid writing the same code twice wherever possible. The more of your code you
can place in distinct methods, the easier it will be to quickly locate what you’re
looking for and the less you’ll need to type in total. Using methods also allows
you to copy and paste whole chunks of code from one script to the next.

 7. Use loops! A loop is piece of code that repeats itself until a certain condition is
met or broken. For example, a while loop looks like this:

int count = 1;
 while (count <= 4)
 {
 count = count + 1;
 }

This just counts to four and then stops, but we can use this structure to execute
the same command four times.

Actually, though, for loops that use an incrementing variable, it often makes
sense to use "for". This is an example of accomplishing the same thing with
fewer lines of code. A for loop looks like so:

for (init; condition; increment)
{
 statement(s);
}

Whatever type of loop you go for, they serve a similar purpose to methods in
that they help you to segment your code and prevent you from writing out lots of
functions repeatedly.

 8. Use smart tags and layers. Just as you need to be sensible with variable naming
conventions, the same goes for the names you assign while inside the Unity IDE.
By now, you know to use correct parenting and to create prefabs rather than
dealing with instances as well.

Chapter 10 ■ Making the gaMe Fun and OptiMized

202

Performance and Compatibility
The preceding tips will help make your code logical and readable and in some cases a little speedier too.
Really, though, the main bottlenecks in terms of speed will lie outside your scripts.

Smaller Images
For instance, you need to make sure that you use images that aren’t too large. The larger an image, the bigger
the file size of your app and the longer it will take to load. I’d like to tell you that the size of your app doesn’t
really matter, but that would be a lie: I’ve personally had multiple negative comments from my own users
when APK sizes have gotten too big, so this is something people really care about.

Note that you can show a load screen if necessary by loading scenes from a co-routine (like we used for
our Player.Death method) and then showing a loading UI over the old scene. However, we still want load
times to be as short as possible, so you should avoid sticking huge images in your scenes unnecessarily.
This is another reason that choosing a pixel art style makes a lot of sense: it lets you keep smaller file sizes
and then scale them up without having to worrying about pixelation. Choosing the right kind of image
compression (JPG image format rather than PNG when it’s okay to lose a little quality) will also help with
this. So too can reusing assets, which is why rotating tiles was a good move earlier.

Unity will add additional compression for your images when you build your APK, and you can set the
type of texture compression you want to use in build settings. This additional compression will affect the
speed and size of your app but also its compatibility and whether or not it supports alpha (transparency).
From Unity’s own documentation:

Texture Format What internal representation is used for the texture. This is a tradeoff
between size and quality.

RGB Compressed DXT1 Compressed RGB texture. Supported by Nvidia Tegra. 4 bits per pixel
(32 KB for a 256 x 256 texture).

RGBA Compressed DXT5 Compressed RGBA texture. Supported by Nvidia Tegra. 6 bits per
pixel (64 KB for a 256 x 256 texture).

RGB Compressed ETC 4 bits Compressed RGB texture. This is the default texture format for
Android projects. ETC1 is part of OpenGL ES 2.0 and is supported by
all OpenGL ES 2.0 GPUs. It does not support alpha. 4 bits per pixel (32
KB for a 256 x 256 texture)

RGB Compressed PVRTC 2 bits Compressed RGB texture. Supported by Imagination PowerVR GPUs.
2 bits per pixel (16 KB for a 256 x 256 texture)

RGBA Compressed PVRTC 2 bits Compressed RGBA texture. Supported by Imagination PowerVR
GPUs. 2 bits per pixel (16 KB for a 256 x 256 texture)

RGB Compressed PVRTC 4 bits Compressed RGB texture. Supported by Imagination PowerVR GPUs.
4 bits per pixel (32 KB for a 256 x 256 texture)

RGBA Compressed PVRTC 4 bits Compressed RGBA texture. Supported by Imagination PowerVR
GPUs. 4 bits per pixel (32 KB for a 256 x 256 texture)

RGB Compressed ATC 4 bits Compressed RGB texture. Supported by Qualcomm Snapdragon. 4
bits per pixel (32 KB for a 256 x 256 texture).

RGBA Compressed ATC 8 bits Compressed RGBA texture. Supported by Qualcomm Snapdragon. 6
bits per pixel (64 KB for a 256x256 texture).

Chapter 10 ■ Making the gaMe Fun and OptiMized

203

RGB 16 bit 65 thousand colors with no alpha. Uses more memory than the
compressed formats, but could be more suitable for UI or crisp
textures without gradients. 128 KB for a 256 x 256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256 x 256 texture.

Alpha 8 bit High-quality alpha channel but without any color. 64 KB for a 256 x
256 texture.

RGBA 16 bit Low-quality truecolor. The default compression for the textures with
alpha channel. 128 KB for a 256 x 256 texture.

RGBA 32 bit Truecolor with alpha—this is the highest-quality compression for the
textures with alpha. 256 KB for a 256 x 256 texture.

Compression quality Choose Fast for quickest performance, Best for the best image quality,
and Normal for a balance between the two.

Collisions
Performance shouldn’t be much of a concern if you’re making a 2D game in Unity. Unless you have
countless elements on the screen, all running complex animations and scripts, the majority of Android
phones will be able to handle most things you throw at them.

But that’s not to say there isn’t a benefit to keeping the demands of your app as low as possible (consider
battery drain and keeping other apps in memory, for instance), and you certainly want to avoid any chance
of your app becoming unresponsive.

At runtime, then, one of the biggest things to consider is how many colliders you have. The size of a
collider doesn’t matter, but what is an issue is the number of colliders and the complexity of said colliders.
Our tiles use individual colliders, for example, which makes development much easier and allows us to use
prefabs. This is the best practice for our purposes for the most part because the cost in performance is by far
outweighed by the flexibility and ease with which we can add future updates. See Figure 10-13.

Figure 10-13. I have drawn a single box collider around a bunch of tiles here

Chapter 10 ■ Making the gaMe Fun and OptiMized

204

You can make the blocks children of the one with the collider and save them as a prefab to rapidly
implement them into your game. Alternatively, you can simply draw larger platform boxes with their own
larger colliders.

Bear in mind as well that the tiles beneath the surface actually don’t need colliders. Removing the
colliders from here is probably one of the quickest and easiest ways to get our app to perform better.

Even worse than having lots of small colliders is to use complex polygon colliders with lots of different
points and angles (see Figure 10-14). This creates more math for Unity, because it needs to work out how
each point will interact with surfaces it bumps into. This is why it makes sense to use a box collider for your
character (or a polygon collider that is a slightly deformed box) rather than using a polygon collider that
perfect adheres to the contours of the character.

Even the overly complex collider in Figure 10-14 would be unlikely to cause any noticeable slow-down,
but if you had lots of objects with colliders like this, things could start to get a little choppy. At the end of the
day, this is wasteful because it won’t have any meaningful impact on the way the player actually plays the
game.

Making Other Types of Games
During this chapter, we’ve discussed a lot about the interplay between gameplay mechanics, design, and
hardware. But so far, we’ve yet to truly consider the nature of the platform we’re developing for.

After all, the platformer dates back to the NES and other early computers and doesn’t naturally lend
itself to the touchscreen input of mobile devices. There is definitely still a market for platform games on
Android, and this was a particularly good choice for a tutorial because it allowed us to experiment with lots
of different concepts.

But if you wanted to dabble in a genre that was more ideally suited to mobile, you might opt instead
to develop an infinite runner. This looks and acts like a platformer except for one key difference: the player
continually runs forward. Great examples include Canabalt, Sonic Runners, Super Mario Run, Temple Run,
and Jetpack Joyride. Here, the player only needs one input—jump—which declutters the screen (no more
arrow keys obscuring the play space) and provides gameplay that is perfect for quickly dipping in and out of.

Figure 10-14. An overly complex collider

Chapter 10 ■ Making the gaMe Fun and OptiMized

205

To make what you’ve built an infinite runner, you can just modify the Player script to run forward
automatically. You could then design levels with this in mind or if you want it to be truly “infinite”, have your
levels generate themselves on the fly (called procedural generation). This means you’re going to need to
introduce an algorithm that instantiates new platforms randomly (and probably destroys old ones) while
ensuring there is always a route across for the player. Using larger platform tiles is often a good idea here,
and of course you need the difficulty and speed to ramp up gradually.

You could likewise remove the gravity from the physics engine to turn it into a space shooter of some
sort, or even a top-down game.

Puzzle Games and More
The potential problem with platformers, first-person shooters, and racing games on Android is that they
essentially involve retrofitting an old game genre onto new hardware. Conversely, arguably the most
inventive and interesting Android games are those that find new ways to take advantage of the hardware.

Angry Birds is a good example of this because it utilizes the touchscreen in a very natural way to open
up new gameplay possibilities. The Room and Monument Valley take this even further by letting the player
interact directly with the game world by reaching out and touching, twisting, and dragging various elements
and even including tilt controls at times. Remember how we said the player likes to feel that they are
impacting the game world?

You can get your game to use the phone’s accelerometer as simply as this:

rb.velocity = new Vector2(Input.acceleration.x, rb.velocity.y);

What if tipping the phone could cause enemies and collectibles to slide across the screen?
Likewise, you can use multitouch very easily too, opening up a range of other possibilities:

void Update ()
 {
 Touch myTouch = Input.GetTouch(0);

 Touch[] myTouches = Input.touches;
 for(int i = 0; i < Input.touchCount; i++)
 {
 //Do something with the touches
 }

Don’t be limited by old notions of what a “game” has to be. You can set any condition to end the level,
whether it’s getting a ball to roll onto a target that acts like a trigger or counting when the player has collected
every coin on the screen. There doesn’t even need to be a “player” object at all—just look at Tetris, the
original mobile hit.

Oh, and speaking of different kinds of mobile games, I’ve got something exciting in store for you in the
next chapter. First, we’ll be discussing how you would go about creating a 3D game for Android with realistic
graphics (yes, you can do that). Then we’re going to discuss how you can actually enter that world using a
Samsung Galaxy Gear or Google’s Daydream View headset.

Chapter 10 ■ Making the gaMe Fun and OptiMized

206

It’s an exciting new frontier for mobile developers, and we’re going to make sure you’re right on the
crest of that wave.

Figure 10-15. Now that's starting to look like a game I want to play!

207© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_11

CHAPTER 11

An Introduction to 3D Game
Development and Virtual Reality

Chapter 10 ended by discussing how Unity could be used to create other types of games such as puzzlers,
infinite runners, and more. All that would require is to tweak some of the scripts and GameObjects from our
simple platformer. You could change the objectives, the input method, and the whole experience. You can
even make utilities this way.

But there’s an entire additional category of game that we have yet to address and that would require
a rather different approach: 3D games. Although 3D controls can sometimes be difficult with a small
touchscreen, there are plenty of examples of games out there that have managed to get around this
limitation; some have gone on to become highly popular. Hit 3D titles include the likes of the N.O.V.A. series,
Asphalt 8: Airborne, Geometry Wars 3, and Minecraft: Pocket Edition to name just a few.

What’s even more exciting is that once you learn the skills necessary to create 3D games, you’ll be in
position to start creating your own virtual reality experiences for the Galaxy Gear VR and Google Daydream
Headset.

Creating a 3D World
To get started, the first thing you’ll need to do is to create a 3D environment for your character to begin
exploring. It may feel weird saying goodbye to Kevin, but it’s time to move on.

Click File ➤ New Project but this time choose to start a 3D project (Figure 11-1). You’ll then be
presented with a similar setup to what you’re used to, except the perspective is going to be 3D. That change
in perspective also affects the grid, which will now be viewed from above at an angle (Figure 11-2).

http://dx.doi.org/10.1007/978-1-4842-2704-6_10

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

208

Figure 11-1. Create your new 3D project

Figure 11-2. The Unity you know and love, now in 3D

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

209

The UI essentially behaves the same as before. The main difference is the inclusion of the perspective
widget in the top right of your Scene window. Click this and you can change the angle of the view to
top-down (Figure 11-3), side-on, and so forth. Working with 3D objects can be tricky at first, and you can
find yourself constantly struggling with perspectives. A quick tip is that there is nothing to stop you from
opening up multiple Scene windows: right-click any tab and then choose Add Tab ➤ Scene. This way you
can have multiple windows, each with different perspectives (top-down, side-on, and so on). But it’s up to
you to decide what setup works best for your work flow, as ever.

Figure 11-3. This angle can be useful for aligning ground tiles for instance

Otherwise, you can still drag the view around with the hand tool, or zoom in with your scroll wheel as
before.

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

210

The first thing we’re going to do, though, is to drop a 3D object into this world. Navigate to
GameObject ➤ 3DObject ➤ Plane. This will drop—you guessed it—a 3D plane into the scene
(see Figure 11-4). We’ll then be able to change the size of said plane, move it around, or change its
attributes through the Inspector, just as we could with our 2D sprites before.

Figure 11-4. Let there be a plane

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

211

Now drop another element into the game. How about a cube this time? Click GameObject ➤
3DObject ➤ Cube, and a cube will appear in your scene (see Figure 11-5).

So far, so simple. But hit play and you’ll see that the cube simply hovers in the air indefinitely. As before,
then, we need to apply some physics. So select the cube and then Add Component ➤ Physics ➤ Rigidbody.
Notice there is no 2D suffix this time. Unity was originally developed specifically for 3D development, so the
“default” scripts and objects are all 3D without needing to explicitly state the fact.

As soon as the game objects were added, they already had a mesh collider attached, so if you press play
now, the cube will drop onto the plane and stop in its tracks. Awesome.

Sprites and Skybox
To make the world look a little nicer, you can create a subfolder in your Assets directory called Textures
and drop some sprites in. Now drag the sprites from there onto your GameObjects and expand the Shader
menu in the Inspector. Here you can set how much you want the texture to repeat (Tiling) as well as the
reflectiveness (Metallic), smoothness, and more.

Figure 11-5. And now a cube

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

212

In Figure 11-6, I’ve done this using sprites from the 2D version of the game.

Now we want to add a better background for our world. To do that we need to create a lightbox. Find
the Materials folder in your project and right-click anywhere there to create a new material called Sky. In the
Inspector, set the Shader to Skybox using the dropdown menu and then choose Procedural. This will; change
the color and appearance of the sky in the background, so set the Atmosphere Thickness, Exposure, Sun
Size, and so on, just as you want them. I’m going to set my scene at a beach-type location during twilight.

Figure 11-6. A crate over some dirt

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

213

Now select Window ➤ Lighting and use the Scene tab to set the Skybox to the Sky material you just
created. You should instantly see the look of your game change (see Figure 11-7). Note that if you chose 6
Sided for your skybox, you could use any texture you wanted for your backdrop.

Adding a Player
Prepare to be impressed with Unity again: adding a player to our game world is supremely easy because there
is another ready-made asset available to help us do it: the FPSController. This handles controls, physics, and
more for a first-person player.

Right-click the Assets folder and select Import Package ➤ Characters. Leave everything selected as it is
and hit Import. This will take a couple of seconds, but once it is done, you’ll have a new folder in your project
called Standard Assets, and inside that will be various subdirectories. The one we’re interested in for now is
FirstPersonCharacter. Later, to reduce the size of your project, you can choose to only import the elements
you need.

Figure 11-7. Setting up some mood lighting

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

214

Figure 11-8. A strangely serene view…

Locate Standard Assets ➤ Characters ➤ FirstPersonCharacter ➤ Prefabs and then choose
FPSController. You know what a prefab is by now, so you may have guessed that this is essentially a ready-
made FPS character that we can just drop into our scene. Do that, making sure the character is above
the ground, and then delete the superfluous Main Camera GameObject. Then hit play. You should have
something like Figure 11-8.

It’s a Christmas miracle! That easily, we have a FPS game up and running. You can look around with
the mouse, around with the W, A, S, and D keys, and jump with the spacebar. There are even walking sound
effects, and you can interact with the box to push it around. To exit hit Esc, then you can move the mouse
pointer up to the stop button.

If you feel like experimenting, bring back the Main Camera, delete the FPSController, and drop in the
ThirdPersonController. This is a much more detailed 3D object with complex animations but no shaders,
and it can be moved around with the same controls so you can get a feel for what it might be like to create a
3D platformer. This combination of assets makes for a pretty weird-looking game, though (Figure 11-9).

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

215

For now, we’ll be sticking with the FPSController.

Touch Controls
Be prepared to be impressed yet again: adding touch controls is just as streamlined in Unity. Once again, we
have a ready-made prefab; this one’s called DualTouchControls. That’s in CrossPlatformInput ➤ Prefabs,
and all you need to do is to drop it into your scene and add an Event System. You’ll also need to switch the
platform to Android in the Build Settings for this to work.

You can set these touch areas on the screen as you like by using the canvas and anchoring to the
screen, just as you did before (Figure 11-10). Once that’s ready to rumble, try building and running the app
on a smartphone to see what it’s like to actually use. If everything has gone to plan, you should be able to
walk around by dragging around the left portion of the screen and look at the same time using an invisible
touchpad on the righthand side of the screen. The bar along the bottom is for jumping. You can see how it
has all come together in Figure 11-11.

Figure 11-9. If Damien Hirst made computer games …

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

216

Figure 11-10. Set up touch controls on the canvas as you want them to appear

Figure 11-11. Not exactly easy controls, but controls nonetheless

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

217

Note that as soon as you set the platform to Android, the game will stop responding to your keyboard
and mouse inputs. So you may want to switch this back while you’re developing.

Using 3D Models
When we were building our 2D platformer, we would take breaks from coding every now and then to create a
sprite of some sort. This is what brought our game world to life, and of course we wouldn’t want to limit our
3D efforts to simply cubes and spheres.

Instead of sprites, though, now we’re going to add 3D models into our game world, which will open
up limitless opportunities for what we can create. Free3D.com is a site that offers a ton of license-free 3D
models for you to download and drop into your game, including furniture, monsters, wildlife, and so on. You
can also find a ton in the Assets Store, of course, and many of these are free from Unity itself. Do make sure
that whatever you use, you’re certain that the license extends to commercial use—if you plan on selling your
final creation, that is.

Using assets from Free3D.com, I’ve recreated my living room in 3D (see Figure 11-12). My wife and I are
going to use this to try out wall colors before making a selection. It needs a little work first, though.

Figure 11-12. My living room,or near enough. I am a SIM apparently

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

218

Excuse my poor organization in the Hierarchy there. This was just a bit of fun.
Make yourself at home! Remember, it’s very important to always ensure that you’re legally allowed to

use, distribute, and profit from any potentially copyrighted work such as 3D models—before you finalize
your apps.

Want to make your own 3D models? The best way to do so is by using the free software called Blender.
It’s rather tricky to get to grips with, but once you know what you’re doing, nearly anything is possible, and
you can even start creating animations. Before you know it, you’ll be working for Pixar.

Figure 11-14. These are fun

Figure 11-13. But which is the real world?

Another New Terrain
Alternatively, another way you can create a world that’s a little different and more interesting is by using
some of Unity’s built-in features to create lush natural landscapes.

Start a new scene or a new project and this time choose GameObject ➤ 3D Object ➤ Terrain. You’ll be
greeted with another plain, though this one is significantly larger than previous attempts. What’s really neat
about terrain, though, is that it will let you insert mountains, hills, trees, and more to create something that
looks a lot more organic and natural.

You’ll need to import another package for this. Click Assets ➤ Import Package ➤ Environment. Here
you’ll find trees, grass, and all kinds of other environmental objects for you to play around with.

Now select the terrain object in your scene and you’ll notice some interesting icons in the Inspector.
These feature mountains, paintbrushes, trees, and more. Try clicking the icon with the mountains and the
arrow pointing up (see Figure 11-14) and then drag your mouse pointer around the terrain—rather
natural-looking mountains start bursting forth depending on the speed and pressure you apply.

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

219

You can also try painting trees onto the landscape, first by selecting the type of tree you want to add
(this is where those assets come in handy) and then by painting them on in different densities. You can
also paint textures on with the paintbrush tool, again after first selecting something that looks the part from
the assets. Have a little go and you’ll quickly get an idea of how quickly you can create worlds that are just
begging to be explored. See Figure 11-15.

Adding a Gun
Nearly every first-person game involves shooting of some description, so how might you go about adding a
gun?

It’s actually very simple and it basically involves the same skills that you’re already familiar with from
working with 2D. There are just a few changes that you should familiarize yourself with. We could start by
creating/locating a 3D model of a gun and then making it a child of the Player character. We’d align it so that
it was in the correct position, as though the character were holding it.

From there, we would go on to add a script to that gun object so it would respond to a mouse click.
This would correspond with a tap anywhere on the screen (or the side button on a Gear VR).

Then we would instantiate a bullet inside the gun at the same angle:

if (Input.GetKeyDown(KeyCode.Mouse0))
 {
 Instantiate(blast, gameObject.transform.position, gameObject.transform.rotation);
 }

Figure 11-15. Breath of the Wild, eat your heart out

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

220

The bullet would have its own script to make sure it destroyed itself after a set period of time and to
keep it moving forward. The only difference would be that the bullet would be moving in three dimensions
now. We’ll use transform.forward, and this way the bullet will move forward at whatever angle it’s currently
facing (which in turn is the same as the gun):

 public class Forward : MonoBehaviour {
 private float timetodestroy;

 void Start () {
 timetodestroy = 3;
 }

 void Update () {
 timetodestroy = timetodestroy - Time.deltaTime;
 gameObject.transform.position += transform.forward * Time.deltaTime * 30;
 if (timetodestroy < 0)
 {
 Destroy(gameObject);
 }
 }
}

From there, we can use onTriggerEnter or onCollisionEnter just as we normally would (minus the 2D)
to get our bullet to explode items, flip switches, and do whatever else.

As you can see, it’s a fairly simple matter to take this basic setup and build it into a full game just as you
did last time. You can extrapolate from these instructions to make your AIs, springs, and other things.

Stepping into Virtual Reality
But you know what? First-person shooters (also known as FPS) just aren’t that much fun on a mobile phone
using touch input. So what’s the point of familiarizing yourself with 3D at all?

Of course, you may find there are other types of 3D game you can make. Perhaps you’re interested in
making a pinball game or a racing game using tilt controls. Or maybe you’re just stubborn and you’re making
an FPS anyway. The N.O.V.A. series seems to be doing okay after all...

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

221

Figure 11-16. Developing for the Gear VR in a library in Radolfzell, Germany. Good times!

But what you could also make—and what’s way more exciting—is a virtual reality app (check out
Figure 11-16).

Thanks to the Samsung Gear VR and the Google Daydream Headset, virtual reality is quite a big deal on
mobile. In fact, I rather predict that this might well be where the future of VR lies (Figure 11-17). Adoption
is greatest on mobile already (owing to the prohibitive cost and technical challenge associated with PC VR),
but what’s even more exciting is that mobile is now able to solve one of the biggest challenges facing VR:
positional tracking.

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

222

Figure 11-17. Is mobile VR the future?

Positional tracking refers to the ability to not just look around but actually get up and walk around
in a 3D space. To jump, duck, run, and tilt. The Oculus Rift and HTC Vive get around this using elaborate
“outside in” solutions that involve sensors rigged around the room. The Gear VR and Daydream currently
only offer head tracking.

But at the most recent Google I/O conference, HTC unveiled a “standalone” headset that would use
something called WorldSense to offer a completely untethered positional tracking solution with no setup
and no external sensors. This is inside out tracking. The device will be linked with the Daydream experience,
so we can expect that it will likely run Android or at least be very similar to the current setup.

This device isn’t out yet, and it’s not entirely new technology. It’s most likely an evolution of Google’s
Project Tango—an effort to create phones with enough built-in sensors to be able to see the world we do.
The technology is already available in the Lenovo Phab Phone 2 and is going to be coming to many more
devices in the very near future (it may already have as you read this).

In short, phones will soon have the ability to use “computer vision” in order to sense what’s in front of
them and how you’re moving through space—thereby being able to track movements in VR and ensure that
players aren’t putting themselves in any danger.

But who knows, maybe mobile VR won’t be the next big thing. Maybe VR won’t take off at all. Whatever
happens, we can certainly all agree that making virtual worlds and then stepping into them is cool.

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

223

Creating Gear VR/Google Daydream Ready Apps
So how might we turn one of the 3D landscapes we’ve just created into a VR app that will run on the Gear VR
(see Figure 11-18) or Google Daydream?

Figure 11-18. Insert your head here

It actually couldn’t be simpler—as long as it’s working, that is. Actually, at the time of writing, Unity has
got some bugs to iron out, so things aren’t completely smooth. Attempting to build apps for the Gear VR
results in an issue where the AndroidManifest files can’t be merged (these are files that contain information
about your app, such as the version, the name, and so on — see Figure 11-19). The team is promising to
fix this, so hopefully everything should be up and running by the time you read this. For Google Daydream
or Cardboard, no such issue exists. I’m sharing this with you because it’s the reality of coding. Sometimes
there’s a workaround, but other times you’re forced to wait for the pros to come up with a solution.
Fortunately, Unity tends to be pretty quick at delivering fixes.

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

224

Assuming Unity is playing nice, you simply need to make a couple of changes in your Player
Preferences. Specifically, you’ll want to tick the box that says VR Supported and then choose Oculus or
Daydream as your SDK (Figure 11-20). Of course, you can also try the others, including Cardboard, if you
prefer. Unity will know what it needs to download and add to the plugins to get things working.

Figure 11-19. Gee thanks, Unity. At least the frowny face shows true remorse.

Figure 11-20. Pretty simple!

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

225

This is literally all you need to do in order to get your app to run on VR hardware and try exploring your
landscapes in virtual reality. Hit Build and Run and then plug in.

Getting Your Oculus Signature File
Things are just a tiny bit more complicated if you’re developing for the Gear VR. That’s because Oculus is
a little protective over its platform and doesn’t want people to distribute their own apps through channels
other than the Play Store. Thus, it has introduced a system to prohibit wanton sharing of apps, which is their
“signature file.” Basically, each APK can only work on one device, which will be defined by a file you add at
build time.

To get the Oculus signature file, you’ll first need to get your Device ID. This is the identifier for your
specific piece of hardware, so any time you want to test your app on a new device, you’ll need to go through
this process again. To do it, navigate to the platform-tools folder of your Android SDK installation on your
PC. Here, you’ll find an executable called adb.exe, which is an acronym for Android Debug Bridge. Hold
down Shift, right-click anywhere in this folder, and choose Open Command Line Here. In the shell that
opens up, you’re now going to type adb devices with your Android device plugged in. This will list the Device
IDs of all connected hardware, as seen in Figure 11-22.

Figure 11-21. The VR version is much tidier

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

226

ADB is a handy thing to familiarize yourself with anyway, because it has a number of other uses.
Now head over to developer.oculus.com and find the Oculus Signature File (osig) Generator. At the

time of writing, this is at https://dashboard.oculus.com/tools/osig-generator/. Enter your Device ID
number into the box as indicated and then click Download File (Figure 11-23). Now you simply need to
place this file into a specific directory within your project:

Assets > Plugins > Android > assets

Yes, it is case-sensitive, and yes, that means that you need one capitalized Assets folder and one
lowercase version. And no, these folders won’t already exist, so you’ll have to create them.

Figure 11-22. My device ID. Don’t … steal it?

https://dashboard.oculus.com/tools/osig-generator/

Chapter 11 ■ an IntroduCtIon to 3d Game development and vIrtual realIty

227

Figure 11-23. You'll need to create a new account first

It’s a hassle but once that’s done, you’ll be able to start testing your new VR app on your own hardware
and you won’t need to worry about it again for a while.

Endless Possibilities
There is an art to creating VR content, and it’s an art form that is very much still growing and developing.
Things that work well on a screen don’t necessarily translate well to VR and vice versa. Then there are
issues like input and nausea. But the fact that this space is so unexplored is what makes it so exciting. The
possibilities here are limitless, and there’s every opportunity for you to stumble upon something game
changing.

And with that, your repertoire of skills is pretty much where it needs to be. You’ll learn by doing and
you’ll grow into your abilities as a developer as you go. But I feel you’re ready to take on those challenges and
start finding your own way. There’s just one more thing we need to do: get your creations up and running on
the Google Play Store so other people can enjoy them.

229© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6_12

CHAPTER 12

How to Publish and Promote
Your Android App

You’ve successfully made it this far, and now you’re at the final hurdle. You know how to make apps, you
know how to get them running on your smart phone … and heck, you even know how to explore them in VR.
Now all that’s left to do is release said apps so that you can share them with the rest of the world and receive
the adulation/remuneration you so rightly deserve.

This might be a nerve-wracking process. Releasing your app out into the wild makes you vulnerable to
criticism, and there’s always the possibility that it’s going to flop and not get a single download. But don’t
let that fear freeze you. The great thing about Android apps is that they’re never finished: you’re free to keep
uploading updates and keep iterating on (updating) your product after it’s released. There’s nothing to be
afraid of then: if you don’t get it right first time, you just keep trying and eventually evolve your app into
something that people love.

Anyway, the success of your app is only partly to do with its quality. Just as important—if not more
important—is the way you market it and write your store listing. And we’re going to be looking at how to do
all that right here.

Creating Your Signed APK
Once you’ve finished your game and you’re happy with it, the first thing you need to do is to create your
signed APK. The APK is the package file that Android uses to install your app on other people’s phones, and
you’ve already built several already while testing your game.

Up until now, though, if you’ve been using the Build and Run option and leaving the Player Settings
mostly as default, you will have been running debug versions of the app. In order to actually publish your
creation, you’ll need to head back to Build Settings ➤ Player Settings in order to “sign” it to be ready for the
big time (along with doing some other changes).

First, add some icons to go with your app. Then make sure you have a package name you’re satisfied
with. The package name is the internal filename that other Android apps will see (such as the homescreen
launcher), but your users won’t see it for the most part, unless they get technical. Nevertheless, this should
be something sensible, because you won’t be able to change it later on. This can all be found under the
Other Settings heading in the Inspector (Figure 12-1), and the usual format is to include your company name
and then the app name.

Chapter 12 ■ how to publish and promote Your android app

230

The Product Name is what your users will see (also called the label). This is where your branding will go,
and this bit is changeable later on. In other words, this is the title for your game, but you don’t need to worry
if you change your mind later.

Your Version code is for you and your users. It’s the version number that they will see, and you’ll likely
want to update this incrementally each time you roll out newer versions. Bug fixes and small tweaks might
result in an incremental tweak (1.0.1), but large changes that add new features and levels might result in a
whole version upgrade (2.0). Note that alpha and beta products should have version codes that are lower
than 1.

The Bundle Version Code, on the other hand, is an internal counter that keeps track of your app version.
Every time you upload a new version of your APK, this must go up by 1. This allows Google to keep track and
ensure that your users are being pushed the very latest version. Thus your users might see version 1.1.4, but
your bundle version code might be 8.

You also need to think about the version of Android you want to target. Some plugins and features will
require you to target higher versions of Android or set a higher minimum API. This is true for VR apps, for
example. But allowing as many people as possible to install and use your app is good for business where
possible. A surprisingly large number of users are still on older versions of Android, so to maximize your
reach, a low API is advisable. You can check out the statistics on this at https://developer.android.com/
about/dashboards/index.html.

Try installing the new APK on your device and you should see that it now has the correct name and icon
in your app drawer. We’re getting close now—I can taste it!

Creating a Keystore
Under Publishing Settings you’ll see the option to create a keystore. This is a special kind of digital certificate
that will identify and authorize your APK files. In other words, it will be a file with a password and a
username that you’ll need to include in every new version of your app to prove it is really your app. If you
lose this file, you’ll never be able to publish future updates—so put it somewhere very safe! (There is an
option to let Google store this on the cloud, which I discuss later on.)

Figure 12-1. Setting a package name for the platformer

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

Chapter 12 ■ how to publish and promote Your android app

231

Uploading Your App
Once you have your APK and it’s properly signed, you’ll be able to upload it to the Play Store. To do that,
head over to https://play.google.com/apps/publish or search for the Google Play Developer Console.

If you haven’t already signed up, you’ll need to do that. Fortunately, you can use your Google account
which will make things nice and easy. There is currently a registration fee of $25, but this is a one-off fee and
is certainly preferable to the more expensive annual fees that iOS developers have to live with. Hopefully,
this will be one of the best $25 you ever spend in terms of return on your investment. Even for a vanity
project, $25 isn’t exactly going to break the bank.

The developer console (Figure 12-3) is where you’ll be able to see your apps and their stats once you
have a few live. You’ll be able to check user reviews, apply updates, and check out revenue and bug reports.
You don’t have any apps yet, though, so this is going to be pretty empty for now.

Although the keystore scheme might sound strict, it’s an important security measure for users and
developers alike. Otherwise, someone with the password to your developer account could potentially upload
a new “version” of your app that simply replaces it with malware. That could harm your users, ruin your
reputation, and destroy your business.

So it’s frustrating, but just make sure you remember where you save the file and you shouldn’t have
any issues.

To create your keystore, just choose Create New Keystore, enter a username and password, and select a
destination to save the file in (Figure 12-2).

Figure 12-2. Never lose this!

https://play.google.com/apps/publish

Chapter 12 ■ how to publish and promote Your android app

232

Creating Your Store Listing
To get started, find and click Create Application. You’ll be asked to choose a language and give it a title
and then you’ll be taken to another page where you can enter lots more details, including a description,
translations, and various graphical assets (see Figure 12-4). We’re going to fill this out first.

Figure 12-3. My developer console

Chapter 12 ■ how to publish and promote Your android app

233

You can enter the title, the descriptions, and the rest just as you would expect. We’ll go into more
detail about what to put here for the best results in a moment. As for images, these include a high-res icon
(512 x 512) that will show alongside your app’s listing in the Play Store, a feature graphic (1024 x 500) that will
be displayed at the top of the page, and a promo graphic (180 x 120). The promo graphic is mainly used for
older versions of Android and isn’t required for submission, but it’s worth spending time to create images for
each category. You spent this long building your app—don’t fall at the final hurdle.

If you use a promo video as well (which is worth doing), then your feature graphic will have a play icon
over the top. For those creating Daydream apps, you’ll need to create a stereoscopic 360-degree video.
Good luck! Android TV apps need a 1280 x 720 banner image.

You’ll also notice that you can add screenshots of your game and you can select different ones for
phones, tablets, TV, and Android Wear. This is where you’re going to put shots of your game in action.
You can see the images I’m using in Figure 12-5.

Figure 12-4. Write a compelling description that will help your game stand apart

Chapter 12 ■ how to publish and promote Your android app

234

Continue scrolling down the page and you’ll be able to choose the application type (Game) the category
(probably ‘Action’ in this case), the content rating and your contact details. You’ll need to come back to the
content rating later on and to get your certificate, you’ll have to fill out various questions.

Enter your contact details next. I recommend setting up a new email address if you think there’s any
chance of your game becoming a massive hit. Anyone can contact you through here, and you can expect to
get a lot of correspondence if your app takes off. That includes nice compliments as well as some completely
inane criticisms and plenty of nonsense. So be careful when giving out your personal details.

You can then choose to submit a privacy policy if you want, or just leave it blank for now. If you’re
creating a mobile game that doesn’t collect any private data from your users, you may have no need to go
through this step.

Uploading an APK
To upload your APK, go to App Releases (on the left) and click Manage Production. Of course, this is subject
to change, but one way or another you should have an option to Create Release.

Here you can click Upload APK, and if everything has gone according to plan, it should pass the test and
be uploaded to the store (it isn’t live just yet, don’t worry). You should be able to see the correct version code
and release name, corresponding to what you put into Player Settings. The title of your app should be at the
top left of the page, alongside the icon you chose. You’ll come back here when you want to add updates and

Figure 12-5. How could anyone not want to download and play all two levels?

Chapter 12 ■ how to publish and promote Your android app

235

you can add details of “What’s new in this release?” to tell your users what has changed. If this doesn’t work
for whatever reason, the problem is likely due to your keystore, so take another look at the first section of this
chapter. It should look like Figure 12-6 at this point.

For now, you’re just going to save this as a draft. You’ll be able to come back in a moment when it’s time
to go live.

More Settings
There are a bunch of other settings to consider in the Console too, both compulsory and optional.
We’ll quickly go over a few of them in this section.

Content Rating
In order to make your game widely available, you’ll need to complete the content rating process.
Click Content Rating on the left, choose Continue, and answer the questions. They’re pretty self-explanatory
(Figure 12-7).

Figure 12-6. So far, so good

Chapter 12 ■ how to publish and promote Your android app

236

Click Save Questionnaire, and then Calculate Rating to get your classification in various different
regions, and finally Apply Rating.

Pricing and Distribution
You also need to decide how much you want to charge for your app, or whether you want to make it free.
Note that if your app is sold for money, you can always make it free later on down the line. But once you
make it free though, there is no turning back unless you upload a an entirely new store listing (Figure 12-8).

Figure 12-7. You might want to reconsider those Nazi references

Chapter 12 ■ how to publish and promote Your android app

237

The other part of this page allows you to choose the countries you want your app to be made available
in. You’ll probably want to make it available everywhere, because that way the maximum number of people
will be able to enjoy your creation (and pay you).

You’ll also need to answer some more questions below that screen, such as whether or not the app
contains ads and whether it meets the Android Content Guidelines and U.S. export laws. Again, this should
all be self-explanatory.

The Rest
Nearly there. Once you’ve completed the App Releases, Store Listing, Content Rating, and Pricing and
Distribution sections, your app will then be ready to publish. But in case you were wondering what the other
sections were for, read on.

The Device Catalog shows which devices can run your app, and you’ll have the option to filter
some out if you would prefer it were not available on them. Translation Services allows you to translate your
app for other regions. Services and APIs is for accessing external tools like Firebase (Google’s “backend
service”—don’t worry about it), and Optimization Tips just shares advice based on your current listing
(worth reading). In-App Products is where you can manage your in-app purchases, but if your app doesn’t
have any, there’s nothing to do here. Artifact Library allows you to download your APK and other bits that
you may have uploaded to the Play Store.

Figure 12-8. Consider the best business model for your app if you want to make a profit from it

Chapter 12 ■ how to publish and promote Your android app

238

Android Instant Apps is a relatively recent feature that allows users to run apps without having to
permanently download and install them, but it won’t apply here. Not only is the feature not available for
everyone yet, but the large file sizes involved with most games (not to mention their very nature) means
that it won’t be wholly appropriate for most devs. Finally, App Signing is where you can enroll in Google’s
App Signing scheme to store your keystore in the cloud so that it never gets lost. A handy option, but it’s not
compulsory, so it’s up to you whether you want to take this extra step. You can always decide to do this later
if you choose. Once you go this route however, you won’t be able to turn back.

When your app is live, you’ll be able to return to the Console at any time to see all your published projects.
Clicking one will let you see a whole host of data, including revenue, number of downloads, and more.

Go Time
With that, you’re ready to publish. This is a momentous occasion, especially if you’ve been working on your
app for months or years, so go pour yourself some bubbly.

Head back to App Releases ➤ Edit Release, scroll down to the bottom, and hit Start Rollout to
Production (Figure 12-9).

Figure 12-9. Do it!

Confirm, and with that … your app is released! Or, almost....
Actually, your app will now be subject to review, and you’ll see that it says “Pending Publication” at the

top of the page. The publication process is automatic, meaning that it’s handled by an algorithm rather than
by actual human curators (unlike Apple’s App Store). This is good news because it means your app should be
live within the next few hours, ready for people to start downloading and reviewing. It’s very rare that anything
should be rejected at this stage. Of course, that’s not a license to ignore the terms and conditions—your app
can still get taken down later on.

Congratulations, dear reader! You just became an official game developer.

Chapter 12 ■ how to publish and promote Your android app

239

Creating More Downloads
Once your app is live, your job is far from over. Not only is it your moral obligation to keep updating and
improving your apps as you go, but you also need to ensure that you’re actively promoting your creations
and encouraging downloads. This is not a case of “build it and they will come.” Today there are simply too
many great apps on Android, and the market is highly saturated. Rather, it’s up to you to get the word out and
ensure people are excited to check out your creation. You owe it to yourself.

So, how can you make sure people actually find and download your apps? This section talks about a few
marketing tips that may help.

Think About SEO
SEO stands for Search Engine Optimization. This is a big deal in the world of Internet marketing, but it also
has a role to play among developers. That’s because the Google Play Store is essentially a search engine itself,
and people will often find new apps by searching (see Figure 12-10).

Figure 12-10. Kevin in Space is open for business

Chapter 12 ■ how to publish and promote Your android app

240

The key concept to understand here is the use of keywords. Keywords are words or phrases that
someone might search to find your app. In our case, good examples might include the following:

•	 2D platformer

•	 Sidescrolling game

•	 Pixel art

•	 Retro game

In order to increase our chances of being found, we might aim to try and include those terms a couple
of times in the description. Don’t overdo this, because that looks spammy and could get your app removed.
Just try to include a few mentions naturally. The more you write in the full description, the easier this will be,
and adding longer descriptions is also a practice that is encouraged by Google. Really sell your app and tell
people why they should be interested.

Also consider that a term that’s too popular is going to be harder to rank, due to the amount of
competition. Look for that sweet spot: terms that are in demand but obscure enough that there isn’t a wealth
of content available already.

Choose Your Name Wisely
And of course, one of the very best ways to ensure you’ll rank highly for a key term is to name your app using that
phrase. For instance, you could actually call your game Retro 2D Platformer or something along those lines.

Be careful, though: doing this also means your app won’t have the same amount of personality or a
strong brand for you to promote. It can also be off-putting for users and can make it much harder for you to
promote outside the Play Store.

A name that communicates something about your game isn’t a bad idea, but try to be creative and
interesting. Choose a name that conveys an emotion (like Limbo or Angry Birds) and that provokes interest
(VVVVVV or Thomas Was Alone). Ideally, someone should instantly have an idea of what your game might
be about or want to learn more as soon as they hear what it’s called.

Find Routes to Market
Marketing also means occasionally getting out there and shouting about your amazing new game
(Figure 12-11). The best way to do that is to find a route to market, which is essentially any place that
people who are likely to be interested hang out. For example, this might be a Facebook group or Subreddit
dedicated to a certain genre of game (also try www.reddit.com/r/playmygame/).

http://www.reddit.com/r/playmygame/

Chapter 12 ■ how to publish and promote Your android app

241

Route to market is something to think about in the early design stages of your game too. Of course,
you should make the game you want to make and that gets you excited, but think as well what marketing
opportunities will exist for your game. By targeting a specific niche you can avoid being a little fish in a big
pond and sidestep the competition. More importantly, by targeting a certain user (called a persona) you can
give yourself more specific routes to market.

As it is, Kevin in Space is rather hard to market because it doesn’t stand out and it doesn’t appeal to
anyone in particular. But if this were a game about a free-running hero, we could post it in a forum aimed at
free runners. If it were a game with an awesome synthwave soundtrack, we could try and get publicity from a
synthwave website.

Likewise, think about the contacts and resources you currently have available to you. Of course, you
should try and get your friends to download your app (and leave good reviews!), but perhaps you know
someone who writes for a big website, for example?

Gain Good Reviews
SEO on the Play Store is a little different from SEO on Google.com because it takes into account a range
of additional factors. Among these are the reviews left by your users, and more positive reviews = more
downloads. Getting good reviews is a matter of creating a great game that you’re proud of, but it’s also a good
idea to ask your users to review it with the occasional pop-up. Explain how it will really help you out, but
don’t try any underhanded tactics to force a positive review—Google frowns on that.

If you get a bad review, it’s always a good idea to respond quickly. Not only will doing so show you are
an attentive developer who actually cares about your users, but if you offer a solution, you might even find
that the user changes their score.

Never pay for reviews. This practice can get your app removed and it will only lead to unhappy users.

Figure 12-11. Your game is now available for millions of people to download

Chapter 12 ■ how to publish and promote Your android app

242

Update Regularly
Updating your app regularly is also important. Not only does it encourage more positive reviews, it also gives
your app a moment in the sun under the New + Updated Games section of the Play Store. More exposure like
that means more opportunity for people to discover your app and give it a try.

Choose the Right Images and Text
If someone should stumble upon your app unexpectedly, they will have the option to either click and read
more or just pass you by without stopping to read. The biggest factor influencing this decision is likely to
be the icon you’ve chosen, so it should go without saying that this needs to be good. The aim is to stand out
from the crowd and attract interest while also communicating precisely who your game is for. Don’t try to
appeal to everyone but embrace the genre, niche, and style you’ve chosen.

Think about your own habits: what kind of image would pique your interest while browsing for
something new to play? For me, it would definitely be a game that looks futuristic, action-packed, and indie.
I stay away from things like Clash of Clans or other polished-looking freemium games that are clearly aimed
at the casual market. That’s just me—but by knowing what your users are looking for, you can home in on
what to communicate through your images. Of course, you then need to knock it out the park with your
feature image and screenshots too.

The same goes for your description. Using a few keywords can be a good strategy, but it’s much more
important to write for the user. Doing so means capturing attention quickly with a strong opening statement,
using bullet points to sell the key features of your game, and using emotive language to try and encourage
a quick click. Read up on persuasive writing because that can make a real difference. And again: know your
user and aim your pitch at them. Appealing to everyone means appealing to no one.

Create a Buzz
Finally, try to create a buzz for your app by submitting press releases to gaming websites and Android/mobile
channels. Try offering free APKs to YouTube personalities in exchange for a review or a “let’s play” video.
Aim for smaller personalities and channels that are more likely to respond, and if your game is good, the
bigger channels will take notice.

Consider creating a website for your own games that you can promote separately. Ditto for social media
pages. Creating a website is surprisingly easy these days using WordPress (www.wordpress.com).

Also think about creating a buzz prior to your release as well. You can do this by creating a developer
blog and talking about the creation of your app, or by releasing teasing news to small sites and channels.

If you’re really ambitious, try running a campaign on Kickstarter or Indiegogo, crowdfunding sites
where people will provide financial backing to help you get your game finished. Not only can crowdfunding
pay for your project, it also ensures there’s a big, active, and engaged community around the launch of your
game. Plus it makes it easier to get noticed by the gaming media. Remember, sites and magazines don’t want
to offer you free promotion, but they do want to cover interesting stories.

Again, though, in order for this to work you need a compelling USP—whether that means creating a
spiritual successor to a beloved franchise, reviving a forgotten genre, or trying something incredibly new and
compelling. Give people a reason to get behind your game by making it into a movement rather than just
another product. - make it something that they can believe in and get excited for!

Closing Comments
And with that, you’re on your own. I’ve taken you as far as I can, and the rest is up to you. I trust that you
will find your own way and create something you’re proud of and that gets the attention and accolades it
deserves.

http://www.wordpress.com/

Chapter 12 ■ how to publish and promote Your android app

243

Just remember to start out small and build up from there. Create something different and unique. And
most of all, have fun doing it. If you really enjoy the creation process and if you pour your heart and soul into
your own passion project, it will show in the final product. Make the game that you want to play and don’t be
afraid to embrace your own identity.

And if your game isn’t a massive hit? Move on to the next product. There is a lot of chance that goes into
making a smash hit as well.

I wish you the best of luck with your projects and hope you absolutely knock it out of the park.
Remember me when you’re rich and famous!

Figure 12-12. The rest is up to you

245© Adam Sinicki 2017
A. Sinicki, Learn Unity for Android Game Development, DOI 10.1007/978-1-4842-2704-6

��������� A
Adding checkpoints

new players, 138
placement, 138
Player script, 139
requirement, 137
scripting (see Script)
skip, 138
trigger, 138

AI, 167
coding enemy behavior, 173–177
using raycasts, 170–172

Android
advantages, 7–8, 10
check points (see Adding checkpoints)
coding knowledge, 137
elements, 137
game manager, 157
level (see Levels)
PlayerPrefs, 157
Unity, 10–11

Android apps, 229
downloads, creating more, 239

buzz, creating, 242
choosing name, 240
choosing right images and text, 241
find routes to market, 240
gain good reviews, 241
SEO, 239–240
updating regularly, 241

signed APK
bundle version code, 230
creating keystore, 230
package name, 229
Product Name, 230
version code, 230

uploading, 231
APK, 234
content rating, 235–236
creating store listing, 232–234
Device Catalog, 237

go time, 238
Instant Apps, 238
more settings, 235
pricing and distribution, 236–237

Angry Birds, 191, 205
Animation adding

animator windows, 107
coding, 109–111
create button, 107
Flippin’ Kevin, 111–114
Kevin’s sprite, 105
sprite editor, 106
walking animation, 108–109

APK
player settings

icon, 132
properties, 131
resolution and presentation, 131
splash image, 132
version, 133

running game, phone
developer options, 134
lock screen and security section, 134
unknown sources option, 134
USB debugging, 133

scenes, 130
signed

Bundle Version Code, 230
creating keystore, 230
package name, 229
Product Name, 230
version code, 230

splash screen, 130
trigger, 134–136
uploading, 234

Assets from Asset Store, 180–183

��������� B
Backdrop, 87
Box colliders, 82
Bullet object, 177

Index

■ INDEX

246

��������� C
C#

functions, 63
Player GameObject, 64–65
public class, 64
Update function, 64

Collectibles
CollectCoin, 90–91
enemies, 94–95
GameObject, 90
gold coin, 89, 90
hazards, 92–93
materials, 97–98
OnTriggerEnter2D, 90
pushable objects, 96
spike pit, 94
spikes, 92
trigger, 90

Colliders, 61–62
Content rating process, 235–236

��������� D
2D collider, 91
DestroyParticleSystem, 101–102
3D games, 207
2D platformer, 181
DualTouchControls, 215
3D world, creating, 207

adding gun, 219–220
adding player, 213–215
new project, 208
new terrain, 218–219
sprites and skybox, 211–212
touch controls, 215–217
using 3D models, 217–218

��������� E
Effectors

Collider 2D, 75
definition, 77
One Way box, 76–77
platform, 76
square of water, 78
Squarey, 76
Squarey bobbing, 78

Emergent gameplay, 191

��������� F
First-person shooters (FPS), 220
Free3D.com, 217

��������� G
Game engines, 192

creating camera, 192–193
hardware and business models, 193–194

Game levels
Body Type in order to choose Kinematic, 151,

152
collisions detection, 151
control script

LevelSelectTouch, 150
Player script, 150
selector, 149
Touch script, 150
TouchController, 151

creating new level, 144–145
escaping, 145–147
levelChoice, 153
Level Select scene, 153
real progression, 144
rocket ship signals, 144
screen controls, 151
select, 147, 151
selector, 148
Selector script, 152, 153
select scene, 148
space rocket, 144

Game look, 194
sprites and design language, 197–199
ways to make game attractive, 195–197

Game objects and behavior, 159
BackAndForth, 162
collapsing platforms, 164–167
moving platforms, 161

BackAndForth, 163
direction integer variable, 162
onStart() method, 162
Physics Material 2D, 164
platform effector, 164

springs, 160–161
Gameplay

hardware, game engines, format, interactions,
192

creating camera, 192–193
hardware and business models, 193–194

Games, making types of, 204–205
Google’s Project Tango, 222
GroundEnemy, 168

��������� H
Handling death, particles

DestroyParticleSystem, 101–102
hazards script, 102–103

■ INDEX

247

particle effect, 100–101
touches, 103–105

Hardware and business models, 193–194
Hazards, 93
Heads up display (HUD)

canvases, 115–117
classes and objects, 119
CollectCoin script, 114
GameObject, 115
objective vs. imperative vs. functional, 119
player script, 114
sound effect adding, 117–118
UI elements, 115

Hypofrontality, 189

��������� I
Imperative programming, 119
Integrated Development Environment (IDE), 18–19

Asset Store, 40
Console, 42–43
game, 41
Hierarchy, 43
Inspector, 41–42
project, 42
scene, 40
services, 41

��������� J, K
Jump method, 172

��������� L
Limbo, 191

��������� M
Mario, 159

��������� N
Nerve-wracking process, 229

��������� O
Object-oriented programming (OOP), 119–120
Objects and scenes

GameObjects, 46–47, 49–50
rotation and scale, 50
save, 54
Scene view, 50–51
sprites, 44–45

Onboarding and tutorials, 185
difficulty curve, 189–190
dissecting perfect opening level, 186–188
emergent gameplay, 191–192
players understanding, 188
ways to make game fun, 190–191

onCollission2D method, 176
onCollissionEnter2D method, 169
Online functionality, 194
Optimization, 199

performance and compatibility
collisions, 203–204
smaller images, 202–203

tips for better code, 200–201

��������� P, Q
Parallax scrolling, 88
Particle effect, 100
Particle system, 99
Player, arming

animation, 179
Bullet object, 177
GetComponent, 179
Player script, 178

Player GameObject
Check Ground, 70–71
control, 68
FixedUpdate, 72–73
Rigidbody component, 73–74

Polygon collider, 82
Positional tracking, 222
Prefabs

box colliders, 82
camera making, 83
GameObject, predefined properties, 79
grass and dirt tiles, 80
ground tile and water tiles, 79
organized setup, 80
parents and children, 83
platform effector, 79
polygon collider, 82
Squarey, 82
tiles selected, 81
water selected, 81

Procedural generation, 205
Puzzle games, 205–206
Puzzle solving, 190

��������� R
Raycasts, 170–172
RigidBody 2D, 61

■ INDEX

248

��������� S
Save files

accomplishment and progression, 153
colliders, 156
EndLevel script, 154
LevelLoader, 156, 157
levelValue, 154
PlayerPrefs, 154
PlayerPrefs.SetInt, 154
progress, 154
rocket, 155
Selector script, 157
serialization, 154

Scene decoration, Z Order
backdrop, 87
bush, 84
bushes and trees, 84
cloudy sky, 87
creeper adds, 85
Order in Layer, 84
plants, 84
Squarey, 84
Squarey peeping out, 85
tree, 84

Script
checkpoint, 142–144
Death method, 140
GameObject, 140
Hazards script, 140, 142
move, 139
object-oriented programming, 139
Player character, 139
Player script, 140–142
respawn position, 140
Start method, 140
startx and starty, 139

Search Engine Optimization (SEO), 239–240
Signed APK

Bundle Version Code, 230
creating keystore, 230
package name, 229
Product Name, 230
Version code, 230

Sonic, 159
Super Mario Bros, 186
Super Meat Boy, 159

��������� T
Touch controls

arrow, 122
button, 122, 124
coding, 125–130
design, 121
positioning, 123

��������� U
Unity

3D game, 11–13
downloading

Android SDK, 26–27
Java JDK, 24–26

elements, 2
Enterprise membership, 23
features, 23
game engine, 17–18
Game view, 52–53
hardware, 33–35
IDE, 18–19
indie titles, 5–6
installation, 27–31, 33
licenses, 21–22
Main Camera, 53
personal, 22
project creation, 36
snap grid settings, 55, 57–58
uses, 3–4
vs. Unreal 4, 19–20

Unity Assets Store, 4–5
Unity Plus, 22
Unity Pro, 22
Unreal 4, 19–20

��������� V, W, X, Y, Z
Variables, 65–67
Virtual reality, 220

creating Gear VR/google daydream
ready apps, 223–225

endless possibilities, 227
Gear VR, 221
Oculus signature file, 225–227
positional tracking, 222

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Why This Is an Incredibly Exciting Time to Develop Games for Android
	Enter Unity
	Sharing Assets
	Why Mobile Devices Are Perfect for Indie Projects
	Why Android Is Better than iOS for Developers
	Practical Advantages of Android Over iOS
	Android vs. iOS for $$$

	Android and Unity: a Match Made in Heaven
	How to Choose Your First Project
	The Best Strategy for Creating a Successful Indie Title
	Considering Gameplay

	So Here’s What We’re Going to Do
	What You Will Learn in This Book

	Chapter 2: Introducing Unity and Getting Set Up
	What Is Unity?
	Unity as Game Engine
	Unity as IDE
	Unity vs. Unreal 4 (and Others)
	The Origin of Unity
	What if You Have a Newer Version of Unity?
	Licenses
	Personal
	Unity Plus
	Unity Pro
	Unity Enterprise

	Downloading Unity and Required Components
	Downloading Unity
	Downloading the Java JDK
	Downloading the Android SDK

	Installing Unity 3D
	Unity
	The Java JDK
	The Android SDK

	Hardware and Workflow
	Creating Your Battlestation (Work Setup)
	Starting Your First Project
	Setting Paths

	Chapter 3: Finding Your Way Around Unity
	What’s All This Then? Getting Acquainted with the IDE
	Scene
	Asset Store
	Game
	Services
	Inspector
	Project
	Console
	Hierarchy
	Housekeeping

	Getting Your Toes Wet with Objects and Scenes
	Adding Sprites
	Two Ways to Introduce GameObjects
	Manipulating GameObjects
	Rotation and Scale
	Manipulating GameObjects in the Scene View

	Testing the Game and Using the Camera
	The Camera
	Saving Your Project and Scene
	A Little More Organization
	One Last Thing to Set Up: Snap Grid Settings

	Chapter 4: Adding Physics and Getting Started With Coding
	Using RigidBody 2D
	Using Colliders
	Getting Started with Coding in C#
	Introducing Variables
	Controlling the Player Character
	More Advanced Logic and Introducing Jumping
	A Little Bit of Further Explanation
	One Final Touch: Keeping the Player Upright

	Chapter 5: Filling the World with Prefabs, Effectors, and Collectibles
	Using Effectors
	More Effectors
	Prefabs and More Organization
	Troubleshooting: Help! Squarey Keeps Getting Stuck!
	Understanding Parents and Making a Moving Camera

	Decorating the Scene Using Z Order
	Parallax Scrolling with Perspective
	Adding Collectibles and Hazards
	Introducing Enemies
	Pushable Objects
	Using Materials

	Chapter 6: Adding Animations, Effects, and a HUD
	Handling Death and Using Particles
	Destroying the Particle System
	Making Hazards Hazardous

	Two More Added Touches
	Animating the Player
	Walking With the Animator
	Code for Animation
	Flippin’ Kevin

	Adding a HUD
	Adding and Using Canvases
	Adding a Sound Effect
	Some Advanced Theory: Classes, Objects, and Methods, Oh My! Just What Is an Object?
	Objective vs. Imperative vs. Functional
	Classes and Objects Explained
	The Benefits of Going OOP in Unity

	Chapter 7: Making an Android App
	Adding Touch Controls
	Designing the Controls
	Adding Our Controls
	Coding the Controls

	Creating Your First APK
	Player Settings
	Resolution and Presentation
	Icon
	Splash Image
	Other Settings

	Preparing Your Phone
	Pulling the Trigger

	Chapter 8: Expanding the Game World with Checkpoints, Levels, and Save Files
	Adding Checkpoints
	Scripting a More Fitting Death
	Scripting the Checkpoint

	Taking It to the Next Level
	Creating a New Level
	Escaping the Level

	Building a Level Select Screen
	Writing the Control Script
	Ready to Launch

	Saving Our Progress
	A Few Final Comments

	Chapter 9: Adding More Game Elements: Springs, Moving Platforms, AI, and More
	Some Common Game Objects and Their Behavior
	Springs
	Moving Platforms
	Collapsing Platforms

	Better AI
	Using Raycasts
	Coding Enemy Behavior

	Arming the Player
	Using Assets from the Asset Store

	Chapter 10: Making the Game Fun and Optimized
	Onboarding and Tutorials
	Dissecting the Perfect Opening Level
	Making Sure Your Players Understand Your Game
	The Difficulty Curve
	Other Ways to Make Your Game Fun
	Emergent Gameplay

	Interactions Between Hardware, Game Engines, Format, and Gameplay
	Creating a Great Camera
	Hardware and Business Models

	Making Your Game Look Awesome
	Easy Ways to Make Your Game More Attractive
	How to Create Great-Looking Sprites and Choose a Design Language for Your Game

	Optimization
	tipsForBetterCode
	Performance and Compatibility
	Smaller Images
	Collisions

	Making Other Types of Games
	Puzzle Games and More

	Chapter 11: An Introduction to 3D Game Development and Virtual Reality
	Creating a 3D World
	Sprites and Skybox
	Adding a Player
	Touch Controls
	Using 3D Models
	Another New Terrain
	Adding a Gun

	Stepping into Virtual Reality
	Creating Gear VR/Google Daydream Ready Apps
	Getting Your Oculus Signature File
	Endless Possibilities

	Chapter 12: How to Publish and Promote Your Android App
	Creating Your Signed APK
	Creating a Keystore

	Uploading Your App
	Creating Your Store Listing
	Uploading an APK
	More Settings
	Content Rating
	Pricing and Distribution
	The Rest

	Go Time

	Creating More Downloads
	Think About SEO
	Choose Your Name Wisely
	Find Routes to Market
	Gain Good Reviews
	Update Regularly
	Choose the Right Images and Text
	Create a Buzz

	Closing Comments

	Index

