

Practical Network Automation
Second Edition

A beginner's guide to automating and optimizing networks
using Python, Ansible, and more

Abhishek Ratan

BIRMINGHAM - MUMBAI

Practical Network Automation
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Heramb Bhavsar
Content Development Editor: Abhijit Sreedharan
Technical Editor: Swathy Mohan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Tom Scaria
Production Coordinator: Jyoti Chauhan

First published: November 2017
Second edition: December 2018

Production reference: 1221218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-565-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools, to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Abhishek Ratan has around 16 years of technical experience in networking, automation,
and various ITIL processes, and has worked in a number of roles in different organizations.
As a network engineer, security engineer, automation engineer, TAC engineer, tech lead,
and content writer, he has gained a wealth of experience in his career. He also has a keen
interest in strategy game playing and, when he is not working on technical stuff, he is busy
spending time on his strategy games.
He is currently leading the automation and monitoring team, learning, and expanding his
automation and Artificial Intelligence skills in the ServiceNow. His previous experience
includes working for companies such as Microsoft, Symantec, and Navisite.

I would like to thank the contribution of Harish Kulasekaran in web framework and Ops
API and Abhishek Gupta for Alexa Integration.

About the reviewer
Dilip Reddy Guda has acquired expertise in the unified communications domain, along
with IP network switching and routing. He has worked on session border controllers, such
as CUBE, SIP Server, SIP proxies, CUCM, and CISCO gateways, including SRST, BE4K,
CME, and UCCE. He has expertise in SIP protocol, H323, and TDM technologies, along
with experience in C++ based application development for Huawei's NGIN solution, and
TCL programming. He also has expertise in Python programming involving network
device automation, and DevOps framework development.

Skilled in RESTful API development, he is a network programming engineer with
experience of Python programming, IP networking domains, and REST API framework
development for network automation.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Fundamental Concepts of Network Automation 5
Technical requirements 5
A readable script 6
Basic programs 7

Validating an IPv4 address 7
Making the right choice 9
Hiding credentials 10
Accessing APIs 11
Using regular expressions (regex) 12
Handling files 14

Making a decision (Python or PowerShell) 15
API access 16
Interacting with local machines 17

Introduction to code check-in and its importance 18
Git installation and initialization 18
Code check-in 22

Sample use cases 24
First use case 25
Second use case 29

Summary 34
Questions 34

Chapter 2: Python Automation for Network Engineers 35
Technical requirements 35
Interacting with network devices 36
Network device configuration using template 45
Multithreading 52
Use cases 55

Using regular expressions (regex) 56
Creating loopback interface 58
Dynamic configuration updates 62

Summary 64
Questions 65

Chapter 3: Ansible and Network Templatizations 66
Technical requirements 67
Ansible and network templates 67
Introduction to ad hoc commands 68

Table of Contents

[ii]

Ansible playbooks 72
Playbook examples 73

Ping to a particular IP from all routers 73
Section 1 – defining the scope of script 74
Section 2 – defining what to execute (define the task) 74

Ping to multiple IPs from all routers 76
Section 1 – basic declarations 78
Section 2 – declaring variables 79
Section 3 – executing the task 79
Section 4 – validations 80

Network templates 82
Step 1 – identifying the number of users the device is going to serve 82
Step 2 – identifying the right configuration based upon the SKU 82
Step 3 – identifying the role of the device 83
Python integration 85

Chef and Puppet 89
Chef 89

Step 1 – creating the recipe 92
Step 2 – uploading the recipe 92
Step 3 – adding the recipe to the run-list 92
Step 4 – running the recipe 92

Puppet 93
Chef/Puppet/Ansible comparison 94

Summary 95
Questions 95

Chapter 4: Using Artificial Intelligence in Operations 96
Technical requirements 96
AI in IT operations 97

Key pillars in AIOps 97
Data source 97

Structured data 98
Non-structured data 98
Data collector 98
Data analysis 100
Machine Learning (ML) 102

Example of linear regression 104
Intelligent remediation 113

Application and use cases 117
Summary 123
Questions 124

Chapter 5: Web Framework for Automation Triggers 125
Technical requirements 125
Web framework 126

Falcon 128
Encoding and decoding 132

Calling the web framework 138

Table of Contents

[iii]

Sample use case 142
Summary 152
Questions 152

Chapter 6: Continual Integration 153
Technical requirements 153
Remediation using intelligent triggers 154

Step 1 – ensuring Splunk is configured to receive the data 155
Step 2 – validating the data (sample data) 158
Step 3 – writing script 159

Standardizing configurations on scale 174
Chatbot interactions 180
Use cases 194

Interacting with SolarWinds 195
Configuring Open Shortest Path First (OSPF) through Python 196
Autonomous System Number (ASN) in BGP 198
Validating the IPv4 and IPv6 addresses 199

Summary 200
Questions 201

Assessment 202

Other Books You May Enjoy 206

Index 209

Preface
Network automation is the use of IT controls to supervise and carry out everyday network
management functions. It plays a key role in network virtualization technologies and
network functions. The book starts by providing an introduction to network automation,
and its applications, which include integrating DevOps tools to automate the network
efficiently. It then guides you through different network automation tasks and covers
various data digging and performing tasks such as ensuring golden state configurations
using templates, interface parsing.

This book also focuses on Intelligent Operations using Aritifical Intelligence and
troubleshooting using chatbots and voice commands. The book then moves on to the use of
Python and the management of SSH keys for machine-to-machine (M2M) communication,
all followed by practical use cases. The book also covers the importance of Ansible for
network automation, including best practices in automation; ways to test automated
networks using tools such as Puppet, SaltStack, and Chef; and other important techniques.

Through practical use cases and examples, this book will acquaint you with the various
aspects of network automation. It will give you the solid foundation you need to automate
your own network without any hassle.

Who this book is for
If you are a network engineer or a DevOps professional looking for an extensive guide to
help you automate and manage your network efficiently, then this book is for you. No prior
experience with network automation is required to get started. However, you will need
some exposure to Python programming to get the most out of this book.

What this book covers
Chapter 1, Fundamental Concepts of Network Automation, introduces you to how to get
started with automation. This will also help you learn and understand the various
important aspects of network automation.

Chapter 2, Python Automation for Network Engineers, walks you through the methods and
samples of how to get data and parse through the use of regexes. We will also learn about a
number of advanced topics, such as writing Python scripts for network automation. With
the help of a use case, readers will be able to automate their network using Python.

Preface

[2]

Chapter 3, Ansible and Network Templatizations, focuses on using templates for network
golden states, and auto deployments of infrastructure using Ansible. We will also learn
about how to virtualize Oracle databases and scale dynamically to ensure service levels.

Chapter 4, Using Artificial Intelligence in Operations, includes the implementation of AI in
operations in order to perform self healing and remediations.

Chapter 5, Web Framework for Automation Triggers, discusses how to make scalable calls to
automation frameworks and generate custom HTML/dynamic pages. This chapter will also
cover the performance of complex tasks using API calls, along with the use case toward the
end.

Chapter 6, Continual Integration, provides an overview and integration principles for
network engineers with a view to managing rapid growth with high availability and rapid
disaster recovery.

To get the most out of this book
The hardware and software requirements for this book are Python (3.5 onward), IIS,
Windows, Linux, an Ansible installation, and real routers.

You need an internet connection to download the Python libraries. Also, basic knowledge
of Python, along with knowledge of networking and basic familiarity with web servers
such as IIS, is required.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[3]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Practical- ​Network- ​Automation- ​Second- ​Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/9781789955651_ColorImage

s.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "From the installation directory, we just need to invoke python.exe, which will
invoke the Python interpreter."

A block of code is set as follows:

index="main" earliest=0 | where interface_name="Loopback45" | dedup
interface_name,router_name | where interface_status="up" | stats
values(interface_name) values(interface_status) by router_name | table
router_name

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

map URL to Classes
app.add_route("/decode", decod)
app.add_route('/encode', encod)

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789955651_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789955651_ColorImages.pdf

Preface

[4]

Any command-line input or output is written as follows:

pip install gevent

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Fundamental Concepts of

Network Automation
This chapter details some of the key concepts that need to be applied practically before we
deep-dive into network-automation-specific examples. As detailed in the first edition,
understanding the concepts and how to write a program for network automation is as
important as giving out accurate results of a script.

The following topics will be covered in this chapter:

A readable script
Basic programs
Making a decision on which scripting language to use (Python or PowerShell)
Introduction to code check-in and its importance
Sample use cases

Technical requirements
The technical requirements are as follows:

Python (3.5 or above)
PowerShell (5.0 or above)
Windows 8 or above (for PowerShell)

The codes for this chapter can be found at https:/ ​/​github. ​com/ ​PacktPublishing/
Practical-​Network- ​Automation- ​Second- ​Edition.

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition

Fundamental Concepts of Network Automation Chapter 1

[6]

A readable script
As network automation/DevOps engineers, we often tend to overlook the way we write a
script. The focus is always on providing accurate results, which is great, but as we scale our
script or application, a focus on the readability of the script is essential.

This becomes a key requirement when we start to work as a team where we have multiple
contributors for a script or set of scripts.

Let's look at an example of a bad Python script that returns the result as expected (output is
correct):

 x=input("What is your name:")
 print ("how are you"+x)
 y="how are you"+x
 if ("test1" in y) and ("test2" in y):
 print ("cool")
 x=y.split(" ")
 x=x[2]+"awesome"
 if ("are" in x):
 print ("not cool")

After the second or third line of code as we read through, we lose the understanding of
program flow, and what the expected result was. Eventually, it becomes very difficult to
interpret even a simple script such as this.

Imagine how difficult it would be for someone who has not written this code to interpret a
bigger script (say, 50 lines).

Now, let's modify this code to make it readable:

#ask for input of user's name and prints it with a message
x=input("What is your name:")
print ("how are you"+x)
y="how are you"+x

#validates and prints message if 'test1' AND 'test2' exists in input
if ("test1" in y) and ("test2" in y):
 print ("cool")

#splits the sentence stored in variable x with blank spaces
x=y.split(" ")
print (x)
#adds the string "awesome" to the third word in the sentence and stores it
in x
x=x[2]+"awesome"

Fundamental Concepts of Network Automation Chapter 1

[7]

#validates if word "are" is in x and prints the message accordingly
if ("are" in x):
 print ("not cool")

As we can see, each section (or line) that achieves a specific result is tagged by a remark line
(denoted by #). This line is a human-readable line that is ignored by the program (or
compiler) and is used to ensure any reader of the program understands what is going on in
each section. This ensures that each and every aspect of the script is easily understood by
the reader; as the script is enhanced, troubleshooting and modifications in the program
become very easy.

Another key aspect in the readability of a program is to ensure we add some key
information at the very start of the code.

A generic suggestion would be to include the following:

The author's name
Version of the script (starts with 1.0)
One-liner description of basic usage of the script
Any specific installation requirements

As an example, let 's add this to the very top of the preceding script:

#Name: Abhishek Ratan
#Version: 1.0
#Usage: Asks for user input and validates it for some specific keywords
#Additional installation required: None

Basic programs
Taking this forward, let's write some basic scripts or programs using Python that can help
us understand how to leverage Python in our daily automation tasks.

Validating an IPv4 address
This example will show us how to validate an IP address format, given as an input:

ip_address=input("Enter IP address: ")
#remove any extra characters
ip_address=ip_address.strip()

#initialize a flag to point to true for an ip address

Fundamental Concepts of Network Automation Chapter 1

[8]

ip_address_flag=True

#validate if there are only 3 dots (.) in ip address
if (not(ip_address.count('.') == 3)):
 ip_address_flag=False
else:
 #Validate if each of the octet is in range 0 - 255
 ip_address=ip_address.split(".")
 for val in ip_address:
 val=int(val)
 if (not(0 <= val <=255)):
 ip_address_flag=False

#based upon the flag value display the relevant message
if (ip_address_flag):
 print ("Given IP is correct")
else:
 print ("Given IP is not correct")

The sample output is as follows:

>>
 Enter IP address: 100.100.100.100
 Given IP is correct
 >>>
 Enter IP address: 2.2.2.258
 Given IP is not correct
 >>>
 Enter IP address: 4.7.2.1.3
 Given IP is not correct
 >>>

As we can see, based upon our validations in the script, the output of our program, returns
a validation status of True or False for the IP address that was given as input.

As we move forward, it's important to know that Python, or any programming language,
has multiple predefined functions/libraries that can be utilized to perform particular
functions. As an example, let's see the earlier example of validating the IPv4 address, using
a prebuild library (socket) in Python:

import socket
addr=input("Enter IP address: ")
try:
 socket.inet_aton(addr)
 print ("IP address is valid")
except socket.error:
 print ("IP address is NOT valid")

Fundamental Concepts of Network Automation Chapter 1

[9]

The sample output is as follows:

>>
 Enter IP address: 100.100.100.100
 IP address is valid
 >>>
 Enter IP address: 2.2.2.258
 IP address is NOT valid
 >>>
 Enter IP address: 4.7.2.1.3
 IP address is NOT valid
 >>>

In the preceding approach, using a prebuilt library helps us to ensure that we do not have
to reinvent the wheel (or create our own logic for something that has already been
developed by other developers), and also ensures our script remains lean and thin while
achieving the same expected results.

Making the right choice
In this example, we will use a switch case to identify the right set of configurations based
upon certain input given by the user.

As a prerequisite understanding, the syntax of the exec-timeout command based upon
OS is as follows:

Cisco IOS command: exec-timeout 15 0
Cisco NXOS command: exec-timeout 15

#create a dictionary:
config={
 "IOS":"exec-timeout 15 0",
 "NXOS":"exec-timeout 15"
 }
getchoice=input("Enter IOS type (IOS/NXOS) : ")
if (getchoice == "IOS"):
 print (config.get("IOS"))
if (getchoice == "NXOS"):
 print (config.get("NXOS"))

The sample output is as follows:

>
 Enter IOS type (IOS/NXOS) : IOS
 exec-timeout 15 0

Fundamental Concepts of Network Automation Chapter 1

[10]

 >>>
 Enter IOS type (IOS/NXOS) : NXOS
 exec-timeout 15
 >>>

In the preceding example, we have tackled a common challenge of using a switch case in
Python. Unlike some other languages, Python does not provide a switch case statement,
hence we need to use a dictionary to overcome this. Using this approach, we can remove
the usage of multiple if statements and directly call the dictionary values based upon the
mappings done in the dictionary.

Hiding credentials
This is another common problem engineers face. There are times when we need to ask for
password as input from the user. As the user types in the password, it is clearly visible on
the screen, and view able by anyone watching the screen. Additionally, there are times
when we need to save the credentials, but need to ensure they are not visible in the script as
clear-text passwords (which is a cause of concern as we share the scripts among fellow
engineers). In this example, we will see how to overcome this challenge.

The code to perform encryption and decryption on the given credentials is as follows:

import getpass
import base64
#ask for username .. will be displayed when typed
uname=input("Enter your username :")

#ask for password ... will not be displayed when typed
#(try in cmd or invoke using python command)
p = getpass.getpass(prompt="Enter your password: ")

#construct credential with *.* as separator between username and password
creds=uname+"*.*"+p

###Encrypt a given set of credentials
def encryptcredential(pwd):
 rvalue=base64.b64encode(pwd.encode())
 return rvalue

###Decrypt a given set of credentials
def decryptcredential(pwd):
 rvalue=base64.b64decode(pwd)
 rvalue=rvalue.decode()
 return rvalue

Fundamental Concepts of Network Automation Chapter 1

[11]

encryptedcreds=encryptcredential(creds)
print ("Simple creds: "+creds)
print ("Encrypted creds: "+str(encryptedcreds))
print ("Decrypted creds: "+decryptcredential(encryptedcreds))

The sample output is as follows:

C:\gdrive\book2\github\edition2\chapter1>python credential_hidings.py
 Enter your username :Myusername
 Enter your password:
 Simple creds: Myusername*.*mypassword
 Encrypted creds: b'TXl1c2VybmFtZSouKm15cGFzc3dvcmQ='
 Decrypted creds: Myusername*.*mypassword

As we can see in the preceding example, we have used two libraries: getpass and base64.
The getpass library gives us the advantage of not echoing (or displaying) what we type on
the screen, and the value gets stored in the variable that we provide.

Once we have the username and password, we can use it to pass it to the relevant places.
Another aspect that we see here is that we can hard code our username and password in
the script without showing it in clear text, using the base64 library to encode our
credentials.

In the preceding example, a combination of the Myusername username and
the mypassword password have been separated by a *.* tag and it is converted to base64
as b'TXl1c2VybmFtZSouKm15cGFzc3dvcmQ='. The b in front denotes the byte format as
base64, which works on byte instead of strings. In this way, the same encoded value of
bytes can be hardcoded in a script, and the decrypt function can take that as input and
provide back the username and password to be used for authentication.

Accessing APIs
Here, we see a generic example of how to access an API and parse some basic values from
the return values:

import requests
city="london"
#this would give a sample data of the city that was used in the variable
urlx="https://samples.openweathermap.org/data/2.5/weather?q="+city+"&appid=
b6907d289e10d714a6e88b30761fae22"
#send the request to URL using GET Method
 r = requests.get(url = urlx)
 output=r.json()
#parse the valuable information from the return JSON

Fundamental Concepts of Network Automation Chapter 1

[12]

 print ("Raw JSON \n")
 print (output)
 print ("\n")
#fetch and print latitude and longitude
 citylongitude=output['coord']['lon']
 citylatitude=output['coord']['lat']
 print ("Longitude: "+str(citylongitude)+" , "+"Latitude:
"+str(citylatitude))

The sample output is as follows:

>>>
 Raw JSON
{'coord': {'lon': -0.13, 'lat': 51.51}, 'weather': [{'id': 300, 'main':
'Drizzle', 'description': 'light intensity drizzle', 'icon': '09d'}],
'base': 'stations', 'main': {'temp': 280.32, 'pressure': 1012, 'humidity':
81, 'temp_min': 279.15, 'temp_max': 281.15}, 'visibility': 10000, 'wind':
{'speed': 4.1, 'deg': 80}, 'clouds': {'all': 90}, 'dt': 1485789600, 'sys':
{'type': 1, 'id': 5091, 'message': 0.0103, 'country': 'GB', 'sunrise':
1485762037, 'sunset': 1485794875}, 'id': 2643743, 'name': 'London', 'cod':
200}

Longitude: -0.13, Latitude: 51.51
 >>>

Using the requests library, we fetch the sample weather information from an open API
(public API) for London, England. The output returned is JSON, which we print first as raw
(that is, print the output exactly as we got it back), and then parse out the meaningful info
(the city's latitude and longitude) from the JSON payload.

This is an important concept to understand, since we make use of
Application Program Interfaces (APIs) to interact with multiple tools,
vendors, and even across applications to perform specific, simple, or
complex tasks.

Using regular expressions (regex)
There are times when an engineer wants to parse specific data from a sentence or a big
chunk of data. Regex is the best tool of the trade for this purpose. Regex is a common
concept in every programming language, with the only difference being the syntax in each
programming language.

Fundamental Concepts of Network Automation Chapter 1

[13]

The following example shows how to use regex in Python:

import re
sample="From Jan 2018 till Nov 2018 I was learning python daily at 10:00
PM"

'\W+' represents Non-Alphanumeric characters or group of characters
print(re.split('\W+', sample))

#Extract only the month and Year from the string and print it
regex=re.compile('(?P<month>\w{3})\s+(?P<year>[0-9]{4})')

for m in regex.finditer(sample):
 value=m.groupdict()
 print ("Month: "+value['month']+" , "+"Year: "+value['year'])

to extract the time with AM or PM addition
regex=re.compile('\d+:\d+\s[AP]M')
m=re.findall(regex,sample)
print (m)

The sample output is as follows:

>
 ['From', 'Jan', '2018', 'till', 'Nov', '2018', 'I', 'was', 'learning',
'python', 'daily', 'at', '10', '00', 'PM']
 Month: Jan , Year: 2018
 Month: Nov , Year: 2018
 ['10:00 PM']

As we can see in the preceding output, the first line of code, is a simple sentence split into
separate words. The other output is a regex in a loop, which extracts all the months and
years depicted by three characters (mmm) and four digits (yyyy). Finally, in the last line of
code, a time extraction (extracting a time value using regex) is performed, based upon
AM/PM in the hh:mm format.

There can be multiple variations that we can work with using regex. It
would be beneficial to refer to online tutorials for detailed insight into the
different types of regex and how to use the right one to extract
information.

Fundamental Concepts of Network Automation Chapter 1

[14]

Handling files
Once in a while, we need to work on stored data or store some data from a script. For this
purpose, we use file-handling techniques.

Consider the example for handling data storage (as a record) :

getinput=input("Do you want to store a new record (Y/N) ")
#this is to remove any extra spaces
 getinput=getinput.strip()
#this is to convert all input to lower case
 getinput=getinput.lower()
#read values and create a record
 if ("y" in getinput):
 readvaluename=input("Enter the Name: ")
 readvalueage=input("Enter the Age: ")
 readvaluelocation=input("Current location: ")
 tmpvariable=readvaluename+","+readvalueage+","+readvaluelocation+"\n"
open a file myrecord.csv in write mode, write the record and close it
 fopen=open("myrecord.csv","w")
 fopen.write(tmpvariable)
 fopen.close()

The output is as follows:

>>
 ===== RESTART: C:/gdrive/book2/github/edition2/chapter1/file_handling.py
=====
 Do you want to store a new record (Y/N) n
 >>>
 ===== RESTART: C:/gdrive/book2/github/edition2/chapter1/file_handling.py
=====
 Do you want to store a new record (Y/N) y
 Enter the Name: abhishek
 Enter the Age: 10
 Current location: US
 >>>

Once this is executed, a myrecord.csv file is created in the same location as the script (as
we did not specify a file path):

Fundamental Concepts of Network Automation Chapter 1

[15]

Making a decision (Python or PowerShell)
There are times when, as an automation engineer, we might have to choose between
PowerShell and Python for certain tasks. Python is extensively used for interaction with
infrastructure devices, Network Gear, and multiple vendors, but to have deep integration
into and accessibility on any Windows platform, PowerShell will be the best choice. Python
is extensively used in Linux environments, where PowerShell has a very limited support.
PowerShell comes pre-installed in every flavor of Windows, but a major updated version
(PowerShell 5.0) is available from Windows 10 onward.

PowerShell also has its own built-in libraries to support various tasks, like Python, has an
extensive support community and backing from Microsoft, which adds new enhancements
regularly.

Let's look at a couple of examples of PowerShell to help us understand how to write a
PowerShell code.

Fundamental Concepts of Network Automation Chapter 1

[16]

API access
Here, we call the weather API to get coordinates for a particular location (say London,
England):

#use the city of london as a reference
 $city="london"
$urlx="https://samples.openweathermap.org/data/2.5/weather?q="+$city+"&appi
d=b6907d289e10d714a6e88b30761fae22"
used to Invoke API using GET method
 $stuff = Invoke-RestMethod -Uri $urlx -Method Get
#write raw json
 $stuff
#write the output of latitude and longitude
 write-host ("Longitude: "+$stuff.coord.lon+" , "+"Latitude:
"+$stuff.coord.lat)

The output is as follows:

PS C:\Users\abhishek.ratan>
C:\gdrive\book2\github\edition2\chapter1\api_invoke_ps.ps1
coord : @{lon=-0.13; lat=51.51}
 weather : {@{id=300; main=Drizzle; description=light intensity drizzle;
icon=09d}}
 base : stations
 main : @{temp=280.32; pressure=1012; humidity=81; temp_min=279.15;
temp_max=281.15}
 visibility : 10000
 wind : @{speed=4.1; deg=80}
 clouds : @{all=90}
 dt : 1485789600
 sys : @{type=1; id=5091; message=0.0103; country=GB; sunrise=1485762037;
sunset=1485794875}
 id : 2643743
 name : London
 cod : 200
Longitude: -0.13 , Latitude: 51.51

Fundamental Concepts of Network Automation Chapter 1

[17]

As we can see in the code, a major difference between writing code in Python and
PowerShell is that in PowerShell we do not need to focus on indentation. PowerShell does
not care about indentation, whereas a Python compilation would fail if strict indentation
was not adhered to.

Also, we do not need to import any specific library in PowerShell, as it has very extensive
built-in functions that are directly callable from the script.

Interacting with local machines
As mentioned earlier, PowerShell is deeply integrated with Windows at all levels. Let's look
at an example of certain processes (system or PowerShell processes from Microsoft),
running locally on the Windows machine:

Get-Process `
 | Where-Object {$_.company -like ‘*Microsoft*’}`
 | Where-Object {($_.ProcessName -like ‘*System*’) -or ($_.ProcessName -like
‘*powershell*’)}`
 | Format-Table ProcessName, Company -auto

The output is as follows (when executed from PowerShell console):

PS C:\Users\abhishek.ratan> Get-Process `
 | Where-Object {$_.company -like ‘*Microsoft*’}`
 | Where-Object {($_.ProcessName -like ‘*System*’) -or ($_.ProcessName -like
‘*powershell*’)}`
 | Format-Table ProcessName, Company -auto
ProcessName Company
 ----------- -------
 powershell Microsoft Corporation
 powershell_ise Microsoft Corporation
 SystemSettings Microsoft Corporation
 SystemSettingsBroker Microsoft Corporation

As we can see in this example, another feature of PowerShell is the piped command format
support (|). Similar to Unix, a piped command in PowerShell is used to take objects, output
from one cmdlet, easily send it to another cmdlet, and so on, until we granularize to a
final output.

Fundamental Concepts of Network Automation Chapter 1

[18]

In this example, we took the output of Get-Process (which is a full process dump of our
local machine), and filtered out the processes running from Microsoft Corporation.
Then we further refine it to show only those processes that have the System or
powershell in the name. The final output is piped to a tabular format with ProcessName
and Company as the table header.

Introduction to code check-in and its
importance
As we move forward in writing code and scripts, we also need to ensure they are stored
somewhere for quick access. In today's world, where we can work from virtually
anywhere, it's nearly impossible to work on only one machine everywhere you go.

Additionally, when we write a set of scripts and multiple team members are involved, we
need to find a way to share our code and current updates on the code in real-time. This
helps each of the contributors to be updated on each other's code to avoid redundant code.
There are multiple techniques to ensure we can store our code/collaborate on code-writing
and distribute the code to other engineers, but most code-sharing is done through Git.

Apart from collaboration and code-sharing, a very important use case for a code check-in is
to keep your code stored in an environment where an abrupt crash or any local hardware
issue (even a stolen computer) would not make your hours or weeks of efforts come to a
standstill.

Let's start by creating a sample account at GitHub code hosting platform where user(s) can
check-in the code, perform an initialization in a local machine, and perform a code check-in.

Git installation and initialization
Git is a version control system which tracks the changes when working with computer
codes while GitHub is a web-based Git version control repository hosting service. Git is
installed on a local computer whereas GitHub is hosted on web platform. In our test
scenario, we will utilize the free Git service by signing up and creating our repository
online at https:/​/​github. ​com/ ​.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Fundamental Concepts of Network Automation Chapter 1

[19]

The following steps guide us through creating a repository in Git:

Click on New repository:1.

Fundamental Concepts of Network Automation Chapter 1

[20]

Give a name to the repository (in this case, mytest), and click on Create2.
repository:

Fundamental Concepts of Network Automation Chapter 1

[21]

Note the instructions to clone (that is, make a copy of this repository) on your3.
local machine:

Download and install the Git client from https:/ ​/​git- ​scm. ​com/ ​downloads,4.
choosing the release for the OS of the machine. In our test, we have a Windows
10 machine, hence we are using the Git client for Windows.
Follow the instructions to clone the Git repository in your specific folder. From5.
Command Prompt, run the following command:

 C:\test>git clone https://github.com/pnaedition2/mytest.git
 Cloning into 'mytest'...
 warning: You appear to have cloned an empty repository.
 C:\test>cd mytest
 C:\test\mytest>git pull
 Your configuration specifies to merge with the ref
'refs/heads/master'
 from the remote, but no such ref was fetched.

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads

Fundamental Concepts of Network Automation Chapter 1

[22]

To confirm (validate) if configuration is working, get a Git status:6.

C:\test\mytest>git status
On branch master
No commits yet
Untracked files:
(use "git add <file>..." to include in what will be committed)
git
nothing added to commit but untracked files present (use "git
add" to track)

Code check-in
As we have the Git environment initialized in our local computer, we will proceed with a
code check-in of a simple Python script:

 Confirm that the file that needs to be checked in exists in the folder:1.

 Directory of C:\test\mytest
 12-Nov-18 03:16 PM <DIR> .
 12-Nov-18 03:16 PM <DIR> ..
 12-Nov-18 03:12 PM 0 git
 12-Nov-18 03:16 PM 34 myfirstcodecheckin.py
 2 File(s) 34 bytes
 2 Dir(s) 345,064,542,208 bytes free

If the file has not been added to git, it would show up in the git2.
status command under untracked files:

C:\test\mytest>git status
On branch master
No commits yet
Untracked files:
(use "git add <file>..." to include in what will be committed)
git
myfirstcodecheckin.py
nothing added to commit but untracked files present (use "git
add" to track)

Fundamental Concepts of Network Automation Chapter 1

[23]

Add this file for the code check-in and validate it again using git status (the3.
added file will now show under the Changes to be committed section):

C:\test\mytest>git add myfirstcodecheckin.py
C:\test\mytest>git status
On branch master
No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: myfirstcodecheckin.py
Untracked files:
(use "git add <file>..." to include in what will be committed)
git

Commit this particular change to the master (in other words, ensure the local4.
copy is now saved on the server, ready to be shared with others):

C:\test\mytest>git commit -m "this is a test checkin"
[master (root-commit) abe263d] this is a test checkin
Committer: Abhishek Ratan <abhishek.ratan@servicenow.com>

1 file changed, 1 insertion(+)
create mode 100644 myfirstcodecheckin.py

The -m in this section specified a comment for this particular code check-in. This
generally depicts what code is being checked in and is treated like a remark
section for this particular check-in.

We need to push our changes back to the server hosted on the web:5.

C:\test\mytest>git push
Counting objects: 3, done.
Writing objects: 100% (3/3), 273 bytes | 273.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote:
remote: Create a pull request for 'master' on GitHub by
visiting:
remote: https://github.com/pnaedition2/mytest/pull/new/master
remote:
To https://github.com/pnaedition2/mytest.git
* [new branch] master -> master

Fundamental Concepts of Network Automation Chapter 1

[24]

This completes the check-in process for a specific file (or code script). To confirm
that the process was successful, we can go to the GitHub URL of your repository
to see the file:

As a final note, the next time someone clones the Git repository on a different
machine, they just need to do a simple git pull for the same files to be visible
and as a local copy on that particular machine. A similar approach can be
followed for subsequent check-ins, as well as modifications to current files.

As best practice, always perform git pull before git push, to ensure
you have the updated code in your local repository before your push out
any code back to the main repository.

Sample use cases
Let's summarize our learning in the chapter using a couple of sample use cases.

Fundamental Concepts of Network Automation Chapter 1

[25]

First use case
Consider the first scenario as follows:

A travel agency has three customers. For our use case, the requirement is to suggest a
package for a specific city using the predefined preferences for any two customers. As an
additional output or suggestion, there needs to be a suggestion on weather status for the
next five days. Also, to provide an enhanced end user experience, ask a single question to
determine check-in time and type of transport for the journey.

The code is as follows:

...
import getpass
import base64
import requests
from collections import Counter
import re

#ask for username .. will be displayed when typed
uname=input("Enter your username :")

#ask for password ... will not be displayed when typed
#(try in cmd or invoke using python command)
p = getpass.getpass(prompt="Enter your password: ")

#construct credential with *.* as separator between username and password
creds=uname+"*.*"+p

#encrypted creds of the registered customers
#for testing username:password is customer1:password1 ,
customer2:password2, and so on

#create a dictionary:
customers={
 "customer1":b'Y3VzdG9tZXIxKi4qcGFzc3dvcmQx',
 "customer2":b'Y3VzdG9tZXIyKi4qcGFzc3dvcmQy',
 "customer3":b'Y3VzdG9tZXIzKi4qcGFzc3dvcmQz'
 }

###Decrypt a given set of credentials
def decryptcredential(pwd):
 rvalue=base64.b64decode(pwd)
 rvalue=rvalue.decode()
 return rvalue
###Encrypt a given set of credentials
def encryptcredential(pwd):

Fundamental Concepts of Network Automation Chapter 1

[26]

 rvalue=base64.b64encode(pwd.encode())
 return rvalue

#to validate if a customer is legitimate
flag=True

procedure for validated customer
def validatedcustomer(customer):
 print ("Hello "+customer)
 inputcity=input("Which city do you want to travel (ex
London/Paris/Chicago): ")
 inputaddinfo=input("Any specific checkin time [AM/PM] and preferred
mode of travel [car/bus]: ")

 #### extract the regex values from additional info
 regex=re.compile('\d+:\d+\s[AP]M')
 time=re.findall(regex,inputaddinfo)
 if "car" in inputaddinfo:
 transport="car"
 else:
 if "bus" in inputaddinfo:
 transport="bus"

 ### create sentence based upon the additional info provided
 print ("\n\nYou have selected to checkin at "+time[0]+", and your
preferred transport will be "+transport+" .")
 getcityinfo=validatecity(inputcity)

 ### this is to sort the dictionary from highest to lowest based upon
weather types
 sorted_d = [(k, getcityinfo[k]) for k in sorted(getcityinfo,
key=getcityinfo.get, reverse=True)]
 ###iterate through the weathers to construct a sentence
 sentence="Weather prediction for next 5 days is (chance of) "
 for item in sorted_d:
 sentence=sentence+" "+item[0]+": "+str(item[1])+"%,"
 print (sentence)
to validate the average weather for that city for next 5 days
def validatecity(inputcity):
 #create empty list
 weathers=[]
 weatherpercentage={}
 #remove any additional spaces accidentally entered
 inputcity=inputcity.strip()
urlx="https://samples.openweathermap.org/data/2.5/forecast?q="+inputcity+"&
appid=b6907d289e10d714a6e88b30761fae22"
 #send the request to URL using GET Method
 r = requests.get(url = urlx)

Fundamental Concepts of Network Automation Chapter 1

[27]

 output=r.json()
 ### this is to parse the type of weather and count them in a list
 for item in output['list']:
 weathers.append(item['weather'][0]['description'])
 countweather=Counter(weathers)
 #### this is to find the percentage of each weather type from the given
output (36 variations are returned from API)
 for item in countweather:
 weatherpercentage[item]=int((countweather[item]/36) * 100)
 return weatherpercentage
validate if the username is part of any customers
if (uname in customers):
 encryptedcreds=encryptcredential(creds)
 getcustomercreds=customers[uname]
 ### validate if the credentials provided is the same as stored
credentials for that customer
 if not(str(encryptedcreds.decode()) == str(getcustomercreds.decode())):
 flag=False
else:
 flag=False

if not(flag):
 print ("Unauthorized customer.")
else:
 validatedcustomer(uname)

Scenario 1: Incorrect username and password:

C:\gdrive\book2\github\edition2\chapter1>python use_case1.py
Enter your username :abhishek
Enter your password:
Unauthorized customer.

Scenario 2: Correct username but incorrect password:

C:\gdrive\book2\github\edition2\chapter1>python use_case1.py
Enter your username :customer1
Enter your password:
Unauthorized customer.

C:\gdrive\book2\github\edition2\chapter1>

Scenario 3: Correct username and password:

C:\gdrive\book2\github\edition2\chapter1>python use_case1.py
Enter your username :customer1
Enter your password:

Hello customer1

Fundamental Concepts of Network Automation Chapter 1

[28]

Which city do you want to travel (ex London/Paris/Chicago): paris
Any specific checkin time [AM/PM] and preferred mode of travel [car/bus]:
travel checkin at 12:30 PM by bus

You have selected to checkin at 12:30 PM, and your preferred transport will
be bus .
Weather prediction for next 5 days is (chance of) clear sky: 61%, light
rain: 27%, few clouds: 5%, broken clouds: 2%, moderate rain: 2%,

C:\gdrive\book2\github\edition2\chapter1>

As we can see in the preceding output, the customer selected paris, with a check in time of
12:30 PM and bus as their mode of transport.

Based upon the location selected, the API call was made to the weather site, and a
prediction of the weather for the next 5 days was returned in JSON. This has been
evaluated in terms of a percentage, and a result value was given, which predicts a 61%
chance of clear sky, followed by a 27% chance of light rain.

Let's run this output for another customer:

C:\gdrive\book2\github\edition2\chapter1>python use_case1.py
Enter your username :customer2
Enter your password:
Hello customer2
Which city do you want to travel (ex London/Paris/Chicago): Chicago
Any specific checkin time [AM/PM] and preferred mode of travel [car/bus]:
checkin preferred at 10:00 AM and travel by car

You have selected to checkin at 10:00 AM, and your preferred transport will
be car .
Weather prediction for next 5 days is (chance of) clear sky: 51%, light
rain: 37%, few clouds: 5%, broken clouds: 2%, moderate rain: 2%,

C:\gdrive\book2\github\edition2\chapter1>

In this particular situation, we see that customer2 has a check-in preference of 10:00 AM
and prefers to travel by car.

Fundamental Concepts of Network Automation Chapter 1

[29]

Also, as per their selection of Chicago, the prediction of the weather is clear sky: 51%,
light rain: 37%, few clouds: 5%, broken clouds: 2%, moderate rain: 2%.

In a similar way, we can call additional APIs to find out the
traffic/weather, and even currency values for a particular city for any
given dates. This can be made an extensive application that can predict
the user's journey based upon their destination and date selections.

Second use case
Consider the second scenario as follows:

As an admin, you need to provide a script to users to add/delete themselves based upon
authentication status and if authenticated successfully, provide an option to change their
passwords:

...
import getpass
import base64
import os.path

###Check with credential storage file exists. If not, then create one,
otherwise read data from the current file
storedcreds=[]
if (os.path.isfile("usecase_creds.txt")):
 fopen=open("usecase_creds.txt")
 storedcreds=fopen.readlines()
else:
 fopen=open("usecase_creds.txt","w")

###Decrypt a given set of credentials
def decryptcredential(pwd):
 rvalue=base64.b64decode(pwd)
 rvalue=rvalue.decode()
 return rvalue

###Encrypt a given set of credentials
def encryptcredential(pwd):
 rvalue=base64.b64encode(pwd.encode())
 return rvalue

this is used to deregister a authenticated user
def deregister(getencryptedcreds):
 with open("usecase_creds.txt") as f:
 newText=f.read().replace(getencryptedcreds+"\n","")

Fundamental Concepts of Network Automation Chapter 1

[30]

 with open("usecase_creds.txt", "w") as f:
 f.write(newText)
 print ("you are deregistered")
#this is to store the read encrypted creds from file into expanded username
and password combo
storedcredsexpanded=[]
for item in storedcreds:
 item=item.strip()
 #to ensure we do not parse the blank values or blank lines
 if (len(item) > 2):
 tmpval=decryptcredential(item)
 storedcredsexpanded.append(tmpval)

#ask for username .. will be displayed when typed
uname=input("Enter your username :")

#ask for password ... will not be displayed when typed
#(try in cmd or invoke using python command)
p = getpass.getpass(prompt="Enter your password: ")

#construct credential with *.* as separator between username and password
creds=uname+"*.*"+p

#encrypted creds of the registered customers
#for testing username:password is customer1:password1 ,
customer2:password2, and so on...
getencryptedcreds=encryptcredential(creds)

#validate authentication of user
flag=False
usrauthenticated=False
for item in storedcreds:
 if (getencryptedcreds.decode() in item):
 flag=True

if (flag):
 print ("Authenticated successfully")
 usrauthenticated=True
else:
 print ("Authentication failed")
 #validate if user exists
 tmpvalue=decryptcredential(getencryptedcreds)
 #split username and password
 tmpvalue=tmpvalue.split("*.*")
 usrflag=False
 ###validate if this username exists otherwise give an option for new
registration
 for item in storedcredsexpanded:

Fundamental Concepts of Network Automation Chapter 1

[31]

 item=item.split("*.*")
 if (tmpvalue[0] == item[0]):
 print ("User already exists but password incorrect. Please
contact Admin for password reset")
 usrflag=True
 break
 #if user does not exist
 if (usrflag==False):
 readinput=input("User does not exist, Do you want to register
yourself (Y/N) ")
 readinput=readinput.strip()
 readinput=readinput.lower()
 if (readinput == "y"):
 uname=input("Enter your username :")
 p = getpass.getpass(prompt="Enter your password: ")
 creds=uname+"*.*"+p
 getencryptedcreds=encryptcredential(creds)
 ## to convert bytes to string
 getencryptedcreds=getencryptedcreds.decode()

 ##open file in append mode
 fopen=open("usecase_creds.txt","a")
 fopen.write(getencryptedcreds+"\n")
 fopen.close()
 print ("User added successfully")

if (usrauthenticated):
 readinput=input("Do you want to deregister yourself (Y/N) ")
 readinput=readinput.strip()
 readinput=readinput.lower()
 if (readinput == "y"):
 deregister(getencryptedcreds.decode())
 else:
 readinput=input("Do you want to change your password (Y/N) ")
 readinput=readinput.strip()
 readinput=readinput.lower()
 if (readinput == "y"):
 p = getpass.getpass(prompt="Enter your password: ")
 creds=uname+"*.*"+p
 newencryptedcreds=encryptcredential(creds)
 newencryptedcreds=newencryptedcreds.decode()
 getencryptedcreds=getencryptedcreds.decode()

 ###updated the credential of the user
 with open("usecase_creds.txt") as f:
 newText=f.read().replace(getencryptedcreds,
newencryptedcreds)

Fundamental Concepts of Network Automation Chapter 1

[32]

 with open("usecase_creds.txt", "w") as f:
 f.write(newText)
 print ("Your password is updated successfully")

The outputs based upon different scenario are as follows:

Scenario 1: A user who is not registered receives the following output:

C:\gdrive\book2\github\edition2\chapter1>python use_case2.py
Enter your username :newcustomer
Enter your password:
Authentication failed
User does not exist, Do you want to register yourself (Y/N) y
Enter your username :newcustomer
Enter your password:
User added successfully

C:\gdrive\book2\github\edition2\chapter1>

Scenario 2: A user who is registered but forgot their password receives this output:

C:\gdrive\book2\github\edition2\chapter1>python use_case2.py
Enter your username :newcustomer
Enter your password:
Authentication failed
User already exists but password incorrect. Please contact Admin for
password reset

C:\gdrive\book2\github\edition2\chapter1>

Scenario 3: A user who is a registered customer, and wants to change their password if
authenticated successfully, receives the following output:

C:\gdrive\book2\github\edition2\chapter1>python use_case2.py
Enter your username :customer2
Enter your password:
Authenticated successfully
Do you want to deregister yourself (Y/N) n
Do you want to change your password (Y/N) y
Enter your password:
Your password is updated successfully

Scenario 4: A user who is a registered customer, and want to deregister themselves
if authenticated successfully, receives the following output:

C:\gdrive\book2\github\edition2\chapter1>python use_case2.py
Enter your username :newcustomer
Enter your password:

Fundamental Concepts of Network Automation Chapter 1

[33]

Authenticated successfully
Do you want to deregister yourself (Y/N) y
you are deregistered

C:\gdrive\book2\github\edition2\chapter1>

All of these preceding operations are saved in the background, using the file operations,
under the file named usecase_creds.txt:

Additionally, as an example, here is the current output of usecase_creds.txt, which
shows that none of the credentials storage in the file occurs in clear-text (or human-readable
format):

C:\gdrive\book2\github\edition2\chapter1>more usecase_creds.txt
Y3VzdG9tZXIxKi4qcGFzc3dvcmQx
Y3VzdG9tZXIyKi4qbmV3cGFzc3dvcmQ=
YWJoaXNoZWsqLipoZWxsb3dvcmxk

C:\gdrive\book2\github\edition2\chapter1>

This sample use case is very useful when we have multiple people using
scripts, as well as places where authentications are involved. A key focus
here is that all the transactions (including data storage) are encrypted and
no clear, unencrypted storage of any information is used.

Fundamental Concepts of Network Automation Chapter 1

[34]

Summary
In this chapter, we covered the working examples of various terminology/techniques that
we will use while performing network automation. This chapter also introduced readers to
writing a good program, which is a key requirement in a collaborative environment. This
chapter also explained the use of Git and GitHub as a code check-in, and why it is
important and advantageous to publish the code on a server as compared to a local copy.
Readers were also introduced to making a choice between two popular scripting languages,
Python and PowerShell, while working on mixed environments or platforms. The short
examples given will help the reader to understand the practical usage of Python; they also
expose multiple concepts that will be used regularly when writing a program.

Finally, the use cases are a summation of all the previous learning and show how to use
that knowledge in a bigger project. Some of the concepts given in the use cases are key to
network-automation programs that will be developed further in the next chapter.

The next chapter will go deeper into how to write scripts using Python, with a specific
focus on usability for network engineers. There will be samples, tips, and best practices as
well.

Questions
As a best practice and to keep the script simple and readable, we should not add1.
any comments to the script [True/False].

In the phrase I have been learning Python for the last 1 month and 2 days, what is the2.
smallest possible regular expression that would return the value 2 days?

While performing an encoding using base64, the value returned is in bytes.3.
Which specific method do we use to ensure it is converted to the String value?

To ensure the password we type is not visible to anyone, what is the method we4.
can invoke to ask for the password from the user?

What are the w and a modes in a file operation?5.

What is a library in Python?6.

2
Python Automation for Network

Engineers
This chapter will introduce ways to interact with network devices using Python. We will
also see certain use cases on configuring network devices using configuration templates,
and also write a modular code to ensure high reusability of the code to perform repetitive
tasks. We will also see the benefits of parallel processing of tasks and the efficiency that can
be gained through multithreading.

The following topics will be covered in this chapter:

Interaction of network devices
Network device configuration using template
Multithreading
Use cases

Technical requirements
The following are the technical requirements for this chapter:

Python (3.0 or greater)
Network devices (real or simulated) with SSH connectivity
Basic understanding of network domain
GitHub link at https:/ ​/ ​github. ​com/ ​PacktPublishing/ ​Practical- ​Network-
Automation- ​Second- ​Edition

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition

Python Automation for Network Engineers Chapter 2

[36]

Interacting with network devices
Python is widely used to perform multiple tasks. One of the tasks that widely uses Python
is network automation. With its wide set of libraries (such as Netmiko and Paramiko),
there are endless possibilities for network device interactions for different vendors. Owing
to the support of Python, the list of supported devices continues to expand with the
developer community, adding support for additional vendors as they are introduced to
market.

Before we proceed to interact with devices, let us understand one of the most widely used
libraries for network interactions. We will be using Netmiko to perform our network
interactions.

Netmiko (https:/ ​/​github. ​com/ ​ktbyers/ ​netmiko) is a library/module in Python that is
used extensively to interact with network devices. This is a multi-vendor library with
support for Cisco IOS, NX-OS, firewalls, and many other devices. The underlying library of
this is Paramiko, which is again used extensively for SSH into various devices.

Netmiko extends the Paramiko ability of SSH to add enhancements, such as going into
configuration mode in network routers, sending commands, receiving output based upon
the commands, adding enhancements to wait for certain commands to finish executing, and
also taking care of yes/no interactive prompts during command execution.

Python provides a well-documented reference for each of the modules, and, for our
module, the documentation can be found at https:/ ​/​pypi. ​org/ ​project/ ​netmiko/ ​. For
installation, all we have to do is go into the folder from the command line
where python.exe is installed or is present. There is a sub folder in that location
called scripts. Inside the folder, we have two options that can be used for installing
the easy_install.exe or pip.exe modules.

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.org/project/netmiko/
https://pypi.python.org/pypi/netmiko

Python Automation for Network Engineers Chapter 2

[37]

Installing the library for Python can be done in two ways:

The syntax of easy_install is as follows:

easy_install <name of module>

For example, to install Netmiko, the following command is run:

easy_install netmiko

The syntax of pip install is as follows:

pip install <name of module>

For example:

pip install netmiko

Once we have installed the required module, we need to restart Python by
closing all open sessions and invoking IDLE again so that the modules can
be loaded. More information on modules can be obtained from https:/ ​/
docs. ​python. ​org/ ​3. ​6/ ​tutorial/ ​modules. ​html.
Additionally, use the pip list command to list all the modules/packages
installed in Python environment along with the corresponding version
information.

Here's an example of a simple script to log in to the router (an example IP is
192.168.255.249 with a username and password of cisco) and show the version:

from netmiko import ConnectHandler

device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249',
username='cisco', password='cisco')
output = device.send_command("show version")
print (output)
device.disconnect()

https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html
https://docs.python.org/3.6/tutorial/modules.html

Python Automation for Network Engineers Chapter 2

[38]

The output of the execution of code against a router is as follows:

As we can see in the sample code, we call the ConnectHandler function from the Netmiko
library, which takes four inputs (platform type, IP address of device, username,
and password):

Python Automation for Network Engineers Chapter 2

[39]

Netmiko works with a variety of vendors. Some of the supported platform
types and their abbreviations to be called in Netmiko are as follows:
a10: A10SSH,
accedian: AccedianSSH,
alcatel_aos: AlcatelAosSSH,
alcatel_sros: AlcatelSrosSSH,
arista_eos: AristaSSH,
aruba_os: ArubaSSH,
avaya_ers: AvayaErsSSH,
avaya_vsp: AvayaVspSSH,
brocade_fastiron: BrocadeFastironSSH,
brocade_netiron: BrocadeNetironSSH,
brocade_nos: BrocadeNosSSH,
brocade_vdx: BrocadeNosSSH,
brocade_vyos: VyOSSSH,
checkpoint_gaia: CheckPointGaiaSSH,
ciena_saos: CienaSaosSSH,
cisco_asa: CiscoAsaSSH,
cisco_ios: CiscoIosBase,
cisco_nxos: CiscoNxosSSH,
cisco_s300: CiscoS300SSH,
cisco_tp: CiscoTpTcCeSSH,
cisco_wlc: CiscoWlcSSH,
cisco_xe: CiscoIosBase,
cisco_xr: CiscoXrSSH,
dell_force10: DellForce10SSH,
dell_powerconnect: DellPowerConnectSSH,
eltex: EltexSSH,
enterasys: EnterasysSSH,
extreme: ExtremeSSH,
extreme_wing: ExtremeWingSSH,
f5_ltm: F5LtmSSH,
fortinet: FortinetSSH,
generic_termserver: TerminalServerSSH,
hp_comware: HPComwareSSH,
hp_procurve: HPProcurveSSH,
huawei: HuaweiSSH,
juniper: JuniperSSH,
juniper_junos: JuniperSSH,

Python Automation for Network Engineers Chapter 2

[40]

linux: LinuxSSH,
mellanox_ssh: MellanoxSSH,
mrv_optiswitch: MrvOptiswitchSSH,
ovs_linux: OvsLinuxSSH,
paloalto_panos: PaloAltoPanosSSH,
pluribus: PluribusSSH,
quanta_mesh: QuantaMeshSSH,
ubiquiti_edge: UbiquitiEdgeSSH,
vyatta_vyos: VyOSSSH,
vyos: VyOSSSH

Depending upon the selection of the platform type, Netmiko can understand the returned
prompt and the correct way to SSH into the specific device. Once the connection is made,
we can send commands to the device using the send_command method.

Once we get the return value, the value stored in the output variable is displayed, which is
the string output of the command that we sent to the device. The last line, which uses
the disconnect function, ensures that the connection is terminated cleanly once we are
done with our task.

For configuration (for example, we need to provide a description to the FastEthernet
0/0 router interface), we use Netmiko, as shown in the following example:

from netmiko import ConnectHandler

print ("Before config push")
device = ConnectHandler(device_type='cisco_ios', ip='192.168.255.249',
username='cisco', password='cisco')
output = device.send_command("show running-config interface fastEthernet
0/0")
print (output)

configcmds=["interface fastEthernet 0/0", "description my test"]
device.send_config_set(configcmds)

print ("After config push")
output = device.send_command("show running-config interface fastEthernet
0/0")
print (output)

device.disconnect()

Python Automation for Network Engineers Chapter 2

[41]

The output of the execution of the preceding code is as follows:

As we can see, for config push, we do not have to perform any additional configurations
but just specify the commands in the same order as we send them manually to the router in
a list, and pass that list as an argument to the send_config_set function. The output
in Before config push is a simple output of the FastEthernet0/0 interface, but the
output under After config push now has the description that we configured using the
list of commands.

In a similar way, we can pass multiple commands to the router, and Netmiko will go into
configuration mode, write those commands to the router, and exit config mode.

Python Automation for Network Engineers Chapter 2

[42]

If we want to save the configuration, we use the following command after
the send_config_set command:

device.send_command("write memory")

This ensures that the router writes the newly pushed configuration in memory.

Additionally, for reference purposes across the book, we will be referring to the following
GNS3 (https:/​/ ​www. ​gns3. ​com/ ​) simulated network:

In this topology, we have connected four routers with an Ethernet switch. The switch is
connected to the local loopback interface of the computer, which provides the SSH
connectivity to all the routers.

We can simulate any type of network device and create topology based upon our specific
requirements in GNS3 for testing and simulation. This also helps in creating complex
simulations of any network for testing, troubleshooting, and configuration validations.

https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/
https://www.gns3.com/

Python Automation for Network Engineers Chapter 2

[43]

The IP address schema used is the following:

rtr1: 192.168.20.1
rtr2: 192.168.20.2
rtr3: 192.168.20.3
rtr4: 192.168.20.4
Loopback IP of computer: 192.168.20.5

The credentials used for accessing these devices are the following:

Username: test
Password: test

Let us start from the first step by pinging all the routers to confirm their reachability from
the computer. The code is as follows:

import socket
import os
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
for n in range(1, 5):
 server_ip="192.168.20.{0}".format(n)
 rep = os.system('ping ' + server_ip)
 if rep == 0:
 print ("server is up" ,server_ip)
 else:
 print ("server is down" ,server_ip)

The output of running the preceding code is as follows:

As we can see in the preceding code, we use the range command to iterate over the IPs
192.168.20.1-192.168.20.4. The server_ip variable in the loop is provided as an
input to the ping command, which is executed for the response. The response stored in
the rep variable is validated with a value of 0 stating that the router can be reached, and a
value of 1 means the router is not reachable.

Python Automation for Network Engineers Chapter 2

[44]

As a next step, to validate whether the routers can successfully respond to SSH, let us fetch
the value of uptime from the show version command:

show version | in uptime

The code is as follows:

from netmiko import ConnectHandler

username = 'test'
password="test"
for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 device = ConnectHandler(device_type='cisco_ios', ip=ip,
username='test', password='test')
 output = device.send_command("show version | in uptime")
 print (output)
 device.disconnect()

The output of running the preceding command is as follows:

Using Netmiko, we fetched the output of the command from each of the routers and
printed a return value. A return value for all the devices confirms SSH attainability,
whereas a failure would have returned an exception, causing the code to abruptly end for
that particular router.

If we want to save the configuration, we use the following command after
the send_config_set command:

device.send_command("write memory")

This ensures that the router writes the newly pushed configuration in memory.

Python Automation for Network Engineers Chapter 2

[45]

Network device configuration using
template
With all the routers reachable and accessible through SSH, let us configure a base template
that sends the Syslog to a Syslog server and additionally ensures that only information
logs are sent to the Syslog server. Also, after configuration, a validation needs to be
performed to ensure that logs are being sent to the Syslog server.

The logging server info is as follows:

Logging server IP: 192.168.20.5
Logging port: 514
Logging protocol: TCP

Additionally, a loopback interface (loopback 30) needs to be configured with the {rtr}
loopback interface description.

The code lines for the template are as follows:

logging host 192.168.20.5 transport tcp port 514
logging trap 6
interface loopback 30
description "{rtr} loopback interface"

To validate that the Syslog server is reachable, and that the logs sent are informational, use
the show logging command. In the event that the output of the command contains text:

Trap logging: level informational: This confirms that the logs are sent as
informational
Encryption disabled, link up: This confirms that the Syslog server is
reachable

The code to create the configuration, push it on to the router and perform the validation, is
as follows:

from netmiko import ConnectHandler

template="""logging host 192.168.20.5 transport tcp port 514
logging trap 6
interface loopback 30
description "{rtr} loopback interface\""""

username = 'test'

Python Automation for Network Engineers Chapter 2

[46]

password="test"

#step 1
#fetch the hostname of the router for the template
for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 device = ConnectHandler(device_type='cisco_ios', ip=ip,
username='test', password='test')
 output = device.send_command("show run | in hostname")
 output=output.split(" ")
 hostname=output[1]
 generatedconfig=template.replace("{rtr}",hostname)

 #step 2
 #push the generated config on router
 #create a list for generateconfig
 generatedconfig=generatedconfig.split("\n")
 device.send_config_set(generatedconfig)

 #step 3:
 #perform validations
 print ("********")
 print ("Performing validation for :",hostname+"\n")
 output=device.send_command("show logging")
 if ("encryption disabled, link up"):
 print ("Syslog is configured and reachable")
 else:
 print ("Syslog is NOT configured and NOT reachable")
 if ("Trap logging: level informational" in output):
 print ("Logging set for informational logs")
 else:
 print ("Logging not set for informational logs")

 print ("\nLoopback interface status:")
 output=device.send_command("show interfaces description | in loopback
interface")
 print (output)
 print ("************\n")

The output of running the preceding command is as follows:

Python Automation for Network Engineers Chapter 2

[47]

As we can see in the preceding code:

In step 1, we fetched the hostname of each of the routers, and updated the
generic template with the hostnames
In step 2, the configuration being pushed on each of the routers
In step 3, we validated the Syslog reachability, trap logging level, and, at the end,
shared the loopback interface output from each of the routers

Python Automation for Network Engineers Chapter 2

[48]

Another key aspect to creating network templates is understanding the type of
infrastructure device for which the template needs to be applied.

As we generate the configuration form templates, there are times when we want to save the
generated configurations to file, instead of directly pushing on devices. This is needed
when we want to validate the configurations or even keep a historic repository for the
configurations that are to be applied on the router. Let us look at the same example, only
this time, the configuration will be saved in files instead of writing back directly to routers.

The code to generate the configuration and save it as a file is as follows:

from netmiko import ConnectHandler
import os

template="""logging host 192.168.20.5 transport tcp port 514
logging trap 6
interface loopback 30
description "{rtr} loopback interface\""""

username = 'test'
password="test"

#step 1
#fetch the hostname of the router for the template
for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 device = ConnectHandler(device_type='cisco_ios', ip=ip,
username='test', password='test')
 output = device.send_command("show run | in hostname")
 output=output.split(" ")
 hostname=output[1]
 generatedconfig=template.replace("{rtr}",hostname)

 #step 2
 #create different config files for each router ready to be pushed on
routers.
 configfile=open(hostname+"_syslog_config.txt","w")
 configfile.write(generatedconfig)
 configfile.close()

#step3 (Validation)
#read files for each of the router (created as
routername_syslog_config.txt)
print ("Showing contents for generated config files....")
for file in os.listdir('./'):
 if file.endswith(".txt"):
 if ("syslog_config" in file):

Python Automation for Network Engineers Chapter 2

[49]

 hostname=file.split("_")[0]
 fileconfig=open(file)
 print ("\nShowing contents of "+hostname)
 print (fileconfig.read())
 fileconfig.close()

The output of running the preceding command is as follows:

In a similar fashion to the previous example, the configuration is now generated. However,
this time, instead of being pushed directly on routers, it is stored in different files with
filenames based upon router names for all the routers that were provided in input. In each
case, a .txt file is created (here is a sample filename that will be generated during
execution of the script: rtr1_syslog_config.txt for the rtr1 router).

As a final validation step, we read all the .txt files and print the generated configuration
for each of the text files that has the naming convention containing syslog_config in the
filename.

Python Automation for Network Engineers Chapter 2

[50]

There are times when we have a multi-vendor environment, and to manually create a
customized configuration is a difficult task. Let us see an example in which we leverage a
library (PySNMP) to fetch the details regarding the given devices in the infrastructure
using Simple Network Management Protocol (SNMP).

The following base config in a router ensures that it responds to SNMP:
snmp-server community <snmpkey> RO

For our test, we are using the SNMP community key mytest on the routers to fetch their
model/version.

The code to get the version and model of router, is as follows:

#snmp_python.py
from pysnmp.hlapi import *

for n in range(1, 3):
 server_ip="192.168.20.{0}".format(n)
 errorIndication, errorStatus, errorIndex, varBinds = next(
 getCmd(SnmpEngine(),
 CommunityData('mytest', mpModel=0),
 UdpTransportTarget((server_ip, 161)),
 ContextData(),
 ObjectType(ObjectIdentity('SNMPv2-MIB', 'sysDescr', 0)))
)
 print ("\nFetching stats for...", server_ip)
 for varBind in varBinds:
 print (varBind[1])

The output of running the preceding command is as follows:

Python Automation for Network Engineers Chapter 2

[51]

As we see in this, the SNMP query was performed on a couple of routers (192.168.20.1
and 192.168.20.2). The SNMP query was performed using the standard Management
Information Base (MIB), sysDescr. The return value of the routers against this MIB
request is the make and model of the router and the current OS version it is running on.

Using SNMP, we can fetch many vital statistics of the infrastructure, and can generate
configurations based upon the return values. This ensures that we have standard
configurations even with a multi-vendor environment.

As a sample, let us use the SNMP approach to determine the number of interfaces that a
particular router has and, based upon the return values, we can dynamically generate a
configuration irrespective of any number of interfaces available on the device.

The code to fetch the available interfaces in a router is as follows:

#snmp_python_interfacestats.py
from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()

for n in range(1, 3):
 server_ip="192.168.20.{0}".format(n)
 print ("\nFetching stats for...", server_ip)
 errorIndication, errorStatus, errorIndex, varBindTable =
cmdGen.bulkCmd(
 cmdgen.CommunityData('mytest'),
 cmdgen.UdpTransportTarget((server_ip, 161)),
 0,25,
 '1.3.6.1.2.1.2.2.1.2'
)

 for varBindTableRow in varBindTable:
 for name, val in varBindTableRow:
 print('%s = Interface Name: %s' % (name.prettyPrint(),
val.prettyPrint()))

Python Automation for Network Engineers Chapter 2

[52]

The output of running the preceding command is as follows:

Using the snmpbulkwalk, we query for the interfaces on the router. The result from the
query is a list that is parsed to fetch the SNMP MIB ID for the interfaces, along with the
description of the interface.

Multithreading
A key focus area while performing operations on multiple devices is how quickly we can
perform the actions. To put this into perspective, if each router takes around 10 seconds to
log in, gather the output, and log out, and we have around 30 routers that we need to get
this information from, we would need 10*30 = 300 seconds for the program to complete the
execution. If we are looking for more advanced or complex calculations on each output,
which might take up to a minute, then it will take 30 minutes for just 30 routers.

Python Automation for Network Engineers Chapter 2

[53]

This starts becoming very inefficient when our complexity and scalability grows. To help
with this, we need to add parallelism to our programs. What this simply means is that we
log in simultaneously on all 30 routers, and perform the same task to fetch the output at the
same time. Effectively, this means that we now get the output on all 30 routers in 10
seconds, because we have 30 parallel threads being executed at the same time.

A thread is nothing but another instance of the same function being called, and calling it 30
times means we are invoking 30 threads at the same time to perform the same tasks.

By way of example, let us log in to each of the routers and fetch the show version in a
serialized manner:

#serial_query.py
from netmiko import ConnectHandler
from datetime import datetime
startTime = datetime.now()

for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 device = ConnectHandler(device_type='cisco_ios', ip=ip, username='test',
password='test')
 output = device.send_command("show run | in hostname")
 output=output.split(" ")
 hostname=output[1]
 print ("Hostname for IP %s is %s" % (ip,hostname))

print ("\nTotal execution time:")
print(datetime.now() - startTime)

The output of running the preceding command is as follows:

Python Automation for Network Engineers Chapter 2

[54]

The query to fetch each router in a serial manner took approximately 26 seconds. Serialized
calling is taking place because of a for loop with a query to the specific router based upon
the IP address created.

Now, let us see the same task using a parallel calling (or multithreading):

#parallel_query.py
from netmiko import ConnectHandler
from datetime import datetime
from threading import Thread

startTime = datetime.now()

threads = []
def checkparallel(ip):
 device = ConnectHandler(device_type='cisco_ios', ip=ip,
username='test', password='test')
 output = device.send_command("show run | in hostname")
 output=output.split(" ")
 hostname=output[1]
 print ("\nHostname for IP %s is %s" % (ip,hostname))
for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 t = Thread(target=checkparallel, args= (ip,))
 t.start()
 threads.append(t)

#wait for all threads to completed
for t in threads:
 t.join()

print ("\nTotal execution time:")
print(datetime.now() - startTime)

The output of running the preceding command is as follows:

Python Automation for Network Engineers Chapter 2

[55]

The calling to the same set of routers being done in parallel takes approximately 8 seconds
to fetch the results. As compared to the previous example, 26 seconds is down to 8 seconds
for the response.

On the other side, since we are spinning up multiple threads, the resource utilization of the
machine on which it is executed is high. This is due to the fact that for each thread, a new
copy of function is executed, which takes additional resources for executions.

Here are some key points to consider in the previous example:

For the threading, we use a blank array named threads. Each of the instances1.
that is created has a unique thread number or value, which is stored in this
empty thread array each time the checkparallel method is spawned. This
unique number or reference for each thread identifies each thread as and when
it's executed. The start() method is used to get the thread to invoke the
function called in the thread.

The last loop is important in the thread. What it signifies is that the program will2.
wait for all the threads to complete before moving forward. The join() method
specifies that until all the threads are complete, the program will not proceed to
the next step.

The output in the program is not in order for parallel threads because, the
moment any thread is completed, the output is printed, irrespective of the
order. This is different to sequential execution, since parallel threads do
not wait for any previous thread to complete before executing another. So,
any thread that completes will print its value and end.

Use cases
We will now review the topics discussed through some use cases that are being used as
common scenarios. These use cases, along with helping us to understand the concepts, can
also be leveraged or enhanced to create complex automation that can perform actions at
very large scale.

Python Automation for Network Engineers Chapter 2

[56]

Using regular expressions (regex)
Let us examine a basic use of regex by parsing a base configuration containing the interface
configuration of a router.
The task is to identify the interfaces that have trunk enabled:

import re
sampletext="""
interface fa0/1
switchport mode trunk
no shut

interface fa0/0
no shut

interface fa1/0
switchport mode trunk
no shut

interface fa2/0
shut

interface fa2/1
switchport mode trunk
no shut

interface te3/1
switchport mode trunk
shut
"""

sampletext=sampletext.split("interface")
#check for interfaces that are in trunk mode
for chunk in sampletext:
 if ("mode trunk" in chunk):
 intname=re.search("(fa|te)\d+/\d+",chunk)
 print ("Trunk enabled on "+intname.group(0))

Python Automation for Network Engineers Chapter 2

[57]

The output for the preceding code is given as the following:

Here, we need to find out the common config that separates each chunk of interface. As we
see in every interface configuration, the word interface separates the configurations of
each interface, so we split out the config into chunks on interface work using
the split command.

Once we have each chunk, we use the (fa|te)\d+/\d+, re pattern to get the interface
name on any chunk that contains the trunk word. The pattern says that any value that
starts with fa or te, and is followed by any number of digits with a /, and again is
followed by any number of digits, will be a match.

Similarly, in the same router configuration, we only want to know which interfaces that are
configured as trunk are in the active state (no shut).

The code to identify which interfaces are configured as trunk is as follows:

import re
sampletext="""
interface fa0/1
switchport mode trunk
no shut

interface fa0/0
no shut

interface fa1/0
switchport mode trunk
no shut

interface fa2/0
shut

interface fa2/1

Python Automation for Network Engineers Chapter 2

[58]

switchport mode trunk
no shut

interface te3/1
switchport mode trunk
shut
"""

sampletext=sampletext.split("interface")
#check for interfaces that are in trunk mode
for chunk in sampletext:
 if ("mode trunk" in chunk):
 if ("no shut" in chunk):
 intname=re.search("(fa|te)\d+/\d+",chunk)
 print ("Trunk enabled on "+intname.group(0))

The output for the preceding code is as follows:

We added an extra condition to proceed with only those chunks that have no shut in
addition to trunk keywords. In this case, we only proceed with chunks that meet both
conditions and, in the preceding example, te3/1 is not in the list as it is in the shut state.

Creating loopback interface
Let us see another example, in which we validate if the Loopback45 interface is created on
all routers. If not, the script should automatically create the Loopback45 interface and
finally validate the availability of that interface on routers.

Let us first write a code to validate a given interface on all the routers:

#usecase_loopback.py
from netmiko import ConnectHandler
from threading import Thread
from pysnmp.entity.rfc3413.oneliner import cmdgen

Python Automation for Network Engineers Chapter 2

[59]

cmdGen = cmdgen.CommandGenerator()
threads = []
def checkloopback45(ip,interface):
 loopbackpresent=False
 cmdGen = cmdgen.CommandGenerator()
 errorIndication, errorStatus, errorIndex, varBindTable =
cmdGen.bulkCmd(
 cmdgen.CommunityData('mytest'),
 cmdgen.UdpTransportTarget((ip, 161)),
 0,25,
 '1.3.6.1.2.1.2.2.1.2'
)
 for varBindTableRow in varBindTable:
 for name, val in varBindTableRow:
 if (interface in val.prettyPrint()):
 loopbackpresent=True
 break
 if loopbackpresent:
 print ("\nFor IP %s interface %s is present" % (ip,interface))
 else:
 print ("\nFor IP %s interface %s is NOT present. Pushing the
config" % (ip,interface))
 pushconfig(ip,interface)
for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 t = Thread(target=checkloopback45, args= (ip,"Loopback45",))
 t.start()
 threads.append(t)

#wait for all threads to completed
for t in threads:
 t.join()

The output of running the preceding code is as follows:

Here, we validate if the Loopback45 interface is present in the given set of devices. We use
the threading and SNMP to quickly fetch the data and can perform the next steps based
upon the result.

Python Automation for Network Engineers Chapter 2

[60]

As an additional reference, let us see the output of validation for an Serial0/1 interface :

We see that Serial0/1 is present on two routers (192.168.20.1 and 192.168.20.3)
only.

The next step is to add the configuration to the devices that the Loopback45 interface is
missing. For this, we make use of Netmiko to push the generated config in the device. Once
the config is pushed, we again validate the response and, this time, the output should
confirm that the Loopback45 interface is present.

The code to identify the routers on which the configuration is missing, and update
accordingly, is as follows:

from netmiko import ConnectHandler
from threading import Thread
from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()
threads = []

def pushconfig(ip,interface):
 print ("\nConfiguring router %s now..." % (ip))
 device = ConnectHandler(device_type='cisco_ios', ip=ip,
username='test', password='test')
 configcmds=["interface "+interface, "description "+interface+" test
interface created"]
 device.send_config_set(configcmds)
 checkloopback45(ip,interface)
def checkloopback45(ip,interface):
 loopbackpresent=False
 cmdGen = cmdgen.CommandGenerator()
 errorIndication, errorStatus, errorIndex, varBindTable =
cmdGen.bulkCmd(
 cmdgen.CommunityData('mytest'),
 cmdgen.UdpTransportTarget((ip, 161)),
 0,25,
 '1.3.6.1.2.1.2.2.1.2'
)

Python Automation for Network Engineers Chapter 2

[61]

 for varBindTableRow in varBindTable:
 for name, val in varBindTableRow:
 if (interface in val.prettyPrint()):
 loopbackpresent=True
 break
 if loopbackpresent:
 print ("\nFor IP %s interface %s is present" % (ip,interface))
 else:
 print ("\nFor IP %s interface %s is NOT present. Pushing the
config" % (ip,interface))
 pushconfig(ip,interface)
for n in range(1, 5):
 ip="192.168.20.{0}".format(n)
 t = Thread(target=checkloopback45, args= (ip,"Loopback45",))
 t.start()
 threads.append(t)

#wait for all threads to completed
for t in threads:
 t.join()

The output of running the preceding command is as follows:

Python Automation for Network Engineers Chapter 2

[62]

As we eventually established that the Loopback45 interface was not present on any of the
routers, we created the config with a description. This configuration was pushed to each
router from Netmiko.

Post configuration, a re-validation was carried out that eventually resulted in confirming
that interface is created and available on each router.

Dynamic configuration updates
In this example, we will try to update the configurations on certain interfaces that are not
static. There are scenarios where, on a scalable environment, we need to bulk update
certain configs, or even generate and push new configs based upon the discovered
inventory.

Using this approach, we use the technique on identifying whether the Loopback45
interface is available on a given router, and additionally, if the description of that particular
interface contains the test interface created text. If these conditions match, then we
need to update the description for that particular interface to Mgmt loopback
interface and finally validate the output.

We would also see the value of using more than one SNMP MIB to quickly fetch
information from the given router.

The code to identify whether the Loopback45 interface is configured, and validate its
configuration, is as follows:

from netmiko import ConnectHandler
from threading import Thread
from pysnmp.entity.rfc3413.oneliner import cmdgen

cmdGen = cmdgen.CommandGenerator()
threads = []

def pushconfig(ip,interface,description):
 print ("\nUpdating the config on "+ip)
 device = ConnectHandler(device_type='cisco_ios', ip=ip,
username='test', password='test')
 configcmds=["interface "+interface, "description "+interface+"
"+description]
 device.send_config_set(configcmds)
 checkloopback45(ip,interface)
def checkloopback45(ip,interface):
 loopbackpresent=False
 cmdGen = cmdgen.CommandGenerator()

Python Automation for Network Engineers Chapter 2

[63]

 errorIndication, errorStatus, errorIndex, varBindTable =
cmdGen.bulkCmd(
 cmdgen.CommunityData('mytest'),
 cmdgen.UdpTransportTarget((ip, 161)),
 0,25,
'1.3.6.1.2.1.31.1.1.1.18','1.3.6.1.2.1.2.2.1.2','1.3.6.1.2.1.31.1.1.1.1'
)
 for varBindTableRow in varBindTable:
 tval=""
 for name, val in varBindTableRow:
 if (("Loopback45" in str(val)) or ("Lo45" in str(val))):
 tval=tval+"MIB: "+str(name)+" , Interface info:
"+str(val)+"\n"
 loopbackpresent=True
 if (loopbackpresent):
 tval=tval+"IP address of the device: "+ip
 print (tval+"\n")
 if ("test interface created" in tval):
 pushconfig(ip,"Loopback45","Mgmt loopback interface")

checkloopback45("192.168.20.1","Loopback45")

The output of running the preceding command is as follows:

We are using three SNMP MIB's which are as follows:

1.3.6.1.2.1.2.2.1.2 ifDescription: For the interface name (such
as Loopback45)
1.3.6.1.2.1.31.1.1.1.1 ifxName: For the interface short name (such
as Lo45)
1.3.6.1.2.1.31.1.1.1.18 ifxAlias: For the alias (such as Loopback45
test interface created)

Python Automation for Network Engineers Chapter 2

[64]

Using these Management Information Base (MIB), we identify the availability and
description on the interface and, based upon the condition, update the interface description.
A post validation confirms the update to the interface description.

Summary
In this chapter, we learned how to interact with Network devices through Python. We got
familiar with an extensively used library of Python (Netmiko) for network interactions.
Readers also got an insight into how to interact with multiple network devices using a
simulated lab in GNS3 through examples on config generation and implementation
through network templates.

Additionally, we also got to know the device interaction through SNMP, which is an
industry standard method of interaction with various infrastructure devices. Using
examples, we saw how to fetch types of devices as well as interface stats on each router in a
quick and efficient manner.

Additionally, we also touched base on multithreading, which is a key component in
scalability through various examples. To sum this aspect up, we saw certain use cases that
are a real-life challenge for any network engineer. These use cases can be extended as
independent applications to ensure a complete automation tool using Python.

In the next chapter, we would understand on templates and device configurations using
Ansible. Additionally, we will examine the differences between Chef, Puppet, and Ansible
through the use of a number of examples.

Python Automation for Network Engineers Chapter 2

[65]

Questions
Does Netmiko support only Cisco-based devices? (Yes/No)1.

Are the preferred hardware specifications for multithreading an entry-level2.
machine or a high-end machine?

Can we use SNMP to push any configuration on a Cisco router? (Yes/No)3.

To push multiline configuration on a router through Netmiko, do we use a4.
comma-separated string or a list?

Efficiency-wise, is extracting the version of the Cisco router faster from Netmiko5.
or SNMP?

Does the network template needs to be hardcoded in a script when we want to6.
push to a router? (Yes/ No)

What is the term used for authenticating SNMP information from a router?7.

Name of Python library/module used to create multiple threads.8.

Name of Python library/module used to fetch information from network devices9.
using SNMP.

3
Ansible and Network

Templatizations
In this chapter, we will see some examples of device interactions using the Ansible tool.
This chapter will guide you through the basics of Ansible and through certain use cases in
order to gain a better understanding of how to interact with network devices. With a focus
on configuring the devices using templates and ensuring the implementation of a golden
configuration, readers will also understand creating programmatic playbooks to perform
certain actions through scripts.

This chapter covers various terminologies and concepts used in Ansible, showcasing
examples to create configurations for various devices based upon templates. Readers will
also be introduced to templating using Jinja2, which will also be referred to in other use
cases provided in other chapters. We will also learn how to configure the management
tools Chef and Puppet, and compare Ansible, Chef, and Puppet.

This chapter will introduce readers to the following:

Ansible and network templates
Ad hoc commands
Ansible playbook
Understanding network templates
Python integration with Ansible
Chef and Puppet

Ansible and Network Templatizations Chapter 3

[67]

Technical requirements
The following is a list of the technical requirements for this chapter:

Ansible (any version from 2.3)
Linux platform (for servers)
Chef (version 12.0 or above)
Puppet (version 5.0 or above)
Cisco devices (used for Ansible interaction)
Windows platform machines (used for clients in Chef/Puppet)
GitHub URL at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Practical- ​Network-
Automation- ​Second- ​Edition

Ansible and network templates
Ansible is an automation tool or platform and is available as open source software to
configure devices such as routers, switches, and various types of servers. Ansible's primary
purpose is to configure three main types of tasks:

Configuration management: This is used to fetch and push configurations on
various devices that we call as inventory in Ansible. Based upon the type of
inventory, Ansible is capable of pushing specific or full configurations in bulk.
Application deployment: In server scenarios, we often need to bulk deploy some
specific applications or patches. Ansible takes care of them as well as bulk
uploading patches or applications on the server, installing them, and even
configuring the applications of a particular task. Ansible can also take care of
customizing settings based upon the devices in the inventory.
Task automation: This is a feature of Ansible that performs a certain written task
on a single device or a group of devices. The tasks can be written and Ansible can
be configured to run those tasks once, or on a periodic basis.

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition

Ansible and Network Templatizations Chapter 3

[68]

Some of the key components that make up the Ansible framework are as follows:

Inventory: This is a configuration file where you define the host information that
needs to be accessed. The default file created at the time of installation
is /etc/ansible/hosts.
Playbook: Playbooks are simply a set of instructions that we create for Ansible to
configure, deploy, and manage the nodes declared in the inventory.
Plays: Plays are defined tasks that are performed on a given set of nodes. A
playbook consists of one or more plays.
Tasks: Tasks are specific configured actions executed in a playbook.
Variables: These are custom defined and can store values based upon execution
of tasks.
Roles: Roles define the hierarchy of how the playbooks can be executed. For
example, say as a primary role of a web server can have sub tasks/roles to install
certain application based upon server types.

Let's deep dive into the running of ad-hoc commands and working with playbooks. As an
initial requirement, let's define a custom inventory file that consists of four hosts (routers):

-sh-4.2$ more inventory
[myrouters]
test1 ansible_host=10.166.240.2
test3 ansible_host=10.162.240.2
test5 ansible_host=10.195.240.2
test4 ansible_host=10.165.240.2

The ansible_host variable is an Ansible inbuilt variable that identifies the specific IP
address for the given host. The defined hosts are grouped under a name called myrouters.

Introduction to ad hoc commands
Ad hoc commands in Ansible are used to perform tasks or operations that are needed on an
ad hoc basis, or only once, based upon the requirement. In other words, these are tasks that
a user wants to be performed on the fly but doesn't want to be saved for later use. A quick
example of a use case for Ansible ad hoc commands could be to fetch the version
information of the group of managed nodes for some other use as a one-time task. As this is
a quick information need and does not need to be repeated, we would use an ad hoc task to
perform this request.

Ansible and Network Templatizations Chapter 3

[69]

As we proceed with the chapter, there will be some additional switches (extra options that
we pass to Ansible commands), which will be introduced based upon the requirements.
Invoking ansible as a standalone command, will display all the values that can be passed
as options or parameters:

Some examples of ad hoc commands are as follows:

Let's say we need to ping the devices in parallel (the default is sequential but to
make tasks faster, we would use parallelism in our approach):

ansible myrouters -m ping -f 5

If we want use a separate username instead of the default configured one, we
use the following code:

ansible myrouters -m ping -f 5 -u <username>

Ansible and Network Templatizations Chapter 3

[70]

If we want to enhance the session (or use sudo or root), we use the following
code:

ansible myrouters -m ping -f 5 -u username --become -k (-k will
ask for password)

For a separate username, we use the --become-user switch.

To execute a specific command, we use the -a option (let's say we want to fetch
the show version of the routers in the myrouters list in a parallel method):

ansible myrouters -a "show version" -f 5

The value 5 is the default one for the number of parallel threads, but to change
this value again, we can modify it in the Ansible configuration file.

Another example is to copy a file from source to destination. Let's say we need to
copy a file from the current source to multiple servers that are under, let's say,
the servers group:

ansible servers -m copy -a "src=/home/user1/myfile.txt
dest=/tmp/myfile.txt"

We want to start httpd on the web servers:

ansible mywebservers -m service -a "name=httpd state=started"

Conversely, if we want to stop httpd, we use the following code:

ansible mywebservers -m service -a "name=httpd state=stopped"

As another important example to look at, let's say we want to run a long-running
command such as show tech-support, but do not want to wait for it in the
foreground. We can specify a timeout (600 seconds in our case) for this:

ansible servers -B 600 -m -a "show tech-support"

This would return a jobid that can be referred to later on for the update. Once
we have jobid, we can check the status of that particular jobid using this
command:

ansible servers -m async_status -a "jobid"

Ansible and Network Templatizations Chapter 3

[71]

There is an additional command that provides all the information about a
particular node that Ansible can fetch and work upon:

ansible localhost -m setup |more

The output to view the facts on the local machine (localhost) is as follows:

Ansible and Network Templatizations Chapter 3

[72]

Another ad hoc command that is commonly used is the shell command. This is
used to control the overall OS, shell, or root scenarios. Let us see an example to
reboot the managed nodes in the servers group:

ansible servers -m shell -a "reboot"

If we want to shut down the same set of servers instead of rebooting them, we use
the following:

ansible servers -m shell -a "shutdown"

This way, we can ensure that using the ad hoc task, we can quickly perform basic tasks on
individual or groups of managed nodes to quickly get results.

Ansible playbooks
Playbooks are simply sets of instructions that we create for Ansible to configure, deploy,
and manage the nodes. These act as guidelines, using Ansible to perform a certain set of
tasks on individuals or groups. Think of Ansible as your drawing book, playbooks as your
colors, and managed nodes as the picture. Taking that example, playbooks decides what
color needs to be added to which part of the picture, and the Ansible framework performs
the task of executing the playbook for the managed nodes.

Playbooks are written in a basic text language referred to as YAML Ain't Markup
Language (YAML). Playbooks consist of configurations to perform certain tasks on
managed nodes. Additionally, playbooks are used to define a workflow in which, based
upon conditions (such as a different type of device or different type of OS), specific tasks
can be executed, and validations can be performed based upon the results retrieved from
task executions. It also combines multiple tasks (and configuration steps in each task) and
can execute those tasks sequentially, or in parallel against selected or all managed nodes.

Good information about YAML can be referenced here: https:/ ​/​learn.
getgrav. ​org/ ​advanced/ ​yaml.

At a basic level, a playbook consists of multiple plays in a list. Each play is written to
perform certain Ansible tasks (or a collection of commands to be executed) on a certain
group of managed nodes (for example, myrouters or servers).

https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml
https://learn.getgrav.org/advanced/yaml

Ansible and Network Templatizations Chapter 3

[73]

From the Ansible website, here is a sample playbook:

- hosts: webservers
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root
 tasks:
 - name: test connection
 ping:

In this example, there are certain sections that we need to understand, which are as follows:

hosts: This lists the group or managed nodes (in this case, webservers), or
individual nodes separated by a space.
vars: This is the declaration section where we can define variables, in a similar
fashion to how we define them in any other programming language. In this
case, http_port: 80 means the value of 80 is assigned to
the http_port variable.
tasks: This is the actual declaration section on what task needs to be performed
on the group (or managed nodes) that was defined under the - hosts section.
name: This denotes the remark line used to identify a particular task.

Playbook examples
Let's see a couple of examples of leveraging an Ansible playbook for network interactions.

Ping to a particular IP from all routers
Let us create a YML file (checkping.yml) to ping the global DNS IP (8.8.8.8) from each
of our routers:

-sh-4.2$ more checkping.yml
- name: Checkping
 hosts: all
 gather_facts: false
 tasks:
 - name: run ping for the host
 ios_command:
 commands: ping 8.8.8.8 repeat 1
 register: trace_result

 - name: Debug registered variables

Ansible and Network Templatizations Chapter 3

[74]

 debug: var=trace_result
-sh-4.2$

The output of running the preceding code is as follows:

Let us break this playbook into specific sections to understand it in detail.

Section 1 – defining the scope of script
This particular section defines the host this playbook will run on. We select all in hosts;
this will ensure that all hosts in the inventory are considered for this execution:

- name: Checkping
 hosts: all
 gather_facts: false
 remote_user: test

The remote_user parameter is used to define which username to be considered for
logging in to the network devices.

Section 2 – defining what to execute (define the task)
This is the critical section where we use a specific module of Ansible (ios_command) to
define what to execute on the network devices:

tasks:
 - name: run ping for the host

Ansible and Network Templatizations Chapter 3

[75]

 ios_command:
 commands: ping 8.8.8.8 repeat 1
 register: trace_result

 - name: Debug registered variables
 debug: var=trace_result

We define a ping 8.8.8.8 repeat 1 command and capture the result in a variable
called trace_result, which is defined using the register keyword.

Finally, using the debug keyword, the output captured in the trace_result variable is
displayed onscreen.

For further information about ios_module, you can refer to Ansible's
online documentation at https:/ ​/​docs. ​ansible. ​com/ ​ansible/ ​2. ​5/
modules/ ​ios_ ​command_ ​module. ​html.

A specific component on execution of this playbook (and other playbooks) is how we
invoke the playbook in Ansible.

For executing the playbook, we use the following command:

ansible-playbook checkping.yml -i inventory -c local -u test -k

Playbooks are invoked using the ansible-playbook command.

The following are the switches added in the invocation of this playbook:

-i : Used to specify the hosts or inventory file (if the default
/etc/ansible/hosts is not being used)
-u: Specifies the username that needs to be used for logging in to the devices
-k: Ensures an SSH authentication password is asked for, which will be used in
conjunction with the username to log in to devices
-c: Specifies the connection type

For working with Cisco gear, the -c or connection type has to be local,
otherwise the authentication will fail.

https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html
https://docs.ansible.com/ansible/2.5/modules/ios_command_module.html

Ansible and Network Templatizations Chapter 3

[76]

Ping to multiple IPs from all routers
In this example, we will see how to use an Ansible playbook to ping multiple IPs and
identify the particular IPs from hosts that fail the ping command (ping is not reachable to
those IPs from the routers):

-sh-4.2$ more checklist.yml
- name: Run ping commands
 hosts: all
 gather_facts: false
 remote_user: abhishek.ratan.adm
 connection: local
 no_log: True
 vars:
 publicips: {
 "dns1": "4.2.2.2",
 "dns2": "8.8.8.8",
 "dns3": "1.1.1.1",
 "dns4": "8.8.8.4",
 }
 tasks:
 - name: run ping to every other host
 ios_command:
 commands: ping "{{ item.value }}" repeat 1
 #: item.key != inventory_hostname
 with_dict: "{{ publicips }}"
 register: trace_result

 # - name: Debug registered variables
 # debug: var=trace_result
 - name: Check ping failure
 fail: msg="Ping not responding {{ item.stdout_lines }}"
 when: "'100 percent' not in item.stdout[0]"
 with_items: "{{ trace_result.results }}"
 #when: "'100 percent' not in "{{ trace_result }}""

Ansible and Network Templatizations Chapter 3

[77]

We can see in the output in the following screenshot that we are iterating on each of the
public IPs (dns1-dns4) on each of the hosts in the inventory:

In the following screenshot, based upon our configured condition of
identifying false (ping failure), we see a color-coded return of red (depicting a failure)
or blue (depicting a success). Additionally, the PLAY RECAP section states the failure counts
that were encountered during execution of the playbook for each host:

Ansible and Network Templatizations Chapter 3

[78]

Let us now break the playbook into specific sections to understand it better.

Section 1 – basic declarations
This section is specific to how the playbook will be executed:

- name: Run ping commands
 hosts: all
 gather_facts: false
 remote_user: test
 connection: local
 #no_log: True

Ansible and Network Templatizations Chapter 3

[79]

As we saw in the execution of the previous playbook, there were certain additional
parameters we had to pass for a proper execution of the playbook. In this section, some of
those parameters (connection type and username) are already provided, hence a command-
line execution of this playbook would look like this:

ansible-playbook -i inventory checklist.yml -k

This is much easier than passing the additional parameters, since the required values are
already configured in the playbook.

Section 2 – declaring variables
In this section, we are going to declare the publicips variable as a dictionary in Ansible.
This variable holds the name and IP address for each of the IPs we want to ping:

vars:
 publicips: {
 "dns1": "4.2.2.2",
 "dns2": "8.8.8.8",
 "dns3": "1.1.1.1",
 "dns4": "8.8.8.4",
 }

Section 3 – executing the task
This section focuses on the execution of the task on each of the hosts:

tasks:
- name: run ping to every other host
 ios_command:
 commands: ping "{{ item.value }}" repeat 1
 with_dict: "{{ publicips }}"
 register: trace_result

As a critical requirement, we need to ensure each host tries to ping all the given IPs to get
the results. For this purpose, we iterate over all publicips with the with_dict command.
With this command, we generate two values (item.key and item.value) that contain the
values as dictionary items (item.key has names such as dns1 and dns2 and item.value
has values such as 4.2.2.2 and 8.8.8.8).

Ansible and Network Templatizations Chapter 3

[80]

Once we get the value, we use the IP address (item.value) to construct the ping
command, which is passed on to the router for execution using ios_command.

All of the results are stored in the trace_result variable, which is declared through the
register keyword.

Section 4 – validations
As we now expect the results to be stored in the trace_result variable, we need to ensure
each of the output responses is validated for each host.

Using with_items, we iterate over the results of the trace_result variable. As the
earlier execution happened over multiple hosts, the output stored in trace_result is in
list format. To iterate each item in the variable, we refer trace_result.results instead
of only the variable:

 # - name: Debug registered variables
 # debug: var=trace_result
 - name: Check ping failure
 fail: msg="Ping not responding {{ item.stdout_lines }}"
 when: "'100 percent' not in item.stdout[0]"
 with_items: "{{ trace_result.results }}"
 #when: "'100 percent' not in "{{ trace_result }}""

The fail and when conditions are executed based upon the result for each host. If we do
not see a 100 percent return value in the output, we assume that the ping is not
responding and hence add a message, Ping is not responding, to the output of the
variable.

There might be certain times when we do not want to show sensitive information (such as
passwords or any configuration-related items) onscreen.

By enabling the following command (changing the value to True), we ensure that any
information shown onscreen is either hidden or not shown:

no_log: True

Ansible and Network Templatizations Chapter 3

[81]

Let's see the same output when this command is enabled:

When compared to the previous output, here we see either the information is completely
hidden or, if shown, then it spells out a message as follows:

{"censored": "the output has been hidden due to the fact that 'no_log:
true' was specified for this result", "changed": false}

This gives us the ability to ensure we can execute sensitive tasks in a playbook without the
data being visible on the screen.

Additionally, we can use the -vvv switch to enable verbose mode for the
execution of playbooks. In this mode, we can see the detailed step-by-step
process of how a playbook is interacting with the hosts. This helps in
troubleshooting an execution of the playbook and understanding the
failure points during execution.

Ansible and Network Templatizations Chapter 3

[82]

Network templates
A template is a predefined set of base configuration that can be used to generate specific
configurations for a device. It can be as generic as declaring the hostname or configuring
Telnet and SSH settings, or be as specialized as configuring specific routing protocols on a
device. Before we dig in further, let's understand templates a bit more. We can have a
template for a device based upon multiple factors, such as the role of the device, the type of
device, or even the location the device is going to be serving.

A typical example of the classification and selection of a template is done using T-shirt
sizing. To explain this concept, let's take an example of a network architect who is going to
select the template for a given device. There are certain steps that should be followed to
identify the right template.

Step 1 – identifying the number of users the
device is going to serve
This is a predefined step in which we devise the Stock Keeping Unit (SKU) of the network.

For example, for an office catering to 0-100 users, we define the SKU as very small (in terms
of T-shirt size). Similarly, we can say that 100-500 users are a medium SKU, and say 500 or
more users are a large SKU.

Step 2 – identifying the right configuration based
upon the SKU
This is again a predefined step, where the technical team decides the configuration of each
SKU.

For example, for a very small SKU, the device does not need routing configuration, or for a
large SKU, we need to enable BGP routing in the device.

Ansible and Network Templatizations Chapter 3

[83]

Step 3 – identifying the role of the device
Once we know which SKU the device is part of, we need to ensure we are clear on the role
of this device. For example, if the device is going to be used for the internet connection to
an office, we say the role of the device is as an internet router, or say the device is going to be
used for end user connections, we say the device will be a switch.

In our example, say the architect evaluates the device through these three basic steps, and
identifies that particular device is part of a very small SKU, with its role being that of a
switch.

Based upon this selection, the predefined template states that there needs to be a Loopback
99 interface, with a description of the switch management loopback interface.

For a basic template, we will use Jinja2. This is a template language extensively used in
Python and Ansible and is easy to understand.

For further information about Jinja2, refer to the following URL at http:/ ​/
jinja. ​pocoo. ​org/ ​docs/ ​2. ​10/ ​.

Let us take a look at the template that defines the configuration that needs to be added to
the device:

-sh-4.2$ more vsmalltemplate.j2
interface Loopback 99
description "This is switch mgmt for device {{ inventory_hostname }}"

Now, let's look at the playbook that will call this template:

-sh-4.2$ more checktemplate.yml
- name: generate configs
 hosts: all
 gather_facts: false
 tasks:
 - name: Ansible config generation
 template:
 src: vsmalltemplate.j2
 dest: "{{ inventory_hostname }}.txt"

In this, we use the template module to call the specific Jinja2 template.

http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/

Ansible and Network Templatizations Chapter 3

[84]

The src and dest keywords define which template to use and where to save the file. As
we want to create a separate file for every device in our inventory, we use the
inventory_hostname variable, which gets auto-populated with the name of each host in
the Ansible inventory.

The output is as follows:

At this point of time, the configurations have been generated for all the hosts in the
inventory. The configuration files after generation are as follows:

Ansible and Network Templatizations Chapter 3

[85]

As we can see, the files for all the hosts are generated with a unique description based upon
the hostname of the hosts (this was defined as part of the Jinja2 template with the
inventory_hostname variable). Also, the same hostnames are part of a filename with the
.txt extension.

These configuration files are ready-to-use configurations that can be pushed to the devices
using the ios_command module.

Python integration
Python has good integration with YAML and Jinja2 through pre-built libraries.

Taking the same example (of creating configurations for each of the hosts), here is how we
call the playbook from Python:

-sh-4.2$ more checkpython.py
#import libraries
import json
import sys
from collections import namedtuple
from ansible.parsing.dataloader import DataLoader
from ansible.vars.manager import VariableManager
from ansible.inventory.manager import InventoryManager
from ansible.playbook.play import Play
from ansible.executor.playbook_executor import PlaybookExecutor

def ansible_part():
 playbook_path = "checktemplate.yml"
 inventory_path = "hosts"

 Options = namedtuple('Options', ['connection', 'module_path', 'forks',
'become', 'become_method', 'become_user', 'check', 'diff', 'listhosts',
'listtasks', 'listtags', 'syntax'])
 loader = DataLoader()
 options = Options(connection='local', module_path='', forks=100,
become=None, become_method=None, become_user=None, check=False,
 diff=False, listhosts=False, listtasks=False,
listtags=False, syntax=False)
 passwords = dict(vault_pass='secret')

 inventory = InventoryManager(loader=loader, sources=['inventory'])
 variable_manager = VariableManager(loader=loader, inventory=inventory)
 executor = PlaybookExecutor(
 playbooks=[playbook_path], inventory=inventory,

Ansible and Network Templatizations Chapter 3

[86]

variable_manager=variable_manager, loader=loader,
 options=options, passwords=passwords)
 results = executor.run()
 print results

def main():
 ansible_part()

sys.exit(main())

The output is as follows:

After the execution, the same configuration files will be generated as in previous
executions:

Ansible and Network Templatizations Chapter 3

[87]

The #define Ansible base configs section in the code is the main section, in which
we initialize the Ansible environment and pass on any additional parameters that are
needed to be executed for the playbook.

Another specific section to call out is ### define inventory from which the hosts
will be picked up. This is used to explicitly define the inventory (or hosts) for which
the playbook will be executed. A default for this would be /etc/ansible/hosts, which
might not always be the case based upon the playbook that needs to be executed.

Let us see another example to display the hostname from the inventory by creating a
playbook inside the Python script:

-sh-4.2$ more checkpythonnew.py
#call libraries
import json
from collections import namedtuple
from ansible.parsing.dataloader import DataLoader
from ansible.vars.manager import VariableManager
from ansible.inventory.manager import InventoryManager
from ansible.playbook.play import Play
from ansible.executor.task_queue_manager import TaskQueueManager
from ansible.plugins.callback import CallbackBase

Options = namedtuple('Options', ['connection', 'module_path', 'forks',
'become', 'become_method', 'become_user', 'check', 'diff'])

initialize objects
loader = DataLoader()
options = Options(connection='local', module_path='', forks=100,
become=None, become_method=None, become_user=None, check=False,
 diff=False)
passwords = dict(vault_pass='secret')

create inventory
inventory = InventoryManager(loader=loader, sources=['inventory'])
variable_manager = VariableManager(loader=loader, inventory=inventory)

create play with task
play_source = dict(
 name = "mypythoncheck",
 hosts = 'testrouters',
 gather_facts = 'no',
 tasks = [
 dict(action=dict(module='debug',
args=dict(msg='{{inventory_hostname}}')))
]
)

Ansible and Network Templatizations Chapter 3

[88]

play = Play().load(play_source, variable_manager=variable_manager,
loader=loader)

execution
task = None
try:
 task = TaskQueueManager(
 inventory=inventory,
 variable_manager=variable_manager,
 loader=loader,
 options=options,
 passwords=passwords,
 stdout_callback='default'
)
 result = task.run(play)
finally:
 if task is not None:
 task.cleanup()
-sh-4.2$

The output is as follows:

Similar to the previous example, once we have initialized the Ansible environment, the
main section defined under the ### specific action to be done on the
task section calls the inventory_hostname variable and displays its values with msg.

Ansible and Network Templatizations Chapter 3

[89]

Chef and Puppet
Similar to Ansible, we could use some other popular configuration management tools that
are used in programmatic configurations and deployments in infrastructure. Two popular
tools that are used along with Ansible are Chef and Puppet.
Here, we will see some basics of each of these tools and focus on a basic comparison
between them to ensure the choice of the right tool based upon the requirements.

Chef
Chef is another configuration management tool that is used to automate the configuration
and deployment of the infrastructure through code, as well as manage it. Chef is
client/server-based, which means the configuration can be managed on the server and
clients can perform actions through pulling tasks from the server. Chef coding is done in a
Ruby Domain Specific Language (DSL), which is an industry standard coding language.
Ruby as a language is used to create different DSLs. For example, Ruby on Rails is
considered the DSL for creating web-based applications.

The key components in Chef are as follows:

Cookbook: This is similar to an Ansible role, and is written in Ruby to perform
specific actions in the infrastructure (defined as creating a scenario for a specific
infrastructure). As a role in Ansible, this defines the complete hierarchy and all
the configuration tasks that need to be performed for each component in the
hierarchy.

 A cookbook can be generated using the following command:

chef generate cookbook testcookbook

This will generate a cookbook with the name testcookbook and its relevant sub-
directories.

A cookbook consists of the following key components:

Attributes: These are the predefined system variables that contain
values defined in the default.rb attributes file, located within
the recipes folder in the specific cookbook (in this case, the
location will be chef-
repo/cookbooks/testcookbook/recipe/default.rb). These
attributes can be overwritten in the cookbook itself and preference
is given to cookbook attributes over the default values.

Ansible and Network Templatizations Chapter 3

[90]

Files: These are all the files under the [Cookbook]/files folder,
and can be locally transferred to hosts running chef-client.
Specific files can be transferred based upon host, platform version,
and other client-specific attributes. Any files
under [Cookbook]/files/default are available to all hosts.
Library: These are modules available in Chef for specific usage.
Certain libraries can be directly invoked as they are available as
inbuilt modules, whereas others need to be explicitly downloaded
and installed based upon the requirements. These are available
under the /libraries folder under the cookbook.
Metadata: Metadata defines the specifics that the Chef client and
Chef server use to deploy the cookbooks on each host. This is
defined in the main folder of the cookbook with the
name metadata.rb.
Recipe: These are similar to tasks in Ansible, and are written in
Ruby to perform specific actions and triggers. A recipe can be
invoked from another recipe or can perform its own independent
set of actions in a cookbook. A recipe must be added to a run-list to
be used by chef-client and is executed in the order defined in
the run-list.
Resources: These are predefined sets of steps for a specific
purpose. These cover most of the common actions for common
platforms, and additional resources can be built. One or more
resources are grouped into recipes to make a function
configuration.
Tests: These are the unit and integration testing tools available to
ensure the recipes in a cookbook are validated and perform the
correct set of tasks that they were configured for. They also
perform syntax validations and validate the flow of recipes in the
cookbook. Some popular tools to validate Chef recipes are Test
Kitchen and ChefSpec.

Nodes: These are components that are managed as an inventory in Chef. Nodes
can consist of any component, such as servers, network devices, cloud, or virtual
machines.

Ansible and Network Templatizations Chapter 3

[91]

Chef-client: This is an agent that runs on each of the managed nodes. Its primary
tasks are to ensure a continuous sync with chef-server for cookbooks, update the
nodes based upon cookbooks, and share, initialize, and compile the cookbooks,
providing all the resources it needs on the node. The communication and
authentication between chef-client and chef-server is done using an RSA public-
private key to ensure a secure and compliant configuration is performed on
nodes.
Ohai: This is a tool that is executed as the first activity on chef-client to ensure
the local node attributes such as CPU, memory, OS version, and disk are
collected and shared with cookbooks to perform actions on nodes for which these
attributes are required.
Chef-server: This is the brain of the framework, which stores cookbooks, policies,
and metadata for chef-client to manage the registered nodes. There are two key
components in chef-server:

Manage: This is a web-based interface used in chef-server to
manage cookbooks, recipes, policies, registered nodes, and so on
Data bag: This is used to store all global information variables as
JSON and is available to cookbooks for various tasks.

Policy: This is configured in chef-server and defines the operations framework
on a specific cookbook. The clients to be access by a specific cookbook, storage of
sensitive information in a specific data bag, and the classification of registered
nodes are all under the scope of the policy. There are certain key components in
the policy.
Role: This is a combination of attributes and run-list. During the execution of a
role on a node, the attributes returned from chef-client are compared to the
attributes of the role. This eventually defines what particular tasks can be
executed from the run-list for the specific node.
Run-list: This defines the exact order of the role or recipes to run for a node. If
the same recipe is defined to run more than once on the same run-list, the chef-
client ignores it during execution. The run-list is validated using
the knife command-line tool and uploaded from the workstation where it was
developed to the server.

Let us see a very basic example of a cookbook configuration.

As we have already defined the cookbook named testcookbook, let's create a recipe to
install a Python package named SomePackage.

Ansible and Network Templatizations Chapter 3

[92]

As a comparison, to install the some package in Python, we would use the following
command:

python -m pip install SomePackage

Step 1 – creating the recipe
Let us create the pythoninstall.rb recipe, which will contain the instructions on
installing the package:

easy_install_package "somepackage" do
 action :install
end

This will use the inbuilt easy_install_package resource to install somepackage using
the action attribute as install.

Step 2 – uploading the recipe
Once the recipe is created, we use the following command to upload it to chef-server from
the workstation (client):

knife cookbook upload testcookbook

Step 3 – adding the recipe to the run-list
In this step, we will add this recipe to the specific node where it can be executed:

knife node run_list add testnode1 "recipe[testcookbook::pythoninstall]"

This will update the run-list to ensure the pythoninstall recipe is executed
on testnode1.

Step 4 – running the recipe
As the final step, we will run the recipe on the node. On the node, use the following
command:

chef-client

This will ensure the sync is done from chef-server, and based upon the updates, the new
recipe is executed on the node through the chef-client agent.

Ansible and Network Templatizations Chapter 3

[93]

Puppet
This is another popular configuration management tool used to deploy and manage
infrastructure components. Similar to Chef, Puppet also works on the master/slave concept
and uses a Ruby DSL called PuppetDSL. The Puppet Slave has Puppet Agent installed,
which syncs with Puppet Master over the SSL layer for secure communications.

The primary components of Puppet consists of the following:

Manifests: These are the sets of instructions written in PuppetDSL for the
configuration of target systems. The information is saved as Puppet code, with
the filenames having an extension of .pp.
Module: This is a collection of manifests and other data, such as resources and
files, bundled in a hierarchical folder structure. A module is a key building
concept and is distributed among nodes of similar type, as defined in the
configurations.
Resources: These are base or fundamental models that depict a model of system
configurations. Each individual resource depicts a specific service or package
that needs to be provided to the clients.
Providers: These are again built-in collections of tasks to perform certain actions.
For example, to install a package in Linux, both yum and apt-get can be used as
providers. These are used to complete the defined tasks for resources.
Facter: This is similar to Ohai in Chef, and is used to gather the local facts or
attributes of a Puppet Slave. These are shared as variables to manifests defined in
Puppet Master.
Catalog: This is dynamically generated by Puppet Master and is termed the
desired state of the Puppet Slave. This is compiled taking into consideration the
manifests and the Puppet Slave data, and is shared with the Puppet Client on an
on-demand basis.
PuppetDB: This stores all the data pertaining to the Puppet framework and data
generated by Puppet.

Here are the base steps that are followed in a Puppet framework:

Puppet Master gather facts from the Puppet Slave using Facter.1.
At this point, the catalog that is determined by the manifest and data of the slave2.
shared by Facter is generated. The catalog now contains the desired state of the
slave and is sent back to the slave.

Ansible and Network Templatizations Chapter 3

[94]

Puppet Slave applies those changes shared by the catalog using Puppet Agent on3.
the target host.
 Once completed, Puppet Slave sends a report back to Puppet Master to confirm4.
the changes and current state of the slave, which is now the desired state.

Consider the following example describing a Puppet framework.

Let us convert the following commands to a Puppet language manifest:

sudo yum install python-pip
sudo pip install --upgrade pip

This is the manifest:

package { ['python-pip']:
 ensure => installed,
}
package { 'pip':
 require => Package['python-pip'],
 ensure => latest,
 provider => 'pip',
}

As we can see in this section, we instruct the manifest to ensure that python-pip is
installed, and in the next section, we call out that the pip package needs to be on the latest
version.

Chef/Puppet/Ansible comparison
As we now have familiarity with Ansible, Chef, and Puppet, let's see a small comparison
table that can help us decide on which configuration management tool to use based upon
different requirements:

Feature Chef Ansible Puppet
Base setup Not easy Easy Not easy
Agent needed (on client) Yes No Yes
Coding language RubyDSL YAML PuppetDSL
Redundancy Multiple active servers Primary/backup Servers Multiple active servers
Windows support Workstation and agents Managed nodes only Agents

Ansible and Network Templatizations Chapter 3

[95]

Summary
To summarize, we learned how Ansible can be used to interact with network devices using
various examples. We also learned the basics of creating a playbook in Ansible for template
generation through Jinja2 and with Python. Through examples, we also saw how to hide
sensitive information in a playbook, which can be a critical requirement for an
organization.

Additionally, we also touched on the basics of the additional configuration management
tools Chef and Puppet, and discussed the differences between these and Ansible through a
comparison table. In the next chapter, we will understand what Artificial Intelligence in
Operations (AIOps) is, and how we can leverage it, with some examples.

Questions
What term is used to configure specific actions in an Ansible playbook?1.

What is the full name of YAML?2.

To connect to Cisco routers, which connection type needs to be configured in an3.
Ansible playbook?

We create a playbook using Python code. (True/False)4.

We need to install an agent on a managed node in Ansible. (True/False)5.

We create Chef recipes on the Windows platform. (True/False)6.

What is the full form of DSL in RubyDSL?7.

4
Using Artificial Intelligence in

Operations
Moving from a traditional model, where troubleshooting was carried out using multiple
engineers on a small set of infrastructure devices, to a model where a smaller number of
engineers are needed to troubleshoot multiple or a large set of devices, we need to ensure
machines acquire intelligence in order to perform certain actions and provide results.

The following chapter covers the basics of Artificial Intelligence (AI) that can be leveraged
in IT operations and some use cases that can help us understand it better.

The following topics will be covered in this chapter:

What is AI in IT operations?
Building blocks of AI
Application of Artificial Intelligence for IT Operations (AIOps) with use cases

Technical requirements
The technical requirements for this chapter are as follows:

Syslog data from IT Infrastructure devices
Splunk
GitHub URL at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Practical- ​Network-
Automation- ​Second- ​Edition

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition

Using Artificial Intelligence in Operations Chapter 4

[97]

AI in IT operations
There was a time when troubleshooting or even deployments were limited to a specific set
of infrastructure devices. In real-world scenarios, we have multi-vendor devices as well as
numbers of devices growing from hundreds to thousands. For an engineer to identify a
problem in this scenario and to fix it is highly time consuming. To add to this, as we add
more complex configurations and technologies, it becomes near impossible at a certain
point of time for an engineer to scale both in terms of handling the huge set of devices as
well as different technology domains.

A possible solution to this problem is through tackling the tasks by machine. As a machine
starts to learn from other machines, it becomes smarter to handle complex tasks and ensure
only high-level (or very complex) tasks need to be escalated to engineers. All the low-
hanging fruit (repeatable and low risk tasks) are generally handled by the machine itself.
This framework of detection, analysis, remediation/mitigation, and verification is
cumulatively termed AIOps.

Key pillars in AIOps
As we move to tackle any particular problem through AIOps, we need to segregate any
given problem into different aspects for a meaningful result. These aspects or key pillars
assist in identification, analysis, and remediation of a particular problem.

These pillars are as follows:

Data source
Data collector
Data analytics
Machine learning
Intelligent decisions

Let's deep dive into each of these pillars to understand what each of them are used for.

Data source
As the name suggests, this is the real data on which the triggers occur. This can be any data
that is either generated from the source (such as device logs), or reported from end users
(such as a ticket or even an email). A key aspect is to ensure we have adequate data to
perform a certain action.

Using Artificial Intelligence in Operations Chapter 4

[98]

For example, to identify a root cause of CPU utilization on a particular network device, we
need to have Syslogs, an Address Resolution Protocol (ARP) table, link utilization, and, if
possible, configurations. If we only have Syslog as data, we would see the potential
problem but might not be able to intelligently identify a root cause through a machine.

Another example is if the user were not able to access any particular resource on a network.
A certain data point is the IP address of the user, his virtual private network (VPN)
connection status, as well as his permissions on the endpoint that accumulate as a data
point.

Data is also classified into two main data types called structured and non-structured data.

Structured data
This type of data has the following characteristics:

A pre-defined data model (a fixed way to store the data)
Generally in human-readable text format
Easy to search and cleanly indexed

Examples of this data type include dates, credit card numbers, transaction records, and
phone numbers.

Non-structured data
This is the exact opposite type and has the following key characteristics:

No pre-defined data model (data storage not adhering to any specific standard)
Data generally in a format that is not human-readable
Difficult to search owing to no specific fields or format

Examples of this data type include voice, video, images, and generic logs.

Data collector
Once we have data, the next step is making a decision on where to collect the data from.
Data collectors are specific platforms where data can be stored.

Using Artificial Intelligence in Operations Chapter 4

[99]

A key characteristic of a data collector is the ability to quickly index that data as it's
collected. This ensures we have an exact and right set of data on which to perform an
analysis and provide meaningful insights. Additionally, a data collector needs to be
scalable and 100% available to ensure any data collection is not overlooked. When we are
talking about thousands of endpoints or nodes sending data into a data collector every
second, this can quickly scale to gigabytes of data every day.

Hence, a robust and scalable data collector platform is an essential part of the framework.
These are some of the available data Collectors in today's market that are scalable and
robust:

Hadoop
Splunk
Elasticsearch
collectD
StatsD
Carbon

Another key requirement of a data collector is how easy it is to ingest data into a data
collector. For example, Splunk data ingestion can occur directly from files or folders,
listening over configured TCP or UDP ports, or even over URL-based POST calls.

Splunk even provides agents that can be installed on endpoints to collect and send data to
Splunk for data analysis. Consider the following example:

As we see in the preceding screenshot, there are 12 Events that are indexed (automatically)
as they are stored in Splunk. These events can be logged from different source-types, as
seen in the following screenshot:

Using Artificial Intelligence in Operations Chapter 4

[100]

We see that out of 12 events received, six of them are from generic syslog, whereas the
other six are from specific cisco_syslog sources.

Data analysis
As we move forward, the next step is to analyze the indexed data. This is a specialized skill
that needs to be mastered to achieve accurate results. Post collection of data that can run
into gigabytes, fetching exact symptoms or the problem can sometimes requires a very
complex query or parsing of available data.

Fortunately, a lot of tools that act as data collectors also have extensive built-in support for
query and analysis. Data analysis usually starts with writing a good SQL query to identify
the actionable data to perform complex operations using platform-specific queries such
as Search Processing Language (SPL) in Splunk.

A key outcome of this exercise is identification for a particular trigger from the query,
against various data sources to predict a particular problem based upon certain historic
data. This is also a key task to perform while doing any Root Cause Analysis (RCA) of any
particular problem.

Let's see a couple of data analysis examples in our current logs from Splunk.

Consider the following query:

sourcetype=cisco_syslog | stats count(type) by type

Using Artificial Intelligence in Operations Chapter 4

[101]

The output is shown as follows:

In this case, in the last 24 hours, we got a count of five for system type events and
a count of one event, of line protocol. This can help us identify any potential
problems of a particular type.

Similarly, if we want to fetch the number of times we see link flaps per device2.
(interfaces going up/down in a quick succession), we use the following query:

sourcetype=cisco_syslog "down" | stats count(host) by _time,host

The output of running the preceding command is as follows:

Here, we can see that the link flap occurred three times on the router
(192.168.20.1) for the given timestamps.

Using Artificial Intelligence in Operations Chapter 4

[102]

We can even plot the same for a trend analysis in Splunk with the following3.
query:

sourcetype=cisco_syslog "down" | timechart count(host) by host

The output of running the preceding command is as follows:

As we can see here, the interface down-related logs appeared at a particular time-
frame. This can help to understand a potential problem that occurred on a specific
node at a specific time.

To add, for the problem being addressed, the more relevant the data collected is, the better
the outcome will be. These are some of the available data analysis tools that are widely
used:

Splunk
Prometheus
Grafana
Graphite
Elasticsearch
Dropwizard
Sysdig

Machine Learning (ML)
ML has different explanations, but the most common definition is as follows:

"Ability of machines to learn on their own without any explicit programming."

Using Artificial Intelligence in Operations Chapter 4

[103]

To expand this definition further, ML is a study of various inputs given from data,
performs complex mathematical calculations through algorithms, and provides a result that
can be in terms of a prediction, an actionable state task, or predictive patterns. This is a
dedicated branch in computer science focused on designing or creating algorithms that can
self learn.

To put this into perspective, here is a depiction in the following diagram:

An explanation of the preceding diagram is as follows:

Artificial Intelligence: This is the main framework that is of near human
intelligence, or sometimes more intelligent than humans, designed to focus on a
certain task or problem. An AI for a particular task can be compared to the
actions that a human would take to solve that task. It can operate right from
learning/predicting to even solving the particular task.
Machine Learning: This is designed cater to human-like decision making in AI.
ML acts as the layer where a machine is built to evolve on its own through data
inputs and objects as per the new set of data that is provided to the machine.
Deep Learning: This is a subset of ML that caters to large amounts of data
running through algorithms to be shared with ML. This is called a Neural
Network (NN), which is similar to a brain, and interconnects multiple datasets
for meaningful learning of a particular task. Deep learning creates layers of
abstractions to data, which results in data being parsed through all the different
layers or multiple sets of algorithms to create a meaningful set of data that can be
ingested by ML.

Using Artificial Intelligence in Operations Chapter 4

[104]

Deep learning is also a comparatively new concept in AI frameworks with unique
characteristics of ingesting any amount of data theoretically. This advantage provides an
edge to AI frameworks, since any amount of data that sometimes cannot be parsed by
humans can also be traversed for meaning patterns and triggers to ML.

Machine learning is based upon a specific concept and is defined as follows:

"A program learns from experience (E) with respect to a specific task (T) and with
performance thresholds (P), if its performance on T improves with experience E measured
through performance thresholds (P)."

As an example, if you want your program to predict, for example, for a restaurant, which
food item sells most in which season (task T), you can run it through an ML algorithm with
data about past customer orders for each month (experience E) and, if it has successfully
learned, it will then do better at predicting future food order patterns for specific months
(performance measure P).

Based on the approach, there are three learning methods of machine learning systems:

Supervised learning: The system is given a set of labeled cases (training set) and
asked to create a generic model on those to predict and identify patterns.
Unsupervised learning: The system is given a set of cases unlabeled, and asked
to find a pattern in them. This is useful to identify any hidden patterns.
Reinforcement learning: The system is asked to take an action and is given
feedback. The system learns to perform the best possible action in certain
situations based upon the feedback received.

There are multiple algorithms that can be used for any of the above learning types. As an
example, the following learning algorithms are commonly used for each of the learning
methods:

Supervised learning: Linear regression, logistic regression, Decision Trees
(DTs), Naive Bayes Classification
Unsupervised learning: Clustering, neural nets
Reinforcement learning: Markov Decision Process (MDP), Q-Learning

Example of linear regression
Let's see an example of linear regression learning about salary data in Python.

Using Artificial Intelligence in Operations Chapter 4

[105]

We need to have some historic data with some values for learning to happen. In our
scenario, we have salary data in a .csv format (Salary_Data.csv). These are example
records in the .csv:

Years of experience Salary
1.1 39343
1.3 46205
1.5 37731
2 43525
2.2 39891
2.9 56642
3 60150
3.2 54445
3.3 64445
3.7 57189
3.9 63218
4 55794
4 56957
4.1 57081
4.5 61111
4.9 67938

At this point in time, we would use Python's sklearn library, which is scikit-learn
used in ML.

For further information about scikit-learn, please refer to this URL
at https:/ ​/ ​scikit- ​learn. ​org/​stable/ ​.

The code on how to ingest data into sklearn is as follows:

import numpy as np
import pandas as pd
Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
####print the data list
print ("Years of Experience in CSV...")
print (X)
print ("Salary based upon of Experience in CSV...")
print (y)

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

Using Artificial Intelligence in Operations Chapter 4

[106]

Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3,
random_state = 0)
Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

The output of running the preceding code is as follows:

Using Artificial Intelligence in Operations Chapter 4

[107]

In the preceding code, there are multiple steps that we are performing. Let's deep dive into
each of the steps:

Import the numpy and pandas library for scikit-learn, as well as working on1.
.csv:

import numpy as np
import pandas as pd

Import the dataset (which is the .csv file), and assign the values in the X and y2.
variables. For verification, print the output for each of the X and y variables
(which is a list type now):

Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
####print the data list
print ("Years of Experience in CSV...")
print (X)
print ("Salary based upon of Experience in CSV...")
print (y)

Create the prediction model and select the algorithm to be used. This is the most3.
important step of the program. In the following code, We are ensuring that the
data we use is split into training data and test data. The training data contains a
known output and the model learns on this data in order to be generic to other
data later on. We have the test data (or subset of all data) in order to test our
model's prediction on this specific subset:

Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 1/3, random_state = 0)

These are the additional variables that are used:

test_size: This defines the splitting of training and testing data.
The value of 1/3 means that we use a third of our data for testing
(around 10 data records in our case), and the remainder for
training.

Using Artificial Intelligence in Operations Chapter 4

[108]

Usually, a recommendation for this split is 80/20 or 70/30.

random_state: A random_state of 0 (or sometimes 42) is
designed to make sure that you obtain the same split every time
you run your script.

To sum up, in this particular code, we are splitting our X and y list in the first
third data, and storing the second third data set under X_train and
y_train variables. The final third data set is being assigned to the X_test and
y_test variables.

The following code is where we choose which algorithm to use. In this case, we4.
are going to use LinearRegression:

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

The regressor.fit() is used to fit the training data into the
LinearRegression algorithm.

Now that we have the data ready, we extend our code to get some specific insights. Let's
first look at adding specific code to plot the test dataset (from Excel) to our Python code:

import matplotlib.pyplot as plt
 #Visualizing the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

Using Artificial Intelligence in Operations Chapter 4

[109]

The output of running the preceding code is as follows:

In this plot, we see the Salary over Years of Experience (moving the mouse over the
list will show the numbers). Each dot represents the data point that was in the training data
(two thirds of the data, or about 20 data points).

Similarly, we can see the plotting for test data:

import matplotlib.pyplot as plt
#Visualizing the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

Using Artificial Intelligence in Operations Chapter 4

[110]

The output of running the preceding command is as follows:

In a similar fashion to previous plotting, each dot represents the data point that was in
the test data (a third of the data, or in the region of 10 data points).

Finally, as we have provided the test and training data to the algorithm, let's see some
prediction output based upon the data:

###Predict certain salary for the experience years
y_pred = regressor.predict(np.array([[15]]))
print ("\n\nPredicted salary for 15 years of experience:")
print (y_pred)
y_pred = regressor.predict(np.array([[25]]))
print ("\n\nPredicted salary for 25 years of experience:")
print (y_pred)
y_pred = regressor.predict(np.array([[13]]))
print ("\n\nPredicted salary for 13 years of experience:")
print (y_pred)

Using Artificial Intelligence in Operations Chapter 4

[111]

The output of running the preceding code is as follows:

Using the regressor.predict() method, we pass a NumPy array value of any number
that is the number of years. Based upon historic data learning, the system predicts the
specific salary that can be paid for that particular experience.

In this case, a person with 15 years of experience is predicted a salary of 166714.91, as
compared to 260975.304 for someone with 25 years of experience.

Additionally, the initial output of the list is just to show that the program does not have any
historic data for more than 10.5 years of experience, but it learned a pattern owing to which
it can predict the salary for any given number of years of experience.

Using Artificial Intelligence in Operations Chapter 4

[112]

Here is the full code for reference:

Simple Linear Regression
Importing the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values

####print the data list
print ("Years of Experience in CSV...")
print (X)
print ("Salary based upon of Experience in CSV...")
print (y)

Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3,
random_state = 42)

Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

###Predict certain salary for the experience years
y_pred = regressor.predict(np.array([[15]]))
print ("\n\nPredicted salary for 15 years of experience:")
print (y_pred)

y_pred = regressor.predict(np.array([[25]]))
print ("\n\nPredicted salary for 25 years of experience:")
print (y_pred)

y_pred = regressor.predict(np.array([[13]]))
print ("\n\nPredicted salary for 13 years of experience:")
print (y_pred)

 #Visualizing the Training set results
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Training set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

Using Artificial Intelligence in Operations Chapter 4

[113]

Visualizing the Test set results
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Salary vs Experience (Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

Splunk also has some basic algorithms that can help analyze datasets that are ingested to
Splunk. This is achieved through installation of the Machine Learning Toolkit (MLTK) for
Splunk. Here is a screenshot as a sample that shows a prediction on internet bandwidth
based upon an algorithm called Kalman filter:

Based upon datasets, we need to identify the correct algorithm for prediction and alerting
or remediation.

Intelligent remediation
Based upon the outcome of a particular algorithm from ML, we can trigger certain actions
to remediate or fix the problems. In the world of AI, this terminology is often referred to as
Robotic Process Automation (RPA).

Using Artificial Intelligence in Operations Chapter 4

[114]

RPA is the use of software or programs, leveraging ML capabilities to handle high-volume,
repeatable tasks that require manual efforts to perform. These tasks can include queries,
transactions, or even remediation based upon the decision or action resulting from ML.

A script that can be triggered to perform a certain action is part of the RPA framework,
which is eventually called by the decision that was taken through data analytics performed
in the ML phase. One key aspect of this is that for certain actions, the trigger can directly be
invoked through data analysis output and not necessarily invoking ML algorithms.

Example: Let's see a sample where we have Splunk collecting a Syslog, and we can trigger a
particular action (sending email) for any specific data query.

For our example, in an earlier chapter, we created a Loopback45 interface and, if we see
Loopback45 as administratively down in Syslog, Splunk should immediately alert
through the email.

To trigger the alert, let's manually shut down the Loopback45 interface on router
192.168.20.1 to simulate a manual error or accidental shutdown of the interface. This
would send a Syslog message to Splunk:

Create the Splunk query to get the result from the Syslog that we want to trigger1.
the action for:

Using Artificial Intelligence in Operations Chapter 4

[115]

We need to ensure the query is near real-time or, let's say, in this case within the
last 15 minutes. In our query, we searched for any Syslog event that had the
following message: Interface Loopback45, changed state to
administratively down.

The Splunk query will be as follows:

Interface Loopback45, changed state to administratively down" |
stats count(host) as total by host

As a result of this query, we get the output that IP address 192.168.20.1 had
one count of this message.

Once we finalize this query, we need to save it as an Alert. The key configuration2.
in creating this alert is when to run it (in our case, we created a Cron job to run it
every 5 minutes or for that matter 15 minutes, based upon our requirements):

Using Artificial Intelligence in Operations Chapter 4

[116]

Also, we need to configure the action for the alert, which, in our case, is to send an
email to a specific Gmail address:

Once we have clicked on the Save button, this shows a confirmation screen with
the configured setting:

We are done with configuring an alert. Now, in our case, since the Syslog was
received in the last 15 minutes, an alert was triggered on the given email.

Using Artificial Intelligence in Operations Chapter 4

[117]

The sample output is shown as follows:

In this way, we can create multiple actions for a particular trigger and ensure that auto-
remediation can be triggered (which can also be a Python script that would re-enable the
loopback interface). As a result, even if someone accidentally shuts down the Loopback45
interface on any router, this would be received as a Syslog message on Splunk and an auto-
remediation process (of either notification to specific teams/engineers or even to auto-
remediate using Python script) triggers, through the action of alert rule.

As a result, we have minimal downtime through auto-remediation capabilities even in the
case of a manual error task that was performed on any device.,

Application and use cases
As mentioned, AI in operations can be used in every possible aspect, right from
identification of a given task to auto-remediation of the task.

Using Artificial Intelligence in Operations Chapter 4

[118]

Here are some of the areas where AI helps in the optimization of operations:

Identifying the correct set of alerts: As we have lots of infrastructure devices, we
rely on SNMP traps or Syslog to gather meaningful insights for any device. There
are times when we get hundreds of traps for a particular office or multiple
devices, and, as an engineer it becomes very hard to troubleshoot and quickly
identify the actual set of problems. As part of data collection and data analytics,
using AI, there can be a correlation that can be performed to identify an actual set
of problems from multiple alerts. A typical scenario that is tackled through this
approach is when there is a power outage on a certain office.

In the case of a power outage, we would get multiple node down traps from
multiple sources, but, through correlation, we can identify the first alert that
came and eventually create an incident for only that ticket and give additional
information for all the other nodes that are down. This ensures that the engineer
does not have to work on hundreds of tickets, and can focus on a one ticket, one
problem, approach. Additionally, using ML on top of this, we can also identify
which applications that were using that infrastructure are affected and, as part of
remediation, it can either re-route the traffic for those applications or fail-over the
load to any other available backup location, which eventually reduces a specific
outage from hours to minutes.

Converting tasks from reactive to proactive: This is a very important
consideration in organizations that are service based. A Service Level
Agreement (SLA) of five 9s (such as 99.999%) is critical for a service-based
organization that requires the problem to be identified beforehand and
remediation be done before it starts affecting the SLA. Taking the same example
of power outage, let's say we get an alert from the power supply UPS or any
monitored equipment that is sending SNMP traps or Syslogs. Using this as a data
point, a continual probe can be done on the condition of the UPS and, in case of a
battery backup falling below a threshold, start migrating services to the backup
location.
Even the battery backup threshold can be learned dynamically from the historic
patterns of power consumption of devices that are connected to that UPS, which
eventually can predict at what point the auto-trigger of migration can start.

Using Artificial Intelligence in Operations Chapter 4

[119]

Forecasting and capacity planning: This is a widely used scenario for AI. As part
of operations, there are times when we need to identify the usage of
infrastructure at any given point of time. Let's take an example of wireless access
points that are part of any office. We can have a continual data ingestion of a
wireless access point (WAP) in terms of data such as users connected and SSID,
to facilitate identification of potential bottlenecks in a wireless system. For
example, based on historic trending, we identify that a certain access point has 30
users connected, but an adjacent WAP has only five users connected to it. This
measure can be reported in order to optimize the placing of wireless access
points in the right place. Also, if the access points can be configured (by tweaking
radio signal strength and so on), the ML can again identify the potential
bottlenecks and eventually reduce the radio signal strength for a particular
wireless access point and increase the radio signal strength for the adjacent
access points, for users to connect to other access points. This reduces a
significant amount of degraded user experience and, as an engineer, no physical
or manual task needs to be performed to ensure optimal connectivity to end
users.

Another area is the forecasting of infrastructure capacity. Taking the same
example, we eventually find out that nearly each access point is maxed out and,
as an additional data source, the AI learns that, through human resources data,
there are potentially additional new employees coming into the office next week.
Again through ML, we can trigger remediation that can include procuring new
access points directly from the system, or basics such as reporting back to the
intended audience about a potential capacity bottleneck that is going to occur
next week.

Roster planning: This is again an operational challenge when teams work in a
global time zone or a round the clock. Using AI, historic trending can be
performed on how many tickets or issues come in each shift per day and, along
with leave calendars from engineers being part of the round-the-clock schedule,
predict an optimized roster for the upcoming week or month. This ensures
optimized usage of resources as well as ensuring a perfect coverage of shifts
across all days.

Let's see an additional example wherein we would use AI to identify the black color shapes
from certain images and also count the number of squares from those black shapes. For
this, we use a Python library called opencv. Installation is executed using the following
command:

pip install opencv-python

Using Artificial Intelligence in Operations Chapter 4

[120]

The code is as follows:

import numpy as np
import argparse
import cv2

load the image
image = cv2.imread("sample.png")

find all the 'black' shapes in the image
lower = np.array([0, 0, 0])
upper = np.array([15, 15, 15])
shapeMask = cv2.inRange(image, lower, upper)

squares=0
find the contours in the mask
(_,cnts, _) = cv2.findContours(shapeMask.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)

#find number of black squares in the image
for cnt in cnts:
 approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True)
 if len(approx)==4:
 squares=squares+1

print ("I found %d black shapes" % (len(cnts)))
print ("Additionally I found %d black squares" % squares)
cv2.imshow("Mask", shapeMask)

loop over the contours
for c in cnts:
 # draw the contour and show it
 cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
 cv2.imshow("Image", image)

Using Artificial Intelligence in Operations Chapter 4

[121]

The output of running the preceding command is as follows:

In this preceding screenshot, we have multiple shapes with different color outlines. As a
first step, the script analyzes the shapes that have black outlines (and highlights them with
a green outline for visibility). That overlay map of identified black shapes only is shown as
another image.
In the next step, it tries to identify any black shape that is square. Eventually, as we see in
the result highlighted, we see that the program identified 5 black shapes, and, from that, 2
black squares.

From an operations perspective, this is very useful when an engineer wants to identify any
routers/switches or network devices from a given image. There are times when an engineer
is remote, and, during some deployments or troubleshooting, they can ask a site service or
anyone available to click a photo of the network rack or network equipment. By running
that image through this technique, they can quickly identify the router/switches, and even
the number of ports and their status of link lights (red/green/yellow) for quicker
troubleshooting and topology mappings.

Using Artificial Intelligence in Operations Chapter 4

[122]

Let's additionally extend the example of salary prediction using a linear regression
technique to analyze the salary structure of employees in a given organization. The result
will be that for every employee, an OverPaid or UnderPaid status will be shown that can
be quickly reviewed for identification of any salary gaps.

Keeping the same salary test/train data (Salary_Data.csv), we will add another set of
data (employee_data.csv) that includes the name of the employee, years of experience,
and the current salary.

The code is as follows:

Simple Linear Regression
Importing the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
empdata=pd.read_csv('employee_data.csv')

X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values

Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3,
random_state = 42)

Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

for item,row in empdata.iterrows():
 tmp=row['Exp']
 y_pred = regressor.predict(np.array([[tmp]]))
 status=""
 if (y_pred[0] <= row['Salary']):
 status="OverPaid"
 else:
 status="UnderPaid"
 print ("Name: %s , Exp: %s , Current Salary: %d , Predicted Salary: %d
, Status: %s" %
(row['Employee_Name'],row['Exp'],row['Salary'],y_pred[0],status))

Using Artificial Intelligence in Operations Chapter 4

[123]

The output of running the preceding code is as follows:

As a result of parsing current employee data, the script predicted whether an employee is
OverPaid (current salary greater than predicted salary) or UnderPaid (current salary less
than predicted salary) based upon its learning of salary-related data.

Summary
In this chapter, we became familiar with the terminologies and basic building blocks of AI.
Through various examples, a detailed explanation was given for each of the building
blocks. Focus was given to ML, which is a key component for any AI framework. We also
saw some real-time examples on alerting from infrastructure and actions that can be taken
on those alerts using Splunk.

Additionally, readers were also introduced to certain use cases as well as scenarios where
AI can help in operations. Some of the use cases can be customized to be used not only in
an operations environment, but by various groups, including human resources.

Using Artificial Intelligence in Operations Chapter 4

[124]

Questions
What is the full form of ML?1.

Linear regression algorithms are part of which learning method?2.

Intelligent remediation can be triggered without machine learning. True/False3.

What is the full form of RPA?4.

Can we predict the usage of a network device based upon the number of users5.
accessing it? (Yes/No)

What is the recommended ratio of test and training data?6.

Can we create a new machine learning algorithm in Splunk? (Yes/No)7.

Is Splunk used as data collector ?(Yes/No)8.

5
Web Framework for Automation

Triggers
In this chapter, we will introduce the concepts for creating a web framework for scripts. We
will see how scripts can be called through URLs and CAN interact with other
tools/programming languages through HTTP. Additionally, we will look at examples of
how to call the framework from various sources.

The following topics will be covered in this chapter:

Understanding and implementing a web framework
Calling the web framework
Sample use case

Technical requirements
The technical requirements for this chapter are as follows:

The Linux environment
Splunk (for testing)
An Amazon account (for Alexa)
GitHub URL at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Practical- ​Network-
Automation- ​Second- ​Edition

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition

Web Framework for Automation Triggers Chapter 5

[126]

Web framework
As we start creating scripts, a challenge we face is how to execute them from various
machines. A Python script (saved with extension .py) needs Python environment, for
execution. This would mean that the execution of any script that is shared with different
engineers can only be done if Python is installed on the machines from which the script
needs to be executed. Additionally, as the script is shared, any new updates to the script
would also need to be distributed to the engineers and we need to ensure that engineers
execute only the latest one and not the old copies of it. This becomes very unmanageable in
an environment where multiple engineers or teams are involved.

To overcome this challenge, we ensure of wrapping the Python scripts inside a web
framework. Once the scripts are wrapped inside this framework, they are called
Application Program Interfaces (APIs). An API is a specific function or task that is
performed when called, either directly or through any external tool or programming
language. In our case, any script that is converted into an API can be called to perform a
specific task based upon the input given.

Here are some distinct advantages of web frameworks:

Scalability: A script, when converted into an API, can be executed from any
platform (even from browsers), without any additional tools installed on client
(or local) machines. This ensures the script is scalable and usable in multi-vendor
environments with platform compatibility no longer being a concern.
Extensibility: Owing to the centralized management of the script (script hosted
as an API on the server and clients connecting to it from a web framework),
scripts can be easily extended to perform additional capabilities/tasks based on
the requirements. This also overcomes the challenge of distributing the scripts to
respective users, as the concept of local storage of a script is eliminated using this
approach.

Web Framework for Automation Triggers Chapter 5

[127]

Let's see the basic design of a web framework and understand the basic components:

The preceding diagram can be explained as follows:

Clients: These are end-user interaction points that call the web framework. It can
be anything that supports the industry-standard web communication data-
interchange formats, such as JavaScript Object Notation (JSON) or Extensible
Markup Language (XML). This data exchange generally happens over port 80
(HTTP) or port 443 (HTTPS). Most modern-day programming languages
support this as a built-in functionality through various functions and methods.
Similarly, all browsers support these formats for application communications.
Web framework: This is the main component that resides in a server and is the
wrapper for any script to be exposed as an API to the clients. The core
functionality of this framework is to accept requests from clients and provide
a response based upon the requests, through JSON. Based on the request, the web
framework selects which function or script to execute and converts the response
from the script into JSON format to be shared with the requestor.

Web Framework for Automation Triggers Chapter 5

[128]

Infrastructure: This is the backend component that is queried from the scripts for
a particular action. This can be any infrastructure device or any other external
tool that is accessible through a Python script.

Falcon
We will be using the Falcon web framework to build the Ops API framework. The
framework in this case is referred as Ops API, owing to the operational tasks that could be
performed leveraging this framework. As with any web-based framework, Falcon would
ensure our simple Python scripts are exposed as RESTful APIs.

Let's look at the steps to create the web framework on our Linux (Ubuntu) server:

Install the required components. The following core components are required to1.
set up a base framework:

The Python installation command is as follows:

 sudo apt-get install python3.6

Falcon is a lightweight, easy-to-deploy Web Server Gateway
Interface (WSGI). Along with Gunicorn (another lightweight server),
it acts as a scalable solution that is very light in terms of resource
usage. The resource usage becomes a very critical component of a web
framework as it scales to handle thousands of requests of APIs. The
Falcon installation command is as follows:

pip install falcon

Here is the Gunicorn (application server) installation command:

pip install gunicorn

NGINX web server is optional

Create a base framework code. Let's create a simple code that returns the This2.
is my first API response when called. The code is as follows:

import falcon
import json

class HelloWorld():

 # Handles GET requests

Web Framework for Automation Triggers Chapter 5

[129]

 def on_get(self,req,resp):
 name="This is my first API!!"
 resp.status=falcon.HTTP_200
resp.body=json.dumps({"response":name,"status":resp.status})

 # Handles POST requests
 def on_post(self,req,resp):
 pass

In Falcon, the HTTP requests are mapped to respective functions, for example,
GET requests are automatically mapped to the on_get() function and POST to
the on_post() function.

Since this mapping is done by Falcon, all the POST, GET, and DELETE
requests should be mapped only to the respective on_post, on_get,
and on_delete functions.

Add the endpoint to call the function/class with the following code:3.

falcon.API instance , callable from Gunicorn
app= falcon.API()

instantiate HelloWorld class
hello= HelloWorld()

map URL to HelloWorld class
app.add_route("/test",hello)

The preceding code can be saved in main.py and this should be made callable
from Gunicorn. This is done by instantiating falcon.API(). We also instantiate
the HelloWorld class.

The next step is to make HelloWorld callable through the URL. This is done by
adding a route using the add_route method. In our case, the HelloWorld class
can now be called through a URL using /test.

Web Framework for Automation Triggers Chapter 5

[130]

The / preceding the test parameter is mandatory, as all URLs in Falcon
should have a root /.

Test the base API:4.

On the location where the main.py file is located, start Gunicorn
with the following command:

gunicorn main:app

Here, main is the main.py file:

Once initiated, the URL is callable on the local machine as
http://localhost:8000/test. A response in the following
screenshot confirms that our base API framework is up and
running:

Web Framework for Automation Triggers Chapter 5

[131]

Additionally, in the current state, the API can handle requests in a serial order. This would
add a lot of delay if multiple REST calls are made to this framework from different clients.
The serial functionality can be confirmed, as in the following screenshot:

As we can see, Using worker: sync confirms that workers are synchronous and all of the
requests are handled one after the other or synchronously. For an optimum experience, we
need to ensure that the parallel or asynchronous way of handling requests is implemented.

For this, we install a Python library, called gevent, using the following command:

 pip install gevent

Post installation, we need to restart and pass this as an additional argument to Gunicorn.
This time, the execution command of Gunicorn will be as follows:

gunicorn main:app -w 4 -k gevent

Web Framework for Automation Triggers Chapter 5

[132]

This would ensure that there are 4 threads open for the framework , which can handle 4
requests at a time, as seen in the following screenshot:

Gunicorn should only need 4-12 worker processes to handle hundreds or
thousands of requests per second. General recommendation is (2 x number
of CPU cores) + 1.

At this point, we have a full REST API framework running and accessible from clients who
have access to port 80 for this server. Additionally, Gunicorn is currently acting as a web
server, but to enhance its capabilities, we can install Nginx as a web server, and keeping
Nginx as a reverse proxy for Gunicorn. This would ensure all offloading, SSL
configurations, and client connections are handled by Nginx instead of Gunicorn.

Encoding and decoding
Next, let's look at the specific code for a couple of our APIs that we are going to use in this
framework (encode, decode). We store the encode and decode functionalities in a separate
Python file, called encodedecode.py and call them in the main.py file, which will be
executed by Gunicorn. The code of the encodedecode.py file is as follows:

import base64
def encode(data):
 encoded=base64.b64encode(str.encode(data))
 if '[:]' in data:
 text="Encoded string: "+encoded.decode('utf-8')
 return text
 else:
 text="sample string format username[:]password"
 return text

Web Framework for Automation Triggers Chapter 5

[133]

 return encoded
def decode(data):
 try:
 decoded=base64.b64decode(data)
 decoded=decoded.decode('utf-8')
 except:
 print("problem while decoding String")
 text="Error decoding the string. Check your encoded string."
 return text
 if '[:]' in str(decoded):
 print("[:] substring exists in the decoded base64 credentials")
 # split based on the first match of "[:]"
 credentials = str(decoded).split('[:]',1)
 username = str(credentials[0])
 password = str(credentials[1])
 status = 'success'
 else:
 text="encoded string is not in standard format, use
username[:]password"
 return text
 temp_dict = {}
 temp_dict = {'username':username,'password':password}
 return temp_dict

As we get the data into each of the methods, we use base64 data conversion, to either
encode or decode the values, and return the values either in encrypted (if the encode()
method is called) or decrypted (if the decode() method is called) format.

Let's now see the full code, in which we have called the encode() and decode() code in
main.py, which ensures that we have an API functionality available for both these
functions. Let's split the code into the following sections to understand it better:

Section 1: declaring libraries and dependencies:

import falcon
import json
import requests
import base64
from channel import channel_connect, set_data
from encodedecode import encode, decode

Web Framework for Automation Triggers Chapter 5

[134]

Section 2: defining the Encode() and Decode() classes:
Encode(): The code for the Encode() function is as follows:

class Encode():
 def on_post(self, req, resp):
 data = req.bounded_stream.read()
 try:
 data = json.loads(data)["encode"]
 except:
 print("Encode key is missing")
 resp.body = "encode key is missing"
 return
 encoded = encode(data).split(':')[1]
 resp.body = json.dumps({"encoded": encoded})

Decode(): The code for Decode() is as follows:

class Decode():
 def on_post(self, req, resp):
 data = req.bounded_stream.read()
 try:
 data = json.loads(data)["decode"]
 except:
 print("decode key is missing")
 resp.body = "decode key is missing"
 return
 decoded = decode(data)
 resp.body = json.dumps(decoded)

Section 3: instantiating the Falcon API framework and map ping the callable
URL for the function:

falcon.API instance , callable from gunicorn
app = falcon.API()
encod = Encode()
decod = Decode()

map URL to Classes
app.add_route("/decode", decod)
app.add_route('/encode', encod)

As we can see in this example, the Encode() and Decode() methods specified are called in
the code by the command from encodedecode import encode, decode.
In the subsequent section of the code, we declare classes for both Encode() and Decode(),
and instantiate them later. We also instantiate the Falcon API install using the app =
falcon.API() command.

Web Framework for Automation Triggers Chapter 5

[135]

Finally, we need to define the endpoint URL that the clients will use to call either the
encode or decode API URL, using the app.add_route() command.

main.py contains the code of the Splunk API (/splunk/runquery)
endpoints as well as token generation (/token/generate) and token
validation (/token/test). These are additional APIs that are configured
and callable based on certain other use cases that we will implement later
in this chapter.

As we are done with the configurations, let's validate the results for some of the APIs that
are now created and available through the web framework. Consider the following two
scenarios.

Scenario 1: We pass a Splunk query to the Splunk API method in the endpoint and show
the output of the response:

#python_splunk_call.py
import requests
import urllib

endpoint="endpointip"

#Splunk query : index="main" earliest=0 | where interface_name="Loopback45"
| dedup interface_name,router_name
#| where interface_status="up" | stats values(interface_name)
values(interface_status) by router_name | table router_name

def getresult(query):
 url="http://"+endpoint+"/splunk/runquery"
 payload ='{"query":"'+query+'"}'
 r = requests.post(url = url, data=payload)
 output=r.json()
 print (output)

###pass the Splunk query in encoded URL format
getresult("""search%20index%3D%22main%22%20earliest%3D0%20%7C%20where%20int
erface_name%3D%22Loopback45%22%20%7C%20dedup%20interface_name%2Crouter_name
%20%7C%20where%20interface_status%3D%22up%22%20%7C%20stats%20values%28inter
face_name%29%20values%28interface_status%29%20by%20router_name%20%7C%20tabl
e%20router_name""")

We get the following output:

Web Framework for Automation Triggers Chapter 5

[136]

A request was made to the API with an encoded URL query of Splunk. The values returned
from Splunk are returned to the requestor as JSON payload.

Scenario 2: Let's see another example where we generate a token for a given user for
authentication. In subsequent API calls to another test method to the endpoint, if we pass
that generated token, we should get the username back for which the token was generated.
We have already got a registered user (a user whose username is already registered in the
server).

Check out the following code:

#python_token_test.py
import requests
import urllib

endpoint="endpointip"
def generatetoken(uname,password):
 url="http://"+endpoint+"/token/generate"
 payload ='{"username":"'+uname+'","password":"'+password+'"}'
 print (payload)
 r = requests.post(url = url, data=payload)
 output=r.json()
 print (output)
A user has already been registered with password 'testpass'
print ("\nScenario 1: Provide Incorrect username and password combination
to generate token")
generatetoken("abhishek","testpass123")

print ("\nScenario 2: Provide Correct username and password combination to
generate token")
generatetoken("John","testpass")

We get the following output:

Web Framework for Automation Triggers Chapter 5

[137]

In the first scenario, we ask for an authentication token that can be used in other APIs, but
as the user is not registered, it receives the Incorrect Username/Password message.
In the second scenario, as the user enters the correct username and password, they are
issued an authentication token,
rpXS2rtXaq2V0jqH$WNC2NCjHJe3BmMy.Wylq7eubA52Yj7UhCkDTQqv6nCM. The benefit
of this token is realized when, in any subsequent API calls, there is no need to store user
credentials anywhere. Any API when called from any source, if passed with this
authentication token, will ensure that user is authenticated, as well as understand which
user is trying to use what resources.

Here, we are passing this newly-generated token into another API on the operations
endpoint:

#python_token_test2.py
import requests
import urllib

endpoint="testip"
def authenticatetoken(token):
 url="http://"+endpoint+"/token/test"
 payload ='{"token":"'+token+'"}'
 print (payload)
 r = requests.post(url = url, data=payload)
 output=r.json()
 print (output)
A user has already been registered with password 'testpass'
print ("\nScenario 1: Validating incorrect token")
authenticatetoken("rpXS2rtGGGGGaq2V0jqH$WNC2NCjHJe3BmMy.Wylq7eubA52Yj7UhCkD
TQqv6nCM")

print ("\nScenario 2: Validating right token...")
authenticatetoken("rpXS2rtXaq2V0jqH$WNC2NCjHJe3BmMy.Wylq7eubA52Yj7UhCkDTQqv
6nCM")

We get the following output:

Web Framework for Automation Triggers Chapter 5

[138]

In the first scenario, we pass an incorrect token, and we get a message stating that token
does not exist. In other words, this user is not authenticated and does not carry a valid
authentication token for performing any API operations.

In the second scenario, we pass a valid token, which ensure it recognizes which token it
was generated for, and returns Hello John!, which confirms that the user is John, and he
is authenticated successfully. This also ensures that he can perform any additional
operations in the API if he uses this token for any API calls.

Calling the web framework
As we have created the web framework and hosted it on a server, let's see some examples
on how to call the APIs using different methods. We would see examples on calling the
encode and decode APIs.

Here is the Python code:

import requests
import urllib

endpoint="endpoint ip address"

def getencode(query):
 url="http://"+endpoint+"/encode"
 payload ='{"encode":"'+query+'"}'
 r = requests.post(url = url, data=payload)
 output=r.json()
 for value in output.values():
 encodedvalue=value
 return encodedvalue

def getdecode(encodedstring):
 url="http://"+endpoint+"/decode"
 payload ='{"decode":"'+encodedstring+'"}'
 r = requests.post(url = url, data=payload)
 output=r.json()
 print (output)

encodedvalue=getencode("abhishek[:]password")
print (encodedvalue)

getdecode(encodedvalue)

Web Framework for Automation Triggers Chapter 5

[139]

We get the following output:

At this point of time, what we see is the base64 decrypt of the string that was given as an
input in script.

Here is the PowerShell code:

$endpoint="endpoint ip"

function encodestring($value)
{

$url="http://"+$endpoint+"/encode"

$payload = @{
 encode=$value
 }
 $body = (ConvertTo-Json $payload)
 $returnval=Invoke-RestMethod -Uri $url -Method Post -Body $body -
ContentType 'application/json'
 return $returnval.encoded
}
function decodestring($value)
{

$url="http://"+$endpoint+"/decode"

$payload = @{
 decode=$value
 }
 $body = (ConvertTo-Json $payload)
 $returnval=Invoke-RestMethod -Uri $url -Method Post -Body $body -
ContentType 'application/json'
 Write-Host $returnval
}

$encodedstring=encodestring 'abhishek[:]password'

Write-Host ($encodedstring)
decodestring $encodedstring

Web Framework for Automation Triggers Chapter 5

[140]

We get the following output:

At this point of time, what we see is the base64 decrypt of the string that was given as an
input in script using PowerShell.

CURL: This is a standard tool used in Linux, to validate the API interactions
from Linux platform:

Encode: The curl command for encode is shown in the following
screenshot:

Decode: The curl command for decode is shown in the following
screenshot:

Web Framework for Automation Triggers Chapter 5

[141]

Postman tool: A common tool to validate API interaction is as follows:
Encode API: The encode API is as shown as follows:

Decode API: The decode API is shown as follows:

Web Framework for Automation Triggers Chapter 5

[142]

Similarly, as an extension of this API , we can fetch the version of a router (with the
authentication token). Let's see an example of making a POST call from Postman:

Additionally, the payload for this was
{"deviceName":"10.15.240.3,10.120.240.2,10.120.240.1,10.164.240.5"}.

This is eventually passed a parameter to the function, which in the backend uses Netmiko
to login into those routers, fetches the show version output and returns it as JSON to the
Postman request.

Sample use case
Let's see an example of consuming the Splunk API to be used through voice interaction
using Alexa. This can be extended to perform hands-free troubleshooting and remediation
through voice interactions, which means an engineer does not need to be physically present
at a particular location to perform network operations.

In this example, we ask Alexa to show us any routers that have the management
(Loopback45) interface down on the router. Alexa will call the Ops API (endpoint of the
API web framework), which in turn will interact with Splunk to fetch the status of the
Loopback45 interface for all routers, and would respond with the name of the router that
has an interface down.

Web Framework for Automation Triggers Chapter 5

[143]

For our example, we have turned down the Loopback45 interface on rtr1. It is up and
functioning on other routers (rtr2, rtr3, and rtr4).

Here are the steps to implement/configure troubleshooting through Alexa:

Create a new Skill in Alexa (Skill is the callable name for a task that invokes the1.
requested functionality):

In our case, we created a skill name called checksplunk.

Create an Invocation (this is the name that Alexa hears to open the particular2.
skill):

Here, the calling command to Alexa is check Splunk.

Web Framework for Automation Triggers Chapter 5

[144]

Create certain Intents (these are natural-language questions that a user can3.
employ to perform specific actions):

We have specified six questions that a user might ask to perform a certain action.

Create Slots (these are variables that a user adds in the asked questions):4.

Web Framework for Automation Triggers Chapter 5

[145]

In our case, a user asks the question with a request of up or down. Based upon
this value, a decision can be taken on what action to call.

Create a connection to the Ops API through the AWS Lambda function:5.

This is the endpoint connection for the API call that will be made based upon the question
asked in conversation. This is code written in Node.js to call the Ops API endpoint and pass
the parameters based upon the slot type value. Without this code, the skill will not know
what action to perform or how to call the Ops API.
This Lambda function also incorporates the JSON configuration that is auto-created from
the configurations we performed in step 2 to step 4.

As this would be slightly lengthy code, let's break it into critical sections and understand
each section separately:

Section 1: Initialize the base libraries to be used for the Lambda function and
create a launch response:

const Alexa = require('ask-sdk-core');
const LaunchHandler = {
 canHandle(handlerInput) {
 return handlerInput.requestEnvelope.request.type ===
'LaunchRequest';
 },
 handle(handlerInput) {
 var speechText = "Welcome to Splunk Center!, What would
you like to do today?"
 return handlerInput.responseBuilder

Web Framework for Automation Triggers Chapter 5

[146]

 .speak(speechText)
 .withShouldEndSession(false)
 .getResponse();
 }
};

This code section is used to ensure that Alexa SDK is required for this Lambda
function to execute. As we can see, upon calling our invocation command (open
check splunk), it performs the action that is defined under LaunchRequest,
with the message that either would be typed as we chat or spoken based upon the
device from which we are interacting with Alexa.

Section 2: Call the Splunk-specific queries based upon the slot values:

const splunkintentHandler = {
 canHandle(handlerInput) {
 return handlerInput.requestEnvelope.request.type ===
'IntentRequest' &&
(handlerInput.requestEnvelope.request.intent.name ===
'splunkintent');
 },
 async handle(handlerInput) {
 var inp_status =
handlerInput.requestEnvelope.request.intent.slots.status.value;
 var outputSpeech = "";
 var url = 'http://13.59.112.54/splunk/runquery';
 var data = ''
 if (inp_status == "up")
 data =
{"query":"search%20index%3D%22main%22%20earliest%3D0%20%7C%20wh
ere%20interface_name%3D%22Loopback45%22%20%7C%20dedup%20interfa
ce_name%2Crouter_name%20%7C%20where%20interface_status%3D%22up%
22%20%7C%20stats%20values%28interface_name%29%20values%28interf
ace_status%29%20by%20router_name%20%7C%20table%20router_name"};
 else if (inp_status == "down")
 data =
{"query":"search%20index%3D%22main%22%20earliest%3D0%20%7C%20wh
ere%20interface_name%3D%22Loopback45%22%20%7C%20dedup%20interfa
ce_name%2Crouter_name%20%7C%20where%20interface_status%21%3D%22
up%22%20%7C%20stats%20values%28interface_name%29%20values%28int
erface_status%29%20by%20router_name%20%7C%20table%20router_name
"};

This section calls out the specific query to Splunk based upon the slot value. As
we have already defined the slot values as either up or down, the relevant query
will called based on what slot value is provided either in the chat or through
voice interaction.

Web Framework for Automation Triggers Chapter 5

[147]

Section 3: Parse the JSON response for giving our intended response:

 var res;
 var router_array =[];
 await POSTdata(url,data)
 .then((response) => {
 res = JSON.parse(response);
 console.log(res);
 var arr_len = res.result.length;
 for (var i=0;i<arr_len;i++)
 {
 console.log (res.result[i].router_name);
 router_array.push(res.result[i].router_name);
 }
 })
 .catch((err) => {
 outputSpeech = 'Error'+err.message;
 });
 var count = router_array.length;
 for (let i = 0; i < count; i++) {
 if (i === 0) {
 //first record
 outputSpeech = outputSpeech + 'Routers with status as '+
inp_status +" are: " + router_array[i] +','
 } else if (i === count - 1) {
 //last record
 outputSpeech = outputSpeech + 'and ' + router_array[i] +'.'
 } else {
 //middle record(s)
 outputSpeech = outputSpeech + router_array[i] + ', '
 }
 }
 if (count == 1)
 {
 outputSpeech = router_array[0]+' is identified with status as
'+ inp_status +'.'
 }
 return handlerInput.responseBuilder
 .speak(outputSpeech)
 .withShouldEndSession(false)
 .getResponse();
 }
};

Web Framework for Automation Triggers Chapter 5

[148]

This is simple code to parse the return value from the API (which is returned as
JSON) and, based upon the output, respond with the Routers with status as
<slot> are <router names> message, where <slot> was the value that was
provided as input (as up or down), and routers are a comma-separated list that is
returned from the Splunk query.

Section 4: Return a customized message if the given intent is not recognized:

const ErrorHandler = {
 canHandle() {
 return true;
 },
 handle(handlerInput, error) {
 console.log(`Error handled: ${error.message}`);

 return handlerInput.responseBuilder
 .speak('Sorry, I can\'t understand the command. Please
say again.')
 .reprompt('Sorry, I can\'t understand the command. Please
say again.')
 .getResponse();
 },
};

This is a simple error-handling method, which would respond with Sorry, I
can't understand the command. Please say again, if the intent that was
called was not understood by Alexa.

Section 5: Fetch the response data, convert it into a string, and enable the
Lambda code to be used for the skill:

const POSTdata = function (url,body) {
 return new Promise((resolve, reject) => {
 const request = require('request');

request.post({
 headers: {"Accept":"application/json","Content-
Type":"application/json"},
 url: url,
 method: 'POST',
 body: JSON.stringify(body)
 }, function(error, response, body){
 resolve(body);
 });
 })
};
const skillBuilder = Alexa.SkillBuilders.custom();

Web Framework for Automation Triggers Chapter 5

[149]

exports.handler = skillBuilder
 .addRequestHandlers(
 LaunchHandler,
 splunkintentHandler
)
 .addErrorHandlers(ErrorHandler)
 .lambda();

The final section is to accept the response as JSON and convert it into a string
(using JSON.stringify()). Finally, we instantiate the Alexa skillBuilder
class and return the export this Lambda function capabilities to the skill that it
would be called from.

Now, let's test the conversation using the Test tab in the alexa developer console in the
Alexa skills page:

Web Framework for Automation Triggers Chapter 5

[150]

This is the exact conversation (in chat form) that will be done using voice interaction with an
Alexa device. To put this into context, we invoke this particular skill by
saying/typing: open check splunk.

The status of the management interface is queried using either the on which routers is
management interface down or on which routers is management interface
up commands. Based on the request, the Splunk API is queried through the Ops API
endpoint with the relevant query as the data payload, which returns rtr1 (for an interface
down query), or rtr2, rt3, and rtr4 (for an interface up query).

Finally, once we have tested the skill, we deploy it to the Alexa store to be used by others:

To validate, here is the query directly from Splunk that return the values that we got back
into Alexa chat.

The Splunk query for the management interface (Loopback45) being down is as follows:

index="main" earliest=0 | where interface_name="Loopback45" | dedup
interface_name,router_name | where interface_status!="up" | stats
values(interface_name) values(interface_status) by router_name | table
router_name

Web Framework for Automation Triggers Chapter 5

[151]

It produces the following output:

The Splunk query for the management interface (Loopback45) being UP is as follows:

index="main" earliest=0 | where interface_name="Loopback45" | dedup
interface_name,router_name | where interface_status="up" | stats
values(interface_name) values(interface_status) by router_name | table
router_name

This produces the following output:

Using this approach, we can interact with the API framework to perform certain additional
tasks, which would require creating an additional function in Python and exposing it as an
API. These APIs or tasks can be invoked by creating additional intents in Alexa.

Web Framework for Automation Triggers Chapter 5

[152]

Summary
In this chapter, we learned how to create a web framework, which acts as a wrapper for
scripts. Once wrapped, the scripts become an API, which can then be used in various
programming languages and tools. Additionally, we looked at examples on how to call the
APIs (encode and decode) from different tools and programming languages.

Finally, we created a working example to identify any down management interfaces
(Loopback45) using Splunk, through the web framework. We performed this operation by
leveraging a voice-based interaction from Alexa and demonstrated the basic steps to create
a skill in Alexa to perform this task.

Questions
What is the full form of REST in the RESTful API?1.

What are the two most popular data-interchange formats?2.

In Alexa Skill, what do we call the questions that can be asked by the user?3.

Is it possible to send headers to an API using the curl command? (Yes/No) 4.

To ensure we enable parallel request-handling, which library needs to be5.
installed in Python?

Is it essential to run Python in a Linux environment to set up a web API6.
framework? (Yes/No)

What is the full form of API?7.

6
Continual Integration

Now that you're comfortable interacting with devices through Python and understand the
basics of Artificial Intelligence and Robotic Process Automation (RPA), let's look at some
working, detailed use cases to help us to understand these concepts in detail. We'll
leverage the API framework that was deployed in Chapter 5, Web Framework for Automation
Triggers, to create solutions that can perform network operations in scalable environments.
Additionally, we'll look at some use cases on how to leverage next-generation technologies,
such as chatbot and voice simulations, to assist in network operations.

The following topics will be covered in this chapter:

Remediation using intelligent triggers
Standardizing configurations on scale
Chatbot interactions
Additional use cases

Technical requirements
Here are the technical requirements for this chapter:

Python
Slack account (for chatbot collaboration)
Splunk
API and JavaScript basics
GitHub URL at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Practical- ​Network-
Automation- ​Second- ​Edition

https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition
https://github.com/PacktPublishing/Practical-Network-Automation-Second-Edition

Continual Integration Chapter 6

[154]

Remediation using intelligent triggers
In a scalable or high-availability environment, an engineer needs to ensure there is a near
zero possibility of human error. For a service based organization, even a small downtime
can cost millions of dollars in revenue or even deterioration of a brand's image. There are
high chances of outages while performing certain tasks, either due to manual executions or
to certain hardware failures.

A solution to this typical real-life problem is to quickly identify the problem and perform
self-remediation. Let's convert this problem into a particular use case.

In this use case, we need to ensure that all of the routers in our environment always have
the Loopback45 interface up and running. This could be a critical interface, where
accidentally shutting off this interface might stop traffic flow to a router or a router may
stop responding to sending Syslogs or traps to a particular destination. This can also
adversely affect the routing in the environment if this interface is tightly coupled with the
routing traffic patterns in the organization.

We would be using Python to collect the stats of each of the interfaces on each router and
send it to a data collector and analysis tool (Splunk). For a recurring check on the available
data, we would use intelligent queries and auto-trigger remediation if we see any
Loopback45 interface being down due to any reason. The auto-remediation will enable the
interface to ensure we have near-zero downtime.

As a prerequisite, we need to perform the following steps.

Continual Integration Chapter 6

[155]

Step 1 – ensuring Splunk is configured to receive
the data
In this step, we configure Splunk to monitor a specific folder in the local machine for any
new data. Data would typically be in a comma-separated format generated from a Python
script written in this particular folder.
Listed are the steps to configure Splunk for monitoring the folder:

Select Data inputs from the Settings drop-down menu:1.

Continual Integration Chapter 6

[156]

Configure data input to monitor a particular folder (C:\splunklogs in our2.
example):

Continual Integration Chapter 6

[157]

Ensure the data selection type is Automatic (Splunk has the built-in intelligence3.
to parse the data in a database format based upon certain specific types of input,
which is a command-separated file in our case). Also, the index or the main
header can be modified for this new data in Splunk:

Continual Integration Chapter 6

[158]

Step 2 – validating the data (sample data)
Once we are done with the configuration, we can provide some sample data in a text file to
determine whether the data is available in Splunk; this can be any data in a comma-
separated format but residing in the folder that is being monitored:

On the main search page, we see Data Summary showing some events. A click
on it will show the details, and sources will show that from which file, how many
records (or events in Splunk) are being learned:

Here is a sample set of data in Splunk's auto-discovered format (a query will be
performed on this data in Splunk using Search Processing Language (SPL) that
is specific to Splunk, to identify potential problems):

Continual Integration Chapter 6

[159]

Step 3 – writing script
This is where we write a script to ensure we capture the specific status of every interface on
a given set of routers and write it back to a file. This would also be ingested by Splunk.

In our case, we would fetch the stats from all of the routers
(192.168.20.1-192.168.20.4) every five minutes and update the file in
C:\splunklogs. In other words, Splunk would have the refreshed the data that we can use
for validation every five minutes. Another benefit of this approach is for historic data
collection. Using this approach, we can always determine the Root Cause Analysis (RCA)
or even identify any flaps or an interface utilization over a period of time, we can leverage
Splunk for data analysis.

Let's split the code into sections to understand each part:

Initialize the environment by importing libraries required for the execution of the1.
script:

concurrent threads executed at a time - 25
each thread connect to the router . fetch show interfaces
output
invoke fetch_interface_summary and get the interface names in
a list format
network device ips are input in allips variable
this takes around 30 secs to execute
data is written on
c:\splunklogs\network_device_stats_details.txt

import re
import netmiko
import time
import datetime
import math
from threading import Thread
import logging
import threading
from random import randrange
import itertools
import itertools
import sys
import base64

Continual Integration Chapter 6

[160]

Parse the given raw configuration, split the configuration into separate groupings2.
(for example, a separate configuration grouping for each interface), and return
the grouped configurations in list format:

class linecheck:
 def __init__(self):
 self.state = 0
 def __call__(self, line):
 if line and not line[0].isspace():
 self.state += 1
 return self.state

def parseconfig(config):
 rlist=[]
 for _, group in itertools.groupby(config.splitlines(),
key=linecheck()):
 templist=list(group)
 if (len(templist) == 1):
 if "!" in str(templist):
 continue
 rlist.append(templist)
 return rlist

Initialize the concurrent threads that can run simultaneously and define a3.
function to parse the interface descriptions to get specific values for interface
names:

lck = threading.Lock()
splitlist = lambda lst, sz: [lst[i:i+sz] for i in range(0,
len(lst), sz)]

absolute_path = "c:\\splunklogs\\"
filename1 = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
full_filename = "network_device_stats_details.txt"
abs_filename = absolute_path+full_filename

with open(abs_filename, "w") as text_file:
 text_file.close()

def get_interface_name(interface_details):
 ''' fetch interface name from the interface description'''
 m = re.search('(^[a-zA-Z0-9/-]*) is ',interface_details)
 if m:
 interface_name_fetched = m.group(1).strip(",")
 else:
 interface_name_fetched = 'NULL'
 return interface_name_fetched

Continual Integration Chapter 6

[161]

For each discovered interface from the configuration, get the statistics of the4.
interface using the show interfaces command:

def
fetch_router_interface_stats(device_type,routerip,username,pass
word,timestamp,enable_passwd = ''):
 '''fetch the interface stats from a network'''
 router = {
 'device_type' : device_type,
 'ip' : routerip,
 'username' : username,
 'password' : password,
 'secret' : enable_passwd
 }
 global lck
 try:
 net_connect = netmiko.ConnectHandler(**router)
 print("connect to router {} is successful
".format(routerip))
 except Exception as ex:
 print("connect to router {} is not successful
".format(routerip))
 print (ex)
 return
 # this is the list of dictionaries filled with all stats
 router_stats = []
 router_hostname = net_connect.find_prompt()
 router_hostname = router_hostname.strip('#')
 output = net_connect.send_command("term length 0")
 time.sleep(1)
 print("router name is {}".format(router_hostname))
 interface_details = net_connect.send_command("show
interfaces")
 time.sleep(4)
 interface_list = fetch_interface_summary(interface_details)
 #print("List of interfaces : {}".format(interface_list))
 parsedconfig=parseconfig(interface_details)
 #print("parsedconfig is {}".format(parsedconfig))
 i = 0
 for item in parsedconfig:
 if len(parsedconfig[i]) > 3:
 parsedconfig[i] = '\n'.join(parsedconfig[i])
 i = i+1
 #print("parsedconfig is {}".format(parsedconfig))
 for item in parsedconfig:
 #print("the interface desc is {}".format(item))
 interface_name = get_interface_name(item)
 if interface_name.strip() in interface_list:

Continual Integration Chapter 6

[162]

router_stats.append(fetch_interface_stats(item,interface_name))
 #print("router_stats is {}".format(router_stats))
 net_connect.disconnect()
 lck.acquire()

Construct the interface stats as required in Splunk and save it to the text file5.
(network_device_stats_details.txt):

with open(abs_filename, "a+") as text_file:
 for interface_stats in router_stats:
text_file.write("{},router_name={},interface_name={},interface_
description={},interface_status={},line_protocol={},ip_address=
{},input_errors={},CRC={},output_errors={},interface_resets={},
reliability={},txload={},rxload={},bandwidth={},input_queue_dro
ps={},output_queue_drops={}".format(timestamp,router_hostname,i
nterface_stats['interface_name'],interface_stats['interface_des
cription'],interface_stats['interface_status'],interface_stats[
'line_protocol'],interface_stats['ip_address'],interface_stats[
'input_errors'],interface_stats['CRC'],interface_stats['output_
errors'],interface_stats['interface_resets'],interface_stats['r
eliability'],interface_stats['txload'],interface_stats['rxload'
],interface_stats['bandwidth'],interface_stats['input_queue_dro
ps'],interface_stats['output_queue_drops']))
 text_file.write('\n')
 lck.release()
 return

This function finds all interfaces and returns the ones that are not in the deleted6.
state:

def fetch_interface_summary(ip_interface_brief):
 '''this func will extract interfaces from show interfaces
CLI output. returns the list of interface names'''
 interface_list = []
 tmplist=ip_interface_brief.split("\n")
 for item in tmplist:
 if 'line protocol' in item:
 item = item.strip()
 if item.split()[0].lower() != 'interface'.lower()
and 'deleted' not in item:
 interface_list.append(item.split()[0].strip())
 return interface_list

Continual Integration Chapter 6

[163]

This function queries the statistics of each network interface, and parses the7.
output returned for each interface, and coverts it to a Splunk shareable format:

def fetch_interface_stats(interface_details,interface_name) :
 ''' returns
interface_description,interface_status,line_protocol,ip_address
,input_errors,CRC,output_error,interface_resets'''
 stats = {}
 m = re.search('([\d]+) interface resets',interface_details)
 if m:
 interface_resets = int(m.group(1))
 else:
 interface_resets = -1
 m = re.search('([\d]+) output errors',interface_details)
 if m:
 output_error = int(m.group(1))
 else:
 output_error = -1
 m = re.search('([\d]+) CRC',interface_details)
 if m:
 CRC = int(m.group(1))
 else:
 CRC = -1
 m = re.search('([\d]+) input errors',interface_details)
 if m:
 input_errors = int(m.group(1))
 else:
 input_errors = -1
 m = re.search('Internet address is
(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}(?:/\d{1,2}|))',interface_de
tails)
 if m:
 ip_address = m.group(1)
 else:
 ip_address = 'NULL'
 m = re.search('line protocol is ([a-zA-
Z]+)',interface_details)
 if m:
 line_protocol = m.group(1)
 else:
 line_protocol = 'NULL'
 m = re.search(interface_name+' is ([a-zA-Z
]+,)',interface_details)
 if m:
 interface_status = m.group(1).strip(",")
 else:
 interface_status = 'NULL'

Continual Integration Chapter 6

[164]

 m = re.search('Description: ([a-zA-Z0-9_ -
:]*)',interface_details)
 if m:
 interface_description = m.group(1).strip()
 else:
 interface_description = 'NULL'
 m = re.search('reliability ([0-9]*)',interface_details)
 if m:
 reliability = m.group(1).strip()
 else:
 reliability = -1
 m = re.search('txload ([0-9]*)',interface_details)
 if m:
 txload = m.group(1).strip()
 else:
 txload = -1
 m = re.search('rxload ([0-9]*)',interface_details)
 if m:
 rxload = m.group(1).strip()
 else:
 rxload = -1
 m = re.search('BW ([0-9]*)',interface_details)
 if m:
 bandwidth = m.group(1).strip()
 else:
 bandwidth = -1
 m = re.search('Input queue:
\d{1,4}\/\d{1,4}\/(\d{1,4})\/\d{1,4}',interface_details)
 if m:
 input_queue_drops = m.group(1).strip()
 else:
 input_queue_drops = -1
 m = re.search('Total output drops:
([0-9]*)',interface_details)
 if m:
 output_queue_drops = m.group(1).strip()
 else:
 output_queue_drops = -1
 stats['interface_name'] = interface_name
 stats['interface_description'] = interface_description
 stats['interface_status'] = interface_status
 stats['line_protocol'] = line_protocol
 stats['ip_address'] = ip_address
 stats['input_errors'] = input_errors
 stats['CRC'] = CRC
 stats['output_errors'] = output_error
 stats['interface_resets'] = interface_resets
 stats['reliability'] = reliability

Continual Integration Chapter 6

[165]

 stats['txload'] = txload
 stats['rxload'] = rxload
 stats['bandwidth'] = bandwidth
 stats['input_queue_drops'] = input_queue_drops
 stats['output_queue_drops'] = output_queue_drops
 return stats

This function initializes the threading and ensures that a maximum of 25 threads8.
are executed at a time for the given set of routers:

def
fetch_stats_multithread(allips,device_type,username,password,ti
mestamp):
 ''' fetch stats of network devices using multi threading
'''
 splitsublist=splitlist(allips,25)
 for subiplist_iteration in splitsublist:
 threads_imagex= []
 for deviceip in subiplist_iteration:
 t = Thread(target=fetch_router_interface_stats,
args=(device_type,deviceip,username,password,timestamp))
 t.start()
 time.sleep(randrange(1,2,1)/20)
 threads_imagex.append(t)

 for t in threads_imagex:
 t.join()

username = 'test'
#password = 'XXXXXXX'
encrypted password
content = 'dGVzdA=='
passwd = base64.b64decode(content)
password = passwd.decode("utf-8")
device_type = 'cisco_ios'
timestamp = datetime.datetime.now().strftime("%Y-%m-%d
%H:%M:%S")

All out routers for the stats to be fetched
allips =
['192.168.20.1','192.168.20.2','192.168.20.3','192.168.20.4']

fetch_stats_multithread(allips,device_type,username,password,ti
mestamp)

Continual Integration Chapter 6

[166]

A file will be created (network_device_stats_details.txt) that contains the
statistics of the interfaces that will be ingested by Splunk.

Here are some sample lines from the output:

2018-12-06
18:57:30,router_name=rtr2,interface_name=FastEthernet0/0,interf
ace_description=NULL,interface_status=up,line_protocol=up,ip_ad
dress=192.168.20.2/24,input_errors=0,CRC=0,output_errors=0,inte
rface_resets=0,reliability=255,txload=1,rxload=1,bandwidth=1000
00,input_queue_drops=0,output_queue_drops=0
 2018-12-06
18:57:30,router_name=rtr2,interface_name=FastEthernet0/1,interf
ace_description=NULL,interface_status=administratively
down,line_protocol=down,ip_address=NULL,input_errors=0,CRC=0,ou
tput_errors=0,interface_resets=0,reliability=255,txload=1,rxloa
d=1,bandwidth=100000,input_queue_drops=0,output_queue_drops=0
 2018-12-06
18:57:30,router_name=rtr2,interface_name=Ethernet1/0,interface_
description=NULL,interface_status=administratively
down,line_protocol=down,ip_address=NULL,input_errors=0,CRC=0,ou
tput_errors=0,interface_resets=0,reliability=255,txload=1,rxloa
d=1,bandwidth=10000,input_queue_drops=0,output_queue_drops=0
 2018-12-06
18:57:30,router_name=rtr2,interface_name=Ethernet1/1,interface_
description=NULL,interface_status=administratively
down,line_protocol=down,ip_address=NULL,input_errors=0,CRC=0,ou
tput_errors=0,interface_resets=0,reliability=255,txload=1,rxloa
d=1,bandwidth=10000,input_queue_drops=0,output_queue_drops=0
 2018-12-06
18:57:30,router_name=rtr2,interface_name=Ethernet1/2,interface_
description=NULL,interface_status=administratively
down,line_protocol=down,ip_address=NULL,input_errors=0,CRC=0,ou
tput_errors=0,interface_resets=0,reliability=255,txload=1,rxloa
d=1,bandwidth=10000,input_queue_drops=0,output_queue_drops=0

All of these values are indexed and formatted in a key-value pair automatically
by Splunk, along with the timestamp.

Continual Integration Chapter 6

[167]

The query in Splunk for the last run (showing all the Loopback45 interfaces on all
routers with their last interface statuses) is as follows:

index="main" | where interface_name="Loopback45" | dedup
interface_name,router_name | stats values(interface_name)
values(interface_status) by router_name

The output is shown in the following screenshot:

We need to schedule this script to ensure it fetches the updated stats of the9.
routers at regular intervals.

Let's configure it as a scheduled task in Task Scheduler in Windows. For reference, the
Python file that we would be adding for a schedule is testpython.py.

Continual Integration Chapter 6

[168]

To configure the script as a scheduled task, follow these steps:

Open Task Scheduler in Windows:1.

Click on Create a Basic Task on the right side of the Task Scheduler:2.

Continual Integration Chapter 6

[169]

Click on Next and select the frequency of the task:3.

Continual Integration Chapter 6

[170]

Click Next, select the time, and click Next again. Move to the Start a Program4.
option. At this point, you need to add the details shown in the following
screenshot. We have to provide the full path of python.exe in
the Program/script: section, and in the Add arguments (optional) section, the full
path of the Python script (with the .py extension) enclosed in double quotes as
shown in the following screenshot:

Continual Integration Chapter 6

[171]

On the final page, click on Finish to submit the changes and create the task:5.

Once this is done, you can run it manually by right-clicking on the created task and clicking
on the Run option. If the task succeeds, it will return the same in the Task Scheduler
window. If all is fine, the task will automatically run at the given time in the Task Scheduler
(or as a cron job if scheduled in Linux).

This can also be run as a service and at regular intervals, such as daily and hourly,
depending on how frequently we want to run the script in our environment.

Let's now manually shut an interface and, in our next schedule of this script, the data will
be fetched from routers and updated in Splunk. A requery should show the interface as
down on one of the routers.

Continual Integration Chapter 6

[172]

The following output shows the output in Splunk, when using the same query:

We see the interface on rtr1 has changed from up to the administratively down status.

As a final step, let's run another scheduled script, remediate_loopback45.py (this can be
scheduled to query Spunk every two minutes), which queries Splunk programmatically,
and if we get any record with an interface status as down, we immediately fix it back to the
up state to minimize any outages.

The code to identify the interfaces status and perform remediation, is as follows:

import splunklib.client as client
import splunklib.results as results
import requests
import warnings
from urllib.parse import unquote
from netmiko import ConnectHandler

warnings.filterwarnings("ignore")

HOST = "<splunk IP address>"
PORT = 8089
USERNAME= "username"
PASSWORD ="password"

###mapping of routers to IPs
device_name={}
device_name['rtr1']="192.168.20.1"
device_name['rtr2']="192.168.20.2"
device_name['rtr3']="192.168.20.3"
device_name['rtr4']="192.168.20.4"

print (device_name)

Continual Integration Chapter 6

[173]

Create a Service instance and log in
service = client.connect(
 host=HOST,
 port=PORT,
 username=USERNAME,
 password=PASSWORD)

kwargs_oneshot = {"earliest_time": "-120d@d",
 "count": 10
 }

url="""search index="main" | where interface_name="Loopback45" | dedup
interface_name,router_name | stats values(interface_name)
values(interface_status) by router_name"""
#url = unquote(urlencoded)
#oneshotsearch_results = service.jobs.oneshot(searchquery_oneshot,
**kwargs_oneshot)

oneshotsearch_results = service.jobs.oneshot(url, **kwargs_oneshot)

Get the results and display them using the ResultsReader
reader = results.ResultsReader(oneshotsearch_results)
for item in reader:
 if ("up" not in item['values(interface_status)']):
 print ("\nIssue found in %s " % (item['router_name']))
 print ("Remediation in progress....")
 device = ConnectHandler(device_type='cisco_ios',
ip=device_name[item['router_name']], username='test', password='test')
 remediateconfig=["interface loopback 45", "no shut"]
 device.send_config_set(remediateconfig)

 ### validate if interface is now up (this is where we can add
additional actions like notifications ,and so on
 output = device.send_command("show interfaces loopback 45")
 if ("line protocol is up" in output):
 print ("Remediation succeeded. Interface is now back to
normal")
 else:
 print ("Remediation Failed. Need to manually validate\n")

The output is shown in the following screenshot:

Continual Integration Chapter 6

[174]

In the preceding code, we see how to programmatically access Splunk , fetch the results of
the query, and through parsing with each result, remediate by logging into the router and
ensuring interface is in the up status, for any router that had interface status not in the up
state.

To confirm, here is the Splunk from the next scheduled pull of interface stats after the
remediation:

For additional information, such as how many times the flap happened on
which router, a chart can also be created to identify the trends. A sample
query for this example would be: index="main" earliest=0 | where
interface_name="Loopback45" and interface_status!="up" |
timechart count(interface_status) as status by

router_name.

Standardizing configurations on scale
As we scale the devices, there are times when we need to perform audits on multiple
devices for any specific task. It becomes very challenging to manually validate certain tasks
on a specific device when we have hundreds or thousands of devices.

Continual Integration Chapter 6

[175]

Let's see an example where we need to audit interface configurations and suggest
corrections based upon a running config as compared to base configuration. In this case, we
make use of the XML template (LinkDescriptionProfiles.xml) that contains the base
configuration (or mandatory config for each of the interfaces).

The code to parse the XML template and audit interface configurations, is as follows:

<DescriptionProfiles>
<description id="Loopback45">
<configuration>description Security;switchport access vlan;switchport mode
access;spanning-tree portfast</configuration>
</description>
<description id="Loopback30">
<configuration>description Printer;switchport access vlan;switchport mode
access;spanning-tree portfast</configuration>
</description>
</DescriptionProfiles>

In this declared XML, we define standard configs for certain interfaces (Loopback45 and
Loopback30). We need to ensure this base configuration is always present (or treated as a
mandatory config) on each of the interfaces.

For the Loopback45 interface, the base configuration is as follows:

description Security
 switchport access vlan
 switchport mode access
 spanning-tree portfast

For the Loopback30 interface, the base configuration is as follows:

description Printer
 switchport access vlan
 switchport mode access
 spanning-tree portfast

Continual Integration Chapter 6

[176]

For comparison, here is the configuration that is currently present on the router
(192.168.20.1):

We can see that the configuration that is required on these interfaces is missing, and some
additional config is present. Another condition of the audit is that we need to ignore lines
with ip address and shutdown, as these are not mandatory lines in the audit.

The code lines to ignore the lines with specific commands, are as follows:

from lxml import etree
from netmiko import ConnectHandler
import itertools

class linecheck:
 def __init__(self):
 self.state = 0
 def __call__(self, line):
 if line and not line[0].isspace():
 self.state += 1
 return self.state

def parseconfig(config):
 rlist=[]
 for _, group in itertools.groupby(config.splitlines(),
key=linecheck()):

Continual Integration Chapter 6

[177]

 templist=list(group)
 if (len(templist) == 1):
 if "!" in str(templist):
 continue
 rlist.append(templist)
 return rlist
def read_xml_metadata(link_profiles="LinkDescriptionProfiles.xml"):
 """
 """
 LP_MetaData = dict()

 try:
 lp_hnd = open(link_profiles, "r")
 except IOError as io_error:
 print(io_error)
 sys.exit()

 lp_data = lp_hnd.read()
 lp_hnd.close()
 lp_xml_tree = etree.fromstring(lp_data)

 lp_check_id = lp_xml_tree.xpath("/DescriptionProfiles/description/@id")
 lp_check_config =
lp_xml_tree.xpath("/DescriptionProfiles/description/configuration")

 lp_lam = lambda config, name, LP_MetaData :
LP_MetaData.update({name:config.split(";")})
 [lp_lam(config.text, name, LP_MetaData) for name, config in
zip(lp_check_id, lp_check_config)]

 return LP_MetaData

LP_MetaData = read_xml_metadata()
ignorecommandlist=['ip address','shut']

def validateconfig(config1,config2,typeconfig):
 tmpval=""
 #del config2[0]
 ignore=False
 config2=",".join(config2)
 for line in config1:
 line=line.strip()
 if ("interface " in line):
 continue
 if (line in config2):
 continue
 else:
 if (typeconfig=="baseconfig"):

Continual Integration Chapter 6

[178]

 tmpval=tmpval+" + [{}]\n".format(line)
 else:
 for ignorecommand in ignorecommandlist:
 if (ignorecommand in line):
 ignore=True
 if (ignore):
 ignore=False
 tmpval=tmpval+" *ignore [{}]\n".format(line)
 else:
 tmpval=tmpval+" - [{}]\n".format(line)
 return tmpval
ip="192.168.20.{0}".format(1)
print ("\nValidating for IP address ",ip)
device = ConnectHandler(device_type='cisco_ios', ip=ip, username='test',
password='test')
deviceconfig = device.send_command("show run")

parsedconfig=parseconfig(deviceconfig)
tmpval=""
for interfaceconfig in parsedconfig:
 if ("interface " in interfaceconfig[0]):
 interfacename=interfaceconfig[0].split(' ')
 interface_name=None
 interface_name = [x for x in LP_MetaData.keys() if x.strip() ==
interfacename[1]]
 #### validate base config from fetched config
 if (len(interface_name) > 0):
 print (interface_name)
 getbaseconfig=LP_MetaData[interface_name[0]]
 #### validate fetched config from base config
returnval=validateconfig(getbaseconfig,interfaceconfig,"baseconfig")
 print (returnval)
 #### validate base config from fetched config
returnval=validateconfig(interfaceconfig,getbaseconfig,"fetchedconfig")
 print (returnval)
 else:
 tmpval=" *ignore [{}]\n".format(interfacename[1])

Continual Integration Chapter 6

[179]

The output is shown in the following screenshot:

As we performed the audit on 192.168.20.1, here is what the program audited:

Any lines with - are the lines that are in the router, but need to be removed
Any lines with + are the lines in the base configuration (XML) that need to be
added on the router
Any lines with *ignore are present on the router, but are ignored as part of the
port audit

To explain the code, we initially parse the XML to fetch the information using a Python
library, lxml. The parseconfig() method parses the running config fetched from router
into specific sections. Each section is a set of configuration for that particular section. An
example a section is the Loopback30 interface, which contains all of the configuration of
Loopback30 fetched from the router. We are performing two comparisons in the
validateconfig() method. One is from baseconfig to fetchedconfig, and the other
is from fetchedconfig to baseconfig.

Any lines that are in baseconfig but missing in fetchedconfig will be denoted by +,
and can be termed mandatory lines. Any lines that are in fetchedconfig matching the
baseconfig will be skipped in the matching process, but any additional lines will be
marked as -, which means that they should be removed to ensure full compliance with
baseconfig.

Continual Integration Chapter 6

[180]

Finally, certain lines, such as shutdown or ip address, which should not be audited, will
be under the *ignored section. These lines are present in the router configuration, but
since they are in the configured ignore list in script, they would not be suggested, for either
addition or removal in the audited config.

If the engineer wants, an enhancement of this script would be to push this configuration
suggestions back to the router using the additional Netmiko function, send_config.
Additionally, if we schedule the discovery and pushing in a scheduled task, we can ensure
any devices that are part of this script will be in full compliance in terms of the
Loopback30 and Loopback45 configurations at any given point in time.

Chatbot interactions
As we move toward intelligent operations, another area to focus on is mobility. It's good to
have a script to perform configurations, remediations, or even troubleshooting, but it still
requires a presence to monitor, initiate, or even execute those programs or scripts. Taking
this forward as we grow into a world of chats and voice enabled interactions, let's create a
chatbot to assist in network operations.

For this use case, we will use a widely-used chat application, Slack. Referring to the
intelligent data analysis capabilities of Splunk, we would see some user chat interaction
with the chatbot, to get some insight into the environment.

As we have our web framework deployed, we'll leverage the same framework to interact
with the Slack chatbot, which in turn will interact with Splunk. It can also interact directly
with network devices so we can initiate some complex chats, such as rebooting a router
from Slack if need be. This eventually gives mobility to an engineer who can work on tasks
from anywhere (even from a cellphone) without being tied to a certain location or office.

Continual Integration Chapter 6

[181]

To create a chatbot, here are the basic steps:

Create a workspace (or account) on Slack:1.

Continual Integration Chapter 6

[182]

Create an application in your workspace (in our case, we have created an app2.
called mybot):

Continual Integration Chapter 6

[183]

Here is the basic information about the application (App ID and Client ID can be3.
used along with other information that uniquely identifies this application):

Continual Integration Chapter 6

[184]

Add a bot capability to this application:4.

Continual Integration Chapter 6

[185]

Add the event subscriptions and mapping to the external API that the messages5.
will be posted to. An event subscription is when someone types the reference to
the chatbot on the chat, then which API will be called with the data that is being
typed in the chat with this chatbot:

Continual Integration Chapter 6

[186]

Here, a crucial step is once we type in the URL that accepts chat messages, that
particular URL needs to be verified from Slack. A verification involves the
API endpoint sending the same response back as a string or JSON that is being
sent to that endpoint from Slack. If we receive the same response, Slack confirms
that the endpoint is authentic and marks it as verified. This is a one-time process
and any changes in the API URL will result in repeating this step.

Here is the Python code in the Ops API framework that responds to this specific
query:

import falcon
import json
def on_get(self,req,resp):
 # Handles GET request
 resp.status=falcon.HTTP_200 # Default status
 resp.body=json.dumps({"Server is Up!"})
def on_post(self,req,resp):
 # Handles POST Request
 print("In post")
 data=req.bounded_stream.read()
 try:
 # Authenticating end point to Slack
 data=json.loads(data)["challenge"]
 # Default status
 resp.status=falcon.HTTP_200
 # Send challenge string back as response
 resp.body=data
 except:
 # URL already verified
 resp.status=falcon.HTTP_200
 resp.body=""

This would validate, and if a challenge is sent from Slack, it would respond back
with the same challenge value that confirms it to be the right endpoint for the
Slack channel to send chat data to.

Install this application (or chatbot) into any channels (this is similar to adding a6.
user in a group chat):

Continual Integration Chapter 6

[187]

The core API framework code that responds to specific chat messages, performs the
following actions:

Acknowledges any post sent to Slack with a response of 200 in three seconds. If
this is not done, Slack reports back: endpoint not reachable.
Ensures any message sent from chatbot (not from any real user) is again not sent
back as a reply. This can create a loop, since a message sent from a chatbot,
would be treated as a new message in Slack chat and it would be sent again to
URL. This would eventually make the chat unusable, causing repetitive messages
on the chat.
Authenticates the response with a token that would be sent back to Slack to
ensure the response coming to Slack is from an authenticated source.

The code is as follows:

import falcon
import json
import requests
import base64
from splunkquery import run

Continual Integration Chapter 6

[188]

from splunk_alexa import alexa
from channel import channel_connect,set_data
class Bot_BECJ82A3V():
 def on_get(self,req,resp):
 # Handles GET request
 resp.status=falcon.HTTP_200 # Default status
 resp.body=json.dumps({"Server is Up!"})
 def on_post(self,req,resp):
 # Handles POST Request
 print("In post")
 data=req.bounded_stream.read()
 try:
 bot_id=json.loads(data)["event"]["bot_id"]
 if bot_id=="BECJ82A3V":
 print("Ignore message from same bot")
 resp.status=falcon.HTTP_200
 resp.body=""
 return
 except:
 print("Life goes on. . .")
 try:
 # Authenticating end point to Slack
 data=json.loads(data)["challenge"]
 # Default status
 resp.status=falcon.HTTP_200
 # Send challenge string back as response
 resp.body=data
 except:
 # URL already verified
 resp.status=falcon.HTTP_200
 resp.body=""
 print(data)
 data=json.loads(data)
 #Get the channel and data information
 channel=data["event"]["channel"]
 text=data["event"]["text"]
 # Authenticate Agent to access Slack endpoint
 token="xoxp-xxxxxx"
 # Set parameters
 print(type(data))
 print(text)
 set_data(channel,token,resp)
 # Process request and connect to slack channel
 channel_connect(text)
 return

falcon.API instance , callable from gunicorn
app= falcon.API()

Continual Integration Chapter 6

[189]

instantiate helloWorld class
Bot3V=Bot_BECJ82A3V()
map URL to helloWorld class
app.add_route("/slack",Bot3V)

Performing a channel interaction response: This code takes care of interpreting specific
chats that are performed with chat-bot, in the chat channel. Additionally, this would
respond with the reply, to the specific user or channel ID and with authentication token to
the Slack API https://slack.com/api/chat.postMessage. This ensures the message
or reply back to the Slack chat is shown on the specific channel, from where it
originated. As a sample, we would use the chat to encrypt or decrypt a specific value.

For example, if we write encrypt username[:]password, it would return an encrypted
string with a base64 value.

Similarly, if we write decrypt <encoded string>, the chatbot would return a
<username/password> after decrypting the encoded string.

The code is as follows:

import json
import requests
import base64
from splunk_alexa import alexa
channl=""
token=""
resp=""
def set_data(Channel,Token,Response):
 global channl,token,resp
 channl=Channel
 token=Token
 resp=Response

def send_data(text):
 global channl,token,res
 print(channl)
 resp =
requests.post("https://slack.com/api/chat.postMessage",data='{"channel":"'+
channl+'","text":"'+text+'"}',headers={"Content-type":
"application/json","Authorization": "Bearer "+token},verify=False)

def channel_connect(text):
 global channl,token,resp
 try:
 print(text)
 arg=text.split(' ')
 print(str(arg))

Continual Integration Chapter 6

[190]

 path=arg[0].lower()
 print(path in ["decode","encode"])
 if path in ["decode","encode"]:
 print("deecode api")
 else:
 result=alexa(arg,resp)
 text=""
 try:
 for i in result:
 print(i)
 print(str(i.values()))
 for j in i.values():
 print(j)
 text=text+' '+j
 #print(j)
 if text=="" or text==None:
 text="None"
 send_data(text)
 return
 except:
 text="None"
 send_data(text)
 return
 decode=arg[1]
 except:
 print("Please enter a string to decode")
 text="<decode> argument cannot be empty"
 send_data(text)
 return
 deencode(arg,text)

def deencode(arg,text):
 global channl,token,resp
 decode=arg[1]
 if arg[1]=='--help':
 #print("Sinput")
 text="encode/decode <encoded_string>"
 send_data(text)
 return
 if arg[0].lower()=="encode":
 encoded=base64.b64encode(str.encode(decode))
 if '[:]' in decode:
 text="Encoded string: "+encoded.decode('utf-8')
 send_data(text)
 return
 else:
 text="sample string format username[:]password"
 send_data(text)

Continual Integration Chapter 6

[191]

 return
 try:
 creds=base64.b64decode(decode)
 creds=creds.decode("utf-8")
 except:
 print("problem while decoding String")
 text="Error decoding the string. Check your encoded string."
 send_data(text)
 return
 if '[:]' in str(creds):
 print("[:] substring exists in the decoded base64 credentials")
 # split based on the first match of "[:]"
 credentials = str(creds).split('[:]',1)
 username = str(credentials[0])
 password = str(credentials[1])
 status = 'success'
 else:
 text="encoded string is not in standard format, use
username[:]password"
 send_data(text)
 print("the encoded base64 is not in standard format
username[:]password")
 username = "Invalid"
 password = "Invalid"
 status = 'failed'
 temp_dict = {}
 temp_dict['output'] = {'username':username,'password':password}
 temp_dict['status'] = status
 temp_dict['identifier'] = ""
 temp_dict['type'] = ""
 #result.append(temp_dict)
 print(temp_dict)
 text="<username> "+username+" <password> "+password
 send_data(text)
 print(resp.text)
 print(resp.status_code)
 return

This code queries the Splunk instance for a particular chat with the chatbot. The chat would
ask for any management interface (Loopback45) that is currently down. Additionally, in
the chat, a user can ask for all routers on which the management interface is up. This
English response is converted into a Splunk query and, based upon the response from
Splunk, it returns the status to the Slack chat.

Continual Integration Chapter 6

[192]

Let us see the code that performs the action to respond the result, to Slack chat:

from splunkquery import run
def alexa(data,resp):
 try:
 string=data.split(' ')
 except:
 string=data
 search=' '.join(string[0:-1])
 param=string[-1]
 print("param"+param)
 match_dict={0:"routers management interface",1:"routers management
loopback"}
 for no in range(2):
 print(match_dict[no].split(' '))
 print(search.split(' '))
 test=list(map(lambda x:x in search.split('
'),match_dict[no].split(' ')))
 print(test)
 print(no)
 if False in test:
 pass
 else:
 if no in [0,1]:
 if param.lower()=="up":
query="search%20index%3D%22main%22%20earliest%3D0%20%7C%20dedup%20interface
_name%2Crouter_name%20%7C%20where%20interface_name%3D%22Loopback45%22%20%20
and%20interface_status%3D%22up%22%20%7C%20table%20router_name"
 elif param.lower()=="down":
query="search%20index%3D%22main%22%20earliest%3D0%20%7C%20dedup%20interface
_name%2Crouter_name%20%7C%20where%20interface_name%3D%22Loopback45%22%20%20
and%20interface_status%21%3D%22up%22%20%7C%20table%20router_name"
 else:
 return "None"
 result=run(query,resp)
 return result

The following Splunk query fetches the status:

For UP interface: The query would be as follows:

index="main" earliest=0 | dedup interface_name,router_name |
where interface_name="Loopback45" and interface_status="up" |
table router_name

Continual Integration Chapter 6

[193]

For DOWN interface (any status except): The query would be as follows:

index="main" earliest=0 | dedup interface_name,router_name |
where interface_name="Loopback45" and interface_status!="up" |
table router_name

Let's see the end result of chatting with the chatbot and the responses being sent back based
on the chats.

The encoding/decoding example is as follows:

As we can see here, we sent a chat with the encode abhishek[:]password123 message.
This chat was sent as a POST request to the API, which in turn encrypted it to base64 and
responded back with the added words as Encoded string: <encoded string>. In the
next chat, we passed the same string with the decode option. This responds back with
decoding the information from API function, and responds back to Slack chat, with
username abhishek and password password123.

Continual Integration Chapter 6

[194]

Let's see the example of the Splunk query chat:

In this query, we have shut down the Loopback45 interface on rtr1. During our
scheduled discovery of those interfaces through the Python script, the data is now in
Splunk. When queried on which management interface (Loopback45) is down, it would
respond back with rtr1. The slack chat, On which routers the management
interface is down, would pass this to the API, which, upon receiving this payload, will
run the Splunk query to get the stats. The return value (which, in this case, is rtr1) will be
given back as a response in the chat.

Similarly, a reverse query of, On which routers the management interface is up,
will query Splunk and eventually share back the response as rtr2, rtr3, and rtr4 (as
interfaces on all these routers are UP).

This chat use case can be extended to ensure that full end-to-end troubleshooting can occur
using a simple chat. Extensive cases can be built using various backend functions, starting
from a basic identification of problems to complex tasks, such as remediation based upon
identified situations.

Use cases
Let us see some additional use cases that are used frequently by a network engineer to
perform certain tasks. These use-cases can be extended as applications to perform tasks at
scale in any organization.

Continual Integration Chapter 6

[195]

Interacting with SolarWinds
As a network engineer, there are times when we need to interact with monitoring tools for
various tasks. Let's see a basic example in which we connect to the SolarWinds Server and
fetch the IP address of a particular router.

The code to initialize the connection and fetch information from SolarWinds, is as follows:

import requests
from orionsdk import SwisClient
npm_server = 'npm_serverip'
username = 'test'
password = 'test123'
verify = False
if not verify:
 from requests.packages.urllib3.exceptions import InsecureRequestWarning
 requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
swis = SwisClient(npm_server, username, password)

keyvalue="mytestrouter"
results = swis.query("SELECT Caption AS NodeName, IPAddress FROM
Orion.Nodes WHERE NodeName =@id",id=keyvalue)
if results['results'] == []:
 print("query didn't return any output. node might not be present in
SolarWinds DataBase")
else:
 uri = results['results'][0]['IPAddress']
 print (uri)

The output is shown in the following screenshot:

We refer to a Python library, called orionsdk, which performs an SQL query on
SolarWinds, and returns the IP address for the node named mytestrouter. A specific
section to call out in this code is as follows:

verify = False
if not verify:
 from requests.packages.urllib3.exceptions import InsecureRequestWarning
 requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

Continual Integration Chapter 6

[196]

This piece of code ensures that an HTTPS warning is suppressed in the output. For
reference, here is the output without this code:

Configuring Open Shortest Path First (OSPF)
through Python
Let's see an example of how to configure basic OSPF in Python. As a prerequisite, we need
to ensure both routers are pingable to each other:

Next, we perform the base configuration and validate whether the OSPF is in the full
state:

from netmiko import ConnectHandler
import time

ospfbaseconfig="""

Continual Integration Chapter 6

[197]

router ospf 1
network 192.168.20.0 0.0.0.255 area 0
"""

###convert to a list to send to routers
ospfbaseconfig=ospfbaseconfig.split("\n")

def pushospfconfig(routerip,ospfbaseconfig):
 uname="test"
 passwd="test"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip,
username=uname, password=passwd)
 xcheck=device.send_config_set(ospfbaseconfig)
 print (xcheck)
 outputx=device.send_command("wr mem")
 print (outputx)
 device.disconnect()

def validateospf(routerip):
 uname="test"
 passwd="test"
 device = ConnectHandler(device_type='cisco_ios', ip=routerip,
username=uname, password=passwd)
 cmds="show ip ospf neighbor"
 outputx=device.send_command(cmds)
 if ("FULL/" in outputx):
 print ("On router "+routerip+" neighborship is full")
 else:
 print ("On router "+routerip+" neighborship is not in FULL state")
 device.disconnect()

routers=['192.168.20.1','192.168.20.3']
for routerip in routers:
 pushospfconfig(routerip,ospfbaseconfig)
we give some time for ospf to establish
print ("Now sleeping for 10 seconds....")
time.sleep(10) # 10 seconds

for routerip in routers:
 validateospf(routerip)

Continual Integration Chapter 6

[198]

Here is the output:

Using Netmiko, we configure both the routers (192.168.20.1 and 192.168.20.3) with
base OSPF config. As it takes a bit of time for the routing neighborship to complete, we wait
10 seconds before we validate it using the show ip ospf neighbor command. A full
status in the output confirms that the neighborship is established correctly and we now
have two routers configured with the base OSPF configuration.

Autonomous System Number (ASN) in BGP
While working with the BGP routing protocol , a network engineer often faces a challenge
to identify the ASN of a given public IP or hostname or DNS name. Let's see a sample code
that we can use to fetch the details for any IP address.

We'll use the cymruwhois Python library for this purpose.

The code is as follows:

import socket

def getfromhostname(hostname):
 print ("AS info for hostname :"+hostname)

Continual Integration Chapter 6

[199]

 ip = socket.gethostbyname(hostname)
 from cymruwhois import Client
 c=Client()
 r=c.lookup(ip)
 print (r.asn)
 print (r.owner)

def getfromip(ip):
 print ("AS info for IP : "+ip)
 from cymruwhois import Client
 c=Client()
 r=c.lookup(ip)
 print (r.asn)
 print (r.owner)

getfromhostname("microsoft.com")
getfromip("216.58.192.14")

Here is the output:

Using the library, we fetch the information for ASN 8075, as well as AS information for the
public IP (216.58.192.14). The result is microsoft.com for ASN 8075 and Google.com
for the given public IP address.

Validating the IPv4 and IPv6 addresses
In the expanding landscape of networking, a network engineer is faced with the additional
task of validations of any IPv6 address. Let's see a sample code to validate the IPv4 and
IPv6 IP addresses using the socket library:

import socket

def validateipv4ip(address):
 try:
 socket.inet_aton(address)
 print ("Correct IPv4 IP "+address)

Continual Integration Chapter 6

[200]

 except socket.error:
 print ("wrong IPv4 IP "+address)

def validateipv6ip(address):
 ### for IPv6 IP address validation
 try:
 socket.inet_pton(socket.AF_INET6,address)
 print ("Correct IPv6 IP "+address)
 except socket.error:
 print ("wrong IPv6 IP "+address)

#correct IPs:
validateipv4ip("8.8.8.8")
validateipv6ip("2001:0db8:85a3:0000:0000:8a2e:0370:7334")

#Wrong IPs:
validateipv4ip("192.178.263.22")
validateipv6ip("2001:0db8:85a3:0000:0000:8a2f")

Here is the output:

Using socket, we pass in different IPv4 and IPv6 addresses and, based upon the validation
results, it returns either a correct or wrong for the given IP addresses.

Summary
In this chapter, we implemented some real-life use cases and looked at techniques to
perform troubleshooting using chatbot. The use cases gave us insight into performing
intelligent remediation as well as performing audits at scale, which are key challenges in
the current environment. Additionally, readers got familiar with performing chat-based
troubleshooting, which means an engineer doesn't need to be physically present to find or
fix issues. A chat-based approach ensures anyone can identify and remediate issues from
anywhere.

Continual Integration Chapter 6

[201]

Questions
What is the equivalent of Windows Task Scheduler in Linux?1.

Do we need to always be logged in as a specific user to run a scheduled script?2.
Yes/No)

To store data in Splunk, is there a particular format in which data needs to be3.
sent? (Yes/No)

To write a query in Splunk, we use SPL. What is the full form of SPL?4.

To create an XML file, we always enclose the data in tags. (True/False)5.

To validate a query transaction between Slack and an API, which particular value6.
is validated in each response?

As a first-time authentication procedure, Slack sends a specific value to the API.7.
What is it called?

Which Python library is used to automate tasks related to SolarWinds monitoring8.
tool ?

Assessment

Chapter 1: Fundamental Concepts of
Network Automation

 False1.
\d+\s+days2.
decode(). As an example, a byte type variable is testbyte, then to return the3.
string value we use testbyte.decode().
getpass.getpass()4.
w mode opens a new blank file for writing, whereas a mode opens the file in5.
append mode, which appends the file with new content instead of overwriting
the previous file's contents.
A collection of multiple functions/methods is called a library. It is used to6.
perform various tasks by reusing the code written in those methods.

Chapter 2: Python Automation for Network
Engineers

No1.
High-end machine2.
No3.

Assessment

[203]

List4.
SNMP5.
No6.
Community string7.
Threading8.
pysnmp9.

Chapter 3: Ansible and Network
Templatizations

Tasks1.
YAML Ain't Markup Language2.
Local3.
True4.
False5.
True6.
Domain Specific Language7.

Assessment

[204]

Chapter 4: Using Artificial Intelligence in
Operations

 Machine learning1.
Supervised learning2.
True3.
Robotic Process Automation4.
Yes5.
30/70 OR 20/806.
No7.
Yes8.

Chapter 5: Web Framework for Automation
Triggers

Representational State Transfer1.
XML and JSON2.
Intent3.
Yes4.
Gevent5.
No6.
Application Program Interface7.

Assessment

[205]

Chapter 6: Continual Integration
Cron Job1.
No2.
Yes3.
Search Processing Language4.
True5.
Token ID6.
Challenge key7.
orionsdk8.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Practical Network Scanning
Ajay Singh Chauhan

ISBN: 978-1-78883-923-5

Achieve an effective security posture to design security architectures
Learn vital security aspects before moving to the Cloud
Launch secure applications with Web Application Security and SQL Injection
Explore the basics of threat detection/response/ mitigation with important use
cases
Learn all about integration principles for PKI and tips to secure it
Design a WAN infrastructure and ensure security over a public WAN

https://www.packtpub.com/networking-and-servers/practical-network-scanning

Other Books You May Enjoy

[207]

Practical AWS Networking
Mitesh Soni

ISBN: 978-1-78839-829-9

Overview of all networking services available in AWS
Gain Work with load balance application across different regions
Learn auto scale instance based on the increase and decrease of the traffic
Deploy application in highly available and fault tolerant manner
Configure Route 53 for a web application
Troubleshooting tips and best practices at the end

https://www.packtpub.com/virtualization-and-cloud/practical-aws-networking

Other Books You May Enjoy

[208]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
ad hoc commands 68, 69, 71, 72
Address Resolution Protocol (ARP) 98
advantages, web framework
 extensibility 126
 scalability 126
AIOps
 key components 97
Ansible playbooks
 about 72
 basic declarations 78
 examples 73
 execution task, defining 74
 pinging, to multiple IPs 76, 78
 pinging, to particular IP 73
 task, executing 79
 validations 80
 variables, declaring 79
Ansible
 ad hoc commands 68
 application deployment 67
 configuration management 67
 task automation 67
Application Program Interfaces (APIs) 12, 126
Artificial Intelligence (AI)
 about 103
 in IT operations 97

C
Chef, components
 chef-client 91
 chef-server 91
 cookbook 89
 nodes 90
 Ohai 91
 policy 91

 role 91
 run-list 91
Chef
 about 89
 recipe, adding to run-list 92
 recipe, executing 92
 recipe, uploading 92
code check-in
 about 18, 22, 24
 Git initialization 18, 21
 Git installation 18, 21
 importance 18
components, Ansible
 inventory 68
 playbook 68
 plays 68
 roles 68
 tasks 68
 variables 68
components, Puppet
 catalog 93
 facter 93
 manifests 93
 modules 93
 providers 93
 PuppetDB 93
 resources 93
configurations
 standardizing, on scale 174, 175, 179, 180

D
data
 non-structured data 98
 structured data 98
deep learning 103
Domain Specific Language (DSL) 89
dynamic configuration updates 62, 64

[210]

E
Extensible Markup Language (XML) 127

F
Falcon 128, 132

G
Git
 reference 18

I
intelligent triggers
 used, for remediation 154
ios_module
 reference 75

J
JavaScript Object Notation (JSON) 127
Jinja2
 reference 83

K
Kalman filter 113
key component, AIOps
 data analysis 100, 102
 data collector 98
 data source 97
 intelligent remediation 113, 116
 Machine Learning (ML) 102, 104

L
learning methods
 reinforcement learning 104
 supervised learning 104
 unsupervised learning 104
loopback interface
 creating 58, 62
Loopback45 154

M
Machine Learning (ML)
 about 102
 linear regression 104, 107, 108, 110, 111, 113

Machine Learning Toolkit (MLTK) 113
Management Information Base (MIB) 51
modules
 reference 37
multithreading 52, 55

N
Netmiko
 reference 36
network devices
 configuring, with templates 45, 48, 51, 52
 interacting with 36, 38, 41, 42, 44
network templates
 about 82
 device role, identifying 83
 Python integration 85, 88
 right configuration based upon SKU, identifying

82

 users size, identifying 82
Neural Network (NN) 103

O
optimization operations, AI
 forecasting and capacity planning 119
 roster planning 119
 set of alerts, identifying 118
 tasks, converting from reactive to proactive 118
 use cases 118

P
Paramiko 36
PowerShell
 local machines, interacting with 17
 selecting 15
programs, writing
 about 7
 APIs, accessing 11
 configurations set, identifying 9
 credentials, hiding 10
 files, handling 14
 IPv4 address, validating 7
 regular expressions (regex), using 13
Puppet
 about 89
 comparing, with Chef 94

 components 93
PuppetDSL 93
PySNMP 50
Python
 selecting 15

R
readable script 6, 7
regular expressions (regex)
 using 56, 58
Robotic Process Automation (RPA) 113, 153
Root Cause Analysis (RCA) 100, 159

S
Search Processing Language (SPL) 100, 158
Simple Network Management Protocol (SNMP) 50
Splunk API
 consuming, use case 142, 144, 146, 149, 151
Splunk
 configuring, for receiving data 155, 157
 data, validating 158
 script, writing 159, 163, 167, 170, 172, 173

T
template
 used, for network device configuration 45, 47,

52

U
use cases
 about 24, 25, 28, 29, 32, 33, 55
 dynamic configuration updates 62, 64
 loopback interface, creating 58, 62
 of AI 117, 122, 123
 regular expressions (regex), using 56, 57

V
virtual private network (VPN) 98

W
weather API
 accessing 16
web framework
 about 126, 127
 calling 138, 140, 142
 decoding 132, 135, 137
 encoding 132, 134, 136, 137
 Falcon 128, 131, 132
Web Server Gateway Interface (WSGI) 128
wireless access point (WAP) 119

Y
YAML Ain't Markup Language (YAML)
 reference 72

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Fundamental Concepts of Network Automation
	Technical requirements
	A readable script
	Basic programs
	Validating an IPv4 address
	Making the right choice
	Hiding credentials
	Accessing APIs
	Using regular expressions (regex)
	Handling files

	Making a decision (Python or PowerShell)
	API access
	Interacting with local machines

	Introduction to code check-in and its importance
	Git installation and initialization
	Code check-in

	Sample use cases
	First use case
	Second use case

	Summary
	Questions

	Chapter 2: Python Automation for Network Engineers
	Technical requirements
	Interacting with network devices
	Network device configuration using template
	Multithreading
	Use cases
	Using regular expressions (regex)
	Creating loopback interface
	Dynamic configuration updates

	Summary
	Questions

	Chapter 3: Ansible and Network Templatizations
	Technical requirements
	Ansible and network templates
	Introduction to ad hoc commands
	Ansible playbooks
	Playbook examples
	Ping to a particular IP from all routers
	Section 1 – defining the scope of script
	Section 2 – defining what to execute (define the task)

	Ping to multiple IPs from all routers
	Section 1 – basic declarations
	Section 2 – declaring variables
	Section 3 – executing the task
	Section 4 – validations

	Network templates
	Step 1 – identifying the number of users the device is going to serve
	Step 2 – identifying the right configuration based upon the SKU
	Step 3 – identifying the role of the device
	Python integration

	Chef and Puppet
	Chef
	Step 1 – creating the recipe
	Step 2 – uploading the recipe
	Step 3 – adding the recipe to the run-list
	Step 4 – running the recipe

	Puppet
	Chef/Puppet/Ansible comparison

	Summary
	Questions

	Chapter 4: Using Artificial Intelligence in Operations
	Technical requirements
	AI in IT operations
	Key pillars in AIOps
	Data source
	Structured data

	Non-structured data
	Data collector
	Data analysis
	Machine Learning (ML)
	Example of linear regression

	Intelligent remediation

	Application and use cases
	Summary
	Questions

	Chapter 5: Web Framework for Automation Triggers
	Technical requirements
	Web framework
	Falcon
	Encoding and decoding

	Calling the web framework
	Sample use case
	Summary
	Questions

	Chapter 6: Continual Integration
	Technical requirements
	Remediation using intelligent triggers
	Step 1 – ensuring Splunk is configured to receive the data
	Step 2 – validating the data (sample data)
	Step 3 – writing script

	Standardizing configurations on scale
	Chatbot interactions
	Use cases
	Interacting with SolarWinds
	Configuring Open Shortest Path First (OSPF) through Python
	Autonomous System Number (ASN) in BGP
	Validating the IPv4 and IPv6 addresses

	Summary
	Questions

	Assessment
	Other Books You May Enjoy
	Index

