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Preface
I’ve been coding in Python for a number of years, longer than any other language I’ve ever used. I use Python for system administration, for web applications, for database management, and sometimes just to help myself think clearly.
To be honest, I’m sometimes a little surprised that Python has worn so well. Based on my earlier experience, I would have expected that by now some other language would have come along that was faster, cooler, sexier, whatever. Indeed, other languages have come along, but none that helped me do what I needed to do quite as effectively as Python. In fact, the more I use Python and the more I understand it, the more I feel the quality of my programming improve and mature.
This is a second edition, and my mantra in updating has been, “If it ain’t broke, don’t fix it.” Much of the content has been freshened for Python 3 but is largely as written in the first edition. Of course, the world of Python has changed since Python 1.5, so in several places I’ve had to make significant changes or add new material. On those occasions I’ve done my best to make the new material compatible with the clear and low-key style of the original.
For me, the aim of this book is to share the positive experiences I’ve gotten from coding in Python by introducing people to Python 3, the latest and, in my opinion, the best version of Python to date. May your journey be as satisfying as mine has been.
Acknowledgments
I want to thank David Fugate of LaunchBooks for getting me into this book in the first place and for all of the support and advice he has provided over the years. I can’t imagine having a better agent and friend. I also need to thank Michael Stephens of Manning for pushing the idea of doing a second edition of this book and supporting me in my efforts to make it as good as the first. Also at Manning, many thanks to every person who worked on this project, with special thanks to Marjan Bace for his support, Tara Walsh for guidance in the development phases, Mary Piergies for getting the book (and me) through the production process, Linda Recktenwald for her patience in copy editing, and Tiffany Taylor for proofreading. I also owe a huge debt to Will Kahn-Greene for all of the astute advice he gave both as a technical reviewer and in doing the technical proofing. Thanks, Will, you saved me from myself more times than I can count. Likewise, hearty thanks to the many reviewers whose insights and feedback were of immense help: Nick Lo, Michele Galli, Andy Dingley, Mohamed Lamkadem, Robby O’Connor, Amos Bannister, Joshua Miller, Christian Marquardt, Andrew Rhine, Anthony Briggs, Carlton Gibson, Craig Smith, Daniel McKinnon, David McWhirter, Edmon Begoli, Elliot Winard, Horaci Macias, Massimo Perga, Munch Paulson, Nathan R. Yergler, Rick Wagner, Sumit Pal, and Tyson S. Maxwell.
Because this is a second edition, I have to thank the authors of the first edition, Daryl Harms and Kenneth MacDonald, for two things: first, for writing a book so sound that it has remained in print well beyond the average lifespan of most tech books, and second, for being otherwise occupied, thereby giving me a chance to update it. I hope this version carries on the successful and long-lived tradition of the first.
Thanks to my canine associates, Molly, Riker, and Aeryn, who got fewer walks, training sessions, and games of ball than they should have but still curled up beside my chair and kept me company and helped me keep my sense of perspective as I worked. You’ll get those walks now, guys, I promise.
Most important, thanks to my wife, Becky, who both encouraged me to take on this project and had to put up with the most in the course of its completion—particularly an often-grumpy and preoccupied spouse. I really couldn’t have done it without you.
About this Book
Who should read this book
This book is intended for people who already have experience in one or more programming languages and want to learn the basics of Python 3 as quickly and directly as possible. Although some basic concepts are covered, there’s no attempt to teach basic programming skills in this book, and the basic concepts of flow control, OOP, file access, exception handling, and the like are assumed. This book may also be of use to users of earlier versions of Python who want a concise reference for Python 3.
How to use this book
Part 1 introduces Python and explains how to download and install it on your system. It also includes a very general survey of the language, which will be most useful for experienced programmers looking for a high-level view of Python.
Part 2 is the heart of the book. It covers the ingredients necessary for obtaining a working knowledge of Python as a general-purpose programming language. The chapters are designed to allow readers who are beginning to learn Python to work their way through sequentially, picking up knowledge of the key points of the language. These chapters also contain some more advanced sections, allowing you to return to find in one place all the necessary information about a construct or topic.
Part 3 introduces advanced language features of Python, elements of the language that aren’t essential to its use but that can certainly be a great help to a serious Python programmer.
Part 4 describes more advanced or specialized topics that are beyond the strict syntax of the language. You may read these chapters or not, depending on your needs.
A suggested plan if you’re new to Python is to start by reading chapter 3 to obtain an overall perspective and then work through the chapters in part 2 that are applicable. Enter in the interactive examples as they are introduced. This will immediately reinforce the concepts. You can also easily go beyond the examples in the text to answer questions about anything that may be unclear. This has the potential to amplify the speed of your learning and the level of your comprehension. If you aren’t familiar with OOP or don’t need it for your application, skip most of chapter 15. If you aren’t interested in developing a GUI, skip chapter 16.
Those familiar with Python should also start with chapter 3. It will be a good review and will introduce differences between Python 3 and what may be more familiar. It’s a reasonable test of whether you’re ready to move on to the advanced chapters in parts 3 and 4 of this book.
It’s possible that some readers, although new to Python, will have enough experience with other programming languages to be able to pick up the bulk of what they need to get going from chapter 3 and by browsing the Python standard library modules listed in chapter 23 and the Python Library Reference in the Python documentation.
Roadmap
Chapter 1 discusses the strengths and weaknesses of Python and shows why Python 3 is a good choice of programming language for many situations.
Chapter 2 covers downloading, installing, and starting up the Python interpreter and IDLE, its integrated development environment.
Chapter 3 is a short overview of the Python language. It provides a basic idea of the philosophy, syntax, semantics, and capabilities of the language.
Chapter 4 starts with the basics of Python. It introduces Python variables, expressions, strings, and numbers. It also introduces Python’s block-structured syntax.
Chapters 5, 6, and 7 describe the five powerful built-in Python data types: lists, tuples, sets, strings, and dictionaries.
Chapter 8 introduces Python’s control flow syntax and use (loops and if-else statements).
Chapter 9 describes function definition in Python along with its flexible parameter-passing capabilities.
Chapter 10 describes Python modules. They provide an easy mechanism for segmenting the program namespace.
Chapter 11 covers creating standalone Python programs, or scripts, and running them on Windows, Mac OS X, and Linux platforms. The chapter also covers the support available for command-line options, arguments, and I/O redirection.
Chapter 12 describes how to work and navigate through the files and directories of the filesystem. It shows how to write code that’s as independent as possible of the actual operating system you’re working on.
Chapter 13 introduces the mechanisms for reading and writing files in Python. These include the basic capability to read and write strings (or byte streams), the mechanism available for reading binary records, and the ability to read and write arbitrary Python objects.
Chapter 14 discusses the use of exceptions, the error-handling mechanism used by Python. It doesn’t assume that you have any prior knowledge of exceptions, although if you’ve previously used them in C++ or Java, you’ll find them familiar.
Chapter 15 introduces Python’s support for writing object-oriented programs.
Chapter 16 focuses on the available Tkinter interface and ends with an introduction to some of the other options available for developing GUIs.
Chapter 17 discusses the regular-expression capabilities available for Python.
Chapter 18 introduces the package concept in Python for structuring the code of large projects.
Chapter 19 covers the simple mechanisms available to dynamically discover and work with data types in Python.
Chapter 20 introduces more advanced OOP techniques, including the use of Python’s special method-attributes mechanism, metaclasses, and abstract base classes.
Chapter 21 covers two strategies that Python offers for testing your code: doctests and unit testing.
Chapter 22 surveys the process, issues, and tools involved in porting code from earlier versions of Python to Python 3.
Chapter 23 is a brief survey of the standard library and also includes a discussion of where to find other modules and how to install them.
Chapter 24 is a brief introduction to using Python for database and web programming. A small web application is developed to illustrate the principles involved.
The appendix contains a comprehensive guide to obtaining and accessing Python’s full documentation, the Pythonic style guide, PEP 8, and “The Zen of Python,” a slightly wry summary of the philosophy behind Python.
Code conventions
The code samples in this book, and their output, appear in a fixed-width font and are often accompanied by annotations. The code samples are deliberately kept as simple as possible, because they aren’t intended to be reusable parts that can plugged into your code. Instead, the code samples are stripped down so that you can focus on the principle being illustrated.
In keeping with the idea of simplicity, the code examples are presented as interactive shell sessions where possible; you should enter and experiment with these samples as much as you can. In interactive code samples, the commands that need to be entered are on lines that begin with the >>> prompt, and the visible results of that code (if any) are on the line below.
In some cases a longer code sample is needed, and these are identified in the text as file listings. You should save these as files with names matching those used in the text and run them as standalone scripts.
Source code downloads
The source code for the samples in this book is available from the publisher’s website at www.manning.com/TheQuickPythonBookSecondEdition.
System requirements
The samples and code in this book have been written with Windows (XP through Windows 7), Mac OS X, and Linux in mind. Because Python is a cross-platform language, they should work on other platforms for the most part, except for platform-specific issues, like the handling of files, paths, and GUIs.
Software requirements
This book is based on Python 3.1, and all examples should work on any subsequent version of Python 3. The examples also work on Python 3.0, but I strongly recommend using 3.1—there are no advantages to the earlier version, and 3.1 has several subtle improvements. Note that Python 3 is required and that an earlier version of Python will not work with the code in this book.
Author Online
The purchase of The Quick Python Book, Second Edition includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/TheQuickPythonBookSecondEdition. This page provides information about how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.
Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions, lest his interest stray!
The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
About the author
Second edition author Naomi Ceder has been programming in various languages for over 20 years and has been a Linux system administrator since 2000. She started using Python for a variety of projects in 2001. She is currently IT Director at Zoro Tools, Inc., in Buffalo Grove, Illinois, and an organizer and teacher of the Chicago Python Workshops.
About the cover illustration
The illustration on the cover of The Quick Python Book, Second Edition is taken from a late 18th century edition of Sylvain Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by what they were wearing.
Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.
At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Maréchal’s pictures.
Part 1. Starting out
This section will tell you a little bit about Python, its strengths and weaknesses, and why you should consider learning Python 3. You’ll also see how to install Python on Windows, Mac OS X, and Linux platforms and how to write a simple program.
Finally, chapter 3 is a quick, high-level survey of Python’s syntax and features. If you’re looking for the quickest possible introduction to Python, read chapter 3.
Chapter 1. About Python
This chapter covers
Read this chapter if you want to know how Python compares to other languages and its place in the grand scheme of things. Skip this chapter if you want to start learning Python right away. The information in this chapter is a valid part of this book—but it’s certainly not necessary for programming with Python.
1.1. Why should I use Python?
Hundreds of programming languages are available today, from mature languages like C and C++, to newer entries like Ruby, C#, and Lua, to enterprise juggernauts like Java. Choosing a language to learn is difficult. Although no one language is the right choice for every possible situation, I think that Python is a good choice for a large number of programming problems, and it’s also a good choice if you’re learning to program. Hundreds of thousands of programmers around the world use Python, and the number grows every year.
Python continues to attract new users for a variety of reasons. It’s a true cross-platform language, running equally well on Windows, Linux/UNIX, and Macintosh platforms, as well as others, ranging from supercomputers to cell phones. It can be used to develop small applications and rapid prototypes, but it scales well to permit development of large programs. It comes with a powerful and easy-to-use graphical user interface (GUI) toolkit, web programming libraries, and more. And it’s free.
1.2. What Python does well
Python is a modern programming language developed by Guido van Rossum in the 1990s (and named after a famous comedic troupe). Although Python isn’t perfect for every application, its strengths make it a good choice for many situations.
1.2.1. Python is easy to use
Programmers familiar with traditional languages will find it easy to learn Python. All of the familiar constructs such as loops, conditional statements, arrays, and so forth are included, but many are easier to use in Python. Here are a few of the reasons why:
Python is well suited for rapid application development. It isn’t unusual for coding an application in Python to take one-fifth the time it would if coded in C or Java and to take as little as one-fifth the number of lines of the equivalent C program. This depends on the particular application, of course; for a numerical algorithm performing mostly integer arithmetic in for loops, there would be much less of a productivity gain. For the average application, the productivity gain can be significant.
1.2.2. Python is expressive
Python is a very expressive language. Expressive in this context means that a single line of Python code can do more than a single line of code in most other languages. The advantages of a more expressive language are obvious: the fewer lines of code you have to write, the faster you can complete the project. Not only that, but the fewer lines of code there are, the easier the program will be to maintain and debug.
To get an idea of how Python’s expressiveness can simplify code, let’s consider swapping the values of two variables, var1 and var2. In a language like Java, this requires three lines of code and an extra variable:
int temp = var1;
var1 = var2;
var2 = temp;
The variable temp is needed to save the value of var1 when var2 is put into it, and then that saved value is put into var2. The process isn’t terribly complex, but reading those three lines and understanding that a swap has taken place takes a certain amount of overhead, even for experienced coders.
In contrast, Python lets you make the same swap in one line and in a way that makes it obvious that a swap of values has occurred:
var2, var1 = var1, var2
Of course, this is a very simple example, but you find the same advantages throughout the language.
1.2.3. Python is readable
Another advantage of Python is that it’s easy to read. You might think that a programming language needs to be read only by a computer, but humans have to read your code as well—whoever debugs your code (quite possibly you), whoever maintains your code (could be you again), and whoever might want to modify your code in the future. In all of those situations, the easier the code is to read and understand, the better it is.
The easier code is to understand, the easier it is to debug, maintain, and modify. Python’s main advantage in this department is its use of indentation. Unlike most languages, Python insists that blocks of code be indented. Although this strikes some as odd, it has the benefit that your code is always formatted in a very easy-to-read style.
Following are two short programs, one written in Perl and one in Python. Both take two equal-sized lists of numbers and return the pairwise sum of those lists. I think the Python code is more readable than the Perl code; it’s visually cleaner and contains fewer inscrutable symbols:
# Perl version.
sub pairwise_sum {
my($arg1, $arg2) = @_;
my(@result) = ();
@list1 = @$arg1;
@list2 = @$arg2;
for($i=0; $i < length(@list1); $i++) {
push(@result, $list1[$i] + $list2[$i]);
}
return(\@result);
}
# Python version.
def pairwise_sum(list1, list2):
result = []
for i in range(len(list1)):
result.append(list1[i] + list2[i])
return result
Both pieces of code do the same thing, but the Python code wins in terms of readability.
1.2.4. Python is complete—“batteries included”
Another advantage of Python is its “batteries included” philosophy when it comes to libraries. The idea is that when you install Python, you should have everything you need to do real work, without the need to install additional libraries. This is why the Python standard library comes with modules for handling email, web pages, databases, operating system calls, GUI development, and more.
For example, with Python, you can write a web server to share the files in a directory with just two lines of code:
import http.server
http.server.test(HandlerClass=http.server.SimpleHTTPRequestHandler)
There’s no need to install libraries to handle network connections and HTTP—it’s already in Python, right out of the box.
1.2.5. Python is cross-platform
Python is also an excellent cross-platform language. Python runs on many different platforms: Windows, Mac, Linux, UNIX, and so on. Because it’s interpreted, the same code can run on any platform that has a Python interpreter, and almost all current platforms have one. There are even versions of Python that run on Java (Jython) and .NET (IronPython), giving you even more possible platforms that run Python.
1.2.6. Python is free
Python is also free. Python was originally, and continues to be, developed under the open source model, and it’s freely available. You can download and install practically any version of Python and use it to develop software for commercial or personal applications, and you don’t need to pay a dime.
Although attitudes are changing, some people are still leery of free software because of concerns about a lack of support, fearing they lack the clout of a paying customer. But Python is used by many established companies as a key part of their business; Google, Rackspace, Industrial Light & Magic, and Honeywell are just a few examples. These companies and many others know Python for what it is—a very stable, reliable, and well-supported product with an active and knowledgeable user community. You’ll get an answer to even the most difficult Python question more quickly on the Python internet newsgroup than you will on most tech-support phone lines, and the Python answer will be free and correct.
Python and open source software
Not only is Python free of cost, but its source code is also freely available, and you’re free to modify, improve, and extend it if you want. Because the source code is freely available, you have the ability to go in yourself and change it (or to hire someone to go in and do so for you). You rarely have this option at any reasonable cost with proprietary software.
If this is your first foray into the world of open source software, you should understand that not only are you free to use and modify Python, but you’re also able (and encouraged) to contribute to it and improve it. Depending on your circumstances, interests, and skills, those contributions might be financial, as in a donation to the Python Software Foundation (PSF), or they may involve participating in one of the special interest groups (SIGs), testing and giving feedback on releases of the Python core or one of the auxiliary modules, or contributing some of what you or your company develops back to the community. The level of contribution (if any) is, of course, up to you; but if you’re able to give back, definitely consider doing so. Something of significant value is being created here, and you have an opportunity to add to it.
Python has a lot going for it: expressiveness, readability, rich included libraries, and cross-platform capabilities, plus it’s open source. What’s the catch?
1.3. What Python doesn’t do as well
Although Python has many advantages, no language can do everything, so Python isn’t the perfect solution for all your needs. To decide whether Python is the right language for your situation, you also need to consider the areas where Python doesn’t do as well.
1.3.1. Python is not the fastest language
A possible drawback with Python is its speed of execution. It isn’t a fully compiled language. Instead, it’s first semicompiled to an internal byte-code form, which is then executed by a Python interpreter. There are some tasks, such as string parsing using regular expressions, for which Python has efficient implementations and is as fast as, or faster than, any C program you’re likely to write. Nevertheless, most of the time, using Python results in slower programs than a language like C. But you should keep this in perspective. Modern computers have so much computing power that for the vast majority of applications, the speed of the program isn’t as important as the speed of development, and Python programs can typically be written much more quickly. In addition, it’s easy to extend Python with modules written in C or C++, which can be used to run the CPU-intensive portions of a program.
1.3.2. Python doesn’t have the most libraries
Although Python comes with an excellent collection of libraries, and many more are available, Python doesn’t hold the lead in this department. Languages like C, Java, and Perl have even larger collections of libraries available, in some cases offering a solution where Python has none or a choice of several options where Python might have only one. These situations tend to be fairly specialized, however, and Python is easy to extend, either in Python itself or by using existing libraries in C and other languages. For almost all common computing problems, Python’s library support is excellent.
1.3.3. Python doesn’t check variable types at compile time
Unlike some languages, Python’s variables are more like labels that reference various objects: integers, strings, class instances, whatever. That means that although those objects themselves have types, the variables referring to them aren’t bound to that particular type. It’s possible (if not necessarily desirable) to use the variable x to refer to a string in one line and an integer in another:
The fact that Python associates types with objects and not with variables means that the interpreter doesn’t help you catch variable type mismatches. If you intend a variable count to hold an integer, Python won’t complain if you assign the string “two” to it. Traditional coders count this as a disadvantage, because you lose an additional free check on your code. But errors like this usually aren’t hard to find and fix, and Python’s testing features makes avoiding type errors manageable. Most Python programmers feel that the flexibility of dynamic typing more than outweighs the cost.
1.4. Why learn Python 3?
Python has been around for a number of years and has evolved over that time. The first edition of this book was based on Python 1.5.2, and Python 2.x has been the dominant version for several years. This book is based on Python 3.1.
Python 3, originally whimsically dubbed Python 3000, is notable because it’s the first version of Python in the history of the language to break backward compatibility. What this means is that code written for earlier versions of Python probably won’t run on Python 3 without some changes. In earlier versions of Python, for example, the print statement didn’t require parentheses around its arguments:
print "hello"
In Python 3, print is a function and needs the parentheses:
print("hello")
You may be thinking, “Why change details like this, if it’s going to break old code?” Because this kind of change is a big step for any language, the core developers of Python thought about this issue carefully. Although the changes in Python 3 break compatibility with older code, those changes are fairly small and for the better—they make the language more consistent, more readable, and less ambiguous. Python 3 isn’t a dramatic rewrite of the language; it’s a well-thought-out evolution. The core developers also took care to provide a strategy and tools to safely and efficiently migrate old code to Python 3, which will be discussed in a later chapter.
Why learn Python 3? Because it’s the best Python so far; and as projects switch to take advantage of its improvements, it will be the dominant Python version for years to come. If you need a library that hasn’t been converted yet, by all means stick with Python 2.x; but if you’re starting to learn Python or starting a project, then go with Python 3—not only is it better, but it’s the future.
1.5. Summary
Python is a modern, high-level language, with many features:
Let’s get going. The first step is to make sure you have Python 3 installed on your machine. In the next chapter, we’ll look at how to get Python up and running on Windows, Mac, and Linux platforms.
Chapter 2. Getting started
This chapter covers
This chapter guides you through downloading, installing, and starting up Python and IDLE, an integrated development environment for Python. At the time of this writing, the Python language is fairly mature, and version 3.1 has just been released. After going through years of refinement, Python 3 is the first version of the language that isn’t fully backward compatible with earlier versions. It should be several years before another such dramatic change occurs, and any future enhancements will be developed with concern to avoid impacting an already significant existing code base. Therefore, the material presented after this chapter isn’t likely to become dated anytime soon.
2.1. Installing Python
Installing Python is a simple matter, regardless of which platform you’re using. The first step is to obtain a recent distribution for your machine; the most recent one can always be found at www.python.org. This book is based on Python 3.1.
Having more than one version of Python
You may already have an earlier version of Python installed on your machine. Many Linux distributions and Mac OS X come with Python 2.x as part of the operating system. Because Python 3 isn’t completely compatible with Python 2, it’s reasonable to wonder if installing both versions on the same computer will cause a conflict.
There’s no need to worry; you can have multiple versions of Python on the same computer. In the case of UNIX-based systems like OS X and Linux, Python 3 installs alongside the older version and doesn’t replace it. When your system looks for “python,” it still finds the one it expects; and when you want to access Python 3, you can run python3.1 or idle3.1. In Windows, the different versions are installed in separate locations and have separate menu entries.
Some basic platform-specific descriptions for the Python installation are given next. The specifics can vary quite a bit depending on your platform, so be sure to read the instructions on the download pages and with the various versions. You’re probably familiar with installing software on your particular machine, so I’ll keep these descriptions short:
2.2. IDLE and the basic interactive mode
You have two built-in options for obtaining interactive access to the Python interpreter: the original basic (command-line) mode and IDLE. IDLE is available on many platforms, including Windows, Mac, and Linux, but it may not be available on others. You may need to do more work and install additional software packages to get IDLE running, but it will be worth it because it’s a large step up from the basic interactive mode. On the other hand, even if you normally use IDLE, at times you’ll likely want to fire up the basic mode. You should be familiar enough to start and use either one.
2.2.1. The basic interactive mode
The basic interactive mode is a rather primitive environment. But the interactive examples in this book are generally small; and later in this book, you’ll learn how to easily bring code you’ve placed in a file into your session (using the module mechanism). Let’s look at how to start a basic session on Windows, Mac OS X, and UNIX:
Figure 2.1. Basic interactive mode on Windows XP
Exiting the interactive shell
To exit from a basic session, press Ctrl-Z (if you’re on Windows) or Ctrl-D (if you’re on Linux or UNIX) or type exit() at a command prompt.
Most platforms have a command-line-editing and command-history mechanism. You can use the up and down arrows, as well as the Home, End, Page Up, and Page Down keys, to scroll through past entries and repeat them by pressing the Enter key. (See “Basic Python interactive mode summary” at the end of the appendix.) This is all you need to work your way through this book as you’re learning Python. Another option is to use the excellent Python mode available for Emacs, which, among other things, provides access to the interactive mode of Python through an integrated shell buffer.
2.2.2. The IDLE integrated development environment
IDLE is the built-in development environment for Python. Its name is based on the acronym for integrated development environment (of course, it may have been influenced by the last name of a certain cast member of a particular British television show). IDLE combines an interactive interpreter with code editing and debugging tools to give you one-stop shopping as far as creating Python code is concerned. IDLE’s various tools make it an attractive place to start as you learn Python. Let’s look at how you run IDLE on Windows, Mac OS X, and Linux:
Figure 2.2. IDLE on Windows
2.2.3. Choosing between basic interactive mode and IDLE
Which should you use, IDLE or the basic shell window? To begin, use either IDLE or the Python Shell window. Both have all you need to work through the code examples in this book until you reach chapter 10. From there, we’ll cover writing your own modules, and IDLE will be a convenient way to create and edit files. But if you have a strong preference for another editor, you may find that a basic shell window and your favorite editor serve you just as well. If you don’t have any strong editor preferences, I suggest using IDLE from the beginning.
2.3. Using IDLE’s Python Shell window
The Python Shell window (figure 2.3) opens when you fire up IDLE. It provides automatic indentation and colors your code as you type it in, based on Python syntax types.
Figure 2.3. Using the Python shell in IDLE. Code is automatically colored (based on Python syntax) as it’s typed in.
Here I typed f and then pressed Alt-/, and automatic completion finished the word factorial.
I lost the prompt, so I pressed Ctrl-C to interrupt the interpreter and get the prompt back (a closed bracket would have worked here as well).
Placing the cursor on any previous command and pressing the Enter key moves the command and the cursor to the bottom, where you can edit the command and then press Enter to send it to the interpreter.
Placing the cursor at the bottom, you can toggle up and down through the history of previous commands using Alt-P and Alt-N. When you have the command you want, edit it as desired and press Enter, and it will be sent to the interpreter.
You can move around the buffer using the mouse, the arrow keys, the Page Up and Page Down keys, and/or a number of the standard Emacs key bindings. Check the Help menu for the details.
Everything in your session is buffered. You can scroll or search up, place the cursor on any line, and press Enter (creating a hard return), and that line will be copied to the bottom of the screen, where you can edit it and then send it to the interpreter by pressing the Enter key again. Or, leaving the cursor at the bottom, you can toggle up and down through the previously entered commands using Alt-P and Alt-N. This will successively bring copies of the lines to the bottom. When you have the one you want, you can again edit it and then send it to the interpreter by pressing the Enter key. You can complete Python keywords or user-defined values by pressing Alt-/.
If you ever find yourself in a situation where you seem to be hung and can’t get a new prompt, the interpreter is likely in a state where it’s waiting for you to enter something specific. Pressing Ctrl-C sends an interrupt and should get you back to a prompt. It can also be used to interrupt any running command. To exit IDLE, choose Exit from the File menu.
The Edit menu is the one you’ll likely be using the most to begin with. Like any of the other menus, you can tear it off by double-clicking the dotted line at its top and leaving it up beside your window.
2.4. Hello, world
Regardless of how you’re accessing Python’s interactive mode, you should see a prompt consisting of three angle braces: >>>. This is the Python command prompt, and it indicates that you can type in a command to be executed or an expression to be evaluated. Start with the obligatory “Hello, World” program, which is a one-liner in Python. (End each line you type with a hard return.)
>>> print("Hello, World")
Hello, World
Here I entered the print command at the command prompt, and the result appeared on the screen.
Executing the print function causes its argument to be printed to the standard output, usually the screen. If the command had been executed while Python was running a Python program from a file, exactly the same thing would have happened: “Hello, World” would have been printed to the screen.
Congratulations! You’ve just written your first Python program, and we haven’t even started talking about the language.
2.5. Using the interactive prompt to explore Python
Whether you’re in IDLE or at a standard interactive prompt, there are a couple of handy tools to help you explore Python. The first is the help() function, which has two modes. You can just enter help() at the prompt to enter the help system, where you can get help on modules, keywords, or topics. When you’re in the help system, you see a help> prompt, and you can enter a module name, such as math or some other topic, to browse Python’s documentation on that topic.
Usually it’s more convenient to use help() in a more targeted way. Entering a type or variable name as a parameter for help() gives you an immediate display of that type’s documentation:
>>> x = 2
>>> help(x)
Help on int object:
class int(object)
| int(x[, base]) -> integer
|
| Convert a string or number to an integer, if possible. A floating
| point argument will be truncated towards zero (this does not include a
| string representation of a floating point number!) When converting a
| string, use the optional base. It is an error to supply a base when
| converting a non-string.
|
| Methods defined here:
... (continues with a list of methods for an int)
Using help() in this way is handy for checking the exact syntax of a method or the behavior of an object.
The help() function is part of the pydoc library, which has several options for accessing the documentation built into Python libraries. Because every Python installation comes with complete documentation, you can have all of the official documentation at your fingertips, even if you aren’t online. See the appendix for more information on accessing Python’s documentation.
The other useful function is dir(), which lists the objects in a particular namespace. Used with no parameters, it lists the current globals, but it can also list objects for a module or even a type:
>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'x']
>>> dir(int)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',
'__delattr__', '__divmod__', '__doc__', '__eq__', '__float__',
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__',
'__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__',
'__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__',
'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__',
'__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__',
'__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__',
'__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__',
'__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__',
'__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator',
'imag', 'numerator', 'real']
>>>
dir() is useful for finding out what methods and data are defined, for reminding yourself at a glance of all the members that belong an object or module, and for debugging, because you can see what is defined where.
You can use two other functions to see local and global variables, respectively. They are globals and locals:
>>> globals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__',
'__doc__': None, '__package__': None}
Unlike dir, both globals and locals show the values associated with the objects. You’ll find out more about both of these functions in chapter 10; for now, it’s enough that you’re aware that you have several options for examining what’s going on within a Python session.
2.6. Summary
Installing Python 3 is the first step. On Windows systems it’s as simple as downloading the latest installer from python.org and running it. On Linux, UNIX, and Mac systems the steps will vary. Check for instructions on the www.python.org website, and use your system’s software package installer where possible.
After you’ve installed Python, you can use either the basic interactive shell (and later, your favorite editor) or the IDLE integrated development environment. Whichever you decide to use, it’s time to move to chapter 3, where we’ll make a quick survey of Python the language.
Chapter 3. The Quick Python overview
This chapter covers
The purpose of this chapter is to give you a basic feeling for the syntax, semantics, capabilities, and philosophy of the Python language. It has been designed to provide you with an initial perspective or conceptual framework on which you’ll be able to add details as you encounter them in the rest of the book.
On an initial read, you needn’t be concerned about working through and understanding the details of the code segments. You’ll be doing fine if you pick up a bit of an idea about what is being done. The subsequent chapters of this book will walk you through the specifics of these features and won’t assume prior knowledge. You can always return to this chapter and work through the examples in the appropriate sections as a review after you’ve read the later chapters.
3.1. Python synopsis
Python has a number of built-in data types such as integers, floats, complex numbers, strings, lists, tuples, dictionaries, and file objects. These can be manipulated using language operators, built-in functions, library functions, or a data type’s own methods.
Programmers can also define their own classes and instantiate their own class instances.[1] These can be manipulated by programmer-defined methods as well as the language operators and built-in functions for which the programmer has defined the appropriate special method attributes.
1 The Python documentation and this book use the term object to refer to instances of any Python data type, not just what many other languages would call class instances. This is because all Python objects are instances of one class or another.
Python provides conditional and iterative control flow through an if-elif-else construct along with while and for loops. It allows function definition with flexible argument-passing options. Exceptions (errors) can be raised using the raise statement and caught and handled using the try-except-else construct.
Variables don’t have to be declared and can have any built-in data type, user-defined object, function, or module assigned to them.
3.2. Built-in data types
Python has several built-in data types, from scalars like numbers and Booleans, to more complex structures like lists, dictionaries, and files.
3.2.1. Numbers
Python’s four number types are integers, floats, complex numbers, and Booleans:
You can manipulate them using the arithmetic operators: + (addition), – (subtraction), * (multiplication), / (division), ** (exponentiation), and % (modulus).
The following examples use integers:
Division of integers with / results in a float (new in Python 3.x), and division of integers with //
results in truncation. Note that integers are of unlimited size
; they will grow as large as you need them to.
These examples work with floats, which are based on the doubles in C:
>>> x = 4.3 ** 2.4
>>> x
33.137847377716483
>>> 3.5e30 * 2.77e45
9.6950000000000002e+75
>>> 1000000001.0 ** 3
1.000000003e+27
Next, the following examples use complex numbers:
Complex numbers consist of both a real element and an imaginary element, suffixed with a j. In the preceding code, variable x is assigned to a complex number . You can obtain its “real” part using the attribute notation x.real.
Several built-in functions can operate on numbers. There are also the library module cmath (which contains functions for complex numbers) and the library module math (which contains functions for the other three types):
Built-in functions are always available and are called using a standard function calling syntax. In the preceding code, round is called with a float as its input argument .
The functions in library modules are made available using the import statement. At , the math library module is imported, and its ceil function is called using attribute notation: module.function(arguments).
The following examples use Booleans:
Other than their representation as True and False, Booleans behave like the numbers 1 (True) and 0 (False) .
3.2.2. Lists
Python has a powerful built-in list type:
A list can contain a mixture of other types as its elements, including strings, tuples, lists, dictionaries, functions, file objects, and any type of number .
A list can be indexed from its front or back. You can also refer to a subsegment, or slice, of a list using slice notation:
Index from the front using positive indices (starting with 0 as the first element). Index from the back
using negative indices (starting with -1 as the last element). Obtain a slice using [m:n]
, where m is the inclusive starting point and n is the exclusive ending point (see table 3.1). An [:n] slice
starts at its beginning, and an [m:] slice goes to a list’s end.
Table 3.1. List indices
x= | [ | "first" , | "second" , | "third" , | "fourth" | ] |
---|---|---|---|---|---|---|
Positive indices | 0 | 1 | 2 | 3 | ||
Negative indices | –4 | –3 | –2 | –1 |
You can use this notation to add, remove, and replace elements in a list or to obtain an element or a new list that is a slice from it:
The size of the list increases or decreases if the new slice is bigger or smaller than the slice it’s replacing .
Some built-in functions (len, max, and min), some operators (in, +, and *), the del statement, and the list methods (append, count, extend, index, insert, pop, remove, reverse, and sort) will operate on lists:
The operators + and * each create a new list, leaving the original unchanged . A list’s methods are called using attribute notation on the list itself: x.method(arguments)
.
A number of these operations repeat functionality that can be performed with slice notation, but they improve code readability.
3.2.3. Tuples
Tuples are similar to lists but are immutable—that is, they can’t be modified after they have been created. The operators (in, +, and *) and built-in functions (len, max, and min), operate on them the same way as they do on lists, because none of them modify the original. Index and slice notation work the same way for obtaining elements or slices but can’t be used to add, remove, or replace elements. There are also only two tuple methods: count and index. A major purpose of tuples is for use as keys for dictionaries. They’re also more efficient to use when you don’t need modifiability.
A one-element tuple needs a comma. A tuple, like a list, can contain a mixture of other types as its elements, including strings, tuples, lists, dictionaries, functions, file objects, and any type of number
.
A list can be converted to a tuple using the built-in function tuple:
>>> x = [1, 2, 3, 4]
>>> tuple(x)
(1, 2, 3, 4)
Conversely, a tuple can be converted to a list using the built-in function list:
>>> x = (1, 2, 3, 4)
>>> list(x)
[1, 2, 3, 4]
3.2.4. Strings
String processing is one of Python’s strengths. There are many options for delimiting strings:
"A string in double quotes can contain 'single quote' characters."
'A string in single quotes can contain "double quote" characters.'
'''\tThis string starts with a tab and ends with a newline character.\n'''
"""This is a triple double quoted string, the only kind that can
contain real newlines."""
Strings can be delimited by single (' '), double (" "), triple single (''' '''), or triple double (""" """) quotations and can contain tab (\t) and newline (\n) characters.
Strings are also immutable. The operators and functions that work with them return new strings derived from the original. The operators (in, +, and *) and built-in functions (len, max, and min) operate on strings as they do on lists and tuples. Index and slice notation works the same for obtaining elements or slices but can’t be used to add, remove, or replace elements.
Strings have several methods to work with their contents, and the re library module also contains functions for working with strings:
The re module provides regular expression functionality. It provides more sophisticated pattern extraction and replacement capability than the string module.
The print function outputs strings. Other Python data types can be easily converted to strings and formatted:
Objects are automatically converted to string representations for printing . The % operator
provides a formatting capability similar to that of C’s sprintf.
3.2.5. Dictionaries
Python’s built-in dictionary data type provides associative array functionality implemented using hash tables. The built-in len function returns the number of key-value pairs in a dictionary. The del statement can be used to delete a key-value pair. As is the case for lists, a number of dictionary methods (clear, copy, get, has_key, items, keys, update, and values) are available.
Keys must be of an immutable type . This includes numbers, strings, and tuples. Values can be any kind of object, including mutable types such as lists and dictionaries. The dictionary method get
optionally returns a user-definable value when a key isn’t in a dictionary.
3.2.6. Sets
A set in Python is an unordered collection of objects, used in situations where membership and uniqueness in the set are the main things you need to know about that object. You can think of sets as a collection of dictionary keys without any associated values:
You can create a set by using set on a sequence, like a list . When a sequence is made into a set, duplicates are removed
. The in keyword
is used to check for membership of an object in a set.
3.2.7. File objects
A file is accessed through a Python file object:
The open statement creates a file object. Here the file myfile in the current working directory is being opened in write ("w") mode. After writing two lines to it and closing it
, we open the same file again, this time in the read ("r") mode. The os module
provides a number of functions for moving around the file system and working with the pathnames of files and directories. Here, we move to another directory
. But by referring to the file by an absolute pathname
, we are still able to access it.
A number of other input/output capabilities are available. You can use the built-in input function to prompt and obtain a string from the user. The sys library module allows access to stdin, stdout, and stderr. The struct library module provides support for reading and writing files that were generated by or are to be used by C programs. The Pickle library module delivers data persistence through the ability to easily read and write the Python data types to and from files.
3.3. Control flow structures
Python has a full range of structures to control code execution and program flow, including common branching and looping structures.
3.3.1. Boolean values and expressions
Python has several ways of expressing Boolean values; the Boolean constant False, 0, the Python nil value None, and empty values (for example, the empty list [ ] or empty string "") are all taken as False. The Boolean constant True and everything else are considered True.
You can create comparison expressions using the comparison operators (<, <=, ==, >, >=, !=, is, is not, in, not in) and the logical operators (and, not, or), which all return True or False.
3.3.2. The if-elif-else statement
The block of code after the first true condition (of an if or an elif) is executed. If none of the conditions is true, the block of code after the else is executed:
The elif and else clauses are optional , and there can be any number of elif clauses. Python uses indentation to delimit blocks
. No explicit delimiters such as brackets or braces are necessary. Each block consists of one or more statements separated by newlines. These statements must all be at the same level of indentation.
The output here would be 5 0 10.
3.3.3. The while loop
The while loop is executed as long as the condition (which here is x > y) is true:
This is a shorthand notation. Here, u and v are assigned a value of 0, x is set to 100, and y obtains a value of 30 . This is the loop block
. It’s possible for it to contain break (which ends the loop) and continue statements (which abort the current iteration of the loop).
The output here would be 60 40.
3.3.4. The for loop
The for loop is simple but powerful because it’s possible to iterate over any iterable type, such as a list or tuple. Unlike in many languages, Python’s for loop iterates over each of the items in a sequence, making it more of a foreach loop. The following loop finds the first occurrence of an integer that is divisible by 7:
x is sequentially assigned each value in the list . If x isn’t an integer, then the rest of this iteration is aborted by the continue statement
. Flow control continues with x set to the next item from the list. After the first appropriate integer is found, the loop is ended by the break statement
.
The output here would be
found an integer divisible by seven: 49
3.3.5. Function definition
Python provides flexible mechanisms for passing arguments to functions:
Functions are defined using the def statement . The return statement
is what a function uses to return a value. This value can be of any type. If no return statement is encountered, Python’s None value is returned. Function arguments can be entered either by position or by name (keyword). Here z and y are entered by name
. Function parameters can be defined with defaults that are used if a function call leaves them out
. A special parameter can be defined that will collect all extra positional arguments in a function call into a tuple
. Likewise, a special parameter can be defined that will collect all extra keyword arguments in a function call into a dictionary
.
3.3.6. Exceptions
Exceptions (errors) can be caught and handled using the try-except-finally-else compound statement. This statement can also catch and handle exceptions you define and raise yourself. Any exception that isn’t caught will cause the program to exit. Listing 3.1 shows basic exception handling.
Listing 3.1. File exception.py
Here we define our own exception type inheriting from the base Exception type . If an IOError or EmptyFileError occurs during the execution of the statements in the try block, the associated except block is executed
. This is where an IOError might be raised
. Here we raise the EmptyFileError
. The else clause is optional
. It’s executed if no exception occurs in the try block (note that in this example, continue statements in the except blocks could have been used instead). The finally clause is optional
. It’s executed at the end of the block whether an exception was raised or not.
3.4. Module creation
It’s easy to create your own modules, which can be imported and used in the same way as Python’s built-in library modules. The example in listing 3.2 is a simple module with one function that prompts the user to enter a filename and determines the number of times words occur in this file.
Listing 3.2. File wo.py
Documentation strings are a standard way of documenting modules, functions, methods, and classes . Comments are anything beginning with a # character
. read returns a string containing all the characters in a file
, and split returns a list of the words of a string “split out” based on whitespace. You can use a \ to break a long statement across multiple lines
. This allows the program to also be run as a script by typing python wo.py at a command line
.
If you place a file in one of the directories on the module search path, which can be found in sys.path, then it can be imported like any of the built-in library modules using the import statement:
This function is called using the same attribute syntax as used for library module functions.
Note that if you change the file wo.py on disk, import won’t bring your changes in to the same interactive session. You use the reload function from the imp library in this situation:
>>> import imp
>>> imp.reload(wo)
<module 'wo'>
For larger projects, there is a generalization of the module concept called packages. This allows you to easily group a number of modules together in a directory or directory subtree and import and hierarchically refer to them using a package.subpackage.module syntax. This entails little more than the creation of a possibly empty initialization file for each package or subpackage.
3.5. Object-oriented programming
Python provides full support for OOP. Listing 3.3 is an example that might be the start of a simple shapes module for a drawing program. It’s intended mainly to serve as reference if you’re already familiar with object-oriented programming. The callout notes relate Python’s syntax and semantics to the standard features found in other languages.
Listing 3.3. File sh.py
Classes are defined using the class keyword . The instance initializer method (constructor) for a class is always called __init__
. Instance variables x and y are created and initialized here
. Methods, like functions, are defined using the def keyword
. The first argument of any method is by convention called self. When the method is invoked, self is set to the instance that invoked the method. Class Circle inherits from class Shape
. This is similar to but not exactly like a standard class variable
. A class must, in its initializer, explicitly call the initializer of its base class
. The __str__ method is used by the print function
. Other special attribute methods permit operator overloading or are employed by built-in methods such as the length (len) function.
Importing this file makes these classes available:
The initializer is implicitly called, and a circle instance is created . The print function implicitly uses the special __str__ method
. Here we see that the move method of Circle’s parent class Shape is available
. A method is called using attribute syntax on the object instance: object.method(). The first (self) parameter is set implicitly.
3.6. Summary
This ends our overview of Python. Don’t worry if some parts were confusing. You need an understanding of only the broad strokes at this point. The chapters in part 2 and part 3 won’t assume prior knowledge of their concepts and will walk you through these features in detail. You can also think of this as an early preview of what your level of knowledge will be when you’re ready to move on to the chapters in part 4. You may find it valuable to return here and work through the appropriate examples as a review after we cover the features in subsequent chapters.
If this chapter was mostly a review for you, or there were only a few features you would like to learn more about, feel free to jump ahead, using the index, the table of contents, or the appendix. You can always slow down if anything catches your eye. You probably should have an understanding of Python to the level that you have no trouble understanding most of this chapter before you move on to the chapters in part 4.
Part 2. The essentials
In the chapters that follow, we’ll show you the essentials of Python. We’ll start from the absolute basics of what makes a Python program and move through Python’s built-in data types and control structures, as well as defining functions and using modules.
The last section of this part moves on to show you how to write standalone Python programs, manipulate files, handle errors, and use classes. The section ends with chapter 16, which is a brief introduction to GUI programming using Python’s tkinter module.
Chapter 4. The absolute basics
This chapter covers
This chapter describes the absolute basics in Python: assignments and expressions, how to type a number or a string, how to indicate comments in code, and so forth. It starts out with a discussion of how Python block structures its code, which is different from any other major language.
4.1. Indentation and block structuring
Python differs from most other programming languages because it uses whitespace and indentation to determine block structure (that is, to determine what constitutes the body of a loop, the else clause of a conditional, and so on). Most languages use braces of some sort to do this. Here is C code that calculates the factorial of 9, leaving the result in the variable r:
/* This is C code */
int n, r;
n = 9;
r = 1;
while (n > 0) {
r *= n;
n--;
}
The { and } delimit the body of the while loop, the code that is executed with each repetition of the loop. The code is usually indented more or less as shown, to make clear what’s going on, but it could also be written like this:
/* And this is C code with arbitrary indentation */
int n, r;
n = 9;
r = 1;
while (n > 0) {
r *= n;
n--;
}
It still would execute correctly, even though it’s rather difficult to read.
Here’s the Python equivalent:
Python doesn’t use braces to indicate code structure; instead, the indentation itself is used. The last two lines of the previous code are the body of the while loop because they come immediately after the while statement and are indented one level further than the while statement. If they weren’t indented, they wouldn’t be part of the body of the while.
Using indentation to structure code rather than braces may take some getting used to, but there are significant benefits:
You probably use consistent indentation in your code already, so this won’t be a big step for you. If you’re using IDLE, it automatically indents lines. You just need to backspace out of levels of indentation when desired. Most programming editors and IDEs, including Emacs, VIM, and Eclipse, to name a few, provide this functionality as well. One thing that may trip you up once or twice until you get used to it is that the Python interpreter returns an error message if you have a space (or spaces) preceding the commands you enter at a prompt.
4.2. Differentiating comments
For the most part, anything following a # symbol in a Python file is a comment and is disregarded by the language. The obvious exception is a # in a string, which is just a character of that string:
# Assign 5 to x
x = 5
x = 3 # Now x is 3
x = "# This is not a comment"
We’ll put comments into Python code frequently.
4.3. Variables and assignments
The most commonly used command in Python is assignment, which looks pretty close to what you might’ve used in other languages. Python code to create a variable called x and assign the value 5 to that variable is
x = 5
In Python, neither a variable type declaration nor an end-of-line delimiter is necessary, unlike in many other computer languages. The line is ended by the end of the line. Variables are created automatically when they’re first assigned.
Python variables can be set to any object, unlike C or many other languages’ variables, which can store only the type of value they’re declared as. The following is perfectly legal Python code:
>>> x = "Hello"
>>> print(x)
Hello
>>> x = 5
>>> print(x)
5
x starts out referring to the string object "Hello" and then refers to the integer object 5. Of course, this feature can be abused because arbitrarily assigning the same variable name to refer successively to different data types can make code confusing to understand.
A new assignment overrides any previous assignments. The del statement deletes the variable. Trying to print the variable’s contents after deleting it gives an error the same as if the variable had never been created in the first place.
>>> x = 5
>>> print(x)
5
>>> del x
>>> print(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>>
Here we have our first look at a traceback, which is printed when an error, called an exception, has been detected. The last line tells us what exception was detected, which in this case is a NameError exception on x. After its deletion, x is no longer a valid variable name. In this example, the trace returns only line 1, in <module> because only the single line has been sent in the interactive mode. In general, the full dynamic call structure of the existing function calls at the time of the occurrence of the error is returned. If you’re using IDLE, you obtain the same information with some small differences; it may look something like this:
Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
print(x)
NameError: name 'x' is not defined
Chapter 14 will describe this mechanism in more detail. A full list of the possible exceptions and what causes them is in the appendix of this book. Use the index to find any specific exception (such as NameError) you receive.
Variable names are case sensitive and can include any alphanumeric character as well as underscores but must start with a letter or underscore. See section 4.10 for more guidance on the Pythonic style for creating variable names.
4.4. Expressions
Python supports arithmetic and similar expressions; these will be familiar to most readers. The following code calculates the average of 3 and 5, leaving the result in the variable z:
x = 3
y = 5
z = (x + y) / 2
Note that unlike the arithmetic rules of C in terms of type coercions, arithmetic operators involving only integers do not always return an integer. Even though all the values are integers, division (starting with Python 3) returns a floating-point number, so the fractional part isn’t truncated. If you want traditional integer division returning a truncated integer, you can use the // instead.
Standard rules of arithmetic precedence apply; if we’d left out the parentheses in the last line, it would’ve been calculated as x + (y / 2).
Expressions don’t have to involve just numerical values; strings, Boolean values, and many other types of objects can be used in expressions in various ways. We’ll discuss these in more detail as they’re used.
4.5. Strings
You’ve already seen that Python, like most other programming languages, indicates strings through the use of double quotes. This line leaves the string "Hello, World" in the variable x:
x = "Hello, World"
Backslashes can be used to escape characters, to give them special meanings. \n means the newline character, \t means the tab character, \\ means a single normal backslash character, and \" is a plain double-quote character. It doesn’t end the string:
x = "\tThis string starts with a \"tab\"."
x = "This string contains a single backslash(\\)."
You can use single quotes instead of double quotes. The following two lines do the same thing:
x = "Hello, World"
x = 'Hello, World'
The only difference is that you don’t need to backslash " characters in single-quoted strings or ' characters in double-quoted strings:
x = "Don't need a backslash"
x = 'Can\'t get by without a backslash'
x = "Backslash your \" character!"
x = 'You can leave the " alone'
You can’t split a normal string across lines; this code won’t work:
# This Python code will cause an ERROR -- you can't split the string
across two lines.
x = "This is a misguided attempt to
put a newline into a string without using backslash-n"
But Python offers triple-quoted strings, which let you do this and permit single and double quotes to be included without backslashes:
x = """Starting and ending a string with triple " characters
permits embedded newlines, and the use of " and ' without
backslashes"""
Now x is the entire sentence between the """ delimiters. (You can also use triple single quotes—'''—instead of triple double quotes to do the same thing.)
Python offers enough string-related functionality that chapter 6 is devoted to the topic.
4.6. Numbers
Because you’re probably familiar with standard numeric operations from other languages, this book doesn’t contain a separate chapter describing Python’s numeric abilities. This section describes the unique features of Python numbers, and the Python documentation lists the available functions.
Python offers four kinds of numbers: integers, floats, complex numbers, and Booleans. An integer constant is written as an integer—0, –11, +33, 123456—and has unlimited range, restricted only by the resources of your machine. A float can be written with a decimal point or using scientific notation: 3.14, –2E-8, 2.718281828. The precision of these values is governed by the underlying machine but is typically equal to double (64-bit) types in C. Complex numbers are probably of limited interest and are discussed separately later in the section. Booleans are either True or False and behave identically to 1 and 0 except for their string representations.
Arithmetic is much like it is in C. Operations involving two integers produce an integer, except for division (/), where a float results. If the // division symbol is used, the result is an integer, with truncation. Operations involving a float always produce a float. Here are a few examples:
These are explicit conversions between types . int will truncate float values.
Numbers in Python have two advantages over C or Java. First, integers can be arbitrarily large; and second, the division of two integers results in a float.
4.6.1. Built-in numeric functions
Python provides the following number-related functions as part of its core:
abs, divmod, float, hex, long, max, min, oct, pow, round
See the documentation for details.
4.6.2. Advanced numeric functions
More advanced numeric functions such as the trig and hyperbolic trig functions, as well as a few useful constants, aren’t built-ins in Python but are provided in a standard module called math. Modules will be explained in detail later; for now, it’s sufficient to know that the math functions in this section must be made available by starting your Python program or interactive session with the statement
from math import *
The math module provides the following functions and constants:
acos, acosh, asin, asinh, atan, atan2, atanh, ceil, copysign,
cos, cosh, degrees, e, exp, fabs, factorial, floor, fmod,
frexp, fsum, hypot, isinf, isnan, ldexp, log, log10, log1p,
modf, pi, pow, radians, sin, sinh, sqrt, tan, tanh, trunc
See the documentation for details.
4.6.3. Numeric computation
The core Python installation isn’t well suited to intensive numeric computation because of speed constraints. But the powerful Python extension NumPy provides highly efficient implementations of many advanced numeric operations. The emphasis is on array operations, including multidimensional matrices and more advanced functions such as the Fast Fourier Transform. You should be able to find NumPy (or links to it) at www.scipy.org.
4.6.4. Complex numbers
Complex numbers are created automatically whenever an expression of the form nj is encountered, with n having the same form as a Python integer or float. j is, of course, standard engineering notation for the imaginary number equal to the square root of –1, for example:
>>> (3+2j)
(3+2j)
Note that Python expresses the resulting complex number in parentheses, as a way of indicating that what is printed to the screen represents the value of a single object:
>>> 3 + 2j - (4+4j)
(-1-2j)
>>> (1+2j) * (3+4j)
(-5+10j)
>>> 1j * 1j
(-1+0j)
Calculating j * j gives the expected answer of –1, but the result remains a Python complex number object. Complex numbers are never converted automatically to equivalent real or integer objects. But you can easily access their real and imaginary parts with real and imag:
>>> z = (3+5j)
>>> z.real
3.0
>>> z.imag
5.0
Note that real and imaginary parts of a complex number are always returned as floating-point numbers.
4.6.5. Advanced complex-number functions
The functions in the math module don’t apply to complex numbers; the rationale is that most users want the square root of –1 to generate an error, not an answer! Instead, similar functions, which can operate on complex numbers, are provided in the cmath module:
acos, acosh, asin, asinh, atan, atanh, cos, cosh, e, exp,
isinf, isnan, log, log10, phase, pi, polar, rect, sin, sinh,
sqrt, tan, tanh
In order to make clear in the code that these are special-purpose complex-number functions and to avoid name conflicts with the more normal equivalents, it’s best to import the cmath module by saying
import cmath
and then to explicitly refer to the cmath package when using the function:
>>> import cmath
>>> cmath.sqrt(-1)
1j
Minimizing from <module> import *
This is a good example of why it’s best to minimize the use of the from <module> import * form of the import statement. If you imported first the math and then the cmath modules using it, the commonly named functions in cmath would override those of math. It’s also more work for someone reading your code to figure out the source of the specific functions you use. Some modules are explicitly designed to use this form of import.
See chapter 10 for more details on how to use modules and module names.
The important thing to keep in mind is that by importing the cmath module, you can do almost anything you can do with other numbers.
4.7. The None value
In addition to standard types such as strings and numbers, Python has a special basic data type that defines a single special data object called None. As the name suggests, None is used to represent an empty value. It appears in various guises throughout Python. For example, a procedure in Python is just a function that doesn’t explicitly return a value, which means that, by default, it returns None.
None is often useful in day-to-day Python programming as a placeholder, to indicate a point in a data structure where meaningful data will eventually be found, even though that data hasn’t yet been calculated. You can easily test for the presence of None, because there is only one instance of None in the entire Python system (all references to None point to the same object), and None is equivalent only to itself.
4.8. Getting input from the user
You can also use the input() function to get input from the user. Use the prompt string you want displayed to the user as input’s parameter:
This is a fairly simple way to get user input. The one catch is that the input comes in as a string, so if you want to use it as a number, you have to use the int() or float() function to convert it.
4.9. Built-in operators
Python provides various built-in operators, from the standard (such as +, *, and so on) to the more esoteric, such as operators for performing bit shifting, bitwise logical functions, and so forth. Most of these operators are no more unique to Python than to any other language, and hence I won’t explain them in the main text. You can find a complete list of the Python built-in operators in the documentation.
4.10. Basic Python style
Python has relatively few limitations on coding style with the obvious exception of the requirement to use indentation to organize code into blocks. Even in that case, the amount of indentation and type of indentation (tabs versus spaces) isn’t mandated. However, there are preferred stylistic conventions for Python, which are contained in Python Enhancement Proposal (PEP) 8, which is summarized in the appendix and can be found online at www.python.org/dev/peps/pep-0008/. A selection of Pythonic conventions is provided in table 4.1, but to fully absorb Pythonic style you’ll need to periodically reread PEP 8.
Table 4.1. Pythonic coding conventions
Situation | Suggestion | Example |
---|---|---|
Module/package names | short, all lowercase, underscores only if needed | imp, sys |
Function names | all lowercase, underscores_for_readablitiy | foo(), my_func() |
Variable names | all lowercase, underscores_for_readablitiy | my_var |
Class names | CapitalizeEachWord | MyClass |
Constant names | ALL_CAPS_WITH_UNDERSCORES | PI, TAX_RATE |
Indentation | 4 spaces per level, don’t use tabs | |
Comparisons | Don’t compare explicitly to True or False | if my_var: if not my_var: |
I strongly urge you to follow the conventions of PEP 8. They’re wisely chosen and time tested and will make your code easier for you and other Python programmers to understand.
4.11. Summary
That’s the view of Python from 30,000 feet. If you’re an experienced programmer, you’re probably already seeing how you can write your code in Python. If that’s the case, you should feel free to start experimenting with your own code. Many programmers find it surprisingly easy to pick up Python syntax, because there are relatively few surprises. Once you pick up the basics of the language, it’s very predictable and consistent.
In any case, we have just covered the broadest outlines of the language, and there are lots of details that we still need to cover, beginning in the next chapter with one of the workhorses of Python, lists.
Chapter 5. Lists, tuples, and sets
This chapter covers
In this chapter, we’ll discuss the two major Python sequence types: lists and tuples. At first, lists may remind you of arrays in many other languages, but don’t be fooled—lists are a good deal more flexible and powerful than plain arrays. This chapter also discusses a newer Python collection type: sets. Sets are useful when an object’s membership in the collection, as opposed to its position, is important.
Tuples are like lists that can’t be modified—you can think of them as a restricted type of list or as a basic record type. We’ll discuss why we need such a restricted data type later in the chapter.
Most of the chapter is devoted to lists, because if you understand lists, you pretty much understand tuples. The last part of the chapter discusses the differences between lists and tuples, in both functional and design terms.
5.1. Lists are like arrays
A list in Python is much the same thing as an array in Java or C or any other language. It’s an ordered collection of objects. You create a listd by enclosing a comma-separated list of elements in square brackets, like so:
# This assigns a three-element list to x
x = [1, 2, 3]
Note that you don’t have to worry about declaring the list or fixing its size ahead of time. This line creates the list as well as assigns it, and a list automatically grows or shrinks in size as needed.
Arrays in Python
A typed array module is available in Python that provides arrays based on C data types. Information on its use can be found in the Python Library Reference. I suggest you look into it only if you run into a situation where you really need the performance improvement. If a situation calls for numerical computations, you should consider using NumPy, mentioned in section 4.6.3, available at www.scipy.org.
Unlike lists in many other languages, Python lists can contain different types of elements; a list element can be any Python object. Here’s a list that contains a variety of elements:
# First element is a number, second is a string, third is another list.
x = [2, "two", [1, 2, 3]]
Probably the most basic built-in list function is the len function, which returns the number of elements in a list:
>>> x = [2, "two", [1, 2, 3]]
>>> len(x)
3
Note that the len function doesn’t count the items in the inner, nested list.
5.2. List indices
Understanding how list indices work will make Python much more useful to you. Please read the whole section!
Elements can be extracted from a Python list using a notation like C’s array indexing. Like C and many other languages, Python starts counting from 0; asking for element 0 returns the first element of the list, asking for element 1 returns the second element, and so forth. Here are a few examples:
>>> x = ["first", "second", "third", "fourth"]
>>> x[0]
'first'
>>> x[2]
'third'
But Python indexing is more flexible than C indexing; if indices are negative numbers, they indicate positions counting from the end of the list, with –1 being the last position in the list, –2 being the second-to-last position, and so forth. Continuing with the same list x, we can do the following:
>>> a = x[-1]
>>> a
'fourth'
>>> x[-2]
'third'
For operations involving a single list index, it’s generally satisfactory to think of the index as pointing at a particular element in the list. For more advanced operations, it’s more correct to think of list indices as indicating positions between elements. In the list ["first", "second", "third", "fourth"], you can think of the indices as pointing like this:
x =[ | "first", | "second", | "third", | "fourth" | ] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Positive indices | 0 | 1 | 2 | 3 | ||||||
Negative indices | –4 | –3 | –2 | –1 |
This is irrelevant when you’re extracting a single element, but Python can extract or assign to an entire sublist at once, an operation known as slicing. Instead of entering list[index] to extract the item just after index, enter list[index1:index2] to extract all items including index1 and up to (but not including) index2 into a new list. Here are some examples:
>>> x = ["first", "second", "third", "fourth"]
>>> x[1:-1]
['second', 'third']
>>> x[0:3]
['first', 'second', 'third']
>>> x[-2:-1]
['third']
It may seem reasonable that if the second index indicates a position in the list before the first index, this would return the elements between those indices in reverse order, but this isn’t what happens. Instead, this return: an empty list:
>>> x[-1:2]
[]
When slicing a list, it’s also possible to leave out index1 or index2. Leaving out index1 means “go from the beginning of the list,” and leaving out index2 means “go to the end of the list”:
>>> x[:3]
['first', 'second', 'third']
>>> x[2:]
['third', 'fourth']
Omitting both indices makes a new list that goes from the beginning to the end of the original list; that is, it copies the list. This is useful when you wish to make a copy that you can modify, without affecting the original list:
>>> y = x[:]
>>> y[0] = '1 st'
>>> y
['1 st', 'second', 'third', 'fourth']
>>> x
['first', 'second', 'third', 'fourth']
5.3. Modifying lists
You can use list index notation to modify a list as well as to extract an element from it. Put the index on the left side of the assignment operator:
>>> x = [1, 2, 3, 4]
>>> x[1] = "two"
>>> x
[1, 'two', 3, 4]
Slice notation can be used here too. Saying something like lista[index1:index2] = listb causes all elements of lista between index1 and index2 to be replaced with the elements in listb. listb can have more or fewer elements than are removed from lista, in which case the length of lista will be altered. You can use slice assignment to do a number of different things, as shown here:
Appending a single element to a list is such a common operation that there’s a special append method to do it:
>>> x = [1, 2, 3]
>>> x.append("four")
>>> x
[1, 2, 3, 'four']
One problem can occur if you try to append one list to another. The list gets appended as a single element of the main list:
>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7]
>>> x.append(y)
>>> x
[1, 2, 3, 4, [5, 6, 7]]
The extend method is like the append method, except that it allows you to add one list to another:
>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7]
>>> x.extend(y)
>>> x
[1, 2, 3, 4, 5, 6, 7]
There is also a special insert method to insert new list elements between two existing elements or at the front of the list. insert is used as a method of lists and takes two additional arguments; the first is the index position in the list where the new element should be inserted, and the second is the new element itself:
>>> x = [1, 2, 3]
>>> x.insert(2, "hello")
>>> print(x)
[1, 2, 'hello', 3]
>>> x.insert(0, "start")
>>> print(x)
['start', 1, 2, 'hello', 3]
insert understands list indices as discussed in the section on slice notation, but for most uses it’s easiest to think of list.insert(n, elem) as meaning insert elem just before the nth element of list. insert is just a convenience method. Anything that can be done with insert can also be done using slice assignment; that is, list.insert(n, elem) is the same thing as list[n:n] = [elem] when n is nonnegative. Using insert makes for somewhat more readable code, and insert even handles negative indices:
>>> x = [1, 2, 3]
>>> x.insert(-1, "hello")
>>> print(x)
[1, 2, 'hello', 3]
The del statement is the preferred method of deleting list items or slices. It doesn’t do anything that can’t be done with slice assignment, but it’s usually easier to remember and easier to read:
>>> x = ['a', 2, 'c', 7, 9, 11]
>>> del x[1]
>>> x
['a', 'c', 7, 9, 11]
>>> del x[:2]
>>> x
[7, 9, 11]
In general, del list[n] does the same thing as list[n:n+1] = [], whereas del list[m:n] does the same thing as list[m:n] = [].
The remove method isn’t the converse of insert. Whereas insert inserts an element at a specified location, remove looks for the first instance of a given value in a list and removes that value from the list:
>>> x = [1, 2, 3, 4, 3, 5]
>>> x.remove(3)
>>> x
[1, 2, 4, 3, 5]
>>> x.remove(3)
>>> x
[1, 2, 4, 5]
>>> x.remove(3)
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
If remove can’t find anything to remove, it raises an error. You can catch this error using the exception-handling abilities of Python, or you can avoid the problem by using in to check for the presence of something in a list before attempting to remove it.
The reverse method is a more specialized list modification method. It efficiently reverses a list in place:
>>> x = [1, 3, 5, 6, 7]
>>> x.reverse()
>>> x
[7, 6, 5, 3, 1]
5.4. Sorting lists
Lists can be sorted using the built-in Python sort method:
>>> x = [3, 8, 4, 0, 2, 1]
>>> x.sort()
>>> x
[0, 1, 2, 3, 4, 8]
This does an in-place sort—that is, it changes the list being sorted. To sort a list without changing the original list, make a copy of it first.
>>> x = [2, 4, 1, 3]
>>> y = x[:]
>>> y.sort()
>>> y
[1, 2, 3, 4]
>>> x
[2, 4, 1, 3]
Sorting works with strings, too:
>>> x = ["Life", "Is", "Enchanting"]
>>> x.sort()
>>> x
['Enchanting', 'Is', 'Life']
The sort method can sort just about anything, because Python can compare just about anything. But there is one caveat in sorting. The default key method used by sort requires that all items in the list be of comparable types. That means that using the sort method on a list containing both numbers and strings will raise an exception:
>>> x = [1, 2, 'hello', 3]
>>> x.sort()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unorderable types: str() < int()
On the other hand, we can sort a list of lists:
>>> x = [[3, 5], [2, 9], [2, 3], [4, 1], [3, 2]]
>>> x.sort()
>>> x
[[2, 3], [2, 9], [3, 2], [3, 5], [4, 1]]
According to the built-in Python rules for comparing complex objects, the sublists are sorted first by ascending first element and then by ascending second element.
sort is even more flexible than this—it’s possible to use your own key function to determine how elements of a list are sorted.
5.4.1. Custom sorting
To use custom sorting, you need to be able to define functions, something we haven’t talked about. In this section we’ll also use the fact that len(string) returns the number of characters in a string. String operations are discussed more fully in chapter 6.
By default, sort uses built-in Python comparison functions to determine ordering, which is satisfactory for most purposes. There will be times, though, when you want to sort a list in a way that doesn’t correspond to this default ordering. For example, let’s say we wish to sort a list of words by the number of characters in each word, in contrast to the lexicographic sort that would normally be carried out by Python.
To do this, write a function that will return the value, or key, that we want to sort on, and use it with the sort method. That function in the context of sort is a function that takes one argument and returns the key or value the sort function is to use.
For our number-of-characters ordering, a suitable key function could be
def compare_num_of_chars(string1):
return len(string1)
This key function is trivial. It passes the length of each string back to the sort method, rather than the strings themselves.
After you define the key function, using it is a matter of passing it to the sort method using the key keyword. Because functions are Python objects, they can be passed around like any other Python object. Here’s a small program that illustrates the difference between a default sort and our custom sort:
>>> def compare_num_of_chars(string1):
... return len(string1)
>>> word_list = ['Python', 'is', 'better', 'than', 'C']
>>> word_list.sort()
>>> print(word_list)
['C', 'Python', 'better', 'is', 'than']
>>> word_list = ['Python', 'is', 'better', 'than', 'C']
>>> word_list.sort(key=compare_num_of_chars)
>>> print(word_list)
['C', 'is', 'than', 'Python', 'better']
The first list is in lexicographic order (with uppercase coming before lowercase), and the second list is ordered by ascending number of characters.
Custom sorting is very useful, but if performance is critical, it may be slower than the default. Usually this impact is minimal, but if the key function is particularly complex, the effect may be more than desired, especially for sorts involving hundreds of thousands or millions of elements.
One particular place to avoid custom sorts is where you want to sort a list in descending, rather than ascending, order. In this case, use the sort method’s reverse parameter set to True. If for some reason you don’t want to do that, it’s still better to sort the list normally and then use the reverse method to invert the order of the resulting list. These two operations together—the standard sort and the reverse—will still be much faster than a custom sort.
5.4.2. The sorted() function
Lists have a built-in method to sort themselves, but other iterables in Python, like the keys of a dictionary, for example, don’t have a sort method. Python also has the built-in function sorted(), which returns a sorted list from any iterable. sorted() uses the same key and reverse parameters as the sort method:
>>> x = (4, 3, 1, 2)
>>> y = sorted(x)
>>> y
[1, 2, 3, 4]
5.5. Other common list operations
A number of other list methods are frequently useful, but they don’t fall into any specific category.
5.5.1. List membership with the in operator
It’s easy to test if a value is in a list using the in operator, which returns a Boolean value. You can also use the converse, the not in operator:
>>> 3 in [1, 3, 4, 5]
True
>>> 3 not in [1, 3, 4, 5]
False
>>> 3 in ["one", "two", "three"]
False
>>> 3 not in ["one", "two", "three"]
True
5.5.2. List concatenation with the + operator
To create a list by concatenating two existing lists, use the + (list concatenation) operator. This will leave the argument lists unchanged.
>>> z = [1, 2, 3] + [4, 5]
>>> z
[1, 2, 3, 4, 5]
5.5.3. List initialization with the * operator
Use the * operator to produce a list of a given size, which is initialized to a given value. This is a common operation for working with large lists whose size is known ahead of time. Although you can use append to add elements and automatically expand the list as needed, you obtain greater efficiency by using * to correctly size the list at the start of the program. A list that doesn’t change in size doesn’t incur any memory reallocation overhead:
>>> z = [None] * 4
>>> z
[None, None, None, None]
When used with lists in this manner, * (which in this context is called the list multiplication operator) replicates the given list the indicated number of times and joins all the copies to form a new list. This is the standard Python method for defining a list of a given size ahead of time. A list containing a single instance of None is commonly used in list multiplication, but the list can be anything:
>>> z = [3, 1] * 2
>>> z
[3, 1, 3, 1]
5.5.4. List minimum or maximum with min and max
You can use min and max to find the smallest and largest elements in a list. You’ll probably use these mostly with numerical lists, but they can be used with lists containing any type of element. Trying to find the maximum or minimum object in a set of objects of different types causes an error if it doesn’t make sense to compare those types:
>>> min([3, 7, 0, -2, 11])
-2
>>> max([4, "Hello", [1, 2]])
Traceback (most recent call last):
File "<pyshell#58>", line 1, in <module>
max([4, "Hello",[1, 2]])
TypeError: unorderable types: str() > int()
5.5.5. List search with index
If you wish to find where in a list a value can be found (rather than wanting to know only if the value is in the list), use the index method. It searches through a list looking for a list element equivalent to a given value and returns the position of that list element:
>>> x = [1, 3, "five", 7, -2]
>>> x.index(7)
3
>>> x.index(5)
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: list.index(x): x not in list
Attempting to find the position of an element that doesn’t exist in the list at all raises an error, as shown here. This can be handled in the same manner as the analogous error that can occur with the remove method (that is, by testing the list with in before using index).
5.5.6. List matches with count
count also searches through a list, looking for a given value, but it returns the number of times that value is found in the list rather than positional information:
>>> x = [1, 2, 2, 3, 5, 2, 5]
>>> x.count(2)
3
>>> x.count(5)
2
>>> x.count(4)
0
5.5.7. Summary of list operations
You can see that lists are very powerful data structures, with possibilities that go far beyond plain old arrays. List operations are so important in Python programming that it’s worth laying them out for easy reference, as shown in table 5.1.
Table 5.1. List operations
Being familiar with these list operations will make your life as a Python coder much easier.
5.6. Nested lists and deep copies
This is another advanced topic that you may want to skip if you’re just learning the language.
Lists can be nested. One application of this is to represent two-dimensional matrices. The members of these can be referred to using two-dimensional indices. Indices for these work as follows:
>>> m = [[0, 1, 2], [10, 11, 12], [20, 21, 22]]
>>> m[0]
[0, 1, 2]
>>> m[0][1]
1
>>> m[2]
[20, 21, 22]
>>> m[2][2]
22
This mechanism scales to higher dimensions in the manner you would expect.
Most of the time, this is all you need to concern yourself with. But there is an issue with nested lists that you may run into. This is the result of the combination of the way variables refer to objects and the fact that some objects (such as lists) can be modified (they’re mutable). An example is the best way to illustrate:
>>> nested = [0]
>>> original = [nested, 1]
>>> original
[[0], 1]
Figure 5.1 shows what this looks like.
Figure 5.1. A list with its first item referring to a nested list
The value in the nested list can now be changed using either the nested or the original variables:
>>> nested[0] = 'zero'
>>> original
[['zero'], 1]
>>> original[0][0] = 0
>>> nested
[0]
>>> original
[[0], 1]
But if nested is set to another list, the connection between them is broken:
>>> nested = [2]
>>> original
[[0], 1]
Figure 5.2 illustrates this.
Figure 5.2. The first item of the original list is still a nested list, but the nested variable refers to a different list.
You’ve seen that you can obtain a copy of a list by taking a full slice (that is, x[:]). You can also obtain a copy of a list using the + or * operator (for example, x + [] or x * 1). These are slightly less efficient than the slice method. All three create what is called a shallow copy of the list. This is probably what you want most of the time. But if your list has other lists nested in it, you may want to make a deep copy. You can do this with the deepcopy function of the copy module:
>>> original = [[0], 1]
>>> shallow = original[:]
>>> import copy
>>> deep = copy.deepcopy(original)
See figure 5.3 for an illustration.
Figure 5.3. A shallow copy doesn’t copy nested lists.
The lists pointed at by the original or shallow variables are connected. Changing the value in the nested list through either one of them affects the other:
>>> shallow[1] = 2
>>> shallow
[[0], 2]
>>> original
[[0], 1]
>>> shallow[0][0] = 'zero'
>>> original
[['zero'], 1]
The deep copy is independent of the original, and no change to it has any effect on the original list:
>>> deep[0][0] = 5
>>> deep
[[5], 1]
>>> original
[['zero'], 1]
This behavior is the same for any other nested objects in a list that are modifiable (such as dictionaries).
Now that you’ve seen what lists can do, it’s time to look at tuples.
5.7. Tuples
Tuples are data structures that are very similar to lists, but they can’t be modified. They can only be created. Tuples are so much like lists that you may wonder why Python bothers to include them. The reason is that tuples have important roles that can’t be efficiently filled by lists, as keys for dictionaries.
5.7.1. Tuple basics
Creating a tuple is similar to creating a list: assign a sequence of values to a variable. A list is a sequence that is enclosed by [ and ]; a tuple is a sequence that is enclosed by ( and ):
>>> x = ('a', 'b', 'c')
This line creates a three-element tuple.
After a tuple is created, using it is so much like using a list that it’s easy to forget they’re different data types:
>>> x[2]
'c'
>>> x[1:]
('b', 'c')
>>> len(x)
3
>>> max(x)
'c'
>>> min(x)
'a'
>>> 5 in x
False
>>> 5 not in x
True
The main difference between tuples and lists is that tuples are immutable. An attempt to modify a tuple results in a confusing error message, which is Python’s way of saying it doesn’t know how to set an item in a tuple.
>>> x[2] = 'd'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
You can create tuples from existing ones by using the + and * operators.
>>> x + x
('a', 'b', 'c', 'a', 'b', 'c')
>>> 2 * x
('a', 'b', 'c', 'a', 'b', 'c')
A copy of a tuple can be made in any of the same ways as for lists:
>>> x[:]
('a', 'b', 'c')
>>> x * 1
('a', 'b', 'c')
>>> x + ()
('a', 'b', 'c')
If you didn’t read section 5.6, “Nested lists and deep copies,” you can skip the rest of this paragraph. Tuples themselves can’t be modified. But if they contain any mutable objects (for example, lists or dictionaries), these may be changed if they’re still assigned to their own variables. Tuples that contain mutable objects aren’t allowed as keys for dictionaries.
5.7.2. One-element tuples need a comma
A small syntactical point is associated with using tuples. Because the square brackets used to enclose a list aren’t used elsewhere in Python, it’s clear that [] means an empty list and [1] means a list with one element. The same thing isn’t true with the parentheses used to enclose tuples. Parentheses can also be used to group items in expressions in order to force a certain evaluation order. If we say (x + y) in a Python program, do we mean that x and y should be added and then put into a one-element tuple, or do we mean that the parentheses should be used to force x and y to be added, before any expressions to either side come into play?
This is only a problem for tuples with one element, because tuples with more than one element always include commas to separate the elements, and the commas tell Python the parentheses indicate a tuple, not a grouping. In the case of one-element tuples, Python requires that the element in the tuple be followed by a comma, to disambiguate the situation. In the case of zero-element (empty) tuples, there’s no problem. An empty set of parentheses must be a tuple, because it’s meaningless otherwise.
>>> x = 3
>>> y = 4
>>> (x + y) # This adds x and y.
7
>>> (x + y,) # Including a comma indicates the parentheses denote a tuple.
(7,)
>>> () # To create an empty tuple, use an empty pair of parentheses.
()
5.7.3. Packing and unpacking tuples
As a convenience, Python permits tuples to appear on the left-hand side of an assignment operator, in which case variables in the tuple receive the corresponding values from the tuple on the right-hand side of the assignment operator. Here’s a simple example:
>>> (one, two, three, four) = (1, 2, 3, 4)
>>> one
1
>>> two
2
This can be written even more simply, because Python recognizes tuples in an assignment context even without the enclosing parentheses. The values on the right-hand side are packed into a tuple and then unpacked into the variables on the left-hand side:
one, two, three, four = 1, 2, 3, 4
One line of code has replaced the following four lines of code:
one = 1
two = 2
three = 3
four = 4
This is a convenient way to swap values between variables. Instead of saying
temp = var1
var1 = var2
var2 = temp
just say
var1, var2 = var2, var1
To make things even more convenient, Python 3 has an extended unpacking feature, allowing an element marked with a * to absorb any number elements not matching the other elements. Again, some examples will make this clearer:
>>> x = (1, 2, 3, 4)
>>> a, b, *c = x
>>> a, b, c
(1, 2, [3, 4])
>>> a, *b, c = x
>>> a, b, c
(1, [2, 3], 4)
>>> *a, b, c = x
>>> a, b, c
([1, 2], 3, 4)
>>> a, b, c, d, *e = x
>>> a, b, c, d, e
(1, 2, 3, 4, [])
Note that the starred element receives all the surplus items as a list, and that if there are no surplus elements, it receives an empty list.
Packing and unpacking can be performed using list delimiters as well:
>>> [a, b] = [1, 2]
>>> [c, d] = 3, 4
>>> [e, f] = (5, 6)
>>> (g, h) = 7, 8
>>> i, j = [9, 10]
>>> k, l = (11, 12)
>>> a
1
>>> [b, c, d]
[2, 3, 4]
>>> (e, f, g)
(5, 6, 7)
>>> h, i, j, k, l
(8, 9, 10, 11, 12)
5.7.4. Converting between lists and tuples
Tuples can be easily converted to lists with the list function (which takes any sequence as an argument and produces a new list with the same elements as the original sequence). Similarly, lists can be converted to tuples with the tuple function (which does the same thing but produces a new tuple instead of a new list):
>>> list((1, 2, 3, 4))
[1, 2, 3, 4]
>>> tuple([1, 2, 3, 4])
(1, 2, 3, 4)
As an interesting side note, list is a convenient way to break a string into characters:
>>> list("Hello")
['H', 'e', 'l', 'l', 'o']
This works because list (and tuple) apply to any Python sequence, and a string is just a sequence of characters. (Strings are discussed fully in the next chapter.)
5.8. Sets
A set in Python is an unordered collection of objects used in situations where membership and uniqueness in the set are main things you need to know about that object. Just as with dictionary keys (as you’ll see in chapter 7), the items in a set must be immutable and hashable. This means that ints, floats, strings, and tuples can be members of a set, but lists, dictionaries, and sets themselves can’t.
5.8.1. Set operations
In addition to the operations that apply to collections in general, like in, len, and being able to use a for loop to iterate over all of their elements, sets also have several set-specific operations:
You can create a set by using set on a sequence, like a list . When a sequence is made into a set, duplicates are removed
. After creating a set using the set function, you can use add
and remove
to change the elements in the set. The in keyword is used to check for membership of an object in a set
. You can also use |
to get the union, or combination, of two sets, & to get their intersection
, and ^
to find their symmetric difference—that is, elements that are in one set or the other but not both.
These examples aren’t a complete listing of set operations but are enough to give you a good idea of how sets work. For more information, refer to the official Python documentation.
5.8.2. Frozensets
Because sets aren’t immutable and hashable, they can’t belong to other sets. To remedy that situation there is another set type, frozenset, which is just like a set but can’t be changed after creation. Because frozensets are immutable and hashable, they can be members of other sets:
>>> x = set([1, 2, 3, 1, 3, 5])
>>> z = frozenset(x)
>>> z
frozenset({1, 2, 3, 5})
>>> z.add(6)
Traceback (most recent call last):
File "<pyshell#79>", line 1, in <module>
z.add(6)
AttributeError: 'frozenset' object has no attribute 'add'
>>> x.add(z)
>>> x
{1, 2, 3, 5, frozenset({1, 2, 3, 5})}
5.9. Summary
Lists are a basic and highly useful data structure built into the Python language. In addition to demonstrating fairly standard array-like behavior, lists possess additional functionality, such as automatic resizing, the ability to use slice notation, and a good set of convenience functions, methods, and operators. Note that there are a few more list methods than were covered in this chapter. You’ll find details on these in the Python documentation.
Tuples are similar to lists but can’t be modified. They take up slightly less memory and are faster to access. They aren’t as flexible but are more efficient than lists. Their normal use (from the point of view of a Python coder) is to serve as dictionary keys, which is discussed in chapter 7.
Sets are also sequence structures but with two differences from lists and tuples. Although sets do have an order, that order is arbitrary and not under the programmer’s control. The second difference is that the elements in a set must be unique.
Lists, tuples, and sets are structures that embody the idea of a sequence of elements. As you’ll see in the next chapter, strings are also sequences with some additional methods.
Chapter 6. Strings
This chapter covers
Handling text—from user input, to filenames, to processing chunks of text—is a common chore in programming. Python comes with powerful tools to handle and format text. This chapter discusses the standard string and string-related operations in Python.
6.1. Strings as sequences of characters
For the purposes of extracting characters and substrings, strings can be considered sequences of characters, which means you can use index or slice notation:
>>> x = "Hello"
>>> x[0]
'H'
>>> x[-1]
'o'
>>> x[1:]
'ello'
One use for slice notation with strings is to chop the newline off the end of a string, usually a line that’s just been read from a file:
>>> x = "Goodbye\n"
>>> x = x[:-1]
>>> x
'Goodbye'
This is just an example—you should know that Python strings have other, better methods to strip unwanted characters, but this illustrates the usefulness of slicing.
You can also determine how many characters are in the string by using the len function, just like finding out the number of elements in a list:
>>> len("Goodbye")
7
But strings aren’t lists of characters. The most noticeable difference between strings and lists is that, unlike lists, strings can’t be modified. Attempting to say something like string.append('c') or string[0] = 'H' will result in an error. You’ll notice in the previous example that we stripped off the newline from the string by creating a string that was a slice of the previous one, not by modifying the previous string directly. This is a basic Python restriction, imposed for efficiency reasons.
6.2. Basic string operations
The simplest (and probably most common) way of combining Python strings is to use the string concatenation operator +:
>>> x = "Hello " + "World"
>>> x
'Hello World'
There is an analogous string multiplication operator that I have found sometimes, but not often, useful:
>>> 8 * "x"
'xxxxxxxx'
6.3. Special characters and escape sequences
You’ve already seen a few of the character sequences Python regards as special when used within strings: \n represents the newline character and \t represents the tab character. Sequences of characters that start with a backslash and that are used to represent other characters are called escape sequences. Escape sequences are generally used to represent special characters—that is, characters (such as tab and newline) that don’t have a standard one-character printable representation. This section covers escape sequences, special characters, and related topics in more detail.
6.3.1. Basic escape sequences
Python provides a brief list of two-character escape sequences to use in strings (table 6.1).
Table 6.1. Escape sequences
Escape sequence | Character represented |
---|---|
\' | Single-quote character |
\" | Double-quote character |
\\ | Backslash character |
\a | Bell character |
\b | Backspace character |
\f | Formfeed character |
\n | Newline character |
\r | Carriage return character (not the same as \n) |
\t | Tab character |
\v | Vertical tab character |
The ASCII character set, which is the character set used by Python and the standard character set on almost all computers, defines quite a few more special characters. They’re accessed by the numeric escape sequences, described in the next section.
6.3.2. Numeric (octal and hexadecimal) and Unicode escape sequences
You can include any ASCII character in a string by using an octal (base 8) or hexadecimal (base 16) escape sequence corresponding to that character. An octal escape sequence is a backslash followed by three digits defining an octal number; the ASCII character corresponding to this octal number is substituted for the octal escape sequence. A hexadecimal escape sequence is similar but starts with \x rather than just \ and can consist of any number of hexadecimal digits. The escape sequence is terminated when a character is found that’s not a hexadecimal digit. For example, in the ASCII character table, the character m happens to have decimal value 109. This is octal value 155 and hexadecimal value 6D, so:
>>> 'm'
'm'
>>> '\155'
'm'
>>> '\x6D'
'm'
All three expressions evaluate to a string containing the single character m. But these forms can also be used to represent characters that have no printable representation. The newline character \n, for example, has octal value 012 and hexadecimal value 0A:
>>> '\n'
'\n'
>>> '\012'
'\n'
>>> '\x0A'
'\n'
Because all strings in Python 3 are Unicode strings, they can also contain almost every character from every language available. Although a discussion of the Unicode system is far beyond this book, the following examples illustrate that you can also escape any Unicode character, either by number similar to that shown earlier or by Unicode name:
The Unicode character set includes the common ASCII characters .
6.3.3. Printing vs. evaluating strings with special characters
We talked before about the difference between evaluating a Python expression interactively and printing the result of the same expression using the print function. Although the same string is involved, the two operations can produce screen outputs that look different. A string that is evaluated at the top level of an interactive Python session will be shown with all of its special characters as octal escape sequences, which makes clear what is in the string. Meanwhile, the print function passes the string directly to the terminal program, which may interpret special characters in special ways. For example, here’s what happens with a string consisting of an a followed by a newline, a tab, and a b:
>>> 'a\n\tb'
'a\n\tb'
>>> print('a\n\tb')
a
b
In the first case, the newline and tab are shown explicitly in the string; in the second, they’re used as newline and tab characters.
A normal print function also adds a newline to the end of the string. Sometimes (that is, when you have lines from files that already end with newlines) you may not want this behavior. Giving the print function an end parameter of "" causes the print function to not append the newline:
>>> print("abc\n")
abc
>>> print("abc\n", end="")
abc
>>>
6.4. String methods
Most of the Python string methods are built into the standard Python string class, so all string objects have them automatically. The standard string module also contains some useful constants. Modules will be discussed in detail in chapter 10.
For the purposes of this section, you need only remember that most string methods are attached to the string object they operate on by a dot (.), as in x.upper(). That is, they’re prepended with the string object followed by a dot.
Because strings are immutable, the string methods are used only to obtain their return value and don’t modify the string object they’re attached to in any way.
We’ll begin with those string operations that are the most useful and commonly used and then go on to discuss some less commonly used but still useful operations. At the end, we’ll discuss a few miscellaneous points related to strings. Not all of the string methods are documented here. See the documentation for a complete list of string methods.
6.4.1. The split and join string methods
Anyone who works with strings is almost certain to find the split and join methods invaluable. They’re the inverse of one another—split returns a list of substrings in the string, and join takes a list of strings and puts them together to form a single string with the original string between each element. Typically, split uses whitespace as the delimiter to the strings it’s splitting, but you can change that via an optional argument.
String concatenation using + is useful but not efficient for joining large numbers of strings into a single string, because each time + is applied, a new string object is created. Our previous “Hello World” example produced two string objects, one of which was immediately discarded. A better option is to use the join function:
>>> " ".join(["join", "puts", "spaces", "between", "elements"])
'join puts spaces between elements'
By changing the string used to join, you can put anything you want between the joined strings:
>>> "::".join(["Separated", "with", "colons"])
'Separated::with::colons'
You can even use an empty string, "", to join elements in a list:
>>> "".join(["Separated", "by", "nothing"])
'Separatedbynothing'
The most common use of split is probably as a simple parsing mechanism for string-delimited records stored in text files. By default, split splits on any whitespace, not just a single space character, but you can also tell it to split on a particular sequence by passing it an optional argument:
>>> x = "You\t\t can have tabs\t\n \t and newlines \n\n " \
"mixed in"
>>> x.split()
['You', 'can', 'have', 'tabs', 'and', 'newlines', 'mixed', 'in']
>>> x = "Mississippi"
>>> x.split("ss")
['Mi', 'i', 'ippi']
Sometimes it’s useful to permit the last field in a joined string to contain arbitrary text, including, perhaps, substrings that may match what split splits on when reading in that data. You can do this by specifying how many splits split should perform when it’s generating its result, via an optional second argument. If you specify n splits, then split will go along the input string until it has performed n splits (generating a list with n+1 substrings as elements) or until it runs out of string. Here are some examples:
>>> x = 'a b c d'
>>> x.split(' ', 1)
['a', 'b c d']
>>> x.split(' ', 2)
['a', 'b', 'c d']
>>> x.split(' ', 9)
['a', 'b', 'c', 'd']
When using split with its optional second argument, you must supply a first argument. To get it to split on runs of whitespace while using the second argument, use None as the first argument.
I use split and join extensively, usually when working with text files generated by other programs. But you should know that if you’re able to define your own data file format for use solely by your Python programs, there’s a much better alternative to storing data in text files. We’ll discuss it in chapter 13 when we talk about the Pickle module.
6.4.2. Converting strings to numbers
You can use the functions int and float to convert strings into integer or floating-point numbers, respectively. If they’re passed a string that can’t be interpreted as a number of the given type, they will raise a ValueError exception. Exceptions are explained in chapter 14, “Reading and writing files.” In addition, you may pass int an optional second argument, specifying the numeric base to use when interpreting the input string:
Did you catch the reason for that last error? We requested that the string be interpreted as a base 6 number, but the digit 6 can never appear in a base 6 number. Sneaky!
6.4.3. Getting rid of extra whitespace
A trio of simple methods that are surprisingly useful are the strip, lstrip, and rstrip functions. strip returns a new string that’s the same as the original string, except that any whitespace at the beginning or end of the string has been removed. lstrip and rstrip work similarly, except that they remove whitespace only at the left or right end of the original string, respectively:
>>> x = " Hello, World\t\t "
>>> x.strip()
'Hello, World'
>>> x.lstrip()
'Hello, World\t\t '
>>> x.rstrip()
' Hello, World'
In this example, tab characters are considered to be whitespace. The exact meaning may differ across operating systems, but you can always find out what Python considers to be whitespace by accessing the string.whitespace constant. On my Windows system, it gives the following:
import string
>>> string.whitespace
' \t\n\r\x0b\x0c'
>>> " \t\n\r\v\f"
' \t\n\r\x0b\x0c'
The characters given in backslashed hex (\xnn) format represent the vertical tab and formfeed characters. The space character is in there as itself. It may be tempting to change the value of this variable, to attempt to affect how strip and so forth work, but don’t do it. Such an action isn’t guaranteed to give you the results you’re looking for.
But you can change which characters strip, rstrip, and lstrip remove by passing a string containing the characters to be removed as an extra parameter:
Note that strip removes any and all of the characters in the extra parameter string, no matter in which order they occur .
The most common use for these functions is as a quick way of cleaning up strings that have just been read in. This is particularly helpful when you’re reading lines from files (discussed in chapter 13), because Python always reads in an entire line, including the trailing newline, if it exists. When you get around to processing the line read in, you typically don’t want the trailing newline. rstrip is a convenient way to get rid of it.
6.4.4. String searching
The string objects provide a number of methods to perform simple string searches. Before I describe them, though, let’s talk about another module in Python: re. (This module will be discussed in depth in chapter 17, “Regular expressions.”)
Another method for searching strings: the re module
The re module also does string searching but in a far more flexible manner, using regular expressions. Rather than searching for a single specified substring, an re search can look for a string pattern. You could look for substrings that consist entirely of digits, for example.
Why am I mentioning this, when re is discussed fully later? In my experience, many uses of basic string searches are inappropriate. You’d benefit from a more powerful searching mechanism but aren’t aware that one exists, and so you don’t even look for something better. Perhaps you have an urgent project involving strings and don’t have time to read this entire book. If basic string searching will do the job for you, that’s great. But be aware that you have a more powerful alternative.
The four basic string-searching methods are all similar: find, rfind, index, and rindex. A related method, count, counts how many times a substring can be found in another string. We’ll describe find in detail and then examine how the other methods differ from it.
find takes one required argument: the substring being searched for. find returns the position of the first character of the first instance of substring in the string object, or –1 if substring doesn’t occur in the string:
>>> x = "Mississippi"
>>> x.find("ss")
2
>>> x.find("zz")
-1
find can also take one or two additional, optional arguments. The first of these, if present, is an integer start; it causes find to ignore all characters before position start in string when searching for substring. The second optional argument, if present, is an integer end; it causes find to ignore characters at or after position end in string:
>>> x = "Mississippi"
>>> x.find("ss", 3)
5
>>> x.find("ss", 0, 3)
-1
rfind is almost the same as find, except that it starts its search at the end of string and so returns the position of the first character of the last occurrence of substring in string:
>>> x = "Mississippi"
>>> x.rfind("ss")
5
rfind can also take one or two optional arguments, with the same meanings as those for find.
index and rindex are identical to find and rfind, respectively, except for one difference: if index or rindex fails to find an occurrence of substring in string, it doesn’t return –1 but rather raises a ValueError exception. Exactly what this means will be clear after you read chapter 14, “Exceptions.”
count is used identically to any of the previous four functions but returns the number of non-overlapping times the given substring occurs in the given string:
>>> x = "Mississippi"
>>> x.count("ss")
2
You can use two other string methods to search strings: startswith and endswith. These methods return a True or False result depending on whether the string they’re used on starts or ends with one of the strings given as parameters:
>>> x = "Mississippi"
>>> x.startswith("Miss")
True
>>> x.startswith("Mist")
False
>>> x.endswith("pi")
True
>>> x.endswith("p")
False
Both startswith and endswith can look for more than one string at a time. If the parameter is a tuple of strings, both methods check for all of the strings in the tuple and return a True if any one of them is found:
>>> x.endswith(("i", "u"))
True
startswith and endswith are useful for simple searches.
6.4.5. Modifying strings
Strings are immutable, but string objects have a number of methods that can operate on that string and return a new string that’s a modified version of the original string. This provides much the same effect as direct modification for most purposes. You can find a more complete description of these methods in the documentation.
You can use the replace method to replace occurrences of substring (its first argument) in the string with newstring (its second argument). It also takes an optional third argument (see the documentation for details):
>>> x = "Mississippi"
>>> x.replace("ss", "+++")
'Mi+++i+++ippi'
As with the string search functions, the re module provides a much more powerful method of substring replacement.
The functions string.maketrans and string.translate may be used together to translate characters in strings into different characters. Although rarely used, these functions can simplify your life when they’re needed.
Let’s say, for example, that you’re working on a program that translates string expressions from one computer language into another. The first language uses ~ to mean logical not, whereas the second language uses !; the first language uses ^ to mean logical and, whereas the second language uses &; the first language uses ( and ), where the second language uses [ and ]. In a given string expression, you need to change all instances of ~ to !, all instances of ^ to &, all instances of ( to [, and all instances of ) to ]. You could do this using multiple invocations of replace, but an easier and more efficient way is
>>> x = "~x ^ (y % z)"
>>> table = x.maketrans("~^()", "!&[]")
>>> x.translate(table)
'!x & [y % z]'
The first line uses maketrans to make up a translation table from its two string arguments. The two arguments must each contain the same number of characters, and a table will be made such that looking up the nth character of the first argument in that table gives back the nth character of the second argument.
Next, the table produced by maketrans is passed to translate. Then, translate goes over each of the characters in its string object and checks to see if they can be found in the table given as the second argument. If a character can be found in the translation table, translate replaces that character with the corresponding character looked up in the table, to produce the translated string.
You can give an optional argument to translate, to specify characters that should be removed from the string entirely. See the documentation for details.
Other functions in the string module perform more specialized tasks. string.lower converts all alphabetic characters in a string to lowercase, and upper does the opposite. capitalize capitalizes the first character of a string, and title capitalizes all words in a string. swapcase converts lowercase characters to uppercase and uppercase to lowercase in the same string. expandtabs gets rid of tab characters in a string by replacing each tab with a specified number of spaces. ljust, rjust, and center pad a string with spaces, to justify it in a certain field width. zfill left-pads a numeric string with zeros. Refer to the documentation for details of these methods.
6.4.6. Modifying strings with list manipulations
Because strings are immutable objects, there’s no way to directly manipulate them in the same way you can lists. Although the operations that operate on strings to produce new strings (leaving the original strings unchanged) are useful for many things, sometimes you want to be able to manipulate a string as if it were a list of characters. In that case, just turn it into a list of characters, do whatever you want, and turn the resulting list back into a string:
Although you can use split to turn your string into a list of characters, the type-conversion function list is easier to use and to remember (and, for what it’s worth, you can turn a string into a tuple of characters using the built-in tuple function). To turn the list back into a string, use "".join.
You shouldn’t go overboard with this method because it causes the creation and destruction of new string objects, which is relatively expensive. Processing hundreds or thousands of strings in this manner probably won’t have much of an impact on your program. Processing millions probably will.
6.4.7. Useful methods and constants
string objects also have several useful methods to report qualities of the string, whether it consists of digits or alphabetic characters, is all uppercase or lowercase, and so on:
>>> x = "123"
>>> x.isdigit()
True
>>> x.isalpha()
False
>>> x = "M"
>>> x.islower()
False
>>> x.isupper()
True
For a fuller list of all the possible string methods, refer to the string section of the official Python documentation.
Finally, the string module defines some useful constants. You’ve already seen string.whitespace, which is a string made up of the characters Python thinks of as whitespace on your system. string.digits is the string '0123456789'. string.hexdigits includes all the characters in string.digits, as well as 'abcdefABCDEF', the extra characters used in hexadecimal numbers. string.octdigits contains '01234567'—just those digits used in octal numbers. ascii_string.lowercase contains all lowercase alphabetic characters; ascii_string.uppercase contains all uppercase alphabetic characters; ascii_string.letters contains all of the characters in ascii_string.lowercase and ascii_string.uppercase. You might be tempted to try assigning to these constants to change the behavior of the language. Python would let you get away with this, but it would probably be a bad idea.
Remember that strings are sequences of characters, so you can use the convenient Python in operator to test for a character’s membership in any of these strings, although usually the existing string methods is simpler and easier.
The most common string operations are shown in table 6.2.
Table 6.2. String operations
String operation | Explanation | Example |
---|---|---|
+ | Adds two strings together | x = "hello " + "world" |
* | Replicates a string | x = " " * 20 |
upper | Converts a string to uppercase | x.upper() |
lower | Converts a string to lowercase | x.lower() |
title | Capitalizes the first letter of each word in a string | x.title() |
find, index | Searches for the target in a string | x.find(y) x.index(y) |
rfind, rindex | Searches for the target in a string, from the end of the string | x.rfind(y) x.rindex(y) |
startswith, endswith | Checks the beginning or end of a string for a match | x.startswith(y) x.endswith(y) |
replace | Replaces the target with a new string | x.replace(y, z) |
strip, rstrip, lstrip | Removes whitespace or other characters from the ends of a string | x.strip() |
encode | Converts a Unicode string to a bytes object | x.encode("utf_8") |
Note that these methods don’t change the string itself but return either a location in the string or a new string.
6.5. Converting from objects to strings
In Python, almost anything can be converted to some sort of a string representation, using the built-in repr function. Lists are the only complex Python data types you’re familiar with so far, so let’s turn some lists into their representations:
>>> repr([1, 2, 3])
'[1, 2, 3]'
>>> x = [1]
>>> x.append(2)
>>> x.append([3, 4])
>>> 'the list x is ' + repr(x)
'the list x is [1, 2, [3, 4]]'
The example uses repr to convert the list x into a string representation, which is then concatenated with the other string to form the final string. Without the use of repr, this wouldn’t work. In an expression like "string" + [1, 2] + 3, are you trying to add strings, or add lists, or just add numbers? Python doesn’t know what you want in such a circumstance, and it will do the safe thing (raise an error) rather than make any assumptions. In the previous example, all the elements had to be converted to string representations before the string concatenation would work.
Lists are the only complex Python objects that have been described to this point, but repr can be used to obtain some sort of string representation for almost any Python object. To see this, try repr around a built-in complex object—an actual Python function:
>>> repr(len)
'<built-in function len>'
Python hasn’t produced a string containing the code that implements the len function, but it has at least returned a string—<built-in function len>—that describes what that function is. If you keep the repr function in mind and try it on each Python data type (dictionaries, tuples, classes, and the like) as we get to them in the book, you’ll see that no matter what type of Python object you have, you can get a string saying something about that object.
This is great for debugging programs. If you’re in doubt as to what’s held in a variable at a certain point in your program, use repr and print out the contents of that variable.
We’ve covered how Python can convert any object into a string that describes that object. The truth is, Python can do this in either of two different ways. The repr function always returns what might be loosely called the formal string representation of a Python object. More specifically, repr returns a string representation of a Python object from which the original object can be rebuilt. For large, complex objects, this may not be the sort of thing you wish to see in debugging output or status reports.
Python also provides the built-in str function. In contrast to repr, str is intended to produce printable string representations, and it can be applied to any Python object. str returns what might be called the informal string representation of the object. A string returned by str need not define an object fully and is intended to be read by humans, not by Python code.
You won’t notice any difference between repr and str when you first start using them, because until you begin using the object-oriented features of Python, there is no difference. str applied to any built-in Python object always calls repr to calculate its result. It’s only when you start defining your own classes that the difference between str and repr becomes important. This will be discussed in chapter 15.
So why talk about this now? Basically, I wanted you to be aware that there’s more going on behind the scenes with repr than being able to easily write print functions for debugging. As a matter of good style, you may want to get into the habit of using str rather than repr when creating strings for displaying information.
6.6. Using the format method
You can format strings in Python 3 in two ways. The newer way to format strings in Python is to use the string class’s format method. The format method combines a format string containing replacement fields marked with { } with replacement values taken from the parameters given to the format command. If you need to include a literal { or } in the string, you double it to {{ or }}. The format command is a powerful string-formatting mini-language and offers almost endless possibilities for manipulating string formatting. On the other hand, it’s fairly simple to use for the most common use cases, so we’ll look at a few basic patterns. Then, if you need to use the more advanced options, you can refer to the string-formatting section of the standard library documentation.
6.6.1. The format method and positional parameters
The simplest use of the string format method uses numbered replacement fields that correspond to the parameters passed to the format function:
Note that the format method is applied to the format string, which can also be a string variable . Doubling the { } characters escapes them so that they don’t mark a replacement field
.
This example has three replacement fields, {0}, {1}, and {2}, which are in turn filled by the first, second, and third parameters. No matter where in the format string we place {0}, it will always be replaced by the first parameter, and so on.
You can also use the positional parameters.
6.6.2. The format method and named parameters
The format method also recognizes named parameters and replacement fields:
>>> "{food} is the food of {user}".format(food="Ambrosia",
... user="the gods")
'Ambrosia is the food of the gods'
In this case, the replacement parameter is chosen by matching the name of the replacement field to the name of the parameter given to the format command.
You can also use both positional and named parameters, and you can even access attributes and elements within those parameters:
>>> "{0} is the food of {user[1]}".format("Ambrosia",
... user=["men", "the gods", "others"])
'Ambrosia is the food of the gods'
In this case, the first parameter is positional, and the second, user[1], refers to the second element of the named parameter user.
6.6.3. Format specifiers
Format specifiers let you specify the result of the formatting with even more power and control than the formatting sequences of the older style of string formatting. The format specifier lets you control the fill character, alignment, sign, width, precision, and type of the data when it’s substituted for the replacement field. As noted earlier, the syntax of format specifiers is a mini-language in its own right and too complex to cover completely here, but the following examples give you an idea of its usefulness:
:10 is a format specifier that makes the field 10 spaces wide and pads with spaces . :{1} takes the width from the second parameter
. :>10 forces right justification of the field and pads with spaces
. :&>10 forces right justification and pads with & instead of spaces
.
6.7. Formatting strings with %
This section covers formatting strings with the string modulus (%) operator. It’s used to combine Python values into formatted strings for printing or other use. C users will notice a strange similarity to the printf family of functions. The use of % for string formatting is the old style of string formatting, and I cover it here because it was the standard in earlier versions of Python and you’re likely to see it in code that’s been ported from earlier versions of Python or was written by coders familiar with those versions. This style of formatting shouldn’t be used in new code, because it’s slated to be deprecated and then removed from the language in the future.
Here’s an example:
>>> "%s is the %s of %s" % ("Ambrosia", "food", "the gods")
'Ambrosia is the food of the gods'
The string modulus operator (the bold % that occurs in the middle, not the three instances of %s that come before it in the example) takes two parts: the left side, which is a string; and the right side, which is a tuple. The string modulus operator scans the left string for special formatting sequences and produces a new string by substituting the values on the right side for those formatting sequences, in order. In this example, the only formatting sequences on the left side are the three instances of %s, which stands for “stick a string in here.”
Passing in different values on the right side produces different strings:
>>> "%s is the %s of %s" % ("Nectar", "drink", "gods")
'Nectar is the drink of gods'
>>> "%s is the %s of the %s" % ("Brussels Sprouts", "food",
... "foolish")
'Brussels Sprouts is the food of the foolish'
The members of the tuple on the right will have str applied to them automatically by %s, so they don’t have to already be strings:
>>> x = [1, 2, "three"]
>>> "The %s contains: %s" % ("list", x)
"The list contains: [1, 2, 'three']"
6.7.1. Using formatting sequences
All formatting sequences are substrings contained in the string on the left side of the central %. Each formatting sequence begins with a percent sign and is followed by one or more characters that specify what is to be substituted for the formatting sequence and how the substitution is accomplished. The %s formatting sequence used previously is the simplest formatting sequence, and it indicates that the corresponding string from the tuple on the right side of the central % should be substituted in place of the %s.
Other formatting sequences can be more complex. This one specifies the field width (total number of characters) of a printed number to be six, specifies the number of characters after the decimal point to be two, and left-justifies the number in its field. I’ve put in angle brackets so you can see where extra spaces are inserted into the formatted string:
>>> "Pi is <%-6.2f>" % 3.14159 # use of the formatting sequence: %–6.2f
'Pi is <3.14 >'
All the options for characters that are allowable in formatting sequences are given in the documentation. There are quite a few options, but none are particularly difficult to use. Remember, you can always try a formatting sequence interactively in Python to see if it does what you expect it to do.
6.7.2. Named parameters and formatting sequences
Finally, one additional feature is available with the % operator that can be useful in certain circumstances. Unfortunately, to describe it we’re going to have to employ a Python feature we haven’t used yet—dictionaries, commonly called hashtables or associative arrays by other languages. You can skip ahead to the next chapter, “Dictionaries,” to learn about dictionaries, skip this section for now and come back to it later, or read straight through, trusting to the examples to make things clear.
Formatting sequences can specify what should be substituted for them by name rather than by position. When you do this, each formatting sequence has a name in parentheses, immediately following the initial % of the formatting sequence, like so:
In addition, the argument to the right of the % operator is no longer given as a single value or tuple of values to be printed but rather as a dictionary of values to be printed, with each named formatting sequence having a correspondingly named key in the dictionary. Using the previous formatting sequence with the string modulus operator, we might produce code like this:
>>> num_dict = {'e': 2.718, 'pi': 3.14159}
>>> print("%(pi).2f - %(pi).4f - %(e).2f" % num_dict)
3.14 - 3.1416 - 2.72
This is particularly useful when you’re using format strings that perform a large number of substitutions, because you no longer have to keep track of the positional correspondences of the right-side tuple of elements with the formatting sequences in the format string. The order in which elements are defined in the dict argument is irrelevant, and the template string may use values from dict more than once (as it does with the 'pi' entry).
Controlling output with the print function
Python’s built-in print function also has some options that can make handling simple string output easier. When used with one parameter, print prints the value and a newline character, so that a series of calls to print print each value on a separate line:
>>> print("a")
a
>>> print("b")
b
But print can do more than that. You can also give the print function a number of arguments, and they will be printed on the same line, separated by a space and ending with a newline:
>>> print("a", "b", "c")
a b c
If that’s not quite what you need, you can give the print function additional parameters to control what separates each item and what ends the line:
>>> print("a", "b", "c", sep="|")
a|b|c
>>> print("a", "b", "c", end="\n\n")
a b c
>>>
In chapter 12, you’ll also see that the print function can be used to print to files as well as console output.
Using the print function’s options gives you enough control for simple text output, but more complex situations are best served by using the format method.
6.8. Bytes
A bytes object is similar to a string object but with an important difference. A string is an immutable sequence of Unicode characters, whereas a bytes object is a sequence of integers with values from 0 to 255. Bytes can be necessary when you’re dealing with binary data—for example, reading from a binary data file.
The key thing to remember is that bytes objects may look like strings, but they can’t be used exactly like a string and they can’t be combined with strings:
The first thing you can see is that to convert from a regular (Unicode) string to bytes, you need to call the string’s encode method . After it’s encoded to a bytes object, the character is now 2 bytes and no longer prints the same way the string did
. Further, if you attempt to add a bytes object and a string object together, you get a type error, because the two are incompatible types
. Finally, to convert a bytes object back to a string, you need to call that object’s decode method
.
Most of the time, you shouldn’t need to think about Unicode or bytes at all. But when you need to deal with international character sets, an increasingly common issue, you must understand the difference between regular strings and bytes.
6.9. Summary
Python’s string type gives you several powerful tools for text processing. Almost all of those tools are the methods attached to any string object, although there’s an even more powerful set of tools in the re module. The standard string methods can search and replace, trim off extra characters, change case, and much more. Because strings are immutable—that is, they can’t be changed—the operations that “change” strings return a copy with the changes, but the original remains untouched.
After lists and strings, the next important Python data structure to consider is the dictionary, before we move on to control structures.
Chapter 7. Dictionaries
This chapter covers
This chapter discusses dictionaries, Python’s name for associative arrays, which it implements using hash tables. Dictionaries are amazingly useful, even in simple programs.
Because dictionaries are less familiar to many programmers than other basic data structures such as lists and strings, some of the examples illustrating dictionary use are slightly more complex than the corresponding examples for other built-in data structures. It may be necessary to read parts of the next chapter, “Control flow,” to fully understand some of the examples in this chapter.
7.1. What is a dictionary?
If you’ve never used associative arrays or hash tables in other languages, then a good way to start understanding the use of dictionaries is to compare them with lists:
In spite of the differences between them, use of dictionaries and lists often appears alike. As a start, an empty dictionary is created much like an empty list, but with curly braces instead of square brackets:
>>> x = []
>>> y = {}
Here, the first line creates a new, empty list and assigns it to x. The second creates a new, empty dictionary, and assigns it to y.
After you create a dictionary, values may be stored in it as if it were a list:
>>> y[0] = 'Hello'
>>> y[1] = 'Goodbye'
Even in these assignments, there is already a significant operational difference between the dictionary and list usage. Trying to do the same thing with a list would result in an error, because in Python it’s illegal to assign to a position in a list that doesn’t already exist. For example, if we try to assign to the 0th element of the list x, we receive an error:
>>> x[0] = 'Hello'
Traceback (innermost last):
File "<stdin>", line 1, in ?
IndexError: list assignment index out of range
This isn’t a problem with dictionaries; new positions in dictionaries are created as necessary.
Having stored some values in the dictionary, we can now access and use them:
>>> print(y[0])
Hello
>>> y[1] + ", Friend."
'Goodbye, Friend.'
All in all, this makes a dictionary look pretty much like a list. Now for the big difference; let’s store (and use) some values under keys that aren’t integers:
>>> y["two"] = 2
>>> y["pi"] = 3.14
>>> y["two"] * y["pi"]
6.2800000000000002
This is definitely something that can’t be done with lists! Whereas list indices must be integers, dictionary keys are much less restricted—they may be numbers, strings, or one of a wide range of other Python objects. This makes dictionaries a natural for jobs that lists can’t do. For example, it makes more sense to implement a telephone directory application with dictionaries than with lists, because the phone number for a person can be stored indexed by that person’s last name.
7.1.1. Why dictionaries are called dictionaries
A dictionary is a way of mapping from one set of arbitrary objects to an associated but equally arbitrary set of objects. Actual dictionaries, thesauri, or translation books are a good analogy in the real world. To see how natural this correspondence is, here is the start of an English-to-French color translator:
7.2. Other dictionary operations
Besides basic element assignment and access, dictionaries support a number of other operations. You can define a dictionary explicitly as a series of key/value pairs separated by commas:
>>> english_to_french = {'red': 'rouge', 'blue': 'bleu', 'green': 'vert'}
len returns the number of entries in a dictionary:
>>> len(english_to_french)
3
You can obtain all the keys in the dictionary with the keys method. This is often used to iterate over the contents of a dictionary using Python’s for loop, described in chapter 8:
>>> list(english_to_french.keys())
['green', 'blue', 'red']
The order of the keys in a list returned by keys has no meaning—they aren’t necessarily sorted, and they don’t necessarily occur in the order they were created. Your Python may print out the keys in a different order than my Python did. If you need keys sorted, you can store them in a list variable and then sort that list.
It’s also possible to obtain all the values stored in a dictionary, using values:
>>> list(english_to_french.values())
['vert', 'bleu', 'rouge']
This method isn’t used nearly as often as keys.
You can use the items method to return all keys and their associated values as a sequence of tuples:
>>> list(english_to_french.items())
[('green', 'vert'), ('blue', 'bleu'), ('red', 'rouge')]
Like keys, this is often used in conjunction with a for loop to iterate over the contents of a dictionary.
The del statement can be used to remove an entry (key/value pair) from a dictionary:
>>> list(english_to_french.items())
[('green', 'vert'), ('blue', 'bleu'), ('red', 'rouge')]
>>> del english_to_french['green']
>>> list(english_to_french.items())
[('blue', 'bleu'), ('red', 'rouge')]
Dictionary view objects
The keys, values, and items methods return not lists but rather views that behave like sequences but are dynamically updated whenever the dictionary changes. That’s why we need to use the list function to make them appear as a list in our examples. Otherwise, they behave like sequences, allowing code to iterate over them in a for loop, use in to check membership in them, and so on.
The view returned by keys (and in some cases the view returned by items) also behaves like a set, with union, difference, and intersection operations.
Attempting to access a key that isn’t in a dictionary is an error in Python. To handle this, you can test the dictionary for the presence of a key with the in keyword, which returns True if a dictionary has a value stored under the given key and False otherwise:
>>> 'red' in english_to_french
True
>>> 'orange' in english_to_french
False
Alternatively, you can use the get function. It returns the value associated with a key, if the dictionary contains that key, but returns its second argument if the dictionary doesn’t contain the key:
>>> print(english_to_french.get('blue', 'No translation'))
bleu
>>> print(english_to_french.get('chartreuse', 'No translation'))
No translation
The second argument is optional. If it isn’t included, get returns None if the dictionary doesn’t contain the key.
Similarly, if you want to safely get a key’s value and make sure it’s set to a default in the dictionary, you can use the setdefault method:
>>> print(english_to_french.setdefault('chartreuse', 'No translation'))
No translation
The difference between get and setdefault is that after the setdefault call, there is a key in the dictionary 'chartreuse' with the value 'No translation'.
You can obtain a copy of a dictionary using the copy method:
>>> x = {0: 'zero', 1: 'one'}
>>> y = x.copy()
>>> y
{0: 'zero', 1: 'one'}
This makes a shallow copy of the dictionary. This will likely be all you need in most situations. For dictionaries that contain any modifiable objects as values (that is, lists or other dictionaries), you may want to make a deep copy using the copy.deepcopy function. See “Nested lists and deep copies” (section 5.6) of “Lists, tuples, and sets” (chapter 5) for an introduction to the concept of shallow and deep copies.
The update method updates a first dictionary with all the key/value pairs of a second dictionary. For keys that are common to both, the values from the second dictionary override those of the first:
>>> z = {1: 'One', 2: 'Two'}
>>> x = {0: 'zero', 1: 'one'}
>>> x.update(z)
>>> x
{0: 'zero', 1: 'One', 2: 'Two'}
Dictionary methods give you a full set of tools to manipulate and use dictionaries. For quick reference, table 7.1 contains some of the main dictionary functions in table format.
Table 7.1. Dictionary operations
This isn’t a complete list of all dictionary operations. For a complete list, see the appendix or refer to the official Python documentation.
7.3. Word counting
Assume that we have a file that contains a list of words, one word per line. We want to know how many times each word occurs in the file. Dictionaries can be used to do this easily:
We increment the occurrences count for each word . This is a good example of the power of dictionaries. The code is not only simple, but because dictionary operations are highly optimized in Python, it’s also quite fast.
7.4. What can be used as a key?
The previous examples use strings as keys, but Python permits more than just strings to be used in this manner. Any Python object that is immutable and hashable can be used as a key to a dictionary.
In Python, as discussed earlier, any object that can be modified is called mutable. Lists are mutable, because list elements can be added, changed, or removed. Dictionaries are also mutable, for the same reason. Numbers are immutable. If a variable x is holding the number 3, and you assign 4 to x, you’ve changed the value in x, but you haven’t changed the number 3; 3 is still 3. Strings are also immutable. list[n] returns the nth element of list, string[n] returns the nth character of string, and list[n] = value changes the nth element of list, but string[n] = character is illegal in Python and causes an error.
Unfortunately, the requirement that keys be immutable and hashable means that lists can’t be used as dictionary keys. But there are many instances when it would be convenient to have a listlike key. For example, it’s convenient to store information about a person under a key consisting of both their first and last names, which could be easily done if we could use a two-element list as a key.
Python solves this difficulty by providing tuples, which are basically immutable lists—they’re created and used similarly to lists, except that when you have them, you can’t modify them. But there’s one further restriction: keys must also be hashable, which takes things a step further than just immutable. To be hashable, a value must have a hash value (provided by a __hash__ method) that never changes throughout the life of the value. That means that tuples containing mutable values, although they themselves are immutable, aren’t hashable. Only tuples that don’t contain any mutable objects nested within them are hashable and valid to use as keys for dictionaries. Table 7.2 illustrates which of Python’s built-in types are immutable, hashable, and eligible to be dictionary keys.
Table 7.2. Python values eligible to be used as dictionary keys
Python type | Immutable? | Hashable? | Dictionary key? |
---|---|---|---|
int | Yes | Yes | Yes |
float | Yes | Yes | Yes |
boolean | Yes | Yes | Yes |
complex | Yes | Yes | Yes |
str | Yes | Yes | Yes |
bytes | Yes | Yes | Yes |
bytearray | No | No | No |
list | No | No | No |
tuple | Yes | Sometimes | Sometimes |
set | No | No | No |
frozenset | Yes | Yes | Yes |
dictionary | No | No | No |
The next sections give examples illustrating how tuples and dictionaries can work together.
7.5. Sparse matrices
In mathematical terms, a matrix is a two-dimensional grid of numbers, usually written in textbooks as a grid with square brackets on each side, as shown at right.
A fairly standard way to represent such a matrix is by means of a list of lists. In Python, it’s presented like this:
matrix = [[3, 0, -2, 11], [0, 9, 0, 0], [0, 7, 0, 0], [0, 0, 0, -5]]
Elements in the matrix can then be accessed by row and column number:
element = matrix[rownum][colnum]
But in some applications, such as weather forecasting, it’s common for matrices to be very large—thousands of elements to a side, meaning millions of elements in total. It’s also common for such matrices to contain many zero elements. In some applications, all but a small percentage of the matrix elements may be set to zero. In order to conserve memory, it’s common for such matrices to be stored in a form where only the nonzero elements are actually stored. Such representations are called sparse matrices.
It’s simple to implement sparse matrices using dictionaries with tuple indices. For example, the previous sparse matrix can be represented as follows:
matrix = {(0, 0): 3, (0, 2): -2, (0, 3): 11,
(1, 1): 9, (2, 1): 7, (3, 3): -5}
Now, you can access an individual matrix element at a given row and column number by the following bit of code:
if (rownum, colnum) in matrix:
element = matrix[(rownum, colnum)]
else:
element = 0
A slightly less clear (but more efficient) way of doing this is to use the dictionary get method, which you can tell to return 0 if it can’t find a key in the dictionary and otherwise return the value associated with that key. This avoids one of the dictionary lookups:
element = matrix.get((rownum, colnum), 0)
If you’re considering doing extensive work with matrices, you may want to look into NumPy, the numeric computation package.
7.6. Dictionaries as caches
The following is an example of how dictionaries can be used as caches, data structures that store results to avoid recalculating those results over and over. A short while ago, I wrote a function called sole, which took three integers as arguments and returned a result. It looked something like this:
def sole(m, n, t):
# . . . do some time-consuming calculations . . .
return(result)
The problem with this function was that it really was time consuming, and because I was calling sole tens of thousands of times, the program ran too slowly.
But sole was called with only about 200 different combinations of arguments during any program run. That is, I might call sole(12, 20, 6) some 50 or more times during the execution of my program and similarly for many other combinations of arguments. By eliminating the recalculation of sole on identical arguments, I’d save a huge amount of time. I used a dictionary with tuples as keys, like so:
sole_cache = {}
def sole(m, n, t):
if (m, n, t) in sole_cache:
return sole_cache[(m, n, t)]
else:
# . . . do some time-consuming calculations . . .
sole_cache[(m, n, t)] = result
return result
The rewritten sole function uses a global variable to store previous results. The global variable is a dictionary, and the keys of the dictionary are tuples corresponding to argument combinations that have been given to sole in the past. Then, any time sole passes an argument combination for which a result has already been calculated, it returns that stored result, rather than recalculating it.
7.7. Efficiency of dictionaries
If you come from a traditional compiled-language background, you may hesitate to use dictionaries, worrying that they’re less efficient than lists (arrays). The truth is that the Python dictionary implementation is quite fast. Many of the internal language features rely on dictionaries, and a lot of work has gone into making them efficient. Because all of Python’s data structures are heavily optimized, you shouldn’t spend much time worrying about which is faster or more efficient. If the problem can be solved more easily and cleanly by using a dictionary than by using a list, do it that way, and consider alternatives only if it’s clear that dictionaries are causing an unacceptable slowdown.
7.8. Summary
Dictionaries are a basic and powerful Python data structure, used for many purposes even within Python itself. The ability to use any immutable object as a key to retrieve a corresponding value makes dictionaries able to handle collections of data with less code and more direct access than many other solutions.
We’ve now surveyed the main data structures in Python, so the next step is to look at the structures Python has to control the flow of a program.
Chapter 8. Control flow
This chapter covers
Python provides a complete set of control-flow elements, with loops and conditionals. This chapter examines each in detail.
8.1. The while loop
You’ve come across the basic while loop several times already. The full while loop looks like this:
while condition:
body
else:
post-code
condition is an expression that evaluates to a true or false value. As long as it’s True, the body will be executed repeatedly. If it evaluates to False, the while loop will execute the post-code section and then terminate. If the condition starts out by being false, the body won’t be executed at all—just the post-code section. The body and post-code are each sequences of one or more Python statements that are separated by newlines and are at the same level of indentation. The Python interpreter uses this level to delimit them. No other delimiters, such as braces or brackets, are necessary.
Note that the else part of the while loop is optional and not often used. That’s because as long as there is no break in the body, this loop
while condition:
body
else:
post-code
and this loop
while condition:
body
post-code
do the same things—and the second is simpler to understand. I probably wouldn’t have mentioned the else clause except that if you haven’t learned about it by now, you may have found it confusing if you found this syntax in another person’s code. Also, it’s useful in some situations.
8.1.1. The break and continue statements
The two special statements break and continue can be used in the body of a while loop. If break is executed, it immediately terminates the while loop, and not even the post-code (if there is an else clause) will be executed. If continue is executed, it causes the remainder of the body to be skipped over; the condition is evaluated again, and the loop proceeds as normal.
8.2. The if-elif-else statement
The most general form of the if-then-else construct in Python is
if condition1:
body1
elif condition2:
body2
elif condition3:
body3
.
.
.
elif condition(n-1):
body(n-1)
else:
body(n)
It says: if condition1 is true, execute body1; otherwise, if condition2 is true, execute body2; otherwise ... and so on, until it either finds a condition that evaluates to True or hits the else clause, in which case it executes body(n). As for the while loop, the body sections are again sequences of one or more Python statements that are separated by newlines and are at the same level of indentation.
Of course, you don’t need all that luggage for every conditional. You can leave out the elif parts, or the else part, or both. If a conditional can’t find any body to execute (no conditions evaluate to True, and there is no else part), it does nothing.
The body after the if statement is required. But you can use the pass statement here (as you can anywhere in Python where a statement is required). The pass statement serves as a placeholder where a statement is needed, but it performs no action:
if x < 5:
pass
else:
x = 5
There is no case (or switch) statement in Python.
8.3. The for loop
A for loop in Python is different from for loops in some other languages. The traditional pattern is to increment and test a variable on each iteration, which is what C for loops usually do. In Python, a for loop iterates over the values returned by any iterable object—that is, any object that can yield a sequence of values. For example, a for loop can iterate over every element in a list, a tuple, or a string. But an iterable object can also be a special function called range or a special type of function called a generator. This can be quite powerful. The general form is
for item in sequence:
body
else:
post-code
body will be executed once for each element of sequence. variable is set to be the first element of sequence, and body is executed; then, variable is set to be the second element of sequence, and body is executed; and so on, for each remaining element of the sequence.
The else part is optional. As with the else part of a while loop, it’s rarely used. break and continue do the same thing in a for loop as in a while loop.
This small loop prints out the reciprocal of each number in x:
x = [1.0, 2.0, 3.0]
for n in x:
print(1 / n)
8.3.1. The range function
Sometimes you need to loop with explicit indices (to use the position at which values occur in a list). You can use the range command together with the len command on lists to generate a sequence of indices for use by the for loop. This code prints out all the positions in a list where it finds negative numbers:
x = [1, 3, -7, 4, 9, -5, 4]
for i in range(len(x)):
if x[i] < 0:
print("Found a negative number at index ", i)
Given a number n, range(n) returns a sequence 0, 1, 2, ..., n–2, n–1. So, passing it the length of a list (found using len) produces a sequence of the indices for that list’s elements. The range function doesn’t build a Python list of integers—it just appears to. Instead, it creates a range object that produces integers on demand. This is useful when you’re using explicit loops to iterate over really large lists. Instead of building a list with 10 million elements in it, for example, which would take up quite a bit of memory, you can use range(10000000), which takes up only a small amount of memory and generates a sequence of integers from 0 up to 10000000 as needed by the for loop.
Controlling starting and stepping values with range
You can use two variants on the range function to gain more control over the sequence it produces. If you use range with two numeric arguments, the first argument is the starting number for the resulting sequence and the second number is the number the resulting sequence goes up to (but doesn’t include). Here are a few examples:
list() is used only to force the items range would generate to appear as a list. It’s not normally used in actual code .
This still doesn’t allow you to count backward, which is why the value of range(5, 3) is an empty list. To count backward, or to count by any amount other than 1, you need to use the optional third argument to range, which gives a step value by which counting proceeds:
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 0, -1))
[5, 4, 3, 2, 1]
Sequences returned by range always include the starting value given as an argument to range and never include the ending value given as an argument.
8.3.2. Using break and continue in for loops
The two special statements break and continue can also be used in the body of a for loop. If break is executed, it immediately terminates the for loop, and not even the post-code (if there is an else clause) will be executed. If continue is executed in a for loop, it causes the remainder of the body to be skipped over, and the loop proceeds as normal with the next item.
8.3.3. The for loop and tuple unpacking
You can use tuple unpacking to make some for loops cleaner. The following code takes a list of two-element tuples and calculates the value of the sum of the products of the two numbers in each tuple (a moderately common mathematical operation in some fields):
somelist = [(1, 2), (3, 7), (9, 5)]
result = 0
for t in somelist:
result = result + (t[0] * t[1])
Here’s the same thing, but cleaner:
somelist = [(1, 2), (3, 7), (9, 5)]
result = 0
for x, y in somelist:
result = result + (x * y)
We use a tuple x, y immediately after the for keyword, instead of the usual single variable. On each iteration of the for loop, x contains element 0 of the current tuple from list, and y contains element 1 of the current tuple from list. Using a tuple in this manner is a convenience of Python, and doing this indicates to Python that each element of the list is expected to be a tuple of appropriate size to unpack into the variable names mentioned in the tuple after the for.
8.3.4. The enumerate function
You can combine tuple unpacking with the enumerate function to loop over both the items and their index. This is similar to using range but has the advantage that the code is clearer and easier to understand. Like the previous example, the following code prints out all the positions in a list where it finds negative numbers:
The enumerate function returns tuples of (index, item) . You can access the item without the index
. The index is also available
.
8.3.5. The zip function
Sometimes it’s useful to combine two or more iterables before looping over them. The zip function will take the corresponding elements from one or more iterables and combine them into tuples until it reaches the end of the shortest iterable:
8.4. List and dictionary comprehensions
The pattern of using a for loop to iterate through a list, modify or select individual elements, and create a new list or dictionary is very common. Such loops often look a lot like the following:
>>> x = [1, 2, 3, 4]
>>> x_squared = []
>>> for item in x:
... x_squared.append(item * item)
...
>>> x_squared
[1, 4, 9, 16]
This sort of situation is so common that Python has a special shortcut for such operations, called a comprehension. You can think of a list or dictionary comprehension as a one-line for loop that creates a new list or dictionary from another list. The pattern of a list comprehension is as follows:
new_list = [expression for variable in old_list if expression]
And a dictionary comprehension looks like this:
new_dict = {expression:expression for variable in list if expression}
In both cases, the heart of the expression is similar to the beginning of a for loop—for variable in list—with some expression using that variable to create a new key or value and an optional conditional expression using the value of the variable to select whether it’s included in the new list or dictionary. For example, the following code does exactly the same thing as the previous code but is a list comprehension:
>>> x = [1, 2, 3, 4]
>>> x_squared = [item * item for item in x]
>>> x_squared
[1, 4, 9, 16]
You can even use if statements to select items from the list:
>>> x = [1, 2, 3, 4]
>>> x_squared = [item * item for item in x if item > 2]
>>> x_squared
[9, 16]
Dictionary comprehensions are similar, but you need to supply both a key and a value. If we want to do something similar to the previous example but have the number be the key and the number’s square be the value in a dictionary, we can use a dictionary comprehension, like so:
>>> x = [1, 2, 3, 4]
>>> x_squared_dict = {item: item * item for item in x}
>>> x_squared_dict
{1: 1, 2: 4, 3: 9, 4: 16}
List and dictionary comprehensions are very flexible and powerful, and when you get used to them they make list-processing operations much simpler. I recommend that you experiment with them and try them anytime you find yourself writing a for loop to process a list of items.
8.5. Statements, blocks, and indentation
Because the control flow constructs we encountered in this chapter are the first to make use of blocks and indentation, this is a good time to revisit the subject.
Python uses the indentation of the statements to determine the delimitation of the different blocks (or bodies) of the control-flow constructs. A block consists of one or more statements, which are usually separated by newlines. Examples of Python statements are the assignment statement, function calls, the print function, the placeholder pass statement, and the del statement. The control-flow constructs (if-elif-else, while, and for loops) are compound statements:
compound statement clause:
block
compound statement clause:
block
A compound statement contains one or more clauses that are each followed by indented blocks. Compound statements can appear in blocks just like any other statements. When they do, they create nested blocks.
You may also encounter a couple of special cases. Multiple statements may be placed on the same line if they are separated by semicolons. A block containing a single line may be placed on the same line after the colon of a clause of a compound statement:
>>> x = 1; y = 0; z = 0
>>> if x > 0: y = 1; z = 10
... else: y = -1
...
>>> print(x, y, z)
1 1 10
Improperly indented code will result in an exception being raised. You may encounter two forms of this. The first is
>>>
>>> x = 1
File "<stdin>", line 1
x = 1
^
IndentationError: unexpected indent
>>>
We indented a line that should not have been indented. In the basic mode, the carat (^) indicates the spot where the problem occurred. In the IDLE Python Shell (see figure 8.1), the invalid indent is highlighted. The same message would occur if we didn’t indent where necessary (that is, the first line after a compound statement clause).
Figure 8.1. Indentation error
One situation where this can occur can be confusing. If you’re using an editor that displays tabs in four-space increments (or the Windows interactive mode, which indents the first tab only four spaces from the prompt) and indent one line with four spaces and then the next line with a tab, the two lines may appear to be at the same level of indentation. But you’ll receive this exception because Python maps the tab to eight spaces. The best way to avoid this problem is to use only spaces in Python code. If you must use tabs for indentation, or if you’re dealing with code that uses tabs, be sure never to mix them with spaces.
On the subject of the basic interactive mode and the IDLE Python Shell, you likely have noticed that you need an extra line after the outermost level of indentation:
>>> x = 1
>>> if x == 1:
... y = 2
... if v > 0:
... z = 2
... v = 0
...
>>> x = 2
No line is necessary after the line z = 2, but one is needed after the line v = 0. This line is unnecessary if you’re placing your code in a module in a file.
The second form of exception will occur if you indent a statement in a block less than the legal amount:
>>> x = 1
>>> if x == 1:
y = 2
z = 2
File "<stdin>", line 3
z = 2
^
IndentationError: unindent does not match any outer indentation level
Here, the line containing z = 2 isn’t lined up properly under the line containing y = 2. This form is rare, but I mention it again because in a similar situation, it may be confusing.
Python will allow you to indent any amount and won’t complain regardless of how much you vary it as long as you’re consistent within a single block. Please don’t take improper advantage of this. The recommended standard is to use four spaces for each level of indentation.
Before leaving indentation, I’ll cover breaking up statements across multiple lines. This of course is necessary more often as the level of indentation increases. You can explicitly break up a line using the backslash character. You can also implicitly break any statement between tokens when within a set of (), {}, or [] delimiters (that is, when typing a set of values in a list, a tuple, or a dictionary, or a set of arguments in a function call, or any expression within a set of brackets). You can indent the continuation line of a statement to any level you desire:
>>> print('string1', 'string2', 'string3' \
... , 'string4', 'string5')
string1 string2 string3 string4 string5
>>> x = 100 + 200 + 300 \
... + 400 + 500
>>> x
1500
>>> v = [100, 300, 500, 700, 900,
... 1100, 1300]
>>> v
[100, 300, 500, 700, 900, 1100, 1300]
>>> max(1000, 300, 500,
... 800, 1200)
1200
>>> x = (100 + 200 + 300
... + 400 + 500)
>>> x
1500
You can break a string with a \ as well. But any indentation tabs or spaces will become part of the string, and the line must end with the \. To avoid this, you can use the fact that any set of string literals separated by whitespace is automatically concatenated:
>>> "strings separated by whitespace " \
... """are automatically""" ' concatenated'
'strings separated by whitespace are automatically concatenated'
>>> x = 1
>>> if x > 0:
... string1 = "this string broken by a backslash will end up \
... with the indentation tabs in it"
...
>>> string1
'this string broken by a backslash will end up \t\t\twith
the indentation tabs in it'
>>> if x > 0:
... string1 = "this can be easily avoided by splitting the " \
... "string in this way"
...
>>> string1
'this can be easily avoided by splitting the string in this way'
8.6. Boolean values and expressions
The previous examples of control flow use conditional tests in a fairly obvious manner but never really explain what constitutes true or false in Python or what expressions can be used where a conditional test is needed. This section describes these aspects of Python.
Python has a Boolean object type that can be set to either True or False. Any expression with a Boolean operation will return True or False.
8.6.1. Most Python objects can be used as Booleans
In addition, Python is similar to C with respect to Boolean values, in that C uses the integer 0 to mean false and any other integer to mean true. Python generalizes this idea; 0 or empty values are False, and any other values are True. In practical terms, this means the following:
There are some Python data structures we haven’t looked at yet, but generally the same rule applies. If the data structure is empty or 0, it’s taken to mean false in a Boolean context; otherwise it’s taken to mean true. Some objects, such as file objects and code objects, don’t have a sensible definition of a 0 or empty element, and these objects shouldn’t be used in a Boolean context.
8.6.2. Comparison and Boolean operators
You can compare objects using normal operators: <, <=, >, >=, and so forth. == is the equality test operator, and either != or <> may be used as the “not equal to” test. There are also in and not in operators to test membership in sequences (lists, tuples, strings, and dictionaries) as well as is and is not operators to test whether two objects are the same.
Expressions that return a Boolean value may be combined into more complex expressions using the and, or, and not operators. This code snippet checks to see if a variable is within a certain range:
if 0 < x and x < 10:
...
Python offers a nice shorthand for this particular type of compound statement; you can write it as you would in a math paper:
if 0 < x < 10:
...
Various rules of precedence apply; when in doubt, you can use parentheses to make sure Python interprets an expression the way you want it to. This is probably a good idea for complex expressions, regardless of whether it’s necessary, because it makes it clear to future maintainers of the code exactly what’s happening. See the appendix for more details on precedence.
The rest of this section provides more advanced information. If this is your first read through this book as you’re learning the language, you may want to skip over it.
The and and or operators return objects. The and operator returns either the first false object (that an expression evaluates to) or the last object. Similarly, the or operator returns either the first true object or the last object. As with many other languages, evaluation stops as soon as a true expression is found for the or operator or as soon as a false expression is found for the and operator:
>>> [2] and [3, 4]
[3, 4]
>>> [] and 5
[]
>>> [2] or [3, 4]
[2]
>>> [] or 5
5
>>>
The == and != operators test to see if their operands contains the same values. They are used in most situations. The is and is not operators test to see if their operands are the same object:
Revisit “Nested lists and deep copies” (section 5.6) of “Lists, tuples, and sets” (chapter 5) if this example isn’t clear to you.
8.7. Writing a simple program to analyze a text file
To give you a better sense of how a Python program works, let’s look a small sample that roughly replicates the UNIX wc utility and reports the number of lines, words, and characters in a file. The sample in listing 8.1 is deliberately written to be clear to programmers new to Python and as simple as possible.
Listing 8.1. word_count.py
To test, you can run this against a sample file containing the first paragraph of this chapter’s summary, like listing 8.2.
Listing 8.2. word_count.tst
Python provides a complete set of control flow elements,
including while and for loops, and conditionals.
Python uses the level of indentation to group blocks
of code with control elements.
On running word_count.py, you’ll get the following output:
vern@mac:~/quickpythonbook/code $ python3.1 word_count.py
File has 4 lines, 30 words, 189 characters
This code can give you an idea of a Python program. There isn’t much code, and most of the work gets done in three lines of code in the for loop. Most Pythonistas see this conciseness as one of Python’s great strengths.
8.8. Summary
Python provides a complete set of control-flow elements, including while and for loops and conditionals. Python uses the level of indentation to group blocks of code with control elements.
Python has the Boolean values True and False, which can be referenced by variables, but it also considers any 0 or empty value to be false and any nonzero or nonempty value to be true.
Control flow is an important part of programming, but just as important is the ability to package and reuse blocks of code. In the next few chapters, we’ll look at ways to do that in Python, beginning with functions.
Chapter 9. Functions
This chapter covers
This chapter assumes you’re familiar with function definitions in at least one other computer language and with the concepts that correspond to function definitions, arguments, parameters, and so forth.
9.1. Basic function definitions
The basic syntax for a Python function definition is
def name(parameter1, parameter2, . . .):
body
As it does with control structures, Python uses indentation to delimit the body of the function definition. The following simple example puts the factorial code from a previous section into a function body, so we can call a fact function to obtain the factorial of a number:
The second line is an optional documentation string or docstring. You can obtain its value by printing fact.__doc__. The intention of docstrings is to describe the external behavior of a function and the parameters it takes, whereas comments should document internal information about how the code works. Docstrings are strings that immediately follow the first line of a function definition and are usually triple quoted to allow for multiline descriptions. Browsing tools are available that extract the first line of document strings. It’s a standard practice for multiline documentation strings to give a synopsis of the function in the first line, follow this with a blank second line, and end with the rest of the information. This line shows the value after the return is sent back to the code calling the function
.
Procedure or function?
In some languages, a function that doesn’t return a value is called a procedure. Although you can (and will) write functions that don’t have a return statement, they aren’t really procedures. All Python procedures are functions; if no explicit return is executed in the procedure body, then the special Python value None is returned, and if return arg is executed, then the value arg is immediately returned. Nothing else in the function body is executed once a return has been executed. Because Python doesn’t have true procedures, we’ll refer to both types as functions.
Although all Python functions return values, it’s up to you whether a function’s return value is used:
The return value isn’t associated with a variable . The fact function’s value is printed in the interpreter only
. The return value is associated with the variable x
.
9.2. Function parameter options
Most functions need parameters, and each language has its own specifications for how function parameters are defined. Python is flexible and provides three options for defining function parameters. These are outlined in this section.
9.2.1. Positional parameters
The simplest way to pass parameters to a function in Python is by position. In the first line of the function, you specify definition variable names for each parameter; when the function is called, the parameters used in the calling code are matched to the function’s parameter variables based on their order. The following function computes x to the power of y:
>>> def power(x, y):
... r = 1
... while y > 0:
... r = r * x
... y = y - 1
... return r
...
>>> power(3, 3)
27
This method requires that the number of parameters used by the calling code exactly match the number of parameters in the function definition, or a TypeError exception will be raised:
>>> power(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: power() takes exactly 2 positional arguments (1 given)
>>>
Default values
Function parameters can have default values, which you declare by assigning a default value in the first line of the function definition, like so:
def fun(arg1, arg2=default2, arg3=default3, . . .)
Any number of parameters can be given default values. Parameters with default values must be defined as the last parameters in the parameter list. This is because Python, like most languages, pairs arguments with parameters on a positional basis. There must be enough arguments to a function that the last parameter in that function’s parameter list that doesn’t have a default value gets an argument. See the next section, “Passing arguments by parameter name,” for a more flexible mechanism.
The following function also computes x to the power of y. But if y isn’t given in a call to the function, the default value of 2 is used, and the function is just the square function:
>>> def power(x, y=2):
... r = 1
... while y > 0:
... r = r * x
... y = y - 1
... return r
...
You can see the effect of the default argument in the following interactive session:
>>> power(3, 3)
27
>>> power(3)
9
9.2.2. Passing arguments by parameter name
You can also pass arguments into a function using the name of the corresponding function parameter, rather than its position. Continuing with the previous interactive example, we can type
>>> power(2, 3)
8
>>> power(3, 2)
9
>>> power(y=2, x=3)
9
Because the arguments to power in the final invocation of it are named, their order is irrelevant; the arguments are associated with the parameters of the same name in the definition of power, and we get back 3^2. This type of argument passing is called keyword passing.
Keyword passing, in combination with the default argument capability of Python functions, can be highly useful when you’re defining functions with large numbers of possible arguments, most of which have common defaults. For example, consider a function that’s intended to produce a list with information about files in the current directory and that uses Boolean arguments to indicate whether that list should include information such as file size, last modified date, and so forth, for each file. We can define such a function along these lines
def list_file_info(size=False, create_date=False, mod_date=False, ...):
...get file names...
if size:
# code to get file sizes goes here
if create_date:
# code to get create dates goes here
.
.
.
return fileinfostructure
and then call it from other code using keyword argument passing to indicate that we want only certain information (in this example, the file size and modification date but not the creation date):
fileinfo = list_file_info(size=True, mod_date=True)
This type of argument handling is particularly suited for functions with very complex behavior, and one place such functions occur is in graphical user interfaces. If you ever use the Tkinter package to build GUIs in Python, you’ll find that the use of optional, keyword-named arguments like this is invaluable.
9.2.3. Variable numbers of arguments
Python functions can also be defined to handle variable numbers of arguments. You can do this two different ways. One way handles the relatively familiar case where you wish to collect an unknown number of arguments at the end of the argument list into a list. The other method can collect an arbitrary number of keyword-passed arguments, which have no correspondingly named parameter in the function parameter list, into a dictionary. These two mechanisms are discussed next.
Dealing with an indefinite number of positional arguments
Prefixing the final parameter name of the function with a * causes all excess non-keyword arguments in a call of a function (that is, those positional arguments not assigned to another parameter) to be collected together and assigned as a tuple to the given parameter. Here’s a simple way to implement a function to find the maximum in a list of numbers.
First, implement the function:
>>> def maximum(*numbers):
... if len(numbers) == 0:
... return None
... else:
... maxnum = numbers[0]
... for n in numbers[1:]:
... if n > maxnum:
... maxnum = n
... return maxnum
...
Now, test out the behavior of the function:
>>> maximum(3, 2, 8)
8
>>> maximum(1, 5, 9, -2, 2)
9
Dealing with an indefinite number of arguments passed by keyword
An arbitrary number of keyword arguments can also be handled. If the final parameter in the parameter list is prefixed with **, it will collect all excess keyword-passed arguments into a dictionary. The index for each entry in the dictionary will be the keyword (parameter name) for the excess argument. The value of that entry is the argument itself. An argument passed by keyword is excess in this context if the keyword by which it was passed doesn’t match one of the parameter names of the function.
For example:
>>> def example_fun(x, y, **other):
... print("x: {0}, y: {1}, keys in 'other': {2}".format(x,
... y, list(other.keys())))
... other_total = 0
... for k in other.keys():
... other_total = other_total + other[k]
... print("The total of values in 'other' is {0}".format(other_total))
Trying out this function in an interactive session reveals that it can handle arguments passed in under the keywords foo and bar, even though these aren’t parameter names in the function definition:
>>> example_fun(2, y="1", foo=3, bar=4)
x: 2, y: 1, keys in 'other': ['foo', 'bar']
The total of values in 'other' is 7
9.2.4. Mixing argument-passing techniques
It’s possible to use all of the argument-passing features of Python functions at the same time, although it can be confusing if not done with care. Rules govern what you can do. See the documentation for the details.
9.3. Mutable objects as arguments
Arguments are passed in by object reference. The parameter becomes a new reference to the object. For immutable objects (such as tuples, strings, and numbers), what is done with a parameter has no effect outside the function. But if you pass in a mutable object (for example, a list, dictionary, or class instance), any change made to the object will change what the argument is referencing outside the function. Reassigning the parameter doesn’t affect the argument, as shown in figures 9.1 and 9.2:
>>> def f(n, list1, list2):
... list1.append(3)
... list2 = [4, 5, 6]
... n = n + 1
...
>>> x = 5
>>> y = [1, 2]
>>> z = [4, 5]
>>> f(x, y, z)
>>> x, y, z
(5, [1, 2, 3], [4, 5])
Figure 9.1. At the beginning of function f(), both the initial variables and the function parameters refer to the same objects.
Figure 9.2. At the end of function f(), y (list1 inside the function) has been changed internally, whereas n and list2 refer to different objects.
Figures 9.1 and 9.2 illustrate what happens when function f is called. The variable x isn’t changed because it’s immutable. Instead, the function parameter n is set to refer to the new value of 6. Likewise, variable z is unchanged because inside function f, its corresponding parameter list2 was set to refer to a new object, [4, 5, 6]. Only y sees a change because the actual list it points to was changed.
9.4. Local, nonlocal, and global variables
Let’s return to our definition of fact from the beginning of this chapter:
def fact(n):
"""Return the factorial of the given number."""
r = 1
while n > 0:
r = r * n
n = n - 1
return r
Both the variables r and n are local to any particular call of the factorial function; changes to them made when the function is executing have no effect on any variables outside the function. Any variables in the parameter list of a function, and any variables created within a function by an assignment (like r = 1 in fact), are local to the function.
You can explicitly make a variable global by declaring it so before the variable is used, using the global statement. Global variables can be accessed and changed by the function. They exist outside the function and can also be accessed and changed by other functions that declare them global or by code that’s not within a function. Let’s look at an example to see the difference between local and global variables:
>>> def fun():
... global a
... a = 1
... b = 2
...
This defines a function that treats a as a global variable and b as a local variable and attempts to modify both a and b.
Now, test this function:
>>> a = "one"
>>> b = "two"
>>> fun()
>>> a
1
>>> b
'two'
The assignment to a within fun is an assignment to the global variable a also existing outside of fun. Because a is designated global in fun, the assignment modifies that global variable to hold the value 1 instead of the value "one". The same isn’t true for b—the local variable called b inside fun starts out referring to the same value as the variable b outside of fun, but the assignment causes b to point to a new value that’s local to the function fun.
Similar to the global statement is the nonlocal statement, which causes an identifier to refer to a previously bound variable in the closest enclosing scope. We’ll discuss scopes and namespaces in more detail in the next chapter, but the point is that global is used for a top-level variable, whereas nonlocal can refer to any variable in an enclosing scope, as the example in listing 9.1 illustrates.
Listing 9.1. File nonlocal.py
When run, this code prints the following:
top level-> g_var: 0 nl_var: 0
in test-> g_var: 0 nl_var: 2
in inner_test-> g_var: 1 nl_var: 4
in test-> g_var: 1 nl_var: 4
top level-> g_var: 1 nl_var: 0
Note that the value of the top-level nl_var hasn’t been affected, which would happen if inner_test contained the line global nl_var.
The bottom line is that if you want to assign to a variable existing outside a function, you must explicitly declare that variable to be nonlocal or global. But if you’re accessing a variable that exists outside the function, you don’t need to declare it nonlocal or global. If Python can’t find a variable name in the local function scope, it will attempt to look up the name in the global scope. Hence, accesses to global variables will automatically be sent through to the correct global variable. Personally, I don’t recommend using this shortcut. It’s much clearer to a reader if all global variables are explicitly declared as global. Further, you probably want to limit the use of global variables within functions to only rare occasions.
9.5. Assigning functions to variables
Functions can be assigned, like other Python objects, to variables, as shown in the following example:
You can place them in lists, tuples, or dictionaries:
A variable that refers to a function can be used in exactly the same way as the function . This last example shows how you can use a dictionary to call different functions by the value of the strings used as keys. This is a common pattern in situations where different functions need to be selected based on a string value, and in many cases it takes the place of the switch structure found in languages like C and Java.
9.6. lambda expressions
Short functions like those you just saw can also be defined using lambda expressions of the form
lambda parameter1, parameter2, . . .: expression
lambda expressions are anonymous little functions that you can quickly define inline. Often, a small function needs to be passed to another function, like the key function used by a list’s sort method. In such cases, a large function is usually unnecessary, and it would be awkward to have to define the function in a separate place from where it’s used. Our dictionary in the previous subsection can be defined all in one place with
This defines lambda expressions as values of the dictionary . Note that lambda expressions don’t have a return statement, because the value of the expression is automatically returned.
9.7. Generator functions
A generator function is a special kind of function that you can use to define your own iterators. When you define a generator function, you return each iteration’s value using the yield keyword. When there are no more iterations, an empty return statement or flowing off the end of the function ends the iterations. Local variables in a generator function are saved from one call to the next, unlike in normal functions:
Note that this generator function has a while loop that limits the number of times the generator will execute. Depending on how it’s used, a generator that doesn’t have some condition to halt it could cause an endless loop when called.
You can also use generator functions with in to see if a value is in the series that the generator produces:
>>> 2 in four()
in generator, x = 0
in generator, x = 1
in generator, x = 2
True
>>> 5 in four()
in generator, x = 0
in generator, x = 1
in generator, x = 2
in generator, x = 3
False
9.8. Decorators
Because functions are first-class objects in Python, they can be assigned to variables, as you’ve seen. Functions can be passed as arguments to other functions and passed back as return values from other functions.
For example, it’s possible to write a Python function that takes another function as its parameter, wrap it in another function that does something related, and then return the new function. This new combination can be used instead of the original function:
>>> def decorate(func):
... print("in decorate function, decorating", func.__name__)
... def wrapper_func(*args):
... print("Executing", func.__name__)
... return func(*args)
... return wrapper_func
...
>>> def myfunction(parameter):
... print(parameter)
...
>>> myfunction = decorate(myfunction)
in decorate function, decorating myfunction
>>> myfunction("hello")
Executing myfunction
hello
A decorator is syntactic sugar for this process and lets you wrap one function inside another with a one-line addition. This still gives you exactly the same effect as the previous code, but the resulting code is much cleaner and easier to read.
Very simply, using a decorator involves two parts: defining the function that will be wrapping or “decorating” other functions and then using an @ followed by the decorator immediately before the wrapped function is defined. The decorator function should take a function as a parameter and return a function, as follows:
The decorate function prints the name of the function it’s wrapping when the function is defined . When it’s finished, the decorator returns the wrapped function
. myfunction is decorated using @decorate
. The wrapped function is called after the decorator function has completed
.
Using a decorator to wrap one function in another can be handy for a number of purposes. In web frameworks such as Django, decorators are used to make sure a user is logged in before executing a function; and in graphics libraries, decorators can be used to register a function with the graphics framework.
9.9. Summary
Defining functions in Python is simple but highly flexible. Although all variables created during the execution of a function body are local to that function, external variables can easily be accessed using the global statement.
Python functions provide exceedingly powerful argument-passing features:
Functions are first-class objects in Python, which means that they can be assigned to variables, accessed by way of variables, and decorated. Functions are essential building blocks for writing readable, structured code. By packaging code that performs a particular function, they make reusing that code easier, and they also make the rest of your code simpler and easier to understand. The next step along this path is packaging functions (and other objects) into modules, which is the topic of the next chapter.
Chapter 10. Modules and scoping rules
This chapter covers:
Modules are used to organize larger Python projects. The Python standard library is split into modules to make it more manageable. You don’t need to organize your own code into modules, but if you’re writing any programs that are more than a few pages long, or any code that you want to reuse, you should probably do so.
10.1. What is a module?
A module is a file containing code. A module defines a group of Python functions or other objects, and the name of the module is derived from the name of the file.
Modules most often contain Python source code, but they can also be compiled C or C++ object files. Compiled modules and Python source modules are used the same way.
As well as grouping related Python objects, modules help avoid name-clash problems. For example, you might write a module for your program called mymodule, which defines a function called reverse. In the same program, you might also wish to use somebody else’s module called othermodule, which also defines a function called reverse, but which does something different from your reverse function. In a language without modules, it would be impossible to use two different functions named reverse. In Python, it’s trivial—you refer to them in your main program as mymodule.reverse and othermodule.reverse.
This is because Python uses namespaces. A namespace is essentially a dictionary of the identifiers available to a block, function, class, module, and so on. We’ll discuss namespaces a bit more at the end of this chapter, but be aware that each module has its own namespace, and this helps avoid naming conflicts.
Modules are also used to make Python itself more manageable. Most standard Python functions aren’t built into the core of the language but instead are provided via specific modules, which you can load as needed.
10.2. A first module
The best way to learn about modules is probably to make one, so let’s get started.
Create a text file called mymath.py, and in that text file enter the Python code in listing 10.1. (If you’re using IDLE, select New Window from the File menu and start typing, as shown in figure 10.1.)
Listing 10.1. File mymath.py
"""mymath - our example math module"""
pi = 3.14159
def area(r):
"""area(r): return the area of a circle with radius r."""
global pi
return(pi * r * r)
Figure 10.1. An IDLE edit window provides the same editing functionality as the shell window, including automatic indentation and colorization.
Save this for now in the directory where your Python executable is. This code merely assigns pi a value and defines a function. The .py filename suffix is strongly suggested for all Python code files. It identifies that file to the Python interpreter as consisting of Python source code. As with functions, you have the option of putting in a document string as the first line of your module.
Now, start up the Python Shell and type the following:
>>> pi
Traceback (innermost last):
File "<stdin>", line 1, in ?
NameError: name 'pi' is not defined
>>> area(2)
Traceback (innermost last):
File "<stdin>", line 1, in ?
NameError: name 'area' is not defined
In other words, Python doesn’t have the constant pi or the function area built in.
Now, type
>>> import mymath
>>> pi
Traceback (innermost last):
File "<stdin>", line 1, in ?
NameError: name 'pi' is not defined
>>> mymath.pi
3.1415899999999999
>>> mymath.area(2)
12.56636
>>> mymath.__doc__
'mymath - our example math module'
>>> mymath.area.__doc__
'area(r): return the area of a circle with radius r.'
We’ve brought in the definitions for pi and area from the mymath.py file, using the import statement (which automatically adds on the .py suffix when it searches for the file defining the module named mymath). But the new definitions aren’t directly accessible; typing pi by itself gave an error, and typing area(2) by itself would give an error. Instead, we access pi and area by prepending them with the name of the module that contains them. This guarantees name safety. There may be another module out there that also defines pi (maybe the author of that module thinks that pi is 3.14 or 3.14159265), but that is of no concern. Even if that other module is imported, its version of pi will be accessed by othermodulename.pi, which is different from mymath.pi. This form of access is often referred to as qualification (that is, the variable pi is being qualified by the module mymath). We may also refer to pi as an attribute of mymath.
Definitions within a module can access other definitions within that module, without prepending the module name. The mymath.area function accesses the mymath.pi constant as just pi.
If you want to, you can also specifically ask for names from a module to be imported in such a manner that you don’t have to prepend it with the module name. Type
>>> from mymath import pi
>>> pi
3.1415899999999999
>>> area(2)
Traceback (innermost last):
File "<stdin>", line 1, in ?
NameError: name 'area' is not defined
The name pi is now directly accessible because we specifically requested it using from module import name.
The function area still needs to be called as mymath.area, though, because it wasn’t explicitly imported.
You may want to use the basic interactive mode or IDLE’s Python shell to incrementally test a module as you’re creating it. But if you change your module on disk, retyping the import command won’t cause it to load again. You need to use the reload function from the imp module for this. The imp module provides an interface to the mechanisms behind importing modules:
>>> import mymath, imp
>>> imp.reload(mymath)
<module 'mymath' from '/home/doc/quickpythonbook/code/mymath.py'>
When a module is reloaded (or imported for the first time), all of its code is parsed. A syntax exception is raised if an error is found. On the other hand, if everything is okay, a .pyc file (for example, mymath.pyc) containing Python byte code is created.
Reloading a module doesn’t put you back into exactly the same situation as when you start a new session and import it for the first time. But the differences won’t normally cause you any problems. If you’re interested, you can look up reload in the section on the imp module in the Python Language Reference to find the details.
Of course, modules don’t need to be used from the interactive Python shell. You can also import them into scripts, or other modules for that matter; enter suitable import statements at the beginning of your program file. Internally to Python, the interactive session and a script are considered modules as well.
To summarize:
10.3. The import statement
The import statement takes three different forms. The most basic,
import modulename
searches for a Python module of the given name, parses its contents, and makes it available. The importing code can use the contents of the module, but any references by that code to names within the module must still be prepended with the module name. If the named module isn’t found, an error will be generated. Exactly where Python looks for modules will be discussed shortly.
The second form permits specific names from a module to be explicitly imported into the code:
from modulename import name1, name2, name3, . . .
Each of name1, name2, and so forth from within modulename is made available to the importing code; code after the import statement can use any of name1, name2, name3, and so on without prepending the module name.
Finally, there’s a general form of the from . . . import . . . statement:
from modulename import *
The * stands for all the exported names in modulename. This imports all public names from modulename—that is, those that don’t begin with an underscore, and makes them available to the importing code without the necessity of prepending the module name. But if a list of names called __all__ exists in the module (or the package’s __init__.py), then the names are the ones imported, whether they begin with an underscore or not.
You should take care when using this particular form of importing. If two modules both define a name, and you import both modules using this form of importing, you’ll end up with a name clash, and the name from the second module will replace the name from the first. It also makes it more difficult for readers of your code to determine where names you’re using originate. When you use either of the two previous forms of the import statement, you give your reader explicit information about where they’re from.
But some modules (such as tkinter, which will be covered later) name their functions to make it obvious where they originate and to make it unlikely that name clashes will occur. It’s also common to use the general import to save keystrokes when using an interactive shell.
10.4. The module search path
Exactly where Python looks for modules is defined in a variable called path, which you can access through a module called sys. Enter the following:
>>> import sys
>>> sys.path
_list of directories in the search path_
The value shown in place of _list of directories in the search path_ will depend on the configuration of your system. Regardless of the details, the string indicates a list of directories that Python searches (in order) when attempting to execute an import statement. The first module found that satisfies the import request is used. If there’s no satisfactory module in the module search path, an ImportError exception is raised.
If you’re using IDLE, you can graphically look at the search path and the modules on it using the Path Browser window, which you can start from File menu of the Python Shell window.
The sys.path variable is initialized from the value of the environment (operating system) variable PYTHONPATH, if it exists, or from a default value that’s dependent on your installation. In addition, whenever you run a Python script, the sys.path variable for that script has the directory containing the script inserted as its first element—this provides a convenient way of determining where the executing Python program is located. In an interactive session such as the previous one, the first element of sys.path is set to the empty string, which Python takes as meaning that it should first look for modules in the current directory.
10.4.1. Where to place your own modules
In the example that started this chapter, the mymath module was accessible to Python because (1) when you execute Python interactively, the first element of sys.path is "", telling Python to look for modules in the current directory; and (2) you were executing Python in the directory that contained the mymath.py file. In a production environment, neither of these conditions will typically be true. You won’t be running Python interactively, and Python code files won’t be located in your current directory. In order to ensure that your programs can use modules you coded, you need to do one of the following:
Of these three options, the first is apparently the easiest and is also an option that you should never choose unless your version of Python includes local code directories in its default module search path. Such directories are specifically intended for site-specific code and aren’t in danger of being overwritten by a new Python install because they’re not part of the Python installation. If your sys.path refers to such directories, you can put your modules there.
The second option is a good choice for modules that are associated with a particular program. Just keep them with the program.
The third option is the right choice for site-specific modules that will be used in more than one program at that site. You can modify sys.path in various ways. You can assign to it in your code, which is easy, but doing so hard-codes directory locations into your program code; you can set the PYTHONPATH environment variable, which is relatively easy, but it may not apply to all users at your site; or you can add to the default search path using a .pth file.
See the section on environment variables in the appendix for examples of how to set PYTHONPATH. The directory or directories you set it to are prepended to the sys.path variable. If you use it, be careful that you don’t define a module with the same name as one of the existing library modules that you’re using or is being used for you. Your module will be found before the library module. In some cases, this may be what you want, but probably not often.
You can avoid this issue using the .pth method. In this case, the directory or directories you added will be appended to sys.path. The last of these mechanisms is best illustrated by a quick example. On Windows, you can place this in the directory pointed to by sys.prefix. Assume your sys.prefix is c:\program files\python, and place the file in listing 10.2 in that directory.
Listing 10.2. File myModules.pth
mymodules
c:\My Documents\python\modules
The next time a Python interpreter is started, sys.path will have c:\program files\python\mymodules and c:\My Documents\python\modules added to it, if they exist. You can now place your modules in these directories. Note that the mymodules directory still runs the danger of being overwritten with a new installation. The modules directory is safer. You also may have to move or create a mymodules.pth file when you upgrade Python. See the description of the site module in the Python Library Reference if you want more details on using .pth files.
10.5. Private names in modules
We mentioned that you can enter from module import * to import almost all names from a module. The exception to this is that names in the module beginning with an underscore can’t be imported in this manner so that people can write modules that are intended for importation with from module import *. By starting all internal names (that is, names that shouldn’t be accessed outside the module) with an underscore, you can ensure that from module import * brings in only those names that the user will want to access.
To see this in action, let’s assume we have a file called modtest.py, containing the code in listing 10.3.
Listing 10.3. File modtest.py
"""modtest: our test module"""
def f(x):
return x
def _g(x):
return x
a = 4
_b = 2
Now, start up an interactive session, and enter the following:
>>> from modtest import *
>>> f(3)
3
>>> _g(3)
Traceback (innermost last):
File "<stdin>", line 1, in ?
NameError: name '_g' is not defined
>>> a
4
>>> _b
Traceback (innermost last):
File "<stdin>", line 1, in ?
NameError: name '_b' is not defined
As you can see, the names f and a are imported, but the names _g and _b remain hidden outside of modtest. Note that this behavior occurs only with from ... import *. We can do the following to access _g or _b:
>>> import modtest
>>> modtest._b
2
>>> from modtest import _g
>>> _g(5)
5
The convention of leading underscores to indicate private names is used throughout Python and not just in modules. You’ll encounter it in classes and packages, later in the book.
10.6. Library and third-party modules
At the beginning of this chapter, I mentioned that the standard Python distribution is split into modules to make it more manageable. After you’ve installed Python, all the functionality in these library modules is available to you. All that’s needed is to import the appropriate modules, functions, classes, and so forth explicitly, before you use them.
Many of the most common and useful standard modules are discussed throughout this book. But the standard Python distribution includes far more than what this book describes. At the very least, you should browse through the table of contents of the Python Library Reference.
In IDLE, you can easily browse to and look at those written in Python using the Path Browser window. You can also search for example code that uses them with the Find in Files dialog box, which you can open from the Edit menu of the Python Shell window. You can search through your own modules as well in this way.
Available third-party modules, and links to them, are identified on the Python home page. You need to download these and place them in a directory in your module search path in order to make them available for import into your programs.
10.7. Python scoping rules and namespaces
Python’s scoping rules and namespaces will become more interesting as your experience as a Python programmer grows. If you’re new to Python, you probably don’t need to do anything more than quickly read through the text to get the basic ideas. For more details, look up “namespaces” in the Python Language Reference.
The core concept here is that of a namespace. A namespace in Python is a mapping from identifiers to objects and is usually represented as a dictionary. When a block of code is executed in Python, it has three namespaces: local, global, and built-in (see figure 10.2).
Figure 10.2. The order in which namespaces are checked to locate identifiers
When an identifier is encountered during execution, Python first looks in the local namespace for it. If it isn’t found, the global namespace is looked in next. If it still hasn’t been found, the built-in namespace is checked. If it doesn’t exist there, this is considered an error and a NameError exception occurs.
For a module, a command executed in an interactive session, or a script running from a file, the global and local namespaces are the same. Creating any variable or function or importing anything from another module results in a new entry, or binding, being made in this namespace.
But when a function call is made, a local namespace is created, and a binding is entered in it for each parameter of the call. A new binding is then entered into this local namespace whenever a variable is created within the function. The global namespace of a function is the global namespace of the containing block of the function (that of the module, script file, or interactive session). It’s independent of the dynamic context from which it’s called.
In all of these situations, the built-in namespace is that of the __builtins__ module. This module contains, among other things, all the built-in functions you’ve encountered (such as len, min, max, int, float, long, list, tuple, cmp, range, str, and repr) and the other built-in classes in Python, such as the exceptions (like NameError).
One thing that sometimes catches new Python programmers is the fact that you can override items in the built-in module. If, for example, you create a list in your program and put it in a variable called list, you can’t subsequently use the built-in list function. The entry for your list is found first. There’s no differentiation between names for functions and modules and other objects. The most recent occurrence of a binding for a given identifier is used.
Enough talk—it’s time to explore this with some examples. We use two built-in functions, locals and globals. They return dictionaries containing the bindings in the local and global namespaces, respectively.
Start a new interactive session:
>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__','__doc__': None, '__package__': None}
>>> globals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__','__doc__': None, '__package__': None}>>>
The local and global namespaces for this new interactive session are the same. They have three initial key/value pairs that are for internal use: (1) an empty documentation string __doc__, (2) the main module name __name__ (which for interactive sessions and scripts run from files is always __main__), and (3) the module used for the built-in namespace __builtins__ (the module __builtins__).
Now, if we continue by creating a variable and importing from modules, we’ll see a number of bindings created:
>>> z = 2
>>> import math
>>> from cmath import cos
>>> globals()
{'cos': <built-in function cos>, '__builtins__': <module 'builtins'(built-in)>, '__package__': None, '__name__': '__main__', 'z': 2,
'__doc__': None, 'math': <module 'math' from
'/usr/local/lib/python3.0/libdynload/math.so'>}
>>> locals()
{'cos': <built-in function cos>, '__builtins__':<module 'builtins' (built-in)>, '__package__': None, '__name__':
'__main__', 'z': 2, '__doc__': None, 'math': <module 'math' from
'/usr/local/lib/python3.0/libdynload/math.so'>}
>>> math.ceil(3.4)
4
As expected, the local and global namespaces continue to be equivalent. Entries have been added for z as a number, math as a module, and cos from the cmath module as a function.
You can use the del statement to remove these new bindings from the namespace (including the module bindings created with the import statements):
>>> del z, math, cos
>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__package__': None,
'__name__': '__main__', '__doc__': None}
>>> math.ceil(3.4)
Traceback (innermost last):
File "<stdin>", line 1, in <module>
NameError: math is not defined
>>> import math
>>> math.ceil(3.4)
4
The result isn’t drastic, because we’re able to import the math module and use it again. Using del in this manner can be handy when you’re in the interactive mode.[1]
1 Using del and then import again won’t pick up changes made to a module on disk. It isn’t removed from memory and then loaded from disk again. The binding is taken out of and then put back into your namespace. You still need to use imp.reload if you want to pick up changes made to a file.
For the trigger happy, yes, it’s also possible to use del to remove the __doc__, __main__, and __builtins__ entries. But resist doing this, because it wouldn’t be good for the health of your session!
Now, let’s look at a function created in an interactive session:
>>> def f(x):
... print("global: ", globals())
... print("Entry local: ", locals())
... y = x
... print("Exit local: ", locals())
...
>>> z = 2
>>> globals()
{'f': <function f at 0xb7cbfeac>, '__builtins__': <module 'builtins'(built-in)>, '__package__': None, '__name__': '__main__', 'z': 2,
'__doc__': None}
>>> f(z)
global: {'f': <function f at 0xb7cbfeac>, '__builtins__': <module'builtins' (built-in)>, '__package__': None, '__name__': '__main__',
'z': 2, '__doc__': None}
Entry local: {'x': 2}
Exit local: {'y': 2, 'x': 2}
>>>
If we dissect this apparent mess, we see that, as expected, upon entry the parameter x is the original entry in f’s local namespace, but y is added later. The global namespace is the same as that of our interactive session, because this is where f was defined. Note that it contains z, which was defined after f.
In a production environment, you normally call functions that are defined in modules. Their global namespace is that of the module they’re defined in. Assume that we’ve created the file in listing 10.4.
Listing 10.4. File scopetest.py
"""scopetest: our scope test module"""
v = 6
def f(x):
"""f: scope test function"""
print("global: ", list(globals().keys()))
print("entry local:", locals())
y = x
w = v
print("exit local:", list(locals().keys()))
Note that we’ll be printing only the keys (identifiers) of the dictionary returned by globals. This will reduce the clutter in the results. It was necessary in this case due to the fact that in modules as an optimization, the whole __builtins__ dictionary is stored in the value field for the __builtins__ key:
>>> import scopetest
>>> z = 2
>>> scopetest.f(z)
global: ['f', '__builtins__', '__file__', '__package__', 'v', '__name__','__doc__']
entry local: {'x': 2}
exit local: {'y': 2, 'x': 2, 'w': 6}
The global namespace is now that of the scopetest module and includes the function f and integer v (but not z from our interactive session). Thus, when creating a module, you have complete control over the namespaces of its functions.
We’ve now covered local and global namespaces. Next, let’s move on to the built-in namespace. We’ll introduce another built-in function, dir, which, given a module, returns a list of the names defined in it:
>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BufferError', 'BytesWarning', 'DeprecationWarning', 'EOFError',
'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError',
'ImportError', 'ImportWarning', 'IndentationError', 'IndexError',
'KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError',
'NameError', 'None', 'NotImplemented', 'NotImplementedError', 'OSError',
'OverflowError', 'PendingDeprecationWarning', 'ReferenceError',
'RuntimeError', 'RuntimeWarning', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
'ZeroDivisionError', '__build_class__', '__debug__', '__doc__',
'__import__', '__name__', '__package__', 'abs', 'all', 'any', 'ascii',
'bin', 'bool', 'bytearray', 'bytes', 'chr', 'classmethod', 'cmp',
'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir',
'divmod', 'enumerate', 'eval', 'exec', 'exit', 'filter', 'float',
'format', 'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help',
'hex', 'id', 'input', 'int', 'isinstance', 'issubclass', 'iter', 'len',
'license', 'list', 'locals', 'map', 'max', 'memoryview', 'min', 'next',
'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit',
'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type',
'vars', 'zip']
There are a lot of entries here. Those ending in Error and System Exit are the names of the exceptions built into Python. These will be discussed in chapter 14, “Exceptions.”
The last group (from abs to zip) are built-in functions of Python. You’ve already seen many of these in this book and will see more. But they won’t all be covered here. If you’re interested, you can find details on the rest in the Python Library Reference. You can also at any time easily obtain the documentation string for any of them, either by using the help() function or by printing the docstring directly:
>>> print(max.__doc__)
max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value
With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.
>>>
As mentioned earlier, it’s not unheard of for a new Python programmer to inadvertently override a built-in function:
>>> list("Peyto Lake")
['P', 'e', 'y', 't', 'o', ' ', 'L', 'a', 'k', 'e']
>>> list = [1, 3, 5, 7]
>>> list("Peyto Lake")
Traceback (innermost last):
File "<stdin>", line 1, in ?
TypeError: 'list' object is not callable
The Python interpreter won’t look beyond the new binding for list as a list, even though we’re using the built-in list function syntax.
The same thing will, of course, happen if we try to use the same identifier twice in a single namespace. The previous value will be overwritten, regardless of its type:
>>> import mymath
>>> mymath = mymath.area
>>> mymath.pi
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'function' object has no attribute 'pi'
When you’re aware of this, it isn’t a significant issue. Reusing identifiers, even for different types of objects, wouldn’t make for the most readable code anyway. If you do inadvertently make one of these mistakes when in interactive mode, it’s easy to recover. You can use del to remove your binding, to regain access to an overridden built-in, or to import your module again to regain access:
>>> del list
>>> list("Peyto Lake")
['P', 'e', 'y', 't', 'o', ' ', 'L', 'a', 'k', 'e']
>>> import mymath
>>> mymath.pi
3.1415899999999999
The locals and globals functions can be useful as simple debugging tools. The dir function doesn’t give the current settings; but if you call it without parameters, it returns a sorted list of the identifiers in the local namespace. This helps catch the mistyped variable error that compilers may usually catch for you in languages that require declarations:
>>> x1 = 6
>>> xl = x1 - 2
>>> x1
6
>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'x1', 'xl']
The debugger that’s bundled with IDLE has settings where you can view the local and global variable settings as you step through your code; it displays the output of the locals and globals functions.
10.8. Summary
Python uses modules to manage Python code and objects but allows you to put related code and objects into a file. Not only does this make managing and reusing larger amounts of code easier, but it also helps avoid conflicting variable names, because each object imported from a module is normally named in association with its module.
Being able to package related functions into modules is the final piece of knowledge you need to write standalone programs and scripts in Python, and that’s what we’ll discuss in the next chapter.
Chapter 11. Python programs
This chapter covers
Up until now, you’ve been using the Python interpreter mainly in interactive mode. For production use, you’ll want to create Python programs or scripts. A number of the sections in this chapter focus on command-line programs. If you come from a Linux/UNIX background, you may be familiar with scripts that can be started from a command line and given arguments and options that can be used to pass in information and possibly redirect their input and output. If you’re from a Windows or Mac background, these things may be new to you, and you may be more inclined to question their value.
It’s true that command-line scripts are less convenient to use in a GUI environment, but the Mac now has the option of a UNIX command-line shell, and Windows also offers enhanced command-line options. It will be well worth your time to read the bulk of this chapter at some point. You may find occasions when these techniques are useful, or you may run across code that you need to understand that uses some of them. In particular, command-line techniques are very useful when you need to process large numbers of files.
11.1. Creating a very basic program
Any group of Python statements placed sequentially in a file can be used as a program, or script. But it’s more standard and useful to introduce additional structure. In its most basic form, this is a simple matter of creating a controlling function in a file and calling that function, as shown in listing 11.1.
Listing 11.1. File script1.py
In this script, main is our controlling—and only—function. It’s first defined, and then it’s called. Although it doesn’t make much difference in a small program, using this structure can give you more options and control when you create larger applications, so it’s a good idea to make it a habit from the beginning.
11.1.1. Starting a script from a command line
If you’re using Linux/UNIX, make sure Python is on your path and you’re in the same directory as your script. Then type the following on your command line to start the script:
python script1.py
If you’re using a Macintosh computer running OS X, the procedure is the same as for other UNIX systems. You need to open a terminal program, which is in the Utilities folder of the Applications folder. There are several other options for running scripts on OS X, which we’ll discuss shortly.
If you’re using Windows, open Command Prompt (in the Accessories subfolder of the All Programs folder in the Start menu). This opens in your home folder, and if necessary you can use the cd command to change to a subdirectory. For example, running script1.py if it was saved on your desktop would look like this:
We’ll be looking at other options for calling scripts later in this chapter, but stick with this for now.
11.1.2. Command-line arguments
A simple mechanism is available for passing in command-line arguments, as shown in listing 11.2.
Listing 11.2. File script2.py
import sys
def main():
print("this is our second test script file")
print(sys.argv)
main()
If we call this with the line
python script2.py arg1 arg2 3
we get
this is our second test script file
['script2.py', 'arg1', 'arg2', '3']
You can see that the command-line arguments have been stored in sys.argv as a list of strings.
11.1.3. Redirecting the input and output of a script
You can redirect the input and/or the output for a script using command-line options. To show this, we’ll use the short script in listing 11.3.
Listing 11.3. File replace.py
This script reads its standard input and writes to its standard output whatever it read, with all occurrences of its first argument replaced with its second argument. Called as follows, it will place in outfile a copy of infile with all occurrences of zero replaced by 0:
python replace.py zero 0 < infile > outfile
Note that this will work on UNIX; but on Windows, redirection of input and/or output will work only if you start a script from a command prompt window.
In general, the line
python script.py arg1 arg2 arg3 arg4 < infile > outfile
will have the effect of having any input or sys.stdin operations directed out of infile and any print or sys.stdout operations directed into outfile. The effect is as if you set sys.stdin to infile with 'r' (read) mode and sys.stdout to outfile with 'w' (write):
python replace.py a A < infile >> outfile
This line causes the output to be appended to outfile rather than overwrite it, as happens in the previous example.
You can also pipe in the output of one command as the input of another command:
python replace.py 0 zero < infile | python replace.py 1 one > outfile
This results in outfile containing the contents of infile, with all occurrences of 0 changed to zero and all occurrences of 1 changed to one.
11.1.4. The optparse module
You can configure a script to accept command-line options as well as arguments. The optparse module provides support for parsing different types of options and arguments and can even generate usage messages.
To use the optparse module, you create an instance of OptionParser, populate it with options, and then read both the options and the arguments. The example in listing 11.4 illustrates its use.
Listing 11.4. File opts.py
This adds a filename option with either '-f' or '—file' . The final option added, the "quiet" option, also adds the ability to turn off the verbose option, which is True by default (action=store_false).
The parse_args method returns two objects: one containing the options and their values as key/value pairs, and a list of the positional arguments. You can get the values of the options from the first object by using the string you specified with the dest parameter as a dictionary key. If there’s no argument for an option, the value is None. Any elements left on the command line after all the options have been parsed will be in the list of positional arguments. Thus, if you call the previous script with the line
the following output will result:
options: {'xray': '100', 'verbose': False, 'filename': 'infile'}
arguments: ['arg1', 'arg2']
If an invalid option is found, or if an option that requires an argument isn’t given one, parse_args raises an error.
python opts.py -x100 -r
This line results in the following response:
Usage: opts.py [options]
opts.py: error: no such option: -r
11.1.5. Using the fileinput module
The fileinput module is also sometimes useful for scripts. It provides support for processing lines of input from one or more files. It automatically reads the command-line arguments (out of sys.argv) and takes them as its list of input files. It allows you to then sequentially iterate through these lines. The simple example script in listing 11.5 (which will strip out any lines starting with ##) illustrates the module’s basic use.
Listing 11.5. File script4.py
import fileinput
def main():
for line in fileinput.input():
if not line.startswith('##'):
print(line, end="")
main()
Now, assume we have the data files shown in listings 11.6 and 11.7.
Listing 11.6. File sole1.tst
## sole1.tst: test data for the sole function
0 0 0
0 100 0
##
0 100 100
Listing 11.7. File sole2.tst
## sole2.tst: more test data for the sole function
12 15 0
##
100 100 0
Also assume that we make the following call:
python script4.py sole1.tst sole2.tst
We obtain the following result with the comment lines stripped out and the data from the two files combined:
0 0 0
0 100 0
0 100 100
12 15 0
100 100 0
If no command-line arguments are present, the standard input is all that is read. If one of the arguments is a hyphen (-), the standard input is read at that point.
The module provides a number of other functions. These allow you at any point to determine the total number of lines that have been read (lineno), the number of lines that have been read out of the current file (filelineno), the name of the current file (filename), whether this is the first line of a file (isfirstline), and/or whether standard input is currently being read (isstdin). You can at any point skip to the next file (nextfile) or close the whole stream (close). The short script in listing 11.8 (which combines the lines in its input files and adds file-start delimiters) illustrates how you can use these.
Listing 11.8. File script5.py
import fileinput
def main():
for line in fileinput.input():
if fileinput.isfirstline():
print("<start of file {0}>".format(fileinput.filename()))
print(line, end="")
main()
Using the call
python script5.py file1 file2
will result in the following (where the dotted lines indicate the lines in the original files):
<start of file file1>
.......................
.......................
<start of file file2>
.......................
.......................
Finally, if you call fileinput.input with an argument of a single filename or a list of filenames, they’re used as its input files rather than the arguments in sys.argv. fileinput.input also has an inline option that leaves its output in the same file as its input while optionally leaving the original around as a backup file. See the documentation for a description of this last option.
11.2. Making a script directly executable on UNIX
If you’re on UNIX, you can easily make a script directly executable. Add the following line to its top and change its mode appropriately (that is, chmod +x replace.py):
#! /usr/bin/env python
Note that if Python 3.x isn’t your default version of Python, you may need to change the python above to python3.1 or something similar to specify that you want to use Python 3.x instead of an earlier default version.
Then, if you place your script somewhere on your path (for example, in your bin directory), you can execute it regardless of the directory you’re in by typing its name and the desired arguments:
replace.py zero 0 < infile > outfile
On UNIX, you’ll have input and output redirection and, if you’re using a modern shell, command history and completion.
If you’re writing administrative scripts on UNIX, a number of library modules are available that you may find useful. These include grp for accessing the group database, pwd for accessing the password database, resource for accessing resource usage information, syslog for working with the syslog facility, and stat for working with information about a file or directory obtained from an os.stat call. You can find information on this in the Python Library Reference.
11.3. Scripts on Mac OS X
In many ways, Python scripts on Mac OS X behave the same way as they do on Linux/UNIX. You can run Python scripts from a terminal window exactly the same way as on any UNIX box. But on the Mac, you can also run Python programs from the Finder, either by dragging the script file to the Python Launcher app or by configuring Python Launcher as the default application for opening your script (or, optionally, all files with a .py extension.)
There are several options for using Python on a Mac. The specifics of all the options are beyond the scope of this book, but you can get a full explanation by going to the python.org website and checking out the Mac section of the “Using Python” section of the documentation for your version of Python. You should also see section 11.7, “Distributing Python applications,” for more information on how to distribute Python applications and libraries for the Mac platform.
If you’re interested in writing administrative scripts for Mac OS X, you should look at packages that bridge the gap between Apple’s Open Scripting Architectures (OSA) and Python. Two such packages are appscript and PyOSA.
11.4. Script execution options in Windows
If you’re on Windows, you have a number of options for starting a script that vary in their capability and ease of use. Unfortunately, none of them are as flexible or powerful as on Linux/UNIX.
11.4.1. Starting a script as a document or shortcut
The easiest way to start a script on Windows is to use its standard document-opening technique. When you installed Python, it should have registered the .py suffix to itself. Verify this by confirming that your .py files are shown with a stylized python icon. If you double-click any .py file, Python is automatically called with this file as its argument. It’s also entered onto the Documents list on your Start menu. But you’re not able to enter any arguments, and the command window in which the interpreter is opened will close as soon as the script exits. If you want to have the window stay up so you can read the output, you can place the following line at the bottom of your controlling function:
input("Press the Enter key to exit")
This will leave the window up until you press Enter. You can also query the user for any input data you might have desired on the command line. Your current working directory at startup will be the one where your Python interpreter is located (C:\Python31, for example).
If you don’t want the interpreter window to open (for example, when you’re starting a GUI program using Tkinter), you can give the file the suffix .pyw. This will cause it to be opened by pythonw.exe. But if you start a script this way, any output to stdout or stderr will be thrown away.
You have more flexibility and the ability to pass in more information to your script if you set it up as a Windows shortcut (see figure 11.1).
Figure 11.1. A Windows shortcut
Right-click the script, and select either the Create Shortcut or the Send to Desktop as Shortcut option. You can move the shortcut to any location and rename it as desired. By right-clicking it and selecting the Properties option, you can set the directory it starts in, type in arguments that it will be called with, and specify a shortcut key that will call it. The example in listing 11.9 illustrates this.
Listing 11.9. File script6.py
import sys, os
def main():
print(os.getcwd())
print(sys.argv)
input("Hit return to exit")
main()
Creating the shortcut as shown in figure 11.1 and then calling this script (by pressing Ctrl-Alt-j or double-clicking its icon) brings up a Python window containing code similar to the following:
C:\Documents and Settings\vern\My Documents
['C:\\Documents and Settings\\vern\\My Documents\\script6.py']
Hit return to exit
The Python interpreter is implicitly called with the target line (because it has registered for Python files). You can also explicitly put it in. You may do this if you want to also enter options for the interpreter itself:
"C:\Python31\python.exe" -i
"C:\\Documents and Settings\\vern\\My Documents\\script6.py" arg1 arg2[1]
1 Please note that this should be entered as a single line with no line breaks on the target line.
Because you change the selection for the Run line to Minimized from the default Normal window, no MS-DOS window will be brought up, just as when you use the .pyw suffix for a document.
There is unfortunately no mechanism for redirecting the input or output for shortcuts.
11.4.2. Starting a script from the Windows Run box
It’s possible to start scripts by placing the script on the desktop and typing
python script.py arg1 arg2
But as mentioned in the previous section, the output won’t remain visible when the script ends. To see the output after the scripts ends, you similarly have to end it with an input line.
More flexibility is available with the Run box. Using the window that opens when you click the Browse button, you can search for scripts residing elsewhere (by selecting All Files for the Files of Type box at the bottom, because this defaults to Programs). This results in the pathname to the script you selected being displayed in the Run box (C:\My Documents\book\script1.py). You have to prefix this with python.
Also, clicking the selection button to the right of the text box brings up a history of your past lines of entries, from which you can select a line to edit. The current working directory for any script started from the Run box is the desktop.
11.4.3. Starting a script from a command window
To run a script from a command window, open a command prompt and navigate to the directory of your Python executable (C:\Python31 or wherever Python was installed). You can then enter your commands (the following examples assume that the scripts are in a scripts subfolder of the main Python folder):
python scripts\replace.py zero 0 < scripts\infile > scripts\outfile
You don’t need to use the -i option because the script will run in your existing window.
This is the most flexible of the ways to run a script on Windows because it allows you to use input and output redirection. It’s not all that convenient, because you don’t have mouse editing, command completion, or the command history that you have in modern UNIX shells. It also doesn’t provide the full power of an executable script on UNIX. It lacks the ability, for example, to navigate into a directory and call a script with a set of filenames from that directory as arguments without either having to place the script in that directory or enter the full pathname of the files or the script.
Note that if you’re using input or output redirection, the default is for Windows to use the text mode. If you want your script to work with binary data, you either need to call the Python interpreter with the -u option set (python -u script.py) or set the environment variable PYTHONUNBUFFERED=1 to turn off buffering and place it in a binary mode.
You can also add the directory where the Python interpreter is to your PATH environment variable. This frees you from having to move into the same directory as the interpreter or refer to it with a full pathname. The easiest way to do this on Windows XP is to right-click the My Computer desktop icon, choose Properties > Advanced, and then click the Environment Variables button. There, you can edit the PATH variable to add the path to the Python executable, usually something like c:\Python31.
11.4.4. Other Windows options
Other options are available to explore. If you’re familiar with writing batch files, you can wrap your commands in them. A port of the GNU BASH shell comes with the Cygwin tool set, which you can read about at www.cygwin.com/. This provides a UNIX-like shell capability for Windows.
On Windows, you can edit the environment variables (see the previous section) to add .py as a magic extension, making your scripts automatically executable:
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.JS;.PY
11.5. Scripts on Windows vs. scripts on UNIX
The way you call scripts on Windows differs from the way scripts are called on Linux/UNIX, and that difference can affect what kind of scripts you develop and how you write them. Let’s revisit our initial script from the section describing the fileinput module. Making it directly executable may be the only change we make to use it on UNIX (see listing 11.10).
Listing 11.10. File script4a.py
This line allows the script to be executed on UNIX . It has no effect on Windows. On UNIX, after this has been made executable and placed on your path, you’re able to navigate into any desired directory and call this with wildcards and output redirection:
script4a.py sole*.tst > sole.data
This UNIX shell will find all files in the current directory that start with sole and end with .tst, and these will be sent in as command-line arguments.
On Windows, it’s not so easy. As you’ve just discovered, using the convenient double-click mechanism, you can’t pass in command-line arguments. Using the Run box, you can pass in arguments but not redirect the output. The closest you can come is to use the command prompt window: place the script in the desired directory, navigate into the directory, and then type[2]
2 Please note that this should be entered as a single line with no line breaks. Due to space constraints, it could not be represented here in that manner.
C:\Python31\python.exe script4a.py sole1.tst sole2.tstsole4.tst sole15.tst > sole.data
Or, use the following if you set your PATH as described in the previous section:
python script4a.py sole1.tst sole2.tst sole4.tst sole15.tst > sole.data
But using the glob.glob function, you can obtain the wildcard character functionality (see listing 11.11).
Listing 11.11. File script4b.py
This will be true if you’re running under Windows XP, Vista, or Windows 7 . Replace the single wildcarded filename string in the argument list with those files into which it expands
.
Assuming that we’ve placed our script in the same directory as our .tst files and navigated to that directory in a command prompt window, we can now call our script with a single wildcarded argument:
C:\Python31\python.exe script4b.py sole*.tst > sole.data
Or, again, if PATH has been modified:
python script4b.py sole*.tst > sole.data
With the use of copy and paste and storing the command text in a file, this might be acceptable for your situation. But the script can be set up so that it can be started using the double-click open mechanism. This is often done for scripts that will be run by end users.
When you start a script with a double-click, its working directory is the directory where the Python interpreter resides, not where the script is. Fortunately, the directory where the script is is appended as the first string in sys.path. The script in listing 11.12 uses this fact and changes into that directory. It then prompts the user for a possibly wildcarded input filename and expands it. Next, it prompts for the name of the output file and redirects standard output to this file. Finally, it proceeds to the original script’s functionality.
Listing 11.12. File script4c.py
Placing this script in the directory of our .tst files, we can double-click it and enter the requested information. The result is the same as if it had been run from a command line:
Name of input file:sole*.tst
Name of output file:sole.data
This isn’t as nice as on UNIX but in many cases may do fine.
11.6. Programs and modules
For small scripts that contain only a few lines of code, a single function works well. But if the script grows beyond this, separating your controlling function from the rest of the code is a good option to take. The rest of this section will illustrate this technique and some of its benefits. We’ll start with an example using a simple controlling function. The script in listing 11.13 returns the English language name for a given number between 0 and 99.
Listing 11.13. File script7.py
If we call it with
python script7.py 59
we get this result:
fifty nine
Our controlling function here calls the function num2words with the appropriate argument and prints the result . It’s standard to have the call at the bottom, but sometimes you’ll see the controlling function’s definition at the top of the file. I prefer it at the bottom, just above the call, so I don’t have to scroll back up to find it after going to the bottom to find out its name. This also cleanly separates the scripting plumbing from the rest of the file. This is useful when combining scripts and modules.
People combine scripts with modules when they want to make functions they’ve created in a script available to other modules or scripts. Also, a module may be instrumented so it can run as a script either to provide a quick interface to it for users or to provide hooks for automated module testing.
Combining a script and a module is a simple matter of putting the following conditional test around the controlling function:
if __name__ == '__main__':
main()
else:
# module-specific initialization code if any
If it’s called as a script, it will be run with the name __main__ and the controlling function, main, will be called. If it has been imported into an interactive session or another module, its name will be its filename.
When creating a script, I often set it as a module as well, right from the start. This allows me to import it into a session and interactively test and debug my functions as I create them. Only the controlling function needs to be debugged externally. If it grows, or I find myself writing functions I might be able to use elsewhere, I can separate those functions into their own module or have other modules import this module.
The script in listing 11.14 is an extension of the last script that has been set up to be able to be used as a module. The functionality has also been expanded to allow the entry of a number from 0 to 999999999999999 rather than just from 0 to 99. The controlling function (main) now does the checking of the validity of its argument and also strips out any commas in it, allowing more user-readable input like 1,234,567.
Listing 11.14. File n2w.py
If it’s called as a script, the name will be __main__. If it’s imported as a module, it will be named n2w .
This main function illustrates the purpose of a controlling function for a command-line script, which, in effect, is to create a simplistic user interface for the user. It may handle the following tasks:
3 A better way to do this would be to explicitly check for nondigits in the argument using the regular expression module that will be introduced later. This would ensure that we don’t hide KeyErrors that occur due to other reasons.
The test mode in listing 11.15 provides a regression test capability for the module and its num2words function. In this case, you use it by placing a set of numbers in a file.
Listing 11.15. File n2w.tst
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 98 99 100
101 102 900 901 999
999,999,999,999,999
1,000,000,000,000,000
Then, type
python n2w.py --test < n2w.tst > n2w.txt
The output file can be easily checked for correctness. This was run a number of times during its creation and can be rerun anytime num2words or any of the functions it calls are modified. And, yes, I’m aware that full exhaustive testing certainly didn’t occur. I admit that well over 999 trillion valid inputs for this program haven’t been checked!
Often, the provision of a test mode for a module is the only function of a script. I know of at least one company where part of its development policy is to always create one for every Python module developed. Python’s built-in data object types and methods usually make this easy, and those who practice this technique seem to be unanimously convinced that it’s well worth the effort. See chapter 21 to find out more about testing your Python code.
Another option here would have been to create a separate file with just the portion of the main function that handles the argument and import n2w into this file. Then only the test mode would be left in the main function of n2w.py.
11.7. Distributing Python applications
You can distribute your scripts as source files (as .py files). You can also ship them as byte code (as .pyc or .pyo files). A byte code file will run under any platform as long as it has been written portably.
11.7.1. distutils
The standard way of packaging and distributing Python modules and applications is found in the distutils package. The details of creating a distribution are beyond the scope of this book, but if you want to package and distribute your Python code, the documentation on the python.org website has an extensive guide and a beginner’s tutorial on the use of distutils. The heart of a distutils package is a setup.py file that you create, basically a Python program that controls the installation. distutils has a number of options and lets you create built distributions tailored for Windows and several UNIX platforms.
11.7.2. py2exe and py2app
Although it’s not the purpose of this book to dwell on platform-specific tools, it’s worth mentioning that py2exe creates Windows standalone programs and py2app does the same on the Mac OS X platform. By standalone, I mean they’re single executables that can run on machines that don’t have Python installed. In many ways, standalone executables aren’t ideal, because they tend to be larger and less flexible than native Python applications; but in some situations they’re the best, and sometimes the only, solution.
11.7.3. Creating executable programs with freeze
It’s also possible to create an executable Python program that will run on machines that don’t have Python installed by using the freeze tool. You’ll find the instructions for this in the Readme file in the freeze directory in the Tools subdirectory of the Python source directory. If you’re planning to use freeze, you’ll probably need to download the Python source distribution.
In the process of “freezing” a Python program, you create C files, which are then compiled and linked using a C compiler, which you need to have installed on your system. It will run only on the platform for which the C compiler you use provides its executables. Note that it will still be possible for someone to reverse-engineer your Python code from the resulting output. This also doesn’t always work in a straightforward manner. This is one situation where you may end up needing to obtain support from the Python newsgroup, depending on the specifics of your application and which C compiler you’re using. When you have your executable, it’s generally robust.
11.8. Summary
Python scripts in their most basic form are sequences of Python statements placed in a file. A slightly more structured way to organize scripts that contain more than a few lines of Python code is presented here. This is a simple matter of using a control function to buffer out some of the control and interface logic. Modules can be instrumented to run as scripts, and scripts can be set up so they can be imported as modules. This provides a modular way to create large scripts and a simple mechanism to instrument a module with a regression test mode.
Scripts can be made executable on UNIX. They can be set up to support command-line redirection of their input and output, and with the optparse module it’s easy to parse out complex combinations of command-line options and arguments.
On Mac OS X, you can run scripts from a terminal window in exactly the same way as on other UNIX platforms. In addition, you can use the Python Launcher to run Python programs, either individually or as the default application for opening Python files.
On Windows, you can call scripts a number of ways: by opening them with a double-click, using the Run window, or using a command-prompt window. It’s possible to use command-line options and arguments in the last two of these and redirection in the last, but this isn’t as convenient as on Linux/UNIX. Therefore, on Windows, command-line arguments and redirection are normally used only for special situations like test modes. This is also generally true for GUI programs on all three platforms.
Finally, as an alternative to scripts, py2exe, py2app, and the freeze tool provide the capability to provide an executable Python program that will run on machines that don’t contain a Python interpreter.
Now that you have an understanding of the ways to create scripts and applications, the next step will be to look at how Python can interact with and manipulate filesystems.
Chapter 12. Using the filesystem
This chapter covers
Working with files involves one of two things: basic I/O (described in chapter 13, “Reading and writing files”) and working with the filesystem (for example, naming, creating, moving, or referring to files), which is a bit tricky, because different operating systems have different filesystem conventions.
It would be easy enough to learn how to perform basic file I/O without learning all the features Python has provided to simplify cross-platform filesystem interaction—but I wouldn’t recommend it. Instead, read at least the first part of this chapter. This will give you the tools you need to refer to files in a manner that doesn’t depend on your particular operating system. Then, when you use the basic I/O operations, you can open the relevant files in this manner.
12.1. Paths and pathnames
All operating systems refer to files and directories with strings naming a given file or directory. Strings used in this manner are usually called pathnames (or sometimes just paths), which is the word we’ll use for them. The fact that pathnames are strings introduces possible complications into working with them. Python does a good job of providing functions that help avoid these complications; but to make use of these Python functions effectively, you need an understanding of what the underlying problems are. This section discusses these details.
Pathname semantics across different operating systems are very similar, because the filesystem on almost all operating systems is modeled as a tree structure, with a disk being the root, and folders, subfolders, and so forth being branches, sub-branches, and so on. This means that most operating systems refer to a specific file in fundamentally the same manner: with a pathname that specifies the path to follow from the root of the filesystem tree (the disk) to the file in question. (This characterization of the root corresponding to a hard disk is an oversimplification. But it’s close enough to the truth to serve for this chapter.)
This pathname consists of a series of folders to descend into, in order to get to the desired file.
Different operating systems have different conventions regarding the precise syntax of pathnames. For example, the character used to separate sequential file or directory names in a Linux/UNIX pathname is /, whereas the character used to separate file or directory names in a Windows pathname is \. In addition, the UNIX filesystem has a single root (which is referred to by having a / character as the very first character in a pathname), whereas the Windows filesystem has a separate root for each drive, labeled A:\, B:\, C:\, and so forth (with C: usually being the main drive). Because of these differences, files will have different pathname representations on different operating systems. For example, a file called C:\data\myfile in MS Windows might be called /data/myfile on UNIX and on the Macintosh. Python provides functions and constants that allow you to perform common pathname manipulations without worrying about such syntactic details. With a little care, you can write your Python programs in such a manner that they will run correctly no matter what the underlying filesystem happens to be.
12.1.1. Absolute and relative paths
These operating systems allow two different types of pathnames. Absolute pathnames specify the exact location of a file in a filesystem, without any ambiguity; they do this by listing the entire path to that file, starting from the root of the filesystem. Relative pathnames specify the position of a file relative to some other point in the filesystem, and that other point isn’t specified in the relative pathname itself; instead, the absolute starting point for relative pathnames is provided by the context in which they’re used.
As examples of this, here are two Windows absolute pathnames:
And here are two Linux absolute pathnames and a Mac absolute pathname:
The following are two Windows relative pathnames:
And these are two Linux/UNIX relative pathnames and one Mac relative pathname:
Relative paths need context to anchor them. This is typically provided in one of two ways. The simplest is to append the relative path to an existing absolute path, producing a new absolute path. For example, we might have a relative Windows path, Start Menu\Programs\Explorer, and an absolute path, C:\Documents and Settings\Administrator. By appending the two, we have a new absolute path, C:\Documents and Settings\Administrator\Start Menu\Programs\Explorer, which refers to a specific file in the filesystem. By appending the same relative path to a different absolute path (say, C:\Documents and Settings\kmcdonald), we produce a path that refers to the Explorer program in a different user’s (kmcdonald’s) Profiles directory.
The second way in which relative paths may obtain a context is via an implicit reference to the current working directory, which is the particular directory where a Python program considers itself to be at any point during its execution. Python commands may implicitly make use of the current working directory when they’re given a relative path as an argument. For example, if you use the os.listdir(path) command with a relative path argument, the anchor for that relative path is the current working directory, and the result of the command is a list of the filenames in the directory whose path is formed by appending the current working directory with the relative path argument.
12.1.2. The current working directory
Whenever you edit a document on a computer, you have a concept of where you are in that computer’s file structure because you’re in the same directory (folder) as the file you’re working on. Similarly, whenever Python is running, it has a concept of where in the directory structure it is at any moment. This is important because the program may ask for a list of files stored in the current directory. The directory that a Python program is in is called the current working directory for that program. This may be different from the directory the program resides in.
To see this in action, start Python and use the os.getcwd (get current working directory) command to find out what Python’s initial current working directory is:
>>> import os
>>> os.getcwd()
Note that os.getcwd is used as a zero-argument function call, to emphasize the fact that the value it returns isn’t a constant but will change as you issue commands that change the value of the current working directory. (It will probably be either the directory the Python program itself resides in or the directory you were in when you started up Python. On my Linux machine, the result is /home/vceder, which is my home directory.) On Windows machines, you’ll see extra backslashes inserted into the path—this is because Windows uses \ as its path separator, and in Python strings, as discussed earlier in section 6.3.1 on escape sequences, \ has a special meaning unless it’s itself backslashed.
Now, type
>>> os.listdir(os.curdir)
The constant os.curdir returns whatever string your system happens to use as the same directory indicator. On both UNIX and Windows, this is a single dot; but to keep your programs portable, you should always use os.curdir instead of typing just the dot. This string is a relative path, meaning that os.listdir will append it to the path for the current working directory, giving the same path. This command returns a list of all of the files or folders inside the current working directory. Choose some folder folder, and type
As you can see, Python moves into the folder specified as an argument of the os.chdir function. Another call to os.listdir(os.curdir) would return a list of files in folder, because os.curdir would then be taken relative to the new current working directory. Many Python filesystem operations (discussed later in this chapter) use the current working directory in this manner.
12.1.3. Manipulating pathnames
Now that you have the background to understand file and directory pathnames, it’s time to look at the facilities Python provides for manipulating these pathnames. These facilities consist of a number of functions and constants in the os.path submodule, which you can use to manipulate paths without explicitly using any operating system–specific syntax. Paths are still represented as strings, but you need never think of them or manipulate them as such.
Let’s start out by constructing a few pathnames on different operating systems, using the os.path.join function. Note that importing os is sufficient to bring in the os.path submodule also. There’s no need for an explicit import os.path statement.
First, let’s start Python under Windows:
>>> import os
>>> print(os.path.join('bin', 'utils', 'disktools'))
bin\utils\disktools
The os.path.join function interprets its arguments as a series of directory names or filenames, which are to be joined to form a single string understandable as a relative path by the underlying operating system. In a Windows system, that means path component names should be joined together with backslashes, which is what was produced.
Now, try the same thing in UNIX:
>>> import os
>>> print(os.path.join('bin', 'utils', 'disktools'))
bin/utils/disktools
The result is the same path, but using the Linux/UNIX convention of forward slash separators rather than the Windows convention of backslash separators. In other words, os.path.join lets you form file paths from a sequence of directory or filenames without any worry about the conventions of the underlying operating system. os.path.join is the fundamental way by which file paths may be built in a manner that doesn’t constrain the operating systems on which your program will run.
The arguments to os.path.join need not be single a directory or filename; they may also be subpaths that are then joined together to make a longer pathname. The following example illustrates this in the Windows environment and is also a case where we find it necessary to use double backslashes in our strings. Note that we could enter the pathname with forward slashes (/) as well because Python converts them before accessing the Windows operating system:
>>> import os
>>> print(os.path.join('mydir\\bin', 'utils\\disktools\\chkdisk'))
mydir\bin\utils\disktools\chkdisk
Of course, if you always use os.path.join to build up your paths, you’ll rarely need to worry about this. To write this example in a portable manner, we should enter
>>> path1 = os.path.join('mydir', 'bin');
>>> path2 = os.path.join('utils', 'disktools', 'chkdisk')
>>> print(os.path.join(path1, path2))
mydir\bin\utils\disktools\chkdisk
The os.path.join command also has some understanding of absolute versus relative pathnames. In Linux/UNIX, an absolute path always begins with a / (because a single slash denotes the topmost directory of the entire system, which contains everything else, including the various floppy and CD drives that might be available). A relative path in UNIX is any legal path that does not begin with a slash. Under any of the Windows operating systems, the situation is more complicated because the way in which MS Windows handles relative and absolute paths is messier. Rather than going into all of the details, I’ll just say that the best way to handle this is to work with the following simplified rules for Windows paths:
1 Microsoft Windows allows some other constructs. But it’s probably best to stick to the given definitions.
Regardless of the operating system used, the os.path.join command doesn’t perform sanity checks on the names it’s constructing. It’s possible to construct pathnames containing characters that, according to your OS, are forbidden in pathnames. If such checks are a requirement, probably the best solution is to write a small path-validity-checker function yourself.
The os.path.split command returns a two-element tuple splitting the basename of a path (the single file or directory name at the end of the path) from the rest of the path. For example, I use this on my Windows system:
>>> import os
>>> print(os.path.split(os.path.join('some', 'directory', 'path')))
('some\\directory', 'path')
The os.path.basename function returns only the basename of the path, and the os.path.dirname function returns the path up to but not including the last name. For example,
>>> import os
>>> os.path.basename(os.path.join('some', 'directory', 'path.jpg'))
'path.jpg'
>>> os.path.dirname(os.path.join('some', 'directory', 'path.jpg'))
'some\\directory'
To handle the dotted extension notation used by most filesystems to indicate file type (the Macintosh is a notable exception), Python provides os.path.splitext:
>>> os.path.splitext(os.path.join('some', 'directory', 'path.jpg'))
'some/directory/path', '.jpg')
The last element of the returned tuple contains the dotted extension of the indicated file (if there was a dotted extension.) The first element of the returned tuple contains everything from the original argument except the dotted extension.
You can also use more specialized functions to manipulate pathnames. os.path.commonprefix(path1, path2, ...) finds the common prefix (if any) for a set of paths. This is useful if you wish to find the lowest-level directory that contains every file in a set of files. os.path.expanduser expands username shortcuts in paths, such as for UNIX. Similarly, os.path.expandvars does the same for environment variables., Here’s an example on a Windows XP system:
>>> import os
>>> os.path.expandvars('$HOME\\temp')
'C:\\Documents and Settings\\administrator\\personal\\temp'
12.1.4. Useful constants and functions
You can access a number of useful path-related constants and functions to make your Python code more system independent than it otherwise would be. The most basic of these constants are os.curdir and os.pardir, which respectively define the symbol used by the operating system for the directory and parent directory path indicators. (In Windows as well as Linux/UNIX and Mac OS X, these are . and .. respectively.) These can be used as normal path elements; for example,
os.path.isdir(os.path.join(path, os.pardir, os.pardir))
asks if the parent of the parent of path is a directory. os.curdir is particularly useful for requesting commands on the current working directory. For example,
os.listdir(os.curdir)
returns a list of filenames in the current working directory (because os.curdir is a relative path, and os.listdir always takes relative paths as being relative to the current working directory).
The os.name constant returns the name of the Python module imported to handle the operating system–specific details. Here’s an example on my Windows XP system:
>>> import os
>>> os.name
'nt'
Note that os.name returns 'nt' even though the actual version of Windows is XP. Most versions of Windows, except for Windows CE, are identified as 'nt'.
On a Mac running OS X and on Linux/UNIX, the response is posix. You can use this to perform special operations, depending on the platform you’re working on:
import os
if os.name == 'posix':
root_dir = "/"
elif os.name == 'nt':
root_dir = "C:\\"
else:
print("Don't understand this operating system!")
You may also see programs use sys.platform, which gives more exact information. On Windows XP, it’s set to win32. On Linux, you may see linux2, whereas on Solaris, it may be set to sunos5 depending on the version you’re running.
All your environment variables, and the values associated with them, are available in a dictionary called os.environ; in most operating systems, this includes variables related to paths, typically search paths for binaries and so forth. If what you’re doing requires this, you know where to find it now.
At this point, you’ve received a grounding in the major aspects of working with pathnames in Python. If your immediate need is to open files for reading or writing, you can jump directly to the next chapter. Continue reading for further information about pathnames, testing what they point to, useful constants, and so forth.
12.2. Getting information about files
File paths are supposed to indicate actual files and directories on your hard drive. Of course, you’re probably passing a path around because you wish to know something about what it points to. Various Python functions are available to do this.
The most commonly used Python path-information functions are os.path.exists, os.path.isfile, and os.path.isdir, which all take a single path as an argument. os.path.exists returns True if its argument is a path corresponding to something that exists in the filesystem. os.path.isfile returns True if and only if the path it’s given indicates a normal data file of some sort (executables fall under this heading), and it returns False otherwise, including the possibility that the path argument doesn’t indicate anything in the filesystem. os.path.isdir returns True if and only if its path argument indicates a directory; it returns False otherwise. These examples are valid on my system. You may need to use different paths on yours to investigate the behavior of these functions:
>>> import os
>>> os.path.exists('C:\\Documents and Settings\\vern\\My Documents')
True
>>> os.path.exists('C:\\Documents and Settings\\vern\\My
Documents\\Letter.doc')
True
>>> os.path.exists('C:\\Documents and Settings\\vern\\\My
Documents\\ljsljkflkjs')
False
>>> os.path.isdir('C:\\Documents and Settings\\vern\\My Documents')
True
>>> os.path.isfile('C:\\Documents and Settings\\vern\\My Documents')
False
>>> os.path.isdir('C:\\Documents and Settings\\vern\\My Documents
\\Letter.doc')
False
>>> os.path.isfile('C:\\Documents and Settings\\vern\\My
Documents\\Letter.doc')
True
A number of similar functions provide more specialized queries. os.path.islink and os.path.ismount are useful in the context of Linux and other UNIX operating systems that provide file links and mount points. They return True if, respectively, a path indicates a file that’s a link or a mount point. os.path.islink does not return True on Windows shortcuts files (files ending with .lnk), for the simple reason that such files aren’t true links. The OS doesn’t assign them a special status, and programs can’t transparently use them as if they were the actual file. os.path.samefile(path1, path2) returns True if and only if the two path arguments point to the same file. os.path.isabs(path) returns True if its argument is an absolute path, False otherwise. os.path.getsize(path), os.path.getmtime(path), and os.path.getatime(path) return the size, last modify time, and last access time of a pathname, respectively.
12.3. More filesystem operations
In addition to obtaining information about files, Python lets you perform certain filesystem operations directly. This is accomplished through a set of basic but highly useful commands in the os module.
I’ll describe only those true cross-platform operations. Many operating systems also have access to more advanced filesystem functions, and you’ll need to check the main Python library documentation for the details.
You’ve already seen that to obtain a list of files in a directory, you use os.listdir:
>>> os.chdir(os.path.join('C:', 'my documents', 'tmp'))
>>> os.listdir(os.curdir)
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp']
Note that unlike the list directory command in many other languages or shells, Python does not include the os.curdir and os.pardir indicators in the list returned by os.listdir.
The glob function from the glob module (named after an old UNIX function that did pattern matching) expands Linux/UNIX shell-style wildcard characters and character sequences in a pathname, returning the files in the current working directory that match. A * matches any sequence of characters. A ? matches any single character. A character sequence ([h, H] or [0-9]) matches any single character in that sequence:
>>> import glob
>>> glob.glob("*")
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp']
>>> glob.glob("*bkp")
['registry.bkp']
>>> glob.glob("?.tmp")
['a.tmp', '1.tmp', '7.tmp', '9.tmp']
>>> glob.glob("[0-9].tmp")
['1.tmp', '7.tmp', '9.tmp']
To rename (move) a file or directory, use os.rename:
>>> os.rename('registry.bkp', 'registry.bkp.old')
>>> os.listdir(os.curdir)
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']
You can use this command to move files across directories as well as within directories.
Remove or delete a data file with os.remove:
>>> os.remove('book1.doc.tmp')
>>> os.listdir(os.curdir)
'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']
Note that you can’t use os.remove to delete directories. This is a safety feature, to ensure that you don’t accidentally delete an entire directory substructure by mistake.
Files can be created by writing to them, as you saw in the last chapter. To create a directory, use os.makedirs or os.mkdir. The difference between them is that os.mkdir doesn’t create any necessary intermediate directories, but os.makedirs does:
>>> os.makedirs('mydir')
>>> os.listdir(os.curdir)
['mydir', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']
>>> os.path.isdir('mydir')
True
To remove a directory, use os.rmdir. This removes only empty directories. Attempting to use it on a nonempty directory raises an exception:
>>> os.rmdir('mydir')
>>> os.listdir(os.curdir)
['a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']
To remove nonempty directories, use the shutil.rmtree function. It will recursively remove all files in a directory tree. See the appendix for the details of its use.
12.4. Processing all files in a directory subtree
Finally, a highly useful function for traversing recursive directory structures is the os.walk function. You can use it to walk through an entire directory tree, returning three things for each directory it traverses: the root, or path, of that directory; a list of its subdirectories; and a list of its files.
os.walk is called with the path of the starting, or top, folder and three optional arguments: os.walk(directory, topdown=True, onerror=None, followlinks=False). directory is a starting directory path; if topdown is True or not present, the files in each directory are processed before its subdirectories, resulting in a listing that starts at the top and goes down; whereas if topdown is True, the subdirectories of each directory are processed first, giving a bottom-up traversal of the tree. The onerror parameter can be set to a function to handle any errors that result from calls to os.listdir, which are ignored by default. Finally, os.walk by default doesn’t walk down into folders that are symbolic links, unless you give it the followlinks=True parameter.
When called, os.walk creates an iterator that recursively applies itself to all the directories contained in the top parameter. In other words, for each subdirectory subdir in names, os.walk recursively invokes a call to itself, of the form os.walk(subdir, ...). Note that if topdown is True or not given, the list of subdirectories may be modified (using any of the list-modification operators or methods) before its items are used for the next level of recursion; you can use this to control into which—if any—subdirectories os.walk will descend.
To get a feel for os.walk, I recommend iterating over the tree and printing out the values returned for each directory. As an example of the power of os.walk, list the current working directory and all of its subdirectories along with a count of the number of entries in each of them, excluding any .git directories:
This is complex, and if you want to use os.walk to its fullest extent, you should probably play around with it quite a bit to understand the details of what’s going on.
The copytree function of the shutil module recursively makes copies of all the files in a directory and all of its subdirectories, preserving permission mode and stat (that is, access/modify times) information. It also has the already-mentioned rmtree function, for removing a directory and all of its subdirectories, as well as a number of functions for making copies of individual files. See the appendix for details.
12.5. Summary
Handling filesystem references (pathnames) and filesystem operations in a manner independent of the underlying operating system is never simple. Fortunately, Python provides a group of functions and constants that make this task much easier. For convenience, a summary of the functions discussed is given in table 12.1.
Table 12.1. Summary of filesystem values and functions
Function | Filesystem value or operation |
---|---|
os.getcwd() | Gets the current directory |
os.name | Provides generic platform identification |
sys.platform | Provides specific platform information |
os.environ | Maps the environment |
os.listdir(path) | Gets files in a directory |
os.chdir(path) | Changes directory |
os.path.join(elements) | Combines elements into a path |
os.path.split(path) | Splits the path into a base and tail (the last element of the path) |
os.path.splitext(path) | Splits the path into a base and a file extension |
os.path.basename(path) | Gets the base of the path |
os.path.commonprefix(list_of_paths) | Gets the common prefix for all paths on a list |
os.path.expanduser(path) | Expands ~ or ~user to a full pathname |
os.path.expandvars(path) | Expands environment variables |
os.path.exists(path) | Tests to see if a path exists |
os.path.isdir(path) | Tests to see if a path is a directory |
os.path.isfile(path) | Tests to see if a path is a file |
os.path.islink(path) | Tests to see if a path is a symbolic link (not a Windows shortcut) |
os.path.ismount(path) | Tests to see if a path is a mount point |
os.path.isabs(path) | Tests to see if a path is an absolute path |
os.path.samefile(path_1, path_2) | Tests to see if two paths refer to the same file |
os.path.getsize(path) | Gets the size of a file |
os.path.getmtime(path) | Gets the modification time |
os.path.getatime(path) | Gets the access time |
os.rename(old_path, new_path) | Renames a file |
os.mkdir(path) | Creates a directory |
os.makedirs | Creates a directory and any needed parent directories |
os.rmdir(path) | Removes a directory |
glob.glob(pattern) | Gets matches to a wildcard pattern |
os. walk(path) | Gets all filenames in a directory tree |
We didn’t discuss more advanced filesystem operations that typically are tied to a certain operating system or systems here, so if your needs are more advanced and specialized, look at the main Python documentation for the os and posix modules.
Although being able to handle filesystem paths and operations is important, to write many programs you also need to be able to open, read, and write files. Those file operations are the subject of the next chapter.
Chapter 13. Reading and writing files
This chapter covers
Probably the single most common thing you’ll want to do with files is open and read them.
13.1. Opening files and file objects
In Python, you open and read a file using the built-in open function and various built-in reading operations. The following short Python program reads in one line from a text file named myfile:
file_object = open('myfile', 'r')
line = file_object.readline()
open doesn’t read anything from the file; instead it returns an object called a file object that you can use to access the opened file. A file object keeps track of a file and how much of the file has been read or written. All Python file I/O is done using file objects rather than filenames.
The first call to readline returns the first line in the file object, everything up to and including the first newline character or the entire file if there is no newline character in the file; the next call to readline would return the second line, and so on.
The first argument to the open function is a pathname. In the previous example, we’re opening what we expect to be an existing file in the current working directory. The following opens a file at the given absolute location:
import os
file_name = os.path.join("c:", "My Documents", "test", "myfile")
file_object = open(file_name, 'r')
13.2. Closing files
After all data has been read from or written to a file object, it should be closed. Closing a file object frees up system resources, allows the underlying file to be read or written to by other code, and, in general, makes the program more reliable. For small scripts, not closing a file object generally doesn’t have much of an effect; file objects are automatically closed when the script or program terminates. For larger programs, too many open file objects may exhaust system resources, causing the program to abort.
You close file objects using the close method, after the file object is no longer needed. The earlier short program then becomes this:
file_object = open("myfile", 'r')
line = file_object.readline()
# . . . any further reading on the file_object . . .
file_object.close()
13.3. Opening files in write or other modes
The second argument of the open command is a string denoting how the file should be opened. 'r' means open the file for reading, 'w' means open the file for writing (any data already in the file will be erased), and 'a' means open the file for appending (new data will be appended to the end of any data already in the file). If you want to open the file for reading, you can leave out the second argument; 'r' is the default. The following short program writes “Hello, World” to a file:
file_object = open("myfile", 'w')
file_object.write("Hello, World\n")
file_object.close()
Depending on the operating system, open may also have access to additional file modes. These aren’t necessary for most purposes. As you write more advanced Python programs, you may wish to consult the Python reference manuals for details.
As well, open can take an optional third argument, which defines how reads or writes for that file are buffered. Buffering is the process of holding data in memory until enough has been requested or written to justify the time cost of doing a disk access. Other parameters to open control the encoding for text files and the handling of newline characters in text files. Again, these features aren’t something you typically need to worry about, but as you become more advanced in your use of Python, you may wish to read up on them.
13.4. Functions to read and write text or binary data
I’ve presented the most common text file–reading function, readline. It reads and returns a single line from a file object, including any newline character on the end of the line. If there is nothing more to be read from the file, readline returns an empty string. This makes it easy to, for example, count the number of lines in a file:
file_object = open("myfile", 'r')
count = 0
while file_object.readline() != "":
count = count + 1
print(count)
file_object.close()
For this particular problem, an even shorter way of counting all the lines is to use the built-in readlines method, which reads all the lines in a file and returns them as a list of strings, one string per line (with trailing newlines still included):
file_object = open("myfile", 'r')
print(len(file_object.readlines()))
file_object.close()
Of course, if you happen to be counting all the lines in a huge file, this may cause your computer to run out of memory, because it reads the entire file into memory at once. It’s also possible to overflow memory with readline if you have the misfortune to try to read a line from a huge file that contains no newline characters, although this is highly unlikely. To handle such circumstances, both readline and readlines can take an optional argument affecting the amount of data they read at any one time. See the Python reference documentation for details.
Another way to iterate over all of the lines in a file is to treat the file object as an iterator in a for loop:
file_object = open("myfile", 'r')
count = 0
for line in file_object:
count = count + 1
print(count)
file_object.close()
This method has the advantage that the lines are read into memory as needed, so even with large files, running out of memory isn’t a concern. The other advantage of this method is that it’s simpler and easier to read.
On some occasions, you may wish to read all the data in a file into a single bytes object, especially if the data isn’t a string, and you want to get it all into memory so you can treat it as a byte sequence. Or you may wish to read data from a file as bytes objects of a fixed size. For example, you may be reading data without explicit newlines, where each line is assumed to be a sequence of characters of a fixed size. To do this, use the read method. Without any argument, it reads all the rest of a file and returns that data as a bytes object. With a single-integer argument, it reads that number of bytes, or less, if there isn’t enough data in the file to satisfy the request, and returns a bytes object of the given size:
input_file = open("myfile", 'rb')
header = input_file.read(4)
data = input_file.read()
input_file.close()
The first line opens a file for reading in binary mode, the second line reads the first four bytes as a header string, and the third line reads the rest of the file as a single piece of data.
A possible problem with the read method may arise due to the fact that on Windows and Macintosh machines, text-mode translations occur if you use the open command in text mode—that is, without adding a b to the mode. In text mode, on a Macintosh any \r is converted to "\n", whereas on Windows "\r\n" pairs are converted to "\n". You can specify the treatment of newline characters by using the newline parameter when you open the file and specifying newline="\n", "\r", or "\r\n", which forces only that string to be used as newline. If the file has been opened in binary mode, the newline parameter isn’t needed—all bytes are returned exactly as they’re in the file:
input_file = open("myfile", newline="\n")
This forces only "\n" to be considered a newline.
The converses of the readline and readlines methods are the write and writelines methods. Note that there is no writeline function. write writes a single string, which can span multiple lines if newline characters are embedded within the string—for example, something like
myfile.write("Hello")
write doesn’t write out a newline after it writes its argument; if you want a newline in the output, you must put it there yourself. If you open a file in text mode (using w), any \n characters are mapped back to the platform-specific line endings (that is, '\r\n' on Windows or '\r' on Macintosh platforms). Again, opening the file with a specified newline will avoid this.
writelines is something of a misnomer; it doesn’t necessarily write lines—it takes a list of strings as an argument and writes them, one after the other, to the given file object, without writing newlines. If the strings in the list end with newlines, they’re written as lines; otherwise, they’re effectively concatenated together in the file. But writelines is a precise inverse of readlines in that it can be used on the list returned by readlines to write a file identical to the file readlines read from. For example, assuming myfile.txt exists and is a text file, this bit of code will create an exact copy of myfile.txt called myfile2.txt:
input_file = open("myfile.txt", 'r')
lines = input_file.readlines()
input_file.close()
output = open("myfile2.txt", 'w')
output.writelines(lines)
output.close()
13.4.1. Using binary mode
Sometimes, you want to access the data in a file as a string of bytes, with no translation or text encoding. To do this, you need to open files in binary mode, which will return a bytes object, instead of a string when reading. To open the file in binary mode, use the 'b' (binary) argument with the mode—open("file", 'rb') or open("file", 'wb'):
input_file = open("myfile", 'rb')
header = input_file.read(4)
data = input_file.read()
input_file.close()
This example opens a file for reading, reads the first four bytes as a header string, and then reads the rest of the file as a single piece of data.
Keep in mind that files open in binary mode deal only in bytes, not strings. To use the data as strings, you must decode any bytes objects to string objects. This is often an important point in dealing with network protocols, where streams of data appear as files but are in binary mode as a rule.
13.5. Screen input/output and redirection
You can use the built-in input method to prompt for and read an input string:
>>> x = input("enter file name to use: ")
enter file name to use: myfile
>>> x
'myfile'
The prompt line is optional, and the newline at the end of the input line is stripped off.
To read in numbers using input, you need to explicitly convert the string that input returns to the correct number type. The following example uses int:
>>> x = int(input("enter your number: "))
enter your number: 39
>>> x
39
input writes its prompt to the standard output and reads from the standard input. Lower-level access to these and standard error can be had using the sys module, which has sys.stdin, sys.stdout, and sys.stderr attributes. These can be treated as specialized file objects.
For sys.stdin, you have read, readline, and readlines methods. For sys.stdout and sys.stderr, you can use the standard print function as well as the write and writelines methods, which operate as they do for other file objects:
You can redirect standard input to read from a file. Similarly, standard output or standard error can be set to write to files. They can also be subsequently programmatically restored to their original values using sys.__stdin__, sys.__stdout__, and sys.__stderr__:
>>> import sys
>>> f= open("outfile.txt", 'w')
>>> sys.stdout = f
>>> sys.stdout.writelines(["A first line.\n", "A second line.\n"])
>>> print("A line from the print statement")
>>> 3 + 4
>>> sys.stdout = sys.__stdout__
>>> f.close()
>>> 3 + 4
7
The print function also can be redirected to any file without changing standard output:
>>> import sys
>>> f = open("outfile.txt", 'w')
>>> print("A first line.\n", "A second line.\n", file=f)
>>> 3 + 4
7
>>> f.close()
>>> 3 + 4
7
While the standard output is redirected, you receive prompts and tracebacks from errors but no other output. If you’re using IDLE, these examples using sys.__stdout__ won’t work as indicated. You have to use the interpreter’s interactive mode directly.
You’d normally use this when you’re running from a script or program. But if you’re using the interactive mode on Windows, you may want to temporarily redirect standard output in order to capture what might otherwise scroll off the screen. The short module in listing 13.1 implements a set of functions that provide this capability.
Listing 13.1. File mio.py
"""mio: module, (contains functions capture_output, restore_output,
print_file, and clear_file )"""
import sys
_file_object = None
def capture_output(file="capture_file.txt"):
"""capture_output(file='capture_file.txt'): redirect the standard
output to 'file'."""
global _file_object
print("output will be sent to file: {0}".format(file))
print("restore to normal by calling 'mio.restore_output()'")
_file_object = open(file, 'w')
sys.stdout = _file_object
def restore_output():
"""restore_output(): restore the standard output back to the
default (also closes the capture file)"""
global _file_object
sys.stdout = sys.__stdout__
_file_object.close()
print("standard output has been restored back to normal")
def print_file(file="capture_file.txt"):
"""print_file(file="capture_file.txt"): print the given file to the
standard output"""
f = open(file, 'r')
print(f.read())
f.close()
def clear_file(file="capture_file.txt"):
"""clear_file(file="capture_file.txt"): clears the contents of the
given file"""
f = open(file, 'w')
f.close()
Here, capture_output() redirects standard output to a file that defaults to "capture_file.txt". The function restore_output() restores standard output to the default. Also, print_file() prints this file to the standard output, and clear_file() clears its current contents.
13.6. Reading structured binary data with the struct module
Generally speaking, when working with your own files, you probably don’t want to read or write binary data in Python. For very simple storage needs, it’s usually best to use textual input and output as described earlier. For more sophisticated applications, Python provides the ability to easily read or write arbitrary Python objects (pickling, described later in this chapter). This ability is much less error prone than directly writing and reading your own binary data and is highly recommended.
But there’s at least one situation in which you’ll likely need to know how to read or write binary data, and that’s when you’re dealing with files that are generated or used by other programs. This section gives a short description of how to do this using the struct module. Refer to the Python reference documentation for more details.
As you’ve seen, Python supports explicit binary input or output by using bytes instead of strings if you open the file in binary mode. But because most binary files rely on a particular structure to help parse the values, writing your own code to read and split them into variables correctly is often more work than it’s worth. Instead, you can use the standard struct module to permit you to treat those strings as formatted byte sequences with some specific meaning.
Assume that we wish to read in a binary file called data, containing a series of records generated by a C program. Each record consists of a C short integer, a C double float, and a sequence of four characters that should be taken as a four-character string. We wish to read this data into a Python list of tuples, with each tuple containing an integer, a floating-point number, and a string.
The first thing to do is to define a format string understandable to the struct module, which tells the module how the data in one of our records is packed. The format string uses characters meaningful to struct to indicate what type of data is expected where in a record. For example, the character 'h' indicates the presence of a single C short integer, and the character 'd' indicates the presence of a single C double-precision floating-point number. Not surprisingly, 's' indicates the presence of a string and may be preceded by an integer to indicate the length of the string; '4s' indicates a string consisting of four characters. For our records, the appropriate format string is therefore 'hd4s'. struct understands a wide range of numeric, character, and string formats. See the Python Library Reference for details.
Before we start reading records from our file, we need to know how many bytes to read at a time. Fortunately, struct includes a calcsize function, which takes our format string as an argument and returns the number of bytes used to contain data in such a format.
To read each record, we’ll use the read method described previously. Then, the struct.unpack function conveniently returns a tuple of values by parsing a read record according to our format string. The program to read our binary data file is remarkably simple:
If the record is empty, we’re at end of file, so we quit the loop . Note that there is no checking for file consistency. But if the last record is an odd size, the struct.unpack function raises an error.
As you may already have guessed, struct also provides the ability to take Python values and convert them into packed byte sequences. This is accomplished through the struct.pack function, which is almost, but not quite, an inverse of struct.unpack. The almost comes from the fact that whereas struct.unpack returns a tuple of Python values, struct.pack doesn’t take a tuple of Python values; rather, it takes a format string as its first argument and then enough additional arguments to satisfy the format string. To produce a binary record of the form used in the previous example, we might do something like this:
>>> import struct
>>> record_format = 'hd4s'
>>> struct.pack(record_format, 7, 3.14, 'gbye')
b'\x07\x00\x00\x00\x1f\x85\xebQ\xb8\x1e\t@gbye'
struct gets even better than this; you can insert other special characters into the format string to indicate that data should be read/written in big-endian, little-endian, or machine-native-endian format (default is machine-native) and to indicate that things like C short integer should be sized either as native to the machine (the default) or as standard C sizes. If you need these features, it’s nice to know they exist. See the Python Library Reference for details.
13.7. Pickling objects into files
Pickling is a major benefit in Python. Use this ability!
Python can write any data structure into a file and read that data structure back out of a file and re-create it, with just a few commands. This is an unusual ability but one that’s highly useful. It can save you many pages of code that do nothing but dump the state of a program into a file (and can save a similar amount of code that does nothing but read that state back in).
Python provides this ability via the pickle module. Pickling is powerful but simple to use. For example, assume that the entire state of a program is held in three variables: a, b, and c. We can save this state to a file called state as follows:
import pickle
.
.
.
file = open("state", 'w')
pickle.dump(a, file)
pickle.dump(b, file)
pickle.dump(c, file)
file.close()
It doesn’t matter what was stored in a, b, and c. It might be as simple as numbers or as complex as a list of dictionaries containing instances of user-defined classes. pickle.dump will save everything.
Now, to read that data back in on a later run of the program, just write
import pickle
file = open("state", 'r')
a = pickle.load(file)
b = pickle.load(file)
c = pickle.load(file)
file.close()
Any data that was previously in the variables a, b, or c is restored to them by pickle.load.
The pickle module can store almost anything in this manner. It can handle lists, tuples, numbers, strings, dictionaries, and just about anything made up of these types of objects, which includes all class instances. It also handles shared objects, cyclic references, and other complex memory structures correctly, storing shared objects only once and restoring them as shared objects, not as identical copies. But code objects (what Python uses to store byte-compiled code) and system resources (like files or sockets) can’t be pickled.
More often than not, you won’t want to save your entire program state with pickle. For example, most applications can have multiple documents open at one time. If you saved the entire state of the program, you would effectively save all open documents in one file. An easy and effective way of saving and restoring only data of interest is to write a save function that stores all data you wish to save into a dictionary and then uses pickle to save the dictionary. Then, you can use a complementary restore function to read the dictionary back in (again using pickle) and to assign the values in the dictionary to the appropriate program variables. This also has the advantage that there’s no possibility of reading values back in an incorrect order—that is, an order different from the order in which they were stored. Using this approach with the previous example, we get code looking something like this:
import pickle
.
.
.
def save_data():
global a, b, c
file = open("state", 'w')
data = {'a': a, 'b': b, 'c': c}
pickle.dump(data, file)
file.close()
def restore_data():
global a, b, c
file = open("state", 'r')
data = pickle.load(file)
file.close()
a = data['a']
b = data['b']
c = data['c']
.
.
This is a somewhat contrived example. You probably won’t be saving the state of the top-level variables of your interactive mode very often.
A real-life application is an extension of the cache example given in chapter 7, “Dictionaries.” Recall that there, we were calling a function that performed a time-intensive calculation based on its three arguments. During the course of a program run, many of our calls to it ended up using the same set of arguments. We were able to obtain a significant performance improvement by caching the results in a dictionary, keyed by the arguments that produced them. But it was also the case that many different sessions of this program were being run many times over the course of days, weeks, and months. Therefore, by pickling the cache, we can keep from having to start over with every session. Listing 13.2 is a pared-down version of the module for doing this.
Listing 13.2. File sole.py
This code assumes the cache file already exists. If you want to play around with it, use the following to initialize the cache file:
>>> import pickle
>>> file = open("solecache",'w')
>>> pickle.dump({}, file)
>>> file.close()
You’ll also, of course, need to replace the comment # . . . do some time-consuming calculations with an actual calculation. Note that for production code, this is a situation where you probably would use an absolute pathname for your cache file. Also, concurrency isn’t being handled here. If two people run overlapping sessions, you’ll end up with only the additions of the last person to save. If this were an issue, you could limit this overlap window significantly by using the dictionary update method in the save function.
13.8. Shelving objects
This is a somewhat advanced topic but certainly not a difficult one. This section is likely of most interest to people whose work involves storing or accessing pieces of data in large files, because the Python shelve module does exactly that—it permits the reading or writing of pieces of data in large files, without reading or writing the entire file. For applications that perform many accesses of large files (such as database applications), the savings in time can be spectacular. Like the pickle module (which it uses), the shelve module is simple.
Let’s explore it through an address book. This sort of thing is usually small enough that an entire address file can be read in when the application is started and written out when the application is done. If you’re an extremely friendly sort of person, and your address book is too big for this, it would be better to use shelve and not worry about it.
We’ll assume that each entry in our address book consists of a tuple of three elements, giving the first name, phone number, and address of a person. Each entry will be indexed by the last name of the person the entry refers to. This is so simple that our application will be an interactive session with the Python shell.
First, import the shelve module and open the address book. shelve.open creates the address book file if it doesn’t exist:
>>> import shelve
>>> book = shelve.open("addresses")
Now, add a couple of entries. Notice that we’re treating the object returned by shelve.open as a dictionary (although it’s a dictionary that can use only strings as keys):
>>> book['flintstone'] = ('fred', '555-1234', '1233 Bedrock Place')
>>> book['rubble'] = ('barney', '555-4321', '1235 Bedrock Place')
Finally, close the file and end the session:
>>> book.close()
So what? Well, in that same directory, start Python again, and open the same address book:
>>> import shelve
>>> book = shelve.open("addresses")
But now, instead of entering something, let’s see if what we put in before is still around:
>>> book['flintstone']
('fred', '555-1234', '1233 Bedrock Place')
The addresses file created by shelve.open in the first interactive session has acted just like a persistent dictionary. The data we entered before was stored to disk, even though we did no explicit disk writes. That’s exactly what shelve does.
More generally, shelve.open returns a shelf object that permits basic dictionary operations, key assignment or lookup, del, in, and the keys method. But unlike a normal dictionary, shelf objects store their data on disk, not in memory. Unfortunately, shelf objects do have one significant restriction as compared to dictionaries: they can use only strings as keys, versus the wide range of key types allowable in dictionaries.
It’s important to understand the advantage shelf objects give you over dictionaries when dealing with large data sets. shelve.open makes the file accessible; it doesn’t read an entire shelf object file into memory. File accesses are done only when needed, typically when an element is looked up, and the file structure is maintained in such a manner that lookups are very fast. Even if your data file is really large, only a couple of disk accesses will be required to locate the desired object in the file. This can improve your program in a number of ways. It may start faster, because it doesn’t need to read a potentially large file into memory. It may execute faster, because more memory is available to the rest of the program, and thus less code will need to be swapped out into virtual memory. You can operate on data sets that are otherwise too large to fit in memory.
There are a few restrictions when using the shelve module. As previously mentioned, shelf object keys can be only strings; but any Python object that can be pickled can be stored under a key in a shelf object. Also, shelf objects aren’t suitable for multiuser databases because they provide no control for concurrent access. Finally, make sure you close a shelf object when you’ve finished—this is sometimes required in order for changes you’ve made (entries or deletions) to be written back to disk.
As written, the cache example of the previous section would be an excellent candidate to be handled using shelves. You would not, for example, have to rely on the user to explicitly save their work to the disk. The only possible issue is that you wouldn’t have the low-level control when you write back to the file.
13.9. Summary
File input and output in Python is a remarkably simple but powerful feature of the language. You can use various built-in functions to open, read, write, and close files. For very simple uses, you’ll probably want to stick with reading and writing text, but the struct module does give you the ability to read or write packed binary data. Even better, the pickle and shelve modules provide simple, safe, and powerful ways of saving and accessing arbitrarily complex Python data structures, which means you may never again need to worry about defining file formats for your programs.
Chapter 14. Exceptions
This chapter covers
This chapter discusses exceptions, which are a language feature specifically aimed at handling unusual circumstances during the execution of a program. The most common use for exceptions is to handle errors that arise during the execution of a program, but they can also be used effectively for many other purposes. Python provides a comprehensive set of exceptions, and new ones can be defined by users for their own purposes.
The concept of exceptions as an error-handling mechanism has been around for some time. C and Perl, the most commonly used systems and scripting languages, don’t provide any exception capabilities, and even programmers who use languages such as C++, which do include exceptions, are often unfamiliar with them. This chapter doesn’t assume familiarity with exceptions on your part but instead provides detailed explanations. If you’re already familiar with exceptions, you can skip directly to “Exceptions in Python” (section 14.2).
14.1. Introduction to exceptions
The following sections provide an introduction to exceptions and how they’re used. Feel free to skip them if you’re already familiar with exceptions from other languages.
14.1.1. General philosophy of errors and exception handling
Any program may encounter errors during its execution. For the purposes of illustrating exceptions, we’ll look at the case of a word processor that writes files to disk and that therefore may run out of disk space before all of its data is written. There are various ways of coming to grips with this problem.
Solution 1: don’t handle the problem
The simplest way of handling this disk-space problem is to assume that there will always be adequate disk space for whatever files we write, and we needn’t worry about it. Unfortunately, this seems to be the most commonly used option. It’s usually tolerable for small programs dealing with small amounts of data, but it’s completely unsatisfactory for more mission-critical programs. For several months while I was writing this book, my officemate spent hours every day cleaning up files that had become corrupt when a program written by someone else ran out of disk space and crashed. Eventually, he went into the code and put in some checks, which took care of most of the problem; even now, he still has to do occasional disk cleanups. Because the original program wasn’t written cleanly with exceptions, the checks he put in could do only a partial job.
Solution 2: all functions return success/failure status
The next level of sophistication in error handling is to realize that errors will occur and to define a methodology using standard language mechanisms for detecting and handling them. There are various ways of doing this, but a typical one is to have each function or procedure return a status value that indicates if that function or procedure call executed successfully. Normal results can be passed back in a call-by-reference parameter.
Let’s look at how this might work with our hypothetical word-processing program. We’ll assume that the program invokes a single high-level function, save_to_file, to save the current document to file. This will call various subfunctions to save different parts of the entire document to the file: for example, save_text_to_file to save the actual document text, save_prefs_to_file to save user preferences for that document, save_formats_to_file to save user-defined formats for the document, and so forth. Any of these may in turn call their own subfunctions, which save smaller pieces to the file. At the bottom will be built-in system functions, which write primitive data to the file and report on the success or failure of the file-writing operations.
We could put error-handling code into every function that might get a disk-space error, but that makes little sense. The only thing the error handler will be able to do is to put up a dialog box telling the user that there’s no more disk space and asking that the user remove some files and save again. It wouldn’t make sense to duplicate this code everywhere we do a disk write. Instead, we’ll put one piece of error-handling code into the main disk-writing function, save_to_file.
Unfortunately, for save_to_file to be able to determine when to call this error-handling code, every function it calls that writes to disk must itself check for disk space errors and return a status value indicating success or failure of the disk write. In addition, the save_to_file function must explicitly check every call to a function that writes to disk, even though it doesn’t care about which function fails. The code, using a C-like syntax, looks something like this:
const ERROR = 1;
const OK = 0;
int save_to_file(filename) {
int status;
status = save_prefs_to_file(filename);
if (status == ERROR) {
...handle the error...
}
status = save_text_to_file(filename);
if (status == ERROR) {
...handle the error...
}
status = save_formats_to_file(filename);
if (status == ERROR) {
...handle the error...
}
.
.
.
}
int save_text_to_file(filename) {
int status;
status = ...lower-level call to write size of text...
if (status == ERROR) {
return(ERROR);
}
status = ...lower-level call to write actual text data...
if (status == ERROR) {
return(ERROR);
}
.
.
.
}
And so on for save_prefs_to_file, save_formats_to_file, and all other functions that either write to filename directly or (in any way) call functions that write to filename.
Under this methodology, code to detect and handle errors can become a significant portion of the entire program, because every function and procedure containing calls that might result in an error need to contain code to check for an error. Often, programmers don’t have the time or the energy put in this type of complete error checking, and programs end up being unreliable and crash prone.
Solution 3: the exception mechanism
It’s obvious that most of the error-checking code in the previous type of program is largely repetitive: it checks for errors on each attempted file write and passes an error status message back up to the calling procedure if an error is detected. The disk space error is handled in only one place, the top-level save_to_file. In other words, most of the error-handling code is plumbing code, which connects the place where an error is generated with the place where it’s handled. What we really want to do is to get rid of this plumbing and write code that looks something like this:
def save_to_file(filename)
try to execute the following block
save_text_to_file(filename)
save_formats_to_file(filename)
save_prefs_to_file(filename)
.
.
.
except that, if the disk runs out of space while
executing the above block, do this
...handle the error...
def save_text_to_file(filename)
...lower-level call to write size of text...
...lower-level call to write actual text data...
.
.
.
The error-handling code is completely removed from the lower-level functions; an error (if it occurs) will be generated by the built-in file writing routines and will propagate directly to the save_to_file routine, where our error-handling code will (presumably) take care of it. Although you can’t write this code in C, languages that offer exceptions permit exactly this sort of behavior; and, of course, Python is one such language. Exceptions let you write clearer code and handle error conditions better.
14.1.2. A more formal definition of exceptions
The act of generating an exception is called raising or throwing an exception. In the previous example, all exceptions are raised by the disk-writing functions, but exceptions can also be raised by any other functions or can be explicitly raised by your own code. We’ll discuss this in more detail shortly. In the previous example, the low-level disk-writing functions (not seen in the code) would throw an exception if the disk were to run out of space.
The act of responding to an exception is called catching an exception, and the code that handles an exception is called exception-handling code, or just an exception handler. In the example, the except that... line catches the disk-write exception, and the code that would be in place of the ...handle the error... line would be an exception handler for disk-write (out of space) exceptions. There may be other exception handlers for other types of exceptions or even other exception handlers for the same type of exception but at another place in your code.
14.1.3. User-defined exceptions
Depending on exactly what event causes an exception, a program may need to take different actions. For example, an exception raised when disk space is exhausted needs to be handled quite differently from an exception that is raised if we run out of memory, and both are completely different from an exception that arises when a divide-by-zero error occurs. One way of handling these different types of exceptions would be to globally record an error message indicating the cause of the exception and to have all exception handlers examine this error message and take appropriate action. In practice, a different method has proven to be much more flexible.
Rather than defining a single kind of exception, Python, like most modern languages that implement exceptions, defines different types of exceptions, corresponding to various problems that may occur. Depending on the underlying event, different types of exceptions may be raised. In addition, the code that catches exceptions may be told to catch only certain types. This feature was used in the earlier pseudocode when we said, except that, if the disk runs out of space . . ., do this; we were specifying that this particular exception-handling code is interested only in disk-space exceptions. Another type of exception wouldn’t be caught by that exception-handling code. It would either be caught by an exception handler that was looking for numeric exceptions, or, if there were no such exception handler, it would cause the program to exit prematurely with an error.
14.2. Exceptions in Python
The remaining sections of this chapter talk specifically about the exception mechanisms built into Python. The entire Python exception mechanism is built around an object-oriented paradigm, which makes it both flexible and expandable. If you aren’t familiar with OOP, you don’t need to learn OO techniques in order to use exceptions.
Like everything else in Python, an exception is an object. It’s generated automatically by Python functions with a raise statement. After it’s generated, the raise statement, which raises an exception, causes execution of the Python program to proceed in a manner different than would normally occur. Instead of proceeding with the next statement after the raise, or whatever generated the exception, the current call chain is searched for a handler that can handle the generated exception. If such a handler is found, it’s invoked and may access the exception object for more information. If no suitable exception handler is found, the program aborts with an error message.
14.2.1. Types of Python exceptions
It’s possible to generate different types of exceptions to reflect the actual cause of the error or exceptional circumstance being reported. Python provides a number of different exception types:
BaseException
SystemExit
KeyboardInterrupt
GeneratorExit
Exception
StopIteration
ArithmeticError
FloatingPointError
OverflowError
ZeroDivisionError
AssertionError
AttributeError
BufferError
EnvironmentError
IOError
OSError
WindowsError (Windows)
VMSError (VMS)
EOFError
ImportError
LookupError
IndexError
KeyError
MemoryError
NameError
UnboundLocalError
ReferenceError
RuntimeError
NotImplementedError
SyntaxError
IndentationError
TabError
SystemError
TypeError
ValueError
UnicodeError
UnicodeDecodeError
UnicodeEncodeError
UnicodeTranslateError
Warning
DeprecationWarning
PendingDeprecationWarning
RuntimeWarning
SyntaxWarning
UserWarning
FutureWarning
ImportWarning
UnicodeWarning
BytesWarningException
The Python exception set is hierarchically structured, as reflected by the indentation in this list of exceptions. As you saw in a previous chapter, you can obtain an alphabetized list from the __builtin__ module.
Each type of exception is a Python class, which inherits from its parent exception type. But if you’re not into OOP yet, don’t worry about that. For example, an IndexError is also a LookupError and by inheritance an Exception and also a BaseException.
This hierarchy is deliberate: most exceptions inherit from Exception, and it’s strongly recommended that any user-defined exceptions also subclass Exception, not BaseException. The reason is that if you have code set up like this
try:
# do stuff
except Exception:
# handle exceptions
you could still interrupt the code in the try block with Ctrl-C without triggering the exception-handling code, because the KeyboardInterrupt exception is not a subclass of Exception.
You can find an explanation of the meaning of each type of exception in the documentation, but you’ll rapidly become acquainted with the most common types as you program!
14.2.2. Raising exceptions
Exceptions are raised by many of the Python built-in functions. For example:
>>> alist = [1, 2, 3]
>>> element = alist[7]
Traceback (innermost last):
File "<stdin>", line 1, in ?
IndexError: list index out of range
Error-checking code built into Python detects that the second input line requests an element at a list index that doesn’t exist and raises an IndexError exception. This exception propagates all the way back to the top level (the interactive Python interpreter), which handles it by printing out a message stating that the exception has occurred.
Exceptions may also be raised explicitly in your own code, through the use of the raise statement. The most basic form of this statement is
raise exception(args)
The exception(args) part of the code creates an exception. The arguments to the new exception are typically values that aid you in determining what happened, something we’ll discuss shortly. After the exception has been created, raise takes it and throws it upward along the stack of Python functions that were invoked in getting to the line containing the raise statement. The new exception is thrown up to the nearest (on the stack) exception catcher looking for that type of exception. If no catcher is found on the way to the top level of the program, this will either cause the program to terminate with an error or, in an interactive session, cause an error message to be printed to the console.
Try the following:
>>> raise IndexError("Just kidding")
Traceback (innermost last):
File "<stdin>", line 1, in ?
IndexError: Just kidding
The use of raise here generates what at first glance looks similar to all the Python list-index error messages you’ve seen so far. Closer inspection reveals this not to be the case. The actual error reported isn’t as serious as those other ones.
The use of a string argument when creating exceptions is common. Most of the built-in Python exceptions, if given a first argument, assume it’s a message to be shown to you as an explanation of what happened. This isn’t always the case, though, because each exception type is its own class, and the arguments expected when a new exception of that class is created are determined entirely by the class definition. Also, programmer-defined exceptions, created by you or by other programmers, are often used for reasons other than error handling and, as such, may not take a text message.
14.2.3. Catching and handling exceptions
The important thing about exceptions isn’t that they cause a program to halt with an error message. Achieving that in a program is never much of a problem. What’s special about exceptions is that they don’t have to cause the program to halt. By defining appropriate exception handlers, you can ensure that commonly encountered exceptional circumstances don’t cause the program to fail; perhaps they display an error message to the user or do something else, even fix the problem, but they don’t crash the program.
The basic Python syntax for exception catching and handling is as follows, using the try and except and sometimes the else keywords:
try:
body
except exception_type1 as var1:
exception_code1
except exception_type2 as var2:
exception_code2
.
.
.
except:
default_exception_code
else:
else_body
finally:
finally_body
A try statement is executed by first executing the code in the body part of the statement. If this is successful (that is, no exceptions are thrown to be caught by the try statement), then the else_body is executed and the try statement is finished. Nothing else occurs. If an exception is thrown to the try, then the except clauses are searched sequentially for one whose associated exception type matches that which was thrown. If a matching except clause is found, the thrown exception is assigned to the variable named after the associated exception type, and the exception code body associated with the matching exception is executed. If the line except exception_type, var: matches some thrown expression exc, the variable var will be created, and exc will be assigned as the value of var, before the exception-handling code of the except statement is executed. You don’t need to put in var; you can say something like except exception_type:, which will still catch exceptions of the given type but won’t assign them to any variable.
If no matching except clause is found, then the thrown exception can’t be handled by that try statement, and the exception is thrown further up the call chain in hope that some enclosing try will be able to handle it.
The last except clause of a try statement can optionally refer to no exception types at all, in which case it will handle all types of exceptions. This can be convenient for some debugging and extremely rapid prototyping but generally isn’t a good idea: all errors are hidden by the except clause, which can lead to some confusing behavior on the part of your program.
The else clause of a try statement is optional and is rarely used. It’s executed if and only if the body of the try statement executes without throwing any errors.
The finally clause of a try statement is also optional and executes after the try, except, and else sections have executed. If an exception is raised in the try block and isn’t handled by any of the except blocks, that exception is reraised after the finally block executes. Because the finally block always executes, it gives you a chance to include code to clean up after any exception handling by closing files, resetting variables, and so on.
14.2.4. Defining new exceptions
You can easily define your own exception. The following two lines will do this for you:
class MyError(Exception):
pass
This creates a class that inherits everything from the base Exception class. But you don’t have to worry about that if you don’t want to.
You can raise, catch, and handle it like any other exception. If you give it a single argument (and you don’t catch and handle it), this will be printed at the end of the traceback:
>>> raise MyError("Some information about what went wrong")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
__main__.MyError: Some information about what went wrong
This argument will, of course, be available to a handler you write as well:
try:
raise MyError("Some information about what went wrong")
except MyError as error:
print("Situation:", error)
The result here is
Situation: Some information about what went wrong
If you raise your exception with multiple arguments, these will be delivered to your handler as a tuple, which you can access through the args variable of the error:
try:
raise MyError("Some information", "my_filename", 3)
except MyError as error:
print("Situation: problem {0} with file {1}: {2}".format(
(error.args[2],
error.args[1], error.args[0]))
This gives the result
Situation: problem 3 with file my_filename: Some information
Because an exception type is a regular class in Python and happens to inherit from the root Exception class, it’s a simple matter to create you own subhierarchy of exception types for use by your own code. You don’t have to worry about this on a first read of the book. You can always come back to it after you’ve read chapter 15, “Classes and object-oriented programming.” Exactly how you create your own exceptions depends on your particular needs. If you’re writing a small program that may generate only a few unique errors or exceptions, subclass the main Exception class as we’ve done here. If, on the other hand, you’re writing a large, multifile code library with a special goal in mind—say, weather forecasting—you may decide to define a unique class called WeatherLibraryException and then define all the unique exceptions of the library as subclasses of WeatherLibraryException.
14.2.5. Debugging programs with the assert statement
The assert statement is a specialized form of the raise statement:
assert expression, argument
The AssertionError exception with the optional argument is raised if the expression evaluates to False and the system variable __debug__ is True. The __debug__ variable defaults to True. It’s turned off by either starting up the Python interpreter with the -O or -OO option or by setting the system variable PYTHONOPTIMIZE to True.
The code generator creates no code for assertion statements if __debug__ is false. You can use assert statements to instrument your code with debug statements during development and leave them in the code for possible future use with no runtime cost during regular use:
>>> x = (1, 2, 3)
>>> assert len(x) > 5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError
14.2.6. The exception inheritance hierarchy
Now, let’s expand on an earlier notion that Python exceptions are hierarchically structured and on what it means in terms of how except clauses catch exceptions.
The following code
try:
body
except LookupError as error:
exception code
except IndexError as error:
exception code
catches two different types of exceptions: IndexError and LookupError. It just so happens that IndexError is a subclass of LookupError. If body throws an IndexError, that error is first examined by the except LookupError as error: line, and because an IndexError is a LookupError by inheritance, the first except will succeed. The second except clause will never be used because it’s subsumed by the first except clause.
On the other hand, flipping the order of the two except clauses could potentially be useful; the first clause would then handle IndexError exceptions, and the second clause would handle any LookupError exceptions that aren’t IndexError errors.
14.2.7. Example: a disk-writing program in Python
Let’s revisit our example of a word-processing program that needs to check for disk out-of-space conditions as it writes a document to disk:
def save_to_file(filename) :
try:
save_text_to_file(filename)
save_formats_to_file(filename)
save_prefs_to_file(filename)
.
.
.
except IOError:
...handle the error...
def save_text_to_file(filename):
...lower-level call to write size of text...
...lower-level call to write actual text data...
.
.
.
Notice how unobtrusive the error-handling code is; it’s wrapped around the main sequence of disk-writing calls in the save_to_file function. None of the subsidiary disk-writing functions need any error-handling code. It would be easy to develop the program first and to add error-handling code later. That’s often what is done, although this isn’t the optimal ordering of events.
As another note of interest, this code doesn’t respond specifically to disk-full errors; rather, it responds to IOError exceptions, which Python built-in functions raise automatically whenever they can’t complete an I/O request, for whatever reason. That’s probably satisfactory for your needs; but if you need to identify disk-full conditions, you can do a couple of different things. The except body can check to see how much room is available on disk. If the disk is out of space, clearly it’s a disk-full problem and should be handled in this except body; otherwise, the code in the except body can throw the IOError further up the call chain to be handled by some other except. If that isn’t sufficient, you can do something more extreme, like going into the C source for the Python disk-writing functions and raising your own DiskFull exceptions as necessary. I wouldn’t recommend this latter option, but it’s nice to know the possibility exists if you need to make use of it.
14.2.8. Example: exceptions in normal evaluation
Exceptions are most often used in error handling but can also be remarkably useful in certain situations involving what we would think of as normal evaluation. An example I encountered involved a spreadsheet-like program I was implementing. Like most spreadsheets, it permits arithmetic operations involving cells, and it permits cells to contain values other than numbers. For my application, I wanted blank cells used in a numerical calculation to be considered as containing the value 0, and cells containing any other nonnumeric string to be considered as invalid, which I represented as the Python value None. Any calculation involving an invalid value should return an invalid value.
The first step was to write a function that would evaluate a string from a cell of the spreadsheet and return an appropriate value:
def cell_value(string):
try:
return float(string)
except ValueError:
if string == "":
return 0
else:
return None
Python’s exception-handling ability made this a simple function to write. I tried to convert the string from the cell into a number and return it, in a try block using the float built-in function. float raises the ValueError exception if it can’t convert its string argument to a number, so I caught that and returned either 0 or None depending on whether the argument string was empty or non-empty.
The next step was to handle the fact that some of my arithmetic might have to deal with a value of None. In a language without exceptions, the normal way to do this would be to define a custom set of arithmetic functions, which check their arguments for None, and then to use those functions rather than the built-in arithmetic functions to perform all of the spreadsheet arithmetic. This is time consuming and error prone, and it leads to slow execution because you’re effectively building an interpreter in your spreadsheet. I took a different approach. All of my spreadsheet formulas were actually Python functions that took as arguments the x and y coordinates of the cell being evaluated and the spreadsheet itself and calculated the result for the given cell using standard Python arithmetic operators, using cell_value to extract the necessary values from the spreadsheet. I defined a function called safe_apply, which took one of these formulas, applied it to the appropriate arguments in a try block, and returned either the formula’s result or None, depending on whether the formula evaluated successfully:
def safe_apply(function, x, y, spreadsheet):
try:
return function, (x, y, spreadsheet)
except TypeError:
return None
These two changes were enough to integrate the idea of an empty (None) value into the semantics of my spreadsheet. Trying to develop this ability without the use of exceptions is a highly educational exercise.
14.2.9. Where to use exceptions
Exceptions are a natural choice for handling almost any error condition. It’s an unfortunate fact that error handling is often added after the rest of the program is largely complete, but exceptions are particularly good at intelligibly managing this sort of after-the-fact error-handling code (or, more optimistically, for the case where you’re adding more of them after the fact).
Exceptions are also highly useful in circumstances where a large amount of processing may need to be discarded after it has become obvious that a computational branch in your program has become untenable. The spreadsheet example was one such case; others are branch-and-bound algorithms and parsing algorithms.
14.3. Using with
Some situations, such as reading files, follow a predictable pattern with a set beginning and end. In the case of reading from a file, quite often the file needs to be open only one time, while data is being read, and then it can be closed. In terms of exceptions, you can code this kind of file access like this:
try:
infile = open(filename)
data = infile.read()
finally:
infile.close()
In Python 3, there’s a more generic way of handling situations like this: context managers. Context managers wrap a block and manage requirements on entry and departure from the block and are marked by the with keyword. File objects are context managers, and you can read files using that capability:
with open(filename) as infile:
data = infile.read()
These two lines of code are equivalent to the five previous lines. In both cases, we know that the file will be closed immediately after the last read, whether the operation was successful or not. In the second case, closure of the file is also assured, because it’s part of the file object’s context management, so we don’t need to write the code. In other words, by using with combined with a context management (in this case a file object), we don’t need to worry about the routine cleanup.
Context managers are intended for things like locking and unlocking resources, closing files, committing database transactions, and so on. This is still a relatively new feature in Python, and its use will continue to be refined.
14.4. Summary
Python’s exception-handling mechanism and exception classes provide a rich system to handle runtime errors in your code. Python’s philosophy is that errors should not pass silently unless explicitly silenced, and by using try, except, else, and finally blocks and by selecting and even creating the types of exceptions caught, you can have very fine-grained control over how exceptions are handled and even ignored, when that makes sense.
You’ve seen that in Python exception types are organized in a hierarchy. That’s possible because exceptions, like all objects in Python, are based on classes, and you’ll see how Python uses classes and objects in the next chapter.
Chapter 15. Classes and object-oriented programming
This chapter covers
In this chapter, we discuss Python classes, which can be used in a manner analogous to C structures but which can also be used in a full object-oriented manner. For the benefit of readers who aren’t object-oriented programmers, we’ll discuss the use of classes as structures in the first two subsections.
The remainder of the chapter discusses OOP in Python. This is only a description of the constructs available in Python; it’s not an exposition on object-oriented programming itself.
15.1. Defining classes
A class in Python is effectively a data type. All the data types built into Python are classes, and Python gives you powerful tools to manipulate every aspect of a class’s behavior. You define a class with the class statement:
class MyClass:
body
body is a list of Python statements, typically variable assignments and function definitions. No assignments or function definitions are required. The body can be just a single pass statement.
By convention, class identifiers are in CapCase—that is, the first letter of each component word is capitalized, to make them stand out. After you define the class, a new object of the class type (an instance of the class) can be created by calling the class name as a function:
instance = MyClass()
15.1.1. Using a class instance as a structure or record
Class instances can be used as structures or records. Unlike C structures, the fields of an instance don’t need to be declared ahead of time but can be created on the fly. The following short example defines a class called Circle, creates a Circle instance, assigns to the radius field of the circle, and then uses that field to calculate the circumference of the circle:
>>> class Circle:
... pass
...
>>> my_circle = Circle()
>>> my_circle.radius = 5
>>> print(2 * 3.14 * my_circle.radius)
31.4
Like Java and many other languages, the fields of an instance/structure are accessed and assigned to by using dot notation.
You can initialize fields of an instance automatically by including an __init__ initialization method in the class body. This function is run every time an instance of the class is created, with that new instance as its first argument. The __init__ method is similar to a constructor in Java, but it doesn’t really construct anything—it initializes fields of the class. This example creates circles with a radius of 1 by default:
By convention, self is always the name of the first argument of __init__. self is set to the newly created circle instance when __init__ is run . Next, the code uses the class definition. We first create a Circle instance object
. The next line makes use of the fact that the radius field is already initialized
. We can also overwrite the radius field
; as a result, the last line prints a different result than the previous print statement
.
You can do a great deal more by using true object-oriented programming, and if you’re not familiar with OOP, I urge you to read up on it. Python’s object-oriented programming constructs are the subject of the remainder of this chapter.
15.2. Instance variables
Instance variables are the most basic feature of OOP. Take a look at the Circle class again:
class Circle:
def __init__(self):
self.radius = 1
radius is an instance variable of Circle instances. That is, each instance of the Circle class has its own copy of radius, and the value stored in that copy may be different from the values stored in the radius variable in other instances. In Python, you can create instance variables as necessary by assigning to a field of a class instance:
instance.variable = value
If the variable doesn’t already exist, it’s created automatically. This is how __init__ creates the radius variable.
All uses of instance variables—both assignment and access—require explicit mention of the containing instance—that is, instance.variable. A reference to variable by itself is a reference not to an instance variable but rather to a local variable in the executing method. This is different from C++ or Java, where instance variables are referred to in the same manner as local method function variables. I rather like Python’s requirement for explicit mention of the containing instance, because it clearly distinguishes instance variables from local function variables.
15.3. Methods
A method is a function associated with a particular class. You’ve already seen the special __init__ method, which is called on a new instance when that instance is first created. In the following example, we define another method, area, for the Circle class, which can be used to calculate and return the area for any Circle instance. Like most user-defined methods, area is called with a method invocation syntax that resembles instance variable access:
>>> class Circle:
... def __init__(self):
... self.radius = 1
... def area(self):
... return self.radius * self.radius * 3.14159
...
>>> c = Circle()
>>> c.radius = 3
>>> print(c.area())
28.27431
Method invocation syntax consists of an instance, followed by a period, followed by the method to be invoked on the instance. The previous syntax is sometimes called bound method invocation. area can also be invoked as an unbound method by accessing it through its containing class. This is less convenient and is almost never done. When a method is invoked in this manner, its first argument must be an instance of the class in which that method is defined:
>>> print(Circle.area(c))
28.27431
Like __init__, the area method is defined as a function within the body of the class definition. The first argument of any method is the instance it was invoked by or on, named self by convention.
Methods can be invoked with arguments, if the method definitions accept those arguments. This version of Circle adds an argument to the __init__ method, so that we can create circles of a given radius without needing to set the radius after a circle is created:
class Circle:
def __init__(self, radius):
self.radius = radius
def area(self):
return self.radius * self.radius * 3.14159
Note the two uses of radius here. self.radius is the instance variable called radius. radius by itself is the local function variable called radius. The two aren’t the same! In practice, we’d probably call the local function variable something like r or rad, to avoid any possibility of confusion.
Using this definition of Circle, we can create circles of any radius with one call on the circle class. The following creates a Circle of radius 5:
c = Circle(5)
All the standard Python function features—default argument values, extra arguments, keyword arguments, and so forth—can be used with methods. For example, we could have defined the first line of __init__ to be
def __init__(self, radius=1):
Then, calls to circle would work with or without an extra argument; Circle() would return a circle of radius 1, and Circle(3) would return a circle of radius 3.
There’s nothing magical about method invocation in Python. It can be considered shorthand for normal function invocation. Given a method invocation instance.method(arg1, arg2, . . .), Python transforms it into a normal function call by using the following rules:
1. Look for the method name in the instance namespace. If a method has been changed or added for this instance, it’s invoked in preference over methods in the class or superclass. This is the same sort of lookup discussed later in section 15.4.1.
2. If the method isn’t found in the instance namespace, look up the class type class of instance, and look for the method there. In the previous examples, class is Circle—the type of the instance c.
3. If the method still isn’t found, look for the method in the superclasses.
4. When the method has been found, make a direct call to it as a normal Python, using instance as the first argument of the function, and shifting all the other arguments in the method invocation one space over to the right. So, instance.method(arg1, arg2, . . .) becomes class.method(instance, arg1, arg2, . . .).
15.4. Class variables
A class variable is a variable associated with a class, not an instance of a class, and is accessed by all instances of the class, in order to keep track of some class-level information, such as how many instances of the class have been created at any point in time. Python provides class variables, although using them requires slightly more effort than in most other languages. Also, you need to watch out for an interaction between class and instance variables.
A class variable is created by an assignment in the class body, not in the __init__ function; after it has been created, it can be seen by all instances of the class. We can use a class variable to make a value for pi accessible to all instances of the Circle class:
class Circle:
pi = 3.14159
def __init__(self, radius):
self.radius = radius
def area(self):
return self.radius * self.radius * Circle.pi
With the above definition entered, we can type
>>> Circle.pi
3.1415899999999999
>>> Circle.pi = 4
>>> Circle.pi
4
>>> Circle.pi = 3.14159
>>> Circle.pi
3.1415899999999999
This is exactly how we would expect a class variable to act. It’s associated with and contained in the class that defines it. Notice in this example that we’re accessing Circle.pi before any circle instances have been created. Obviously, Circle.pi exists independently of any specific instances of the Circle class.
You can also access a class variable from a method of a class, through the class name. We do so in the definition of Circle.area, where the area function makes specific reference to Circle.pi. In operation, this has the desired effect; the correct value for pi is obtained from the class and used in the calculation:
>>> c = Circle(3)
>>> c.area()
28.27431
You may object to hardcoding the name of a class inside that class’s methods. You can avoid doing so through use of the special __class__ attribute, available to all Python class instances. This attribute returns the class of which the instance is a member, for example:
>>> Circle
<class '__main__.Circle'>
>>> c.__class__
<class '__main__.Circle'>
The class named Circle is represented internally by an abstract data structure, and that data structure is exactly what is obtained from the __class__ attribute of c, an instance of the Circle class. This lets us obtain the value of Circle.pi from c without ever explicitly referring to the Circle class name:
>>> c.__class__.pi
3.1415899999999999
Of course, we could use this internally in the area method to get rid of the explicit reference to the Circle class; replace Circle.pi with self.__class__.pi.
15.4.1. An oddity with class variables
There’s a bit of an oddity with class variables that can trip you up if you aren’t aware of it. When Python is looking up an instance variable, if it can’t find an instance variable of that name, it will then try to find and return the value in a class variable of the same name. Only if it can’t find an appropriate class variable will it signal an error. This does make it efficient to implement default values for instance variables; just create a class variable with the same name and appropriate default value, and avoid the time and memory overhead of initializing that instance variable every time a class instance is created. But this also makes it easy to inadvertently refer to an instance variable rather than a class variable, without signaling an error. Let’s look at how this operates in conjunction with the previous example.
First, we can refer to the variable c.pi, even though c doesn’t have an associated instance variable named pi. Python will first try to look for such an instance variable, but when it can’t find it, it will then look for a class variable pi in Circle and find it:
>>> c = Circle(3)
>>> c.pi
3.1415899999999999
This may or may not be what you want; it’s convenient but can be prone to error, so be careful.
Now, what happens if we attempt to use c.pi as a true class variable, by changing it from one instance with the intent that all instances should see the change? Again, we’ll use the earlier definition for Circle:
>>> c1 = Circle(1)
>>> c2 = Circle(2)
>>> c1.pi = 3.14
>>> c1.pi
3.140000000000001
>>> c2.pi
3.1415899999999999
>>> Circle.pi
3.1415899999999999
This doesn’t work as it would for a true class variable—c1 now has its own copy of pi, distinct from the Circle.pi accessed by c2. This is because the assignment to c1.pi creates an instance variable in c1; it doesn’t affect the class variable Circle.pi in any way. Subsequent lookups of c1.pi return the value in that instance variable, whereas subsequent lookups of c2.pi look for an instance variable pi in c2, fail to find it, and resort to returning the value of the class variable Circle.pi. If you want to change the value of a class variable, access it through the class name, not through the instance variable self.
15.5. Static methods and class methods
Python classes can also have methods that correspond explicitly to static methods in a language such as Java. In addition, Python has class methods, which are a bit more advanced.
15.5.1. Static methods
Just as in Java, you can invoke static methods even though no instance of that class has been created, although you can call them using a class instance. To create a static method, use the @staticmethod decorator, as shown in listing 15.1.
Listing 15.1. File circle.py
Now, interactively type the following:
>>> import circle
>>> c1 = circle.Circle(1)
>>> c2 = circle.Circle(2)
>>> circle.Circle.total_area()
15.70795
>>> c2.radius = 3
>>> circle.Circle.total_area()
31.415899999999997
Also notice that documentation strings are used. In a real module, you’d probably put in more informative strings, indicating in the class docstring what methods are available and including usage information in the method docstrings:
>>> circle.__doc__
'circle module: contains the Circle class.'
>>> circle.Circle.__doc__
'Circle class'
>>> circle.Circle.area.__doc__
'determine the area of the Circle'
15.5.2. Class methods
Class methods are similar to static methods in that they can be invoked before an object of the class has been instantiated or by using an instance of the class. But class methods are implicitly passed the class they belong to as their first parameter, so you can code them more simply, as in listing 15.2.
Listing 15.2. File circle_cm.py
The @classmethod decorator is used before the method def . The class parameter is traditionally cls
. You can use cls instead of self.__class__
.
By using a class method instead of a static method, we don’t have to hardcode the class name into total_area. That means any subclasses of Circle can still call total_area and refer to their own members, not those in Circle.
15.6. Inheritance
Inheritance in Python is easier and more flexible than inheritance in compiled languages such as Java and C++ because the dynamic nature of Python doesn’t force as many restrictions on the language.
To see how inheritance is used in Python, we start with the Circle class given previously and generalize. We might want to define an additional class for squares:
Now, if we want to use these classes in a drawing program, they must define some sense of where on the drawing surface each instance is. We can do so by defining an x coordinate and a y coordinate in each instance:
class Square:
def __init__(self, side=1, x=0, y=0):
self.side = side
self.x = x
self.y = y
class Circle:
def __init__(self, radius=1, x=0, y=0):
self.radius = radius
self.x = x
self.y = y
This approach works but results in a good deal of repetitive code as we expand the number of shape classes, because each shape will presumably want to have this concept of position. No doubt you know where we’re going here. This is a standard situation for using inheritance in an object-oriented language. Instead of defining the x and y variables in each shape class, abstract them out into a general Shape class, and have each class defining an actual shape inherit from that general class. In Python, that looks like this:
There are (generally) two requirements in using an inherited class in Python, both of which you can see in the bolded code in the Circle and Square classes. The first requirement is defining the inheritance hierarchy, which you do by giving the classes inherited from, in parentheses, immediately after the name of the class being defined with the class keyword. In the previous code, Circle and Square both inherit from Shape. The second and more subtle element is the necessity to explicitly call the __init__ method of inherited classes. Python doesn’t automatically do this for you, but you can use the super function to have Python figure out which inherited class to use. This is accomplished in the example code by the super().__init__(x,y) lines. This calls the Shape initialization function with the instance being initialized and the appropriate arguments. If this weren’t done, then in the example, instances of Circle and Square wouldn’t have their x and y instance variables set.
Instead of using super, we could call Shape’s __init__ by explicitly naming the inherited class using Shape.__init__(self, x, y), which would also call the Shape initialization function with the instance being initialized. This wouldn’t be as flexible in the long run, because it hardcodes the inherited class’s name, which could be a problem later if the design and the inheritance hierarchy change. On the other hand, the use of super can be tricky in more complex cases. Because the two methods don’t exactly mix well, clearly document whichever approach you use in your code.
Inheritance comes into effect when you attempt to use a method that isn’t defined in the base classes but is defined in the superclass. To see this, let’s define another method in the Shape class called move, which will move a shape by a given displacement. It will modify the x and y coordinates of the shape by an amount determined by arguments to the method. The definition for Shape now becomes
class Shape:
def __init__(self, x, y):
self.x = x
self.y = y
def move(self, delta_x, delta_y):
self.x = self.x + delta_x
self.y = self.y + delta_y
If we enter this definition for Shape and the previous definitions for Circle and Square, we can then engage in the following interactive session:
>>> c = Circle(1)
>>> c.move(3, 4)
>>> c.x
3
>>> c.y
4
If you try this and are doing it in an interactive session, be sure to reenter the Circle class after the redefinition of the Shape class.
The Circle class didn’t define a move method immediately within itself, but because it inherits from a class that implements move, all instances of Circle can make use of move.
15.7. Inheritance with class and instance variables
Inheritance allows an instance to inherit attributes of the class. Instance variables are associated with object instances, and only one instance variable of a given name exists for a given instance.
To see this, consider the following example. Using these class definitions,
class P:
z = "Hello"
def set_p(self):
self.x = "Class P"
def print_p(self):
print(self.x)
class C(P):
def set_c(self):
self.x = "Class C"
def print_c(self):
print(self.x)
execute the following code:
>>> c = C()
>>> c.set_p()
>>> c.print_p()
Class P
>>> c.print_c()
Class P
>>> c.set_c()
>>> c.print_c()
Class C
>>> c.print_p()
Class C
The object c in this example is an instance of class C. C inherits from P, but c doesn’t inherit from some invisible instance of class P. It inherits methods and class variables directly from P. Because there is only one instance (c), any reference to the instance variable x in a method invocation on c must refer to c.x. This is true regardless of which class defines the method being invoked on c. As you can see, when they’re invoked on c, both set_p and print_p, defined in class P, refer to the same variable referred to by set_c and print_c when they’re invoked on c.
In general, this is what is desired for instance variables because it makes sense that references to instance variables of the same name should refer to the same variable. Occasionally, somewhat different behavior is desired, which you can achieve using private variables. These are explained in the next subsection.
Class variables are inherited, but you should take care to avoid name clashes and be aware of a generalization of the same behavior you saw in the earlier subsection on class variables. In our example, a class variable z is defined for the superclass P. It can be accessed in three different ways: through the instance c, through the derived class C, or directly through the superclass P:
>>> c.z; C.z; P.z
'Hello'
'Hello'
'Hello'
But if we try setting it through the class C, a new class variable will be created for the class C. This has no effect on P’s class variable itself (as accessed through P). But future accesses through the class C or its instance c will see this new variable rather than the original:
>>> C.z = "Bonjour"
>>> c.z; C.z; P.z
'Bonjour'
'Bonjour'
'Hello'
Similarly, if we try setting z through the instance c, a new instance variable will be created, and we’ll end up with three different variables:
>>> c.z = "Ciao"
>>> c.z; C.z; P.z
'Ciao'
'Bonjour'
'Hello'
15.8. Private variables and private methods
A private variable or private method is one that can’t be seen outside of the methods of the class in which it’s defined. Private variables and methods are useful for a number of reasons. They enhance security and reliability by selectively denying access to important or delicate parts of an object’s implementation. They avoid name clashes that can arise from the use of inheritance. A class may define a private variable and inherit from a class that defines a private variable of the same name, but this doesn’t cause a problem, because the fact that the variables are private ensures that separate copies of them are kept. Finally, private variables make it easier to read code, because they explicitly indicate what is used only internally in a class. Anything else is the class’s interface.
Most languages that define private variables do so through the use of a private or other similar keyword. The convention in Python is simpler, and it also makes it easier to immediately see what is private and what isn’t. Any method or instance variable whose name begins—but doesn’t end—with a double underscore (__) is private; anything else isn’t private.
As an example, consider the following class definition:
Using this definition, create an instance of the class:
>>> m = Mine()
x isn’t a private variable, so it’s directly accessible:
>>> print(m.x)
2
__y is a private variable. Trying to access it directly raises an error:
>>> print(m.__y)
Traceback (innermost last):
File "<stdin>", line 1, in ?
AttributeError: 'Mine' object has no attribute '__y'
The print_y method isn’t private, and because it’s in the Mine class, it can access __y and print it:
>>> m.print_y()
3
Finally, you should note that the mechanism used to provide privacy is to mangle the name of private variables and private methods when the code is compiled to bytecode. What specifically happens is that _classname is appended to the variable name:
>>> dir(m)
['_Mine__y', 'x', ...]
The purpose is to avoid any accidental accesses. If someone wanted to, they could access the value. But by performing the mangling in this easily readable form, debugging is made easy.
15.9. Using @property for more flexible instance variables
Python allows you as the programmer to access instance variables directly, without the extra machinery of getter and setter methods often used in Java and other OO languages. This lack of getters and setters makes writing Python classes cleaner and easier; but in some situations, using getter and setter methods can be handy. Suppose you want a value before you put it into an instance variable or where it would be handy to figure out an attribute’s value on the fly. In both cases, getter and setter methods would do the job but at the cost of losing Python’s easy instance variable access.
The answer is to use a property. A property combines the ability to pass access to an instance variable through methods like getters and setters and the straightforward access to instance variables through dot notation.
To create a property, you use the property decorator with a method having the property’s name:
class Temperature:
def __init__(self):
self._temp_fahr = 0
@property
def temp(self):
return (self._temp_fahr - 32) * 5 / 9
Without a setter, such a property is read-only. To change the property, you need to add a setter:
@temp.setter
def temp(self, new_temp):
self._temp_fahr = new_temp * 9 / 5 + 32
Now, you can use standard dot notation to both get and set the property temp. Notice that the name of the method remains the same, but the decorator changes to the property name (temp in this case) plus .setter to indicate that a setter for the temp property is being defined:
The 0 in _temp_fahr is converted to centigrade before it’s returned . The 34 is converted back to Fahrenheit by the setter
.
One big advantage of Python’s ability to add properties is that you can do initial development with plain-old instance variables and then seamlessly change to properties whenever and wherever you need to without changing any client code—the access is still the same, using dot notation.
15.10. Scoping rules and namespaces for class instances
Now you have all the pieces to put together a picture of the scoping rules and namespaces for a class instance.
When you’re in a method of a class, you have direct access to the local namespace (parameters and variables declared in the method), the global namespace (functions and variables declared at the module level), and the built-in namespace (built-in functions and built-in exceptions). These three namespaces are searched in the following order: local, global, and built in (see figure 15.1).
Figure 15.1. Direct namespaces
You also have access through the self variable to our instance’s namespace (instance variables, private instance variables, and superclass instance variables), its class’s namespace (methods, class variables, private methods, and private class variables), and its superclass’s namespace (superclass methods and superclass class variables). These three namespaces are searched in the order instance, class, and then superclass (see figure 15.2).
Figure 15.2. Self variable namespaces
Private superclass instance variables, private superclass methods, and private superclass class variables can’t be accessed using self. A class is able to hide these names from its children.
The module in listing 15.3 puts these two together in one place to concretely demonstrate what can be accessed from within a method.
Listing 15.3. File cs.py
This output is considerable, so we’ll look at it in pieces. In the first part, class C's method m’s local namespace contains the parameters self (which is our instance variable) and p along with the local variable lv (all of which can be accessed directly):
>>> import cs
>>> c = cs.C()
>>> c.m()
Access local, global and built-in namespaces directly
local namespace: ['lv', 'p', 'self']
parameter: p
local variable: lv
Next, method m’s global namespace contains the module variable mv and the module function mf, (which, as described in a previous section, we can use to provide a class method functionality). There are also the classes defined in the module (the class C and the superclass SC). These can all be directly accessed:
global namespace: ['C', 'mf', '__builtins__', '__file__', '__package__',
'mv', 'SC', '__name__', '__doc__']
module variable: mv
module function (can be used like a class method in other languages): mf()
Instance C’s namespace contains instance variable iv and our superclass’s instance variable siv (which, as described in a previous section, is no different from our regular instance variable). It also has the mangled name of private instance variable __piv (which we can access through self) and the mangled name of our superclass’s private instance variable __psiv (which we can’t access):
Access instance, class, and superclass namespaces through 'self'
Instance namespace: ['_C__pcv', '_C__piv', '_C__pm', '_SC__pscv',
'_SC__psiv', '_SC__spm', '__class__', '__delattr__', '__dict__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'cv', 'iv', 'm', 'm2', 'scv', 'siv', 'sm']
instance variable: self.xi
private instance variable: self.__piv
superclass instance variable: self.siv (but use SC.siv for assignment)
Class C’s namespace contains the class variable cv and the mangled name of the private class variable __pcv: both can be accessed through self, but to assign to them we need to use class C. It also has the class’s two methods M and M2, along with the mangled names of the private method __PM (which can be accessed through self):
Class namespace: ['_C__pcv', '_C__pm', '_SC__pscv', '_SC__spm', '__class__',
'__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'cv', 'm', 'm2', 'scv', 'sm']
class variable: self.cv (but use C.cv for assignment)
method: self.m2()
class private variable: self.__pcv (but use C.__pcv for assignment)
private method: self.__pm()
Finally, superclass SC’s namespace contains superclass class variable scv (which can be accessed through self, but to assign to it we need to use the superclass SC) and superclass method SM. It also contains the mangled names of private superclass method __SPM and private superclass class variable __spcv, neither of which can be accessed through self:
Superclass namespace: ['_SC__pscv', '_SC__spm', '__class__', '__delattr__',
'__dict__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'scv', 'sm']
superclass method: self.SM()
superclass class variable: self.scv
This is a rather full example to decipher at first. You can use it as a reference or a base for your own exploration. As with most other concepts in Python, you can build a solid understanding of what is going on by playing around with a few simplified examples.
15.11. Destructors and memory management
You’ve already seen class constructors (the __init__ methods). A destructor can be defined for a class as well. But unlike in C++, creating and calling a destructor isn’t necessary to ensure that the memory used by your instance is freed. Python provides automatic memory management through a reference-counting mechanism. That is, it keeps track of the number of references to your instance; when this reaches zero, the memory used by your instance is reclaimed, and any Python objects referenced by your instance have their reference counts decremented by one. For the vast majority of your classes, you won’t need to define a destructor.
C++ destructors are sometimes used to also perform cleanup tasks such as releasing or resetting system resources unrelated to memory management. To perform these functions in Python, using context managers using the with keyword or the definition of explicit cleanup or close methods for your classes is the best way to go.
If you need to, you can also define destructor methods for your classes. Python will implicitly call a class’s destructor method __del__ just before an instance is removed upon its reference count reaching zero. You can use this as a backup to ensure that your cleanup method is called. The following simple class illustrates this:
Notice that close is written so that it can be called more than once without complaint. This is what you’ll generally want to do. Also, the __del__ function has a print expression in it. But this is just for demonstration purposes. Take the following test function:
>>> def test():
... f = SpecialFile('testfile')
... f.write('111111\n')
... f.close()
...
>>> test()
entered __del__
When the function test exits, f’s reference count goes to zero and __del__ is called. Thus, in the normal case close is called twice, which is why we want close to be able to handle this. If we forgot the f.close() at the end of test, the file would still be closed properly because we’re backed up by the call to the destructor. This also happens if we reassign to the same variable without first closing the file:
>>> f = SpecialFile('testfile')
>>> f = SpecialFile('testfile2')
entered __del__
As with the __init__ constructor, the __del__ destructor of a class’s parent class needs to be called explicitly within a class’s own destructor. Be careful when writing a destructor. If it’s called when a program is shutting down, members of its global namespace may already have been deleted. Any exception that occurs during its execution will be ignored, other than a message being sent of the occurrence to sys.stderr. Also, there’s no guarantee that destructors will be called for all still-existing instances when the Python interpreter exits. Check the entries for destructors in the Python Language Manual and the Python FAQ for more details. They will also give you hints as to what may be happening in cases where you think all references to your object should be gone but its destructor hasn’t been called.
Partly because of these issues, some people avoid using Python’s destructors other than possibly to flag an error when they’ve missed putting in an explicit call. They prefer that cleanup always be done explicitly. Sometimes they’re worth using, but only when you know the issues.
If you’re familiar with Java, you’re aware that this is what you have to do in that language. Java uses garbage collection, and its finalize methods aren’t called if this mechanism isn’t invoked (which may be never in some programs). Python’s destructor invocation is more deterministic. When the references to an object go away, it’s individually removed. On the other hand, if you have structures with cyclical references that have a __del__ method defined, they aren’t removed automatically. You have to go in and do this yourself. This is the main reason why defining your own __del__ method destructors isn’t recommended.
The following example illustrates the effect of a cyclical reference in Python and how you might break it. The purpose of the __del__ method in this example is only to indicate when an object is removed:
Because they still refer to each other, a and b aren’t removed when test1 exits . This is a memory leak. That is, each time test1 is called, it leaks two more objects. The explicit call to the cleanup method is necessary to avoid this
.
The cycle is broken in the cleanup method, not the destructor, and we only had to break it in one place. Python’s reference-counting mechanism took over from there. This approach is not only more reliable, but also more efficient, because it reduces the amount of work that the garbage collector has to do.
A more robust method of ensuring that our cleanup method is called is to use the try-finally compound statement. It takes the following form:
try:
body
finally:
cleanup_body
It ensures that cleanup_body is executed regardless of how or from where body is exited. We can easily see this by writing and executing another test function for the Circle class defined earlier:
>>> def test3(x):
... try:
... c = Circle("c", None)
... d = Circle("d", c)
... if x == 1:
... print("leaving test3 via a return")
... return
... if x == 2:
... print("leaving test3 via an exception")
... raise RuntimeError
... print("leaving test3 off the end")
... finally:
... d.cleanup()
...
>>> test3(0)
leaving test3 off the end
__del__ called on c
__del__ called on d
>>> test3(1)
leaving test3 via a return
__del__ called on c
__del__ called on d
>>> try:
... test3(2)
... except RuntimeError:
... pass
...
leaving test3 via an exception
__del__ called on c
__del__ called on d
Here, with the addition of three lines of code, we’re able to ensure that our cleanup method is called when our function is left, which in this case can be via an exception, a return statement, or returning after its last statement.
15.12. Multiple inheritance
Compiled languages place severe restrictions on the use of multiple inheritance, the ability of objects to inherit data and behavior from more than one parent class. For example, the rules for using multiple inheritance in C++ are so complex that many people avoid using it. In Java, multiple inheritance is completely disallowed, although Java does have the interface mechanism.
Python places no such restrictions on multiple inheritance. A class can inherit from any number of parent classes, in the same way it can inherit from a single parent class. In the simplest case, none of the involved classes, including those inherited indirectly through a parent class, contains instance variables or methods of the same name. In such a case, the inheriting class behaves like a synthesis of its own definitions and all of its ancestor’s definitions. For example, if class A inherits from classes B, C, and D, class B inherits from classes E and F, and class D inherits from class G (see figure 15.3), and none of these classes share method names, then an instance of class A can be used as if it were an instance of any of the classes B–G, as well as A; an instance of class B can be used as if it were an instance of class E or F, as well as class B; and an instance of class D can be used as if it were an instance of class G, as well as class D. In terms of code, the class definitions y look like this:
class E:
. . .
class F:
. . .
class G:
. . .
class D(G):
. . .
class C:
. . .
class B(E, F):
. . .
class A(B, C, D):
. . .
Figure 15.3. Inheritance hierarchy
The situation is more complex when some of the classes share method names, because Python must then decide which of the identical names is the correct one. For example, assume we wish to resolve a method invocation a.f(), on an instance a of class A, where f isn’t defined in A but is defined in all of F, C, and G. Which of the various methods will be invoked?
The answer lies in the order in which Python searches base classes when looking for a method not defined in the original class on which the method was invoked. In the simplest cases, Python looks through the base classes of the original class in left-to-right order but always looks through all of the ancestor classes of a base class before looking in the next base class. In attempting to execute a.f(), the search goes something like this:
1. Python first looks in the class of the invoking object, class A.
2. Because A doesn’t define a method f, Python starts looking in the base classes of A. The first base class of A is B, so Python starts looking in B.
3. Because B doesn’t define a method f, Python continues its search of B by looking in the base classes of B. It starts by looking in the first base class of B, class E.
4. E doesn’t define a method f and also has no base classes, so there is no more searching to be done in E. Python goes back to class B and looks in the next base class of B, class F.
Class F does contain a method f, and because it was the first method found with the given name, it’s the method used. The methods called f in classes C and G are ignored.
Of course, using internal logic like this isn’t likely to lead to the most readable or maintainable of programs. And with more complex hierarchies, other factors come into play to make sure that no class is searched twice and to support cooperative calls to super.
But this is probably a more complex hierarchy than you’d expect to see in practice. If you stick to the more standard uses of multiple inheritance, as in the creation of mixin or addin classes, you can easily keep things readable and avoid name clashes.
Some people have a strong conviction that multiple inheritance is a bad thing. It can certainly be misused, and nothing in Python forces you to use it. After being involved with a number of object-oriented project developments in industry since starting with one of the first versions of C++ in 1987, I’ve concluded that one of the biggest dangers seems to be creating inheritance hierarchies that are too deep. Multiple inheritance can at times be used to help keep this from happening. That issue is beyond the scope of this book. The example we use here only illustrates how multiple inheritance works in Python and doesn’t attempt to explain the use cases—for example, as in mixin or addin classes—for it.
15.13. Summary
This chapter has briefly presented the basics of Python object-oriented programming in a way that will make it easy for any reader familiar with OO to instantly use these features of Python. We made no attempt to make this an introduction to OOP. If you need to learn the basic concepts, refer to OOP books on the market.
As you become more experienced with Python, you’ll find you can also do deeper things than have been described here. In addition to the features described in this chapter, an aspiring Python OO programmer may also wish to use the operator-overloading features provided by special method attributes, which are described in chapter 20.
Classes and objects can be particularly useful in dealing with GUI interfaces, as you’ll see in the next chapter, which explores creating cross-platform GUI applications with Python.
Chapter 16. Graphical user interfaces
This chapter covers
This chapter, an introduction to programming GUIs in Python, will do two things. First, it will provide a look at the GUI package that comes with Python, taking into account things like its ease of use, the capabilities of the package, cross-platform portability, and so forth. Second, it will give a brief overview of what else is available for GUI programming with Python and how to find it.
The Python core language has no built-in support for GUIs. It’s a pure programming language, like C, Perl, or Pascal. As such, any support for GUIs must come from libraries external to Python, and many such libraries have been developed.
Of all the GUI packages currently available to Python programmers, Tkinter is the one commonly used. Tkinter is an object-oriented layer on top of the Tcl/Tk graphics libraries. The code that drives it is stable, efficient, and well supported. Although it has been knocked for its somewhat plain appearance, in Python 3.1 Tkinter adds support for the new ttk widgets, which greatly improve its look and feel. I feel that it’s a good choice for developing GUIs in Python for several reasons:
If you decide that Tkinter isn’t for you, or you already have enough experience with Tkinter to know this, look at the section near the end of this chapter, which covers other possible GUI solutions.
Tk vs. Tkinter
In this section, we’re talking about both the Tk GUI extension to the Tcl language and Tkinter, the Python library that uses Tk and wraps the Tk interface in Python classes. In general, we’ll refer to Tkinter, because that’s all that a Python programmer will usually touch directly. Sometimes we’ll refer to Tk directly, particularly when talking about general features of the underlying Tk library.
Tkinter contains a huge number of features. The following sections aren’t a lesson on how to use Tkinter but more of an introductory overview, primarily aimed at readers who aren’t familiar with Tkinter and want to know if it’s worth their while to look further into it. Remember, for every feature I mention, there are dozens more that I don’t. The Tk command reference alone is almost 300 pages, and that doesn’t cover any of the basic concepts.
16.1. Installing Tkinter
If you’re using IDLE, you already have Tkinter installed. On Windows and Mac OS X, Tkinter comes as part of the Python distribution. Some Linux distributions don’t come with Tkinter by default, but they usually have Tkinter packages available. On Ubuntu Linux, for example, installing the IDLE package also installs Tkinter. If you don’t have Tkinter installed, or are having problems making it run, go to the Python home page and search for “tkinter” to find the link to the Tkinter page, which contains documentation, tutorials, troubleshooting information, and instructions on how download the latest version for your platform. Don’t be confused by the fact that you’ll be installing something probably called Tcl/Tk, followed by some version number. Tcl is a scripting language, and Tk is a GUI extension. Python uses Tcl to access Tk, but in a transparent fashion; you’ll never need to worry about the Tcl aspect of the package.
16.2. Starting Tk and using Tkinter
After you’ve installed Tkinter on your system, check to make sure everything is working properly. Start up Python and type
from tkinter import *
If you receive another Python command prompt >>> and no errors, then everything is working okay, and Tk has been started automatically by the importation of Tkinter.
If you’d like to see a brief example of Tkinter in action, the following code creates a dialog box like the one in figure 16.1:
import sys
win = Tk()
button = Button(win, text="Goodbye", command=sys.exit)
button.pack()
mainloop()
Figure 16.1. A minimal Tkinter application
Note that if you’re in IDLE, you may need to omit the last line. See the sidebar on mainloop() and IDLE.
Note about mainloop() and IDLE
If you want to run the Tkinter examples in this chapter from within IDLE, you need to be aware that IDLE has two modes: one that allows modules to be run in subprocesses and one that doesn’t. If your version of IDLE runs in the subprocess mode, which is the default on Windows and Mac OS X, you can run the code in this chapter as is, with the mainloop() line included. You should also leave that line in if you’re using the command line or running from the emacs mode.
The no-subprocess mode can be recognized by the ==== No Subprocess ==== message that appears in the shell window when IDLE starts; this is the default in some Linux distributions, such as Ubuntu 9.10. If you run IDLE from a command line, the no-subprocess mode is triggered by adding the –n parameter. If IDLE is running in no-subprocess mode, omit the final line containing mainloop(), or put a # in front of it to make it a comment. In no-subprocess mode, IDLE is already running a mainloop under Tk, and running a second mainloop may cause the whole IDLE process to hang.
When you click the Goodbye button, the sys.exit command is executed, and Python quits. This window is only a little larger than the button it contains and may appear behind another window. But as long as you didn’t get any error messages, it should be there.
16.3. Principles of Tkinter
The Tkinter GUI package is based on a small number of basic principles and ideas, and this is the main reason it’s relatively easy to learn and use. Although it certainly helps to have some previous knowledge of GUI-based programming, this isn’t strictly necessary. Tkinter is a relatively easy way for you to learn GUI and event-driven programming.
16.3.1. Widgets
The first basic idea behind Tkinter is the concept of a widget, which is short for window gadget. A widget is a data structure that also has a visible, onscreen representation. When the program changes the internal data structure of the widget, that change is automatically displayed on the screen. Various user actions on the visible representation of the widget (mouse clicks and so forth) can, in turn, cause internal changes or actions within the widget’s data structure.
Tkinter is a collection of widget definitions, together with commands for operating on them, and a few extra commands that don’t apply to any specific widget but that are still relevant to GUI programming. In Python, each different type of widget is represented by a different Python class. A Button widget is of the Button class, a Label widget is of the Label class, and so forth.
This direct mapping between Tkinter widget types and Python classes makes using widgets in a Python program extremely simple. For example, a Python program that creates and uses a Button widget and a Label widget looks something like this:
from tkinter import *
...
my_button = Button(...optional arguments...)
my_label = Label(...optional arguments...)
...
This style of mapping Python classes to widgets is common in Python GUI environments, although the exact names of the widgets and their parameters will naturally vary.
16.3.2. Named attributes
The second basic idea behind Tkinter is the availability and use of named attributes to fine-tune widget behavior. To understand why this is necessary and see how useful it is, let’s look at an apparently simple task—creating a button.
The simplest way to do this is to specify a class, say AButton, with a one-argument object constructor, whose single argument is a string that will become the name displayed on the button. Creating a button looks like this:
my_button = AButton(name)
But this provides no way to associate a command with the button—that is, the name of a function that should be executed when the user clicks the button. To do this, change AButton to have a two-argument constructor, with the command as the second argument:
my_button = AButton(name, command)
Sometimes, though, we’ll want our button to stand out; maybe instead of black text on a gray background, we want red text on a green background. This necessitates giving even more arguments to the AButton constructor:
my_button = AButton(name, command, foreground_color,
background_color)
Even this isn’t enough. We may want to have buttons with thicker borders, or buttons with specific heights or widths, or buttons that contain a small picture instead of text. We could easily require an AButton command with 20 different arguments, with the end result being that the AButton command would be practically unusable and wouldn’t give us the control we want.
Tkinter solves this problem by specifying almost all properties of widgets as named attributes, values that can optionally be given by name when the widget is created and that can be accessed or modified by that same name later in the life of the widget. This works well with Python’s named parameter passing, making it easy to create widgets with the desired attributes. For example, the name of the attribute that defines the string displayed in a button is text. The Python command to create a button that displays the string "Hello!" is
my_button = Button(text="Hello!")
Most attributes of a widget have a default value, which is used when you don’t supply a value for that attribute. Generally speaking, these defaults make sense for the common case, and most of the time most named attributes can be ignored. For example, the named attribute that controls the color of the text in a button is called foreground, and its default value is the string "black", which causes the button text to display as black. To override this default, give a specific value for the foreground attribute:
my_button = Button(text="Hello!", foreground="red")
Named attributes are used extensively throughout the Tkinter widget set, and many attributes can be used with almost all widgets. The use of named attributes greatly simplifies the process of GUI programming and makes code more readable.
16.3.3. Geometry management and widget placement
The final basic aspect of Tkinter that you need to understand is the idea of geometry management, meaning how widgets are placed on the screen. It isn’t obvious in the previous example, but typing in a line of Python code like so
my_button = Button(text="Alright!")
isn’t enough to display the button onscreen. Tk doesn’t know where you want the button to show up, and until it’s told the desired position, it will keep the button hidden. Deciding where to display the button onscreen is a function of the window hierarchy and associated Tk geometry managers.
To understand the idea of the Tk window hierarchy, you need to know about two special Tk widget classes, called Toplevel and Frame. Both Toplevel widgets and Frame widgets may contain other Tk widgets (including other frames) and are the basic building blocks for constructing complex GUIs. A Frame is a container for other widgets and can be either the main window of an application or contained in another frame. Nesting frames within frames can be useful in laying out and grouping widgets.
Tk uses a Toplevel widget to represent a complete window in a GUI, complete with title bar, close and zooming buttons, and so forth. A Toplevel widget is useful for custom dialog boxes and other situations where you want a window that’s independent from the main Frame.
The subwidgets contained in any particular frame are arranged for display according to one of Tkinter’s three built-in geometry managers. These managers permit you to specify the arrangement of the subwidgets in various ways, ranging from giving exact coordinates for each widget within a window to giving only relative placement, leaving the precise sizing of each widget to the geometry manager.
For the purposes of talking about Tkinter in this chapter, we’ll refer to only one geometry manager: the grid manager, which is the most powerful. grid works by placing all widgets in an implicit grid, similar to a spreadsheet layout. If you start using Tkinter, you’ll want to learn the pack and place geometry managers as well, which you can use to specify that widgets should be placed relative to one another (pack), or in absolute locations in a window (place).
16.4. A simple Tkinter application
Let’s start with an example that introduces all of the basic Tkinter concepts: window hierarchies, geometry management, Tkinter attributes, and a couple of the most basic widgets. The example is a simple one. When run, it produces a window that resembles figure 16.2. It may look different on your machine, because Tk provides a native look and feel for whatever operating system it’s running on. This example was produced under the Windows XP operating system.
Figure 16.2. A simple application
Clicking the Increment button adds 1 to the number shown in the Count field, and clicking the Quit button quits the application.
Listing 16.1 contains the code to do this.
Listing 16.1. File tk_count.py
The example shows the basic principles of Tkinter-based programming:
16.5. Creating widgets
You create widgets in Python by instantiating an object of that widget’s class, using the name of the type of widget being created. Button and Label widgets were created in the previous example, but you can also create Menu, Scrollbar, Listbox, Text, and many other types.
The widget-creation commands all follow the same general form. They all have one mandatory argument, the parent window (or parent widget), followed by zero or more optional named widget attributes, which determine the precise appearance and behavior of the new widget. Each creation command returns the new widget as a result. You’ll usually want to store this new widget somewhere so that you can modify it later if necessary. A line in a Python program that creates a widget usually looks something like this:
new_widget = WidgetCreationCommand(parent, attribute1=value1,
attribute2=value2, . . .)
The parent window of a widget called w is the window (or widget) that contains w.[1] It’s important to define a parent for several reasons. First, widgets are always displayed inside and relative to their parent window. Second, Tk provides a powerful event mechanism (which we don’t have space to discuss), and a widget may pass events to its parent if it can’t handle them itself. Finally, Tk can have widgets that act as windows, in that they themselves are the parent window for (and contain) other widgets, and the widget-creation commands need to be able to set up this sort of relationship.
1 This is an oversimplification. The parent window of a widget is generally the widget that contains that widget. But this isn’t strictly necessary.
All the other optional arguments in a widget-creation command define widget attributes and control different aspects of the widget. Some widget attributes are common to several different widget types (for example, the text attribute applies to all types of simple widgets that can display a label or a line of text of some sort), whereas other attributes are unique to certain widgets. One characteristic that makes Tk special, compared to other GUI packages, is that it gives you a great deal of control over your widgets. There are many attributes for each widget. To give you an idea of this, here’s a program that uses some of the attributes that control the appearance of widgets. Figure 16.3 is the resulting window (in black and white, unfortunately):
from tkinter import *
main_window = Tk()
label = Label(main_window, text="Hello", background='white',
foreground='red', font='Times 20',
relief='groove', borderwidth=3)
label.grid(row=0, column=0)
mainloop()
Figure 16.3. A widget window
Most attributes of widgets can be set at creation in this way.
16.6. Widget placement
Creating a widget doesn’t automatically draw it on the screen. Before this can be done, Tk needs to know where the widget should be drawn. The grid command was used in the previous example and will be discussed in detail.
Tk is more sophisticated in the way it handles widget placement than most GUI packages. Under Windows, the standard way of setting the locations of widgets is to specify an absolute position in their parent window. This can also be done in Tkinter (using the place rather than the grid command) but usually isn’t, because this technique isn’t very flexible. For instance, if you set up a window for use on a monitor that has 640×480 resolution, and a user uses it on a monitor that has 1600×1200 resolution, the window uses only a small amount of the available screen space and can’t be resized (unless you write the code to resize the window). This is a common problem with many programs.
Instead, Tkinter usually makes use of the notion of relative placement, where widgets are placed in such a manner that their positions relative to one another are maintained no matter what size the enclosing window happens to be. This can get complex. For example, you can specify that widget A should be to the left of widget B, and that when the enclosing window is resized, widget A should grow to take advantage of the extra space, but widget B shouldn’t. We won’t get into all of the possibilities but will attempt to present enough of the features of Tk widget placement to illustrate the ease and power of the methods it uses.
The grid command places widgets in a window by considering a window as an infinite grid of cells. You place a widget into this grid by specifying row and column arguments to the grid command, which tell it in which cell to place the widget. The rows and columns will expand as needed to display the widgets they contain, and any rows or columns that don’t display any widgets aren’t displayed.
As a simple example, we’ll put two buttons in the corners of a 2?×?2 grid:
from tkinter import *
win = Tk()
button1 = Button(win, text="one")
button2 = Button(win, text="two")
button1.grid(row=0, column=0)
button2.grid(row=1, column=1)
mainloop()
When run, this program produces a window that looks like figure 16.4.
Figure 16.4. A two-button window
The cells of the grid are automatically sized large enough to display what they contain, although you can override this and place constraints on the maximum sizes of the cells.
This makes it easy to set up a text window with scrollbars and, with the proper placement (see figure 16.5), treat the window as a 2×?2 grid into which the Text and Scrollbar widgets will be placed.
Figure 16.5. Grid usage
The program to do this is shown in listing 16.2.
Listing 16.2. File tk_grid.py
from tkinter import *
main = Tk()
main.columnconfigure(0, weight=1)
main.rowconfigure(0, weight=1)
text = Text(main)
text.grid(row=0, column=0, sticky='nesw')
vertical_scroller = Scrollbar(main, orient='vertical')
vertical_scroller.grid(row=0, column=1, sticky='ns')
horizontal_scroller = Scrollbar(main, orient='horizontal')
horizontal_scroller.grid(row=1, column=0, sticky='ew')
mainloop()
The commands in the code ensure that any extra space given to the grid as a result of resizing the top-level window is allocated to column 0, row 0—that is, to the Text widget. The resulting window is shown in figure 16.6.
Figure 16.6. A text window
In addition to the three grid method invocations that place the text box and two scrollbars in their appropriate cells, this code reveals new aspects of Tk, which build on the fundamentals of Tk to provide further control over the user interface:
That’s a lot of GUI detail specification in a small amount of space. But that’s exactly the point of Tk—to enable you to rapidly specify your GUI, right down to the details. The fact that settings are accomplished through easy-to-remember keywords, rather than a multitude of binary flags, doesn’t hurt either.
16.7. Using classes to manage Tkinter applications
One problem with creating Tkinter applications as we have so far is that they quickly become hard to read and maintain as you add more widgets and code. Using the OOP principles introduced in the previous chapter and making an application class that inherits from Frame can make your code much more organized and easy to read and maintain. Listing 16.3 shows the previous counter application, refactored as a class.
Listing 16.3. File tk_count_oop.py
This code is no longer than the previous version, but it’s much better organized and easier to read. Basic initialization, widget setup, and counter incrementing are now much easier to pick out; and because increment_counter is now an instance variable, we no longer need to make it global. Even though you almost certainly won’t want more than one instance of Application at a time, creating the class is worth it because of the improved organization (and readability and maintainability) it gives your code. Use this pattern for your Tkinter applications—it will more than pay off.
16.8. What else can Tkinter do?
The previous examples don’t come close to exploring the capabilities of Tkinter, but they should give you some idea of what it feels like. There’s no way in the space of one chapter to illustrate by example all the facilities Tk provides. The next few sections will cover the remainder of Tkinter’s abilities on a much higher level. If you’re familiar with GUI programming, you’ll be at home with most of what is discussed.
If you aren’t familiar with GUI programming, the examples so far are a good starting point for learning by experimentation. They should give you grounding in Tk’s basic philosophy and concepts. You can find further detailed information linked on the Tkinter page on the Python website. Also be sure to check out John Grayson’s comprehensive book Python and Tkinter Programming (Manning, 2000).
16.8.1. Event handling
Event handling—how a GUI library handles user actions such as mouse movements or clicks or keypresses—is a critical part of GUI programming. An awkward event-handling scheme can make your GUI development a real nightmare, whereas a good event-handling mechanism can make your task far more pleasant. Tk event handling, although not perfect, is up near the top. One of the big questions with event handling is event direction—if you press a key on the keyboard, which text entry box or text widget (or other widget) of the many in your interface is that directed to? Many GUI libraries require a complete specification of how events are to be directed; you must say, “If this widget can’t handle a mouse click event, it should pass that event over to this other widget, and so on.” You can do this in Tk, but you aren’t required to. Tk uses the hierarchical structure of your user interface, together with various commonsense rules, to try to automatically direct events to the appropriate widget. Most of the time, it gets it right.
Tk also provides a rich set of events to choose from. For example, look at the problem of changing the mouse cursor to a paintbrush, as the mouse enters the main paint window of a painting program. One way to do this would be to continually (explicitly) monitor the position of the mouse relative to the main paint window and manually adjust the cursor as necessary. This would be necessary if only basic mouse-related events, such as movements, were reported by and to Tk. But Tk provides a higher-level event for all windows, subwindows, and widgets, called the <Enter> event. An <Enter> event for a window or widget is generated every time the mouse cursor enters that window or widget (and a corresponding <Leave> event is generated when the mouse leaves). A built-in bind command makes it easy to bind <Enter> events for a particular window, such as a painting window, to specific functions, such as a function to change the mouse cursor to a paintbrush.
If the built-in set of Tk events isn’t enough, you can define or generate your own virtual events. These are events defined by you, just as you can define application-specific functions. For example, you might wish to define the virtual event called <<Copy>> and set it to be equivalent to the keyboard event generated by pressing Ctrl-C. If you ever migrated your program to a platform or language (such as Chinese) where Ctrl-C wasn’t an appropriate key binding for a <<Copy>> event, you could redefine <<Copy>> in terms of another keystroke—but all references to <<Copy>> in your code would remain valid, without needing any changes. Generating virtual events is also a convenient way to distribute events widely throughout your application without worrying about plumbing details. For example, you could define a button called MyButton, such that clicking this button would generate a <<MyButtonPressed>> event. Any other widgets could then be instructed to listen for <<MyButtonPressed>> events without referencing the original button—indeed, without knowing or caring that a button was the source of the event.
16.8.2. Canvas and text widgets
Two widgets in the Tk widget set deserve special mention, because they provide abilities reflecting literally years of implementation effort. These are the Canvas and Text widgets, which respectively provide high-level manipulation capabilities for object-oriented graphics and for text. Both widget types are an order of magnitude more advanced than analogs found in most other GUI libraries.
The Text widget supports all the basic functionality necessary for a basic WYSIWYG word processor, including font families, styles, and sizes; a rich set of default key bindings; automatic controllable line wrapping; settable tabs; the ability to embed images or other widgets onto the text drawing surface; and so forth. In addition, you can tag text within the widget with any number of user-chosen strings and then manipulate the text via those tags. You could, for example, define a tag called bold to be applied to all text in your widget that should be displayed in boldface. A single line of code would then let you change the display style for all bold text from Helvetica 10 pt. bold to Times Roman 14 pt. bold, or, if you prefer, to red text on a green background with a 2-pixel-wide raised border. You can easily define sections of text that highlight as the mouse cursor passes over them and that cause some action when they’re clicked, mimicking the effect of buttons or hypertext. Many other abilities also come with the Text widget.
The Canvas widget is similar, particularly with respect to the use of tags. You can associate arbitrary tags with an object and manipulate as a whole all objects on the canvas that have a given tag. For example, it’s an easy matter to define a complex shape by drawing a series of lines, curves, and other shapes, all with the same programmer-defined tag, and then to move that shape around the canvas as a unit, by instructing the Canvas widget to move all simple shapes having the given tag. It’s also easy to use shapes as buttons, to set various aspects of their appearance (such as foreground and background colors and line width), to define layering of shapes atop one another, and to perform many other advanced tasks that would take months of effort if undertaken from scratch.
16.9. Alternatives to Tkinter
Tkinter may not satisfy your needs. It isn’t particularly fast and isn’t a good candidate for games or for image-manipulation programs. Its high-level approach means that particularly unusual or specialized user interfaces may be difficult to implement. Or, you may not have the time to learn Tkinter. Fortunately, alternatives are available.
Three cross-platform windowing/GUI libraries stand out, being available for at least Windows, Mac OS X, and Linux/UNIX. The first is the Qt package, which forms the basis for the well-done KDE desktop environment effort, a large project geared toward producing an integrated and comprehensive desktop environment for Linux/UNIX and compatible operating systems. QT is a rich and powerful GUI framework and also has QT Designer, a capable GUI builder. You can find out more about Qt at http://qt.nokia.com. Also, www.kde.org will give you a chance to browse screenshots of many applications built using KDE.
The next cross-platform GUI option is GTK. This is the GIMP Toolkit and is the basis for the GNOME desktop environment project, which is comparable to KDE. GTK is similar to Qt in scope and capability, and it has also been ported from Linux/UNIX to work on Windows and Mac OS X. Another interesting option with GTK is Glade, a graphical tool to build GUI interfaces for GTK. Glade saves its files in XML format, which can be used directly with a library called libglade or used to generate the appropriate code. A good starting point for finding out about GTK is the GTK website, at www.gtk.org.
Finally, there is the wxPython toolkit, based on the wxWidgets framework. wxWidgets was created to be portable across Windows and UNIX platforms and has since been extended to Mac OS X and other platforms. wxPython is a strong framework, offering a native look and feel on different platforms, and is widely used. Visit www.wxpython.org to find out more about wxPython.
One thing to keep in mind about all of these GUI options is that they require you to install both the GUI libraries themselves and the Python libraries to use them. This means more work on the user end of things and can lead to issues with making sure the right versions of all the dependencies are installed. On the other hand, developers in many situations believe the tradeoff is more than worth it.
Many other GUI libraries are available. Good descriptions and evaluations are available on the Python wiki’s Gui Programming page, which you can find by visiting the main python.org website and searching for “gui programming.”
16.10. Summary
Python ships with a comprehensive and well-thought-out interface (a Python module) called Tkinter, which allows access to the freely available and powerful Tk user interface library. Tkinter is a handy framework for a scripting-style language, in that it allows rapid interface development, interactive execution, and runtime control over all aspects of the interface, with powerful abilities. It suffers some of the same drawbacks of scripting languages, particularly execution overhead that may be too high for graphics-intense applications, and inflexibility in the UI model it uses.
There are many alternatives. If you’re programming only for the Windows environment, you can take advantage of your MS UI library knowledge through direct calls to the Microsoft APIs. Qt, GTK, and wxPython are all excellent cross-platform choices.
Part 3. Advanced language features
The previous chapters have been a survey of the basic features of Python: what 80 percent of programmers will use 80 percent of the time. What follows is a brief look at some more advanced features, which you may not use every day but which are handy when you need them.
Chapter 17. Regular expressions
This chapter covers
In some sense, we shouldn’t discuss regular expressions in this book at all. They’re implemented by a single Python module and are advanced enough that they don’t even come as part of the standard library in languages like C or Java. But if you’re using Python, you’re probably doing text parsing; and if you’re doing that, then regular expressions are too useful to be ignored. If you use Perl, Tcl, or UNIX, you may be familiar with regular expressions; if not, this chapter will go into them in some detail.
17.1. What is a regular expression?
A regular expression (RE) is a way of recognizing and often extracting data from certain patterns of text. A regular expression that recognizes a piece of text or a string is said to match that text or string. An RE is defined by a string in which certain of the characters (the so-called metacharacters) can have a special meaning, which enables a single RE to match many different specific strings..
It’s easier to understand this through example than through explanation. Here’s a program using a regular expression, which counts how many lines in a text file contain the word hello. A line that contains hello more than once will be counted only once:
import re
regexp = re.compile("hello")
count = 0
file = open("textfile", 'r')
for line in file.readlines():
if regexp.search(line):
count = count + 1
file.close()
print(count)
The program starts by importing the Python regular expression module, called re. It then takes the text string "hello" as a textual regular expression and compiles it into a compiled regular expression, using the re.compile function. This isn’t strictly necessary, but compiled regular expressions can significantly increase a program’s speed, so they’re almost always used in programs that process large amounts of text.
What can the regular expression compiled from "hello" be used for? You can use it to recognize other instances of the word "hello" within another string; in other words, you can use it to determine whether another string contains "hello" as a substring. This is accomplished by the search method, which returns None if the regular expression isn’t found in the string argument; Python interprets None as false in a Boolean context. If the regular expression is found in the string, then Python returns a special object that you can use to determine various things about the match (such as where in the string it occurred). We’ll discuss this later.
17.2. Regular expressions with special characters
The previous example has a small flaw—it counts how many lines contain "hello" but ignores lines that contain "Hello" because it doesn’t take capitalization into account.
One way to solve this would be to use two regular expressions, one for "hello" and one for "Hello", and test each of these REs against every line. A better way is to use the more advanced features of regular expressions. For the second line in the program, substitute
regexp = re.compile("hello|Hello")
This regular expression uses the vertical bar special character |. A special character is a character in a regular expression that isn’t interpreted as itself—it has some special meaning. | means or, so the regular expression matches "hello" or "Hello".
Another way of doing this is to use
regexp = re.compile("(h|H)ello")
In addition to using |, this regular expression uses the parentheses special characters to group things, which in this case means that the | only chooses between a small or capital H. The resulting regular expression matches either an h or an H, followed by ello.
Another way of performing the match is
regexp = re.compile("[hH]ello")
The special characters [ and ] take a string of characters between them and match any single character in that string. There’s a special shorthand to denote ranges of characters in [ and ]; [a-z] will match a single character between a and z, [0-9A-Z] will match any digit or any uppercase character, and so forth. Sometimes you may want to include a real hyphen in the [], in which case you should put it as the first character to avoid defining a range; [-012] will match a hyphen, or a 0 or a 1 or a 2, and nothing else.
Quite a few special characters are available in Python regular expressions, and describing all of the subtleties of using them in regular expressions is beyond the scope of this book. A complete list of the special characters available in Python regular expressions, as well as descriptions of what they mean, is given in the appendix at the end of this book. For the remainder of this chapter, we’ll describe the special characters we use as they appear.
17.3. Regular expressions and raw strings
The functions that compile REs, or search for matches to REs, understand that certain character sequences in strings have special meanings in the context of regular expressions. For example, RE functions understand that \n represents a newline character. But if you use normal Python strings as regular expressions, the RE functions will typically never see such special sequences, because many of these sequences also possess a special meaning in normal strings. \n, for example, also means newline in the context of a normal Python string, and Python will automatically replace the string sequence \n with a newline character before the RE function ever sees that sequence. The RE function, as a result, will compile strings with embedded newline characters—not with embedded -\n sequences.
In the case of \n, this makes no difference because RE functions interpret a newline character as exactly that and do the expected thing—they attempt to match it with another newline character in the text being searched. Let’s look at another special sequence, \\, which represents a single backslash to REs. Assume that we wish to search some text for an occurrence of the string "\ten". Because we know that we have to represent a backslash as a double backslash, we might try
regexp = re.compile("\\ten")
This will compile without complaining, but it’s wrong. The problem is that \\ also means a single backslash in Python strings. Before re.compile is invoked, Python interprets the string we typed as meaning \ten, which is what is passed to re.compile. In the context of regular expressions, \t means tab, so our compiled regular expression searches for a tab character followed by the two characters en.
To fix this while using regular Python strings, we need four backslashes. Python interprets the first two backslashes as a special sequence representing a single backslash, and likewise for the second pair of backslashes, resulting in two actual backslashes in the Python string. That string is then passed in to re.compile, which interprets the two actual backslashes as an RE special sequence representing a single backslash. Our code looks like this:
regexp = re.compile("\\\\ten")
That seems confusing, and it’s why Python has a way of defining strings, called raw strings.
17.3.1. Raw strings to the rescue
A raw string looks similar to a normal string, except that it has a leading r character immediately preceding the initial quotation mark of the string. Here are some raw strings:
r"Hello"
r"""\tTo be\n\tor not to be"""
r'Goodbye'
r'''12345'''
As you can see, you can use raw strings with either the single or double quotation marks and with the regular or triple-quoting convention. You can also use a leading R instead of r if you wish. No matter how you do it, raw string notation can be taken as an instruction to Python saying, Don’t process special sequences in this string. In the previous examples, all the raw strings are equivalent to their normal string counterparts except the second example, in which the \t and \n sequences aren’t interpreted as tabs or newlines but are left as two-string character sequences beginning with a backslash.
Raw strings aren’t a different type of string. They’re a different way of defining strings. It’s easy to see what’s happening by running a few examples interactively:
>>> r"Hello" == "Hello"
True
>>> r"\the" == "\\the"
True
>>> r"\the" == "\the"
False
>>> print(r"\the")
\the
>>> print("\the")
he
Using raw strings with regular expressions means you don’t need to worry about any funny interactions between string special sequences and regular expression special sequences. You use the regular expression special sequences. The previous RE example then becomes
regexp = re.compile(r"\\ten")
which works as expected. The compiled RE looks for a single backslash followed by the letters ten.
You should get into the habit of using raw strings whenever defining REs, and we’ll do so for the remainder of this chapter.
17.4. Extracting matched text from strings
One of the most common uses of regular expressions is to perform simple pattern-based parsing on text. This is something you should know how to do, and it’s also a good way to learn more regular expression special characters.
Assume, for example, that we have a list of people and phone numbers in a text file. Each line of the file will look like this
surname, firstname middlename: phonenumber
with a surname, followed by a comma and space, followed by a first name, followed by a space, followed by a middle name, followed by colon and a space, followed by a phone number.
But to make things complicated, the middle name may or may not exist, and the phone number may or may not have an area code. It might be 800-123-4567, or it might be 123-4567. You could write code to explicitly parse data out from such a line, but it would be a tedious and error-prone job. Regular expressions provide a simpler answer.
We’ll start by coming up with a regular expression that will match lines of the given form. The next few paragraphs will throw quite a few special characters at you. Don’t worry if you don’t get them all on the first read—as long as you understand the gist of things, that’s all right.
For simplicity’s sake, let’s assume for right now that that first names, surnames, and middle names consist of letters and possibly a hyphen. We can use the [] special characters defined in the previous section to define a pattern that defines only name characters:
[-a-zA-z]
This pattern will match a single hyphen, or a single lowercase letter, or a single uppercase letter.
To match a full name (like McDonald), we need to repeat this pattern. The + metacharacter repeats whatever comes before it one or more times as necessary to match the string being processed. So, the pattern
[-a-zA-Z]+
will match a single name, like Kenneth or McDonald or Perkin-Elmer. It will also match some strings that aren’t names, like — or -a-b-c-, but that’s all right for our purposes.
Now, what about the phone number? The special sequence \d matches any digit, and a hyphen outside of [] is a normal hyphen. A good pattern to match the phone number is
\d\d\d-\d\d\d-\d\d\d\d
That’s three digits, followed by a hyphen, followed by three digits, followed by a hyphen, followed by four digits. This will match only phone numbers with an area code, and our list may contain numbers that don’t have one. The best solution is to enclose the area code part of the pattern in (), group it, and then follow that group with a ? special character, which says that the thing coming immediately before the ? is optional:
(\d\d\d-)?\d\d\d-\d\d\d\d
This pattern will match a phone number that may or may not contain an area code. We can use the same sort of trick to account for the fact that some of the people in our list have their middle name included, and some don’t. (To do this, make the middle name optional using grouping and the ? special character.)
Commas, colons, and spaces don’t have any special meaning in regular expressions (they mean themselves). Putting everything together, we come up with a pattern that looks like this:
[-a-zA-Z]+, [-a-zA-Z]+( [-a-zA-Z]+)?: (\d\d\d-)?\d\d\d-\d\d\d\d
A real pattern would probably be a bit more complex, because we wouldn’t assume that there is exactly one space after the comma, exactly one space after the first and middle names, and exactly one space after the colon. But that’s easy to add later.
The problem is that, whereas the above pattern will let us check to see if a line has the anticipated format, we can’t extract any data yet. All we can do is write a program like this:
Notice that we have split up our regular expression pattern using the fact that Python will implicitly concatenate any set of strings separated by whitespace. As your pattern grows, this can be a great aid in keeping it maintainable and understandable. It also solves the problem with the line length possibly increasing beyond the right edge of the screen.
Fortunately, you can use regular expressions to extract data from patterns, as well as to check to see if the patterns exist. The first part of doing this is to group each subpattern corresponding to a piece of data you wish to extract using the () special characters and then give each subpattern a unique name with the special sequence ?P<name>, like this:
(?P<last>[-a-zA-Z]+), (?P<first>[-a-zA-Z]+)( (?P<middle>([-a-zA-Z]+)))?:
(?P<phone>(\d\d\d-)?\d\d\d-\d\d\d\d)
(Please note you should enter these lines as a single line with no line breaks. Due to space constraints, we couldn’t represent it here in that manner.)
There’s an obvious point of confusion here: The question marks in ?P<...> and the question mark special characters that say the middle name and area code are optional have nothing to do with one another. It’s an unfortunate semicoincidence that they happen to be the same character.
Now that we have named the elements of the pattern, we can extract them as matches are made, by using the group method. This is possible because when the search function returns a successful match, it doesn’t just return a truth value; it returns a data structure that records what was matched. We can write a simple program to extract names and phone numbers from our list and print them right out again as follows:
There are some points of interest here:
17.5. Substituting text with regular expressions
In addition to extracting strings from text, you can use Python’s regular expression module to find strings in text and substitute other strings in place of those that were found. You accomplish this using the regular substitution method sub. The following example replaces instances of "the the" (presumably a typo) with single instances of "the":
>>> import re
>>> string = "If the the problem is textual, use the the re module"
>>> pattern = r"the the"
>>> regexp = re.compile(pattern)
>>> regexp.sub("the", string)
'If the problem is textual, use the re module'
The sub method uses the invoking regular expression (regexp, in this case) to scan its second argument (string, in the example) and produces a new string by replacing all matching substrings with the value of the first argument ("the", in this example).
But what if you want to replace the matched substrings with new ones that reflect the value of those that matched? This is where the elegance of Python comes into play. The first argument to sub—the replacement substring, "the" in the example—doesn’t have to be a string at all. Instead, it can be a function, and if it’s a function, Python calls it with the current match object and lets that function compute and return a replacement string.
To see this in action, we’ll build an example that will take a string containing integer values (no decimal point or decimal part) and return a string with the same numerical values but as floating numbers (with a trailing decimal point and zero):
>>> import re
>>> int_string = "1 2 3 4 5"
>>> def int_match_to_float(match_obj):
... return(match_obj.group('num') + ".0")
...
>>> pattern = r"(?P<num>[0-9]+)"
>>> regexp = re.compile(pattern)
>>> regexp.sub(int_match_to_float, int_string)
'1.0 2.0 3.0 4.0 5.0'
In this case, the pattern looks for a number consisting of one or more digits (the [0-9]+ part). But it’s also given a name (the ?P<num>... part) so that the replacement string function can extract any matched substring by referring to that name. The sub method then scans down the argument string "1 2 3 4 5", looking for anything that matches [0-9]+. When sub finds a substring that matches, it makes a match object defining exactly which substring has matched the pattern, and it calls the int_match_to_float function with that match object as the sole argument. int_match_to_float uses group to extract the matching substring from the match object (by referring to the group name num) and produces a new string by concatenating the matched substring with a ".0". sub returns the new string and incorporates it as a substring into the overall result. Finally, sub starts scanning again right after the place where it found the last matching substring, and it keeps going like that until it can’t find any more matching substrings.
17.6. Summary
I wish I could say I have provided a reasonably comprehensive overview of the regular expression abilities of Python. I haven’t—not by a long shot. I’ve attempted to give a good introduction to the topic and to give a reasonable description of the most important of the regular expression facilities in Python. I’ve skipped many of the regular expression special characters, but you can find a complete list in the Python documentation. I’ve talked about the search and sub methods but omitted many other methods that can be used to split strings, extract more information from match objects, look for the positions of substrings in the main argument string, and precisely control the iteration of a regular expression search over an argument string. I’ve mentioned the \d special sequence, which can be used to indicate a digit character, but there are many other special sequences—they’re listed in the documentation. And I’ve failed to mention regular expression flags, which you can use to control some of the more esoteric aspects of how extremely sophisticated matches are carried out.
If you do a lot of text processing and searching, I’d strongly suggest learning as much about regular expressions as possible. Start by becoming familiar with the features described in this chapter, and delve into the additional features described in the documentation as you become more comfortable with regular expressions.
In addition to the section on regular expressions in the Python Library Reference Manual, you can find an excellent tutorial written by Andrew Kuchling at the Python website.
Chapter 18. Packages
This chapter covers
Modules make reusing small chunks of code easy. The problem comes when the project grows and the code you want to reload outgrows, either physically or logically, what would fit into a single file. If having one giant module file is an unsatisfactory solution, having a host of little unconnected modules isn’t much better. The answer to this problem is to combine related modules into a package.
18.1. What is a package?
A module is a file containing code. A module defines a group of usually related Python functions or other objects. The name of the module is derived from the name of the file.
When you understand modules, packages are easy, because a package is a directory containing code and possibly further subdirectories. A package contains a group of usually related code files (modules). The name of the package is derived from the name of the main package directory.
Packages are a natural extension of the module concept and are designed to handle very large projects. Just as modules group related functions, classes, and variables, packages group related modules.
18.2. A first example
To see how this might work in practice, let’s sketch a design layout for a type of project that by nature is very large—a generalized mathematics package, along the lines of Mathematica, Maple, or MATLAB. Maple, for example, consists of thousands of files, and some sort of hierarchical structure is vital to keeping such a project ordered. We’ll call our project as a whole mathproj.
We can organize such a project in many ways, but a reasonable design splits the project into two parts: ui, consisting of the user interface elements, and comp, the computational elements. Within comp, it may make sense to further segment the computational aspect into symbolic (real and complex symbolic computation, such as high school algebra) and numeric (real and complex numerical computation, such as numerical integration). It may then make sense to have a constants.py file in both the symbolic and numeric parts of the project.
The constants.py file in the numeric part of the project defines pi as
pi = 3.141592
whereas the constants.py file in the symbolic part of the project defines pi as
class PiClass:
def __str__(self):
return "PI"
pi = PiClass()
This means that a name like pi can be used in (and imported from) two different files named constants.py, as shown in figure 18.1.
Figure 18.1. Organizing a math package
The symbolic constants.py file defines pi as an abstract Python object, the sole instance of the PiClass class. As the system is developed, various operations can be implemented in this class, which return symbolic rather than numeric results.
There is a natural mapping from this design structure to a directory structure. The top-level directory of the project, called mathproj, contains subdirectories ui and comp; comp in turn contains subdirectories symbolic and numeric; and each of symbolic and numeric contains its own constants.py file.
Given this directory structure, and assuming that the root mathproj directory is installed somewhere in the Python search path, Python code both inside and outside the mathproj package can access the two variants of pi as mathproj.symbolic.constants.pi and mathproj.numeric.constants.pi. In other words, the Python name for an item in the package is a reflection of the directory pathname to the file containing that item.
That’s what packages are all about. They’re ways of organizing very large collections of Python code into coherent wholes, by allowing the code to be split among different files and directories and imposing a module/submodule naming scheme based on the directory structure of the package files. Unfortunately, all isn’t this simple in practice because details intrude to make their use more complex than their theory. The practical aspects of packages are the basis for the remainder of this chapter.
18.3. A concrete example
The rest of this chapter will use a running example to illustrate the inner workings of the package mechanism (see figure 18.2). Filenames and paths are shown in plain text, to avoid confusion as to whether we’re talking about a file/directory or the module/package defined by that file/directory. The files we’ll be using in our example package are shown in listings 18.1 through 18.6.
Figure 18.2. Example package
Listing 18.1. File mathproj/__init__.py
print("Hello from mathproj init")
__all__ = ['comp']
version = 1.03
Listing 18.2. File mathproj/comp/__init__.py
__all__ = ['c1']
print("Hello from mathproj.comp init")
Listing 18.3. File mathproj/comp/c1.py
x = 1.00
Listing 18.4. File mathproj/comp/numeric/__init__.py
print("Hello from numeric init")
Listing 18.5. File mathproj/comp/numeric/n1.py
from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
def g():
print("version is", version)
print(h())
Listing 18.6. File mathproj/comp/numeric/n2.py
def h():
return "Called function h in module n2"
For the purposes of the examples in this chapter, we’ll assume that you’ve created these files in a mathproj directory that’s on the Python search path. (It’s sufficient to ensure that the current working directory for Python is the directory containing mathproj when executing these examples.)
Note
In most of the examples in this book, it’s not necessary to start up a new Python shell for each example. You can usually execute them in a Python shell you’ve used for previous examples and still get the results shown. This isn’t true for the examples in this chapter, because the Python namespace must be clean (unmodified by previous import statements) for the examples to work properly. If you do run the examples that follow, please ensure that you run each separate example in its own shell. In IDLE, this requires exiting and restarting the program, not just closing and reopening its Shell window.
18.3.1. Basic use of the mathproj package
Before getting into the details of packages, let’s look at accessing items contained in the mathproj package. Start up a new Python shell, and do the following:
>>> import mathproj
Hello from mathproj init
If all goes well, you should get another input prompt and no error messages. As well, the message "Hello from mathproj init" should be printed to the screen, by code in the mathproj/__init__.py file. We’ll talk more about __init__.py files in a bit; for now, all you need to know is that they’re run automatically whenever a package is first loaded.
The mathproj/__init__.py file assigns 1.03 to the variable version. version is in the scope of the mathproj package namespace, and after it’s created, you can see it via mathproj, even from outside the mathproj/__init__.py file:
>>> mathproj.version
1.03
In use, packages can look a lot like modules; they can provide access to objects defined within them via attributes. This isn’t surprising, because packages are a generalization of modules.
18.3.2. Loading subpackages and submodules
Now, let’s start looking at how the various files defined in the mathproj package interact with one another. We’ll do this by invoking the function g defined in the file mathproj/comp/numeric/n1.py. The first obvious question is, has this module been loaded? We have already loaded mathproj, but what about its subpackage? Let’s see if it’s known to Python:
>>> mathproj.comp.numeric.n1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'module' object has no attribute 'comp'
In other words, loading the top-level module of a package isn’t enough to load all the submodules. This is in keeping with Python’s philosophy that it shouldn’t do things behind your back. Clarity is more important than conciseness.
This is simple enough to overcome. We import the module of interest and then execute the function g in that module:
>>> import mathproj.comp.numeric.n1
Hello from mathproj.comp init
Hello from numeric init
>>> mathproj.comp.numeric.n1.g()
version is 1.03
Called function h in module n2
Notice, however, that the lines beginning with Hello are printed out as a side effect of loading mathproj.comp.numeric.n1. These two lines are printed out by print statements in the __init__.py files in mathproj/comp and mathproj/comp/numeric. In other words, before Python can import mathproj.comp.numeric.n1, it first has to import mathproj.comp and then mathproj.comp.numeric. Whenever a package is first imported, its associated __init__.py file is executed, resulting in the Hello lines. To confirm that both mathproj.comp and mathproj.comp.numeric are imported as part of the process of importing mathproj.comp.numeric.n1, we can check to see that mathproj.comp and mathproj.comp.numeric are now known to the Python session:
>>> mathproj.comp
<module 'mathproj.comp' from 'mathproj/comp/__init__.py'>
>>> mathproj.comp.numeric
<module 'mathproj.comp.numeric' from 'mathproj/comp/numeric/__init__.py'>
18.3.3. import statements within packages
Files within a package don’t automatically have access to objects defined in other files in the same package. As in outside modules, you must use import statements to explicitly access objects from other package files. To see how this works in practice, look back at the n1 subpackage. The code contained in n1.py is
from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
def g():
print "version is", version
print h()
g makes use of both version from the top-level mathproj package and the function h from the n2 module; hence, the module containing g must import both version and h to make them accessible. We import version as we would in an import statement from outside the mathproj package, by saying from mathproj import version. In this example, we explicitly import h into the code by saying from mathproj.comp.numeric.n2 import h, and this will work in any file—explicit imports of package files are always allowed. But because n2.py is in the same directory as n1.py, we can also use a relative import by prepending a single dot to the submodule name. In other words, we can say
from .n2 import h
as the third line in n1.py, and it works fine.
You can add more dots to move up more levels in the package hierarchy, and you can add module names. Instead of
from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
we could also have written the imports of n1.py as
from ... import version
from .. import c1
from . n2 import h
Relative imports can be handy and quick to type, but be aware that they’re relative to the module’s __name__property. Therefore any module being executed as the main module, and thus having an __name__ of __main__, can’t use relative imports.
18.3.4. __init__.py files in packages
You’ll have noticed that all the directories in our package—mathproj, mathproj/comp, and mathproj/numeric—contain a file called __init__.py. An __init__.py file serves two purposes:
18.4. The __all__ attribute
If you look back at the various __init__.py files defined in mathproj, you’ll notice that some of them define an attribute called __all__. This has to do with execution of statements of the form from ... import *, and it requires explanation.
Generally speaking, we would hope that if outside code executed the statement from mathproj import *, it would import all nonprivate names from mathproj. In practice, life is more difficult. The primary problem is that some operating systems have an ambiguous definition of case when it comes to filenames. Microsoft Windows 95/98 is particularly bad in this regard, but it isn’t the only villain. Because objects in packages can be defined by files or directories, this leads to ambiguity as to exactly under what name a subpackage might be imported. If we say from mathproj import *, will comp be imported as comp, Comp, or COMP? If we were to rely only on the name as reported by the operating system, the results might be unpredictable.
There’s no good solution to this. It’s an inherent problem caused by poor OS design. As the best possible fix, the __all__ attribute was introduced. If present in an __init__.py file, __all__ should give a list of strings, defining those names that are to be imported when a from ... import * is executed on that particular package. If __all__ isn’t present, then from ... import * on the given package does nothing. Because case in a text file is always meaningful, the names under which objects are imported isn’t ambiguous, and if the OS thinks that comp is the same as COMP, that’s its problem.
To see this in action, fire up Python again, and try the following:
>>> from mathproj import *
Hello from mathproj init
Hello from mathproj.comp init
The __all__ attribute in mathproj/__init__.py contains a single entry, comp, and the import statement imports only comp. It’s easy enough to check that comp is now known to the Python session:
>>> comp
<module 'mathproj.comp' from 'mathproj/comp/__init__.py'>
But note that there’s no recursive importing of names with a from ... import * statement. The __all__ attribute for the comp package contains c1, but c1 isn’t magically loaded by our from mathproj import * statement:
>>> c1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'c1' is not defined
To insert names from mathproj.comp we must, again, do an explicit import:
>>> from mathproj.comp import c1
>>> c1
<module 'mathproj.comp.c1' from 'mathproj/comp/c1.py'>
18.5. Proper use of packages
Most of your packages shouldn’t be as structurally complex as these examples imply. The package mechanism allows wide latitude in the complexity and nesting of your package design. It’s obvious that very complex packages can be built, but it isn’t obvious that they should be built.
Here are a couple of suggestions that are appropriate in most circumstances:
18.6. Summary
Packages let you create libraries of code that span multiple files and directories, which allows better organization of large collections of code than single modules would allow. Although using packages is useful, you should be wary of nesting directories in your packages more than one or two levels deep, unless you have a very large and complex library.
Chapter 19. Data types as objects
This chapter covers
By now, you’ve learned the basic Python types and also how to create your own data types using classes. For many languages, that would be pretty much it, as far as data types are concerned. But Python is dynamically typed, meaning that types of things are determined at runtime, not at compile time. This is one of the reasons Python is so easy to use. It also makes it possible, and sometimes necessary, to compute with the types of objects (and not just the objects themselves).
19.1. Types are objects, too
Fire up a Python session, and try out the following:
>>> type(5)
<class 'int'>
>>> type(['hello', 'goodbye'])
<class 'list'>
This is the first time you’ve seen the built-in type function in Python. It can be applied to any Python object and returns the type of that object. In this example, it tells us that 5 is an int (integer) and that ['hello', 'goodbye'] is a list, something you probably already knew.
Of greater interest is that Python returns objects in response to the calls to type; <class 'int'> and <class 'list'> are the screen representations of the returned objects. What sort of object is returned by a call of type(5)? We have any easy way of finding out—just use type on that result:
>>> type_result = type(5)
>>> type(type_result)
<class 'type'>
The object returned by type is an object whose type happens to be <class 'type'>—we can call it a type object. A type object is another kind of Python object whose only outstanding feature is the confusion its name sometime causes. Saying a type object is of type <class 'type'> has about the same degree of clarity as the old Abbot and Costello “Who’s on First?” comedy routine.
19.2. Using types
Now that you know that data types can be represented as Python type objects, what can you do with them? You can compare them, because any two Python objects can be compared:
>>> type("Hello") == type("Goodbye")
True
>>> type("Hello") == type(5)
False
The types of "Hello" and "Goodbye" are the same (they’re both strings), but the types of "Hello" and 5 are different. Among other things, you can use this to provide type checking in your function and method definitions.
19.3. Types and user-defined classes
The most common reason to be interested in the types of objects, particularly instances of user-defined classes, is to find out whether a particular object is an instance of a class. After determining that an object is of a particular type, the code can treat it appropriately. An example makes things much clearer. To start, let’s define a couple of empty classes, so as to set up a simple inheritance hierarchy:
>>> class A:
... pass
...
>>> class B(A):
... pass
...
Now, create an instance of class B:
>>> b = B()
As expected, applying the type function to b tells us that b is an instance of the class B that’s defined in our current __main__ namespace:
>>> type(b)
<class '__main__.B'>
We can also obtain exactly the same information by accessing the instance’s special __class__ attribute:
>>> b.__class__
<class '__main__.B'>
We’ll be working with that class quite a bit to extract further information, so let’s store it somewhere:
>>> b_class = b.__class__
Now, to emphasize that everything in Python is an object, let’s prove that the class we obtained from b is the class we defined under the name B:
>>> b_class == B
True
In this example, we didn’t need to store the class of b—we already had it—but I want to make clear that a class is just another Python object and can be stored or passed around like any Python object.
Given the class of b, we can find the name of that class using its __name__ attribute:
>>> b_class.__name__
'B'
And we can find out what classes it inherits from by accessing its __bases__ attribute, which contains a tuple of all of its base classes:
>>> b_class.__bases__
(<class '__main__.A'>,)
Used together, __class__, __bases__, and __name__ allow a full analysis of the class inheritance structure associated with any instance.
But two built-in functions provide a more user-friendly way of obtaining most of the information we usually need: isinstance and issubclass. The isinstance function is what you should use to determine whether, for example, a class passed into a function or method is of the expected type:
For class instances, check against the class . e is an instance of class D because E inherits from D
. But d isn’t an instance of class E
. For other types, you can use an example
. A class is considered a subclass of itself
.
19.4. Duck typing
Using type, isinstance, and issubclass makes it fairly easy to make code correctly determine an object’s or class’s inheritance hierarchy. Although this is easy, Python also has a feature that makes using objects even easier: duck typing. Duck typing, as in “if it walks like a duck and quacks like a duck, it probably is a duck,” refers to Python’s way of determining whether an object is the required type for an operation, focusing on an object’s interface rather than its type. If an operation needs an iterator, for example, the object used doesn’t need to be a subclass of any particular iterator or of any iterator at all. All that matters is that the object used as an iterator is able to yield a series of objects in the expected way.
This is in contrast to a language like Java, where stricter rules of inheritance are enforced. In short, duck typing means that in Python, you don’t need to (and probably shouldn’t) worry about type-checking function or method arguments and the like. Instead, you should rely on readable and documented code combined with thorough testing to make sure an object “quacks like a duck” as needed.
Duck typing can increase the flexibility of well-written code and, combined with the more advanced OO features discussed in chapter 20, gives you the ability to create classes and objects to cover almost any situation.
19.5. Summary
With what we’ve covered here, you have all the tools necessary to provide type checking in the situations where it’s necessary for your applications. On the other hand, by taking advantage of duck typing, you can write more flexible code that doesn’t need to be as concerned with type checking. As you’ll see in the next chapter, Python’s use of duck typing and its flexibility in defining special method attributes make it possible to construct and combine classes in almost any way imaginable.
Chapter 20. Advanced object-oriented features
This chapter covers
This chapter will focus on some more advanced object-oriented features of Python. Python is distinguished by the ability to modify its objects in ways that can fundamentally change their behavior. For C++ users, this is somewhat similar to operator overloading, but in Python it’s more comprehensive and easier to use.
In addition to modifying the behavior of objects, you can also control the behavior of classes and the creation of their instances. Obviously, you’ll need to be fairly familiar with OO programming to use this feature.
20.1. What is a special method attribute?
A special method attribute is an attribute of a Python class with a special meaning to Python. It’s defined as a method but isn’t intended to be used directly as such. Special methods aren’t usually directly invoked; instead, they’re called automatically by Python in response to a demand made on an object of that class.
Perhaps the simplest example of this is the __str__ special method attribute. If it’s defined in a class, then anytime an instance of that class is used where Python requires a user-readable string representation of that instance, the __str__ method attribute will be invoked, and the value it returns will be used as the required string. To see this, let’s define a class representing RGB colors as a triplet of numbers, one each for red, green, and blue intensities. As well as defining the standard __init__ method to initialize instances of the class, we’ll also define a __str__ method to return strings representing instances, in a reasonably human-friendly format. Our definition looks something like listing 20.1.
Listing 20.1. File color_module.py
class Color:
def __init__(self, red, green, blue):
self._red = red
self._green = green
self._blue = blue
def __str__(self):
return "Color: R={0:d}, G={1:d}, B={2:d}".format (self._red,
self._green, self._blue)
If we now put this definition into a file called color_module.py, we can load it and use it in the normal manner:
>>> from color_module import Color
>>> c = Color(15, 35, 3)
The presence of the __str__ special method attribute can be seen if we now use print to print out c:
>>> print(c)
Color: R=15, G=35, B=3
Even though our __str__ special method attribute has not been explicitly invoked by any of our code, it has nonetheless been used by Python, which knows that the __str__ attribute (if present) defines a method to convert objects into user-readable strings. This is the defining characteristic of special method attributes—they allow you to define functionality that hooks into Python in special ways. Special method attributes can be used to define classes whose objects behave in a fashion that’s syntactically and semantically equivalent to lists or dictionaries. You could, for example, use this ability to define objects that are used in exactly the same manner as Python lists but that use balanced trees rather than arrays to store data. To a programmer, they would appear to be lists, but with faster inserts, slower iterations, and certain other performance differences that would presumably be advantageous in the problem at hand.
The rest of this chapter covers longer examples using special method attributes. It doesn’t discuss all of Python’s available special method attributes, but it does expose you to the concept in enough detail that you can then easily make use of the other special method attributes, all of which are defined in the reference appendix.
20.2. Making an object behave like a list
This sample problem involves a large text file containing records of people; each record consists of a single line containing the person’s name, age, and place of residence, with a double semicolon (::) between the fields. A few lines from such a file might look like this:
.
.
.
John Smith::37::Springfield, Massachusetts
Ellen Nelle::25::Springfield, Connecticut
Dale McGladdery::29::Springfield, Hawaii
.
.
.
Suppose we need to collect information as to the distribution of ages of people in the file. There are many ways the lines in this file could be processed. Here’s one way:
fileobject = open(filename, 'r')
lines = fileobject.readlines()
fileobject.close()
for line in lines:
. . . do whatever . . .
That would work in theory, but it reads the entire file into memory at once. If the file was too large to be held in memory (and these files potentially are that large), the program wouldn’t work.
Another way to attack the problem is this:
fileobject = open(filename, 'r')
for line in fileobject:
. . . do whatever . . .
fileobject.close()
This would get around the problem of too little memory by reading in only one line at a time. It would work fine, but suppose we wanted to make opening the file even simpler and that we wanted to get only the first two fields (name and age) of the lines in the file? We’d need something that could, at least for the purposes of a for loop, treat a text file as a list of lines, but without reading the entire text file in at once.
20.2.1. The __getitem__ special method attribute
A solution is to use the __getitem__ special method attribute, which you can define in any user-defined class, to enable instances of that class to respond to list access syntax and semantics. If AClass is a Python class that defines __getitem__, and obj is an instance of that class, then things like x = obj[n] and for x in obj: are meaningful; obj may be used in much the same way as a list.
Here’s the resulting code; explanations follow:
At first glance, this may look worse than the previous solution because there’s more code and it’s difficult to understand. But most of that code is in a class, which can be put into its own module, say the myutils module. Then the program becomes
import myutils
for name, age in myutils.LineReader("filename"):
. . . do whatever . . .
The LineReader class handles all the details of opening the file, reading in lines one at a time, and closing the file. At the cost of somewhat more initial development time, it provides a tool that makes working with one-record-per-line large text files easier and less error prone. Note that there are several powerful ways to read files already in Python, but this example has the advantage that it’s fairly easy to understand. When you get the idea, you can apply the same principle in many different situations.
20.2.2. How it works
LineReader is a class, and the __init__ method opens the named file for reading and stores the opened fileobject for later access. To understand the use of the __getitem__ method, you need to know the following three points:
The LineReader class is intended for use only with and inside a for loop, and the for loop will always generate calls with a uniformly increasing index: __getitem__(self, 0), __getitem__(self, 1), __getitem__(self, 2), and so on. The previous code takes advantage of this knowledge and returns lines one after the other, ignoring the index argument.
With this knowledge, understanding how a LineReader object emulates a sequence in a for loop is easy. Each iteration of the loop causes the special Python attribute method __getitem__ to be invoked on the object; as a result, the object reads in the next line from its stored fileobject and examines that line. If the line is non-empty, it’s returned. An empty line means the end of the file has been reached, and the object closes the fileobject and raises the IndexError exception. IndexError is caught by the enclosing for loop, which then terminates.
Remember that this example is here for illustrative purposes only. Usually, iterating over the lines of a file using the for line in fileobject: type of loop is sufficient, but this example does show how easy it is in Python to create objects that behave like lists or other types.
20.2.3. Implementing full list functionality
In the previous example, an object of the LineReader class behaves like a list object only to the extent that it correctly responds to sequential accesses of the lines in the file it’s reading from. You may wonder how this functionality can be expanded to make LineReader (or other) objects behave more like a list.
First, the __getitem__ method should handle its index argument in some way. Because the whole point of the LineReader class is to avoid reading a large file into memory, it wouldn’t make sense to have the entire file in memory and return the appropriate line. Probably the smartest thing to do would be to check that each index in a __getitem__ call is one greater than the index from the previous __getitem__ call (or is 0, for the first call of __getitem__ on a LineReader instance), and to raise an error if this isn’t the case. This would ensure that LineReader instances are used only in for loops as was intended.
More generally, Python provides a number of special method attributes relating to list behavior. __setitem__ provides a way of defining what should be done when an object is used in the syntactic context of a list assignment, obj[n] = val. Some other special method attributes provide less-obvious list functionality, such as the __add__ attribute, which enables objects to respond to the + operator and hence to perform their version of list concatenation. Several other special methods also need to be defined before a class fully emulates a list, but you can achieve this complete list emulation by defining the appropriate Python special method attributes. The next section gives an example that goes further toward implementing a full-list emulation class.
20.3. Giving an object full list capability
__getitem__ is one of many Python special method attributes that may be defined in a class, to permit instances of that class to display special behavior. To see how this can be carried further, effectively integrating new abilities into Python in a seamless manner, we’ll look at another, more comprehensive example.
When lists are used, it’s common that any particular list will contain elements of only one type such as a list of strings or a list of numbers. Some languages, such as C++, have the ability to enforce this. In large programs, this ability to declare a list as containing a certain type of element can help you track down errors. An attempt to add an element of the wrong type to a typed list will result in an error message, potentially identifying a problem at an earlier stage of program development than would otherwise be the case.
Python doesn’t have typed lists built in, and most Python coders don’t miss them; but if you’re concerned about enforcing the homogeneity of a list, special method attributes make it easy to create a class that behaves like a typed list. Here’s the beginning of such a class (which makes extensive use of the Python built-in type and isinstance functions, to check the type of objects):
The example_element argument defines the type this list can contain by providing an example of the type of element .
The TypedList class, as defined here, gives us the ability to make a call of the form
x = TypedList('Hello', ["List", "of", "strings"])
The first argument, 'Hello', isn’t incorporated into the resulting data structure at all. It’s used as an example of the type of element the list must contain (strings, in this case). The second argument is an optional list that can be used to give an initial list of values. The __init__ function for the TypedList class checks that any list elements passed in when a TypedList instance is created are of the same type as the example value given. If there are any type mismatches, an exception is raised.
This version of the TypedList class can’t be used as a list, because it doesn’t respond to the standard methods for setting or accessing list elements. To fix this, we need to define the __setitem__ and __getitem__ special method attributes. The __setitem__ method will be called automatically by Python anytime a statement of the form TypedListInstance[i] = value is executed, and the __getitem__ method will be called anytime the expression TypedListInstance[i] is evaluated to return the value in the ith slot of TypedListInstance. Here is the next version of the TypedList class. Because we’ll be type-checking a lot of new elements, we’ve abstracted this function out into the new private method __check:
class TypedList:
def __init__(self, example_element, initial_list=[]):
self.type = type(example_element)
if not isinstance(initial_list, list):
raise TypeError("Second argument of TypedList must "
"be a list.")
for element in initial_list:
self.__check(element)
self.elements = initial_list[:]
def __check(self, element):
if type(element) != self.type:
raise TypeError("Attempted to add an element of "
"incorrect type to a typed list.")
def __setitem__(self, i, element):
self.__check(element)
self.elements[i] = element
def __getitem__(self, i):
return self.elements[i]
Now, instances of the TypedList class look more like lists. For example, the following code is valid:
>>> x = TypedList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
The accesses of elements of x in the print statement are handled by __getitem__, which passes them down to the list instance stored in the TypedList object. The assignments to x[2] and x[3] are handled by __setitem__, which checks that the element being assigned into the list is of the appropriate type and then performs the assignment on the list contained in self.elements. The last line uses __getitem__ to unpack the first four items in x and then pack them into the variables a, b, c, d, and e, respectively. The calls to __getitem__ and __setitem__ are made automatically by Python.
Completion of the TypedList class, so that TypedList objects behave in all respects like list objects, requires more code. The special method attributes __setitem__ and __getitem__ should be defined so that TypedList instances can handle slice notation as well as single item access. __add__ should be defined so that list addition (concatenation) can be performed, and __mul__ should be defined so that list multiplication can be performed. __len__ should be defined so that calls of len(TypedListInstance) are evaluated correctly. __delitem__ should be defined so that the TypedList class can handle del statements correctly. Also, an append method should be defined so that elements can be appended to TypedList instances using the standard list-style append, and similarly for an insert method.
20.4. Subclassing from built-in types
The previous example makes for a good exercise in understanding how to implement a list-like class from scratch, but it’s also a lot of work. In practice, if you were planning to implement your own list-like structure along the lines demonstrated here, you might instead consider subclassing the list type or the UserList type.
20.4.1. Subclassing list
Instead of creating a class for a typed list from scratch, as we did in the previous examples, you can also subclass the list type and override all the methods that need to be aware of the allowed type. One big advantage of this approach is that your class has default versions of all list operations, because it’s a list already. The main thing to keep in mind is that every type in Python is a class, and if you need a variation on the behavior of a built-in type, you may want to consider subclassing that type:
class TypedListList(list):
def __init__(self, example_element, initial_list=[]):
self.type = type(example_element)
if not isinstance(initial_list, list):
raise TypeError("Second argument of TypedList must "
"be a list.")
for element in initial_list:
self.__check(element)
super().__init__(initial_list)
def __check(self, element):
if type(element) != self.type:
raise TypeError("Attempted to add an element of "
"incorrect type to a typed list.")
def __setitem__(self, i, element):
self.__check(element)
super().__setitem__(i, element)
>>> x = TypedListList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
>>> x[:]
['', '', 'Hello', 'There', '']
>>> del x[2]
>>> x[:]
['', '', 'There', '']
>>> x.sort()
>>> x[:]
['', '', '', 'There']
Note that all that we need to do in this case is implement a method to check the type of items being added and then tweak __setitem__ to make that check before calling list’s regular __setitem__ method. Other methods, like sort and del, work without any further coding. Overloading a built-in type can save a fair amount of time if you need only a few variations in its behavior, because the bulk of the class can be used unchanged.
20.4.2. Subclassing UserList
If you need a variation on a list (as in the previous examples), there’s a third alternative. You can subclass the UserList class, a list wrapper class found in the collections module. UserList was created for earlier versions of Python when subclassing the list type wasn’t possible; but it’s still useful, particularly in our current situation, because the underlying list is available as the data attribute:
from collections import UserList
class TypedUserList(UserList):
def __init__(self, example_element, initial_list=[]):
super().__init__(initial_list)
self.type = type(example_element)
if not isinstance(initial_list, list):
raise TypeError("Second argument of TypedList must "
"be a list.")
for element in initial_list:
self.__check(element)
def __check(self, element):
if type(element) != self.type:
raise TypeError("Attempted to add an element of "
"incorrect type to a typed list.")
def __setitem__(self, i, element):
self.__check(element)
self.data[i] = element
def __getitem__(self, i):
return self.data[i]
>>> x = TypedUserList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
>>> x[:]
['', '', 'Hello', 'There', '']
>>> del x[2]
>>> x[:]
['', '', 'There', '']
>>> x.sort()
>>> x[:]
['', '', '', 'There']
This is much the same as subclassing list, except that in the implementation of the class, the list of items is available internally as the data member. In some situations, having direct access to the underlying data structure can be useful; and in addition to UserList, there are also UserDict and UserString wrapper classes.
20.5. When to use special method attributes
As a rule, it’s a good idea to be somewhat cautious with the use of special method attributes. Other programmers who need to work with your code may wonder why one sequence-type object responds correctly to standard indexing notation, whereas another doesn’t.
My general guidelines are to use special method attributes in either of two situations. First, if I have a frequently used class in my own code that behaves in some respects like a Python built-in type, I’ll define such special method attributes as useful. This occurs most often with objects that behave like sequences in one way or another. Second, if I have a class that behaves identically or almost identically to a built-in class, I may choose to define all of the appropriate special function attributes or subclass the built-in Python type and distribute the class. An example of the latter might be lists implemented as balanced trees so that access is slower but insertion is faster than with standard lists.
These aren’t hard-and-fast rules. For example, it’s often a good idea to define the __str__ special method attribute for a class, so that you can say print(instance) in debugging code and get an informative and nice-looking representation of your object printed to the screen.
20.6. Metaclasses
Everything in Python is an object, including classes. An object has to be created from something, and in the case of a class it’s created from a metaclass. In Python, classes are objects that are created at runtime as instances of the metaclass type. Let’s look at the standard definition of a class:
class Spam:
def __init__(self, x):
self.x = x
def show(self):
print(self.x)
This is the ordinary way of creating a class. We can create instances of it and exercise them and so on:
>>> my_spam = Spam("test")
>>> type(my_spam)
<class '__main__.Spam'>
>>> type(Spam)
<class 'type'>
>>> my_spam.show()
test
Note that the type of the class spam is 'type'.
Although this example is the common way to create a class, it’s really a shortcut for creating it explicitly using a metaclass. To do so, you need to call the metaclass (type, by default) with the name of the class, a tuple of its base classes, and a dictionary of its attributes:
def init(self, x):
self.x = x
def show(self):
print(self.x)
Spam = type("Spam", (object,), {'__init__': init, 'show': show})
This creates exactly the same class as before, with an __init__ and a show method:
>>> my_spam = Spam("test")
>>> type(my_spam)
<class '__main__.Spam'>
>>> type(Spam)
<class 'type'>
>>> my_spam.show()
test
It looks a bit strange, because the methods are defined as first-class functions; but the result is the same, and the type of spam is still 'type'.
The point of this exercise is that the type metaclass can be subclassed and its behavior can be changed. That means that the way classes themselves are created from objects can be modified, allowing you to create classes that register or verify their instances when they’re created, for example, or classes that automatically have a class attribute. In the following somewhat simple-minded example, type is subclassed to NewType, which announces when it creates a class object and adds a class attribute new_attr to that class:
class NewType(type):
def __init__(cls, name, bases, methods):
print("Creating from NewType")
type.__init__(cls, name, bases, methods)
cls.new_attr = "test"
def init(self, x):
self.x = x
def show(self):
print(self.x)
Spam = NewType("Spam", (object,), {'__init__': init, 'show': show})
Creating from NewType
>>> Spam.new_attr
'test'
>>> my_spam = Spam("test")
>>> type(Spam)
<class '__main__.NewType'>
>>> type(my_spam)
<class '__main__.Spam'>
>>> my_spam.show()
test
It’s not necessary to use the long form of class creation in order to use a custom metaclass, however. You can accomplish the same thing by using the metaclass keyword with a simple class definition:
class NewType(type):
def __init__(cls, name, bases, dict):
print("Creating from NewType")
cls.new_attr = "test"
type.__init__(cls, name, bases, dict)
class Spam(metaclass=NewType):
def __init__(self, x):
self.x = x
def show(self):
print(self.x)
Creating from NewType
>>> Spam.new_attr
'test'
>>> my_spam = Spam("test")
>>> type(Spam)
<class '__main__.NewType'>
>>> type(my_spam)
<class '__main__.Spam'>
>>> my_spam.show()
test
The previous examples have been kept deliberately simple, with the aim of making the basic mechanics of using metaclasses clear. Metaclass programming is enormously powerful, but it’s also a complex topic, and its details and use cases are well beyond both this book and most coding needs. In the words of master Pythonista Tim Peters, “Metaclasses are deeper magic than 99% of users should ever worry about. If you wonder whether you need them, you don’t (the people who need them know with certainty that they need them, and don’t need an explanation about why).”
20.7. Abstract base classes
As you’ve seen, Python’s strategy for interacting with an object is to invoke its methods and judge its type from what it does. This use of duck typing is also referred to as EAFP, which is short for “easier to ask forgiveness than permission.” The common approach in Python is to invoke an object’s method and either succeed or deal with the exception. If an object behaves like a sequence, for example, you can iterate over it with a for loop. If not, you catch and deal with the TypeError exception. Although this approach works well most of the time, there are occasions where it’s better for your code to know exactly what it’s getting into. This is sometimes called the LBYL, or “look before you leap,” approach.
For example, suppose we need to know whether an object is a mutable sequence—something that works like a list. We can use isinstance to see if the object has list as a base class:
if isinstance(my_object, list):
# do stuff
Or we can see if it has a __getitem__ method defined, by accessing the object with [], for example:
try:
x = my_object[0]
#do stuff
except TypeError:
pass
The problem is that the first approach will miss perfectly good mutable sequences, like our LineReader class at the beginning of this chapter, because they aren’t subclasses of list. The second approach, on the other hand, will go in the other direction and accept both tuples (which aren’t mutable) and dictionaries (which aren’t sequences), among others.
Although it’s not in harmony with the overall philosophy of Python, in some scenarios it’s useful to be able to know for sure that an object is a sequence, a mutable sequence, a mapping, and so on. Python’s answer is an abstract base class (ABC), which is a class that can be put into an object’s inheritance tree to indicate to an external inspector that the object has a certain set of features. You can then test objects using isinstance for the presence of that abstract base class. The collections library contains several abstract collection types, including the following:
'Hashable', 'Iterable', 'Mapping', 'MutableMapping', 'MutableSequence',
'MutableSet', 'Sequence', 'Sized'
There are also abstract base classes for various other sorts of objects—mapping, sets, and so on.
20.7.1. Using abstract base classes for type checking
To return to our example, let’s see how we can use an abstract base class to make sure the custom TypedList class we created previously is identified as a mutable sequence. The first things we need to do are to import the MutableSequence base class from the collections module and then register our class as a MutableSequence:
class TypedList:
def __init__(self, example_element, initial_list=[]):
self.type = type(example_element)
if not isinstance(initial_list, list):
raise TypeError("Second argument of TypedList must "
"be a list.")
for element in initial_list:
self.__check(element)
self.elements = initial_list[:]
def __check(self, element):
if type(element) != self.type:
raise TypeError("Attempted to add an element of "
"incorrect type to a typed list.")
def __setitem__(self, i, element):
self.__check(element)
self.elements[i] = element
def __getitem__(self, i):
return self.elements[i]
>>> from collections import MutableSequence
>>> issubclass(TypedList, MutableSequence)
False
>>> MutableSequence.register(TypedList)
>>> issubclass(TypedList, MutableSequence)
True
>>> my_list = TypedList(1)
>>> isinstance(my_list, MutableSequence)
True
When TypedList is registered with MutableSequence as one of its own, any instance of it will also be an instance of MutableSequence.
20.7.2. Creating abstract base classes
You can also create your own abstract base classes by setting their metaclass to be ABCMeta from the abc module. For example, if we want to make sure that every instance of list was also identified as an instance of MyABC, we do the following:
>>> from abc import ABCMeta
>>> class MyABC(metaclass=ABCMeta):
... pass
...
>>> MyABC.register(list)
>>> isinstance([1, 2, 3], MyABC)
True
Being able to use abstract base classes in Python gives you a choice: you can look before you leap, or you can ask for forgiveness.
20.7.3. Using the @abstractmethod and @abstractproperty decorators
In Java, for example, an abstract class by definition can’t be instantiated under any circumstances. As with many features, in Python the “abstractness” of abstract base classes isn’t so much an enforced rule as it is a gentleman’s agreement. Python will allow you to create instances of generic abstract base classes without complaint as long as the base class doesn’t contain an abstract method:
>>> from abc import ABCMeta
>>> class MyABC(metaclass=ABCMeta):
... pass
...
>>> my_myabc = MyABC()
>>> print(type(my_myabc))
<class '__main__.MyABC'>
But if the class has an abstract method, then that class can’t be instantiated, nor can any subclass be instantiated unless it has overridden the abstract method. To create an abstract method, you use the @abstractmethod decorator from the abc module:
>>> from abc import ABCMeta, abstractmethod
>>> class MyABC(metaclass=ABCMeta):
... @abstractmethod
... def overrideme(self):
... print("in ABC")
...
>>> my_myabc = MyABC()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class MyABC with abstractmethods overrideme
>>> class SecondABC(MyABC):
... pass
>>> my_secondabc = SecondABC()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class SecondABC with abstractmethods overrideme
As the exceptions indicate, it’s not possible to instantiate a class with an abstract method, nor is it possible to instantiate a subclass, unless the abstract method has been overridden. In the following example, the abstract method has been overridden for the class SecondABC so the class can now be instantiated:
>>> class SecondABC(MyABC):
... def overrideme(self):
... super().overrideme()
... print("in SecondABC")
...
>>> my_secondabc = SecondABC()
>>> my_secondabc.overrideme()
in ABC
in SecondABC
The abstractmethod function sets a function attribute __isabstractmethod__, which is checked by the __new__ method of ABCMeta. This means you can create abstract methods only for classes that are created with ABCMeta as their metaclass, and they must be defined in the class definition, not dynamically added.
Abstract methods in Python, unlike in Java, can have an implementation. You can call those methods by the overriding method in a subclass, as happens in the previous example.
There is also an @abstractproperty decorator, which adds abstract properties to a class. These work the same way as normal properties, except that a class containing an abstract property can’t be instantiated, nor can its subclasses, unless they override the abstract property with a concrete one:
from abc import ABCMeta, abstractproperty
class MyABC(metaclass=ABCMeta):
@abstractproperty
def readx(self):
return self.__x
def getx(self): # read only
return self.__x
def setx(self, x):
self.__x = x
x = abstractproperty(getx, setx)
Even though the property x created here has an implementation that would work, this class can’t be instantiated. Instead, it must be subclassed, and the abstract property x must be overridden. But the subclass can access the abstract property in MyABC.
20.8. Summary
Python has several object-oriented options. By adding special method attributes to your classes, you can simulate other classes, even built-in types. Or you can subclass any of Python’s built-in types to modify their behavior as needed. You can even control the creation and behavior of classes themselves by creating or using different metaclasses. If those options aren’t enough, you can also use abstract base classes to customize the possibilities for type checking.
Part 4. Where can you go from here?
Part 4 introduces features of Python beyond bare syntax and syntax and coding. Starting with the basics of testing in Python, we’ll also look at migration to Python 3 from Python 2.x and tour the standard library. The final chapter uses several examples and a simple project to illustrate the power of Python for creating database-driven web applications.
Chapter 21. Testing your code made easy(-er)
This chapter covers
The problem with writing code is that you’re never sure you’ve got it right. Every time you turn around, bugs crop up, and what’s worse, fixing those bugs is likely to create more bugs. Fortunately, Python encourages readable code, which helps in debugging; but we still need all the help we can get in maintaining our code.
21.1. Why you need to have tests
Almost all code needs maintenance. Sometimes it requires minor bug fixes, but other times it needs major changes or additions, or even a complete redesign. The more you change your code, the more likely you are to inadvertently introduce new problems or mistakes. What you need is a way to make sure you don’t create new bugs when you fix the old ones and that everything still works when you redesign and refactor and improve your code. You need ways to verify that what used to work still works. You need tests.
21.2. The assert statement
The quickest way to put a test into your code is with the assert statement. An assert statement is a simple way of putting a conditional in your code that will raise an exception if an expression isn’t true. That makes it an ideal watchdog for situations where a particular precondition must always be true for the code to function correctly. For example, see the file in listing 21.1.
Listing 21.1. File assert_test.py
21.2.1. Python’s __debug__ variable
Although assert statements are a bit more streamlined, by themselves they’re conditionals that raise exceptions when their expressions are false. It’s a fair concern that using assert statements generously will leave code littered with extra conditional statements that will impact its performance. The assert statement relies on a built-in variable in Python, __debug__, which is True by default. That means the assert statement we used previously in assert_test.py is equivalent to
if __debug__:
if not param > 0:
raise AssertionError
But if the __debug__ variable is False, no code will be generated at all for assert statements. The catch is that __debug__ can’t be directly assigned:
>>> __debug__
True
>>> __debug__ = False
File "<stdin>", line 1
SyntaxError: assignment to keyword
To turn off the __debug__ variable, either you need to have the PYTHONOPTIMIZE environment variable set, or you need to run Python with the –O option. When the __debug__ variable has been turned off with the –O parameter, the previous test using assert_test.py no longer gives an error:
>>> import assert_test
>>> assert_test.example(0)
>>>
By using assert (and the __debug__ variable), you can have several checks in place as you develop and test your code. And then, by giving Python a single option, you can have all of that testing code disappear for production runs but still be available the next time you need to debug.
21.3. Tests in docstrings: doctests
Using assert statements is simple and relatively easy but also rather limited. Although assert statements can check specific spots in your code, they give no support for creating more complete suites of tests that can be run to test entire modules. Python has an easy way to test your code that uses the docstrings you should already be including in your interactive sessions, testing some code that’s cut and pasted into the docstring for that code.
For example, let’s return to the TypedList class we created in the last chapter. As you may recall, the idea was to create a list-like class that allowed only a single type of item. Because we had to add __getitem__ and __setitem__ special methods, it would be good to test them to make sure that they work as expected when we use [] to access items. Using a Python shell, we can do something like this:
>>> from typedlist import TypedList
>>> a_typed_list = TypedList(1, [1, 2, 3])
>>> a_typed_list[1] == 2
True
>>> a_typed_list[1] = 3
>>> a_typed_list[1]
3
>>>
This interactive session verifies that with an index of 1, both __getitem__ and __setitem__ work correctly to access the second item of a TypedList. To make this session into a doctest, we can copy and paste it into the docstring of the typedlist module and add code to run the test if the module is executed directly as a script. See listing 21.2.
Listing 21.2. File typedlist_doctest.py
""" a list that only allows items of a single type
any text (like this) that isn't in shell format is ignored by doctest
>>> from typedlist_doctest import TypedList
>>> a_typed_list = TypedList(1, [1, 2, 3])
>>> a_typed_list[1] == 2
True
>>> a_typed_list[1] = 3
>>> a_typed_list[1]
3
>>>
"""
class TypedList:
def __init__(self, example_element, initial_list=[]):
self.type = type(example_element)
if not isinstance(initial_list, list):
raise TypeError("Second argument of TypedList must "
"be a list.")
for element in initial_list:
self.__check(element)
self.elements = initial_list[:]
def __check(self, element):
if type(element) != self.type:
raise TypeError("Attempted to add an element of "
"incorrect type to a typed list.")
def __setitem__(self, i, element):
self.__check(element)
self.elements[i] = element
def __getitem__(self, i):
return self.elements[i]
if __name__ == "__main__":
import doctest
doctest.testmod()
If we run typedlist_doctest.py from a command prompt, by default it prints nothing if all the tests pass. But if a test fails, it’s reported in detail. For example, let’s change the first access of a_typed_list[1] to expect a 3 instead of a 2:
>>> a_typed_list[1] == 3
True
Now the test will fail, and doctest will report that clearly:
**********************************************************************
File "typedlist_doctest.py", line 7, in __main__
Failed example:
a_typed_list[1] == 3
Expected:
True
Got:
False
**********************************************************************
1 items had failures:
1 of 5 in __main__
***Test Failed*** 1 failures.
If you need a full report of all tests, both failing and passing, you can make doctest give a verbose report by adding the –v switch after the filename on the command line.
21.3.1. Avoiding doctest traps
Because doctests expect a character-by-character match for a successful test, you’ll sometimes find tests failing unexpectedly. In particular, dictionaries aren’t guaranteed to print in a particular order. If you had a test like this
>>> my_dict = {'one': 1, 'two': 2}
>>> my_dict
{'one': 1, 'two': 2}
the two items could conceivably print in either order, causing the test to fail unpredictably. In cases like this, a direct comparison is more reliable:
>>> my_dict == {'one': 1, 'two': 2}
True
>>> my_dict == {'two': 2, 'one': 1}
True
Similarly, printing object addresses will also cause failures, because it’s unlikely that an object will have the same address for two different runs of the test.
It’s also important to note that if you want blank lines to be considered part of the output, you need to indicate them with a line containing just <BLANKLINE>, because a blank line is normally a signal to doctest of the end of output.
Finally, if you use the \ character, either to escape a character or to continue a line in a doctest, you need to make sure that the docstring is a raw string. Prepending an r to the docstring will prevent the \ from being interpreted as part of the string.
21.3.2. Tweaking doctests with directives
Several directives can also tweak the way lines are handled. The most commonly used of these directives are NORMALIZE_WHITESPACE and ELLIPSIS. The former treats all sequences of whitespace as equal, so that differently spaced sequences of items, or even sequences with line breaks, still pass the test. Similarly, ELLIPSIS signals that a sequence of ... will match any substring in the output. Using ELLIPSIS can alleviate problems like those mentioned earlier in printing object addresses, if you need to include data that changes from run to run in your doctest. You employ directives by adding them to a # doctest: comment following the test, with a + to activate and a − to deactivate them. Directives apply only to a single example, and you can combine multiple directives, either on the same line or on multiple lines:
>>> print([1, 2, 3, 4]) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
This line matches all of the following:
[1, 2, 3, 4]
[1, 2,
3, 4]
[1, ... 4]
Additional directives control the style of output, the treatment of exception tracebacks, and so on, and it’s also possible to add your own directives and subclass doctest internals to change the response to them.
21.3.3. Pros and cons of doctests
Doctests have two big advantages going for them: simplicity and ease of use. These virtues make doctests a good thing to use in your code, because simple, easy tests are more likely to be created, used, and maintained. In addition, having the test readily visible and accessible as part of the code is a help. If you can see it and edit it easily, it’s more likely that you’ll keep it current and use it often. I might add that doctests are a “Pythonic” method of testing.
On the other hand, doctests aren’t for everyone or for every situation. If you need to do many tests, docstrings will add considerable bulk to your code files unless you move them to separate files, in which case you’ve lost one of the advantages of using doctests. In addition, some aspects of your code may be more awkward to test in the interpreter. There’s some debate about how far you can take doctests as a testing mechanism. The Zope 3 project, for example, uses doctests extensively, whereas most projects of similar size use unit tests. It finally comes down to what works best for you and your project.
21.4. Using unit tests to test everything, every time
In addition to doctests, Python also has a full-blown unit test library as part of the standard library. The unittest module (originally named PyUnit) is modeled somewhat on the JUnit library widely used in Java. You can use unittest to create a comprehensive suite of tests for any project. Python itself uses unit tests to test its more than 110 modules, including unittest. It’s not the intent of this chapter to tell you why you should use unittest or exactly what you should test but to give you a quick example of how to create and run a unittest suite.
The two basic classes you use to create unit tests are TestCase and TestSuite. The former contains the individual tests, and the latter is used to aggregate tests that should be run together.
21.4.1. Setting up and running a single test case
You create a test, or group of tests, by subclassing TestCase and adding each test as a method. To make the tests, you can either use assert or use one of the many variations on assert that are part of the TestCase class. In addition to adding the tests themselves as methods to the subclass, you can override both the setUp and tearDown methods to handle creating and disposing any objects or conditions needed for the test.
It will be easier to see how test creation works by following a simple example. In the last chapter, we created a TypedList class that ensures that all of its items are of the same type. Let’s create a simple test case to make sure the __getitem__ method returns the correct value. See listing 21.3.
Listing 21.3. File testtypedlist.py
import unittest
from typedlist import TypedList
class TestTypedList(unittest.TestCase):
def setUp(self):
self.a_typedlist = TypedList(1, [1, 2, 3])
def testGetItem(self):
self.assertEqual(self.a_typedlist[1], 2)
def testSetItem(self):
self.a_typedlist[1] = 3
self.assertEqual(self.a_typedlist[1], 3)
if __name__ == '__main__':
unittest.main()
In these tests, we use the assertEqual method of TestCase. As the name implies, assertEqual tests for the equality of two values. There are number of test asserts in TestCase, but you don’t absolutely have to use them. You can, for example, also use the regular assert statement, if you want. The problem is that if the __debug__ variable is set to false, the assertion won’t be tested, and your testing won’t occur. Therefore, it’s probably wisest always to use the methods in TestCase. Table 21.1 lists the main forms of those methods.
Table 21.1. Test methods in unittest.TestCase
Test | Explanation |
---|---|
TestCase.assert(expr[, msg]) | Fails if expr is False |
TestCase.assertEqual(first, second[, msg]) | Fails if first isn’t equal to second |
TestCase.assertNotEqual(first, second[, msg]) | Fails if first is equal to second |
TestCase.assertAlmostEqual(first, second[, places[, msg]]) | Fails if first and second aren’t equal when rounded to places (default is 7) decimal places |
TestCase.assertNotAlmostEqual(first, second[, places[, msg]]) | Fails if first and second are equal when rounded to places (default is 7) decimal places |
TestCase.assertRaises(exception, callable, ...) | Passes if calling callable with any parameters passed with it raises exception |
TestCase.assertFalse(expr[, msg]) | Fails if expr is True |
TestCase.fail([msg]) | Unconditionally generates a failure |
This is a summary of the most common methods. There are variations with the opposite names: failUnless, failUnlessEqual, and so on; see the standard documentation for a complete list.
21.4.2. Running the test
To run the test from the command line, we can add a call to the main method of the test case:
if __name__ == '__main__':
unittest.main()
The output from running this is something like the following:
doc@mac:~/work/quickpythonbook/testcode$ python3.1 testtypedlist.py
..
--------------------------------------------------------------------------
Ran 2 tests in 0.000s
OK
On the other hand, if a test fails, we get a fuller report. Let’s assume that we changed the value of the __getitem__ test so that it would fail:
testGetItem (testtypedlist.TestTypedList) ... FAIL
testSetItem (testtypedlist.TestTypedList) ... ok
==========================================================================
FAIL: testGetItem (testtypedlist.TestTypedList)
--------------------------------------------------------------------------
Traceback (most recent call last):
File "/home/doc/work/quickpythonbook/testcode/testtypedlist.py", line 9, in testGetItem
self.assertEqual(self.aTypedList[1], 3)
AssertionError: 2 != 3
--------------------------------------------------------------------------
Ran 2 tests in 0.001s
FAILED (failures=1)
Each failure is reported clearly, and the total number of failures is also reported.
21.4.3. Running multiple tests
It’s also fairly easy to aggregate various test cases into a unified test suite that can be run with a single command. This is done most easily by using the TestSuite, Test-Loader, and TestRunner classes. Although the TestSuite class can be subclassed and customized, and test cases can be added to a test suite instance manually, for most applications it’s easier to use the module’s default instances of TestLoader and TextTestRunner to create and run a test suite as follows:
suite = unittest.defaultTestLoader().loadTestsFromTestCase(TestTypedList)
unittest.TextTestRunner(verbosity=2).run(suite)
The previous code uses the module’s instance of defaultTestLoader to add all tests of the type TestTypedList to the test suite called suite. Then, the module’s default TextTestRunner instance runs the suite of tests with a verbosity level of 2. The result looks something like this:
testGetItem (__main__.TestTypedList) ... ok
testSetItem (__main__.TestTypedList) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.000s
OK
There are several variations on how test cases can be detected and loaded. For example, to load all tests from the module testtypedlist.py, you can use loadTestsFromName('testtypedlist'), which loads all tests in classes derived from TestCase in that module.
This example has been simple because my intent isn’t to tell you how to use unit tests but to show you the basics of how to create a unit test in Python.
21.4.4. Unit tests vs. doctests
Unit tests have a different approach than doctests. Although doctests are by nature intended (if not required) to be interleaved with the code they test, unit tests are meant to be separate from the tested code. This makes unit tests a bit less transparent and convenient in smaller projects, but they also have benefits. Having the tests separate from the code means you can develop an extensive suite of tests without increasing the size of the code files and burying the working code under a mass of test code. It also means that the tests don’t need to be distributed with the code, although in many projects they are. On the other hand, the separation of tests and code and the more programmatic nature of unit tests tend to make for less ease of documentation than is found in doctests.
21.5. Summary
Python comes with two different testing systems, doctests and unit tests. Doctests are meant to be included in docstrings for modules, functions, and so on and are more visible and easier to edit. Particularly for small projects, doctests are more visible and easier to use and therefore more likely to be used. Unit tests, on the other hand, are intended for creating more intensive test suites and are more customizable; the tests are separate from the code, arguably making them a better choice for larger projects.
Chapter 22. Moving from Python 2 to Python 3
This chapter covers
We’ve dealt with only the syntax and features of Python 3.x so far in this book. That was deliberate, because we feel that Python 3.x is a distinct improvement over early versions of Python and it’s where future development should occur. On the other hand, it’s not always possible to make a clean break from the past. For the foreseeable future, many situations will call for dealing with legacy Python 2.x code. This chapter discusses how you can migrate older Python 2.x code to Python 3.x.
22.1. Porting from 2 to 3
Several changes from Python 2.x to 3.x broke compatibility between the two versions. Some of them were obvious but easy to fix, such as the change of the print statement to the print function or the change of the input function to behave the way that the old raw_input function did. Other changes were more subtle, and more posed sneakier problems: the change of strings to be Unicode by default with the addition of a bytes type to hold unencoded byte values, returning iterators and views instead of lists from functions like range and a dictionary’s keys method, differences in handling exceptions, and the addition of sets come to mind, to name a few.
Table 22.1 illustrates some of the representative differences between Python 2.x and 3.x code.
Table 22.1. Python 2.x vs. Python 3.x code
Python 2.x | Python 3.x |
---|---|
raw_input(prompt) | input(prompt) |
print x (no parentheses) | print(x) |
str type and unicode type | bytes type (sequence of bytes) and str type (all strings are Unicode) |
1L (long integer data type) | 1 (all ints can be long) |
an_iterator.next() | next(an_iterator) |
try.... except Exception, e | try.... except Exception as e |
StandardError class | Exception class |
1/2 -> 0 (integer division) | 1/2 -> 0.5, 1//2 -> 0 |
my_dict.keys() (and many others) return lists | my_dict.keys()(and others) return dynamic view that changes if underlying object changes |
Although these differences aren’t in themselves that large, taken together they mean that virtually no legacy Python 2.x code can run on Python 3.x unchanged.
22.1.1. Steps in porting from Python 2.x to 3.x
To help you make the transition from 2 to 3, the core developers of Python offer a clear set of steps to follow to migrate code to the new version:
In general, the first step, complete test coverage, is the biggest stumbling block for most projects. But the time you spend adding tests will continue to pay off long after the conversion is complete.
22.2. Testing with Python 2.6 and -3
Python 2.6 and later versions have a -3 command-line switch that will report obvious incompatibilities in your code. In listing 22.1, we consider a small Python 2.x script, with several elements that need to be changed to run correctly on Python 3.
Listing 22.1. File convert2_3.py
""" example of conversion from Python 2.x to Python 3
"""
def write_file(filename, version, data):
try:
outfile = open(filename, "wb")
outfile.write("%s\n" % (version))
outfile.write(data)
outfile.close()
except StandardError, e:
print e
def read_file(filename):
infile = open(filename, "rb")
file_version = infile.readline()
data = infile.read()
major_version = int(file_version[0])
minor_version = int(file_version[2])
if major_version <> 1 or minor_version > 5:
raise Exception, "Wrong file version"
infile.close()
return file_version, data
if __name__ == "__main__":
version = "1.1"
filename = raw_input("Please enter a filename: ")
write_file(filename, version, "this is test data")
print "File created, reading data from file"
new_version, data = read_file(filename)
cents = 73L
quarters = cents / 25
print "%d cents contains %d quarters" % (cents, quarters)
new_dict = {}
if not new_dict.has_key(new_version):
new_dict[new_version] = filename
This code doesn’t do much of anything, but it does contain a lot of fairly common bits of code: getting a string from the user, opening a file, reading from the file, comparing the contents of the file to a string, appending a string, handling errors, and so on. Running this code using Python 2.6 with the -3 switch generates a couple of deprecation warnings about using <> and dict.has_key:
doc@mac:~$ python2.6 -3 convert2_3.py
convert2_3.py:22: DeprecationWarning: <> not supported in 3.x; use !=
if major_version <> 1 or minor_version > 5:
Please enter a filename: testfile
File created, reading data from file
convert2_3.py:35: DeprecationWarning: classic int division
quarters = cents / 25
73 cents contains 2 quarters
convert2_3.py:39: DeprecationWarning: dict.has_key() not supported in 3.x;use the in operator
if not new_dict.has_key(new_version):
Obviously, some other fixes need to be made. Both print and raw_input need to be changed, and the exception handling needs to be tweaked, but those issues can be taken care of automatically. Although some of the warnings generated by the -3 switch can also be corrected by the conversion tool, it’s recommended that you fix all of its warnings before taking the next step. In this case, that means changing these lines:
After we make those changes, the code should run without warnings.
22.3. Using 2to3 to convert the code
After you’ve fixed any warnings from running the code with the -3 parameter under Python 2.6 or higher, the next step is to run the 2to3 tool on it to produce a version for Python 3. 2to3 will make a number of automatic fixes, things like changing raw_input to input, print to print(), and so on, but it’s unlikely that the converted code will run without error.
The 2to3 tool takes either a file or a directory to convert and generates a patch file of all the changes to be applied to convert to Python 3. If it’s unable to apply a fix for a problem automatically, it prints a warning below the diff for that file. By default, 2to3 runs several fixers and more can be added; running 2to3 –l (that’s a lowercase “el”) will show what fixers are available. If you want to exclude a particular fixer, using the –x option followed by the fixer name will exclude it, as in the following example where the has_key fixer is turned off:
doc@mac:~$ 2to3 –x has_key convert2_3.py
Using the –f option turns on fixers explicitly, with all enabling all the default fixers, whereas using the fixer name enables only the fixer mentioned. If we want to enable only the has_key fixer, we use
doc@mac:~$ 2to3 –f has_key convert2_3.py
And if we want to enable all the default fixers and the apply fixer, the command is
doc@mac:~$ 2to3 –f all –f apply convert2_3.py
Running 2to3 on our sample file gives us the diff in listing 22.2.
Listing 22.2. File convert2_3.diff
--- convert2_3.py (original)
+++ convert2_3.py (refactored)
@@ -9,8 +9,8 @@
outfile.write(data)
outfile.close()
- except StandardError, e:
- print e
+ except Exception as e:
+ print(e)
def read_file(filename):
infile = file(filename, "rb")
@@ -19,24 +19,24 @@
major_version = int(file_version[0])
minor_version = int(file_version[2])
- if major_version <> 1 or minor_version > 5:
- raise Exception, "Wrong file version"
+ if major_version != 1 or minor_version > 5:
+ raise Exception("Wrong file version")
infile.close()
return file_version, data
if __name__ == "__main__":
version = "1.1"
- filename = raw_input("Please enter a filename: ")
+ filename = input("Please enter a filename: ")
write_file(filename, version, "this is test data")
- print "File created, reading data from file"
+ print("File created, reading data from file")
new_version, data = read_file(filename)
- cents = 73L
+ cents = 73
quarters = cents / 25
- print "%s cents contains %s quarters" % (cents, quarters)
+ print("%s cents contains %s quarters" % (cents, quarters))
new_dict = {}
- if not new_dict.has_key(new_version):
+ if new_version not in new_dict:
new_dict[new_version] = filename
We can use a patch tool to apply the changes to our source, or we can use 2to3’s –w option to automatically write the changes back to the file while creating a backup copy of the original.
22.4. Testing and common problems
As mentioned previously, there’s little chance that the automatic conversions performed by the 2to3 program will be enough for the code to run correctly. In particular, places where the old code handled strings are likely to have problems, because Python 2.x doesn’t make a distinction between strings and sequences of raw bytes, and it’s next to impossible for any automated conversion tool to consistently make that distinction on its own.
Listing 22.3 is our converted version of listing 22.2, with notes indicating all of the problems that the automatic conversion didn’t fix.
Listing 22.3. File convert2_3_converted.py
file_version is a bytes object, so int(file_version[0]) yields 49, not 1 . Division returns an int in Python 2.x but a float in Python 3.x, so quarters is now 2.92 instead of 2
.
When we attempt to run this file with Python 3, it doesn’t run without errors, mostly because of the difference between bytes and strings. As indicated in the annotations, several errors aren’t caught by the conversion. Even when these errors are fixed and the code runs, it doesn’t behave correctly, with both the conversion of a single element of a bytes object and division behaving differently between the two versions. If these problems occur in such a small script, you can imagine the possibilities for error in a larger application. The moral is pretty clear: if you’re migrating code to Python 3.x, you must have good test coverage, and you must test extensively.
22.5. Using the same code for 2 and 3
The core developers don’t expect that the same code base can be used on both Python 2.x and 3.x. Although Python is flexible enough that in some cases it may be possible to create code that can run on both Python 2.x and 3.x, it isn’t recommended.
It’s possible to import several features of Python 3, like division, into Python 2.x by using the __future__ module; but even if you imported all the features of the __future__ library, the differences in library structure, the distinction between strings and Unicode, and so on all would make for code that would be hard to maintain and debug.
22.5.1. Using Python 2.5 or earlier
If attempting to use the same code for version 3.x and 2.6 and higher isn’t recommended, trying to do the same with any earlier version of Python borders on insanity. The differences between earlier versions of Python and Python 3 are large enough that you’d spend more time making the code run than in designing and implementing an application.
22.5.2. Writing for Python 3.x and converting back
Another way of using one code base for both platforms may be to go in the opposite direction and write code for Python 3.x and convert it back to Python 2.x. As this book is being written, a 3to2.py tool is being developed, with the idea that it will be both easier and more reliable to convert back to 2.x, possibly even as part of the install process, if needed. Although this tool isn’t yet complete, it shows great promise for the future.
22.6. Summary
The incompatibility between Python 3 and previous versions is a major consideration when you’re dealing with legacy code. Python provides both procedures and tools for moving code from Python 2.x to Python 3, using the warnings available in Python 2.6 and higher and the 2to3 conversion tool, followed by ample testing. Migrating the code Python 3 is probably the ideal long-term solution, but only if the code has adequate test coverage to ensure the new version functions properly.
Chapter 23. Using Python libraries
This chapter covers
Python has long proclaimed that one of its key advantages is its “batteries included” philosophy. This means that a stock install of Python comes with a rich standard library that lets you handle a wide variety of situations without the need to install additional libraries. This chapter will give you a high-level survey of some of the contents of the standard library as well as some suggestions on finding and installing external modules.
23.1. “Batteries included”—the standard library
In Python, what’s considered the library consists of several different components. It contains built-in data types and constants that can be used without an import statement, like numbers and lists, as well as some built-in functions and exceptions. The largest part of the library is an extensive collection of modules. If you have Python, you also have libraries to manipulate diverse types of data and files, to interact with your operating system, to write servers and clients for many internet protocols, and to help develop and debug your code.
What follows is a survey of the high points. Although most of the major modules are mentioned, for the most complete and current information I recommend that you spend some time on your own exploring the library reference that’s part of the Python documentation. In particular, before you go in search of an external library, be sure to scan through what Python already offers. You may be surprised at what you find.
23.1.1. Managing various data types
The standard library naturally contains support for Python’s built-in types, which we touched on earlier. In addition, three other categories in the standard library deal with various data types: string services, data types, and numeric modules.
String services include the modules in table 23.1 that deal with bytes as well as strings. The three main things these modules deal with are strings and text, sequences of bytes, and Unicode operations.
Table 23.1. String services modules
Module | Description and possible uses |
---|---|
string | Compare to string constants, like digits or whitespace; format strings (see chapter 6) |
re | Search and replace text using regular expressions (see chapter 17) |
struct | Interpret bytes as packed binary data; read and write structured data to/from files |
difflib | Helpers for computing deltas; find differences between strings or sequences, create patches and diff files |
textwrap | Wrap and fill text; format text by breaking lines or adding spaces |
The data types category is a diverse collection of modules covering various data types, particularly time, date, and collections, as shown in table 23.2.
Table 23.2. Data types modules
As the name indicates, the numeric and mathematical modules deal with numbers and mathematical operations, and the most common of these are listed in table 23.3. These modules have everything you need to create your own numeric types and handle a wide range of math operations.
Table 23.3. Numeric and mathematical modules
Module | Description and possible uses |
---|---|
numbers | Numeric abstract base classes |
math, cmath | Mathematical functions for real and complex numbers |
decimal | Decimal fixed-point and floating-point arithmetic |
fractions | Rational numbers |
random | Generate pseudo-random numbers and choices; shuffle sequences |
itertools | Functions that create iterators for efficient looping |
functools | Higher-order functions and operations on callable objects |
operator | Standard operators as functions |
23.1.2. Manipulating files and storage
Another broad category in the standard library covers files, storage, and data persistence and is summarized in table 23.4. It ranges from modules for file access to various modules for data persistence and compression and handling special file formats.
Table 23.4. File and storage modules
23.1.3. Accessing operating system services
This category is another broad one, containing modules for dealing with your operating system. As shown in table 23.5, this category includes tools for handling command-line parameters, redirecting file and print output and input, writing to log files, running multiple threads or processes, and loading non-Python (usually C) libraries for use in Python.
Table 23.5. Operating system modules
Module | Description |
---|---|
os | Miscellaneous operating system interfaces |
io | Core tools for working with streams |
time | Time access and conversions |
optparse | Powerful command-line option parser |
logging | Logging facility for Python |
getpass | Portable password input |
curses | Terminal handling for character-cell displays |
platform | Access to underlying platform’s identifying data |
ctypes | Foreign function library for Python |
select | Waiting for I/O completion |
threading | Higher-level threading interface |
multiprocessing | Process-based threading interface |
subprocess | Subprocess management |
23.1.4. Using internet protocols and formats
The internet protocols and formats category is concerned with encoding and decoding the many standard formats used for data exchange on the internet, from MIME and other encodings to JSON and XML. It also has modules for writing servers and clients for common services, particularly HTTP, and a generic socket server for writing servers for custom services. The most commonly used are listed in table 23.6.
Table 23.6. Modules supporting internet protocols and formats
Module | Description |
---|---|
socket, ssl | Low-level networking interface and SSL wrapper for socket objects |
Email and MIME handling package | |
json | JSON encoder and decoder |
mailbox | Manipulate mailboxes in various formats |
mimetypes | Map filenames to MIME types |
base64, binhex, binascii, quopri, uu | Encode/decode files or streams with various encodings |
html.parser, html.entities | Parse HTML and XHTML |
xml.parsers.expat, xml.dom, xml.sax, xml.etree.ElementTree | Various parsers and tools for XML |
cgi, cgitb | Common Gateway Interface support |
wsgiref | WSGI utilities and reference implementation |
urllib.request, urllib.parse | Open and parse URLs |
ftplib, poplib, imaplib, nntplib, smtplib, telnetlib | Clients for various internet protocols |
socketserver | Framework for network servers |
http.server | HTTP servers |
xmlrpc.client, xmlrpc.server | XML-RPC client and server |
23.1.5. Development and debugging tools and runtime services
Python has several modules to help you debug, test, modify, and otherwise interact with your Python code at runtime. As shown in table 23.7, this includes two different testing tools, profilers, modules to interact with error tracebacks, the interpreter’s garbage collection, and so on, as well as modules that let you tweak the importing of other modules.
Table 23.7. Development, debugging, and runtime modules
23.2. Moving beyond the standard library
Although Python’s “batteries included” philosophy and well-stocked standard library mean that you can do a lot with Python out of the box, there will inevitably come a situation where you need some functionality that doesn’t come with Python. This section surveys your options when you need to do something that isn’t in the standard library.
23.3. Adding more Python libraries
Finding a Python package or module can be as easy as entering the functionality you’re looking for, like “mp3 tags” and “Python” into a search engine, and then sorting through the results. If you’re lucky, you may find the module you need packaged for your OS—with an executable Windows or Mac OS X installer or a package for your Linux distribution.
This is one of the easiest ways to add a library to your Python installation, because the installer or your package manager takes care of all the details of adding the module to your system correctly.
In general, such prebuilt packages aren’t the rule for Python software. Such packages tend to be a bit older, and there’s less flexibility in where and how they’re installed.
23.4. Installing Python libraries using setup.py
If you need a third-party module that isn’t prepackaged for your platform, you’ll have to turn to its source distribution. Installing even a single Python module correctly can involve a certain amount of hassle in dealing with Python’s paths and your system’s permissions, which makes a standard installation system helpful. The current system uses distutils, which is a module in the standard library. Source distributions built to use distutils in the standard way should have the name and version number of the package in the archive name, something like spam-0.1.zip, which unpacks into a similarly named directory. After it’s unpacked, the distribution contains a setup.py script and a README.txt or README file. That README file includes the instruction that to install the package, you only need to run python setup.py install in that directory from a command line.
If you happen to have more than one version of Python installed, it’s important to remember that you need to run setup.py with the same version of Python that you intend to use with the new package, and you also need to run setup.py with sufficient permissions to install software on your system.
For most situations, python setup.py install is all you need to know about a distutils install. But if you need to install to a different location, possibly because you don’t have administrator access on that particular system, you can use the home scheme.
23.4.1. Installing under the home scheme
The home scheme is named after the UNIX idea of having a personal home directory for both software and data. In spite of the UNIX-inspired name, this scheme works on any OS.
To install under the home scheme, you need to give the setup.py script the --home option followed by the location you want use as the root of your installation. For example, to install into /home/vern, we use
python setup.py install --home=/home/vern
In this case, after installation, the library modules will be in /home/vern/lib/python, any executable scripts should be in /home/vern/bin, and any data belonging to the package will be in /home/vern/share. To install on a Windows system into C:\Documents and Settings\vern, use the command
python setup.py install --home="C:\Documents and Settings\vern"
which will install into C:\Documents and Settings\vern\lib, C:\Documents and Settings\vern\bin, and so on. Note that you need to use quotes around any directory names that contain spaces.
As mentioned previously, this scheme is particularly useful if you’re working on a system where you don’t have sufficient administrator rights to install software, or if you want to install a different version of a module.
23.4.2. Other installation options
distutils installations can be tweaked in a wide variety of ways. There are other ways to control the locations installed into, the search path Python uses to locate modules, and so on. If your needs go beyond the basic installation methods discussed here, a good place to start is “Installing Python Modules,” which can be found in the Python documentation.
23.5. PyPI, a.k.a. “the Cheese Shop”
Although distutils packages get the job done, there’s one catch—you have to find the correct package, which can be a chore. And after you’ve found a package, it would be nice to have a reasonably reliable source from where to download that package.
To meet this need, there have been different Python package repositories over the years, and currently the official (but by no means the only) repository for Python code is the Python Package Index, or PyPI (also known as “the Cheese Shop”) on the Python website. You can access it from a link on the main page or directly at http://pypi.python.org. PyPI contains over 6,000 packages for various Python versions, listed by date added and name, but also searchable and broken down by category.
PyPI is the logical next stop if you can’t find the functionality you want with a search of the standard library.
23.6. Summary
Python has a rich standard library that covers more common situations than many other languages, and you should check what’s in the standard library carefully before looking for external modules. If you do need an external module, prebuilt packages for your OS are the easiest option, but they’re sometimes older and often hard to find. If you can’t find a prebuilt package, the standard way to install from source is using setup.py from the distutils package. In any case, the logical first step in searching for external modules is the Python Package Index, or PyPI.
Chapter 24. Network, web, and database programming
This chapter covers
By this point, we’ve surveyed a lot of what Python can do. The final area to examine is one of the most important: using Python to build web applications that serve dynamic content. Many libraries and frameworks for creating web applications are available, in many languages—Java, PHP, Perl, and Ruby to name a few. As web applications continue to evolve and increase in importance, Python’s role in this space continues to grow.
Dynamic web applications typically store their content in databases and use the results of queries on those databases to generate page content dynamically. Various templating libraries and application frameworks are commonly used to handle URLs and format content. In this chapter, we’ll look at the pieces of this process using simple examples. When you see how the pieces fit together in Python, using almost any combination of database and application framework is possible.
24.1. Accessing databases in Python
Database access is a large part of many applications, including dynamic web applications. By using external modules, Python can access most popular databases, and in general the interface for each follows the DB-API 2.0 standard database specification detailed in PEP (Python Enhancement Proposal) 249. The specification calls for the use of a connection object to manage the connection to the database and for the use of cursor objects to manage the interaction with the database, for fetching data from the database and updating its contents.
The fact that Python database libraries conform to the DB-API 2.0 spec has a couple of obvious advantages. For one thing, writing code for different databases is easier, because the general rules are the same. The other advantage is that it’s fairly easy to prototype an application using a lightweight database and then switch the application over to a production database after the basic design of the application has been finalized.
24.1.1. Using the sqlite3 database
Although there are Python modules for many databases, for the following examples we’ll look at the one that comes included with Python: sqlite3. Although not suited for large, high-traffic applications, sqlite3 has two advantages: first, because it’s part of the standard library it can be used anywhere you need a database, without worrying about adding dependencies; second, sqlite3 stores all of its records in a local file, so it doesn’t need both a client and server, like MySQL or other common databases. These features make sqlite3 a handy option for both smaller applications and quick prototypes.
To use a sqlite3 database, the first thing you need is a connection object. Getting a connection object requires only calling the connect function with the name of file that will be used to store the data:
>>> import sqlite3
>>> conn = sqlite3.connect("datafile")
It’s also possible to hold the data in memory by using ":memory:" as the filename. For storing Python integers, strings, and floats, nothing more is needed. If you want sqlite3 to automatically convert query results for some columns into other types, it’s useful to include the detect_types parameter set to sqlite3.PARSE_DECLTYPES| sqlite3.PARSE_COLNAMES, which will direct the connection object to parse the name and types of columns in queries and attempt to match them with converters you’ve already defined.
The second step is to create a cursor object from the connection:
>>> cursor = conn.cursor()
>>> cursor
<sqlite3.Cursor object at 0xb7a12980>
At this point, you’re able to make queries against the database. In our current situation, because there are no tables or records in the database yet, we need to create one and insert a couple of records:
>>> cursor.execute("create table test (name text, count integer)")
>>> cursor.execute("insert into test (name, count) values ('Bob', 1)")
>>> cursor.execute("insert into test (name, count) values (?, ?)",
... ("Jill", 15))
The last insert query illustrates the preferred way to make a query with variables; rather than constructing the query string, it’s more secure to use a ? for each variable and then pass the variables as a tuple parameter to the execute method. The advantage is that you don’t need to worry about incorrectly escaping a value; sqlite3 takes care of it for you.
You can also use variable names prefixed with : in the query and pass in a corresponding dictionary with the values to be inserted:
>>> cursor.execute("insert into test (name, count) values (:username, \
:usercount)", {"username": "Joe", "usercount": 10})
After a table is populated, you can query the data using SQL commands, again using either ? for variable binding or names and dictionaries:
>>> result = cursor.execute("select * from test")
>>> print(result.fetchall())
[('Bob', 1), ('Jill', 15), ('Joe', 10)]
>>> result = cursor.execute("select * from test where name like :name",
... {"name": "bob"})
>>> print(result.fetchall())
[('Bob', 1)]
>>> cursor.execute("update test set count=? where name=?", (20, "Jill"))
>>> result = cursor.execute("select * from test")
>>> print(result.fetchall())
[('Bob', 1), ('Jill', 20), ('Joe', 10)]
In addition to the fetchall method, the fetchone method gets one row of the result and fetchmany returns an arbitrary number of rows. For convenience, it’s also possible to iterate over a cursor object’s rows similar to iterating over a file:
>>> result = cursor.execute("select * from test")
>>> for row in result:
... print(row)
...
('Bob', 1)
('Jill', 20)
('Joe', 10)
Finally, by default, sqlite3 doesn’t immediately commit transactions. That means you have the option of rolling back a transaction if it fails, but it also means you need to use the connection object’s commit method to ensure that any changes made have been saved. This is a particularly good idea before you close a connection to a database, because the close method doesn’t automatically commit any active transactions:
>>> cursor.execute("update test set count=? where name=?", (20, "Jill"))
>>> conn.commit()
>>> conn.close()
Table 24.1 gives an overview of the most common operations on a sqlite3 database.
Table 24.1. Common database operations
Operation | Sqlite3 command |
---|---|
Create a connection to a database | conn = sqlite3.connect(filename) |
Create a cursor for a connection | Cursor = conn.cursor() |
Execute a query with the cursor | cursor.execute(query) |
Return the results of a query | cursor.fetchall(), cursor.fetchmany(num_row s), cursor.fetchone() for row in cursor: .... |
Commit a transaction to a database | conn.commit() |
Close a connection | conn.close() |
These operations are usually all you need to manipulate a sqlite3 database. Of course, several options let you control their precise behavior; see the Python documentation for more information.
24.2. Network programming in Python
The Python standard library has everything you need to handle the standard internet protocols and to create both clients and servers. The following examples use HTTP, but similar patterns are used in most protocols.
24.2.1. Creating an instant HTTP server
The standard library has a number of modules for writing servers for various network protocols. In many cases, you can create a server in only a few lines of code. Suppose we want to make a particular folder’s files freely accessible via HTTP, perhaps to share a few files with coworkers without the hassle of setting up a formal repository or file share. With Python, we don’t need to install and configure a server. With a few lines of code, we can create a temporary server on the fly:
>>> from http.server import HTTPServer, SimpleHTTPRequestHandler
>>> server = HTTPServer(("", 8000), SimpleHTTPRequestHandler)
>>> server.serve_forever()
This server will serve the contents of the folder it’s run in on port 8000 for all active network interfaces. The tuple ("", 8000) sets the address and port for the server. Leaving the address an empty string allows it to use all of the machine’s network addresses, and the 8000 specifies the port. The second parameter to HTTPServer is the request handler; and SimpleHTTPRequestHandler is a subclass of BaseHTTPRequest-Handler, which is written to serve files from the current directory. In particular, SimpleHTTPRequestHandler defines do_GET and do_HEAD methods, which map the requests to the contents of the current folder, returning either directory listings or the contents of a file, as needed.
Another predefined request-handler class, CGIHTTPRequestHandler, serves files or the output of CGI scripts in the current folder. CGIHTTPRequestHandler defines an additional method, do_POST, which responds to POST requests on CGI scripts. Any of the request-handler classes can be subclassed to create the particular behavior you desire.
24.2.2. Writing an HTTP client
Writing Python code to interact with an HTTP server is also quite easy. The urllib.request module is designed to enable interaction with URLs in all their real-world complexity, including authentication, cookies, redirections, and the like.
But for all of its power and options, basic interactions with the urllib.request module are simple. The URL is opened and returns a file-like object, which you can read and treat like any other file. The object returned also has two additional methods: geturl, which returns the URL retrieved, so you can tell if the original request was redirected; and info, which returns the page’s headers. For example, if we were to leave our simple HTTP server running and open another Python interactive shell, we could access the server in this way:
>>> from urllib.request import urlopen
>>> url_file = urlopen("http://localhost:8000")
>>> print(url_file.geturl())
http://localhost:8000
>>> print(url_file.info())
Server: SimpleHTTP/0.6 Python/3.1.1
Date: Sat, 06 Jun 2009 20:28:13 GMT
Content-type: text/html; charset=utf-8
Content-Length: 15395
>>> for line in url_file.readlines():
... print(line)
...
b'<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><html>\n'
b'<title>Directory listing for /</title>\n'
b'<body>\n'
b'<h2>Directory listing for /</h2>\n'
b'<hr>\n'
b'<ul>\n'
...
# file names would be in HTML links in list items here...
...
b'</ul>\n'
b'<hr>\n'
b'</body>\n'
b'</html>\n'
24.3. Creating a Python web application
Although the http.server module has the basics of a web server, you need more than the basics to write a full-featured web application. You need to manage users, authentication, and sessions; you need a way to generate HTML pages. The solution to this is to use a web framework, and over the years many frameworks have been created in Python, leading to the present generation, which includes Zope and Plone, Django, TurboGears, web2py, and many more.
One thing to keep in mind in considering web applications is that the web server functionality—the part that processes HTTP requests and returns responses—isn’t necessarily (or even usually) closely tied to the web application itself. Most web frameworks today can either run their own HTTP servers or rely on an external server, depending on the situation. For development, it’s often preferred to use the application’s internal server, because there’s less to install and set up. For heavy traffic in production, often an external server handles the load better and can be tweaked as needed.
24.3.1. Using the web server gateway interface
In the early days of Python web frameworks, there was little standardization of how web applications interacted with web servers. Consequently, the choice of a web framework often limited the possible web servers you could use and made migration from one to the other difficult. The WSGI (“whiz-ghee”), or web server gateway interface, specification was created to provide a standard for the interaction of web server and applications, so that it would be easier to use a web application and framework on different web servers. Figure 24.1 is a simple schematic of how a WSGI application combines with a server.
Figure 24.1. How a WSGI application works with a server
You need to know the details of WSGI design only if you’re writing web servers or web application frameworks, but it’s useful to understand the basic idea of how a WSGI application is set up.
24.3.2. Using the wsgi library to create a basic web app
Although WSGI is technically more of a specification than a library, the standard library does include a reference implementation of WSGI server and utilities in the wsgiref module. It includes a simple server implementation as well as various utilities. Creating a basic WSGI application using wsgiref.simple_server is almost as easy as our bare-bones HTTP server earlier. The one thing you need to pass to the server when it’s created is a callable application object that receives two parameters from the server: a dictionary of environment variables and a callable object to receive HTTP status and headers for the response. Here’s a basic “Hello World” WSGI application, based on the one in the standard library documentation:
If you run this script and open a browser to http://127.0.0.1:8000, you should be greeted by “Hello World.”
The two main parts of this are hello_world_app and the creation of the server itself. The creation of the server is easy: a call to make_server, passing in the application object, and the address and port for the server. In this example the address is blank, so the server will listen on all active interfaces. After the server has been created, you start it by calling its serve_forever method; or you can make it serve only one request and quit by using the handle_request method.
Creating the application object, hello_world_app, is more involved but still fairly simple, because it’s a function with the two required parameters, environ and start_response. The former is a CGI-style dictionary of variables from the server, which in this example is ignored. The second parameter, start_response, is a callable object that the application uses to send the HTTP status and headers of its response. In this case, as usual, we send a status of '200 OK' and the headers indicating that this response will be plain text, encoded as UTF-8. We’ll be using this basic implementation as the starting point to create a simple “message wall” application at the end of this chapter.
24.3.3. Using frameworks to create advanced web apps
The WSGI specification goes a long way toward standardizing the way that Python web applications can interact with web servers and handle HTTP requests and responses. It doesn’t specify how applications behave internally, however, nor does it mandate what the application does with the requests it receives or how it generates its responses. This means that with a bare WSGI application a lot must be implemented. And a lot of that is repetitive: handling URLs, extracting the information from web forms, creating HTML pages, inserting dynamic content into those pages, and the like. Although it’s possible to code everything by hand or to assemble and/or write a custom collection of modules to handle these chores, for most projects it’s preferable to use an existing web framework. The most popular frameworks include a server (good enough for at least development and testing) and the machinery for creating and customizing web applications.
At the time of this writing, none of the major frameworks have been ported to Python 3, but the work is in progress; Python 3 versions of all the major web app frameworks should be ready by the time Python 3.2 is released in the summer of 2010.
24.4. Sample project—creating a message wall
To see what you can do with a WSGI application, let’s create a simple example: a message wall where the messages are stored in a sqlite3 database and the URL is used to indicate the user and tags being searched for. Note that this is a simple example, and we won’t be implementing any kind of security, session management, and so on, so don’t use this in production. This application is intended to show you the possibilities for writing web applications in Python.
As you’ve seen, we need to create an application object to pass to the server when we create it. This application needs to be able to do the following:
24.4.1. Creating the database
The first thing we need to do is to create the sqlite3 database for the app. We’ll need three fields in the messages table: the user, the message itself, and its timestamp. Both the user and the message are naturally text fields in sqlite3 and will map automatically to strings in Python. For the timestamp, it would be convenient if we could read the values as Python datetime values. Fortunately, Python’s sqlite3 module includes converters for date and datetime types; we’ll need to activate type detection on the connection object in order to have a timestamp database type available. To set up the database, we need to enter the following from a Python shell in the directory where we want to run our database:
>>> import sqlite3
>>> conn = sqlite3.connect("messagefile", \
... detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES)
>>> cursor = conn.cursor()
>>> cursor.execute("create table messages(user text, message text, "
... "ts timestamp)")
>>> conn.commit()
>>> conn.close()
This creates a database in the file messagefile and creates a table called messages with text fields for the user and the message and a timestamp field called ts.
24.4.2. Creating an application object
The next step is to create the application. First, let’s write the application to display the title Message Wall, as shown in listing 24.1.
Listing 24.1. File message_wall01.py
Running this program gets a similar result to our early simple example. When you visit 127.0.0.1:8000 with a web browser, you see only “Message Wall.” Note, however, that we did change the type of the response in our header from text/plain to text/html.
24.4.3. Adding a form and retrieving its contents
With the basic application working, it’s time to add its functionality. The first thing we can do is add a form for message submissions. This will require two things: sending the HTML code to make the form and then retrieving its values when the user submits the form. Sending the HTML code means that we’ll be creating longer and longer strings to return from our application object; rather than using string concatenation, we can use a StringIO object from the io library to let us print our output as if we were writing it to a file and then return it as one string.
Retrieving the values of the form can happen only when values are submitted, which makes the request’s REQUEST_METHOD be POST instead of the normal GET. When that happens, we can get the values from the form by using the CONTENT_LENGTH item from environ to find out how long the form string is and then reading that amount from environ’s wsgi.input. At this point, we aren’t saving the form data, but we’ll print it to the browser so that we can see what’s going on (see listing 24.2).
Listing 24.2. File message_wall02.py
We use the print function’s file parameter to print to StringIO object . We then return the entire contents of output by calling its getvalue method
.
Figure 24.2 is a screen shot of the browser window, with the server running in a command window behind it.
Figure 24.2. The browser and server after a form POST
Note that the value of the form fields is returned as a single bytes object.
24.4.4. Saving the form’s contents
When we have a message, we need to save the message to the database. To do this, we’ll need to parse the value we read from the form and then use a sqlite3 query to store it in the database. To make this easier, we’ve added a helper function to parse the form string into a dictionary, and we’ve added the current timestamp to that dictionary. Then, the dictionary is used as the parameter for a SQL query to save the message to the database (see listing 24.3).
Listing 24.3. File message_wall03.py
We use a dictionary comprehension to transform post_str into a dictionary . Then, we add a timestamp to the form_vals dictionary
. Sqlite3 connection and cursor objects are created only once for an application
.
24.4.5. Parsing the URL and retrieving messages
What remains is to retrieve messages from or addressed to a particular user. As described in our requirements, a message addressed to a user will begin with @ and that user’s username. Also shown in the specs, the desired way of indicating the user is to append the username to the base URL. To get all messages to user vceder, for example, that username would be added to the URL, which in the case of our localhost server would be http://localhost:8000/vceder.
That means we need to get the PATH_INFO:PATH_INFO from the request, which is anything beyond the base URL, and split it on/into fields. We can use Python’s flexible tuple unpacking to put the first field into a username variable and anything beyond the first field into a tags list, so that we can easily add tagging later.
In this case, it’s simpler to create a query using ? to mark the variables. We can create a tuple of (user, "@"+user+"%") to hold the values, with the first part of the query looking for an exact match on the username and the second part being a match with any message that starts with an @ and the username.
We’ve also taken care of a couple of other issues. First, a helper function message_table puts any matching records from the query into an HTML table. Second, the post_str variable is now decoded from a bytes object to a string, and it also has any quoting removed with the unquote_plus function from the urllib.parse library (see listing 24.4).
Listing 24.4. File message_wall04.py
Here we decode from bytes to string and unquote . We read and parse PATH_INFO for username
. Then, we query the database for matching messages
.
Figure 24.3 is a screenshot of the server and browser after a message has been posted.
Figure 24.3. Browser and server after a message POST
If you compare the timestamp of the message in the browser and the time of the POST statement in the server’s command window, you can see that the last message has just been posted.
24.4.6. Adding an HTML wrapper
If we were to use our browser’s View Source feature to look at the HTML this application is generating, we’d see that we’re not returning complete pages. Instead, we’re returning only the HTML code for the contents of the page, with no beginning or end. The last step is to wrap our output in HTML headers and footers to make it a more legal HTML page. To do that, we can add some variables to hold header and footer strings and a little function to put everything together (listing 24.5).
Listing 24.5. File message_wall05.py
from wsgiref.simple_server import make_server
from io import StringIO
from urllib.parse import unquote_plus
import sqlite3
import datetime
header = "<html><header> <title>Message Wall</title></header><body>"
footer = "</body></html>"
def html_page(content):
page = "%s\n%s\n%s" % (header, content, footer)
return page
def get_form_vals(post_str):
form_vals = {item.split("=")[0]: item.split("=")[1] for item \
in post_str.split("&")}
return form_vals
def message_table(messages):
table = "<table>\n"
for message in messages:
row_str = "<tr><td>{0}</td><td>{1}</td><td>{2}</td></tr>\n"
table += row_str.format(message[2], message[0], message[1])
table += "</table>"
return table
def message_wall_app(environ, start_response):
from io import StringIO
output = StringIO()
status = b'200 OK' # HTTP Status
headers = [(b'Content-type', b'text/html; charset=utf-8')]
start_response(status, headers)
print("<h1>Message Wall</h1>", file=output)
if environ['REQUEST_METHOD'] == 'POST':
size = int(environ['CONTENT_LENGTH'])
post_str = unquote_plus(environ['wsgi.input'].read(size).decode())
form_vals = get_form_vals(post_str)
form_vals['timestamp'] = datetime.datetime.now()
cursor.execute("""insert into messages (user, message, ts) values
(:user, :message, :timestamp)""", form_vals)
path_vals = environ['PATH_INFO'][1:].split("/")
user, *tag = path_vals
cursor.execute("""select * from messages where user like ? or message
like ? order by ts""", (user, "@" + user + "%"))
print(message_table(cursor.fetchall()), "<p>", file=output)
print('<form method="POST">User: <input type="text" '
'name="user">Message: <input type="text" '
'name="message"><input type="submit" value="Send"></form>',
file=output)
return [html_page(output.getvalue())]
httpd = make_server('', 8000, message_wall_app)
print("Serving on port 8000...")
conn = sqlite3.connect("messaging")
cursor = conn.cursor()
httpd.serve_forever()
Although it works fine for a tiny demo application, this method of applying HTML formatting can become tedious as pages and their contents get more complex. In addition, hand-coding the generation of HTML can make designing the appearance of the page doubly burdensome, because whoever is doing it must be both a programmer and a designer. Obviously, this example suffers from a plain look that could be dressed up with advanced HTML code. Web application frameworks use some sort of templating system to handle formatting so that you don’t need to worry about it.
24.5. Summary
The previous example illustrates the basics of how Python combines databases and the WSGI standard to create dynamic web applications. The choices of web application frameworks in Python are extensive, but almost all of them work in the same way and handle the same basic problems: handling requests, parsing URLs and mapping them to parts of the web application, handling user data, creating dynamic pages based on database queries, and producing HTML.
Appendix. Appendix
A guide to Python’s documentation
The best and most current reference for Python is the documentation that comes with Python itself. With that in mind, it will be more useful to explore the ways you can access that documentation than to print pages of edited documentation.
The standard bundle of documentation has several sections, including instructions on documenting, distributing, installing, and extending Python on various platforms, and is the logical starting point when you’re looking for answers to questions about Python. The two main areas of the Python documentation that are likely to be the most useful are the Library Reference and the Language Reference. The Library Reference is absolutely essential, because it has explanations of both the built-in data types and every module included with Python. The Language Reference is the explanation of how the core of Python works, and it contains the official word on the core of the language, explaining the workings of data types, statements, and so on. The “What’s New” section is also worth reading, particularly when a new version of Python is released, because it summarizes all of the changes in the new version.
Accessing Python documentation on the Web
For many people, the most convenient way to access the Python documentation is to go to www.python.org and browse the documentation collection there. Although this requires a connection to the web, it has the advantage that the content is always the most current. Given that for many projects it’s often useful to search the web for other documentation and information, having a browser tab permanently open and pointing to the online Python documentation is an easy way to have a Python reference at your fingertips.
Browsing Python documentation on your computer
Many distributions of Python include the full documentation by default. In some Linux distributions, the documentation is a separate package that you need to install separately. In most cases, however, full documentation is already on your computer and easily accessible.
Accessing help in the interactive shell or at a command line
In chapter 2, you saw how to use the help command in the interactive interpreter to access online help for any Python module or object:
>>> help(int)
Help on int object:
class int(object)
| int(x[, base]) -> integer
|
| Convert a string or number to an integer, if possible. A floating
| point argument will be truncated towards zero (this does not include a
| string representation of a floating point number!) When converting a
| string, use the optional base. It is an error to supply a base when
| converting a non-string.
|
| Methods defined here:
... (continues with a list of methods for an int)
What’s happening is that the interpreter is calling the pydoc module to generate the documentation. You can also use the pydoc module to search the Python documentation from a command line. On a Linux or Mac OS X system, to get the same output in a terminal window, you need only type pydoc int at the prompt; to exit, type q. In a Windows command window, unless you’ve set your search path to include the Python Lib directory, you’ll need to type the entire path, something like C:\Python31\Lib\pydoc.py int.
Generating HTML help pages with pydoc
If you want a sleeker look to the documentation that pydoc generates for a Python object or module, you can also have the output written to an HTML file, which you can view in any browser. To do this, add the –w option to the pydoc command, which on Windows would then be C:\Python31\Lib\pydoc.py –w int. In this case, where we’re looking up documentation on the int object, pydoc will create a file named int.html in the current directory, and we can open and view it in a browser from there. Figure A.1 shows what int.html looks like in a browser.
Figure A.1. int.html as generated by pydoc
If for some reason you want only a limited number pages of documentation available, this method works well. But in most cases it will probably be better to use pydoc to serve more complete documentation, as discussed in the next section.
Using pydoc as a documentation server
In addition to being able to generate text and HTML documentation on any Python object, the pydoc module can also be used as a server to serve web-based docs. You can do this two ways. Either you can run pydoc with –p and a port number to open a server on that port, or you can run pydoc–g to pop up a little search dialog box and open a browser from there, as illustrated in figure A.2.
Figure A.2. pydoc search dialog box
Clicking the Open Browser button opens your system’s default browser and gives you access to the documentation of all the modules available, as shown in figure A.3.
Figure A.3. A partial view of the module documentation served by pydoc
A bonus in using pydoc to serve documentation is that it also scans the current directory and extracts documentation from the docstrings of any modules it finds, even if they aren’t part of the standard library. This makes it useful for accessing the documentation of any Python modules. There is one caveat, however. To extract the documentation from a module, pydoc must import it, which means it will execute any code at the module’s top level. Thus scripts that aren’t written to be imported without side effects, as discussed in chapter 11, will be run, so use this feature with care.
Using the Windows Help file
On Windows systems, the standard Python 3 package includes complete Python documentation as a Windows Help file. You can find it in the Doc folder inside the folder where Python was installed (C:\Python31\Doc on my system). When you open it, it will look something like figure A.4.
Figure A.4. Python documentation in a Windows Help file
If you’re comfortable with using Window Help files, this file may be all the documentation you ever need.
Downloading documentation
If you want the Python documentation on a computer but don’t necessarily want or need to be running Python, you can also download the complete documentation from python.org in PDF, HTML, or text format. This is convenient if you want to be able to access the docs from an ebook reader or similar device.
The Python manual of style
This section contains a slightly edited excerpt from PEP (Python Enhancement Proposal) 8. Written by Guido van Rossum and Barry Warsaw, PEP 8 is the closest thing Python has to a style manual. Some more-specific sections have been omitted, but the main points are covered. You should make your code conform to PEP 8 as much as possible—your Python style will be the better for it.
You can access the full text of PEP 8 and all of the other PEPs issued in the history of Python by going to www.python.org’s documentation section and looking for the PEP index. The PEPs are an excellent source for the history and lore of Python as well as explanations of current issues and future plans.
PEP 8 - Style Guide for Python Code
Introduction
This document gives coding conventions for the Python code comprising the standard library in the main Python distribution. Please see the companion informational PEP describing style guidelines for the C code in the C implementation of Python.[1] This document was adapted from Guido’s original Python Style Guide essay,[2] with some additions from Barry’s style guide.[3] Where there’s conflict, Guido’s style rules for the purposes of this PEP. This PEP may still be incomplete (in fact, it may never be finished <wink>).
1 PEP 7, Style Guide for C Code, van Rossum
2 http://www.python.org/doc/essays/styleguide.html
3 Barry’s GNU Mailman style guide: http://barry.warsaw.us/software/STYLEGUIDE.txt
A foolish consistency is the hobgoblin of little minds
One of Guido’s key insights is that code is read much more often than it’s written. The guidelines provided here are intended to improve the readability of code and make it consistent across the wide spectrum of Python code. As PEP 20[4] says, “Readability counts.”
4 PEP 20, The Zen of Python
A style guide is about consistency. Consistency with this style guide is important. Consistency within a project is more important. Consistency within one module or function is most important.
But most important, know when to be inconsistent—sometimes the style guide just doesn’t apply. When in doubt, use your best judgment. Look at other examples and decide what looks best. And don’t hesitate to ask!
Here are two good reasons to break a particular rule:
Code layout
Indentation
Use four spaces per indentation level.
For really old code that you don’t want to mess up, you can continue to use eight-space tabs.
Tabs or spaces?
Never mix tabs and spaces.
The most popular way of indenting Python is with spaces only. The second most popular way is with tabs only. Code indented with a mixture of tabs and spaces should be converted to using spaces exclusively. When you invoke the Python command-line interpreter with the -t option, it issues warnings about code that illegally mixes tabs and spaces. When you use -tt, these warnings become errors. These options are highly recommended!
For new projects, spaces only are strongly recommended over tabs. Most editors have features that make this easy to do.
Maximum line length
Limit all lines to a maximum of 79 characters.
Many devices are still around that are limited to 80-character lines; plus, limiting windows to 80 characters makes it possible to have several windows side by side. The default wrapping on such devices disrupts the visual structure of the code, making it more difficult to understand. Therefore, please limit all lines to a maximum of 79 characters. For flowing long blocks of text (docstrings or comments), limiting the length to 72 characters is recommended.
The preferred way of wrapping long lines is by using Python’s implied line continuation inside parentheses, brackets, and braces. If necessary, you can add an extra pair of parentheses around an expression, but sometimes using a backslash looks better. Make sure to indent the continued line appropriately. The preferred place to break around a binary operator is after the operator, not before it. Here are some examples:
class Rectangle(Blob):
def __init__(self, width, height,
color='black', emphasis=None, highlight=0):
if width == 0 and height == 0 and \
color == 'red' and emphasis == 'strong' or \
highlight > 100:
raise ValueError("sorry, you lose")
if width == 0 and height == 0 and (color == 'red' or
emphasis is None):
raise ValueError("I don't think so -- values are %s, %s" %
(width, height))
Blob.__init__(self, width, height,
color, emphasis, highlight)
Blank lines
Separate top-level function and class definitions with two blank lines.
Method definitions inside a class are separated by a single blank line.
Extra blank lines may be used (sparingly) to separate groups of related functions. Blank lines may be omitted between a bunch of related one-liners (for example, a set of dummy implementations).
Use blank lines in functions, sparingly, to indicate logical sections.
Python accepts the Control-L (^L) form feed character as whitespace. Many tools treat these characters as page separators, so you may use them to separate pages of related sections of your file.
Imports
Imports should usually be on separate lines, for example:
import os
import sys
Don’t put them together like this:
import sys, os
It’s okay to say this, though:
from subprocess import Popen, PIPE
Imports are always put at the top of the file, just after any module comments and docstrings and before module globals and constants.
Imports should be grouped in the following order:
Put a blank line between each group of imports.
Put any relevant __all__ specification after the imports.
Relative imports for intra-package imports are highly discouraged. Always use the absolute package path for all imports. Even now that PEP 328[5] is fully implemented in Python 2.5, its style of explicit relative imports is actively discouraged; absolute imports are more portable and usually more readable.
5 PEP 328, Imports: Multi-Line and Absolute/Relative
When importing a class from a class-containing module, it’s usually okay to spell them
from myclass import MyClass
from foo.bar.yourclass import YourClass
If this spelling causes local name clashes, then spell them
import myclass
import foo.bar.yourclass
and use myclass.MyClass and foo.bar.yourclass.YourClass.
Whitespace in expressions and statements
Pet peeves—avoid extraneous whitespace in the following situations:
Other recommendations
Always surround these binary operators with a single space on either side: assignment (=), augmented assignment (+=, -=, and so on), comparisons (==, <, >, !=, <>, <=, >=, in, not in, is, is not), and Booleans (and, or, not).
Use spaces around arithmetic operators.
Don’t use spaces around the = sign when used to indicate a keyword argument or a default parameter value.
Compound statements (multiple statements on the same line) are generally discouraged.
While sometimes it’s okay to put an if/for/while with a small body on the same line, never do this for multiclause statements. Also avoid folding such long lines!
Comments
Comments that contradict the code are worse than no comments. Always make a priority of keeping the comments up to date when the code changes!
Comments should be complete sentences. If a comment is a phrase or sentence, its first word should be capitalized, unless it’s an identifier that begins with a lowercase letter (never alter the case of identifiers!).
If a comment is short, the period at the end can be omitted. Block comments generally consist of one or more paragraphs built out of complete sentences, and each sentence should end in a period.
You should use two spaces after a sentence-ending period.
When writing English, Strunk and White apply.
Python coders from non-English-speaking countries: please write your comments in English, unless you are 120% sure that the code will never be read by people who don’t speak your language.
Block comments
Block comments generally apply to some (or all) code that follows them and are indented to the same level as that code. Each line of a block comment starts with a # and a single space (unless it is indented text inside the comment).
Paragraphs inside a block comment are separated by a line containing a single #.
Inline Comments
Use inline comments sparingly.
An inline comment is a comment on the same line as a statement. Inline comments should be separated by at least two spaces from the statement. They should start with a # and a single space.
Inline comments are unnecessary and in fact distracting if they state the obvious. Don’t do this:
x = x + 1 # Increment x
But sometimes, this is useful:
x = x + 1 # Compensate for border
Documentation strings
Conventions for writing good documentation strings (aka docstrings) are immortalized in PEP 257.[6]
6 PEP 257, Docstring Conventions, Goodger, van Rossum
Write docstrings for all public modules, functions, classes, and methods. Docstrings are not necessary for nonpublic methods, but you should have a comment that describes what the method does. This comment should appear after the def line.
PEP 257 describes good docstring conventions. Note that, most importantly, the """ that ends a multiline docstring should be on a line by itself and preferably preceded by a blank line, for example:
"""Return a foobang
Optional plotz says to frobnicate the bizbaz first.
"""
For one-liner docstrings, it’s okay to keep the closing """ on the same line.
Version bookkeeping
If you have to have Subversion, CVS, or RCS crud in your source file, do it as follows:
__version__ = "$Revision: 68852 $" # $Source$
These lines should be included after the module’s docstring, before any other code, separated by a blank line above and below.
Naming conventions
The naming conventions of Python’s library are a bit of a mess, so we’ll never get this completely consistent. Nevertheless, here are the currently recommended naming standards. New modules and packages (including third-party frameworks) should be written to these standards, but where an existing library has a different style, internal consistency is preferred.
Descriptive: naming styles
There are many different naming styles. It helps to be able to recognize what naming style is being used, independent of what it’s used for.
The following naming styles are commonly distinguished:
7 www.wikipedia.com/wiki/CamelCase
There’s also the style of using a short unique prefix to group related names together. This is seldom used in Python, but I mention it for completeness. For example, the os.stat() function returns a tuple whose items traditionally have names like st_mode, st_size, st_mtime, and so on. (This is done to emphasize the correspondence with the fields of the POSIX system call struct, which helps programmers familiar with that.)
The X11 library uses a leading X for all its public functions. In Python, this style is generally deemed unnecessary because attribute and method names are prefixed with an object, and function names are prefixed with a module name.
In addition, the following special forms using leading or trailing underscores are recognized (these can generally be combined with any case convention):
Prescriptive: naming conventions
With this in mind, here are the Pythonic guidelines:
Note 1: See the argument name recommendation above for class methods.
Note 1: Properties work only on new-style classes.
Note 2: Try to keep the functional behavior side-effect free, although side effects such as caching are generally fine.
Note 3: Avoid using properties for computationally expensive operations; the attribute notation makes the caller believe that access is (relatively) cheap.
Note 1: Only the simple class name is used in the mangled name, so if a subclass chooses both the same class name and attribute name, you can still get name collisions.
Note 2: Name mangling can make certain uses, such as debugging and __getattr__(), less convenient. However the name-mangling algorithm is well documented and easy to perform manually.
Note 3: Not everyone likes name mangling. Try to balance the need to avoid accidental name clashes with potential use by advanced callers.
Programming recommendations
You should write code in a way that does not disadvantage other implementations of Python (PyPy, Jython, IronPython, Pyrex, Psyco, and such).
For example, don’t rely on CPython’s efficient implementation of in-place string concatenation for statements in the form a+=b or a=a+b. Those statements run more slowly in Jython. In performance-sensitive parts of the library, you should use the ''.join() form instead. This will ensure that concatenation occurs in linear time across various implementations.
Comparisons to singletons like None should always be done with is or is not, never the equality operators.
Also, beware of writing if x when you really mean if x is not None, for example, when testing whether a variable or argument that defaults to None was set to some other value. The other value might have a type (such as a container) that could be false in a boolean context!
Use class-based exceptions.
String exceptions in new code are forbidden, because this language feature has been removed in Python 2.6.
Modules or packages should define their own domain-specific base exception class, which should be subclassed from the built-in Exception class. Always include a class docstring, for example:
class MessageError(Exception):
"""Base class for errors in the email package."""
Class-naming conventions apply here, although you should add the suffix Error to your exception classes if the exception is an error. Non-error exceptions need no special suffix.
When raising an exception, use raise ValueError('message') instead of the older form raise ValueError, 'message'.
The paren-using form is preferred because when the exception arguments are long or include string formatting, you don’t need to use line continuation characters thanks to the containing parentheses. The older form has been removed in Python 3.
When catching exceptions, mention specific exceptions whenever possible instead of using a bare except: clause. For example, use
try:
import platform_specific_module
except ImportError:
platform_specific_module = None
A bare except: clause will catch SystemExit and KeyboardInterrupt exceptions, making it harder to interrupt a program with Control-C, and can disguise other problems. If you want to catch all exceptions that signal program errors, use except Exception:.
A good rule of thumb is to limit use of bare except clauses to two cases:
In addition, for all try/except clauses, limit the try clause to the absolute minimum amount of code necessary. Again, this avoids masking bugs.
Use string methods instead of the string module.
String methods are always much faster and share the same API with Unicode strings. Override this rule if backward compatibility with Python versions older than 2.0 is required.
Use '' .startswith() and '' .endswith() instead of string slicing to check for prefixes or suffixes.
startswith() and endswith() are cleaner and less error prone.
The exception is if your code must work with Python 1.5.2 (but let’s hope not!).
Object type comparisons should always use isinstance() instead of comparing types directly.
When checking to see if an object is a string, keep in mind that it might be a Unicode string too! In Python 2.3, str and unicode have a common base class, basestring, so you can do the following:
if isinstance(obj, basestring):
In Python 2.2, the types module has the StringTypes type defined for that purpose, for example:
from types import StringTypes
if isinstance(obj, StringTypes):
In Python 2.0 and 2.1, you should do the following:
from types import StringType, UnicodeType
if isinstance(obj, StringType) or \
isinstance(obj, UnicodeType) :
For sequences (strings, lists, tuples), use the fact that empty sequences are false.
Don’t write string literals that rely on significant trailing whitespace. Such trailing whitespace is visually indistinguishable, and some editors (or more recently, reindent.py) will trim them.
Don’t compare boolean values to True or False using ==.
Copyright—this document has been placed in the public domain.
The Zen of Python
The following document is PEP 20, also referred to as “The Zen of Python,” a slightly tongue-in-cheek statement of the philosophy of Python. In addition to being included in the Python documentation, the Zen of Python is also an Easter egg in the Python interpreter. Type import this at the interactive prompt to see it.
Long time Pythoneer Tim Peters succinctly channels the BDFL’s (Benevolent Dictator for Life) guiding principles for Python’s design into 20 aphorisms, only 19 of which have been written down.
The Zen of Python
Copyright—This document has been placed in the public domain.
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SYMBOL
' (single quoted string delimiter)
!= (not equal)
.pth files (additions to sys.path)
.py files (Python source code files)
.pyc files (compiled bytecode files)
'' character in strings
() (empty tuple)
{} (empty dictionary)
@abstractmethod decorator
@abstractproperty decorator
@property decorator
@staticmethod decorator
’ (single-quote character)
\
\n (newline character)
# (comment header)
% operator
+ (concatenation operator), for lists
2to3 conversion tool
diff file produced
fixers for specific features
options
-w option to write to file
3to2.py, converting Python 3.x back to 2.x
A
ABCMeta
absolute pathnames.
See pathnames.
absolute
abstract base classes
@abstractmethod decorator
@abstractproperty decorator
abstract method, instantiating class with
creating
MutableSequence
type checking with
abstract collection type
Hashable
Iterable
Mapping
MutableMapping
MutableSequence
MutableSet
Sequence
Sized
abstract methods
containing implementation
instantiating class with
abstract property
__add__ special method attribute
__all__ attribute, packages
Alt-/, keyboard shortcut (keyword completion)
Alt-N, keyboard shortcut (next line)
Alt-P, keyboard shortcut (previous line)
and (logical operator), 2nd
append method lists
applications, distributing
arguments.
See command line or functions.
arithmetic operations
arithmetic operators
involving only integers
arithmetic precedence
array module
ASCII
characters, including in a string
special characters
assert statement (debug statement), 2nd
assert_ TestCase class
assertAlmostEqual TestCase class
assertEqual TestCase class
assertFalse TestCase class
assertNotAlmostEqual TestCase class
assertNotEqual TestCase class
assertRaises TestCase class
assignment
associative arrays.
See dictionaries.
attributes
B
BaseHTTPRequestHandler
urllib.request module
BaseHTTPRequestHandler http.server module
__bases__ (finding what classes an object inherits from)
batteries included
binary data, reading
binary mode, opening files in
binary records (for reading and writing data)
bindings (names to objects in namespaces)
block structure, 3rd
indentation
blocks.
See block structure.
Boolean expressions, 2nd, 3rd
Boolean operators
bound methods
braces in block structure
break statement
in for loops, 2nd
in while loops
buffering, definition
built-in namespace
built-in operators
__builtins__ (built-in module)
dictionary of built-in identifiers
Button (widget) in Tkinter
bytecode (.pyc or .pyo files)
bytes
reading from a file (read)
writing a string to a file (write)
bytes type
C
C compiler, needed for freeze tool
C/C++
reading data files generated by (struct)struct
writing data files for (struct)struct
cache
definition
implementation example, 2nd
Canvas (widget) in Tkinter
capitalize function
center function
CGI, dictionary in WSGI application
CGIHTTPRequestHandler http.server module
Cheese Shop.
See Python Package Index.
__class__ attribute, obtaining the class of an instance
class keyword
class methods
close
for files
for shelves
cmath module
complex numbers and
collections library, abstract collection types
collections module, in standard library
comments
defined
differentiating
comparison operators
comparisons, compound
compile-time variable typing, lack of
compound statements
context managers
continue statement
in for loops
in while loops
control flow structures
copy module
current working directory
cyclical references, breaking
D
data members.
See classes, instance variables.
data serialization.
See pickling.
data type modules, in standard library
data types
converting to strings
dictionaries
file objects
lists
numbers
sets
strings
tuples
databases
accessing
DB-API 2.0 standard
sqlite3 library
close
commit
common operations
connect
connecting
creating cursor
cursor
execute
fetchall
fetchmany
fetchone
inserting
querying
DB-API 2.0 standard database interface
debug statements (assert)
__debug__ variable, 2nd
setting false with PYTHONOPTIMIZE environment variable
decorator functions
deepcopy function, lists
def statement
def (method definition statement)
def keyword
defining methods
del method
lists
__delitem__ special method attribute
destructors
pitfalls
Python compared to C++
development and debugging tools and runtime services, in standard library
dictionaries, 7th
adding multiple entries to (update)
comparison to lists
comprehension
copying (copy, copy.deepcopy)
creating (=) with initial entries
definition
deleting entries from (del)
delimiters []
efficiency of
get method
implementing a cache with
key membership (in)
keys, 2nd
indices of
sorting
valid values
keys view (object)
key-value pairs in (items)
len function
methods
number of entries in (len)
order of values
representing sparse matrices with
retrieving values from (get)
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